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Basic philosophy and intended usage
We present a flexible python library for molecular dynamics, specialized in multi-scale simulations in a broad
sense. At its core, the library interfaces the Atomistic Simulation Environment (ASE) [1] molecular dynamics
modules with a wide range of molecular mechanics and electronic structure codes. As such, it allows simple
dynamics using forces computed with any energy/gradient evaluator provided by the ADF package.

Additionally, FlexMD allows the partitioning of a system into regions described at different resolution, with
the aim of running multi-scale (hybrid) force calculations. Besides the traditional, rigid, multi-scale
partitioning, FlexMD includes different schemes for Adaptive Multi-scale Molecular Dynamics. Such
simulations allow the resolution of a particle to change according to its distance from a predefined active
site, which is a necessity for successful multi-scale description of diffusive systems such as chemical
reactions in solution.

Finally, the library couples the dynamics to rare events techniques, either implemented in FlexMD itself, or
accessible through an interface with the PLUMED library for free energy calculations [7], opening the
possibility for evaluation on time-scales beyond the reach of standard molecular dynamics simulations.

The FlexMD package is designed to make simulation options possible that are not available natively in the
ADF package. Its flexible nature makes it very versatile, but comes at a cost. This cost might be completely
neglectable in most simulations, but it can be very high in some cases (usually when combining only cheap
methods such as forcefields).

The intended users for the FlexMD package are those with some Unix/Linux experience and a basic
understanding of the Python Programming Language. The user is also supposed to have a basic
understanding of the various methods he wishes to combine. For example, if metadynamics is supposed to
be combined with ADF, FlexMD expects the user to have knowledge about DFT calculations and the usage
of Collective Variables. Finally, as with every computational method, the user should monitor the FlexMD
performance, both in accuracy and speed.

4

http://python.org/


FlexMD functionality summary

Molecule

Input/output
• Reads and writes PDB and XYZ files
• Reads and writes topology data (in CHARMM format)
• Reads and writes force field data (on CHARMM format)

Analysis
• Extracts geometry data

Drawing functionality
• Adds atoms and bonds
• Changes bond-lengths, angles and torsions
• Cuts fragments
• Cuts solvent boxes and droplets
• Performs rotations and translations, to fit bonds to axes and planes

Periodic functionality
• Adds periodic images
• Wraps molecules into periodic box

Water specific
• Finds hydrogen bonds
• Finds shortest water bridge connecting H-donor and acceptor

Energy and force calculations

Standard
• ADF
• DFTB
• REAXFF
• UFF
• MOPAC
• NAMD
• Lennard-Jones force fields

Multi-scale
• QM/MM, mechanical embedding: Combines all the codes above
• Hybrid : More flexible than QM/MM. Combines different force calculations by summing or

subtracting the energies and forces. The standard calculations (above) can therefore be
combined with:

◦ Metadynamics
◦ Plumed (external code that computes free energy data)
◦ Constraints

• Adaptive QM/MM (for chemistry in solution)
◦ Difference-based Adaptive Solvation (DAS)
◦ Sorted Adaptive Partitioning (SAP)
◦ Buffered-Core (BC)
◦ Flexible Inner Region Ensemble Separator (FIRES)

Molecular Dynamics

• Uses ASE as the molecular dynamics driver for all above methods
• Analyses trajectories
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1. Introduction
FlexMD is a python package providing molecular dynamics (MD) simulations using the energy evaluation
methods made available by the ADF suite. A set of example scripts can be found in the examples/scmlib
directory of a standard ADF installation.

FlexMD can be accessed interactively by running startpython, followed by a standard python import
command for the package scm.flexmd. The python help function can be used to obtain detailed
documentation about all FlexMD classes. In the following example, an inquiry of one class (the MDMolecule
class) can be performed.

$ startpython
>>> from scm import flexmd
>>> help(flexmd.MDMolecule)

To leave the interactive help, press q. The help function can also be used to list the contents of the FlexMD
package:

$ startpython
>>> from scm import flexmd
>>> help(flexmd)

Python can also give the help documentation as plain text:

$ startpython
>>> from scm import flexmd
>>> import pydoc
>>> print pydoc.render_doc(flexmd.ForceJob, "Help on %s")
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2. Molecular Dynamics
FlexMD defines the molecular system under study through the MDMolecule class: an instantiation of this
class holds all information about the molecular system to be simulated, such as coordinates, topology, and
force field parameters (if needed). An MDMolecule object can be initialized from a PDB or XYZ file, by
specifying its path at object creation.

An interface to energy evaluators is provided by specialized ForceJob classes, acting as wrappers around
the ADF suite of programs. A ForceJob requires an MDMolecule object to be specified at creation. The
resulting ForceJob object can either be used directly by the Atomistic Simulation Environment (ASE) [1]
library as a calculator object (see examples/scmlib/ASE_emt_h2o) or with the ASEMDPropagator class,
which provides methods for running an MD time step using ASE classes. Internally, the propagator sets up
the required ASE objects, passes the ForceJob object to them, and retrieves the new positions and
velocities. An additional protagonist, an MDManager class instance, coordinates the MD simulation by
running the MD steps with the ASEMDPropagator object and writing trajectory information to file.

During creation of an MDManager object, a directory ‘QMMD’ is created, which contains a file
TRAJEC00.DCD holding the geometries along the trajectory, a file FTRAJEC00.DCD holding the forces
along the trajectory, and finally a file ENERGY00.dat holding the potential and kinetic energy, as well as the
temperature throughout the evaluation. To extract the geometries from the trajectory file, the DCDFile class
is available, providing methods to read and write geometries to and from a trajectory file in DCD format. The
MDManager is also responsible for handling restart of a previous MD evaluation: if a 'QMMD' directory is
already present at script invocation, the new output files will be assigned the number subsequent to the
highest numbered files in that directory. In addition, provided the previous run terminated normally, the
restart will continue from the final geometry and velocity of the previous run.

The ADF package contains different electronic structure methods of varying degrees of accuracy and speed.
The best-known methods are the ADF Density Functional Theory (DFT) code itself, and the BAND DFT
code for periodic systems. FlexMD provides an interface toward both programs. For the interface with ADF,
FlexMD makes use of classes from PyADF [2], a scripting framework for efficient quantum chemistry
calculations. In addition to ADF and BAND, several semi-empirical methods are included in the ADF suite,
such as DFTB and the NDDO type schemes available in the MOPAC package [3]. The ADF suite also
provides classical mechanics methods, such as the reactive force field ReaxFF and the simple force field
UFF. Interfaces to all of these methods are available in FlexMD. A simple example of a python script for MD
using the UFFForceJob class for UFF calculations can be found in the examples directory, under
examples/scmlib/flexmd_uff_h2o.

To increase the flexibility of FlexMD, an interface towards force calculations using the NAMD2.8 classical
molecular dynamics package is provided (examples/scmlib/namd_h2o). NAMD2.8 is not distributed with
the ADF suite, but it is available from a third party to be downloaded and installed (http://www.ks.uiuc.edu/
Development/Download/download.cgi).
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3. Multi-scale Molecular Dynamics
The design of the ForceJob class allows for flexible extension of its behavior, while at the same time
keeping the client code unaware of its nature: it can either act as a simple wrapper for ADF programs, or it
can be a more complex orchestrating class, combining simpler ForceJob classes to implement multi-scale
strategies. One application of this extensible design can be found in the QMMMForceJob object, which
combines a QM and an MM method in an IMOMM-type scheme (mechanical embedding). The
QMMMForceJob object is assigned two other ForceJob objects, the first representing the high-resolution
calculation (QM), while the other represents the low resolution (MM). Both ForceJob objects contain an
MDMolecule object for the full molecular system. The selection of the QM-region is handled by the
QMMMForceJob, which contains the information about the part of the molecule that constitutes the QM
region. When forces are requested from the QMMMForceJob, the following behavior is orchestrated: first, a
MM force calculation is performed on the full system; then, the QM-region is selected, a QM calculation is
executed solely for that region, and energy and forces are added to those from the full system MM
calculation. Finally, an MM calculation is computed forthe small QM-region, and the energy and forces are
subtracted, yielding the final result, returned to the invoker. In symbols:

EQM/MM(Full) = EMM(Full) + EQM(QMRegion) – EMM(QMRegion)

The QMMMForceJob handles periodic boundary conditions if the low-level (MM) method supports this
feature (i.e. NAMD). Whether the periodic interaction of the QM region with itself is handled at high or low
resolution depends on the method used for the QM calculation. An example of QM/MM MD calculations can
be found in the examples directory examples/scmlib/qmmm_dftbUFF_2h2o. The QMMMForceJob
allows the use of link atoms when the QM boundary cuts through covalent bonds. However, this feature
comes at the price of an increased script complexity. An example of a QMMM link-atom MD simulation is
provided in the examples directory, under examples/scmlib/qmmm_linkatom_dftbNAMD_glutamate.

For more complex multi-scale calculations the HybridForceJob class can be used. This class allows the
combination of a large set of different ForceJobs, each of them describing either the same, or different
molecular systems. Each ForceJob can either involve a calculation on the full MDMolecule object it
contains, or restricted to a specified region of the corresponding molecule. The forces from each contributing
ForceJob can either be added or subtracted from the total force according to user preference, as specified
at construction of the HybridForceJob object.

In order to perform QM/MM simulations on chemical reactivity in solution, it is important that the description
of the solvent molecules can change on the fly, as the molecules move towards or away from the reactive
region. To facilitate this, an AdaptiveQMMMForceJob class is available to provide adaptive QM/MM
simulations using several available schemes, as described by Bulo et al.[4] In these schemes, the
description of the diffusing molecules changes gradually from QM to MM and vice versa, based on the
distance of those molecules to a predefined reactive site. Various schemes are available for assigning the
QM and MM character of the molecules. The class contains a QMMMForceJob object, as well as a
partitioning object that assigns the partial QM and MM character to the molecules. An examples python
script for such an adaptive QM/MM simulation, using the DAS [4] method, is provided in the examples
directory, examples/scmlib/adqmmm_mopacscmUFF_h2o.

8



4. Biased Molecular Dynamics
Constraints can be added to a simulation using the derived ForceJob class WallJob. The constraint is in
the form of a large one-dimensional Gaussian on the potential energy surface, along a predefined Collective
Variable (CV). Examples of CV’s are the distance between two atoms, the coordination number of two
atoms, but also more complex quantities such as the minimum distance between two sets of atoms, or the
distance of an atom to a hydroxide ion. The Collective Variables can be specified through the
CollectiveVariable class. Derived CollectiveVariable classes are available to specify sums or multiples of
other CollectiveVariable objects.

Regular MD calculations are limited in the time-scales achievable with current hardware. The order of such
time-scales is much smaller than what is required for chemical reactions. To overcome this problem, two
rare-events methods have been implemented directly into the library: metadynamics [5] and umbrella
sampling [6]. Both these methods involve biasing the simulations along a CV. An example of a
metadynamics input can be found in the examples directory in examples/scmlib/
metadynamics_emt_h2o.

For a wider range of rare-events methods, FlexMD also offers an interface with the PLUMED library for free
energy calculations [7].To use this, a PLUMED input file is required, and for this we refer to the PLUMED
manual. An example of a FlexMD input script using PLUMED can be found in the examples directory in
examples/scmlib/plumed_emt_h2o.
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5. Working with FlexMD
It is recomended to read the sections 1. Introduction and 2. Molecular Dynamics before working with
FlexMD. Basic understanding of the Python Programming Language is also required. The Python website
hosts documentation and a tutorial that can be used to learn Python.

The performance of the FlexMD package is difficult to predict because it depends on system size, the type
of ForceJobs used and how these ForceJobs are combined. It is advised to first test the overhead of the
FlexMD package for your system before running large simulations. When ab initio forces are involved, the
overhead should not give a significant performance penalty. However, it may become a bottleneck when
your system only uses cheap forcefields.

5.1 Creating a molecule object

FlexMD can be run trough the interactive python interpeter in the ADF package. To start it, run: $ADFBIN/
startpython in a terminal, followed by:

>>> from scm import flexmd

Note that it is also possible, and usually more convenient, to write your FlexMD code in a file and then to
execute this file. To do this, type all the commands you would use in the interactive interpeter in a file, and
then enter $ADFBIN/startpython myFlexMDjob.py in a terminal (after changing to the directory where
the file was stored of course).

Most FlexMD jobs will start with importing FlexMD and creating an MDMolecule object. This can be done by
starting from a geometry in xyz or pdb format, or by manually adding the atoms in the FlexMDjob.py file.
Geometries can be generated in the ADF GUI, and then be exported to xyz file. For more details on the
MDMolecule object, run $ADFBIN/startpython, import flexmd and call help(flexmd.mdmolecule).

>>> from scm import flexmd
>>> myMol = flexmd.MDMolecule('myGeometryFile.xyz')

Some ForceJobs require the system to be periodic. If we create an MDMolecule object from a pdb file that
includes periodic information, the periodic boundary conditions are automaticly imported. If the information is
not there, we can add it to the MDMolecule object:

>>> myMol = flexmd.pdb.set_box([50.0,25.0,100.0])

Info on set_box (and other functions, such as set_cellvectors, and write_pdb) can be found using
help(flexmd.pdbmolecule).

It is also possible to write the info in the MDMolecule object to a pdb file. to do so, call
pdb.write_pdb('mypdbfile.pdb') on the myMol object:

>>> myMol.pdb.write_pdb('mypdbfile.pdb', box=True)

5.2 Creating a ForceJob

To specify what type of forces we want to use in the MD simulation, a ForceJob must be created. FlexMD
has a number of ForceJobs (see PACKAGE CONTENTS in help(flexmd)), most of them with examples
in $ADFHOME/examples/scmlib. The ForceJobs can be combined into a single ForceJob using
flexmd.hybrid_ForceJob. As an example, we combine a reaxff_ForceJob with a metadynamicsjob and
a walljob:
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>>> from scm import flexmd
>>> myMol = flexmd.MDMolecule('myGeometryFile.xyz')
>>> myMol = flexmd.pdb.set_box([50.0,25.0,100.0])

# setup our reaxff ForceJob and attach the forcefield file
# (place the ff file in the same dir as the script and the xyz!)

>>> myReaxffForceJob = flexmd.ReaxffForceJob(molecule=myMol)
>>> myReaxffForceJob.settings.set_ff_filename('reax_forcefield_file.ff')

# next we define the collective variable: the distance between atom 1 and 2
>>> myCvs = [flexmd.DistCV([1,2])]

# create a set of metadynamics properties, using the CV
>>> mtdSettings = flexmd.MetadynamicsSettings(cvs=myCvs, widths=[0.30],
height=0.25 )

# create the metadynamics job by combining the molecule, settings (with
CV)

# and the number of md steps between depositing metadynamics hills.
>>> myMetadynamicsjob = flexmd.MetadynamicsJob( myMol, settings=mtdSettings,
nstep=150 )

# add a wall to prevent the two atoms from drifting more than 10 Angstrom
away.
>>> myWalljob = flexmd.WallJob(molecule=myMol, cvs=myCvs, cntrs=[10.0],
widths=[1.0], heights=[500.0])

# combine the forces into a hybrid job that will be used for the MD
>>> myForceJob = flexmd.HybridForceJob( [[myReaxffForceJob,'+'],
[theMetadynamicsjob,'+'], [theWalljob,'+']], myMol )

Note that all the ForceJobs require some special input and settings, and that these settings can be applied
both before and after defining the ForceJob. For the reaxffForceJob, we first define the ForceJob, and add
the forcefield parameters file afterwards. For the metadynamics job we reverse this, and first create a
metadynamicsJobSettings object, which is then used in the creation of the metadynamics job. For more
detailed info on the different ForceJobs and their inputs, see the help function by calling help on a ForceJob,
for example: help(flexmd.ReaxffForceJob) or help(flexmd.WallJob). Also remember that other
examples of ForceJobs can be found in $ADFHOME/examples/scmlib.

5.3 Creating and running the MD job

Before the simulation can be set in motion, a propagator is needed. The propagatorJob controls simulation
settings such as temperature and timestep size. FlexMD uses the Atomistic Simulation Environment (ASE)
[1] for this. The MDPropagatorJob object is created just like the other objects in FlexMD:

# do this after importing flexmd and creating a ForceJob.
# it creates the MDPropagator job, with some settings

>>> myMDJob = flexmd.ASEMDPropagatorJob( ForceJob=myForceJob )
>>> myMDJob.settings.set_tempcontrol( True, nhfreq=2, maxdef=50.0 )
>>> myMDJob.settings.set_temperature(300.0)
>>> myMDJob.settings.set_timestep( 0.02 )

For more details on the ASEMDPropagatorJob, view it's help page:
help(flexmd.ASEMDPropagatorJob), or take a look at the MDSettings object:
help(flexmd.MDSettings).

The propagatorJob can be used to create an MDManager object:
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# create an MD manager
>>> myManager = flexmd.MDManager( mdjob=myMDJob)

The manager object is now in control of the MD simulation, and we can use it to run the simulation for a
number of steps:

# tell the MD manager to run the simulation
>>> myManager.run( ncycles = 2500 )

Note that the number of steps here should be increased a lot if metadynamics effects are to be observed,
but it is always wise to first run a small number of steps to check if everything works. Some information will
be printed during the simulation, depending on the settings of the components used. The manager will also
create some folders in the working directory, and store the data produced by the simulation in there.

The full flexmd jobfile should now look something like this:

>>> from scm import flexmd
>>> myMol = flexmd.MDMolecule('myGeometryFile.xyz')
>>> myMol = flexmd.pdb.set_box([50.0,25.0,100.0])

# setup our reaxff ForceJob and attach the forcefield file
# (place the ff file in the same dir as the script and the xyz!)

>>> myReaxffForceJob = flexmd.ReaxffForceJob(molecule=myMol)
>>> myReaxffForceJob.settings.set_ff_filename('reax_forcefield_file.ff')

# next we define the collective variable: the distance between atom 1 and 2
>>> myCvs = [flexmd.DistCV([1,2])]

# create a set of metadynamics properties, using the CV
>>> mtdSettings = flexmd.MetadynamicsSettings(cvs=myCvs, widths=[0.30],
height=0.25 )

# create the metadynamics job by combining the molecule, settings (with
CV)

# and the number of md steps between depositing metadynamics hills.
>>> myMetadynamicsjob = flexmd.MetadynamicsJob( myMol, settings=mtdSettings,
nstep=150 )

# add a wall to prevent the two atoms from drifting more than 10 Angstrom
away.
>>> myWalljob = flexmd.WallJob(molecule=myMol, cvs=myCvs, cntrs=[10.0],
widths=[1.0], heights=[500.0])

# combine the forces into a hybrid job that will be used for the MD
>>> myForceJob = flexmd.HybridForceJob( [[myReaxffForceJob,'+'],
[theMetadynamicsjob,'+'], [theWalljob,'+']], myMol )

# do this after importing flexmd and creating a ForceJob.
# it creates the MDPropagator job, with some settings

>>> myMDJob = flexmd.ASEMDPropagatorJob( ForceJob=myForceJob )
>>> myMDJob.settings.set_tempcontrol( True, nhfreq=2, maxdef=50.0 )
>>> myMDJob.settings.set_temperature(300.0)
>>> myMDJob.settings.set_timestep( 0.02 )

# create an MD manager
>>> myManager = flexmd.MDManager( mdjob=myMDJob)

# tell the MD manager to run the simulation
>>> myManager.run( ncycles = 2500 )
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