ADF Manual → 2 INPUT → 2.6 Spectroscopic properties

#### Nuclear Quadrupole Interaction (EFG)

QTENS

This key activates
the computation of the Nuclear Electric Quadrupole Hyperfine interaction. It
can be applied to open-shell and to closed-shell systems. QTENS gives you the Nuclear Electric Quadrupole
Hyperfine interaction (Q-tensor) [97]. The latter is directly related to the
Electric Field Gradient (EFG) . The Q-tensor elements (in MHz) equal the
the electric field gradient tensor elements (in a.u.) times 234.9647 times the
nuclear quadrupole moment (NQM in barn units, 1 barn = 10-28m^{2} = 10-24cm^{2})
and divided by 2I(2I-1), where I is the nuclear spin. The
Nuclear Quadrupole Coupling Constant (NQCC) (in MHz) is the largest value of the
principal values of the EFG (in a.u.) times 234.9647 times the nuclear
quadrupole moment (in barn units). The electric field gradient tensor is
printed next to the Q-tensor.

In the case of ZORA the program will also calculate the EFG in the
so called ZORA-4 approximation, which includes a small component density ("picture-change correction"),
see [97].
If one includes spin-orbit coupling the EFG in the ZORA-4 approximation is only calculated
if the symmetry in the calculation is NOSYM.

In case QTENS is used
for ^{57}Fe, ^{119}Sn, ^{125}Te, ^{193}Ir, and ^{197}Au,
quadrupole splittings are written in units of mm/s, used in Mössbauer spectroscopy.

Analysis of the EFG

With the EFG keyword in AOResponse a Mulliken type analysis of the EFG principal components, and an analysis in terms of canonical MOs, can be performed.
Required is symmetry NOSYM. This not implemented in case of spin-orbit coupling.
For an NBO analysis of the EFG, see the section on NBO analysis.
For an explanation of the output and a general usage tutorial,
see [327].
Further references and recommended citations, see [328].

Symmetry NOSYM
Aoresponse
efg NUC
end

efg NUC

Here NUC is the number of the nucleus at which the EFG is to be computed (ADF internal atom ordering).
Avaliable for one nucleus at the time.