
BAND Manual
ADF Program System

Release 2012

Scientific Computing & Modelling NV
Vrije Universiteit, Theoretical Chemistry
De Boelelaan 1083; 1081 HV Amsterdam; The Netherlands
WWW: www.scm.com
E-mail: support@scm.com

Copyright © 1993-2012: SCM / Vrije Universiteit, Theoretical Chemistry, Amsterdam, The Netherlands
All rights reserved

1

http://www.scm.com/
mailto:support@scm.com

Table of Contents
BAND Manual.. 1
Table of Contents ... 2
Preface .. 5

Release 2012.01 ... 5
1 General ... 6

1.1 Introduction.. 6
Characterization of BAND .. 6

Functionality .. 6
Analysis ... 6
Technical ... 6

Changed defaults in the 2010 release.. 7
2 Input.. 8

2.1 Introduction.. 8
Format of the Input file ... 8
Examples.. 8
Setting up an Input File .. 9

2.2 Structure of the input .. 9
General Input Features .. 9
Title, Comments and Ignore ... 10
Defining variables and functions .. 11
Units ... 11
Execution flow* ... 12

2.3 Geometry.. 12
Lattice vectors .. 12
Coordinates of atoms in the unit cell .. 13
Natural coordinates .. 13
Labels for points in k space.. 13
Selected atoms... 14

2.4 Model Hamiltonian... 14
Density Functional .. 14

XC functionals ... 14
Spin polarization.. 18
GGA+U.. 18

Relativistic Effects .. 19
Solvation... 20

COSMO: Conductor like Screening Model .. 20
Static electric field .. 24

2.5 Precision and Performance.. 24
General accuracy parameter .. 24
Fine tuning integration in real space .. 24
Numerical integration in reciprocal space .. 25
Basis and fit set .. 25

Using the database: BasisDefaults ... 25
Manually specifying AtomTypes.. 26
Confinement of basis functions ... 28

Hard confinement ... 28
Soft confinement .. 28

Technical Settings*... 29
Self-consistency .. 29

SCF key.. 29
Convergence key ... 30
DIIS key.. 31
DIRIS key* .. 32

Linear Scaling.. 32

2

Dependency .. 33
Screening .. 33
Fit Method.. 34

Orthogonal Fit... 34
Direct (on the fly) calculation of basis and fit ... 35
Radial grid ... 35
Elliptic integrals.. 35
Fermi energy search.. 36

IO settings* ... 36
IO block size .. 36
File limit ... 36
Block size .. 36

2.6 Restarts .. 37
Restart key ... 37
Plots of the density, potential, and many more properties ... 37
Orbital plots .. 38
Grid... 39
LDOS (STM)... 39
Complete example scripts for visualisation .. 40

2.7 Structure and Reactivity ... 42
Nuclear energy gradients* .. 42
Lattice gradients*.. 43
Geometry optimization ... 43

GeoOpt key ... 43
Numerical frequencies (Hessian) ... 44
Transition state search ... 45
Partial Hessian and (pre)optimizations... 45
Constrained optimization.. 45
Selected atoms... 46
Phonons and thermodynamics... 46

PhononConfig.. 46
2.8 Spectroscopic properties ... 47

Time-dependent DFT ... 47
Response key.. 48
Limitations ... 49
Time-dependent DFT for metals ... 49
Frequency dependent kernel... 50
EELS ... 50

ESR .. 50
Electric Field Gradient (EFG) ... 51
NMR ... 52

2.9 Printed Output ... 52
Print key.. 52

Thresholds... 53
More options.. 53

Debug key* ... 54
2.10 More Analysis .. 54

Charges.. 54
Bader Analysis (AIM)... 54

Density of States .. 55
DOS... 55
Gross populations ... 56
Overlap populations .. 56

Band structure .. 57
Band structure interpolation .. 57

Form factors ... 58
Fragments .. 58

3

Fragment key... 59
2.11 Expert options* .. 60

Symmetry ... 60
Excited states ... 61
The programmer key .. 61

3 Recommendations, Problems, Questions .. 64
3.1 Recommendations .. 64

Performance for large unit cells.. 64
tails .. 64
reciprocal space .. 64
Madelung summations: especially in bulk systems... 64
reduced basis set .. 65
Frozen core for 5d elements ... 65
Memory usage... 66

3.2 Trouble Shooting... 67
SCF does not converge.. 67
Geometry does not converge ... 67
Basis set dependency .. 68

Using confinement... 68
Removing basis functions ... 68

Frozen core too large ... 69
Unstable fit ... 69

3.3 Various issues ... 69
Breaking the symmetry... 69
Labels for the basis functions ... 70
Reference and Startup Atoms .. 71
Numerical Atoms, Basis functions, and Fit functions ... 71

4 References ... 72
Keywords .. 75
Index .. 76

4

Preface
The installation of the Amsterdam Density Functional band-structure program (BAND) on a computer is
explained in the Installation manual, where you can also find information about the license file(s) that you
need to run the program. This User's Guide describes how to use the program, how input is structured, what
files are produced, and so on. The Examples document, also available on the SCM web site, explains the
most popular features in detail, by commenting on the input and output files in the $ADFHOME/examples/
band directory.

Where references are made to the operating system (OS) and to the file system on your computer the
terminology of UNIX type OSs is used and a hierarchical structure of directories is assumed. The Mac OS X
platform, Linux, and all popular Windows platforms are supported.

This guide and other documentation is available on the www via the Scientific Computing & Modelling home
page at http://www.scm.com. As mentioned in the license agreement, it is mandatory, for publications in
which BAND has been used, to cite the lead references given in the References document, which can be
found on the SCM website.

Release 2012.01

Compared to the 2010 release, the 2012 version offers

• Optimization of lattice vectors, using numerical lattice gradients
• Calculation of phonon dispersion curves and related thermodynamic properties
• Critical points for the QT-AIM topological analysis
• Atomic forces for spin-orbit coupled theory
• Interpolation of the band structure for smooth plots
• Fully analytical NMR shielding tensor
• Static homogeneous electric field
• Non-periodic calculations (molecules)
• New xc functionals. Grimme-D3-BJ, GGA+U, HTBS, revTPSS, and TB-mBJ
• Speed-ups: Fast overlap (matrix elements), fast dot product (density). Faster gradients for

COSMO solvation model, faster generation of COSMO points, faster spin-orbit code

5

1 General

1.1 Introduction

BAND is a program for calculations on periodic systems, i.e. polymers, slabs and crystals, and is
supplemental to the molecular ADF program for non-periodic systems. It employs density functional theory
in the Kohn-Sham approach. BAND is very similar to ADF in the chosen algorithms, although important
differences remain. Like ADF, BAND makes use of atomic orbitals, it can handle elements throughout the
periodic table, and has several analysis options available. Unlike ADF, BAND can use numerical atomic
orbitals, so that the core is described very accurately. Because of the numerical orbitals BAND can calculate
accurate total energies. Furthermore it can handle basis functions for arbitrary l values.

Characterization of BAND

Functionality

• Automatic geometry optimization
• Formation energy with respect to isolated atoms that are computed with a fully numerical

Herman-Skillman type subprogram
• A choice of density functionals, including LDA (Local Density Approximation),

GGA (Generalized Gradient Approximation), and meta GGA (with kinetic energy density
dependence) formulas

• Time-dependent DFT for calculation of frequency-dependent dielectric functions of systems
periodic in one or three dimensions.

• The ZORA method for scalar relativistic effects is available (also for the TDDFT option).
Spin-orbit coupling can be taken into account.

• Phonon spectrum.

Analysis

• Mulliken populations for basis functions, overlap populations between atoms or between basis
functions.

• Hirshfeld charge analysis
• Densities-of-States: DOS, PDOS and OPWDOS/COOP
• Local Densities-of-States: LDOS (STM images)
• Form factors (X-ray structures)
• Charge analysis using Voronoi cells (yielding Voronoi Deformation Charges)
• Orbital plots
• Deformation density plots
• Band structure plots along the edges of the Brillouin zone
• One-electron energies and orbitals at the Brillouin Zone sample points
• Fragment orbitals and a Mulliken type population analysis in terms of the fragment orbitals
• QT-AIM (Quantum Theory of Atoms In Molecules). Atomic charges and critcal points.
• ELF: Electron Localization Function (understand bonding).

Technical

• Linear scaling techniques are used to speed up calculations on large unit cells
• SCF convergence based on a Direct Inversion of Iterative Subspace (DIIS) method

6

• The implementation is built upon a highly optimized numerical integration scheme for the
evaluation of matrix elements of the Hamiltonian, property integrals involving the charge density,
etc.
This is the same numerical integration scheme as used in ADF.

• The program has been parallelized and vectorized
• Basis functions are Slater-Type Orbitals (STOs) and/or Numerical Orbitals (NOs).
• Fit functions are Slater-type exponential functions centered on the atoms and are used to fit the

deformation density, which is the difference between the final density and the startup density.
The deformation density has zero charge and will in general be small. The fitted deformation
density
is used for the calculation of the Coulomb potential and the derivatives of the total density (needed
for the gradient corrections in the exchange-correlation functionals). In both cases the main part,
due to the startup density, is calculated accurately by a numerical procedure, and only
the small part from the deformation density is obtained via the fit.

• A frozen core facility is provided to allow efficient treatment of the inner atomic shells.
• Space group symmetry is used to reduce the computational effort in the integrals over the Brillouin

zone.

Changed defaults in the 2010 release

• Fast implementations of overlap (Fock matrix) and dot product (for density) routines
• NMR: use analytical gradient. (See NMR%Numeric)
• Numerical frequencies step size changed from 0.01 to 0.001. (See Frequencies%Step)

7

2 Input

2.1 Introduction

When the program has been installed properly on your machine, you should be able to run it by supplying
appropriate input. This document describes how input is organized. A few sample runs are contained in the
distribution, see the Examples document on the SCM website for a description.

Input is structured by keywords, or keys. A key is a string of letters, dollar signs ($), and digits. It must not
start with a digit. It must not contain any other character, in particular not any blank.

Key-controlled input occurs in two forms: either one record (which contains both the key and/or associated
data) or a sequence of records, collectively denoted as a key block. The first record of the block specifies
the key (and may supply additional information); the block is closed by the 'end-key' code: a record
containing only the word 'End'. The other records in the block provide data associated with the key.

The form to be used for a key is not optional: each admissible key corresponds to a particular form. The
block form is used for keys that relate to 'lists' of data, such as atomic coordinates or basis functions.

As is the case in the molecular code, the 'title' must be specified explicitly with the key 'Title' and may be put
on any record of the input file. The input file should end with a record End Input, that is, the program reads
input until such a record is encountered or until the Fortran end-of-file condition becomes true, whichever
comes first.

End Input is not a key.

Summarizing, the input file must have the following format:

Format of the Input file

TITLE jobname
key-controlled data
key-controlled data
(et cetera...)

End Input

The ordering of keys in input is free and has no consequences.

All numerical information is 'free format': the absolute positions of numbers and the format of reals is
irrelevant.

In most cases lowercase characters and capitals can both be used and the program will not discriminate
between them, except in filenames.

Examples

A few of examples are available in the $ADFHOME/examples/band directory: for each sample run a run
script and the output file. You may rerun the sample runs and compare your results with the provided output
files to check that your BAND version has been installed correctly. This will also help you to get familiar with
using the program. See the Examples document for a brief discussion of the available sample runs. The
examples typically take a few minutes of CPU time.

8

For new users it may be convenient to have at least one of the example outputs at hand when reading the
next parts, so that remarks and instructions can be compared to an actual case.

Setting up an Input File

We now give a brief guide to set up input.

You first specify the minimally required information: the geometric structure and the definition of the atoms
(positions and function sets) that constitute the system. Then you add keys for all aspects for which you
don't want to use the defaults.

1. Specify a title using the key Title.
2. Define the structure of periodicity with the key Lattice.
3. Give the positions of the atoms with the key Atoms.

All atoms specified in the corresponding data block belong to one type of atom.
Consequently, the key Atoms must be repeated as many times
as there are different types of atoms. Different chemical elements necessarily belong to
different types. The reverse is not true: it is allowed to define more than one 'type' of
Carbon atom, for instance to equip them with different basis sets.

4. Specify the BasisDefaults key. With this you can set the quality
of the basis set to be used, and the size of the frozen core. Given your settings the program will
look up an appropriate basis set for each type from the database. This replaces the old style
AtomType
key that needed to be specified for each type.

5. Add further keys for features you don't want to be defaulted, for instance
Unrestricted (if you want to do a spin-unrestricted calculation),
Accuracy (general precision parameter),
KSpace (parameter for numerical integration over the Brillouin Zone),
DOS (generation of the density-of-states), and so on.

6. Terminate the input file by typing End Input
7. Comments: everything behind a exclamation mark "!" is treated as comment. If you put it behind a

key, leave some space between it, otherwise it will be seen as part of the key.

Consult the sample runs and description below, to see how you may use the various keys (Lattice,
Atoms, BasisDefaults).

2.2 Structure of the input

General Input Features

The program supports the following features to enhance user-friendliness of input:

• Arithmetic expressions can be used (wherever numbers are required) involving the standard
arithmetic
operands in Fortran (+ - * / **), together with parentheses where necessary or convenient.
Blanks are allowed in expressions and ignored, but they are interpreted as separators, i.e. as
denoting the
end of an expression, whenever the part before the blank can be evaluated as a correct
expression.
For instance '3* 4' will be interpreted as 12, but '3 *4' will be interpreted
as 3, followed by a character *, followed in turn by the number 4.
All numbers and results are interpreted and handled as being of type real, but whenever the result

9

is a
whole number (allowing for small round-off deviations), it will be recognized as possibly denoting
an integer.

• (Single) quotes can be used to designate strings, i.e. (parts of) records which are not
to be parsed for expressions, but which are to be taken as they are. The quotes themselves are
ignored.
Double quotes inside a string are understood to denote the single quote character (as part of the
string).

• Empty records and starting blanks in records are allowed (and ignored),
and can be used to enhance clarity and readability of the input file for human readers by
structuring its layout.

• A double colon :: is interpeted as an end of line charachter,
hence the double colon and anything after it is ignored

Title, Comments and Ignore

Title

Compulsory key. Specifies the title of this run. The title is used for identification of the result files.

Commment (block-type), and line oriented

The content of this key is a text that will be copied to the output header, where general program
information is also printed. The exclamation mark can also be used to add comment to you input that
should not interpreted by BAND. Example

Comment ! here are my comments
Description of the calculation
Some more description
End

Lattice ! FCC lattice
0 a a
a 0 a
a a 0
End

...

! Here are my defines

Define
...
End

Finally it is possible to let BAND ignore parts of the input

Ignore (block-type)

Suppress reading of input until the next end-key code (END).

10

Defining variables and functions

The user may define variables and functions in the input file, and apply them subsequently in expressions.
The input file is read sequentially and variables and functions must be defined before they can be used.
Note carefully that replacement of a variable (or function) by its value will occur wherever possible
(textually),
even if it leads to non-sense input. A frequently occurring mistake is that the user defines a variable 'C'
in his (her) input and then gets his input corrupted because of subsequent isolated C characters are
replaced by the defined numerical value. Therefore: avoid single-character variables and function names.
Always check carefully that the identifier you introduce is not 'used' already in the input file.

A few variables and functions are pre-defined:

(variables):
pi = 3.1415....
(functions):
sin, cos, tan, asin, acos, atan, exp, log, sqrt, nint.

The argument list of a function must be enclosed in parentheses, and the arguments
(in case of more than one) must be separated by commas.
Defining variables and/or functions is done with the block-type key define.

Example (part of input):

DEFINE
ab = sin(pi/3)
s13 = 14*sqrt(2)
func(x,y,z) = x*ab+y**2-y*z
End
AKEY = FUNC (S13/5, S13/7, SIN(PI/6))

Here a function func and variables ab and s13 are defined, using the pre-defined functions sin and sqrt,
as well as the pre-defined variable pi. These are then applied to assign a value to the (hypothetical) key
AKEY.
Note 1: the variable ab is also used in the definition of func'; this is allowed because ab is defined before
func.
Note 2: variable- and function names must have the same form as keywords, i.e. only certain characters
are allowed.
Note 3: in the definition of variables and functions blanks are ignored altogether (in the value part) and will
not be interpreted as possible separators of the expression that defines the variable or function.

Define (block-type)

Definition of user-supplied functions and variables that can subsequently be used in the input file. (see
the note on auxiliary input features)

Units

Geometric data (atomic positions and lattice vectors) are by default understood to be in atomic units (bohr).
Alternatively one may supply data in angstroms by setting the key Units (see below). Internally the
program will then convert the input data into a.u.

Units

Units of length and angle Geometric lengths and angles are in units defined by this key.

11

UNITS
{LENGTH {Angstrom | Bohr}}
{ANGLE {Degree | Radian}}

End

Angstrom and Bohr, respectively Degree and Radian, are recognized strings. Each of the subkeys is
optional, as is the key UNITS itself. Defaults: Bohr for lengths, and Degree for angles.
The position of this key in the input is not important. It always applies to all input.
To avoid mistakes one should place UNITS as early as possible in input (if at all).

Execution flow*

There are a few ways to alter the standard execution flow, which may be useful to developers or expert
users.

StopAfter

Specifies that the program is stopped after execution of a specified program-part (subroutine). The
specified name should be one of a pre-defined list. The most relevant ones are gemtry (all geometrical
aspects are checked, symmetry analysis is carried out, and numbers of (symmetry-unique) integration
points in real space and in k-space are determined; this part takes only little cpu-time) and atomic (in
addition to the geometry-part all radial parts of basis- and fit functions are generated, and the
spherically symmetric atoms are computed and inserted in the crystal; the initial charge density is
defined and integrated (check on integration-precision), and the electrostatic interaction is computed
between the unrelaxed free atoms).

SKIP

followed by any number of strings (separated by blanks or commas) tells the program to skip certain
parts. Should only be used by those who know what they're doing. Recognized are certain pre-defined
strings. Useful argument may be DOS when that part of the program takes a long time (usually not), or
eigenvalues (to suppress printing the eigenvalues at the (first and last) SCF cycles).

ALLOW

debugging feature to let the program continue even when intermediate results seem to be wrong or very
inaccurate. Currently there are only few places in the program where this key is used. Argument to the
key is what should be allowed (possible arguments: BadIntegration, OCC, CHARGEERROR,
DEPENDBASIS).

2.3 Geometry

Lattice vectors

Lattice (block-type)

Vectors defining the Bravais lattice, one vector per line. The number of lines defines the periodicity of
the system: 1: polymer, 2: slab, 3:bulk crystal. Each vector has three coordinates (Cartesian), in atomic
units. To specify coordinates in Angstrom, use the Units key.

12

Coordinates of atoms in the unit cell

Atoms (block-type)

Nuclear coordinates. The chemical symbol (H, C, Cu, etc.), which defines the atom type, must be given
on the keyword-line. The data-records contain the coordinates, one atom per line. The coordinates are
in cartesian representation unless the key Coordinates has been given in input with the value
natural, in which case the numbers are interpreted as expansion coefficients in the Bravais lattice
vectors (see key Lattice). In case of the cartesian representation the values are in atomic units
(angstroms if the unit of length has been changed with key Units). The atoms key must occur once for
every atom type, i.e. the number of atom types is defined as the number of occurrences of this key.

You can add the following subkeys that override the behavior of the BasisDefaults key

BasisType

This overrides the setting of the BasisDefaults%AtomType key for this atom type.

Core

This overrides the setting of the BasisDefaults%Core key.

File

Specify a full path to a basis set file.

Natural coordinates

Coordinates

The only sensible value for this key is: natural, which specifies that nuclear coordinates (key atoms)
are given as expansions in the Bravais lattice vectors, rather than in a Cartesian representation.

Labels for points in k space

KLabels (block-type)

With this key you assign names to symmetry unique k-points. In general you do not know in advance
how many k-points will be used, nor the number of points that are symmetry unique among them.
Therefore you should first add to your input file the option StopAfter gemtry, which causes the
program to stop after the k-points have been generated. In the output you will see under the header k-
space integration a numbered list of the k-points, with their, symmetry-unique-index number, and
coordinates. In the next run you may then give the symmetry unique k-points symbolic names.

Example:

KLabels
GAMMA
X
M

End

13

According to this example all k-points with symmetry unique number 1, will be labeled gamma, those
with symmetry unique number 2 X, and those with symmetry unique number 3 M.

Selected atoms

SelectedAtoms

With this key you can select atoms. This has an effect on a couple of options, like for instance the
Gradients, Hessian (FREQUENCIES), NMR, and EFG options. In these cases, the properties will only
be calculated for the selected atoms, which can make the job faster.

SelectedAtoms n1, n2, n...

The numbers of the atoms are as on input. If the selection breaks the symmetry the program will stop.
Leaving out this key in general selects all atoms.

2.4 Model Hamiltonian

The program calculates by default the non relativistic self-consistent field solution from the potential in the
spin-restricted local density approximation (LDA) to the exchange-correlation (XC) potential. The post-SCF
generalized gradient (GGA) corrections for the exchange and the correlation energies (each for a few
different functionals) are calculated and printed on output. The program can be instructed to use the GGA
corrections in the potential during the SCF as well. This will in general have little effect on the formation
energy, but it may affect the Density of States (DOS).

Density Functional

The starting point for the xc functional is usually the result for the homogeneous electron gas, after which so
called nonlocal or generalized gradient corrections (GGA: Generalized Gradient Approximation) are added.

XC functionals

The density functional approximation is controlled by the XC key.

XC

Three classes of exchange-correlation functionals are supported: LDA, GGA, and meta-GGA. There is
also the option to add an empirical dispersion correction. The only ingredient of the LDA energy density
is the (local) density, the GGA depends additionally on the gradient of the density, and the meta GGA
has an extra dependency on the kinetic energy density.

In principle you may specify different functionals to be used for the potential, which determines the self-
consistent charge density, and for the energy expression that is used to evaluate the (XC part of the)
energy of the charge density. This is not so important for a single point calculation as Band prints the
bonding energies of a set of common functionals, but the energy functional is used for the nuclear
gradients (geometry optimization). To be consistent, one should generally apply the same functional to
evaluate the potential and energy respectively. Two reasons, however, may lead one to do otherwise:
1. The evaluation of the GGA part (especially for Meta GGAs) in the potential is rather time-consuming.
The effect of the GGA term in the potential on the self-consistent charge density is often not very large.
From the point of view of computational efficiency it may, therefore, be attractive to solve the SCF
equations at the LDA level (i.e. not including GGA terms in the potential), and to apply the full
expression, including GGA terms, to the energy evaluation a posteriori: post-SCF.

14

2. A particular XC functional may have only an implementation for the potential, but not for the energy
(or vice versa). This is a rather special case, intended primarily for fundamental research of Density
Functional Theory, rather than for run-of-the-mill production runs.

The key that controls the Density Functional is xc, with sub keys LDA and (meta)GGA to define the LDA
and (meta)GGA parts of the functional. All subkeys are optional (need not be used) and may occur
twice in the data block: if one wants to specify different functionals for potential and energy evaluations
respectively, see above.

XC
{LDA {Apply} LDA {Stoll}}
{GGA {Apply} GGA}
{DiracGGA GGA}
{MetaGGA {Apply} GGA}
{Dispersion {s6scaling} {RSCALE=r0scaling} {Grimme3/dDsC} {BJDAMP}
{PAR1=par1} {PAR2=par2} {PAR3=par3} {PAR4=par4}
{Model} {LB94/TB-mBJ}}
End

The common use is to specify either an LDA, line or a (meta)GGA line. (Technically it is possible to
have an LDA line and a GGA line, in which case the LDA part of the GGA functional (if applicable) is
replaced by what is specified by the LDA line.)

Apply

States whether the functional defined on the pertaining line will be used self-consistently (in the
SCF-potential), or only post-SCF, i.e. to evaluate the XC energy corresponding to the charge
density. The value of apply must be SCF or POSTSCF. For each record separately the default (if
no Apply value is given in that record) is SCF.

LDA

Defines the LDA part of the XC functional and can be any of the following:

Xonly: The pure-exchange electron gas formula. Technically this is identical to the Xalpha form
(see next) with a value 2/3 for the X-alpha parameter.

Xalpha: the scaled (parameterized) exchange-only formula. When this option is used you may
(optionally) specify the X-alpha parameter by typing a numerical value after the string Xalpha
(separated by a blank). If omitted this parameter takes the default value 0.7

VWN: the parameterization of electron gas data given by Vosko, Wilk and Nusair (ref [1], formula
version V). Among the available LDA options this is the more advanced one, including correlation
effects to a fair extent.

Stoll: For the VWN or GL variety of the LDA form you may include Stoll's correction [2] by typing
Stoll on the same line, after the main LDA specification. You must not use Stoll's correction in
combination with the Xonly or the Xalpha form for the Local Density functional.

GGA

Specifies the GGA part of the XC Functional, in earlier times often called the 'non-local' correction
to the LDA part of the density functional. It uses derivatives (gradients) of the charge density.
Separate choices can be made for the GGA exchange correction and the GGA correlation
correction respectively. Both specifications must be typed (if at all) on the same line, after the GGA
subkey.

15

For the exchange part the options are:
Becke: the gradient correction proposed in 1988 by Becke [3].
PW86x: the correction advocated in 1986 by Perdew-Wang [4].
PW91x: the exchange correction proposed in 1991 by Perdew-Wang [5]
mPWx: the modified PW91 exchange correction proposed in 1998 by Adamo-Barone [27]
PBEx: the exchange correction proposed in 1996 by Perdew-Burke-Ernzerhof [12]
HTBSx: the HTBS exchange functional [45]
RPBEx: the revised PBE exchange correction proposed in 1999 by Hammer-Hansen-Norskov [13]
revPBEx: the revised PBE exchange correction proposed in 1998 by Zhang-Wang [28]
mPBEx: the modified PBE exchange correction proposed in 2002 by Adamo-Barone [29]
OPTX: the OPTX exchange correction proposed in 2001 by Handy-Cohen [30]

For the correlation part the options are:
Perdew: the correlation term presented in 1986 by Perdew [6].
PBEc: the correlation term presented in 1996 by Perdew-Burke-Ernzerhof [12] .
PW91c: the correlation correction of Perdew-Wang (1991), see [5].
LYP: the Lee-Yang-Parr 1988 correlation correction [7-9].

Some GGA options define the exchange and correlation parts in one stroke. These are:
BP86: this is equivalent to Becke + Perdew together.
PW91: this is equivalent to pw91x + pw91c together.
mPW: this is equivalent to mPWx + pw91c together.
PBE: this is equivalent to PBEx + PBEc together
HTBS: this is equivalent to HTBSx + PBEc together
RPBE: this is equivalent to RPBEx + PBEc together
revPBE: this is equivalent to revPBEx + PBEc together
mPBE: this is equivalent to mPBEx + PBEc together
BLYP: this is equivalent to Becke (exchange) + LYP (correlation).
OLYP: this is equivalent to OPTX (exchange) + LYP (correlation).
OPBE: this is equivalent to OPTX (exchange) + PBEc (correlation) [31].

DiracGGA

(Expert option.) Sometimes it is better to use the LDA potential for the Numerical atoms, when the
exact solutions are too wild. We found this to be the case for the PBE functional (and its variations).
In that case the matrix elements of the Kinetic energy operator converged very slowly with the
Accuracy parameter.

MetaGGA

Key to select the evaluation of a meta GGA. A byproduct of this option is that the bonding energies
of all known functionals are printed (using the same density). Meta GGA calculations can be quite a
bit more time consuming, especially when active during the SCF.

Self consistency of the meta GGA is implemented as suggested by Neuman, Nobes, and Handy.
[11]

The available functionals of this type are:
M06L: The Meta GGA as developed by the Minesota group [16]
TPSS: The 2003 Meta GGA [15]
revTPSS: The 2009 revised Meta GGA [26]

DISPERSION Grimme3 BJDAMP

If DISPERSION Grimme3 is present a dispersion correction (DFT-D3-BJ) by Grimme [44] will be added
to the total bonding energy, gradient and second derivatives, where applicable. This is the latest

16

dispersion correction in the DFTB-D family. Parametrizations are implemented for the functionals:
B3LYP, TPSS, BP86, BLYP, PBE, PBEsol, and RPBE. It has four parameter. One can overide this
using PAR1=.. PAR2=.., etc. In the table the relation is shown between the parameters and the real
parameters in the Dispersion correction.

variable variable on Muenster website

PAR1 s6

PAR2 a1

PAR3 s8

PAR4 a2

DISPERSION Grimme3

If DISPERSION Grimme3 is present a dispersion correction (DFT-D3) by Grimme [42] will be added to
the total bonding energy, gradient and second derivatives, where applicable. Parametrizations are
available for: B3LYP, TPSS, BP86, BLYP, revPBE, PBE, PBEsol, and RPBE, and will be automatically
set if one of these functionals is used. For all other functionals, PBE-D3 parameters are used as default.
You can explicitly specify the three parameters

variable variable on Muenster website

PAR1 s6

PAR2 sr,6

PAR3 s8

Dispersion

If the DISPERSION keyword is present a dispersion correction will be added to the total bonding
energy, where applicable. By default the correction of Grimme [32]. The term is added to the
bonding energies of all printed functionals, standard the LDA and a couple of GGAs. The global
scaling factor with which the correction is added depends on the exchange-correlation functional
used at SCF but it can be modified using the s6scaling parameter. The following scaling factors are
used (with the XC functional in parantheses): 1.20 (BLYP), 1.05 (BP), 0.75 (PBE), 1.05 (B3LYP). In
all other cases a factor 1.0 is used unless modified via the s6scaling parameter.
The van der Waals radii used in this implementation are hardcoded. However, it is possible to
modify the global scaling parameter for them using the RSCALE=r0scaling argument. The default
value is 1.1 as proposed by Grimme [32].
With the extra option Grimme3 the latest dispersion correction, known as D3, will be used. [42]

Model

Some functionals give only a potential and have no energy expression. We call such functionals model
potentials. In band there are two available. With Model LB94 the asymptotically correct potential of van
Leeuwen and Baerends is invoked. [10] To fix the band gap in bulk systems you can use Model TB-
mBJ, see ref [46]. This potential depends on a c-factor for which there is a density dependent automatic

17

http://toc.uni-muenster.de/DFTD3/functionalsbj.html
http://toc.uni-muenster.de/DFTD3/functionals.html

expression. However you can override the automatic value by specifying XC%TB_mBJCFactor cfac.
In principle: the bigger the value the larger the gap.

Defaults and special cases

• If the XC key is not used, the program will apply only the Local Density Approximation (no GGA
terms).
The chosen LDA form is then VWN.

• If only a GGA part is specified, omitting the LDA sub key, the LDA part defaults to VWN, except
when the LYP
correlation correction is used: in that case the LDA default is Xonly: pure exchange.

• The reason for this is that the LYP formulas assume the pure-exchange LDA form, while for
instance the
Perdew-86 correlation correction is a correction to a correlated LDA form.
The precise form of this correlated LDA form assumed in the Perdew-86 correlation correction
is not available as an option in ADF but the VWN formulas are fairly close to it.

• Be aware that typing only the sub key LDA, without an argument, will activate the VWN form
(also if LYP is specified in the GGA part).

Spin polarization

Unrestricted

If this key occurs (no additional data needed), a spin-unrestricted calculation will be carried out.

UNRESTRICTED { Reference }

Reference

Default the formation energy is calculated with respect to the spherically symmetric spin-restricted
atoms. If you want to do an unrestricted calculation for the atoms, you may include this keyword as
argument to key Unrestricted. This will only yield the true ground state density for atoms with a
spherical (spin polarized) ground state like H, Li, N, Cr, Cu, ... In other words: this key does not
provide a general solution for atomization energies.

Defaults and special cases
A calculation is default restricted.
General remarks
Be aware that cpu-time may be approximately doubled!

GGA+U

A special way to treat correlation is with so-called LDA+U, or GGA+U calculations. It is intended to solve the
band-gap problem of traditional DFT, the problem being an underestimation of band gaps for transition-
metal complexes. A Hubbard like term is added to the normal Hamiltonian, to model on-site interactions. In
its very simplest form it depends on only one parameter, U, and this is the way it has been implemented in
band. The energy expression is equation (11) in the work of Cococcioni [49]. See also the review article [48]

HubbardU (block-type)

Key to control the GGA+U calculation

HubbardU
Enabled {true | false}

18

PrintOccupations {true | false}
UValue u1, u2, ...
LValues l1, l2, ...

End

Enabled: Whether or not to apply the Hubbard Hamiltonian

PrintOccupations: Whether or not to print the occupations during the SCF.

UValue: For each atom type specify the U value. A value of 0.0 is interpreted as no U

LValue: For each atom type specify the l value. A negative value is interpreted as no l-value

A typical example to apply LDA+U to the d-orbitals of NiO looks like

HubbardU
printOccupations true
Enabled true
uvalue 0.3 0.0
lvalue 2 -1
End

ATOMS Ni
0.0 0.0 0.0
END

ATOMS O
2.085 2.085 2.085
END

Relativistic Effects

Relativistic effects are treated with the accurate and efficient ZORA approach [17-18], controlled by the
Relativistic keyword. Relativistic effects are negligible for light atoms, but grow to dramatic changes for
heavy elements. A rule of thumb is: Relativistic effects are quite small at row 4, but very large at row 6 (and
later).

Relativistic

Includes a relativistic correction in the Hamiltonian.

Relativistic {level}

Level {None | ZORA | ZORA Spin}

NONE: no relativistic effects

ZORA: scalar relativistic ZORA. This option comes at very little cost, and is advised when you want
to compare to experimental results.

19

ZORA Spin: Spin-orbit coupled ZORA. This is the best level of theory, but it is much more (4-8
times) expensive than a normal calculations. Spin-orbit effects are generally quite small, unless
there are very heavy atoms in your system, especially with p valence electrons (like Pb).

Solvation

COSMO: Conductor like Screening Model

You can study chemistry in solution, as contrasted to the gas phase, with the implementation in BAND of the
Conductor like Screening Model (COSMO) of solvation [36].

In the COSMO model all solvents are roughly the same, and approximated by an enveloping metal sheet.
One explicit dependency on the solvent is that the solvation energy is scaled by

f(ε) = (ε-1)/(ε+x)

and this depends on the dielectric constant of the solvent, and an empirical factor x. The other is that shape
of the surface is influenced by the RAD parameter, see below.

SOLVATION
{Surf Esurf}
{Solv {Name=solvent} {Eps=78.4}{Rad=1.4} {Del=1.4}

{Emp=0.0} }
{Div {Ndiv=3} {NFdiv=1} {Min=0.5} {OFAC=0.8}

{leb1=23} {leb2=29}{rleb=1.5} }
{RADII
name1=value1
name2=value2
...

subend }
{Charged {Method=meth} {Conv=1e-10} (Iter=1000} {NoCorr} }
{Cvec {Exact | FitPot}
{SCF {Var | Pert}

End

Presence of the SOLVATION key block triggers the solvent calculation and does not require additional data.
With subkeys you can customize various aspects of the model, for instance to specify the type of solute.
None of the subkeys is obligatory

See also the key GeoOpt%StaticCosmoSurface and Frequencies%StaticCosmoSurface.

Follows a description of the subkeys

Surf {Wsurf|Asurf|Esurf|Klamt|Delley}

Five different cavity types are available. The Wsurf, Asurf, and Esurf surfaces are constructed with the
GEPOL93 algorithm [38].

Wsurf

Wsurf triggers the Van der Waals surface (VdW), which consists of the union of all atomic spheres.

Asurf

20

Asurf gives the Solvent-Accessible-Surface (SAS). This is similar to VdW but consists of the path
traced by the center of a spherical solvent molecule rolling about the VdW surface or, equivalently,
a VdW surface created by atomic spheres to which the solvent radius has been added. These two
surface types contain cusps at the intersection of spheres.

Esurf

Esurf (the default) gives the Solvent-Excluding-Surface (SES), which consists of the path traced by
the surface of a spherical solvent molecule rolling about the VdW surface. Primarily, this consists of
the VdW surface but in the regions where the spheres would intersect, the concave part of the
solvent sphere replaces the cusp. This SES surface is the default.

Klamt

The fourth surface option is Klamt as described in [39]. It excludes the cusp regions also.

Delley

The fifth surface is the so called Delley surface, see also Ref. [40].

Solv

Solvent details.

Name, Eps, Rad

Eps specifies the dielectric constant (the default relates to water). An infinite value for Eps is
chosen if Eps is specified to be lower than 1.0. Rad specifies the radius of the (rigid sphere) solvent
molecules, in angstrom. Instead of specifying Eps and Rad one can specify a solvent name or
formula after 'name='. The following table lists names and formulas that are recognized with the
corresponding values for Eps and Rad. The names and formulas are case-insensitive.

Name Formula Eps Rad
AceticAcid CH3COOH 6.19 2.83
Acetone CH3COCH3 20.7 3.08
Acetonitrile CH3CN 37.5 2.76
Ammonia NH3 16.9 2.24
Aniline C6H5NH2 6.8 3.31
Benzene C6H6 2.3 3.28
BenzylAlcohol C6H5CH2OH 13.1 3.45
Bromoform CHBr3 4.3 3.26
Butanol C4H9OH 17.5 3.31
isoButanol (CH3)2CHCH2OH 17.9 3.33
tertButanol (CH3)3COH 12.4 3.35
CarbonDisulfide CS2 2.6 2.88
CarbonTetrachloride CCl4 2.2 3.37
Chloroform CHCl3 4.8 3.17
Cyclohexane C6H12 2 3.5
Cyclohexanone C6H10O 15 3.46
Dichlorobenzene C6H4Cl2 9.8 3.54
DiethylEther (CH3CH2)2O 4.34 3.46
Dioxane C4H8O2 2.2 3.24
DMFA (CH3)2NCHO 37 3.13
DMSO (CH3)2SO 46.7 3.04
Ethanol CH3CH2OH 24.55 2.85

21

EthylAcetate CH3COOCH2CH3 6.02 3.39
Dichloroethane ClCH2CH2Cl 10.66 3.15
EthyleneGlycol HOCH2CH2OH 37.7 2.81
Formamide HCONH2 109.5 2.51
FormicAcid HCOOH 58.5 2.47
Glycerol C3H8O3 42.5 3.07
HexamethylPhosphoramide C6H18N3OP 43.3 4.1
Hexane C6H14 1.88 3.74
Hydrazine N2H4 51.7 2.33
Methanol CH3OH 32.6 2.53
MethylEthylKetone CH3CH2COCH3 18.5 3.3
Dichloromethane CH2Cl2 8.9 2.94
Methylformamide HCONHCH3 182.4 2.86
Methypyrrolidinone C5H9NO 33 3.36
Nitrobenzene C6H5NO2 34.8 3.44
Nitrogen N2 1.45 2.36
Nitromethane CH3NO2 35.87 2.77
PhosphorylChloride POCl3 13.9 3.33
IsoPropanol (CH3)2CHOH 19.9 3.12
Pyridine C5H5N 12.4 3.18
Sulfolane C4H8SO2 43.3 3.35
Tetrahydrofuran C4H8O 7.58 3.18
Toluene C6H5CH3 2.38 3.48
Triethylamine (CH3CH2)3N 2.44 3.81
TrifluoroaceticAcid CF3COOH 42.1 3.12
Water H2O 78.39 1.93

Del

Del is the value of Klamt's delta_sol parameter, only relevant in case of Klamt surface.

Emp

Emp addresses the empirical scaling factor x for the energy scaling.

DIV

Ndiv, NFdiv

Ndiv controls how fine the spheres that in fact describe the surface are partitioned in small surface
triangles, each containing one point charge to represent the polarization of the cavity surface. Default
division level for triangles Ndiv=3. Default final dision level for triangles NFdiv=1 (NFdiv≤Ndiv).

Min

Min specifies the size, in angstrom, of the smallest sphere that may be constructed by the SES
surface. For VdW and SAS surfaces it has no meaning. Default Min=0.5

Ofac

Ofac is a maximum allowed overlap of new created spheres, in the construction procedure. Default
Ofac=0.8.

leb1, leb2, rleb

22

For the Delley type of construction one needs to set the variables leb1 (default value 23), leb2
(default value 29), and rleb (default value 1.5 Angstrom) to set the number of surface points. If the
cavity radius of an atom is lower than rleb use leb1, otherwise use leb2. These values can be
changed: using a higher value for leb1 and leb2 gives more surface points (maximal value leb1,
leb2 is 29). A value of 23 means 194 surface points in case of a single atom, and 29 means 302
surface points in case of a single atom Typically one could use leb1 for the surface point of H, and
leb2 for the surface points of other elements.

Radii

In the Radii data block you give a list of atom types and values.

SOLVATION
...

Radii
H 0.7
C 1.3
...

Subend
...

End

The values are the radii of the atomic spheres, in the default unit of length (angstrom or bohr). If not
specified the default values are those by Allinger. [41]

Charge

This addresses the determination of the (point) charges that model the cavity surface polarization. In
COSMO calculations you compute the surface point charges q by solving the equation Aq=-f, where f is
the molecular potential at the location of the surface charges q and A is the self-interaction matrix of the
charges. The number of charges can be substantial and the matrix A hence very large. A direct method,
i.e. inversion of A, may be very cumbersome or even impossible due to memory limitations, in which
case you have to resort to an iterative method.
Meth specifies the equation-solving algorithm. Meth=INVER (default) requests direct inversion.
Meth=CONJ uses the preconditioned biconjugate gradient method. This is guaranteed to converge and
does not require huge amounts of memory.
CONV and ITER are the convergence criterion and the maximum number of iterations for the iterative
method.

In periodic calculations the unit cell needs to be neutral. Therefore, by default the COSMO charges are
forced to sum to zero. When NOCORR is present, this constraint is not applied.

CVec

There are two ways to calculate the molecule- (COSMO)surface interaction.
EXACT (default): Consider the interactions between the electron density and the potential due to the
COSMO points.
FITPOT: Use the COSMO point charges in the potential of the molecule (obtained by density fitting).

The EXACT option is exact on paper, but in reality numerical integration is used to get the energy. The
standard grid is formally not suitable to handle the cusps at the COSMO points. Still this option works
well because the singularity is softened by the smallness of the electronic density at the COSMO points.
The EXACT option is much faster when doing a geometry optimization.

SCF

The default (VAR) is to apply the external potential of the COSMO surface during the SCF. To apply
COSMO only post SCF you can use the PERT option.

23

Static electric field

For systems not having 3D periodic symmetry it is possible to specify an external electric field in the z-
direction.

EField

Include a homogeneous static electric field in the z-direction.

EField
Ez ez
Unit {a.u.| Volt/bohr | Volt/Angstrom | Volt/Meter}
End

and here ez is the electric field in the unit specified by unit. The default unit is Volt/Angstrom.

The static field is explicitly handled in the determination of the orbital coefficients, energy, and gradients.
If you apply it to any other property, such as the NMR shielding tensor, dielectric function, solvation
energy, etc., the result is probably not entirely correct. In case of doubt contact the SCM staff.

2.5 Precision and Performance

The three main issues that influence the accuracy of a calculation are: integration in real space, integration
in k-space, and the quality of the basis set.

The key Accuracy controls (amongst others) the accuracy of the numerical integration scheme (barring a
few technicalities the same scheme as used in the molecular ADF code). In the unlikely event that this single
parameter does not suffice, you can fine-tune the integration scheme, see the description of the
Integration. key-block of the ADF documentation. The other major key influencing the integration in
reciprocal space is the KSpace parameter.

General accuracy parameter

Accuracy

General precision parameter. Default value = 3.5, which is a bit low. For your final calculation in general
a value of 4.5 is advised. Higher values (larger than 4.5) should only be necessary in extreme cases.
The tell-tale sign of a too low value is that a binding curve becomes bumpy. Values below 3.0 produce
unreliable results, due to the limited precision in integrals.
Accuracy plays in fact the role of a very general accuracy parameter. It determines not only the
generation of integration points (it is the default of the AccInt key for the integration scheme), but also
the (default) values of many other parameters and settings that are related to the accuracy of the
results.

Fine tuning integration in real space

INTEGRATION (block-type)

parameter-specifications for the generation of numerical integration points and weights. Most data
records must be of the form 'parameter value'. The most important parameter is accint, which is
defaulted to the value of key Accuracy. Unless one is very familiar with the details of the

24

numerical integration package, we strongly recommend not to use the INTEGRATION-key, and to
specify only Accuracy. More information can be found in the literature.

Numerical integration in reciprocal space

KSpace

Parameter for numerical integration over the Brillouin Zone (k-space). An integer value should be
supplied. 1=absolutely minimal (only the G-point is used), 2=linear tetrahedron method, coarsest
possible spacing, 3=quadratic tetrahedron method, coarsest spacing. Higher values should be chosen
odd (5, 7,..) to use the quadratic method; even values (4,6,..) trigger the linear tetrahedron method,
which is usually by far inferior. cpu-time increases very rapidly with higher kspace-values: try 3 for a
reasonable result, or 5 for higher precision. The key may occur as a block key, the contents of the key
are options that handle in more detail the integration of the Brillouin zone. E.g. the subkey Kinteg
takes over the simple key Kspace. For other settings, see the explanation of Kspace in the second list.
Default depends on Accuracy, the integration parameter in real space.

Basis and fit set

With the key BasisDefaults you can control the quality of the basis set, and the level of frozen core
approximation. Given your preferences the basis and fit sets are retrieved from the database. The output
starts with a copy of your input, but with the basis and fit sets inserted from the database: there you can
exactly see what values are used. You can always override the defaults by specifying the AtomType
keyword. There is no need for special basis sets for relativistic calculations.

Using the database: BasisDefaults

BasisDefaults (block-type)

This key allows you to generate automatically the required AtomType blocks (i.e. basis and fit sets)
from the database. The database is located in "$ADFHOME/atomicdata/Band". You can always see
what has been generated at the beginning of the output file, where your input is echoed with the
AtomType blocks expanded. It shows as a comment from which file each AtomType has been copied.

! --- basis from file /path/to/TZ2P/C.1s---

AtomType C
....
End
! --- basis from file /path/to/DZ/H---

AtomType H
....
End

The block has the following sub keys.

BasisType

The following basis sets are available.

25

• DZ: Double zeta. Adapted from the ADF basis set of the same name. The smallest basis set.
The results are most likely not so accurate

• V: the original band basis set. Similar to the TZ2P basis set.
• TZ2P: Adapted from the ADF basis set of the same name. This is a good basis set.
• QZ4P: Quadruple zeta plus quadrupole polarization. The biggest basis set. For benchmark

purposes only.

If you have a large unit cell, you could start with the DZ basis, to see if it will be feasible at all. For
reliable results, use the V or the TZ2P basis. You can override the defaults per type by specifying
Atoms%Core and Atoms%BasisType, or Atoms%Path (sub)keys.

FitType

Normally the fit set is determined by the BasisType. With this key can choose the fit independently
from the BasisType key.

Core

This influences the size of the frozen core used. Possible values are "None", "Small", "Medium",
"Large". You should be aware that a change of this parameter does not necessarily mean that a
different frozen core is used. You can again check in the output what file was really used. You can
see it from the extension in the comment line preceding the AtomType key

! --- basis from file /path/to/TZ2P/C.1s---

or from the Dirac block in the AtomType key.

Manually specifying AtomTypes

AtomType (block-type)

Description of the atom type. (For convenience you might prefer to generate them automatically with the
BasisDefaults key.) Contains the block keys Dirac, BasisFunctions and FitFunctions. The
key corresponds to one atom type. The ordering of the AtomType keys (in case of more than one atom
type) is not arbitrary. It is interpreted as corresponding to the ordering of the Atoms keys. The n-th
AtomType key supplies information for the numerical atom of the nth type, which in turn has atoms at
positions defined by the nthAtoms key.

AtomType Symbol
Dirac ChemSym

{option}
...
shells cores
shell_specification {occupation_number}
...

SubEnd
{BasisFunctions

shell_specification STO_exponent
...

SubEnd}
FitFunctions

shell_specification STO_exponent
...

SubEnd
END

26

The argument Symbol to AtomType is the symbol that is used in the Atoms key block.

Dirac (block-type)

Specification of the numerical ('Herman-Skillman') free atom, which defines the initial guess for the
SCF density, and which also (optionally) supplies Numerical Atomic Orbitals (NOs) as basis
functions, and/or as fit functions for the crystal calculation. The argument ChemSym of this option
is the chemical symbol of the atom type.
The data records of the Dirac key are: 1.the number of atomic shells (1s,2s,2p,etc.) and the nr. of
core-shells (two integers on one line). 2,3 specification of the shell and its electronic occupation.
This specification can be done via quantum numbers or using the standard designation (e.g. '1 0' is
equivalent to '1s'). Optionally one may insert anywhere in the Dirac block a record Valence,
which signifies that all numerical valence orbitals will be used as basis functions (NOs) in the
crystal calculation.
You can also insert NumericalFit followed by a number (max. l-value) in the key block, which
causes the program to use numerical fit functions. For example NumericalFit 2 means that the
squares of all s,p, and d NOs will be used as fit functions with l=0, since the NOs are spherically
symmetric.
If you insert Spinor, a spin-orbit relativistic calculation for the single-atom will be carried out.

The Herman-Skillman program generates all its functions (atomic potential, charge density, one-
electron states) as tables of values in a logarithmic radial grid. The number of points in the grid, and
the min. and max. r-value are defaulted at 3000, 0.000001, and 100.0 (a.u.) respectively. These
defaults can be overwritten by specifying anywhere in the dirac block the (sub)keys radial,
rmin and rmax.

The program will do a spin-unrestricted calculation for the atoms in addition to the restricted one.
The occupation of the spin-orbitals will be of maximum spin-multiplicity and cannot be controlled in
the Dirac key-block.

BasisFunctions (block-type)

Slater-type orbitals, specified by quantum numbers n,l or by the letter designation (e.g. 2p) and one
real (alpha) per sto. One sto per record. Use of this key is optional in the sense that Slater-type
functions are not needed if other basis functions have been specified (i.e. the numerical atomic
orbitals, see key Dirac).

FitFunctions (block-type)

Slater-type fit functions, described in the same way as in basisfunctions. Each fitfunctions
key corresponds to one atom type, the type being the one of the preceding Dirac key.
The selection choice of a 'good' fit set is a matter of experience. Fair quality sets are included in the
database of the molecular program ADF.

Example:

AtomType C :: Carbon atom
Dirac C

3 1
VALENCE

1s
2s
2p 2.0

SubEnd
BasisFunctions

1s 1.7

27

...
SubEnd
FitFunctions

1s 13.5
2s 11.0
...

SubEnd
End

TestFunctions (block-type)

An optional subkey of the AtomType key block is TestFunctions that has the same format as
the BasisFunctions and FitFunctions blocks. The TestFunctions block specifies STOs to
be used as test functions in the numerical integration package. For the time being the l value is
ignored. A possible application is to include a very tight function, to increase the accuracy near a
nucleus.

Confinement of basis functions

It is possible to alter the radial part of the basis functions in order to make them more compact.

Hard confinement

CONFINE (block-type): global version (not recommended!)

Instead of this global confine option, we recommend the smooth confinement of each atom type,
making use of a Fermi-Dirac function. This preferred option is documented below and should
lead to numerically more stable results.

A confinement approach has been implemented in BAND to squeeze the radial atomic functions a bit
faster to zero. This can be achieved using three different methods: multiplication by a confining function
(method exponential), by replacing the atomic function (method polynomial) or by scaling the atomic
function (method scaling).

CONFINEMENT
{ Method { exponential | polynomial | scaling } }
{ Rmatch rmin }
{ Rcut rmax }
{ Order norder }

End

The confinement is applied between rmin and rmax, though due to renormalization, the entire function
will change (also in the inner region). Before rmin the function will not be adapted apart from the
renormalization, after rmax the function becomes zero. Obviously, confinement of functions may have
some impact on the numerical outcomes. The value norder is used for the scaling technique. Currently
only works for non-relativistic calculations.

Soft confinement

CONFINEMENT (block-type): subkey of atomtype

28

The global confinement option leads to discontinuous higher order derivatives in the basis function,
leading to numerical instability. It is better to use smooth confinement. Smooth confinement means that
the radial part of a function is multiplied with a Fermi-Dirac (FD) function. We have implemented smooth
confinement at the atom type level. In a slab calculation this allows one to use different settings for
surface atoms than for those in inner layers. You can specify the range and the decay speed of the FD
function like

Confinement
Radius 7
Delta 0.7

SubEnd

If the decay 'Delta' is not specified it defaults to 0.1*'Radius'. Relativistic effects are treated correctly. If
the confinement option is used in combination with the TAILS option, the calculation may run
significantly faster. The confinement option can also be useful without the tails option in cases where
near linear dependency reduces the numerical reliability of the results (cf. dependency keyword). This
typically occurs for highly coordinated systems with large basis sets containing diffuse functions. For
such cases, the confinement option (possibly in combination with the dependency keyword) reduces
the numerical problems.

NB: does not work with the BasisDefaults key (because it is a sub key of AtomType).

Technical Settings*

There are of course many other settings influencing the precision and performance. Usually the user does
not need to care about them.

Self-consistency

The SCF procedure searches for a self-consistent density. The self-consistent error is the square root of the
integral of the squared difference between the input and output density of the cycle operator. When the SCF
error is below a certain criterion, controlled by subkey Criterion of block key Convergence,
convergence is reached. In case of bad convergence the SCF look at the subkeys Mixing, and
Degenerate, and the subkey block DIIS .

SCF key

SCF

Contains the same data as the ADF key with the same name (except for DIIS procedure parameters).

Mixing

Initial 'damping' parameter in the SCF procedure, for the iterative update of the potential: new
potential = old potential + mix (computed potential-old potential). Default=0.075.
Note: the program automatically adapts Mixing during the SCF iterations, in an attempt to find the
optimal mixing value.

Iterations

The maximum number of SCF iterations to be performed. If zero (default value) termination of the
SCF procedure will depend only on other aspects (convergence, time-out, insufficient progress
towards convergence, ...).

29

EigenStates

The program knows two alternative ways to evaluate the charge density iteratively in the SCF
procedure: from the P-matrix, and directly from the squared occupied eigenstates. By default the
program actually uses both at least one time and tries to take the most efficient. Eigenstates
turns off this comparison and lets the program stick to one method (from the eigenstates).

Pmatrix

Evaluate the charge density from the P-matrix. See also the subkey Eigenstates.

Rate

Minimum rate of convergence for the SCF procedure. If progress is too slow the program will take
measures (such as smearing out occupations around the Fermi level, see subkey degenerate of
key convergence) or, if everything seems to fail, it will stop. Default=0.99

VSPLIT

To disturb degeneracy of alpha and beta spin MOs the value of this key is added to the beta spin
potential at the startup. Default is 5E-2.

Convergence key

Convergence (block-type)

All options and parameters related to the convergence behavior of the SCF are defined in this block
key. Also the finite temperature distribution is part of this. See also second list.

Criterion

Criterion for termination of the SCF procedure. Default depends on Accuracy, for instance 3e-4
for Accuracy 4.0

ElectronicTemperature

(Slabs only) Requires a numerical argument, which is an energy width, in a.u.. It simulates a finite-
temperature electronic distribution. By default, zero temperature is assumed. The key may be used
to achieve convergence in an otherwise problematically converging system (slabs, typically). The
energy of a finite-T distribution is different from the T=0 value, but for small T a fair approximation
of the zero-T energy is obtained by extrapolation. The extrapolation energy correction term is
printed with the survey of the bonding energy in the output file. Check that this value is not too
large. Build experience yourself how different settings may affect the outcomes. Remember that
this key is meant to help you overcome convergence problems, not to do finite-T research: only the
electronic distribution is computed T-dependent, other aspects are not accounted for!

Degenerate

Smooths (slightly) occupation numbers around the Fermi level, so as to insure that nearly-
degenerate states get (nearly-) identical occupations. Default=off, but in case of problematic SCF
convergence the program will turn this key on automatically, unless the key Nodegenerate is set
in input. The smoothing depends on the argument to this key, which can be considered a
'degeneration width'. When the argument reads 'default', the program will use a default value for
the energy width (1e-4).

SpinFlip

30

List here the atoms for which you want the initial spin polarization to be flipped. This way you can
distinguish between ferromagnetic and anti ferromagnetic states. Currently, it is now allowed to
give symmetry equivalent atoms a different spin orientation. To achieve that you have to break the
symmetry.

StartWithMaxSpin {true|false}

To break the initial perfect symmetry of up and down densities there are two strategies. One is to
occupy the numerical orbitals in a maximum spin configuration. The alternative is to add a constant
to the potential. The default is true. See also SCF%vsplit.

InitialDensity {rho|psi}

The SCF is started with a guess of the density. There are the following choices
RHO: the sum of atomic density.
PSI: construct an initial eigensystem by occupying the atomic orbitals. The guessed eigensystem is
orthonormalized, and from this the density is calculated.

DIIS key

DIIS (block-type)

The diis procedure to obtain the SCF solution in the crystal depends on several parameters. Default
values can be overruled with this key-block. Each option must be specified, it at all, on a separate
record in the data block:

DIIS
option1 value1
option2 value2
...

END

Recognized options are:

condition: the condition number of the DIIS matrix, the largest eigenvalue divided by the smallest,
must not exceed this value; default 1e6

clarge: when the largest coefficient in the DIIS expansion exceeds this value, damping is applied;
default 20

chuge: when the largest DIIS coefficient exceeds this value, the oldest DIIS vector is removed and
the procedure re-applied. Default 50

dimix: mixing parameter when damping is used, rather than the DIIS procedure. By default off
(dimix=1.0): result is taken as dimix*value + (1-dimix)*previous

nvctrx: maximum number of DIIS expansion vectors. Default 20

ncycledamp: number of initial iterations where damping is applied, before any DIIS is considered.
Default 5

potential: (no argument): presence of this string means that the DIIS method will be applied to the
potential, rather than to the valence density (default). It excludes the competing option
deformationdensity.

31

deformationdensity: (no argument): presence of this string means that the DIIS method will be
applied to the deformation density, rather than to the valence density (default). This option excludes
the potential option, see previous.

print: turns on a print switch to report details of the used DIIS procedure. Default off.

special: (no argument) will let the program try to optimize the mixing parameter (dimix) and adjust it
when difficulties occur. It is not certain that this may not make things worse!

comstr: its argument is only a string to be printed as label to output, if any, of the DIIS parameter.

DIRIS key*

DIRIS (block-type)

Completely similar to the DIIS key, except that this one applies to the DIIS procedure used in the Dirac
subprogram, for numerical single atom calculations, which constructs the radial tables for the NAOs.

Linear Scaling

Tails

Ignore function tails. By default no tails are ignored. Both CPU time and disk space can be saved by
using the TAILS option. This option is most effective when combined with the Confine suboption, as
explained in the Examples document.

TAILS {bas crbas} (core crcore) {fit crfit}

One real argument for keys basis and core, which should be a small value; default crbas=1e-6. The
core criterion defaults to the bas criterion (if set). The tail criterion specifies that tails of exponentially
decaying (basis) functions are ignored, in the construction of Bloch functions, beyond the point where
the remaining part of the function tail (radially) integrates to less than the criterion, relative to the integral
of the function from zero to infinity. Also for the fit one can specify a cutoff, but this is turned of by
default: crfit=1e-15. Here we advise to use a more strict criterion than for crbas (because the fit is
usually much more dependent than the basis). This option has some refinements. For example

Tails confine=1e-2 bas=1e-5 Rosa

As you see there are two new elements ('confine' and 'Rosa'). The first (confine =) specifies that all
basis functions are optimized for the tails option, by multiplying the tail of the function with a rapidly
decaying function. This step affects the shape of all functions outside the radius where the relative
norm of the function is smaller than 1e-2. The effects on the shape of the functions are typically
very small. The second new entry (Rosa) has the effect that the criterion becomes more strict for
tight functions. For safer (but slower) calculations, specify smaller values for confine and bas, such
as confine=1e-3 bas=1e-6.

The "Rosa" key works as follows. Determine the radius R where according to the normal criterion
the function is negligible. Next substitute R -> R + 3*exp(-R/3). This means that for tight functions
the tails radius is replaced by 3, and for diffuse functions this modifier has no effect.

Tentatively, based on the work by Rosa Bulo, we suggest to use

Tails bas=1e-3 Rosa

32

The TAILS keyword works most effectively when combined with the confinement keyword,
described elsewhere in this document. The confine key described here should not be confused with
the confinement option for each atom type. The confine option here affects functions in the
region where they become very small, independent of the distance to the nucleus. The
confinement option introduces a soft cut-off for all functions of a particular atom type, at a
specific distance from the nucleus.

Dependency

DEPENDENCY

Criterion for dependency of the basis and fit set.

DEPENDENCY {basis tolbas} {core tolcor} {fit tolfit} {corevalence tolovl}

basis

Smallest eigenvalue of the overlap matrix of normalized bloch functions. Default 1e-5. See also the
discussion in 'Recommendations & Problems' about basis set dependency.

core

The program verifies that the frozen core approximation is reasonable, by checking the smallest
value of the overlap matrix of the core (bloch) orbitals against this criterion. Default: 0.98

fit

Criterion for dependency of the total set of fit functions. The value monitored is the smallest
eigenvalue of the overlap matrix of normalized bloch sums of symmetrized fit functions.
Default=1e-6.

corevalence

Criterion for dependency of the core functions on the valence basis. The maximum overlap
between any two normalized functions in the two respective function spaces should not exceed
1.0-coreval(...). Default=1e-5.

Screening

The program BAND performs many lattice summations which are in practice truncated. The two prime
examples are the construction of the Bloch basis (and also the fit) and the construction of the Coulomb
potential of the fit functions. The precision of the lattice summations is controlled by the SCREENING key

SCREENING (block)

Parameters that influence the screening and tails of basis functions. Recognized options are

CUTOFF

Criterion for negligibility of tails in the construction of Bloch sums. Default depends on Accuracy.

DMADEL

One of the parameters that define the screening of Coulomb-potentials in lattice sums. Depends by
default on Accuracy, rmadel, and rcelx. One should consult the literature for more information.

33

RCELX

Max. distance of lattice site from which tails of atomic functions will be taken into account for the
bloch sums. Default depends on Accuracy.

RMADEL

One of the parameters that define screening of the Coulomb potentials in lattice summations.
Depends by default on Accuracy, dmadel, rcelx. One should consult the literature for more
information.

NODIRECTIONALSCREENING

Real space lattice sums of slowly (or non-) convergent terms, such as the Coulomb potential, are
computed by a screening technique. In previous releases, the screening was applied to all (long-
range) Coulomb expressions. Starting from BAND98 screening is only applied in the periodicity
directions. This key restores the original situation: screening in all directions.

Fit Method

With this keyword the fit method can be influenced. Normally band tries to guess the best choice.

FitMethod
Method {Auto | Inverse | Divide | CONJUGATEGRADIENT}
Divide {lvalue | atom | pair | cluster}
UseSharedArrays {true | false}
ConstrainWithS {true | false}
RScale rsale

End

Method: With Auto band will do what it thinks is best. With Invserse global fitting is enforced. The
choice Divide invokes the Divide and Fit method. Finally, setting it to CONJUGATEGRADIENT the
global fit will be used without inverting the overlap matrix.

Divide: Applies to Divide and fit method. LVALUE: split fit set per l-value, going from high to low l.
ATOM: divide per atom. PAIR: divide per pair. CLUSTER: divide in overlapping cluster. This is the
most accurate choice. The size of the cluster is controlled by RSCALE

UseSharedArrays: Whether or not to use shared arrays. Works only with Divide option.

ConstrainWithS: Works only with Divide option. The charge constraint is always done with the
last division. With this option the set of s functions is added as the last division.

RScale: Works only with Divide option. Controls the size of the cluster. Default value is 1.3.

Orthogonal Fit

ORTHOGONALFIT

Transform the fit explicitly to an orthogonal basis. This is expensive, but is numerically more stable. This
can be of use when there is a nearly dependent fit set. A better solution is to reduce the fit set.

34

Direct (on the fly) calculation of basis and fit

Band normally writes the basis functions (and derivatives if needed), and the fit functions (and potential plus
derivatives if need) to disk. Usually it pays of to do this because calculating them is slower than reading
them. However, whether or not that is the case depends strongly on the type of calculation and on the type
of hardware. Here follow some considerations.

Systems: Basically what we need to look at is the number of cells that needs to be summed over. For chains
(1D periodicity) there are few, and for bulk (3D) there are many. With a bigger unit cell, the number of cells
also decreases. Fewer cells are in favor of the direct option.

Hardware: Many cores and slow disks are in favor of the direct option.

You can invoke the direct option like this

Programmer
DirectBas true
DirectFit true
End

Radial grid

With this keyword the radial grid can be controlled.

RadialDefaults
NR nr
RMin rmin
RMax rmax

End

The number of radial points is nr (default=3000). With very high values like 30.000 the Dirac subprogram
may not converge. The logarithmic grid runs from rmin (default 1e-6) to rmax (default 100)

Elliptic integrals

The integration of the electrostatic interaction between spherical atoms is done very precisely in an elliptic
grid, which depends on NUELSTAT and NVELSTAT

NUELSTAT

Electrostatic interaction integrals between spherical atomic densities are computed by numerical
integration over an elliptic grid. Nuelstat is the outward (parabolic) coordinate number of integration
points.
Default: 50

NVELSTAT

Electrostatic interaction integrals between spherical atomic densities are computed by numerical
integration over an elliptic grid. Nvelstat is the angular (elliptic) coordinate number of integration points.
Default: 80

35

Fermi energy search

Fermi (block type)

This key sets technical parameter used in the search for the Fermi energy, which is carried out at each
cycle of the SCF procedure. All applicable options must be specified, if at all, in separate records in the
data block.

MaxTry

Maximum number of attempts to locate the Fermi energy accurately. Default 50. The procedure is
iterative in nature, narrowing the energy band in which the Fermi energy must lie, between an
upper and a lower bound. If the procedure has not sufficiently converged within maxtry iterations,
the program takes a reasonable value and constructs the charge density by interpolation between
the functions corresponding to the last used upper and lower bounds for the Fermi energy

Delta

Converge criterion: upper and lower bounds for the Fermi energy and the corresponding integrated
charge volumes must be equal within delta. Default 1e-4

Eps

After convergence of the Fermi energy search procedure, a final estimate is defined by
interpolation and the corresponding integrated charge volume is tested. It should be exact, to
machine precision. Tested is that it deviates not more than eps. Default 1e-10

IO settings*

IO block size

IOVECTOR

I/O actions to and from files is segmented in blocks of iovector. Default depends on the machine and
should be set at the installation of the program.

File limit

FILELIMIT

maximum amount of data (in bytes) on one logical file. Default depends on the machine and should be
set at the installation of the program. Advise: Choose as large as possible, to keep the number of files
limited. The automatic algorithm that cuts the files to pieces does not work flawlessly. Using a high file
limit effectively disables the use of this mechanism. Be aware however of the maximum integer value on
your machine!

Block size

Efficiency and memory usage depend on how large the vector size of the program is

CPVECTOR

36

The code is vectorized and this key can be used to set the vector length. Default depends on the
machine and should be set at the installation of the program.

KGRPX

is an absolute upper bound on the number of k-points processed together. Specifying this key and
CPVector you can override bands defaults.

2.6 Restarts

The main results of a band calculation are stored in the RUNKF file. If you save this file you can use it to
restart your calculation. The input for the restart calculation is essentially the same, except for some extra
keys, like Restart, Grid, and DenstiPlot

The DOS section that outputs information of the SCF solution can be executed with key Restart, subkey
DOS and orbital plots can be obtained with subkey OrbitalPlot. Likewise, plots of the density (and many
other symmetric properties) can can be obtained with the key DensityPlot. Density and orbital plot
restarts require the specification of the Grid key. With the subkey SCF you can start the SCF procedure with
the last solution from the restart file. This can be useful if the SCF did not converge. Also if you have
changed some settings that should have little effect, like the integration accuracy, the restart SCF option can
help you to save a few cycles. Similarly, a geometry optimization can be restarted with the subkey
GeometryOptimization

Restart key

Restart

Tells the program that it should restart with the restart file.

Restart filename {&
option
End}

where filename is the name of the restart file and option is the program part to do a restart for (SCF,
GeometryOptimization, DOS, OrbitalPlot, or DensityPlot). See also keys OrbitalPlot and
DensityPlot. Usually the input for a restart is the same as for the original calculation, where you add
some extra options.

Plots of the density, potential, and many more properties

DensityPlot (block-type)

Goes together with the Restart%DensityPlot and Grid options.
Example input

...
Restart my.runkf &
DensityPlot
End

Grid
Type Coarse

37

End

DensityPlot
FITDENSITY_total_scf
XCPOTENTIAL_scf
End
...

After such a run you get a TAPE41 file that you should rename to my.t41, and view with adfview.

The most common properties to plot are:
FITDENSITY_total_scf: The fitted density.
COULOMBPOTENTIAL_scf: The Coulomb potential.
XCPOTENTIAL_scf: the XC potential (using the fitted density)
XCPOTENTIAL_scf_exact: XC potential of the exact density
DENSITY_total_scf: The density
DENSITY_agrad_total_scf: The norm of the gradient of the density
TAU_total_scf: The symmetric kinetic energy density
LDOS_scf: The local density of states (at the fermi level). The bias can be controlled with the LDOS
block
ELF_total_scf: The electron localization function

Some more specialized options are:
FITDENSITY_deformation_scf: the fitted deformation density
ATOMIC_density: The density of the startup atoms
ATOMIC_coulombPot: The Coulomb potential of the start density

In the band example directory there is the Frags_COCu example that shows how this can be used in
combination with the fragment option.

Orbital plots

OrbitalPlot (block-type)

Goes together with the Restart%OrbitalPlot and Grid options. In the band example directory
there is the Cu_slab example that shows how this can be used. Example input

...
Restart my.runkf &
OrbitalPlot
End

Grid
Type Coarse
End

OrbitalPlot
1 Band 5 8 ! k-point 1 bands 5 to 8
5 Band 6 ! k-point 5 band 6
6 -0.2 +0.3 ! k-point 6 bands between -0.2 and +0.3 Hartree from the
fermi level
End
...

38

After such a run you get a TAPE41 file that you should rename to my.t41, and view with adfview.

Grid

Grid (block-type)

Used for restart options Restart%OrbitalPlot, and Restart%DensityPlot. There are two ways
to define your grid. The most easy way is to use the Type key which can have the values Coarse,
Medium, and Fine, for example

Grid
Type Coarse
End

This generates automatically a grid around the atoms in the unit cell. The alternative is to specify
everything by hand. The following input would create a cube from (-1,-1,-1) to (1,1,1)

Grid
-1 -1 -1 ! Starting point
1 0 0 0.1 ! vec1 and dvec1
0 1 0 0.1 ! vec2 and dvec2
0 0 1 0.1 ! vec3 and dvec3
20 20 20 ! nr. of steps along three directions
End

LDOS (STM)

LDOS (block-type)

Local Density-Of-States information. This can be used to generate STM images in the Tersoff-Hamann
approximation [35].

LDOS
{ Shift eshift }
{ DeltaNeg deneg }
{ DeltaPos depos }

End

Shift: The energy bias with respect to the fermi level in a.u.. Default = 0.0

DeltaNeg Default = 1e-4 a.u.

DeltaPos Default = 1e-4

The local density of states is integrated over the interval eshift-deneg through eshift+depos.
Example of an LDOS restart:

...
Restart my.runkf &
DensityPlot

End

Grid

39

Type Coarse
End

DensityPlot
LDOS_scf
End

LDOS
Shift 0.1
DeltaNeg .001
DeltaPos 0

End

According to this example, we restart from the result file of a previous calculation. The calculation will
generate a file TAPE41 which can be viewed with adfview. (Rename the file to my.t41)

See also Restart, and DensityPlot.

Complete example scripts for visualisation

Below follows a complete example how to use band for visualising. We start with the normal calculation for
e.g. a Li slab

#!/bin/sh
Contents of the file LiSlab.job

"$ADFBIN/band" << eor
TITLE Li Slab

UNITS
length Angstrom
angle Degree

END

ATOMS Li
0.0 0.0 0.0
-1.745 -1.745 -1.745
END

Lattice
3.49 0.000000 0
0.000000 3.49 0

End

BasisDefaults
BasisType DZ
Core Large
End

XC
LDA SCF VWN
END

end input
eor

40

store the result file
mv RUNKF LiSlab.runkf

Note that we store the result file in "LiSlab.runkf". In the next run we use this file to generate the plot file. The
job is essentially a copy of the first job with some extra lines. In this case we instruct the program to
generate plot information for the density and the LDOS

#!/bin/sh
Contents of the file LiSlab_restart.job

"$ADFBIN/band" << eor
TITLE Li Slab

UNITS
length Angstrom
angle Degree

END

Restart LiSlab.runkf &
DensityPlot
End

Grid
Type Coarse
End

DensityPlot
FITDENSITY_total_scf
LDOS_scf
End

LDOS
shift 0.0
End

ATOMS Li
0.0 0.0 0.0
-1.745 -1.745 -1.745
END

Lattice
3.49 0.000000 0
0.000000 3.49 0

End

BasisDefaults
BasisType DZ
Core Large
End

XC
LDA SCF VWN
END

41

end input
eor

Store the result file, and more importantly, the plot file (.t41)
mv RUNKF LiSlab_restart.runkf
mv TAPE41 LiSlab.t41

And then you can visualize the result with adfview.

$ADFBIN/adfview LiSlab.runkf

It is most convenient to start adfview from the .runkf file rather than from the .t41.

2.7 Structure and Reactivity

To study structure and reactivity common tasks are geometry optimization, transition state search and a
frequency run. A frequency run can be done to obtain a good initial Hessian for a geometry optimization, or
to check whether a proper minimum or transition state has been found.

The basis for locating stationary points on the PES are the nuclear gradients. (The user may assume that
the program does that automatically when needed.)

Nuclear energy gradients*

If you want the program to calculate the gradient of the energy with respect to nuclear displacements you
should add the Gradients keyword. If the SelectedAtoms key is present, only the gradient of the
selected atoms will be evaluated, and the rest set to zero.

References

Details about the theory of the analytical gradients within the BAND program can be found in the work of
Kadantsev and coworkers [19]

Gradients (block-type)

Key to control the automatic geometry optimization.

Gradients
oldio {0 | 1}
LatticeStepSize step

End

oldio: There are two slightly different implementations. The oldio=1 implementation has a better
scaling behaviour for large systems, although it can be a bit slower for small ones. When used with
MetaGGAs oldio=1 is required.(default = 1)

latticeStepSize: The lattice gradients are obtained by numerical differentiation. With this
keyword the step size can be changed. (default = 0.012 bohr)

The user rarely needs to specify this key as it is automatically added for geometry optimizations and
frequency runs.

This options honors the SelectedAtoms key, in which case only the forces will be calculated for the
selected atoms.

42

Lattice gradients*

Band currently has a numerical implementation of the forces that act on the lattice vectors. The only way to
invoke this is to do a geometry optimization, including lattice vectors, see the GeoOpt%OptimizeLattice
key. The step size is controlled with Gradients%latticeStepSize.

Geometry optimization

The geometry can be optimized by adding the GeoOpt key block. Within the block you can specify the
maximum number of cycles and the convergence criterion. The optimizer works with Cartesian coordinates
and a Quasi Newton stepper. The initial Hessian is by default the unit matrix, but can also be loaded from a
previous geometry optimization or frequency run. Various constraints are possible such as bond distances
and angles. The GDIIS convergence accelerator is available but is disabled by default. A geometry
optimization can be restarted from a previous result (.runkf) file. The geometry can be optimized non-
relativisticlly, with scalar relativistic ZORA, or with spin-orbit coupling.

GeoOpt key

GeoOpt (block-type)

Key to control the automatic geometry optimization.

GeoOpt
OptimizeLattice {true | false}
Iterations n
Converge {Grad=tolgrad} {E=tolE} {Step=tolStep}
TrustRadius radius
UseVariableTrustRadius var
InitialHessian filename | UnitMatrix| Swart
RestartSCF {true | false}
RestartFit {true | false}
GDIIS {true | false}
StaticCosmoSurface {true | false}
TSMode mode

End

OptimizeLattice: Whether or not to optimize the lattice vectors. (default = false). The lattice
gradients are obtained by numerical differentiation, see GRADIENTS%LatticeStepSize.

Iterations: the maximum number of cycles: default 50

Converge {Grad=tolgrad} {E=tolE} {Step=tolStep}: various criteria to determine the
convergence can be specified on line. Here tolGrad is the maximum gradient allowed
(default=1.0e-2 Hartree per Angstrom), tolE is the maximum energy change allowed (default 1.0e-3
Hartree), tolStep is the maximum step size (default 3e-2 bohr)

TrustRadius: The step sizes taken by the optimizer will be limited to this value (default = 0.2
bohr). If the proposed step is larger it will be scaled back.

UseVariableTrustRadius: Automatic adjustment of the trust radius based on the observed
energy changes. Default: false.

43

InitialHessian: The initial hessian is read from a "RUNKF" file filename of a previous
frequency calculation. By default the unit Hessian will be used. Another option is to use the
empirical force field derived Swart Hessian.

RestartSCF: During the optimization try to restart the SCF from the previous geometry step.
(default = true)

RestartFit: During the optimization try to restart the SCF from fit coefficients of the previous
geometry step. (default = false). Can not be used simultaneously with RestartSCF.

GDIIS: Use the GDIIS convergence accelerator (default = false)

Note that a (failed) geometry optimization can be continued with the Restart key by specifying as option
GeometryOptimization.

StaticCosmoSurface: Keep the Cosmo surface (if any) constant. (default = false)

TSMode: Hessian normal mode index to follow during transition state search. The specified mode is
selected on the first iteration and is followed regardless of its index on subsequent iterations.
Modes with zero frequencies are not counted.

Numerical frequencies (Hessian)

By specifying the runtype Frequencies you can calculate the Hessian which in turn yields the harmonic
frequencies and vibrational modes. The Hessian is an important product that can be used in a geometry
optimization, and in particular to start a transition state search. The second derivative of the energy (i.e. the
Hessian) is obtained by numerically differentiating the analytical gradients. When your unit cell has N atoms
in the unit cell and no symmetry (other than translational symmetry) the number of displacements is 2x3xN.
For large systems this can be very time consuming, and you could consider to calculate only a partial
Hessian. If you have a very symmetric unit cell, but are interested in asymmetric modes, set the subkeys
useA1Displacements and doA1Projection to false. NB: the lattice vectors are assumed to be fixed.

A frequency run is invoked with

RunType
Frequencies
End

The rest is controlled by the Frequencies key.

Frequencies (block-type)

Key to control the numerical frequency run

Frequencies
Step size
useA1Displacements {true | false}
doA1Projection {true | false}
StaticCosmoSurface {true | false}

End

Step: The step size (angstrom) for the numerical differentiation

useA1Displacements: Determine only the total symmetric modes (default = true). When
disabled, NOSYM calculations will be performed.

44

doA1Projection: Symmetrize the Hessian (default = true). For most users the only sensible
setting is to make it equal to the value of useA1Displacements.

StaticCosmoSurface: Keep Cosmo surface (if any) constant. Default = true. Although this is an
approximation it is numerically much more stable. If you set it to false there is the risk that the
number of Cosmo points is not constant for all finite displacements.

This options honors the SelectedAtoms key, in which case only the hessian will be calculated for the
selected atoms.

Transition state search

A transition state search is technically a geometry optimization. It is a search in the 3xN space for a point
with vanishing gradients. The only difference is that it will try to go uphill in the direction of the lowest
vibrational mode. The normal procedure is to guess a point that is as close as possible to the transition
state. In that point you do a frequency run, which should hopefully produce a lowest vibrational mode in the
direction of the transition state. You then start the Transition state search from that point, using the hessian
of the frequency run. At the end you can do again a frequency run to check that there is indeed a single
negative vibrational mode.

The transition state is invoked like this

RunType
TS
End

The rest is controlled by the GeoOpt key as in a normal geometry optimization.

Partial Hessian and (pre)optimizations

If you consider the interaction of a molecule with a surface it may be initially convenient to freeze some of
the lower layers in the slab, making calculations much cheaper. This can be done for the evaluation of the
hessian (see SelectedAtoms) and during a geometry optimization or transition state search (see
Constraints). When using a partial hessian to start a geometry optimization note this. The atoms that you
select during the frequency run, are the ones that should not be frozen in the geometry optimization. In a
way the selection needs to be inverted.

Constrained optimization

During a geometry optimization certain constraints can be enforced with the Constraints key. The
constraints refer to the coordinates of the unit cell as specified on input.

Constraints (block-type)

Key to control constraints during a geometry optimization.

Constraints
Atom a1 {x y z}
Dist a1 a2 distance
Angle a1 a2 a3 angle
Dihed a1 a2 a3 a4 angle

End

45

Atom: Freeze the position of atom a1 to the current coordinate, or if specified to (x,y,z). This
constraint will make the calculation cheaper, because the gradients of frozen atoms need not be
calculated.

Dist: Constrain the distance between atoms a1 and a2 to distance

Angle: Constrain the angle between atoms a1, a2, and a3 to angle

Dihed: Constrain the dihedral angle between atoms a1, a2, a3, and a4 to angle

Selected atoms

When doing a frequency run you can restrict it to a limited number of selected nuclei. The selection may not
break the symmetry.

SelectedAtoms a1 a2 ... an

The list of atoms with indices a1 a2 ... an are considered selected. Currently this option only has effect
in a numerical frequency run and with the Gradients keyword.

Phonons and thermodynamics

Atoms vibrate about their equilibrium positions, giving rise to lattice vibrations called phonons. Band can
calculate phonon dispersion curves within standard harmonic theory, implemented with a finite difference
method in the spirit of the program PHON, described in Ref. [47]. Within the harmonic approximation we can
calculate the partition function and from that thermodynamic properties such as the specific heat and the
free energy. Our implementation can also handle 1D an 2D periodic systems.

Essentially you need to do the following steps.

• Optimize the structure, including the lattice vectors. The resulting geometry is the starting
geometry for the phonon run

• Specify a super cell transformation. In principle this should be as large as possible. In practice one
may want to start with a 2x2x2 cell. Set the runtype to Phonon

• Examine with the GUI the dispersion curves, and check for negative frequencies. If these exist
then either the geometry was not close enough to the minimum, or the precision of the phonon run
was not enough.

PhononConfig

PhononConfig (block-type)

Key to control the phonon run.

PhononConfig
SuperCell Sub block type
StepSize step
MinTempKelvin tmin
MaxTempKelvin tmax
NumTemperatures ntemp

End

46

http://www.homepages.ucl.ac.uk/~ucfbdxa/phon/

SuperCell: This subblock key should hold the supercell transformation, which expresses the
lattice vectors in terms of the vectors of the primitive cell.

StepSize: The step size taken to obtain all force constants.

MinTempKelvin: Minimum temperature for thermodynamic plots.

MaxTempKelvin: Maximum temperature for thermodynamic plots.

NumTemperatures: Number of temperatures for thermodynamic plots.

Here is an example input

phononConfig
stepSize 0.0913
superCell

2 0 0
0 2 0
0 0 2

subend
end

In the regular output the thermodynamic functions are printed

==
Thermo Dynamic Properties

==
Zero-point Energy (hartree) 0.00448537
Zero-point Energy (eV) 0.12205313

===
Temperature(K) Internal energy(Hartree) Entropy(kB) Free Energy(Hartree) Specific

Heat(kB)

0.000000E+00 0.448537E-02 0.000000E+00 0.448537E-02
0.000000E+00

0.100100E+01 0.448540E-02 0.116921E-01 0.448536E-02
0.329896E-01

0.200200E+01 0.448566E-02 0.643295E-01 0.448525E-02
0.138532E+00
...

2.8 Spectroscopic properties

Time-dependent DFT

In this section, the time-dependent density functional theory implementation in BAND is described. How to
do a response calculation in BAND (which input keys to use), can be found in the list of keywords, see the
key Response. The TDDFT module enables the calculation of real and imaginary parts of the material
property tensor χe(ω) called the electric susceptibility, and the macroscopic dielectric function εe(ω) These
are mutually related,

εe(ω)=1+4πχe(ω).

47

In general χe(ω) and εe(ω) are tensors, which, however, simplify to scalars in isotropic systems. The above
formula is valid in the case of insulators and semiconductors, where the bands are either fully occupied or
fully unoccupied. It is defined as the interband part of the dielectric function and it is due to transitions from
occupied bands to unoccupied bands. Also in the metallic case similar expressions can be found, the main
difference is that there now is also an intraband contribution. Some examples are available in the
$ADFHOME/examples/band directory and are discussed in the Examples document.

References

The three related Ph.D. theses, due to F. Kootstra (on TD-DFT for insulators), P. Romaniello (on TD-CDFT
for metals), and A. Berger (on the Vignale-Kohn functional in extended systems) contain much background
information, and can be downloaded from the SCM website.

The most relevant publications on this topic due to the former "Groningen" group of P.L. de Boeij are [22-25]

Response key

Response

Perform a time-dependent DFT calculation to obtain real and imaginary parts of frequency-dependent
dielectric function.

Response
nfreq 5
strtfr 0.0
endfr 0.01
cnvi 0.001
cnvj 0.001
ebndtl 0.001
ifxc 0
isz 0
iyxc 0

End

Omitting the specific options in the Response block will cause default setting to be used during the
calculation, as given above.

nfreq the number of frequencies in a.u. for which a TDDFT calculation is performed when
calculating the dielectric function εe(ω) of a system (default=5).

strtfr is the start frequency in a.u. of the frequency range over which the dielectric function is
calculated (default=0d0).

endfr is the end frequency in a.u. of the frequency range over which the dielectric function is
calculated (default=1d-2).

cnvi the first convergence criterion for the change in the fitcoefficients for the fitfunctions, when
fitting the density (default=1d-3).

cnvj the second convergence criterion for the change in the fitcoefficients for the fitfunctions, when
fitting the density (default=1d-3).

ebndtl the energy band tolerance, for determination which routines to use for calculating the
numerical integration weights, when the energy band posses no or to less dispersion
(default=1d-3).

48

ifxc integer indicating which fxc kernel is used (default=0).
0 = Adiabatic Local Density Approximation (ALDA) (Can. J. Phys. 58, 1200 (1985)).
1 = Gross-Kohn, frequency dependent fxc kernel (PRL 55, 2850 (1985), 57, 923 (1986)),
2 = van Leeuwen-Baerends (LB94) (PRA 49, 2421 (1994)),
Only the default option for ifxc is implemented at the moment.

isz integer indicating whether or not scalar zeroth order relativistic effects are included in the
TDDFT calculation (default=0).
0 = relativistic effects are not included,
1 = relativistic effects are included.

iyxc integer for printing yxc-tensor (default=0) (JCP 115, 1995 (2001)).
0 = not printed,
1 = printed

static An alternative method that allows an analytic evaluation of the static response (Normally
the static component is approximated by a finite small value). This option should only be used only
for (non relativistic calculations on) insulators, and it has no effect on metals. Experience shows
that KSPACE convergence can be slower, and this is why it is not the default.

newvk Use the slightly modified version of the VK kernel (Phys. Rev. B 74, 245117). When using
this option one uses effectively the >static option, even for metals, so one should check carefully
the convergence with the KSPACE parameter. An example response block for a vignale kohn
calculation looks like

Response
nfreq 2
strtfr 0.10d0
endfr 0.25d0
newvk
iyxc 1
cnt

END

qv/cnt Use the QV or CNT parametrization for the longitudinal and transverse kernels of the xc-
kernel of the homogeneous electron gas. Use this in conjunction with the newvk option. (Refs: PRB
65, 235121 (QV); J. Phys. Condens. Matter 9, L475 (CNT))

Limitations

The method has not been implemented for slabs, so it can only be used for chains and 3d bulk systems.

Time-dependent DFT for metals

For metals the interband part of the dielectric function is due to transitions from (partially)-occupied bands to
(partially)-unoccupied bands. Now there is also a term, which is called the intraband part of the dielectric
function, which is due to transitions within the same partially-occupied band. The macroscopic dielectric
function εe(ω) is now calculated as

εe(ω)=1+4πχe(ω) - 4πiσe(ω)/ω.

Convergence and reproducibility: For TD-DFT calculations on metals a dense sampling of reciprocal space
is required, i.e. the results converge slowly with the KSPACE parameter. The dielectric function might even
not reproduce well across different machines. (Usually results that are not yet converged with the KSPACE

49

parameter, like the energy, are reproducible across different platforms). Nevertheless, when the KSPACE
parameter is chosen sufficiently high, the same result will be obtained on all machines. For instance for Cu
the machine dependence was less than 0.01 for the dielectric function with KSPACE=11. In short: check for
the convergence of the dielectric function with respect to the KSPACE parameter.

Frequency dependent kernel

It is known that the exact Vignale Kohn kernel greatly improves the static polarizabilities of infinite polymers
and nanotubes (see JCP 123 174910), but gives bad results for the optical spectra of semiconductors and
metals. For the low frequency part one needs a frequency dependent kernel, because Drude-like tails are
completely absent in the ALDA. With a modified Vignale Kohn kernel, neglecting μxc so that it reduces to the
ALDA form in the static limit (see PRB 74 245117) much better results can be obtained. Band currently only
supports the modified VK kernel in either the QV or CNT parametrization, and it should only be used for
metals.

EELS

Once the macroscopic dielectric function is known it is possible to calculate the electron energy loss function
(EELS). In transmission electron energy loss spectroscopy one studies the inelastic scattering of a beam of
high energy electrons by a target. The scattering rates obtained in these experiments is related to the
dynamical structure factor S(q,ω) [1]. In the special case with wavevector q=0, S(q,ω) is related to the
longitudinal macroscopic dielectric function. This is the long-wave limit of EELS.
For isotropic system the dielectric function is simply a scalar (1/3 Tr εe(ω)). In this case the long-wave limit of
the electron energy loss function assumes the trivial form

Lim(q→0) 2π S(q,ω)/(q2V) = ε2/(ε12+ε22)

with ε1 and ε2, respectively, the real and imaginary part of the dielectric function.

[1] S. E. Schnatterly, in Solid State Physics Vol.34, edited by H. Ehrenreich, F. Seitz, and D. Turnbull
(Academic Press, Inc., New York, 1979).
[2] P. Romaniello, and P. L. de Boeij, Phys. Rev. B (accepted).

ESR

Band is able to calculate electron paramagnetic resonance parameters of paramagnetic defects in solids:
hyperfine A-tensor and the Zeeman g-tensor.

The implementation of EPR parameters in BAND are described in the publications by Kadantsev and
coworkers [20] and [21]

Hyperfine A-tensor

The A-tensor is implemented within the nonrelativistic and scalar relativistic spin-polarized Kohn-Sham
scheme. The A-tensor calculation is invoked by block

ATENSOR
END

Also, note that "Unrestricted" keyword should be present.

Two methods are used for A-tensor calculation.

50

Method 1 involves gradient of spin-polarization density and integration by parts. The isotropic component of
A-tensor is obtained through integration, in a "nonlocal fashion".

In Method 2, the A-tensor is computed from spin-polarization density. Method 2 does not relies on the
integration by parts. The isotropic component is obtained in a "local fashion" from the value of spin-
polarization density on the grid points near the nuclei.

The user should be aware that numerical integration in A- and g-tensor routines is carried out over Wigner-
Seitz (WS) cell, and, therefore, to obtain a meaningful result, the defect in question should lie at or, very
close to, WS cell origin. This might require, on the user's part, some modification of the input geometry.

It also might happen that the size of the WS cell is not large enough for the adequate description of the
paramagnetic defect in question. In this case, Method 1, which relies on the integration by parts and
assumes that the spin-polarization density is localized inside the WS cell will fail. For the same reason, We
recommend that the user removes diffuse basis set functions that describe the defect subsystem.

Finally, we note that the final result for A-tensor as presented by BAND is not scaled by the nuclear spin (as
it is done in ADF) and the user is responsible for making neccessary adjustments.

g-tensor

The calculation of Zeeman g-tensor is invoked with block

ESR
END

The Zeeman g-tensor is implemented using two-component approach of Van Lenthe and co-workers in
which the g-tensor is computed from a pair of spinors related to each other by time-reversal symmetry. The
keyword "Relativistic zora spin" should be present to invoke calculations with spin-orbital coupling. The user
also has to specify

Kspace 1

(Gamma-point calculation). The g-tensor is then computed from the HOMO spinor at the gamma point. In
the output, the user can find two-contributions to g-tensor: one that stems from K\sigma operator and a
second one, that stems from orbital angular momentum. By default, GIAO and spin-Zeeman corrections are
not included, from our experience these corrections are quite small.

Electric Field Gradient (EFG)

EFG (block type)

The electronic charge density causes an electric field, and the gradient of this field couples with the nuclear
quadrupole moment, that some (non-spherical) nuclei have and can be measured by several spectroscopic
techniques. The EFG tensor is the second derivative of the Coulomb potential at the nuclei. For each atom it
is a 3x3 symmetric and traceless matrix. Diagonalization of this matrix gives three eigenvalues, which are
usually ordered by their decreasing absolute size and denoted as |Vzz|, |Vyy|, |Vxx|. . The result is
summarized by the largest eigenvalue and the asymmetry parameter.

This options honors the SelectedAtoms key, in which case only the EFG will be calculated for the selected
atoms.

51

NMR

NMR (block type)
SuperCell true/false
nmratom atom number
End

With the NMR option the shielding tensor is calculated. There are essentially two methods: the super cell
method and the single-dipole method.

I) The super cell method is according to the implementation by Skachkov et al.[37]. The symmetry will
automatically be set to NOSYM. The unit cell should not be chosen too small. Generating super cells can be
conveniently done with the GUI.

II) The other method is the single-dipole method. In principle one can now use the primitive cell [50]. In
practice also this method needs to be converged with super cell size. However, depending on the system
the required super cell may be much smaller. At a given super cell size this method is more expensive than
the super cell method.

SuperCell

This is the switch between the two methods, either the super cell, or the single-dipole method.

nmratom

Determines for which atom the shielding tensor is calculated. If you want more than one atom (or
all) leave this line out. In that case the atoms for which to do NMR is controlled by the
SelectedAtoms key. Here is an example how to select three atoms for NMR:

nmr
end

SelectedAtoms 3, 5, 9 ! leave this out to get NMR for ALL atoms

2.9 Printed Output

The amount of output in different stages of the program is controlled by print keys, that can be toggled with
the key Print followed by a key (see description of Print key).

Print key

Print

One or more strings (separated by blanks or comma's) from a pre-defined set may be typed after the
key. This induces printing of various kinds of information, usually only used for debugging and checking.
The set of recognized strings frequently changes (mainly expands) in the course of software-
developments. Useful arguments may be symmetry, and fit. A list of all important arguments to this
key follows:

Eigens

52

Prints the (complex) coefficients in the form (norm, phase factor) of the eigenvectors with respect to
the valence basis. Coefficients with a norm smaller than eigthreshold will be skipped. This
threshold can be set with the option eigthreshold x, default x=.01.

MullikenOverlapPopulations

Prints overlap population of all basis functions.

OrbitalLabels

Prints the labels of the orbitals. If you are interested in the labels of an old calculation and you don't
want to repeat it completely, you can add the option StopAfter gemtry to your input file.

OrbPop

Prints the Mulliken population per orbital, for all eigenstates. This is the most detailed population
analysis that you can get, one for all k-points and for each band. Populations below a certain
threshold are ignored. This threshold can be set with the option popthreshold x. By default x
=.01.

BLCKAT

Print the information about the distance effects used in the numerical integrals.

Fit

Print more details about the fitting procedure, such as the fit coefficients at each SCF cycle.

Symmetry

Print the symmetry operators.

Thresholds

POPTHRESHOLD

Threshold for printing Mulliken population terms. Default 1e-2. Works with print orbpop.

EIGTHRESHOLD

Components smaller (absolute value) than this parameter (default 1e-2) are not printed in the output of
the DOS section, where the breakdown of crystal orbitals in the primitive basis is printed. Works with
print eigens.

More options

The following print options only make sense when debugging the code.

Print

One or more strings (separated by blanks or comma's) from a pre-defined set may be typed after the
key. The following names replace the IRPNT[IPRSE] keys of the previous versions of BAND

PrepNone, PrepMore, PrepDetail replace IPRNTP 0, 2, 5

IntNone, IntMore, IntDetail replace IPRNTI 0, 2, 5

53

FrmNone, FrmMore, FrmDetail replace IPRNTR 0, 2, 5

SCFNone, SCFMore, SCFDetail replace IPRNTS 0, 2, 5

EigNone, EigMore, EigDetail replace IPRNTE 0, 2, 5

Debug key*

(programmers only)

DEBUG

The argument is usually a (list of) subroutine names that you want to debug. (The programmer can
check for this in the same way as PRINT or ALLOW keys.)

2.10 More Analysis

If you are interested in the DOS or a partitioning of the DOS or a partitioning of the DOS, look for the
description of the keys DOS, GrossPopulations for partial DOS, and OverlapPopulations for overlap
DOS.

The eigen system can be printed with Print Eigens and the Mulliken populations per orbital per k-point
can be printed with Print OrbPop.

A list of the basis functions will be printed with Print OrbLabels.

Charges

Band prints always three charge analyses. Namely the Voronoi charges, the Mulliken analysis, and the
Hirshfeld charges (see the ADF documentation on more details). The calculation comes at virtually no cost,
so there are no keys associated with it. This is different for the Bader analysis.

Bader Analysis (AIM)

GridBasedAIM (block-type)

Invoke the ultra fast grid based Bader analysis [33,34].

GridBasedAIM
{ SmallDensity rhosmall }
{ Iterations n }
{ UseStartDensity true/false }

End

Where rhosmall (default 1e-6) is the value below which the density is ignored. This should not be
chosen too small because it may lead to un-assignable grid points. The number n (default 40)
determines the maximum number of steps that may be taken to find the nuclear attractor for a grid
point. Finally, the analysis can be performed on the startup density rather than on the final density with
the UseStartDenstiy sub key.

54

Also the critical points of the density can be determined. The algorithm starts from a regular mesh of points,
and from each of these it walks towards its corresponding critical point.

AIMCriticalPoints
{ GridPadding pad }
{ GridSpacing space }
{ eqvPointsTol tol }

End

Where pad (default 0.7 bohr) determines how much extra space is added to the starting guess domain
in the search for the critical points. The variable space (default 0.5 bohr) determines the distance
between the initial trial points. Finally, tol (default 0.27 bohr) is used as a criterion to whether or not to
critical points are the same.

Density of States

DOS

DOS (block-type)

General Density-Of-States information.

DOS
{ File filename }
{ Energies n }
{ Min emin }
{ Max emax }

End

Where n is the number of (equidistant) energy-values, emin, emax the minimum and maximum energy
values (with respect to the Fermi energy), and filename the (formatted) file on which the DOS-
information will be written. If the file is omitted, the information will be printed in the output file.
Example:

DOS
FILE plotfile
ENERGIES 500
MIN -.35
MAX 1.05

End

According to this example, density-of-states values will be generated in an equidistant mesh of 500
energy values, ranging from 0.35 below the Fermi level to 1.05 above it (atomic units). All information
will be written to a file plotfile. The information on the plot file is a long list of pairs of values (energy and
DOS), with some informative text-headers and general information; since the file is formatted one can
easily inspect its contents; it should be suitable for graphical software like IGOR.

Density-of-states values are generated for the total D.O.S. and optionally also for some partial densities
of states (see the keys GrossPopulations and OverlapPopulations).

If the key DOS is omitted, no Density-of-States information is generated at all. If the key is given, but one
or more of the 'subkeys' (file, energies, min, max) are omitted, default values are inserted (: direct
printing on output, 300, -0.75, 0.75).

55

Gross populations

GrossPopulations (block-type)

Partial densities-of-states are generated for the gross populations listed under this key.

GrossPopulations
{ iat lq }
{ FragFun jat ifun }
{ Frag kat }
{ Sum

...
EndSum }

End

Each line contains a PDOS instruction. There are three possibilities:
1) Line contains two integers, the first specifying the atom (iat) (numbered according to the total list
comprised from all atoms-keys), the second the l-value (lq) (0:s, 1:p, 2:d, and so on). Partial densities
of states are generated for all real spherical harmonics belonging to the specified l-value.
2) Line is of the form: Frag kat, which means that the PDOS of the functions belonging to atom kat will
be calculated.
3) Line is of the form fragfun jat ifun, which refers to the function ifun of atom jat, including core states
of that atom.
You can sum PDOS commands with a sum-block, i.e. specify any number of any of the three PDOS
specifications in a block that starts with Sum and ends with EndSum.

Example:

GrossPopulations
FragFun 1 2:: Second function of first atom
Frag 2 :: Sum of all functions from second atom
SUM:: sum following PDOSes

Frag 1::Atom nr.1
FragFun 2 1::First function of second atom
5 1:: All p functions of fifth atom

EndSum
End

Overlap populations

OverlapPopulations (block-type)

Overlap population weighted densities-of-states are generated for the overlap populations listed

OVERLAPPOPULATIONS
Left

{ iat lq }
{ FragFun jat ifun }
{ Frag kat }

Right
...

End

56

You can use this to get the overlap population weighted densities-of-states (OPWDOS), also known as
the crystal orbital overlap population (COOP), of two functions, or, if you like, one bunch of functions
with another bunch of functions. The key-block should consist of left-right pairs. After a line with left
you enter lines that specify one or more functions (see GrossPopulations), followed by a similar
structure beginning with right, which will produce the OPWDOS of the left functions with the right
functions.
Example:

OVERLAPPOPULATIONS
LEFT::First OPWDOS

Frag 1
RIGHT

Frag 2
LEFT:: Next OPWDOS

FragFun 1 1
RIGHT

2 1
FragFun 3 5

End

Band structure

The band structure is best examined with the GUI module "bandstructure". The band gap (if any) is printed
in the output. Here is an example for the NaCl crystal

--
Band gap information
--
Number of valence electrons 16
Valence band index 8
Top of valence band (a.u.) -0.192
Bottom of conduction band (a.u.) -0.039
Band gap (a.u.) 0.153
Band gap (eV) 4.173
Band gap (kcal) 96.235

With the normal k-points the band structure looks rather coarse. The brute force solution is simply to crank
up the KSPACE parameter, but this is very expensive and not needed for the precision. Band has an option
to interpolate the band curves for the path through the Brillouin zone.

Band structure interpolation

BZStruct (block-type)

Influences how band outputs the band structure to the RUNKF file.

BZStruct
Interpol ipol
Enabled {true/false}
Automatic {true/false}

End

Enabled: Whether or not to generate band structure data

57

Interpol: The higher the value of ipol the more refined the interpolation

Automatic: Whether or not to use the automatic path along high symmetry lines in the BZ

BZPath (block-type)

User defined path through the Brillouin zone.

BZPath
kmesh mesh
path

End

When BZStruct%Automatic is false you can specify manually a path. Increasing mesh leads to more
points per line segment. The line segments are specified by some path sub keys. The coordinates are
in terms of reciprocal lattice vectors. If you want to make a jump in the BZ, you need to specify a new
path. Here is an example

bzpath
kmesh 2
path

0.25 0.25 0.25
0 0 0.5
0 0 0
0.5 -0.5 0.5
0.25 0.25 0.25
0 0 0

subend
path

0 0 0.5
0.5 -0.5 0.5

subend
end

Form factors

FormFactors

X-ray structure factors (Fourier analysis of the charge density) are computed after termination of the
SCF procedure; the key should be followed by an integer specifying the number of stars of K-vectors for
which the structure factors are computed. Default (omission of the key): 3 stars.

Fragments

A fragment feature is available albeit rather primitive. It allows for the analysis of the DOS in a fragment
basis and for the calculation of the deformation density with respect to fragment densities. A typical
application is the periodical adsorption of one or more molecules on a surface. For instance, consider
periodic adsorption of hydrogen molecules over a surface. First you calculate the free molecule in the same
orientation as when adsorbed to the substrate. Since you would like to use a molecular fragment, it makes
sense to put the molecules far apart (large lattice spacing) and force dispersion to be neglected (KSPACE
1). To use the fragment in the next run you need to rename the result file ("RUNKF"), to something like
"frag.runkf", see the example script discussed below.

58

Specifying

Print Eigens

for this calculation produces output concerning the eigen states, thereby providing a means to identify the
eigen states (e.g. to be sigma, pi, et cetera).

Next, prepare the input for the overlayer with the substrate. With one or more Fragment keys you specify
which fragment file(s) to use and to which atoms they should be mapped. It is allowed to have more than
one fragment. The sub key Labels of a Fragment gives you the possibility to introduce labels for the
fragment orbitals. Finally you can specify which fragments to use in the DOS analysis, via the DosBas key.

An example of using the fragments feature in BAND is provided in one of the sample runs (CO on a Cu
surface) in the directory $ADFHOME/examples/band/e_Frags_COCu, see the Examples document. The
provided example is a slab calculation of Cu with a CO molecule adsorbed. A DOS analysis is performed in
terms of the Cu atomic orbitals and the CO molecular orbitals. Note in the first step the use of KSPACE 1,
together with a large lattice spacing. In this way a 'molecular' solution is obtained, which can be used as a
fragment. This fragment is saved as CO.runkf, and is input for the second step of this example. Some of the
orbital labels are adapted by specifying Labels. In the remaining steps this example demonstrates how to
obtain the deformation density with respect to the sum of fragments (CO molecule + bare Cu slab) densities.

Fragment key

Fragment (block-type)

Define a fragment. This key takes as argument the fragment file name (absolute path or path relative to
the executing directory) and its contents are for each atom in the fragment two integers: atom number in
the fragment versus atom number in this calculation. It has a subkey Labels so that you can assign
meaningful names to the orbitals. You can define several fragments. Example

Fragment
1 3 ! atom 1 of this fragment is assigned to third atom
2 4 ! atom 2 of this fragment is assigned to fourth atom
Labels
Sigma
Sigma*
Pi_x
Pi_y
Pi_x*
Pi_y*

Subend
End

In this example the first four fragment orbitals will be labeled as stated in the body of this key. The
remaining orbitals are labeled by the default labeling system (e.g. 1/FO/5, etc.). The labels are used in
combination with options like Print Eigens and Print OrbPop. (See also Print OrbLabels).
This key can be given once for each fragment.

59

2.11 Expert options*

Symmetry

The symmetry of the system is automatically detected. Normally the symmetry of the initial system is
maintained. One can lower the symmetry with the Symmetry key. In such cases the keyword
POTENTIALNOISE can force the solution away from the initial symmetry.

SYMMETRY

The most common option is NOSYM forcing the program to run without any symmetry.

It is also possible to run in a lower symmetry other than NOSYM but this is more involved (i.e. for
experts only). The argument should be a list of numbers, representing the operators to maintain. The
way to proceed is as follows. First run the calculation with the following added to your input

print symmetry
stopafter gemtry

and then you look in the output for (here the first four operators are listed)

64 SYMMETRY OPERATORS:

NO MATRIX TRANSL AXIS DET
ROTATION

--

1) 1.000 0.000 0.000 0.000 0.000 1.0
1

0.000 1.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 1.000

2) 1.000 0.000 0.000 0.000 0.000 1.0
1

0.000 1.000 0.000 5.400 0.000
0.000 0.000 1.000 0.000 1.000

3) 1.000 0.000 0.000 5.400 0.000 1.0
1

0.000 1.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 1.000

4) 1.000 0.000 0.000 5.400 0.000 1.0
1

0.000 1.000 0.000 5.400 0.000
0.000 0.000 1.000 0.000 1.000

...

from this list you should select the desired operators and use that in your final calculation, for example

Symmetry 1 7 21 31

POTENTIALNOISE

60

The initial potential for the SCF procedure is constructed from a sum-of-atoms density. Added to this is
some small noise in the numerical values of the potential in the points of the integration grid. The
purpose of the noise is to help the program break the initial symmetry, if that would lower the energy, by
effectively inducing small differences between (initially) degenerate orbitals. The noise in the potential is
randomly generated between zero and an upper limit, which is 1e-4 a.u. by default. The key, which
must have a numerical argument, adjusts this upper limit. This can be used therefore to suppress the
noise by choosing zero, or to increase it by specifying some large number.

Excited states

By default the levels are occupied according to the aufbau principle. In some cases it is possible to create
holes below the fermi level with the Occupations key

OCCUPATIONS (block-type)

Allows to input specific occupations numbers. Applies only for calculations that use only one k-point (i.e.
pseudo-molecule calculations).

OCCUPATIONS
irrepno occupations_alpha {// occupations_beta}
...

End

the irrepno must be 1, unless symmetry is used (an unsupported option, currently).
occupations_beta, and the separating double slash (//) must not be used in a spin-restricted calculation.
occupations_alpha/beta is a sequence of values assigned to the states ('bands') in energy ordering.
This allows you, for instance, to specify an empty state below occupied ones.

The programmer key

The programmer has many options, most of which are set automatically. However, with the programmer
key you can override many default behaviors. An overview is printed early in the output, and looks like

====================
R U N C O N F I G
====================

Calculate gradient of basis T
Calculate sec. der. of basis F
Calculate operator T working on basis T
Calculate gradient of fit T
Calculate sec. der. of fit. F
Calculate gradient of fit pot. T
Kin. energy via grad. F
Calculate gradient of energy T
Calculate kin. energy density. F
Calculate nuc. grad of kin. energy density F
Calculate der. of density T
Calculate second der. of density. F
Calculate nuc. grad. of density T
Calculate nuc. grad. of grad. density F
Exact rho during SCF. T
Exact grad. rho during SCF. F

61

Exact grad. rho post SCF T
Store history of dens. matrix. F
Store original Bloch functions T
Direct F
Direct fit F
Direct basis F
Calculate DOS T
Calculate band structure T
Calculate EFG F

Some of these option are controllable via the Programmer key.

Programmer (block-type)

FlioSinglePrecision {true|false}

The basis and fit functions are written and read to so-called FLIO files. With this option the double
precision numbers can be converted to single precision, saving half of the IO. The results tend to
be still fairly accurate. SCF convergence is usually possible to 1e-5. For deeper convergence
disable this option.

DirectBas {true|false}

Normally basis functions (and possibly derivatives) are calculated once and stored on disk.
Enabling this option causes band not to store the basis functions but to recalculate them when
needed. This reduces the amount of IO, at the cost of increased CPU.

DirectFit {true|false}

Normally the fit functions, their Coulomb potentials (and possibly first and second derivatives) are
calculated once and stored on disk. Enabling this option causes band not to store the first and
derivatives but to recalculate them when needed. This reduces the amount of IO, at the cost of
increased CPU. Note that the fitfunctions and potentials are currently always stored, so the fit is not
yet completely direct.

ExactGradRho {true|false}

The gradient (and second derivative) of the density are usually obtained via the fitted density. With
this option you force the program to use the exact density gradient. This requires the calculation of
basis set derivatives.

KinViaGrad {true|false}

Matrix elements of the kinetic energy operator are normally calculated as

Tij = ∫ ψi 1/2 ∇ ⋅ ∇ ψj

Using partial integration this can be rewritten as

Tij = - ∫(∇ ψi) 1/2 ⋅ ∇ ψj

and requires the calculation of the gradient of the basis functions.

UseSharedMemory {true|false}

62

Whether or not to use shared memory in a band calculation. Doing so might reduce the memory
requirement. A reason to disable it might be a bug (like a hangup or race condition) due to this
feature.

DidervCompat {true|false}

Originally all radial derivatives of NAOs were done numerically. However, more accurate
derivatives are available from the DIRAC subroutine. To get the old (and slightly worse) derivatives
set this option to true.

63

3 Recommendations, Problems, Questions

3.1 Recommendations

Performance for large unit cells

In the present version the standard settings are not yet optimized for large unit cells. Band usually errs on
the conservative side. Here are some tips on how to get a much better performance. To be sure of the
correctness of the tips, you should perform some tests.

tails

The most important parameter is the Tails parameter. With this linear scaling is achieved for most parts of
the program. By default it is 1e-6, which is a conservative value. According to our experience, total energies
are still accurate using a setting like

Tails Bas=1e-3 Rosa

The extra key is named after a former student Rosa Bulo who found out that the largest error caused by the
tails approximation comes from contracted functions. She suggested a pragmatical fix that makes makes the
criterion more strict for contracted core-like functions.

reciprocal space

Large unit cells have little dispersion, so you can get away with few k-points. Sometimes even a single k-
point (KSPACE 1) might suffice.

Madelung summations: especially in bulk systems

When routines such as ATOMIC and VMULTI take a long time, visible in the log file, you can try to reduce
the Madelung screening parameter. Band uses fit functions to calculate the Coulomb potential of the neutral
and small deformation density. You can see how large Band has chosen this parameter in the output

==
1 ** Bloch Summations **

Cut off criterion 0.100E-03
Max. extension of the functions 17.9095
Max. cell distance taken 37.7560
Nr. of cells 19

Fermi parameters for the Coulomb potential:
Break off point 20.0000
Fall off parameter 2.2361

64

This is example output for a slab. Here the Coulomb interaction screening parameter has been set to 20
bohr, leading to a reasonable number of cells. For large 3d cells you can get an incredible amount of cells,
due to an unnecessary large choice of the screening parameter. See key Screening%RMadel.

reduced basis set

When starting work on a large unit cell it is wise to start with a DZ basis. With such a basis, any of the above
suggestions can be tested. However, for most properties, the DZ basis is probably not very accurate. You
can next go for the TZ2P basis set, but that may be a bit of overkill. One reasonable trick is to remove f
polarization functions (if present) from this basis set. So for copper you can comment out the 4f STO

AtomType Cu
DIRAC Cu
7 5

VALENCE
1S
2S
2P
3S
3P
4S 1
3D
SubEnd
BasisFunctions

3D 1.280000
3D 6.900000
4S 0.850000
4S 2.450000
4P 1.370000

! 4F 2.200000
SubEnd
FitFunctions

1S 48.900000
...

Note that this will save you 7 functions per atom. If this is still unwieldy, you can also decide to start from the
DZ basis and add a polarization function by hand.

Frozen core for 5d elements

The standard basis sets TZ2P are not optimal for third-row transition elements. The V basis offers the
possibility to freeze the 4f,5s, and 5p functions. With this you can usually still get quite good results.
Sometimes you need to relax the frozen core dependency criterion

Dependency Core=0.8 ! The frozen core overlap may not be exactly 1

If you want to use the TZ2P you can change it like this one for Au

AtomType Au
DIRAC Au
14 12 ! note: now 12 core functions, was 10
VALENCE
1S

65

2S
2P
3S
3P
3D
4S
4P
4D
4F
5S
5P
5D ! from here on valence
6S 1
SubEnd
BasisFunctions
! 5S 4.600000

6S 3.150000
6S 1.210000

! 5P 6.650000
! 5P 3.100000

5D 5.050000
5D 1.500000
6P 1.950000
5F 2.500000

SubEnd
...

Memory usage

Another issue that can important is the choice CPVector (say the vector length of you machine) and the
number of k-points processed together during the calculation of the parameters. In the output you see the
used value

=========================
= Numerical Integration =
=========================

TOTAL NR. OF POINTS 4738
BLOCK LENGTH 256
NR. OF BLOCKS 20
MAX. NR. OF SYMMETRY UNIQUE POINTS PER BLOCK 35
NR. OF K-POINTS PROCESSED TOGETHER IN BASPNT 5
NR. OF SYMMETRY OPERATORS (REAL SPACE) 48
SYMMETRY OPERATORS IN K-SPACE 48

If you want to change the default settings you should specify both CPVector and KGRPX. The optimal
combination depends on the calculation and on the machine and bigger is not necessarily better. Example

CPVector 1024
KGRPX 3

66

3.2 Trouble Shooting

SCF does not converge

Some systems are more difficult to converge than others. A Pd slab for instance is much more easy to
converge than an Iron slab. Generally what you do in a problematic case is to go for more conservative
settings. One of the first things to try is to use the Convergence%Degenerate key. The two main option are
to decrease SCF%Mixing and/or DIIS%Dimix. If that all does not work you can try to use temperature
smearingConvergence%ElectronicTemperature (but this only works for 2D systems). Add to you input

SCF
Mixing 0.05 ! more conservative mixing
End

Diis
DiMix 0.1 ! also more conservative strategy for DIIS procedure
End

Convergence
Degenerate Default ! For most calculations this is quite a good idea
anyway
ElectronicTemperature 0.03 0.01 0.003 ! Try to converge with
progressively lower temperatures
End

Also the Programmer%FlioSinglePrecision key can have effect. For some hard systems, using
double precision significantly reduces the number of SCF iterations. However, it also can significantly
increase the elapsed time.

You may also try to use global fitting, see FitMethod%Inverse.

Geometry does not converge

One thing that you should make sure that at least the SCF converges. If that is so, then maybe the gradients
are not accurate enough. Here are some settings to improve the accuracy of the gradients

RadialDefaults
NR 10000 ! more radial points

End

integration
accint 6 ! more integration points without affecting other tolerances
end

Programmer
fliosSinglePrecision false ! do double precision disk-IO.
end

If this does not help you could consider using a larger fit set, see BasisDefaults%FitType.

67

Basis set dependency

A calculation aborts with the message: dependent basis. It means that for at least one k-point in the BZ the
set of Bloch functions, constructed from the elementary basis functions is so close to linear dependency that
the numerical accuracy of results is in danger. To check this, the program computes, for each k-point
separately, the overlap matrix of the Bloch basis (normalized functions) and diagonalizes it. If the smallest
eigenvalue is zero, the basis is linearly dependent. (Negative values should not occur at all!). Given the
limited precision of numerical integrals and other aspects in the calculation, you are bound for trouble
already if the smallest eigenvalue is very small, even if not exactly zero. The program compares it against a
criterion that can be set in input (key Dependency option Basis).

If you encounter such an error abort, you are strongly advised not to adjust the criterion so as to pass the
internal test: there were good reasons to implement the test and to set the default criterion at its current
value. Rather, you should adjust your basis set. There are two ways out: using confinement or removing
basis functions.

Using confinement

Usually the dependency problem is due to the diffuse basis functions. This is especially so for highly
coordinated atoms. One way to reduce the range of the functions is to use the Confinement key. In a slab
you could consider to use confinement only in the inner layers, and to use the normal basis to the surface
layers. The idea is that basis functions of the surface atoms can describe the decay into the vacuum
properly, and that inside the slab the diffuseness of the functions is not needed. If all the atoms of the slab
are of the same type, you should make a special type for the inner layers: simply put them in a separate
Atoms block. The confinement can be specified per type.

Removing basis functions

You should remove one or more basis functions and maybe modify some of the (other) STO basis functions.
The program prints information that helps you determine which basis functions should be modified/removed.
Another way to modify your basis set, is to use the confinement keyword. This has the effect of making the
diffuse basis functions more localized, thus reducing problematically large overlap with similar functions on
neighboring atoms.

In the standard output file, after the error message, you will find a list of eigenvalues of the overlap matrix. If
only the first is smaller than the threshold, you should remove one basis function. If more eigenvalues are
very small, it is likely that you have to remove more than one function, although you can of course try how
far you can get by eliminating just one.

Next the program prints the so-called Dependency Coefficients: a list of numbers, one for each basis
function. Those with a large value are the suspicious ones. If you find two coefficients that are significantly
larger than the others, you should replace the two corresponding functions by one. Easiest is to remove one
of them (take the one with the bigger coefficient). If one of them is a numerical orbital from Dirac and the
other an STO, remove the STO. If both are STOs, remove one and replace the other by some kind of
average (regarding the radial characteristic: exponential factor and power of radial coordinate).

To identify how the functions in your input correspond to the list the underlies the series of Dependency
Coefficients, you have to set up the list of basis functions as follows:

• Consider an outer loop over all atom TYPES. These correspond, in order as well as in number,
to the sequence of AtomType keys in your input file.

• For each type, consider a loop over all atoms of that type, i.e. the atoms in the ATOM block
corresponding
to the AtomType key at hand.

68

• For each atom (each AtomType key), first write down all DIRAC basis functions, then all STOs.
When writing down the functions, be aware that each entry in your input file specifies a function
set,
by the quantum number L and hence corresponds to 2L+1 actual basis functions.

• Regarding the DIRAC basis functions: they belong to the list of basis functions only if the key
Valence
occurs in the pertaining DIRAC input block. If not, no DIRAC functions of that type are included in
the basis.
If the Dirac functions are included, you must omit the Core functions and include only the Valence
functions
from that DIRAC block. The first record in your DIRAC block with two numbers defines (by the first
number)
the total number of function sets in the DIRAC block (which you can verify by simple counting)
and (by the second number) the number of Core function sets among them.
The Core function sets, if any, are always the first so many in the list in the DIRAC block.

The program stops as soon as it encounters a dependency problem. This may happen for the first k-point.
After you have adjusted the basis set following the above guidelines, you will have solved it. However, it may
easily happen that the problem shows up again, but now for another (later) k-point, where other entries in
the basis set may cause trouble. Do not think you have repaired the first problem incorrectly. Just repeat the
procedure until you pass all k-points in the basis set construction without errors. Typically (as a last remark),
although not necessarily, the first k-point may have a dependency problem from too many s-type functions,
while other k-points may be more sensitive to the series of p-functions in your basis.

Frozen core too large

Band calculates the overlap matrix of the core functions, and this should approximate the unit matrix. When
the deviation is larger then the frozen-core overlap criterion the program stops. The default criterion (0.98) is
fairly strict. The safest solution is to choose a smaller frozen core. For performance reasons, however, this
may not be the preferred option. In practice you might still get reliable results by setting the criterion to 0.8,
see the Dependency keyword. For the 5d transition metals, for instance, you can often freeze the 4f orbital,
thus reducing the basis set considerably. We strongly advise you to compare these results to a calculation
with a smaller core. Such tests can be performed with a smaller unit cell or with a smaller KSPACE
parameter.

Unstable fit

Sometimes the fit can become unstable, usually because it is too dependent. Some of the symptoms are: a
charge error during the SCF, a dependent fit set, or a large fit error as printed in the energy section of the
output. Usually the stability is improved by removing some diffuse fit functions. Another thing that might help
is to use the more expensive ORTHOGONALFIT option.

3.3 Various issues

Breaking the symmetry

In some cases you want to break the symmetry. An example of this is when you want to get the anti-
ferromagnetic state of Fe. Another common example is when you want to apply geometry constraints on
atoms.

69

The easiest way to do this is of course to disable all symmetry, see SYMMETRY%NOSYM, but this might make
your calculation more expensive than is needed. A bit more elegant way is to define separate types for the
equivalent atoms. Here follows example input for antiferrmomagnetic iron

ATOMS Fe
0.0 0.0 0.0
end

! second iron as new type to break the symmetry
atoms Fe
-1.435 -1.435 1.435
END

Lattice
-1.435 1.435 1.435
1.435 -1.435 1.435
2.87 2.87 -2.87

End

CONVERGENCE
CRITERION 1.0e-4
Degenerate default
SpinFlip 2 ! Flip (startup) spin density at second atom
END

Another solution is to use the expert SYMMETRY keyword.

Labels for the basis functions

You see the labels for the basis functions in for instance the DOS section of the output. The labels are also
used in combination with options like Print Eigens and Print OrbPop. (See also Print
Orbitallabels).

What do the labels look like? A normal atomic basis function, i.e. a numerical orbital or a Slater type orbital,
gets a label like
<atom number>/<element>/<orbital type>/<quantum numbers description>/<exp in sto>
Example with a Li and a H atom:

1/LI/NO/1s
1/LI/NO/2s
1/LI/STO/2s/1.4
1/LI/STO/2p_y/1.3
1/LI/STO/2p_z/1.3
1/LI/STO/2p_x/1.3
2/H/NO/1s
2/H/STO/1s/1.9
...

Core states will just get simple numbers as labels:

CORE STATE 1
CORE STATE 2

With the fragment option you can give meaningful names to the fragment option, see Fragment%Labels
and DosBas.

70

Reference and Startup Atoms

The formation energy of the crystal is calculated with respect to the reference atoms. BAND gives you the
formation energy with respect to the spherically symmetric spin-restricted LDA atoms. If you want the
program to do the spin-unrestricted calculation for the atoms you can give key Unrestricted the extra
option Reference. We do not recommend this as it would give you the false (except in special cases)
feeling that you've applied the right atomic correction energy so as to obtain the 'true' bonding energy with
respect to isolated atoms. The true atomic correction energy is the difference in energy between the used
artificial object, i.e. the spherically symmetric, spin-restricted atom with possibly fractional occupation
numbers, and the appropriate multiplet state. The spin-unrestricted reference atom would still be spherically
symmetric, with possibly fractional occupations: it would only have the probably correct (Hund's rule) net
spin polarization.

The startup density is normally the sum of the restricted atoms. In case you do an unrestricted calculation
you may want to get the sum of the unrestricted atoms as startup density by giving key Unrestricted the
extra option StartUp. This does not always provide a better startup density since all atoms will have their
net-spins pointing up. If a frozen core is used this option can sometimes lead to a negative valence density,
because the frozen core is derived from the restricted atom. The program will stop in such a case.

No matter what reference or startup atoms you use, core orbitals and NOs originate always from the
restricted free-atom calculation, because we don't want a spatial dependence of the basis functions on spin.

Numerical Atoms, Basis functions, and Fit functions

The program starts with a calculation of the free atoms, assuming spherical symmetry. The formation energy
is calculated w.r.t such atoms. You have to specify the configuration (i.e. which orbitals are occupied) in the
Dirac subkey of the block key AtomType, and you can for instance use the experimental configuration.
Keep in mind, however, that this is not necessarily the optimal configuration for your density functional. For
instance, Ni has experimentally two electrons in the 4s shell, but with LDA you will find that it is energetically
more profitable to move one electron from the 4s to the 3d. The configuration of the reference atoms does
not (i.e. should not) affect the final (SCF) density.

Besides the available basis sets in $ADFHOME/atomicdata/Band, you could in principle use the basis
functions from the database of the molecular ADF program (see the documentation of ADF for how this
database is organized). The functions you will find there are STOs, which is not optimal since BAND offers
you the option to use NOs from the numerical atom. The most efficient approach is to use the NOs and
remove from the ADF basis set those STOs that are already well described by the NOs.

As an example we will construct a basis for the Ni atom with orbitals frozen up to the 2p shell, derived from a
triple-zeta ADF basis. In the Dirac subkey of the block key AtomType you specify that the NOs up to 2p
should be kept frozen and that the 3d and 4s NOs be included in the valence basis. Copy from the ADF
database all 3d, 4s and the polarization functions into the BasisFunctions subkey of the block key
AtomType and remove the middle STOs of the 3d and the 4s.

Usually it is already quite adequate for a good-quality basis to augment each NO with one STO. You could
then take a double zeta ADF basis and remove one of the 3d and one of the 4s STOs. We often find that
such a basis, with one STO added per NO, has a quality that is comparable to triple zeta STO sets. We
strongly recommend that you use combined NO/STO bases. Of course, you may want to verify the quality of
the basis set by calculations on a few simple systems.

You can copy the fit functions from the ADF database into the FitFunctions subkey of the block key
AtomType. As a matter of experience (and justified by a somewhat different handling of fit functions
between the two programs), BAND is in most cases (we have not yet seen an exception) less sensitive to
the quality of the fit set than ADF is.

71

4 References
1. S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local
spin density calculations: a critical analysis. Canadian Journal of Physics 58, 1200 (1980)

2. H. Stoll, C.M.E. Pavlidou and H. Preuss, On the calculation of correlation energies in the spin-density
functional formalism. Theoretica Chimica Acta 49, 143 (1978)

3. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior.
Physical Review A 38, 3098 (1988)

4. J.P. Perdew and Y. Wang, Accurate and simple density functional for the electronic exchange energy:
generalized gradient approximation. Physical Review B 33, 8800 (1986)

5. J.P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais,
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange
and correlation. Physical Review B 46, 6671 (1992)

6. J.P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron
gas. Physical Review B 33, 8822 (1986)

7. C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a
functional of the electron density. Physical Review B 37, 785 (1988)

8. B.G. Johnson, P.M.W. Gill and J.A. Pople, The performance of a family of density functional methods.
Journal of Chemical Physics 98, 5612 (1993)

9. T.V. Russo, R.L. Martin and P.J. Hay, Density Functional calculations on first-row transition metals.
Journal of Chemical Physics 101, 7729 (1994)

10. R. van Leeuwen and E.J. Baerends, Exchange-correlation potential with correct asymptotic behavior.
Physical Review A 49, 2421 (1994)

11. R. Neumann, R.H. Nobes and N.C. Handy, Exchange functionals and potentials. Molecular Physics 87,
1 (1996)

12. J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical
Review Letters 77, 3865 (1996)

13. B. Hammer, L.B. Hansen, and J.K. Norskøv, Improved adsorption energetics within density-functional
theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B 59, 7413 (1999)

14. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou and K.
Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review
Letters 100, 136406 (2008)

15. J. Tao, J.P. Perdew, V.N. Staroverov and G.E. Scuseria, Climbing the Density Functional Ladder:
Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Physical
Review Letters 91, 146401

16. Y. Zhao, D.G. Truhlar, A new local density functional for main-group thermochemistry, transition metal
bonding, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Physics 125, 194101

17. P.H.T. Philipsen, E. van Lenthe, J.G. Snijders and E.J. Baerends, Relativistic calculations on the
adsorption of CO on the (111) surfaces of Ni, Pd, and Pt within the zeroth-order regular approximation.
Physical Review B 56, 13556 (1997)

72

http://dx.doi.org/10.1139/p80-159
http://www.springerlink.com/content/p6l2m67764730v76/?p=6cb9571b4f994e7a87424a7e4c8632fc&pi=14
http://link.aps.org/doi/10.1103/PhysRevA.38.3098
http://link.aps.org/doi/10.1103/PhysRevB.33.8800
http://link.aps.org/doi/10.1103/PhysRevB.46.6671
http://link.aps.org/doi/10.1103/PhysRevB.33.8822
http://prola.aps.org/abstract/PRB/v37/i2/p785_1
http://link.aip.org/link/?JCPSA6/98/5612/1
http://link.aip.org/link/?JCPSA6/101/7729/1
http://link.aps.org/doi/10.1103/PhysRevA.49.2421
http://www.informaworld.com/smpp/content~content=a713827940~db=all~order=page
http://www.informaworld.com/smpp/content~content=a713827940~db=all~order=page
http://link.aps.org/doi/10.1103/PhysRevLett.77.3865
http://link.aps.org/doi/10.1103/PhysRevLett.77.3865
http://link.aps.org/doi/10.1103/PhysRevB.59.7413
http://link.aps.org/doi/10.1103/PhysRevLett.100.136406
http://link.aps.org/doi/10.1103/PhysRevLett.100.136406
http://link.aps.org/doi/10.1103/PhysRevLett.91.146401
http://link.aps.org/doi/10.1103/PhysRevLett.91.146401
http://link.aip.org/link/?JCPSA6/125/194101/1
http://link.aps.org/doi/10.1103/PhysRevB.56.13556

18. P.H.T. Philipsen, and E.J. Baerends, Relativistic calculations to assess the ability of the generalized
gradient approximation to reproduce trends in cohesive properties of solids. Physical Review B 61, 1773
(2000)

19. E.S. Kadantsev, R. Klooster. P.L. de Boeij and T. Ziegler, The Formulation and Implementation of
Analytic Energy Gradients for Periodic Density Functional Calculations with STO/NAO Bloch Basis Set.
Molecular Physics 105, 2583 (2007)

20. E.S. Kadantsev and T. Ziegler, Implementation of a Density Functional Theory-Based Method for the
Calculation of the Hyperfine A-tensor in Periodic Systems with the Use of Numerical and Slater Type Atomic
Orbitals: Application to Paramagnetic Defects. Journal of Physical Chemistry A 112, 4521 (2008)

21. E.S. Kadantsev and T. Ziegler, Implementation of a DFT Based Method for the Calculation of Zeeman g-
tensor in Periodic Systems with the use of Numerical and Slater Type Atomic Orbitals. Journal of Physical
Chemistry A 113, 1327 (2009)

22. F. Kootstra, P.L. de Boeij and J.G. Snijders, Efficient real-space approach to time-dependent density
functional theory for the dielectric response of nonmetallic crystals. Journal of Chemical Physics 112, 6517
(2000)

23. P. Romaniello and P.L. de Boeij, Time-dependent current-density-functional theory for the metallic
response of solids. Physical Review B 71, 155108 (2005)

24. J.A. Berger, P.L. de Boeij and R. van Leeuwen, Analysis of the viscoelastic coefficients in the Vignale-
Kohn functional: The cases of one- and three-dimensional polyacetylene. , Physical Review B 71, 155104
(2005)

25. P. Romaniello and P.L. de Boeij, Relativistic two-component formulation of time-dependent current-
density functional theory: application to the linear response of solids. , Journal of Chemical Physics 127,
174111 (2007)

26. J.P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Workhorse Semilocal Density
Functional for Condensed Matter Physics and Quantum Chemistry. , Physical Review Letters 103, 026403
(2009)

27. C. Adamo and V. Barone, Exchange functionals with improved long-range behavior and adiabatic
connection methods without adjustable parameters: The mPW and mPW1PW models. Journal of Chemical
Physics 108, 664 (1998)

28. Y. Zhang and W. Yang, Comment on "Generalized Gradient Approximation Made Simple". Physical
Review Letters 80, 890 (1998)

29. C. Adamo and V. Barone, Physically motivated density functionals with improved performances: The
modified Perdew.Burke.Ernzerhof model. Journal of Chemical Physics 1996 116, 5933 (1996)

30. N.C. Handy and A.J. Cohen, Left-right correlation energy. Molecular Physics 99, 403 (2001)

31. M. Swart, A.W. Ehlers and K. Lammertsma, Performance of the OPBE exchange-correlation functional.
Molecular Physics 2004 102, 2467 (2004)

32. S. Grimme, Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion
Correction. Journal of Computational Chemistry 27, 1787 (2006)

33. J.I. Rodríguez, A.M. Köster, P.W. Ayers, A. Santos-Valle, A. Vela and G. Merino, An efficient grid-based
scheme to compute QTAIM atomic properties without explicit calculation of zero-flux surfaces. Journal of
Compututational Chemistry 30, 1082 (2009)

34. J.I. Rodríguez, R.F.W. Bader, P.W. Ayers, C. Michel, A.W. Götz and C. Bo, A high performance grid-
based algorithm for computing QTAIM properties. Chemical Physics Letters 472, 149 (2009)

73

http://link.aps.org/doi/10.1103/PhysRevB.56.13556
http://link.aps.org/doi/10.1103/PhysRevB.56.13556
http://www.informaworld.com/smpp/content~content=a785133384~db=all~order=page
http://pubs.acs.org/doi/abs/10.1021/jp800494m
http://pubs.acs.org/doi/abs/10.1021/jp805466c
http://pubs.acs.org/doi/abs/10.1021/jp805466c
http://link.aip.org/link/?JCPSA6/112/6517/1
http://link.aip.org/link/?JCPSA6/112/6517/1
http://link.aps.org/doi/10.1103/PhysRevB.71.155108
http://link.aps.org/doi/10.1103/PhysRevB.71.155104
http://link.aps.org/doi/10.1103/PhysRevB.71.155104
http://link.aip.org/link/?JCPSA6/127/174111/1
http://link.aip.org/link/?JCPSA6/127/174111/1
http://link.aps.org/doi/10.1103/PhysRevLett.103.026403
http://link.aps.org/doi/10.1103/PhysRevLett.103.026403
http://link.aip.org/link/?JCPSA6/108/664/1
http://link.aip.org/link/?JCPSA6/108/664/1
http://link.aps.org/doi/10.1103/PhysRevLett.80.890
http://link.aps.org/doi/10.1103/PhysRevLett.80.890
http://link.aip.org/link/?JCPSA6/116/5933/1
http://www.informaworld.com/smpp/content~content=a713832409~db=all~order=page
http://www.informaworld.com/smpp/content~db=all~content=a714031642
http://www3.interscience.wiley.com/journal/112777030/abstract
http://www3.interscience.wiley.com/journal/121477307/abstract
http://www3.interscience.wiley.com/journal/121477307/abstract
http://dx.doi.org/10.1016/j.cplett.2009.02.081

35. J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope. Physical Review B 31, 505
(1985)

36. A. Klamt and G. Schüürmann, COSMO: a new approach to dielectric screening in solvents with explicit
expressions for the screening energy and its gradient. Journal of the Chemical Society: Perkin Transactions
2, 799 (1993)

37. D. Skachkov, M. Krykunov, E. Kadantsev, and T. Ziegler, The Calculation of NMR Chemical Shifts in
Periodic Systems Based on Gauge Including Atomic Orbitals and Density Functional Theory. Journal of
Chemical Theory and Computation 6, 1650 (2010)

38. J.L. Pascual-ahuir, E. Silla and I. Tuñon, GEPOL: An improved description of molecular surfaces. III. A
new algorithm for the computation of a solvent-excluding surface. Journal of Computational Chemistry 15,
1127 (1994)

39. A. Klamt and G. Schüürmann, COSMO: a new approach to dielectric screening in solvents with explicit
expressions for the screening energy and its gradient. Journal of the Chemical Society: Perkin Transactions
2, 799 (1993)

40. B. Delley, The conductor-like screening model for polymers and surfaces. Molecular Simulation 32, 117
(2006)

41. N.L. Allinger, X. Zhou, J. Bergsma, Molecular mechanics parameters, Journal of Molecular Structure:
THEOCHEM 312, 69 (1994)

42. S. Grimme, J. Anthony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of
density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics
132, 154104 (2010).

43. S. N. Steinmann, and C. Corminboeuf, Comprehensive Benchmarking of a Density-Dependent
Dispersion Correction, Journal of Theory and Computation 132, 3567 (2011).

44. S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the Damping Function in Dispersion Corrected Density
Functional Theory, Journal of Computational Chemistry32, 1457 (2011).

45. Ph. Haas, F. Tran, P. Blaha, and K. H. Schwartz, Construction of an optimal GGA functional for
molecules and solids, Physical Review B83, 205117 (2011).

46. F. Tran, and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal
Exchange-Correlation Potential, Physical Review Letters102, 226401 (2009).

47. D. Alfè, PHON: A program to calculate phonons using the small displacement method, Computer
Physics Communications180, 2622 (2009).

48. V.I. Asimov, F. Aryasetiawan, and A.I. Lichtenstein, First-principles calculations of the electronic
structure and spectra of strongly correlated systems: the LDA + U method, Journal Physics: Condensed
Matter 9, 767 (1997).

49. M. Cococcioni, and S. de Gironcoli, Linear response approach to the calculation of the effective
interaction parameters in the LDA+U method, Physical Review B71, 035105 (2005).

50. D. Skachkov, M. Krykunov, and T. Ziegler, An improved scheme for the calculation of NMR chemical
shifts in periodic systems based on gauge including atomic orbitals and density functional theory, Canadian
Journal of Chemistry 89, 1150 (2011).

74

http://link.aps.org/doi/10.1103/PhysRevB.31.805
http://link.aps.org/doi/10.1103/PhysRevB.31.805
http://www.rsc.org/Publishing/Journals/P2/article.asp?doi=P29930000799
http://www.rsc.org/Publishing/Journals/P2/article.asp?doi=P29930000799
http://pubs.acs.org/doi/abs/10.1021/ct100046a
http://pubs.acs.org/doi/abs/10.1021/ct100046a
http://www3.interscience.wiley.com/journal/109583068/abstract
http://www3.interscience.wiley.com/journal/109583068/abstract
http://www.rsc.org/Publishing/Journals/P2/article.asp?doi=P29930000799
http://www.rsc.org/Publishing/Journals/P2/article.asp?doi=P29930000799
http://www.informaworld.com/smpp/content~content=a747854391~db=all~order=page
http://www.informaworld.com/smpp/content~content=a747854391~db=all~order=page
http://dx.doi.org/10.1016/S0166-1280(09)80008-0
http://dx.doi.org/10.1016/S0166-1280(09)80008-0
http://link.aip.org/link/JCPSA6/v132/i15/p154104/s1
http://link.aip.org/link/JCPSA6/v132/i15/p154104/s1
http://dx.doi.org/10.1021/ct200602x
http://dx.doi.org/10.1002/jcc.21759
http://dx.doi.org/10.1103/PhysRevB.83.205117
http://dx.doi.org/10.1103/PhysRevLett.102.226401
http://dx.doi.org/10.1016/j.cpc.2009.03.010
http://dx.doi.org/10.1016/j.cpc.2009.03.010
http://iopscience.iop.org/0953-8984/9/4/002
http://iopscience.iop.org/0953-8984/9/4/002
http://link.aps.org/doi/10.1103/PhysRevB.71.035105
http://dx.doi.org/10.1139/V11-050
http://dx.doi.org/10.1139/V11-050

Keywords

ACCURACY 24 EFG 51 NMR 52
AIMCriticalPoints 54 EField 24 NODIRECTIONALSCREENING 34
ALLOW 12 EIGENS 52 NUELSTAT 35
ANGSTROM 12 EIGENSTATES 30 NVELSTAT 35
ATENSOR 50 EIGTHRESHOLD 53 OCCUPATIONS 61
ATOM_SCORE 13 ELECTRONICTEMPERATURE 30 ORBITALLABELS 53
ATOMS 13 EPS 36 ORBITALPLOT 38
ATOMS_BASISTYPE 13 ESR 51 ORBPOP 53
ATOMS_FILE 13 ExactGradRho 62 ORTHOGONALFIT 34
ATOMTYPE 26 FERMI 36 OVERLAPPOPULATIONS 56
BASISDEFAULTS 25 FILELIMIT 36 PhononConfig 46
BASISFUNCTIONS 27 FIT 53 PMATRIX 30
BASISTYPE 25 FITFUNCTIONS 27 POPTHRESHOLD 53
BLCKAT 53 FITMETHOD 34 POTENTIALNOISE 60
BZPATH 58 FITTYPE 26 PRINT 52, 53
BZSTRUCT 57 FlioSinglePrecision 62 PROGRAMMER 62
COMMENT 10 FORMFACTORS 58 RadialDefaults 35
CONFINE 28 FRAGMENT 59 RATE 30
CONFINEMENT 28 FREQUENCIES 44 RCELX 34
CONSTRAINTS 45 GEOOPT 43 RELATIVISTIC 19
CONVERGENCE 30 GGA 15 RESPONSE 48
COORDINATES 13 GRADIENTS 42 RESTART 37
CORE 26 GRID 39 RMADEL 34
CPVECTOR 36 GridBasedAIM 1 SCF 29
CRITERION 30 GROSSPOPULATIONS 56 SCREENING 33
CUTOFF 33 HUBBARDU 18 SelectedAtoms 14
DEBUG 54 IGNORE 10 SOLVATION 20
DEFINE 11 InitialDensity 31 SpinFlip 30
DEGENERATE 30 INTEGRATION 24 StartWithMaxSpin 31
DELTA 36 IOVECTOR 36 STM 39
DENSITYPLOT 37 ITERATIONS 29 STOPAFTER 12
DEPENDENCY 33 KGRPX 37 SYMMETRY 53, 60
DidervCompat 63 KinViaGrad 62 TAILS 32
DIIS 31 KLABELS 13 TESTFUNCTIONS 28
DIRAC 27 KSPACE 25 TITLE 10
DiracGGA 16 LATTICE 12 UNITS 11
DirectBas 62 LDA 15 UNRESTRICTED 18
DirectFit 62 LDOS 39 UseSharedMemory 62
DIRIS 32 MAXTRY 36 VSPLIT 30
Dispersion 17 MetaGGA 16 XC 15, 14
DMADEL 33 MIXING 29

DOS 55 MULLIKENOVERLAPPOPULATIONS
53

75

Index

A-tensor 50 ELF 37 OPWDOS 1
Analysis 1 ESR 50 PDOS 1
Anti ferro magnetism 30 Exchange-correlation 14 Phonons 46
Atom selection 14 Ferro magnetism 30 Q-tensor 51
Bader analysis 54 Fit method 34 QTAIM 54
Band gap 1 Form factors 1 Radial grid 35
Band structure 1 Free energy 46 Relativistic effects 19
Band structure interpolation 57 Frequencies 44 Restarts 1
Broken symmetry 69 G-tensor 51 Selected atoms 46
Charges 54 Geometry optimization 43 Solvent effects 20
Constrained optimization 45 GGA+U 18 Specific heat 46
COOP 1 Gradients 42 STM 39
COSMO 20 Hirshfeld charges 1 TDDFT 1
Direct method 35 Lattice gradients 43 Thermodynamics 46
DOS 1 LDOS 39 Transition state search 45
EELS 1 Mulliken analysis 1 Unrestricted calculation 18
EFG 51 NMR 52 VDD charges 1
Electric field 24 NQCC 51 XC 14
Electric field gradient 51 Nuclear Magnetic Resonance 52 ZORA 19

76

	BAND Manual
	Table of Contents
	Preface
	Release 2012.01

	1 General
	1.1 Introduction
	Characterization of BAND
	Functionality
	Analysis
	Technical

	Changed defaults in the 2010 release

	2 Input
	2.1 Introduction
	Format of the Input file
	Examples
	Setting up an Input File

	2.2 Structure of the input
	General Input Features
	Title, Comments and Ignore
	Defining variables and functions
	Units
	Execution flow*

	2.3 Geometry
	Lattice vectors
	Coordinates of atoms in the unit cell
	Natural coordinates
	Labels for points in k space
	Selected atoms

	2.4 Model Hamiltonian
	Density Functional
	XC functionals
	Spin polarization
	GGA+U

	Relativistic Effects
	Solvation
	COSMO: Conductor like Screening Model

	Static electric field

	2.5 Precision and Performance
	General accuracy parameter
	Fine tuning integration in real space
	Numerical integration in reciprocal space
	Basis and fit set
	Using the database: BasisDefaults
	Manually specifying AtomTypes
	Confinement of basis functions
	Hard confinement
	Soft confinement

	Technical Settings*
	Self-consistency
	SCF key
	Convergence key
	DIIS key
	DIRIS key*

	Linear Scaling
	Dependency
	Screening
	Fit Method
	Orthogonal Fit

	Direct (on the fly) calculation of basis and fit
	Radial grid
	Elliptic integrals
	Fermi energy search

	IO settings*
	IO block size
	File limit
	Block size

	2.6 Restarts
	Restart key
	Plots of the density, potential, and many more properties
	Orbital plots
	Grid
	LDOS (STM)
	Complete example scripts for visualisation

	2.7 Structure and Reactivity
	Nuclear energy gradients*
	Lattice gradients*
	Geometry optimization
	GeoOpt key

	Numerical frequencies (Hessian)
	Transition state search
	Partial Hessian and (pre)optimizations
	Constrained optimization
	Selected atoms
	Phonons and thermodynamics
	PhononConfig

	2.8 Spectroscopic properties
	Time-dependent DFT
	Response key
	Limitations
	Time-dependent DFT for metals
	Frequency dependent kernel
	EELS

	ESR
	Electric Field Gradient (EFG)
	NMR

	2.9 Printed Output
	Print key
	Thresholds
	More options

	Debug key*

	2.10 More Analysis
	Charges
	Bader Analysis (AIM)

	Density of States
	DOS
	Gross populations
	Overlap populations

	Band structure
	Band structure interpolation

	Form factors
	Fragments
	Fragment key

	2.11 Expert options*
	Symmetry
	Excited states
	The programmer key

	3 Recommendations, Problems, Questions
	3.1 Recommendations
	Performance for large unit cells
	tails
	reciprocal space
	Madelung summations: especially in bulk systems
	reduced basis set
	Frozen core for 5d elements
	Memory usage

	3.2 Trouble Shooting
	SCF does not converge
	Geometry does not converge
	Basis set dependency
	Using confinement
	Removing basis functions

	Frozen core too large
	Unstable fit

	3.3 Various issues
	Breaking the symmetry
	Labels for the basis functions
	Reference and Startup Atoms
	Numerical Atoms, Basis functions, and Fit functions

	4 References
	Keywords
	Index

