#!/bin/bash # The trajectory is a concatenated xyz-file: cat << eor > coords.xyz C -1.741968 -2.220880 0.000000 Pd -2.137509 -0.237843 0.000000 H -2.809570 -2.499547 0.000000 H -1.265288 -2.629932 0.895677 H -1.265288 -2.629932 -0.895677 H -0.755099 -0.885698 0.00000 C -1.741968 -2.220880 0.000000 Pd -2.137509 -0.250000 0.000000 H -2.809570 -2.499547 0.000000 H -1.265288 -2.629932 0.895677 H -1.265288 -2.629932 -0.895677 H -0.755099 -0.885698 0.00000 eor # Input options for ADF: # One should generally symmetrize the coordinates by setting AMS.System.Symmetrize=Yes cat << eor > adfinputfile AMS.Task=SinglePoint AMS.System.Charge=0 AMS.System.Symmetrize=Yes ADF.NumericalQuality=VeryGood ADF.XC.GGA=OPBE ADF.basis.core=None ADF.Symmetry=AUTO ADF.Relativity.Level=Scalar ADF.Relativity.Formalism=ZORA ADF.eprint.sfo=eig ovl eor # Here we call the PyFrag script. # PyFrag conducts a total of six single point calculations, one for each fragment and the # whole system for each of the two geometries in the trajectory, respectively. # The intermediate results for each geometry are printed during the calculation. # At the end of its run PyFrag summarizes all results in a table which is also written # to an output file PyFrag.txt $AMSBIN/amspython $AMSHOME/scripting/standalone/pyfrag/PyFrag.py \ --xyzpath coords.xyz \ --fragment 2 --fragment 1 3 4 5 6 --strain 0 --strain -554.1 \ --bondlength 1 6 1.093 \ --angle 2 1 6 180 \ --VDD 2 1 6 \ --hirshfeld frag1 \ --irrepOI AA \ --irrepOI AAA \ --orbitalenergy frag1 HOMO \ --orbitalenergy frag2 LUMO \ --orbitalenergy AA frag2 5 \ --population frag1 HOMO \ --population AA frag2 5 \ --overlap frag1 HOMO frag2 LUMO \ --overlap S frag1 5 AA frag2 4 \ --adfinput ADF.basis.type=DZP \ --adfinputfile adfinputfile