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CHAPTER

ONE

GENERAL

1.1 Introduction

The ADF COSMO-RS (COnductor like Screening MOdel for Realistic Solvents) program is a program that can be
used for calculating thermodynamic properties of (mixed) fluids. The COSMO-RS method was developed by Klamt
and coworkers123. On the basis of the framework of COSMO-RS, Lin and Sandler6 suggested a variation, the COSMO-
SAC (where SAC denotes segment activity coefficient) model. There are different implementations of COSMO-RS
and COSMO-SAC or derivatives, and different parametrizations. The implementation of COSMO-RS in ADF is de-
scribed in Ref.4, which is based on the COSMO-RS method developed by Klamt et al.2. The implementation of
COSMO-SAC 2013-ADF in ADF is based on the COSMO-SAC model developed by Xiong et al.7. The implemen-
tation of COSMO-SAC 2016-ADF in ADF is based on the COSMO-SAC model developed by Hsieh et al.5, but the
parameters in COSMO-SAC 2016-ADF were optimized by Chen et al., like in8, for use with ADF. The implementa-
tion of COSMO-SAC DHB-ADF in ADF is based on the COSMO-SAC-DHB model developed by Chen et al.9, but
the parameters were reoptimized by Chen et al. for use with ADF.

An alternative to COSMO-SAC or COSMO-RS based methods is the UNIFAC (UNIQUAC Functional-group Activity
Coefficients) method, which was developed by Fredenslund, Jones, and Prausnitz, see10. The empirical UNIFAC
method is a group contribution based method to predict activity coefficients and other thermodynamic properties, in
which the group specific parameters and are parametrized against a large data base. The implementation in ADF uses
to so called original UNIFAC parameters.

Our COSMO-RS capabilities are summarized on the product page (https://www.scm.com/product/cosmo-rs).

With COSMO-RS it is possible to use a thermodynamically consistent combinatorial contribution to the chemical
potential as is used in Ref.3, and a temperature dependent hydrogen bond interaction, also described in Ref.3. The

1 A. Klamt, Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J.
Phys. Chem. 99, 2224 (1995) (https://doi.org/10.1021/j100007a062)
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6 S.T. Lin and S.I. Sandler, A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model, Ind. Eng. Chem. Res. 41,
899 (2002) (https://doi.org/10.1021/ie001047w)

4 C.C. Pye, T. Ziegler, E. van Lenthe, J.N. Louwen, An implementation of the conductor-like screening model of solvation within the Amsterdam
density functional package. Part II. COSMO for real solvents. Can. J. Chem. 87, 790 (2009) (https://doi.org/10.1139/V09-008)

7 R. Xiong, S.I. Sandler, R.I. Burnett, An improvement to COSMO-SAC for predicting thermodynamic properties, Ind. Eng. Chem. Res. 53,
8265 (2014) (https://doi.org/10.1021/ie404410v)

5 C.M. Hsieh, S.I. Sandler, S.T. Lin, Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions, Fluid Phase
Equilib. 297, 90 (2010) (https://doi.org/10.1016/j.fluid.2010.06.011)

8 W.L. Chen, C.M. Hsieh, L. Yang, C.C. Hsu, S.T. Lin, A Critical Evaluation on the Performance of COSMO-SAC Models for Vapor-Liquid
and Liquid-Liquid Equilibrium Predictions Based on Different Quantum Chemical Calculations, Ind. Eng. Chem. Res. 55, 9312 (2016)
(https://doi.org/10.1021/acs.iecr.6b02345)

9 W.L. Chen, S.T. Lin, Explicit consideration of spatial hydrogen bonding direction for activity coefficient prediction based on implicit solvation
calculations, Phys.Chem.Chem.Phys. 19, 20367 (2017) (https://doi.org/10.1039/c7cp02317k)

10 A. Fredenslund, R.L. Jones, and J.M. Prausnitz, Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE
Journal 21, 1086 (1975) (https://doi.org/10.1002/aic.690210607)
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parameters in the paper2 were reparametrized for ADF, see Ref.4 for details.

The parameters in COSMO-SAC 2013-ADF, COSMO-SAC 2016-ADF, and COSMO-SAC DHB-ADF were opti-
mized for use with ADF COSMO result files. Other COSMO-SAC parameter sets exists that were optimized for
different QM packages.

The ADF COSMO-RS (and COSMO-SAC) command line program is called crs. The main authors of this program are
Cory Pye (Saint Mary’s University, Halifax NS Canada) and Jaap Louwen (Albemarle Corporation). COSMO-SAC
2013-ADF was implemented in collaboration with R. Xiong and R.I. Burnett (Sandler group, University of Delaware,
Newark, USA). Previous COSMO-SAC methods were implemented by Erin McGarrity (TU Delft, the Netherlands).
The COSMO-RS GUI AMScrs contains an input builder for COSMO-RS and can visualize results, see the COSMO-
RS GUI tutorials and the COSMO-RS GUI reference manual.

COSMO-RS (and COSMO-SAC) use the intermediate results from quantum mechanical (QM) calculations on indi-
vidual molecules to predict thermodynamic properties of mixtures of these molecules, for example, solubility. There
are a fair number of reports of accurate prediction by COSMO-RS of thermodynamic properties in general in the
literature. Many of these have been written by Klamt and co-workers, see Ref.3 and references therein. Instead of a
relatively expensive QM calculation one can use a fast Quantitative Structure-Property Relationship (QSPR) method
to estimate the so called COSMO sigma-profile of a molecule that is needed in COSMO-RS (and COSMO-SAC)
calculations.

There are also empirical methods like UNIFAC that can predict thermodynamic properties (including the activity
coefficients). These methods contain group specific parameters and are parametrized against a large data base. They
will often do better than COSMO-RS or COSMO-SAC methods (especially, of course, if the system of interest was
part of the data base used for parameter estimation). An advantage of these methods is that they require no QM
calculations to be done in order to provide an estimate of thermodynamics properties. However, these methods cannot
handle every type of molecule. In particular when unusual combinations of functional groups occur (such as in drug
molecules), no parametrization is available. COSMO-RS and COSMO-SAC methods, on the other hand, only feature
general parameters not specific to chemical groups or functionalities. All that is required is that a quantum mechanical
calculation can be done on the molecule. Therefore, COSMO-RS or COSMO-SAC can be a valuable tool for the
prediction of chemical engineering thermodynamical properties, like, for example, partial vapor pressures, solubilities,
and partition coefficients. An additional advantage of COSMO-RS and COSMO-SAC over empirical methods is that
the molecules dissolved may in fact be transition states of a chemical reaction. This follows from the fact that all that is
required is that one can do a QM calculation on the solute and QM on a transition state has become standard in the last
two decades. This affords a unique opportunity to predict the thermodynamics of a reaction including, for instance,
the balance between kinetically and thermodynamically favored reaction pathways as a function of the solvent used.

1.2 Release 2021.1

Changes of COSMO-RS 2021.1 compared to COSMO-RS 2020.1:

• Improved handling of compounds with multi-species components

1.3 Release 2020.1

Changes of COSMO-RS 2020.1 compared to COSMO-RS 2019.3:

• Support for compounds with multi-species components

– conformers

– dimers, trimers, . . .

– dissociation

– association

2 Chapter 1. General
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CHAPTER

TWO

COSMO-RS, COSMO-SAC, UNIFAC

2.1 COSMO-RS theory

Below some of the COSMO-RS theory is explained, but a more complete description can be found in Refs.1 and2.

Although in principle all of chemistry can be predicted by appropriate solutions of the Schrödinger Equation, in
practice due to the extreme mathematical complexity of doing so only the smallest systems can be computed at an
accuracy rivaling that of the most accurate experiments. However, with suitable approximations, for isolated molecules
of up to a few hundred atoms these days quite reasonable results can be obtained. Of course, this means that direct
computation of thermodynamic properties is out of reach. Thermodynamic properties can only be computed as an
average over a large number of configurations of a large number of molecules. To address this, people have typically
resorted to so-called Molecular Dynamics (MD) or Monte Carlo (MC) methods where configurations are generated
either by numerically simulating the atomic motions over discrete time steps or by random generation, in either case
using empirical molecular models parametrized against quantum mechanical calculations and experimental data to
compute energies. However, even these approaches often fall short in generating sufficiently large ensembles, and
there is little chance of that situation improving dramatically in the near future.

Around 1995, Andreas Klamt, then working for Bayer, hit upon an approach that made it possible to compute the
details of molecules quantum mechanically and subsequently use these details in an approximate statistical mechanics
procedure3. This approach is called COSMO-RS (COnductor like Screening MOdel for Realistic Solvents) and has
proven to be quite powerful. It may currently be the best link between the world of chemical quantum mechanics and
engineering thermodynamics.

Thermodynamic reference states can be chosen arbitrarily. They do not even have to be physically realizable, as long
as it is consistently used. We are at liberty to choose as reference state a molecule embedded in a perfect conductor,
that is a material with an infinitely large dielectric constant (‘the perfectly screened state’). Suppose a molecule A
resides in a molecule shaped cavity. Everywhere outside of this cavity is conductor material. Although it would be
hard to realize this in practice, it is relatively easy to do quantum mechanical calculations on this hypothetical state.
Since the molecule will in general have a charge distribution and therefore possess an electric field, it will polarize
the embedding medium. That will result in another electric field, given by a charge distribution on the surface of the
molecule shaped cavity. This charge distribution is generated by the quantum mechanical calculations, for example
with ADF if one uses COSMO. From now on the surface of the molecule shaped cavity will be called molecular
surface, and the volume of the molecule shaped cavity will be called molecular volume.

1 A. Klamt, V. Jonas, T. Bürger and J.C. Lohrenz, Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074 (1998)
(https://doi.org/10.1021/jp980017s)

2 A. Klamt, COSMO-RS From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier. Amsterdam (2005), ISBN
0-444-51994-7.

3 A. Klamt, Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J.
Phys. Chem. 99, 2224 (1995) (https://doi.org/10.1021/j100007a062)

3
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Cosmo charge density on the COSMO surface of water (picture made with AMSview).

Although the actual charge distribution on the molecular surface will be highly detailed, let us for the moment consider
the molecular surface as consisting of segments with a constant charge density (i.e. the detailed charge distribution
averaged over segments). Now instead of the single molecule A consider, as an arbitrary example, a fluid consisting
of three types of molecules: A, B and C. In a fluid not too close too the critical temperature, the molecular surfaces
present in the fluid will all be in close contact. That means that the segments of constant density introduced above are
in close contact.

We now compare our molecule A in the fluid with our chosen reference state. Any segment of the molecular surface
with a charge density of 𝜎𝑖 will be aligned with a segment with charge density 𝜎𝑗 of another molecule. If the two
charge densities happen to be opposite (i.e. 𝜎𝑖 + 𝜎𝑗 = 0) the charges required for achieving the perfectly screened
state will vanish. However, this will not happen too often and in general an excess charge density is left of 𝜎𝑖 + 𝜎𝑗

between the two segments. From electrostatic theory it follows that this introduces an energy penalty proportional to
the segment size and (𝜎𝑖 + 𝜎𝑗)

2 . In principle this gives a way to compute the chemical potential of component A, by
going over all possible conformations of a large number of molecules A, B and C (in their proper molar fractions) and
do computations on the statistical ensemble. However, in practice that would be similar to doing Molecular Dynamics
calculations using empirical structure models and about as computationally prohibitive. Instead, an approximation
can be made that is not easily justified a priori and must be judged by the results of subsequent simulations. This
assumption is that all segments in the fluid are able to make contact independent of one another. In a way it can be
said, that the segments are cut loose from the original (rigid) molecular surfaces.

As one would guess, the approximation of independent segments makes the mathematics of computing ensemble
properties quite tractable. In fact, computing the chemical potential of component A (or B or C) in the mixture by
means of the COSMO-RS and related methods takes in the order of seconds on a normal PC (given the results of
quantum mechanical calculations that may have taken days, of course). Note that the molecular surface around the
molecule is divided rather arbitrarily in segments and that the assumption was that the segment of one molecule will
overlap perfectly with that of another. How can this be true? The answer is that one can split up the molecular surface
into segments in an infinite number of ways. However, the molecules in a fluid are always in contact with another. At
any given time, molecule A will be in contact with a number of other molecules and share patches of, for example, 7
square Angstroms of its surface with each of the surrounding molecules. At that particular time, the segments will be

4 Chapter 2. COSMO-RS, COSMO-SAC, UNIFAC
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those patches. A split second later, of course, there will be a different set of segments. That is not a problem. One
needs to do statistical mechanics with charged segments for which one needs to know how many 7 square Angstrom
segments a particular molecule brings into the fluid and the probability of any segment having an average charge
density 𝜎 (for all values of 𝜎). Both can be computed from the results of the quantum mechanical calculation on the
molecule in the perfect conductor. Just to get a flavor, in the figure below the so-called 𝜎-profile of water is given.
These are the statistical distributions of possible segments over charge densities multiplied by the surface area of the
molecular volume. The 𝜎-profile relates to the detailed charge distribution on the molecular surface.

𝜎-profile of water (picture made with the CRS-GUI), smoothed curve, Delley COSMO surface construction

In principle vapor pressures of pure liquids can be computed directly with COSMO-RS. COSMO-RS calculations
yield the chemical potential of a component in a liquid with respect to the perfectly screened reference state. It is
easy to compute the energy difference between the reference state and the gas phase by doing an additional quantum
mechanical calculation (of the isolated molecule). However, often experimental vapor pressures for the pure liquid are
known. Using such experimental data for pure liquids can help in predicting the correct partial vapor pressures in a
mixture.

2.1.1 COSMO-RS combinatorial term

In Ref.1 a thermodynamically inconsistent combinatorial contribution 𝜇𝑐𝑜𝑚𝑏
𝑖 to the chemical potential was used:

𝜇𝑐𝑜𝑚𝑏
𝑖 = −𝜆𝑅𝑇 𝑙𝑛(𝑞𝑎𝑣/Å

2
)

𝑞𝑎𝑣 =
∑︁
𝑖

𝑥𝑖𝑞𝑖

In this equation 𝑞𝑖 is the surface area of the molecular volume of compound i, 𝑥𝑖 is the molar fraction of compound i
in the solution, and 𝜆 is a COSMO-RS parameter.

The importance of using a thermodynamically consistent combinatorial contribution is discussed in Ref.2. In the ADF
COSMO-RS program it is possible to use a thermodynamically consistent combinatorial contribution of the form
(Equation C.4 of Ref.2, with 𝜆0 = 𝜆1 = 𝜆2 = 𝜆):

𝜇𝑐𝑜𝑚𝑏
𝑖 = 𝜆𝑅𝑇 (1 − 𝑟𝑖/𝑟𝑎𝑣 + 𝑙𝑛(𝑟𝑖/𝑟𝑎𝑣) + 1 − 𝑞𝑖/𝑞𝑎𝑣 − 𝑙𝑛(𝑞𝑎𝑣/Å

2
))

𝑟𝑎𝑣 =
∑︁
𝑖

𝑥𝑖𝑟𝑖

In this equation 𝑟𝑖 is the molecular volume of compound i. In the ADF COSMO-RS program this combinatorial term
is used by default, see also Ref.4.

2.1.2 Fast approximation for COSMO-RS calculations

In the 1998 COSMO-RS model each segment of the molecular surface has a charge density of 𝜎𝑣 , but also a second
charge density 𝜎⊥

𝑣 , which is a descriptor for the correlation between the charge density on the segment with its
surrounding. In the original ADF COSMO-RS implementation this was treated as a 2-dimensional problem, in the fast

4 C.C. Pye, T. Ziegler, E. van Lenthe, J.N. Louwen, An implementation of the conductor-like screening model of solvation within the Amsterdam
density functional package. Part II. COSMO for real solvents. Can. J. Chem. 87, 790 (2009) (https://doi.org/10.1139/V09-008)
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approximation this is effectively reduced to 1-dimension. Starting from COSMO-RS 2010 this fast approximation is
now the default. This approximation reduces the computation time, especially in cases of more than 1 compound.

2.1.3 Temperature dependent hydrogen bond interaction

In Ref.2 a temperature dependent hydrogen bond interaction is suggested, which is used by default in the ADF
COSMO-RS program. The temperature dependence (Equation 6.2 of Ref.2) is of the form:

𝑡𝑒𝑟𝑚(𝑇 ) = 𝑇 𝑙𝑛[1 + 𝑒𝑥𝑝(20𝑘𝐽/𝑚𝑜𝑙/𝑅𝑇 )/200]

𝑓ℎ𝑏(𝑇 ) = 𝑡𝑒𝑟𝑚(𝑇 )/𝑡𝑒𝑟𝑚(298.15𝐾)

Note that here the correct formula is used with a plus sign before 20 kJ/mol (there is a sign error in Equation 6.2 of
Ref.2, see online ‘List of Errata in the COSMO-RS book’ by Andreas Klamt), such that this factor goes to zero for
large T. In this equation R is the gas constant and T the temperature (in Kelvin). In the ADF COSMO-RS program
the hydrogen bond interaction of Ref.1 is multiplied by this factor fhb (T) to make the hydrogen bond interaction
temperature dependent.

2.2 COSMO-SAC 2013-ADF, 2016-ADF, DHB-ADF

On the basis of the framework of COSMO-RS, Lin and Sandler1 suggested a variation, the COSMO-SAC (where SAC
denotes segment activity coefficient) model by invoking a necessary thermodynamic consistency criterion. Although
there are differences, COSMO-RS and COSMO-SAC share some similarities. Later improvements of COSMO-SAC
appeared, like in Refs.234.

The COSMO-SAC 2013-ADF method used in ADF is the one developed by Xiong et al., which is described in
detail in Ref.4. The COSMO-SAC 2013-ADF parameters in Ref.4 were optimized for use with ADF COSMO result
files. COSMO-SAC 2013-ADF is an improved COSMO-SAC method compatible to ADF and different than previous
COSMO-SAC methods. The main difference compared to previous COSMO-SAC methods is that the COSMO-SAC
2013 model includes a dispersion contribution in the mixture interaction.

In Ref.5 COSMO-SAC model parameters were optimized by Chen et al. for different quantum mechanical calcula-
tions. The authors of Ref.5 also reoptimized the revised COSMO-SAC model3 parameters for quantum mechanical
calculations with ADF, which will be called here the COSMO-SAC 2016-ADF method.

In Ref.6 a COSMO-SAC model was proposed that uses a directional hydrogen bond approach, denoted as the COSMO-
SAC(DHB) model. The parameters were reoptimized by Chen et al. for use with ADF, which will be called here the
COSMO-SAC DHB-ADF method.

The ADF COSMO-RS program can calculate activity coefficients using the COSMO-SAC 2013-ADF model or the
COSMO-SAC 2016-ADF model. Like in the COSMO-RS method, pure compound vapor pressures can be given as
input, for example, if experimental values are available. In case of the COSMO-SAC 2013-ADF model, if these values
are not specified then the pure compound vapor pressure will be calculated according to the COSMO-SAC 2013-ADF

1 S.T. Lin and S.I. Sandler, A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model, Ind. Eng. Chem. Res. 41,
899 (2002) (https://doi.org/10.1021/ie001047w)

2 S. Wang, S.I. Sandler, C.C. Chen, Refinement of COSMO-SAC and the Applications, Ind. Eng. Chem. Res. 46, 7275 (2007)
(https://doi.org/10.1021/ie070465z)

3 C.M. Hsieh, S.I. Sandler, S.T. Lin, Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions, Fluid Phase
Equilib. 297, 90 (2010) (https://doi.org/10.1016/j.fluid.2010.06.011)

4 R. Xiong, S.I. Sandler, R.I. Burnett, An improvement to COSMO-SAC for predicting thermodynamic properties, Ind. Eng. Chem. Res. 53,
8265 (2014) (https://doi.org/10.1021/ie404410v)

5 W.L. Chen, C.M. Hsieh, L. Yang, C.C. Hsu, S.T. Lin, A Critical Evaluation on the Performance of COSMO-SAC Models for Vapor-Liquid
and Liquid-Liquid Equilibrium Predictions Based on Different Quantum Chemical Calculations, Ind. Eng. Chem. Res. 55, 9312 (2016)
(https://doi.org/10.1021/acs.iecr.6b02345)

6 W.L. Chen, S.T. Lin, Explicit consideration of spatial hydrogen bonding direction for activity coefficient prediction based on implicit solvation
calculations, Phys.Chem.Chem.Phys. 19, 20367 (2017) (https://doi.org/10.1039/c7cp02317k)
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model. However, in case of COSMO-SAC 2016-ADF, if these values are not specified then the pure compound vapor
pressures will be approximated using a method similar as in the COSMO-RS method. It is also possible to use some
earlier COSMO-SAC methods23, but note that the parameters in those papers were not optimized for use with ADF
COSMO result files.

The COSMO-SAC 2013 model includes a dispersion contribution in the mixture interaction. This dispersion contri-
bution is a complicated expression which also depends on the liquid molar volume of the pure compounds and on the
molar volume of the mixture. The molar volume of the mixture is calculated from the pure compound liquid molar
volumes assuming ideal mixing. In the input for the ADF COSMO-RS program one include for each compound the
experimental pure compound liquid density (kg/L), from which the program can calculated the pure compound liq-
uid molar volumes. If this density is not given the pure compound liquid molar volume will be calculated from its
COSMO volume. Note that in the calculations with the COSMO-SAC 2013-ADF model in Ref.4 often experimental
pure compound liquid molar volumes were used.

2.3 UNIFAC theory

Below some of the UNIFAC method is explained, but a more complete description can be found in Ref.1.

The UNIFAC method is an activity coefficient model derived from the UNIQUAC model. Both UNIFAC and UNI-
QUAC are thermodynamic models based on local composition theory, which holds that the local environment of
a molecule in solution can be used to calculate the probabilities of molecular configurations in the bulk solution.
While UNIQUAC requires parameters for every compound in solution and interaction parameters for every pair of
compounds, UNIFAC estimates these parameters as functions of the number of occurrences of various molecular sub-
structures, or groups, in a molecule. This means that UNIFAC can be applied to estimate activity coefficients for
arbitrary systems, so long as every group is defined and an interaction parameter exists for every pair of groups in the
composition.

The UNIFAC method calculates the activity coefficient as a function of two contributions: (1) the residual contribution,
meant to account for the interactions of groups in the mixture; and (2) the combinatorial contribution, meant to account
for entropic effects due to differences in molecular shape. Using these two components, the activity coefficient for
each compound i is calculated as follows:

ln 𝛾𝑖 = ln 𝛾𝑅
𝑖 + ln 𝛾𝐶

𝑖

where ln 𝛾𝑅
𝑖 corresponds to the residual contribution to the activity coefficient and ln 𝛾𝐶

𝑖 to the combinatorial contri-
bution.

2.3.1 Residual term

In the UNIFAC method, we first define 𝑛𝑘
𝑖 to be the number of times group k occurs in molecule i. Using this with the

mole fraction 𝑥𝑖 of each compound i, we calculate the group mole fraction, 𝑋𝑘, or the amount of groups of type k as
a fraction of the total groups:

𝑋𝑘 =

∑︀
𝑖

𝑥𝑖𝑛
𝑘
𝑖∑︀

𝑖

∑︀
𝑗

𝑥𝑖𝑛
𝑗
𝑖

We use the 𝑋𝑘 values to then determine the relative surface area each group represents in the mixture. This is done by
taking an average of the 𝑋𝑘 values weighted with the surface area contributions, 𝑄𝑘, of each group k. We define the

1 A. Fredenslund, R.L. Jones, and J.M. Prausnitz, Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE
Journal 21, 1086 (1975) (https://doi.org/10.1002/aic.690210607)
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result as the area fraction of group k:

Θ𝑘 =
𝑋𝑘𝑄𝑘∑︀

𝑚
𝑥𝑚𝑄𝑚

the surface area and volume of a molecule is estimated as a linear function of the number and types of groups that are
present. Each group k occurs a 𝑛𝑘

𝑖 times in molecule i.

Additionally, between every pair of groups, k and m an interaction energy is defined as 𝑎𝑘𝑚. This energy is given in
Kelvin and is used to calculate the group interaction paramter Ψ𝑘𝑚:

Ψ𝑘𝑚 = exp

(︂
−𝑎𝑘𝑚
𝑇

)︂
where T is the temperature of the system in Kelvin. Note that Ψ𝑘𝑚 ̸= Ψ𝑚𝑘.

These parameters are then used to calculate the residual contribution to the activity coefficient for each group k:

ln Γ𝑘 = 𝑄𝑘

⎛⎝1 − ln
∑︁
𝑚

Θ𝑚Ψ𝑚𝑘 −
∑︁
𝑚

Θ𝑚Ψ𝑘𝑚∑︀
𝑛

Θ𝑛Ψ𝑛𝑚

⎞⎠
Additionally, one must also calculate ln Γ

(𝑖)
𝑘 , which follows the same procedure as above for each compound assuming

it exists in a pure form, i.e., 𝑥𝑖 = 1. Then, the residual contribution to the activity coefficient is calculated as follows:

ln 𝛾𝑅
𝑖 =

∑︁
𝑘

𝑛𝑘
𝑖

(︁
ln Γ𝑘 − ln Γ

(𝑖)
𝑘

)︁

2.3.2 Combinatorial term

To estimate the combinatorial contribution to the activity coefficient, first the surface area, 𝑞𝑖, and volume, 𝑟𝑖, of
molecule i are estimated as follows:

𝑞𝑖 =
∑︁
𝑖

𝑄𝑘𝑛
𝑘
𝑖 𝑟𝑖 =

∑︁
𝑖

𝑅𝑘𝑛
𝑘
𝑖

where 𝑄𝑘 is the surface area contribution of group k and 𝑅𝑘 is the volume contribution. Using these parameters we
can define the relative surface area and relative volume (also called fractional surface area and fractional volume)
corresponding to molecule i in solution. This is simply an average of the surface areas/volumes of each compound
weighted by the mole fraction of that compound in solution:

𝜃𝑖 =
𝑥𝑖𝑞𝑖∑︀

𝑗

𝑥𝑗𝑞𝑗
𝜑𝑖 =

𝑥𝑖𝑟𝑖∑︀
𝑗

𝑥𝑗𝑟𝑗

Additionally, we calculate the parameter 𝐿𝑖:

𝐿𝑖 =
𝑧

2
(𝑟𝑖 − 𝑞𝑖) − (𝑟𝑖 − 1)

where z is the coordination number and is usually taken to be equal to 10. All of these parameters are then used to
calculate the combinatorial contribution to the activity coefficient:

ln 𝛾𝐶
𝑖 = ln

𝜑𝑖

𝑥𝑖
+

𝑧

2
𝑞𝑖 ln

𝜃𝑖
𝜑𝑖

+ 𝐿𝑖 −
𝜑𝑖

𝑥𝑖

∑︁
𝑗

𝑥𝑗𝐿𝑗
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2.4 Calculation of properties

The COSMO-RS method allows to calculate the (pseudo-)chemical potential of a compound in the liquid phase, as
well as in the gas phase, see the the COSMO-RS theory that was discussed before and Ref.1. In the ADF COSMO-RS
implementation the following equations were used to calculate properties using these chemical potentials.∑︁

𝑖

𝑥𝑖 =
∑︁
𝑖

𝑦𝑣𝑎𝑝𝑜𝑟𝑖 =
∑︁
𝑖

𝑤𝑖 = 1

𝑤𝑖 = 𝑥𝑖𝑀
𝑝𝑢𝑟𝑒
𝑖 /𝑀𝑎𝑣𝑒

𝑀𝑎𝑣𝑒 =
∑︁
𝑖

𝑥𝑖𝑀
𝑝𝑢𝑟𝑒
𝑖

𝑝𝑝𝑢𝑟𝑒𝑖 = 𝑒𝑥𝑝{(𝜇𝑝𝑢𝑟𝑒
𝑖 − 𝜇𝑔𝑎𝑠

𝑖 )/𝑅𝑇}
𝑝𝑣𝑎𝑝𝑜𝑟𝑖 = 𝑥𝑖𝑒𝑥𝑝{(𝜇𝑠𝑜𝑙𝑣

𝑖 − 𝜇𝑔𝑎𝑠
𝑖 )/𝑅𝑇}

𝑝𝑣𝑎𝑝𝑜𝑟 =
∑︁
𝑖

𝑝𝑣𝑎𝑝𝑜𝑟𝑖

𝑦𝑣𝑎𝑝𝑜𝑟𝑖 = 𝑝𝑣𝑎𝑝𝑜𝑟𝑖 /𝑝𝑣𝑎𝑝𝑜𝑟

𝛾𝑖 = 𝑒𝑥𝑝{(𝜇𝑠𝑜𝑙𝑣
𝑖 − 𝜇𝑝𝑢𝑟𝑒

𝑖 )/𝑅𝑇}
𝑎𝑖 = 𝛾𝑖𝑥𝑖

𝐺𝐸 = 𝐻𝐸 − 𝑇𝑆𝐸 =
∑︁
𝑖

𝑥𝑖(𝜇
𝑠𝑜𝑙𝑣
𝑖 − 𝜇𝑝𝑢𝑟𝑒

𝑖 )

𝐻𝐸 = −𝑅𝑇 2𝜕{𝐺𝐸/𝑅𝑇}/𝜕𝑇

𝐺𝑚𝑖𝑥 = 𝐺𝐸 + 𝑅𝑇
∑︁
𝑖

𝑥𝑖 ln(𝑥𝑖)

∆𝑣𝑎𝑝𝐻 = 𝑅𝑇 2/𝑝𝑣𝑎𝑝𝑜𝑟𝜕{𝑝𝑣𝑎𝑝𝑜𝑟}/𝜕𝑇
𝑘𝐻 = 1/𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡𝑒𝑥𝑝{(𝜇𝑔𝑎𝑠

𝑖 − 𝜇𝑠𝑜𝑙𝑣
𝑖 )/𝑅𝑇}

𝑘𝑐𝑐𝐻 = 1/(𝑘𝐻𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡) = 𝛾𝑖𝑝
𝑝𝑢𝑟𝑒
𝑖

𝑥𝑆𝑂𝐿
𝑖 = 1/𝛾𝑖(𝑇 > 𝑇𝑚)

𝑥𝑆𝑂𝐿
𝑖 = 1/𝛾𝑖𝑒𝑥𝑝{∆𝐻𝑓𝑢𝑠(1/𝑇𝑚 − 1/𝑇 )/𝑅− ∆𝐶𝑝(𝑙𝑛(𝑇𝑚/𝑇 ) − 𝑇𝑚/𝑇 + 1)/𝑅}(𝑇 < 𝑇𝑚)

∆𝐺𝑙𝑖𝑞−𝑠𝑜𝑙𝑣
𝑠𝑜𝑙𝑣 = 𝜇𝑠𝑜𝑙𝑣

𝑖 − 𝜇𝑝𝑢𝑟𝑒
𝑖

∆𝐺𝑔𝑎𝑠−𝑠𝑜𝑙𝑣
𝑠𝑜𝑙𝑣 = 𝜇𝑠𝑜𝑙𝑣

𝑖 − 𝜇𝑔𝑎𝑠
𝑖 + 𝑅𝑇𝑙𝑛(𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡/𝑉𝑔𝑎𝑠)

𝑙𝑜𝑔10𝑃𝑠𝑜𝑙𝑣1/𝑠𝑜𝑙𝑣2 = 1/𝑙𝑛(10)(𝜇𝑠𝑜𝑙𝑣2
𝑖 − 𝜇𝑠𝑜𝑙𝑣1

𝑖 )/𝑅𝑇 + 𝑙𝑜𝑔10(𝑉𝑠𝑜𝑙𝑣1/𝑉𝑠𝑜𝑙𝑣2)

1/𝐿𝐹𝐿𝑚𝑖𝑥 =
∑︁
𝑖

(𝑦𝑣𝑎𝑝𝑜𝑟𝑖 /𝐿𝐹𝐿𝑖)

The above equations are not always exact, some assume perfect gas behavior, for example.

The molar fraction 𝑥𝑖 of each compound i of the solvent should add up to 1.

With the COSMO-RS method it is possible to predict vapor pressures. In the COSMO-RS model the free energy
difference between the chemical potential in the gas phase (perfect gas with a reference state of 1 bar) and the chemical
potential of the liquid phase has been defined in such a way that the equation: 𝑝𝑖 = 𝑒𝑥𝑝(𝜇𝑝𝑢𝑟𝑒

𝑖 − 𝜇𝑔𝑎𝑠
𝑖 )/𝑅𝑇 , will give

the pressure in units of bar. It is also possible to use experimental vapor pressures of pure compounds as input data for
the calculation. This may increase the accuracy of the calculated vapor pressures in a mixture, for example.

In the COSMO-RS method the volume of 1 molecule in the liquid phase is approximated with the volume of the
molecule shaped cavity, that is used in the COSMO calculations. In this way it is possible to calculate the volume of 1

1 A. Klamt, V. Jonas, T. Bürger and J.C. Lohrenz, Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074 (1998)
(https://doi.org/10.1021/jp980017s)
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mole of solvent molecules in the liquid phase. However, for properties that depend on such volumes, one can also use
(related) experimental data as input data for the calculation.

The calculation of the boiling temperature of a solvent is performed with an iterative method. The temperature is
varied until the calculated vapor pressure is within a certain threshold of the desired pressure.

Also the calculation of solubility of compound i is performed with an iterative method, since the activity coefficient
𝛾𝑖 depends on the molar fraction of this compound. The COSMO-RS method does not predict ∆𝐻𝑓𝑢𝑠, ∆𝐶𝑝 , or 𝑇𝑚 .
These can be given as input data for the calculation of solubility calculations of solid compounds.

Starting from ADF2012 the Gibbs-Helmholtz equation is used to calculate the excess enthalpy of a mixture. Previously
it was estimated using the misfit and hydrogen bonding energy of the mixture and its pure compounds.

Quantity Meaning
𝑅 Gas constant
𝑇 Temperature
𝑥𝑖 The molar fraction of compound i in a liquid solution
𝑦𝑖

vapor The molar fraction of compound i in the gas phase
𝑤𝑖 The mass fraction of compound i in a liquid solution
𝑀𝑖

pure The molar mass of the pure compound i
𝑀𝑎𝑣𝑒 The average molar mass of the mixture
𝛾𝑖 Activity coefficient of compound i in a liquid solution
𝑎𝑖 Activity of compound i in a liquid solution
𝑝𝑝𝑢𝑟𝑒𝑖 The vapor pressure of the pure compound i
𝑝𝑣𝑎𝑝𝑜𝑟𝑖 The partial vapor pressure of compound i
𝑝𝑣𝑎𝑝𝑜𝑟 The total vapor pressure
𝜇i

gas The pseudochemical potential of the pure compound i in the gas phase
𝜇i

pure The pseudochemical potential of the pure compound i in the liquid phase
𝜇i

solv The pseudochemical potential of compound i in a liquid solution
𝐺𝐸 The excess Gibbs free energy
𝐻𝐸 The excess enthalpy, Gibbs-Helmholtz equation
𝐺𝑚𝑖𝑥 The Gibbs energy of mixing
∆𝑣𝑎𝑝𝐻 The enthalpy of vaporization, Clausius-Clapeyron equation
𝐸𝐻𝐵 𝑝𝑢𝑟𝑒

𝑖 The hydrogen bond energy of the pure compound i in the liquid phase, see Ref.1

𝐸𝐻𝐵
𝑖 The partial hydrogen bond energy of compound i in a liquid solution

𝐸𝑚𝑖𝑠𝑓𝑖𝑡 𝑝𝑢𝑟𝑒
𝑖 The misfit energy of the pure compound i in the liquid phase, see Ref.1

𝐸𝑚𝑖𝑠𝑓𝑖𝑡
𝑖 The partial misfit energy of compound i in a liquid solution

∆𝐺𝑙𝑖𝑞−𝑠𝑜𝑙𝑣
𝑠𝑜𝑙𝑣 The solvation Gibbs free energy from the pure compound liquid phase

to the solvated phase
∆𝐺𝑔𝑎𝑠−𝑠𝑜𝑙𝑣

𝑠𝑜𝑙𝑣 The solvation Gibbs free energy from the pure compound gas phase
to the solvated phase, with a reference state of 1 mol/L in both phases

𝑘𝐻 Henry’s law constant: ratio between the liquid phase concentration of a compound
and its partial vapor pressure in the gas phase

𝑘𝑐𝑐𝐻 dimensionless Henry’s law constant: ratio between the liquid phase concentration
of a compound and its gas phase concentration

𝑘𝑝𝑥𝐻 𝑖𝑛𝑣 Henry’s law constant, representing the volatility instead of the solubility,
ratio between the partial vapor pressure of a compound in the gas phas
and the molar fraction in the liquid phase”

𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡 Volume of 1 mole of solvent molecules in the liquid phase
𝑉𝑔𝑎𝑠 Volume of 1 mole of molecules in the gas phase (at 1 atm, perfect gas)
𝑥𝑆𝑂𝐿
𝑖 Solubility of compound i in a solvent (molar fraction)

∆𝐻𝑓𝑢𝑠 The enthalpy of fusion of compound i
Continued on next page
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Table 2.1 – continued from previous page
Quantity Meaning
∆𝐶𝑝 The ∆ heat capacity of fusion of compound i
𝑇𝑚 The melting temperature of compound i
𝑙𝑜𝑔10𝑃𝑠𝑜𝑙𝑣1/𝑠𝑜𝑙𝑣2 The logarithm of the partition coefficient P, which is the ratio of the concentrations

of a compound in two immiscible solvents, solvent 1 and solvent 2
𝐿𝐹𝐿𝑖 The flash point (lower flammable limit, LFL) of compound i
𝐿𝐹𝐿𝑚𝑖𝑥 The flash point (lower flammable limit, LFL) of a mixture, Le Chatelier’s mixing rule

See also the COSMO-RS GUI tutorial for the calculation of the following properties:

• solvent vapor pressure [1, 2]

• boiling point of a solvent [1]

• partition coefficients (log P) [1, 2], Octanol-Water partition coefficients (log POW ) [1]

• activity coefficients [1, 2], solvation free energies [1], Henry’s law constants [1], 𝑝𝐾𝑎 values [1]

• solubility [1, 2]

• vapor-liquid diagram binary mixture (VLE/LLE) [1, 2]

Ionic liquids in COSMO-RS 2020

The activity coefficient of a compound i solvated in an ionic liquid is an important thermodynamic property. In
COSMO-RS 2020 one can treat the ionic liquid as one compound, which means that the value of the activity coefficient
is calculated in the standard way most applications report them. In particular, in COSMO-RS 2020 one can treat the
ionic liquid as one compound, which only has the dissociated form.

• ionic liquids tutorial

Ionic liquids in COSMO-RS <=2019

The activity coefficient of a compound i solvated in an ionic liquid is an important thermodynamic property. The cation
and anion, which have been treated separately, will be used in equal amounts to ensure an electroneutral mixture in
the COSMO-RS calculation.

In other applications cation-anion pair have been treated as one molecule, however, below we will treat the cation and
anion as two separate molecules, which is needed in older versions of COSMO-RS <=2019. This has consequences
for the value of the activity coefficient.

For example, for a 1:1 IL (i.e., [A]+ [B]- ), the activity coefficient at a finite concentration of solute i in the binary
mixture (IL + solute) can be calculated by

𝛾i
bin = (𝛾i

tern xi
tern )/xi

bin = 𝛾i
tern /(1+xIL

bin )

where the superscript “tern” represents the hypothetical ternary system comprising cation, anion and solute i, with

xcation
tern = xanion

tern

xcation
tern + xanion

tern + xi
tern = 1

and the superscript “bin” represents the binary mixture comprising solute and IL, with

xIL
bin + xi

bin = 1

2.4. Calculation of properties 11

../Tutorials/COSMO-RS/COSMO-RS_overview_properties.html#step-2-vapor-pressure
../Tutorials/COSMO-RS/The_COSMO-RS_compound_database.html#parametrization-of-adf-cosmo-rs-ghydr-vapor-pressures-partition-coefficients
../Tutorials/COSMO-RS/COSMO-RS_overview_properties.html#step-3-boiling-point
../Tutorials/COSMO-RS/COSMO-RS_overview_properties.html#step-6-partition-coefficients-log-p
../Tutorials/COSMO-RS/The_COSMO-RS_compound_database.html#parametrization-of-adf-cosmo-rs-ghydr-vapor-pressures-partition-coefficients
../Tutorials/COSMO-RS/The_COSMO-RS_compound_database.html#octanol-water-partition-coefficients-log-pow
../Tutorials/COSMO-RS/COSMO-RS_overview_properties.html#step-5-activity-coefficients-henry-coefficients-solvation-free-energies
../Tutorials/COSMO-RS/The_COSMO-RS_compound_database.html#large-infinite-dilution-activity-coefficients-in-water
../Tutorials/COSMO-RS/The_COSMO-RS_compound_database.html#parametrization-of-adf-cosmo-rs-ghydr-vapor-pressures-partition-coefficients
../Tutorials/COSMO-RS/The_COSMO-RS_compound_database.html#henry-s-law-constants
../Tutorials/COSMO-RS/pKa_values.html
../Tutorials/COSMO-RS/COSMO-RS_overview_properties.html#step-7-solubility
../Tutorials/COSMO-RS/The_COSMO-RS_compound_database.html#solubility-of-vanillin-in-organic-solvents
../Tutorials/COSMO-RS/COSMO-RS_overview_properties.html#step-8-binary-mixtures-vle-lle
../Tutorials/COSMO-RS/The_COSMO-RS_compound_database.html#binary-mixture-of-methanol-and-hexane
../Tutorials/COSMO-RS/Ionic_Liquids.html


COSMO-RS Manual, Amsterdam Modeling Suite 2022.1

Accordingly, the activity coefficient of a solute i in the binary mixture (IL + solute) at infinite dilution is simplified as

𝛾i
bin = 0.5 𝛾i

tern (at infinite dilution)

Thus in this case we should scale the activity coefficient at infinite dilution 𝛾i
tern , which is directly obtained from the

COSMO-RS calculation, with a factor of 0.5.

Similarly, for a ternary system comprising component i, component j and an ionic liquid, the activity coefficient at
finite concentration of component i can be calculated by

𝛾i
tern = 𝛾i

quart /(1+xIL
tern )

where the superscript “quart” represents the hypothetical quaternary system comprised of cation, anion, solute i and
solute j, with:

xcation
quart = xanion

quart

xcation
quart + xanion

quart + xi
quart + xj

quart = 1

and the superscript “tern” represents the ternary mixture comprising solute i, j, and IL, with

xIL
tern + xi

tern + xj
tern = 1
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CHAPTER

THREE

COSMO RESULT FILES

COSMO-RS needs as input for the calculation so called COSMO result files for each compound, which are results of
quantum mechanical calculation using COSMO. In ADF such a COSMO result file is called an adf.rkf file (previously
ADF<=2019 known as TAPE21 or as a .t21 file) or a COSKF file (.coskf). With Fast Sigma such a COSMO result file is
a COMPKF file (.compkf). With MOPAC such a COSMO result file is a .cos file, which can be converted to a COSKF
file. In other programs such a file can be a .cosmo file. ADF has databases of .coskf files, the COSMO-RS compound
database ADFCRS-2018 (page 18) (including ionic liquids) and the COSMO-RS polymer database ADFCRS-2019
(page 19). At http://www.design.che.vt.edu/VT-Databases.html a database of .cosmo files can be found, which were
made with a different program. Note that the optimal COSMO-RS parameters may depend on the program chosen.

3.1 ADF COSMO calculation

3.1.1 ADF COSMO settings

Here it is described briefly how to make COSMO result files consistent with the way they were made for the ADF
parametrization of COSMO-RS to ensure full parameter applicability. First a gas phase geometry optimization should
be performed with ADF, with a small core TZP basis set, the Becke-Perdew functional (BP86), the relativistic scalar
ZORA method (which is the default in ADF2020), and good numerical integration quality:

AMS_JOBNAME=GASPHASE "$AMSBIN/ams" << eor
Task GeometryOptimization
System

Atoms
...

End
End
Engine ADF

Basis
Type TZP
Core Small
PerAtomType Symbol=I File=ZORA/TZ2P/I.4p

End
XC

GGA Becke Perdew
End
BeckeGrid

Quality Good
End
Relativity

Level Scalar
Method ZORA

(continues on next page)
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(continued from previous page)

End
EndEngine
eor

For heavier elements than krypton (Z>36), like iodine, a small core TZ2P basis set is required. The resulting adf.rkf
(previously ADF<=2019 TAPE21 file or .t21 file) of the molecule is used as a restart file in the COSMO calculation,
and the system is loaded using the resulting ams.rkf. The ADF COSMO calculation is performed with the following
settings:

AMS_JOBNAME=COSMO "$AMSBIN/ams" << eor
Task SinglePoint
LoadSystem

File GASPHASE/ams.rkf
End
EngineRestart GASPHASE/adf.rkf
Engine ADF

Basis
Type TZP
Core Small
PerAtomType Symbol=I File=ZORA/TZ2P/I.4p

End
XC

GGA Becke Perdew
End
BeckeGrid

Quality Good
End
Relativity

Level Scalar
Method ZORA

End
Symmetry NOSYM
SOLVATION

Surf Delley
Solvent name=CRS emp=0.0 cav0=0.0 cav1=0.0
Charged method=CONJ corr
C-Mat EXACT
SCF VAR ALL
RADII

H 1.30
C 2.00
N 1.83
O 1.72
F 1.72
Si 2.48
P 2.13
S 2.16
Cl 2.05
Br 2.16
I 2.32

SubEnd
END

EndEngine
eor

In this COSMO calculation the Delley type of cavity construction is chosen (See Ref.1 for details on the Delley surface
1 B. Delley, The conductor-like screening model for polymers and surfaces. Molecular Simulation 32, 117 (2006)
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construction). The name of the solvent is CRS, which sets the dielectric constant to infinite and sets the radius of the
probing sphere to determine the solvent excluded part of the surface to 1.3 Angstrom.

In case of a cation or an anion, in both the gas phase calculations as well as in the COSMO calculation one should
include the charge with the subkey CHARGE of the key SYSTEM in the AMS part of the input.

In the Radii subblock key the Klamt atomic cavity radii are chosen. The parameters emp, cav0, and cav1 are zero.
The corr option to the CHARGED subkey constrains the computed solvent surface charges to add up to the negative
of the molecular charge. Specifying exact for the C-MAT subkey causes ADF to compute straightforwardly the
Coulomb potential due to the charge q in each point of the molecular numerical integration grid and integrate against
the electronic charge density. This is, in principle, exact but may have inaccuracies when the numerical integration
points are very close to the positions of a charge q. To remedy this, starting from ADF2010 the electrostatic potential is
damped in case of (very) close lying numerical integration points and COSMO surface points. The numerical stability
of the results compare to those of ADF2009 was increased as a result of this. Specifying exact for the C-MAT subkey
also requires that the ADF calculation uses SYMMETRY NOSYM.

The resulting adf.rkf (previously ADF<=2019 TAPE21 file or .t21 file) of the COSMO calculation is a COSMO result
file.

In a COSMO-RS calculation only the ‘COSMO’ part of this file is needed. One can make a kf file compound.coskf,
which only consists of the section ‘COSMO’ if one does:

$AMSBIN/cpkf adf.rkf compound.coskf "COSMO"

The file compound.coskf should not exist before this command is given. Note that such a .coskf file is not a complete
adf.rkf anymore. For example, only the COSMO surface can be viewed with AMSview. It is useful mostly for
COSMO-RS calculations.

Links COSMO-RS GUI tutorial: COSMO result files [1]

3.1.2 Atomic cation or anion

In case of an atomic calculation one should of course not perform a geometry optimization. In case of a cation or an
anion, in both the gas phase calculations as well as in the COSMO calculation one should include the charge with the
key CHARGE. Only for atomic calculations one should include the argument method=atom to the subkey Charged
of the key SOLVATION:

SOLVATION
Surf Delley
Solvent name=CRS cav0=0.0 cav1=0.0
Charged method=atom corr
C-Mat EXACT
SCF VAR ALL

END

3.1.3 Accuracy

Several parameters in the COSMO calculation can influence the accuracy of the result of the quantum mechanical
calculation. Some of these parameters will be discussed. Note that if one chooses different parameters in the COSMO
calculation one may also have to reparametrize the ADF COSMO-RS parameters. A list of some of the ADF COSMO
parameters.

• XC functional

• basis set

(https://doi.org/10.1080/08927020600589684)
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• fit set

• atomic cavity radii and radius of the probing sphere

• cavity construction

• geometry

The atomic cavity radii and the radius of the probing sphere are the same as in Ref.2, which describes the COSMO-RS
method developed by Klamt et al., which is implemented in ADF. The Becke Perdew functional is relatively good for
weakly bound systems, but may not be so good in other cases. The basis set TZP is a compromise basis set. For heavier
elements than krypton (Z>36), like iodine, a TZ2P basis set is required, including the relativistic scalar ZORA method.
Since the relativistic method hardly cost extra time compared to a non-relativistic method, the scalar relativistic scalar
ZORA method is recommended to be used also for light elements. The Delley type of cavity construction in ADF
can give a large number of COSMO points. The XC functional, basis set, and cavity construction chosen in the ADF
COSMO calculation have a similar accuracy as those that were used in Ref.2. Note that they are not exactly the same
as were used in Ref.2, since in that paper a different quantum mechanical program was used.

In the parametrization for ADF the same geometry was used for the gas phase and the COSMO calculation, which
is different than in Ref.2. It depends on the actual solvent if reoptimizing the molecule in the COSMO calculation
may give better results. Note that the dielectric medium used in the COSMO model has an infinite dielectric constant
in the COSMO-RS model. Thus a geometry optimization of the molecule in the COSMO calculation might be more
appropriate for a molecule dissolved in water than for a molecule dissolved in n-hexane.

The fit set in ADF is not always able to describe the Coulomb potential accurately at each of the COSMO surface
points. In regular ADF calculations this problem is not apparent since the numerical errors in the integrals computed
in the vicinity of the COSMO surface have little impact. However, in COSMO calculations this may have some effect.
This is why the option C-Mat exact was selected above, instead of the default C-Mat pot option. Another possibility is
to add more fit functions, for example, using ‘FitQuality Good’ for the key ZlmFit in the input for the adf calculation.

3.1.4 Cavity construction

The Esurf type of cavity construction in ADF with default settings does not give a large number of COSMO points.
Therefore it is recommended to use the so called Delley type of cavity construction (Ref.1), which allows one to
construct a surface which has many more points. The Esurf type of cavity construction also allows many more points
if one sets the option NFDiv of the subkey DIV of the key SOLVENT to a larger value than the default value of 1. This
will not be discussed here further. In ADF2010 the numerical stability of the Delley surface has been improved, by
merging close lying COSMO surface points, and removing COSMO surface points with a small surface area. A figure
of a COSMO surface with the Esurf type of cavity construction with default settings is given below. In this figure the
small spheres represent the COSMO surface points that are used for the construction of the COSMO surface. The red
part represents positive COSMO charge density, the blue part negative COSMO charge density (the coloring scheme
is chosen to match the one by Klamt):

2 A. Klamt, V. Jonas, T. Bürger and J.C. Lohrenz, Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074 (1998)
(https://doi.org/10.1021/jp980017s)
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Cosmo charge density on the COSMO surface of methanol, Esurf surface (picture made with AMSview).

One can construct a surface which has many more points using a so called Delley surface. For the subkey SURF of the
key SOLVENT one can choose delley. The subkey DIV of the key SOLVENT has extra options leb1 (default value
23), leb2 (default value 29), and rleb (default value 1.5 Angstrom). If the cavity radius of an atom is lower than rleb
use leb1, otherwise use leb2. These values can be changed: using a higher value for leb1 and leb2 gives more surface
points (maximal value leb1, leb2 is 29). A value of 23 means 194 surface points in case of a single atom, and 29 means
302 surface points in case of a single atom Typically one could use leb1 for the surface point of H, and leb2 for the
surface points of other elements.

The next figure is made with the following (default for the Delley surface) settings:

SOLVATION
SURF Delley
DIV leb1=23 leb2=29 rleb=1.5

END

Cosmo charge density on the COSMO surface of methanol, Delley surface (picture made with AMSview).

The different ways of constructing the cavity has some consequences for the 𝜎-profile of methanol, see the figure
below:

3.1. ADF COSMO calculation 17
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𝜎-profiles of methanol (picture made with the CRS-GUI). In this picture the blue line is the 𝜎-profile with the Esurf
type of construction, the red line is that with the Delley type of construction with many surface points. For comparison,
the green line is the 𝜎-profile of methanol if a large QZ4P basis set is used, again with the Delley type of construction
with many surface points.

3.2 ADFCRS-2018 Database

The COSMO-RS Database ADFCRS-2018 contains 2560 compounds. This database combines the COSMO-RS
database ADFCRS-2010, the ionic liquid database ADFCRS-IL-2014, and some extra compounds.

Follow the COSMO-RS GUI Tutorial on the COSMO-RS compound database for more information on how to
download and install the zipped COSMO-RS Database ADFCRS-2018 https://downloads.scm.com/Downloads/crs/
ADFCRS-2018.zip, and how to use it.

The database contains CAS Registry Numbers. CAS Registry Number is a Registered Trademark of the American
Chemical Society.

3.2.1 ADFCRS-2010

The COSMO-RS Database ADFCRS-2010 contains 1892 compounds, mostly solvents and small molecules. This
database consists of ADF COSMO result (.coskf) files, which are results of ADF quantum mechanical calculations
using COSMO, with settings suitable for use in our COSMO-RS module. The geometries have been optimized with
ADF. This database makes the COSMO-RS functionality much easier and faster (the time-consuming DFT step is
already done ..) to use.

The starting point for this database was a database of structures made by Prof. Sandler’s group at the University
of Delaware. The work of the Sandler group is based in part on earlier work by the group of Prof. Liu at Virginia
Technical University, reported in these papers:

Mullins, E.; Oldland, R.; Liu, Y.A.; Wang, S.; Sandler, S.I.; Chen, C.-C.; Zwolak, M.; Seavey, K.C. Sigma-Profile
Database for Using COSMO-Based Thermodynamic Methods. Ind. Eng. Chem. Res. 2006, 45 (12), 4389-4415.
(https://doi.org/10.1021/ie060370h)

Mullins, E.; Liu, Y.A.; Ghaderi, A.; Fast, S.D. Sigma Profile Database for Predicting Solid Solubility in Pure and
Mixed Solvent Mixtures for Organic Pharmacological Compounds with COSMO-Based Thermodynamic Methods.
Ind. Eng. Chem. Res. 2008, 47 (5), 1707-1725. (https://doi.org/10.1021/ie0711022)

Phillips, K.L.; Sandler, S.I.; Greene, R.W.; Di Toro, D.M. Quantum Mechanical Predictions of the Henry’s Law Con-
stants and Their Temperature Dependence for the 209 Polychlorinated Biphenyl Congeners. Environ. Sci. Technol.
2008, 42 (22), 8412-8418. (https://doi.org/10.1021/es800876w)

All structures in the database ADFCRS-2010 differ from those in the papers above, as they are the result of ADF
geometry optimizations.
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3.2.2 ADFCRS-IL-2014

Ionic liquids (ILs), usually consisting of a large organic cation and a small inorganic polyatomic anion, have attracted
considerable attention in recent years due to their unique thermophysical properties. The low vapor pressure and high
conductivity of these molten salts combined with highly tunable properties, have resulted in highly diverse applications
across many different fields in chemistry, materials science (battery electrolytes), chemical engineering (gas sorption
and purification), and many more.

The COSMO-RS ionic liquid database ADFCRS-IL-2014 contains 80 cations and 56 anions. This ADFCRS-IL-2014
database consists of ADF COSMO result (.coskf) files, from standard ADF quantum mechanical calculations, as
described in COSMO-RS GUI Tutorial: COSMO result files.

SCM gratefully acknowledges Prof. Zhigang Lei’s research group (State Key Laboratory of Chemical Resource En-
gineering, Beijing University of Chemical Technology, China) for providing the ionic liquid database as well as the
corresponding tutorial.

The work of Zhigang Lei group based on the COSMO-RS model using the ADF software is listed as follows:

Z. Lei, C. Dai, J. Zhu, B. Chen, Extractive distillation with ionic liquids: A review, AIChE Journal 60, 3312 (2014)
(https://doi.org/10.1002/aic.14537)

Z. Lei, C. Dai, B. Chen, Gas solubility in ionic liquids, Chemical Reviews 14, 1289 (2014)
(https://doi.org/10.1021/cr300497a)

Z. Lei, J. Han, Q. Li, and B. Chen, Process Intensification on the Supercritical Carbon Dioxide Extraction of
Low-Concentration Ethanol from Aqueous Solutions, Industrial Engineering Chemistry research 51, 2730 (2012)
(https://doi.org/10.1021/ie2021027)

Z. Lei, J. Han, B. Zhang, Q. Li, J. Zhu, and B. Chen, Solubility of CO2 in Binary Mixtures of Room-Temperature Ionic
Liquids at High Pressures, Journal of Chemical Engineering data 57, 2153 (2012) (https://doi.org/10.1021/je300016q)

Z. Lei, C. Dai, X. Liu, L. Xiao, and B. Chen, Extension of the UNIFAC Model for Ionic Liquids, Industrial Engineering
Chemistry research 51, 12135 (2012) (https://doi.org/10.1021/ie301159v)

Z. Lei, C. Dai, Q. Yang, J. Zhu, and B. Chen, UNIFAC model for ionic liquid-CO (H2 ) systems: An experimental and
modeling study on gas solubility, AIChE Journal (2014), DOI: 10.1002/aic.14606 (https://doi.org/10.1002/aic.14606)

3.3 ADFCRS-POLYMERS-2019 Database

The COSMO-RS database ADFCRS-POLYMERS-2019 contains data for more than 200 polymers. The zipped
COSMO-RS database ADFCRS-POLYMERS-2019 can be downloaded from https://downloads.scm.com/Downloads/
crs/ADFCRS-POLYMERS-2019.zip. The database needs to be unzipped.

3.4 Fast Sigma: a QSPR method to estimate COSMO sigma-profiles

3.4.1 Introduction

The Fast Sigma program reads a molecule in SMILES format and estimates all of the properties required for a
COSMO-RS/-SAC calculation: the HB-/Non-HB-/OT-/OH- 𝜎-profiles, COSMO surface area, and COSMO volume.
This code uses QSPR techniques similar to those applied in our Property Prediction program. The efficiency of these
techniques means that this program can provide estimates for these essential COSMO-RS/-SAC properties in mil-
liseconds. This allows for quick estimates to be done for a new molecule of interest as well as drastically expedited
searches through screening databases of molecular candidates as compared to the full-fledged COSMO-RS strategy,
which requires costly DFT calculations.
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3.4.2 Input options

A list of the input options and examples of their usage is given below.

Flag Purpose Example
-h [–help] Produces help message $AMSBIN/fast_sigma –help
-s [–smiles] Input molecule as SMILES sting $AMSBIN/fast_sigma –smiles

<SMILES> . . .
-m [–mol] Input molecule as .mol file $AMSBIN/fast_sigma –mol <mol

file> . . .
-d [–display] Display problem results $AMSBIN/fast_sigma -d . . .
-o [–output] Write output to file $AMSBIN/fast_sigma –o <out-

put.compkf> . . .
–method Chose a COSMO-RS/-SAC method $AMSBIN/fast_sigma –method

COSMO-RS . . .

There are currently two supported methods: COSMO-RS and COSMOSAC2016. One of these method names must
be entered after the –method flag. The default method is COSMO-RS.

<output.compkf> The fast sigma program writes the output results to a file in .compkf format. The chosen output
filename should generally end with .compkf. This suffix helps other parts of the code (COSMO-RS/-SAC/-
UNIFAC/Solvent Optimization) recognize the format and use the file accordingly. If no filename is supplied the
program writes to a file called CRSKF.

SMILES_string or .mol file Though COSMO-RS/-SAC can make estimates for many types of molecular
species, the fast sigma program currently only supports organic, neutral, closed shell molecules.

3.4.3 GUI Input

The simplest way to use the Fast Sigma program is through the COSMO-RS GUI. There are two ways to do this:

• SMILES string: Compounds → List of Compounds → Add Compound using QSPR (Fast Sigma) →
SMILES and select Add.

• .xyz file: Compounds → List of Compounds → Add Compound using QSPR (Fast Sigma) → .xyz, and
select Add.

A .compkf file will be saved that can be used as input in COSMO-RS calculations.

3.4.4 Examples

This example calculates COSMO-RS (the default) parameters for phenol:

$AMSBIN/fast_sigma --smiles "c1ccccc1(O)" -d

sigma value Total profile HB profile
-0.025 0.000 0.000
-0.024 0.000 0.000
-0.023 0.000 0.000
-0.022 0.002 0.002
-0.021 0.054 0.054
-0.020 0.263 0.263
-0.019 0.523 0.523
-0.018 0.684 0.684

(continues on next page)
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(continued from previous page)

-0.017 0.828 0.828
-0.016 0.801 0.801
-0.015 0.732 0.716
-0.014 0.642 0.597
-0.013 0.653 0.519
-0.012 0.678 0.487
-0.011 0.607 0.423
-0.010 0.567 0.382
-0.009 0.646 0.245
-0.008 4.183 0.023
-0.007 7.405 0.000
-0.006 7.912 0.000
-0.005 6.701 0.000
-0.004 5.544 0.000
-0.003 4.658 0.000
-0.002 3.899 0.000
-0.001 4.097 0.000
0.000 6.109 0.000
0.001 7.854 0.000
0.002 8.640 0.000
0.003 9.726 0.000
0.004 11.175 0.000
0.005 12.524 0.000
0.006 8.673 0.000
0.007 2.255 0.000
0.008 1.174 0.161
0.009 1.279 1.159
0.010 1.442 1.442
0.011 1.759 1.751
0.012 1.795 1.788
0.013 0.838 0.829
0.014 0.095 0.093
0.015 0.054 0.054
0.016 0.030 0.030
0.017 0.000 0.000
0.018 0.000 0.000
0.019 0.000 0.000
0.020 0.000 0.000
0.021 0.000 0.000
0.022 0.000 0.000
0.023 0.000 0.000
0.024 0.000 0.000
0.025 0.000 0.000

Molecular Mass = 94.0418648120 g/mol
COSMO Area = 127.5012207186 Angstrom**2

COSMO Volume = 122.0791950835 Angstrom**3
Gas Phase Bond Energy = -2.9875007647 Hartree

Bond Energy = -2.9968155744 Hartree
Dispersion = -4.5319123638 kcal/mol
Deltaediel = 0.0000000000 Hartree

Nring = 6
Chemical Formula = C6H6O

SMILES = c1ccccc1(O)

Additionally, we calculate the COSMOSAC2016 parameters for Ibuprofen as a mol file:
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$AMSBIN/fast_sigma --mol Ibuprofen.mol --method COSMOSAC2016 -d

sigma value Total profile OH profile OT profile
-0.025 0.000 0.000 0.000
-0.024 0.000 0.000 0.000
-0.023 0.000 0.000 0.000
-0.022 0.000 0.000 0.000
-0.021 0.009 0.009 0.000
-0.020 0.062 0.061 0.000
-0.019 0.395 0.385 0.000
-0.018 0.914 0.881 0.000
-0.017 0.925 0.879 0.000
-0.016 0.840 0.781 0.000
-0.015 0.652 0.590 0.000
-0.014 0.697 0.606 0.000
-0.013 0.604 0.499 0.000
-0.012 0.561 0.398 0.000
-0.011 0.725 0.418 0.000
-0.010 0.833 0.350 0.000
-0.009 1.282 0.230 0.000
-0.008 2.141 0.158 0.000
-0.007 5.133 0.085 0.000
-0.006 10.428 0.048 0.000
-0.005 14.386 0.000 0.000
-0.004 23.816 0.000 0.000
-0.003 26.081 0.000 0.000
-0.002 23.295 0.000 0.000
-0.001 21.443 0.000 0.000
0.000 22.124 0.000 0.000
0.001 20.652 0.000 0.000
0.002 24.315 0.036 0.000
0.003 15.722 0.086 0.035
0.004 11.878 0.171 0.092
0.005 13.670 0.288 0.197
0.006 10.405 0.381 0.307
0.007 5.479 0.561 0.413
0.008 3.525 0.713 0.613
0.009 3.358 0.823 1.055
0.010 3.879 0.639 1.840
0.011 4.503 0.180 3.025
0.012 2.708 0.083 2.006
0.013 0.930 0.020 0.745
0.014 0.061 0.000 0.104
0.015 0.000 0.000 0.000
0.016 0.000 0.000 0.000
0.017 0.000 0.000 0.000
0.018 0.000 0.000 0.000
0.019 0.000 0.000 0.000
0.020 0.000 0.000 0.000
0.021 0.000 0.000 0.000
0.022 0.000 0.000 0.000
0.023 0.000 0.000 0.000
0.024 0.000 0.000 0.000
0.025 0.000 0.000 0.000

Molecular Mass = 206.1306798160 g/mol
COSMO Area = 278.4276940312 Angstrom**2

COSMO Volume = 279.3341044098 Angstrom**3

(continues on next page)
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(continued from previous page)

Gas Phase Bond Energy = -7.1463537624 Hartree
Bond Energy = -7.1619486814 Hartree
Dispersion = -9.7153055452 kcal/mol
Deltaediel = 0.0007518662 Hartree

Nring = 0
Chemical Formula = C13H18O2

SMILES = CC(C)Cc1ccc(C(C)C(=O)O)cc1

3.5 MOPAC COSMO calculation

Here it is described briefly how to make MOPAC COSMO result files.

The simplest way is to use AMSinput. Draw the molecule using AMSinput, and save the .ams file. Select Right Panel
→ MOPAC → Solvation method → COSMO-CRS. Select 362 for NSPA. Press Run to run the MOPAC calculation.
A .coskf file will be saved that can be used as input in COSMO-RS calculations.

In AMS2019 AMSinput uses the MOPAC engine, which is part of the AMS driver. Note that this is different than
in AMS2018 and before. In the Atoms block key in the AMS driver part of the input one puts the coordinates of the
molecule. The main input keys for the AMS driver and the MOPAC engine are:

$AMSBIN/ams << eor
Task GeometryOptimization
System

Atoms
....

End
End

Engine MOPAC
Solvation

Enabled Yes
NSPA 362
Solvent

Name CRS
End

End
EndEngine

eor

The use of the solvent CRS makes the MOPAC engine to create a .cos file, which is converted to a .coskf file by
$AMSBIN/cosmo2kf

cosmo2kf file.cos file.coskf

Note that this is automatically done if one uses AMSinput.

Compared to the default ADF COSMO-RS values a few COSMO-RS parameters (page 25) were reoptimized for
MOPAC PM6 COSMO result files to improve the calculation of a number of partition coefficients, when compared to
experimental values. Note that MOPAC is a semi-empirical quantum chemistry program, whereas ADF is based on
density functional theory (DFT). Thus the MOPAC COSMO result files will not be of the same quality as the ADF
COSMO result files.

3.5. MOPAC COSMO calculation 23
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CHAPTER

FOUR

THE COSMO-RS PROGRAM

The ADF COSMO-RS command line program crs is described here, including all input options.

4.1 Running the COSMO-RS program

Running the COSMO-RS program involves the following steps:

• Construct an ASCII input file, say in.

• Run the program by typing (under UNIX): $AMSBIN/crs < in > out

• Move / copy relevant result files (in particular CRSKF) to the directory where you want to save them, and give
them appropriate names.

• Inspect the standard output file out to verify that all has gone well.

Note that in the one can also put the call to $AMSBIN/crs inside a script, which could be named, for example,
‘example.run’. Such shell script ‘example.run’ needs be executable, if it isn’t you will need to make it executable,
e.g. chmod u+x example.run. The ‘example.run’ file needs to be executed as a shell script, not as input to
$AMSBIN/crs.

4.2 COSMO-RS and COSMO-SAC parameters

The COSMO-RS model has general parameters and element specific parameters. ADF’s COSMO-SAC 2013-ADF
model has general parameters, but also uses some of the COSMO-RS parameters, such as the element specific param-
eters. There are also technical and accuracy parameters, such as convergence criteria. This section explains how to set
these parameters, and shows the default values for these parameters. By default the COSMO-RS method is chosen.

4.2.1 COSMO-RS general parameters

CRSPARAMETERS
{RAV rav}
{APRIME aprime}
{FCORR fcorr}
{CHB chb}
{SIGMAHBOND sigmahbond}
{AEFF aeff}
{LAMBDA lambda}
{OMEGA omega}
{ETA eta}

(continues on next page)
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{CHORTF chortf}
{combi1998 | combi2005}
{hb_all | hb_hnof}
{hb_temp | hb_notemp}
{fast | nofast}

End

The ADF default values are optimized parameters for ADF calculations. The Klamt values can be found in Ref.1. See
also Ref.1 for the meaning of the parameters.

symbol ADF Default ADF combi1998 Klamt MOPAC PM6
Ref.2 Ref.2 Ref.1

rav (𝑟𝑎𝑣 ) 0.400 0.415 0.5 0.400
aprime (a’) 1510.0 1515.0 1288.0 1550.0
fcorr (𝑓𝑐𝑜𝑟𝑟 ) 2.802 2.812 2.4 2.802
chb (𝑐ℎ𝑏 ) 8850.0 8850.0 7400.0 8400.0
sigmahbond (𝜎ℎ𝑏 ) 0.00854 0.00849 0.0082 0.00978
aeff (𝑎𝑒𝑓𝑓 ) 6.94 7.62 7.1 5.96
lambda (𝜆 ) 0.130 0.129 0.14 0.135
omega (𝜔 ) -0.212 -0.217 -0.21 -0.212
eta (𝜂 ) -9.65 -9.91 -9.15 -9.65
chortf (𝑐⊥ ) 0.816 0.816 0.816 0.816
combi1998 | combi2005 combi2005 combi1998 combi1998 combi2005
hb_all | hb_hnof hb_hnof hb_hnof hb_hnof hb_hnof
hb_temp | hb_notemp hb_temp hb_notemp hb_notemp hb_temp
fast | nofast fast fast fast fast

chortf See Ref.1 for the definitions: 𝜎⊥
𝑣 = 𝜎0

𝑣 − 𝑐⊥𝜎𝑣

combi1998 | combi2005 If the subkey combi1998 is included a thermodynamically inconsistent combinatorial
contribution to the chemical potential 𝜇𝑐𝑜𝑚𝑏

𝑖 of Ref.1 is used. If the subkey combi2005 is included (default) a
thermodynamically consistent combinatorial contribution of Ref.3 is used. See the section on the combinatorial
term (page 5) and Ref.3.

hb_all | hb_hnof If the subkey hb_all is included hydrogen bond interaction can be included between segments
that belong to H atoms and all other segments. If the subkey hb_hbnof is included (default) hydrogen bond
interaction can be included only between segments that belong to H atoms that are bonded to N, O, or, F, and
segments that belong to N, O, or F atoms.

hb_temp | hb_notemp If the subkey hb_notemp is included the hydrogen bond interaction is not temperature
dependent, as in Ref.1. If the subkey hb_temp is included (default) the hydrogen bond interaction is temperature
dependent, as in Ref.3. See the section on the temperature dependent hydrogen bond interaction (page 6) and
Ref.3.

fast | nofast If the subkey fast is included the fast approximation is used. This fast approximation is the default.
Use nofast for the original approach. See the section on the fast approximation for COSMO-RS calculations
(page 5).

Links COSMO-RS GUI tutorial: set COSMO-RS parameters [1]

1 A. Klamt, V. Jonas, T. Bürger and J.C. Lohrenz, Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074 (1998)
(https://doi.org/10.1021/jp980017s)

2 C.C. Pye, T. Ziegler, E. van Lenthe, J.N. Louwen, An implementation of the conductor-like screening model of solvation within the Amsterdam
density functional package. Part II. COSMO for real solvents. Can. J. Chem. 87, 790 (2009) (https://doi.org/10.1139/V09-008)

3 A. Klamt, COSMO-RS From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier. Amsterdam (2005), ISBN
0-444-51994-7.

26 Chapter 4. The COSMO-RS program

../Tutorials/COSMO-RS/COSMO-RS_overview_parameters_and_analysis.html#step-4-cosmo-rs-and-cosmo-sac-parameters
https://doi.org/10.1021/jp980017s
https://doi.org/10.1139/V09-008


COSMO-RS Manual, Amsterdam Modeling Suite 2022.1

4.2.2 COSMO-RS element specific parameters

DISPERSION
{H dispH}
{C dispC}
{N dispN}
{...}

End

The following table gives the element specific dispersion constants. The ADF default values are optimized parameters
for ADF calculations. The Klamt values can again be found in Ref.1. The constants for F, Si, P, S, Br, and I in the
ADF defaults were only fitted to a small number of experimental values or taken from Ref.3.

element ADF Default ADF combi1998 Klamt
Ref.1

H -0.0340 -0.0346 -0.041
C -0.0356 -0.0356 -0.037
N -0.0224 -0.0225 -0.027
O -0.0333 -0.0322 -0.042
Cl -0.0485 -0.0487 -0.052
F -0.026
Si -0.04
P -0.045
S -0.052
Br -0.055
I -0.062

Note that not for all elements in the periodic system COSMO-RS parameters were fitted.

Links COSMO-RS GUI tutorial: set COSMO-RS parameters [1]

4.2.3 COSMO-SAC general parameters

The ADF COSMO-RS program can calculate activity coefficients using the COSMO-SAC 2013-ADF model, based
on Ref.4. Like in the COSMO-RS method, pure compound vapor pressures can be given as input, for example, if
experimental values are available. If these values are not specified then the pure compound vapor pressure will be
calculated according to the COSMO-SAC 2013-ADF model. This part of the COSMO-SAC 2013-ADF has been
implemented in ADF2016. The COSMO-SAC 2013-ADF parameters in Ref.4 are optimized parameters for use
with ADF COSMO result files. The authors of Ref.6 reoptimized the revised COSMO-SAC model5 parameters
for use with ADF COSMO result files, which is called here the COSMO-SAC 2016-ADF method. Note that the
earlier COSMO-SAC papers75 do not include parameters that were optimized for use with ADF COSMO result files.
The key COSMOSAC2013 needs to be included if one wants to do a COSMO-SAC 2013-ADF calculation. The
key COSMOSACDHB needs to be included if one wants to do a COSMO-SAC DHB-ADF calculation. For other
COSMO-SAC methods one needs to include the key COSMOSAC.

4 R. Xiong, S.I. Sandler, R.I. Burnett, An improvement to COSMO-SAC for predicting thermodynamic properties, Ind. Eng. Chem. Res. 53,
8265 (2014) (https://doi.org/10.1021/ie404410v)

6 W.L. Chen, C.M. Hsieh, L. Yang, C.C. Hsu, S.T. Lin, A Critical Evaluation on the Performance of COSMO-SAC Models for Vapor-Liquid
and Liquid-Liquid Equilibrium Predictions Based on Different Quantum Chemical Calculations, Ind. Eng. Chem. Res. 55, 9312 (2016)
(https://doi.org/10.1021/acs.iecr.6b02345)

5 C.M. Hsieh, S.I. Sandler, S.T. Lin, Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions, Fluid Phase
Equilib. 297, 90 (2010) (https://doi.org/10.1016/j.fluid.2010.06.011)

7 S. Wang, S.I. Sandler, C.C. Chen, Refinement of COSMO-SAC and the Applications, Ind. Eng. Chem. Res. 46, 7275 (2007)
(https://doi.org/10.1021/ie070465z)
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COSMOSAC2013 | COSMOSAC | COSMOSACDHB
SACPARAMETERS

{AEFF aeff}
{FDECAY fdecay}
{SIGMA0 sigma0}
{RN rn}
{QN qn}
{AES aes}
{BES bes}
{COHOH cohoh}
{COTOT cotot}
{COHOT cohot}
{RAV rav}
{QS qs}
{rhbcut rhbcut}
{hb_temp | hb_notemp}

End

symbol 2013-ADF
Xiong

2016-ADF
Chen

DHB-ADF
Chen

2010 Hsieh 2007 Wang

Ref.4 Ref.6 Ref.8 Ref.5 Ref.7

aeff (aeff ) 6.4813 5.8447 5.8447 7.25 7.25
fdecay (fdecay ) 3.57 3.57 3.57 3.57
sigma0 (𝜎0 ) 0.01233 0.007 0.0063 0.007 0.007
rn (r) 66.69 66.69 66.69 66.69
qn (q) 79.352 79.53 79.53 79.53 79.53
aes (AES ) 7877.13 5920.84 5920.84 6525.69 8451.77
bes (BES ) 0.0 1.3950 108 1.3950 108 1.4859 108 0.0
cohoh (cOH-OH ) 5786.72 3551.10 33306.83 4013.78 3484.42
cotot (cOT-OT ) 2739.58 1077.26 33306.83 932.31 3484.42
cohot (cOH-OT ) 4707.75 3099.31 33306.83 3016.43 3484.42
rav (rav ) 0.51
qs (qs ) 0.57
rhbcut 1.4432
hb_temp |
hb_notemp

hb_notemp hb_notemp hb_notemp hb_notemp hb_notemp

See also Refs.45 for the meaning of the parameters aeff , fdecay , 𝜎0 , r, q, AES , BES , cOH-OH , cOT-OT , cOH-OT , rav , qs
. The parameter names in7 have been translated into parameter names used in Ref.5, by calculating AES from 0.3 fpol
aeff

3/2 /(2𝜖0 ), using BES = 0, and using cOH-OH = cOT-OT = cOH-OT = chb . The parameters fdecay and r are not used in
COSMO-SAC 2013-ADF4. The parameters rav and qs are only used in COSMO-SAC 2013-ADF. The element specific
COSMO-SAC 2013-ADF epsilon constants can be set with the block key EPSILON (page 29). These element specific
epsilon constants can not be used in ADF’s implementation of earlier COSMO-SAC methods. The parameter rhbcut
is only used in COSMO-SAC DHB-ADF8. Note that the parameters for COSMO-SAC DHB-ADF were reoptimized
by Chen et al., and are different than in Ref.8.

hb_temp | hb_notemp If the subkey hb_notemp is included (default) the hydrogen bond interaction is not tem-
perature dependent, as in Refs.754. If the subkey hb_temp is included the temperature dependence of the hydro-
gen bond interaction fhb (T) is the same as is described in the section on the temperature dependent hydrogen
bond interaction (page 6).

Except for COSMO-SAC 2013-ADF, some COSMO-RS specific parameters are used in the next COSMO-SAC meth-

8 W.L. Chen, S.T. Lin, Explicit consideration of spatial hydrogen bonding direction for activity coefficient prediction based on implicit solvation
calculations, Phys.Chem.Chem.Phys. 19, 20367 (2017) (https://doi.org/10.1039/c7cp02317k)
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ods:

COSMOSAC
SACPARAMETERS

...
{OMEGA omega}
{ETA eta}

End

symbol 2013-ADF Xiong 2016-ADF Chen, DHB-ADF Chen, 2010 Hsieh, 2007 Wang
omega
(𝜔)

-0.212

eta (𝜂) -9.00

In ADF2016 these parameters are not used in the COSMO-SAC 2013-ADF method, only in the ADF implementation
of the other COSMO-SAC methods. The parameters 𝜔, 𝜂 and the element specific COSMO-RS dispersion constants
are taken from the COSMO-RS model. The element specific COSMO-RS dispersion constants can be set with the
block key DISPERSION. 𝜔, 𝜂, and the element specific COSMO-RS dispersion constants are used in a COSMO-RS
like method for the calculation of pure compound vapor pressures.

4.2.4 COSMO-SAC element specific parameters

COSMOSAC2013
EPSILON

{H epsH}
{C epsC}
{N epsN}
{...}

End

The following table gives the element specific epsilon constants in case of COSMO-SAC 2013-ADF, see Ref.4. Like
in the COSMO-RS method, pure compound vapor pressures can be given as input, for example, if experimental values
are available. In these values ar not given, in ADF2016 the pure compound vapor pressure will be approximated using
the the COSMO-SAC 2013-ADF method, which depend on these element specific epsilon constants. These constants
will also have an effect on the calculated activity coefficients in case of a mixture. Note that these only have an effect
in the ADF’s COSMO-SAC 2013-ADF implementation.
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element 2013-ADF Xiong
Ref.4

H 338.13
C.sp3 29160.92
C.sp2 30951.83
C.sp 20685.98
N.sp3 23488.54
N.sp2 22663.34
N.sp 6390.40
O.sp3-H 8527.06
O.sp3 8484.38
O.sp2 6736.85
O.sp2-N 12145.28
Cl 8435.13
F 82512.21
P 56067.81
S 45065.19
Br 62947.83
I 105910.88

Note that not for all elements in the periodic system COSMO-SAC 2013-ADF parameters were fitted.

If one leaves the EPSILON block keyword empty the contribution of the mixture dispersion to the activity coefficient
will be zero.

EPSILON
End

Links COSMO-RS GUI tutorial: Expert option: set COSMO-SAC 2013-ADF parameters [1]

4.2.5 Technical and accuracy parameters

TECHNICAL
{RSCONV rsconv}
{SACCONV sacconv}
{MAXITER maxiter}
{BPCONV bpconv}
{BPMAXITER bpmaxiter}
{SOLCONV solconv}
{SOLMAXITER solmaxiter}
{SOLXILARGE solxilarge}
{EHDELTAT ehdeltaT}

End
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symbol Default values
rsconv 10-7 kcal/mol
sacconv 10-7

maxiter 10000
bpconv 10-6 bar
bpmaxiter 40
solconv 10-5 molar fraction
solmaxiter 40
solxilarge 0.99 molar fraction
ehdeltaT 1.0 Kelvin

rsconv Convergence criterion in kcal/mol in chemical potential calculation, not used in COSMO-SAC 2013-ADF.
Default value 1e-7 kcal/mol.

sacconv Convergence criterion in activity coefficient calculation, only used in COSMO-SAC 2013-ADF. Default
value 1e-7.

maxiter Maximum number of cycles in chemical potential or activity coefficients calculation. Default value 10000.

bpconv Convergence criterion (bar) for isobar or solvent boiling point calculation. Default value 1e-6 bar.

bpmaxiter Maximum number of cycles in isobar or solvent boiling point calculation. Default value 40.

solconv Convergence criterion (molar fraction) used in solubility calculations. Default value 1e-5 molar fraction.

solmaxiter Maximum number of cycles in solubility calculation. Default value 40.

solxilarge Threshold for (im-)miscibility (molar fraction) in solubility calculations. Above this value the mixture
is considered to be fully miscible. Default value 0.99.

ehdeltaT ∆𝑇 (Kelvin) used in the calculation of the excess enthalpy using the Gibbs-Helmholtz equation and in the
calculation of the enthalpy of vaporization using the Clausius-Clapeyron equation using a numerical derivative
with respect to T. Default value 1.0 Kelvin.

Links COSMO-RS GUI tutorial: set COSMO-RS or COSMO-SAC 2013-ADF parameters [1]

4.3 Compounds

For each compound one has to add the keyword COMPOUND

COMPOUND filename
{cosmofile}
{drophbond}
{NRING nring}
{FRAC1 frac1}
{FRAC2 frac2}
{PVAP pvap}
{TVAP tvap}
{Antoine A B C}
{MELTINGPOINT meltingpoint}
{HFUSION hfusion}
{CPFUSION cpfusion}
{FLASHPOINT flashpoint}
{DENSITY density}
{SCALEAREA scalearea}
End
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filename The filename (can be a full path, otherwise relative path is assumed) should be a COSMO result file.
How to make an ADF COSMO result file can be found here (page 12).

cosmofile If the subkey cosmofile is included the file should be an ASCII COSMO file (.cosmo). If not specified
(default) the file should be a kf file, either an ADF COSMO result file adf.rkf (previously ADF<=2019 TAPE21
file or .t21 file) or a COSKF file (.coskf).

drophbond If the subkey drophbond is included no hydrogen-bond terms will be included for this compound. If
not specified (default) the hydrogen-bond terms are included for this compound.

nring The number of ring atoms. This is a COSMO-RS parameter. It should be 6 for benzene, for example. Default
value is 0.

frac1 The molar fraction of the compound in the solvent (mass fraction if the key MASSFRACTION is used). This
is solvent 1 in case of the calculation of partition coefficients (Log P) or in case of a composition line.

frac2 The molar fraction of solvent 2 (mass fraction if the key MASSFRACTION is used), only used in case of the
calculation of partition coefficients (Log P) or in case of a composition line.

pvap, tvap Pure compound vapor pressure pvap (bar) at temperature tvap (Kelvin). Used only if both pvap and
tvap are specified, and then will have an effect on the calculated vapor pressures or boiling points. Alternative
is to set the Antoine coefficients. If both are not specified the pure compound vapor pressure is approximated
using the COSMO-RS method.

A, B, C A, B, and C are the pure compound Antoine coefficients, such that: log P = A - B/(T+C). This Antoine
equation is a 3-parameter fit to experimental pure compound vapor pressures P (bar) over a restricted temperature
T (Kelvin) range. If the Antoine coefficients are specified this will have an effect on the calculated vapor
pressures or boiling points. Alternative is to give input values for the pure compound vapor pressure at a fixed
temperature. If both are not specified the pure compound vapor pressure is approximated using the COSMO-RS
method.

meltingpoint, hfusion, cpfusion Pure compound melting point meltingpoint (Kelvin), pure compound
enthalpy of fusion hfusion (kcal/mol), and pure compound heat capacity of fusion cpfusion (kcal/(mol K)). Only
used if both meltingpoint and hfusion are specified (cpfusion optional), and will then have an effect in solubility
calculations if the temperature of the solvent is below the melting point.

flashpoint Pure compound flash point flashpoint (Kelvin).

density Pure compound density density (kg/L). Used for calculating the volume of a solvent molecule.

scalearea Input scaling of COSMO surface area for a given compound. Default value 1.0 means the COSMO
surface area is not scaled. Changing this value is an expert option, for example, to fit to experiment.

Links COSMO-RS GUI tutorial: set pure compound parameters [1]

4.4 Temperature

TEMPERATURE temperature {temperature_high ntemp}

temperature Temperature (Kelvin) at which temperature the COSMO-RS calculation should take place. Default
room temperature 298.15. The first temperature in case of a range of temperatures.

temperature_high The last temperature (Kelvin) in case of a range of temperatures. Only used in case of solvent
vapor pressure calculations or solubility calculations.

ntemp The number of temperatures in case of a range of temperatures.

32 Chapter 4. The COSMO-RS program

../Tutorials/COSMO-RS/COSMO-RS_overview_parameters_and_analysis.html#step-3-set-pure-compound-parameters


COSMO-RS Manual, Amsterdam Modeling Suite 2022.1

4.5 Pressure

PRESSURE pressure {pressure_high npress}

pressure Pressure (bar) at which pressure the COSMO-RS calculation should take place. Default 1.01325 bar (1
atm). The first pressure in case of a range of pressures.

pressure_high The last pressure (bar) in case of a range of pressures. Only used in case of solvent boiling point
calculations.

npress The number of pressures in case of a range of pressures.

4.6 Molar fractions and mass fraction

By default the ADF COSMO-RS program assumes molar fractions as input. This can be changed into mass fractions
if one includes:

MASSFRACTION

4.7 Properties

4.7.1 Vapor pressure

The vapor pressure of a mixture can be calculated with:

PROPERTY vaporpressure
End

In case of a mixture the mole fraction of each compound of the solvent should be given with the subkey FRAC1 of
the key COMPOUND for each compound. In case of a mixture also activity coefficients, and excess energies are
calculated.

To calculate pure compound vapor pressures for more than one compound use:

PROPERTY purevaporpressure
End

It is possible to calculate the vapor pressure for a temperature range, see key TEMPERATURE.

The input pure compound vapor pressure will be used in the calculation of the vapor pressure of this compound if it
is supplied with the key COMPOUND for this compound. If it is not specified then it will be approximated using the
COSMO-RS method.

Links COSMO-RS GUI tutorial: solvent vapor pressure [1, 2]

4.7.2 Boiling point

The boiling point of a mixture can be calculated with the block key:
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PROPERTY boilingpoint
End

In case of a mixture the mole fraction of each compound of the solvent should be given with the subkey FRAC1 of
the key COMPOUND for each compound. In case of a mixture also activity coefficients, and excess energies are
calculated.

To calculate pure compound boiling points for more than one compound use:

PROPERTY pureboilingpoint
End

It is possible to calculate the boiling temperature for a pressure range, see key PRESSURE.

The input pure compound vapor pressure will be used in the calculation of the vapor pressure of this compound in the
mixture if it is supplied with the key COMPOUND for this compound. If it is not specified then it will be approximated
using the COSMO-RS method.

The COSMO-RS calculation of the boiling temperature of a solvent is performed with an iterative method. The
temperature is varied until the calculated vapor pressure is within a certain threshold of the desired pressure.

Links COSMO-RS GUI tutorial: boiling point of a solvent [1]

4.7.3 Solvent flash point

The flash point (lower flammable limit) of a compound is the lowest temperature at which the vapor of the compound
forms an ignitable mixture in air. The COSMO-RS module can calculate the flash point of a mixture. The COSMO-RS
module, however, does not calculate or predict the flash point of pure compounds. The COSMO-RS method is used
to calculate the partial vapor pressures of each compound in the mixture, and it uses Le Chatelier’s mixing rule to
calculate the flash point of this mixture in the gas phase. Input pure compound flash points should be provided by the
user, with the subkey FLASHPOINT flashpoint of the key COMPOUND.

PROPERTY flashpoint
End

The mole fraction of each compound of the solvent should be given with the subkey FRAC1 of the key COMPOUND
for each compound.

4.7.4 Partition coefficients (LogP)

The partition coefficient of a compound in a mixture of two immiscible solvents, can be calculated with:

PROPERTY logp
{VOLUMEQUOTIENT volumequotient}
End

volumequotient If the subkey VOLUMEQUOTIENT is included the volumequotient will be used for quotient of
the molar volumes of solvent 1 and solvent 2 instead of calculated values.

The mole fraction of each compound of the solvent 1 and solvent 2 should be given with the subkey FRAC1 and
subkey FRAC2 of the key COMPOUND for each compound, respectively. In case of partly miscible liquids, like, for
example, the Octanol-rich phase of Octanol and Water, both components have nonzero mole fractions. The compounds
that are included without a given mole fraction are considered to be infinite diluted solutes. The partition coefficients
are calculated for all compounds.

34 Chapter 4. The COSMO-RS program
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One can use some compounds that are present in $AMSHOME/atomicdata/ADFCRS (Water, 1-Octanol, Benzene,
Ethoxyethane, Hexane), or one can use compounds from the ADFCRS-2010 database. For example, for Octanol/Water
partition coefficients one can use:

Property logp
VolumeQuotient 4.93

End
Compound "$AMSHOME/atomicdata/ADFCRS/1-Octanol.coskf"

frac1 0.725
End
Compound "$AMSHOME/atomicdata/ADFCRS/Water.coskf"

frac1 0.275
frac2 1.0

End

Links COSMO-RS GUI tutorial: partition coefficients (log P) [1, 2], Octanol-Water partition coefficients (log POW )
[1]

4.7.5 Activity coefficients solvent and solute

The mole fraction of each compound of the solvent should be given with the subkey FRAC1 of the key COMPOUND
for each compound. The compounds that are included without a given mole fraction are considered to be infinite
diluted solutes. The activity coefficients are calculated for all compounds.

PROPERTY activitycoef
{DENSITYSOLVENT densitysolvent}
End

densitysolvent If the subkey DENSITYSOLVENT is included the densitysolvent will be used for the density
of the solvent (kg/L) instead of calculated values. Relevant for the calculation of the Henry’s law constant.

The input pure compound vapor pressure will be used in the calculation of the partial vapor pressure of this compound
in the mixture if it is supplied with the key COMPOUND for this compound. If it is not specified then it will be
approximated using the COSMO-RS method. Relevant for the calculation of the Henry’s law constant.

The Henry’s law constants are calculated in 2 units. The Henry’s law constant kH is the ratio between the liquid phase
concentration of a compound and its partial vapor pressure in the gas phase. The dimensionless Henry’s law constant
kH

cc is the ratio between the liquid phase concentration of a compound and its gas phase concentration.

Also calculated is ∆𝐺𝑙𝑖𝑞−𝑠𝑜𝑙𝑣
𝑠𝑜𝑙𝑣 , which is the solvation Gibbs free energy from the pure compound liquid phase to the

solvated phase, and ∆𝐺𝑔𝑎𝑠−𝑠𝑜𝑙𝑣
𝑠𝑜𝑙𝑣 , which is the solvation Gibbs free energy from the pure compound gas phase to the

solvated phase, with a reference state of 1 mol/L in both phases. In addition a Gibbs free energy is calculated which is
the free energy of the solvated compound with respect to the gas phase energy of the spin restricted spherical averaged
neutral atoms, the compound consist of. Note that zero-point vibrational energies are not taken into account in the
calculation of this free energy. This energy could be used in the calculation of 𝑝𝐾𝑎 values.

Links COSMO-RS GUI tutorial: activity coefficients [1, 2], solvation free energies [1], Henry’s law constants [1],
𝑝𝐾𝑎 values [1]

4.7.6 Solubility

The solubility of solutes in 1 mixture can be calculated with:

PROPERTY solubility
End
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The mole fraction of each compound of the solvent should be given with the subkey FRAC1 of the key COMPOUND
for each compound, and should add up to 1.0. The solutes should have zero molar fraction in the solvent. The solubility
of 1 solute in pure solvents can be calculated with

PROPERTY puresolubility
End

The mole fraction of each pure solvent should be 1.0, and should be set the subkey FRAC1 of the key COMPOUND
for each compound. The solute should have zero molar fraction in the solvent. It is possible to calculate the solubility
of a solute at a temperature range, see key TEMPERATURE.

For solubility calculations of a solid compound one should add the pure compound melting point 𝑇𝑚 , pure compound
enthalpy of fusion ∆𝐻𝑓𝑢𝑠 , and optionally the pure compound heat capacity of fusion ∆𝐶𝑝 using the subkeys melt-
ingpoint, hfusion, and cpfusion, respectively, of the key COMPOUND for this compound. The COSMO-RS method
does not predict these ∆𝐻𝑓𝑢𝑠, ∆𝐶𝑝, or 𝑇𝑚 .

The assumption made in the solubility calculation may be invalid in case of a solubility of a liquid in a solvent,
especially if the solubility of the solvent in the liquid is high. For binary systems one may check this by calculating the
miscibility gap in the binary mixture of the two liquids. It is possible to calculate the solubility of a gas in a solvent,
if one adds the subkey isobar and adds the partial vapor pressure partialvaporpressure (bar) of the gas as argument for
the key PRESSURE:

PROPERTY solubility
isobar

End

PRESSURE partialvaporpressure

The solubility of a gas in a solvent can also be calculated using Henry’s law, which is valid for ideal dilute solutions, see
see the key PROPERTY activitycoef. The COSMO-RS calculation of the solubility of a compound is performed with
an iterative method, since the activity coefficient of the compound depends on the molar fraction of this compound.

Links COSMO-RS GUI tutorial: solubility [1, 2]

4.7.7 Binary mixture (VLE/LLE)

The COSMO-RS module can automatically calculate properties of a binary mixture, by calculating these properties
for a number of different compositions.

Exactly two compounds should be given in the input file.

PROPERTY binmixcoef
{Nfrac nfrac}
{isotherm | isobar | flashpoint}
End

nfrac Number of different mixtures for which the binary mixture is calculated will be nfrac+5. Default value for
nfrac is 10, which means 15 different mixtures.

isotherm | isobar |flashpoint If the subkey isotherm is included (default) the binary mixture will be
calculated at a fixed temperature. If the subkey isobar is included the binary mixture will be calculated at a fixed
vapor pressure. If the subkey flashpoint is included the flash point of the binary mixture will be calculated.

The input pure compound vapor pressure will be used in the calculation of the partial vapor pressure of this compound
in the mixture if it is supplied with the key COMPOUND for this compound. If it is not specified then it will be
approximated using the COSMO-RS method.
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In case of a miscibility gap (LLE) data of the 2 immiscible liquid phases will be calculated. Also information about
possible azeotropes will be calculated. With the COSMO-RS GUI, activity coefficients, (partial) vapor pressures, and
excess energies can be viewed.

Links COSMO-RS GUI tutorial: vapor-liquid diagram binary mixture (VLE/LLE) [1, 2]

4.7.8 Ternary mixture (VLE/LLE)

The COSMO-RS module can automatically calculate properties of a ternary mixture, by calculating these properties
for a number of different compositions. Exactly three compounds should be given in the input file.

PROPERTY ternarymix
{Nfrac nfrac}
{isotherm | isobar |flashpoint}

End

nfrac Number of different mixtures for which the ternary mixture is calculated will be (nfrac+1)*(nfrac+2)/2. De-
fault value for nfrac is 10, which means 55 different mixtures.

isotherm | isobar | flashpoint If the subkey isotherm is included (default) the ternary mixture will be
calculated at a fixed temperature. If the subkey isobar is included the ternary mixture will be calculated at a fixed
vapor pressure. If the subkey flashpoint is included the flash point of the ternary mixture will be calculated.

The input pure compound vapor pressure will be used in the calculation of the partial vapor pressure of this compound
in the mixture if it is supplied with the key COMPOUND for this compound. If it is not specified then it will be
approximated using the COSMO-RS method.

In case of a miscibility gap liquid-liquid equilibrium (LLE) data such as tie lines and an approximate phase diagram,
are calculated. With the COSMO-RS GUI, activity coefficients, (partial) vapor pressures, and excess energies can be
viewed as a colormap in a 2-dimensional plot with 2 of the liquid compositions on the axes.

Links COSMO-RS GUI tutorial: ternary mixtures (VLE/LLE) [1]

4.7.9 Solvents s1 - s2 Composition Line

The COSMO-RS module can linear interpolate between the compositions of solvent 1 and solvent 2, which both could
be mixtures, and calculate properties, like activity coefficients, and excess energies. This property calculation does
not calculate a possible miscibility gap. The mole fraction of each compound of the solvent 1 and solvent 2 should be
given with the subkey FRAC1 and subkey FRAC2 of the key COMPOUND for each compound, respectively.

PROPERTY compositionline
{Nfrac nfrac}
{isotherm | isobar | flashpoint}

End

nfrac Number of different mixtures of the 2 solvents is calculated will be (nfrac+1). Default value for nfrac is 10,
which means 11 different mixtures.

isotherm | isobar | flashpoint If the subkey isotherm is included (default) a fixed temperature will be
used. If the subkey isobar is included a fixed vapor pressure will be used. If the subkey flashpoint is included
the flashpoint will be calculated.

Links COSMO-RS GUI tutorial: A composition line between solvents s1 and s2 [1]
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4.8 Analysis

4.8.1 Sigma profile

The sigma profile of a mixture can be calculated with:

PROPERTY sigmaprofile
{Nprofile nprofile}
{SigmaMax sigmamax}
End

In case of a mixture the mole fraction of each compound in the mixture should be given with the subkey FRAC1 of
the key COMPOUND for this compound.

The sigma profile pure compounds can be calculated with:

PROPERTY puresigmaprofile
{Nprofile nprofile}
{SigmaMax sigmamax}
End

nprofile Number of data points for which to calculate the sigma profile. default value 50.

sigmamax The sigma profile is calculated between -sigmamax and sigmamax. Default value 0.025.

The hydrogen bonding part (HB) of the sigma profile(s) will also be calculated. In case of a COSMO-SAC 2013-ADF
calculation also the OH component of hydrogen bonding (HB-OH) is calculated, and the other type component of
hydrogen bonding (HB-OT) is calculated.

Links COSMO-RS GUI tutorial: sigma profile [1]

4.8.2 Sigma potential

The sigma potential of a mixture can be calculated with:

PROPERTY sigmapotential
{Nprofile nprofile}
{SigmaMax sigmamax}
End

In case of a mixture the mole fraction of each compound in the mixture should be given with the subkey FRAC1 of
the key COMPOUND for this compound.

The sigma profile pure compounds can be calculated with:

PROPERTY puresigmapotential
{Nprofile nprofile}
{SigmaMax sigmamax}
End

nprofile Number of data points for which to calculate the sigma potential. default value 50.

sigmamax The sigma potential is calculated between -sigmamax and sigmamax. Default value 0.025.

Links COSMO-RS GUI tutorial: sigma potential [1]
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CHAPTER

FIVE

POLYMERS WITH COSMO-RS(-SAC)

Many types of polymers can be described with COSMO-RS theory. However, the typical procedure for calculating
𝜎-profiles (a geometry optimization with ADF, a single point COSMO calculation, processing the surface points to
make a 𝜎-profile) is far too expensive for generating the 𝜎-profiles of polymers. Instead, the 𝜎-profile of a polymer can
be represented as the 𝜎-profile of a monomer scaled to the size of the polymer. This means that given a 𝜎-profile of
an “average monomer,” we can generate a 𝜎-profile for the polymer by multiplying the monomer 𝜎-profile by a factor
equal to the number of repeat units in the polymer. This procedure, though not without some shortcomings, makes the
treatment of polymers with COSMO-RS computationally tractable.

Fig. 5.1: COSMO surface of the Polyether ether ketone (PEEK) monomer within a trimer. The “average monomer”
𝜎-profile is calculated from the central monomer unit of the trimer.

There are many possible approaches to generating the 𝜎-profile for an “average monomer.” The approach used to
generate the monomers in the 2019 ADFCRS-Polymer Database is the following:

(1) Construct a trimer from 3 units of the monomer

39



COSMO-RS Manual, Amsterdam Modeling Suite 2022.1

Fig. 5.2: COSMO surface of the isolated Polyether ether ketone (PEEK) monomer.

(2) Cap the ends of the outer two monomers with methyl groups
(3) Optimize the geometry of the trimer with ADF
(4) Do a single point COSMO calculation
(5) Generate the 𝜎-profile for only the central unit of the trimer

This method provides the 𝜎-profile of a monomer surrounded by two copies of itself on either side. Though perhaps
longer polymer chains could be considered in the determination of the “average monomer,” the trimer representation
was found to be sufficiently accurate for calculating various thermodynamic properties while not being exorbitantly
expensive in the ADF step. In cases where this monomer representation fails to capture the behavior of the polymer,
the following alternative procedures are possible:

• Generating a structure from a longer polymer chain and taking the “average monomer” 𝜎-profile as an average
of the 𝜎-profiles of all of the interior monomers

• Sampling the conformational space of the polymer and using different structures for different problems (e.g., a
polymer with a possible intramolecular H-bond may exhibit this internal H-bonding in a neutral solvent but not
in a more polar one)

5.1 Additional properties/units for polymer systems

5.1.1 Average molecular weight

As mentioned above, polymers in COSMO-RS are calculated using a scaled version of a monomer’s 𝜎-profile. How-
ever, because polymers come in many different lengths, we must be able to adjust the length of the polymer and
accordingly adjust the scaling of the monomer 𝜎-profile. This is done with an average molecular weight parameter,
which represents the Number Average Molecular Weight 𝑀𝑁 , defined as the following:

𝑀𝑁 =

∑︀
𝑗 𝑛𝑗𝑤𝑗∑︀
𝑗 𝑛𝑗
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where j is in index over all different molecules (different-length polymers are different molecules) in solution, 𝑤𝑗 is the
weight of each molecule, and 𝑛𝑗 is the number of molecules of type j in solution. Because this parameter is adjustable,
the same monomer 𝜎-profile can be used for calculations with polymers of different lengths. Note that a default value
of 10000 g/mol is used if no input is given.

5.1.2 Mole fractions of the monomers and polymers

Because a typical polymer consists of many polymer chains of different lengths, the mole fraction of the polymer is
well-defined. In the COSMO-RS program, there are two mole fractions defined:

x(monomer)

x(monomer) is simply the mole fraction of a monomer in the solution, treating all polymeric species as a number of
monomers equal to the length of the polymer chain. For non-polymeric components, x(monomer) is the mole fraction
in relation to a solution of monomers.

x(polymer)

x(polymer) defines a mol of each polymer chain using the average molecular weight parameter to determine the
average chain length. Specifically, we can define a term 𝑅𝑖 as the number of repeat units in the average polymer of
species i. For non-polymeric components, 𝑅𝑖 = 1. 𝑅𝑖 is shown below:

𝑅𝑖 =
𝑀𝑁

𝑖

𝑀(𝑚𝑜𝑛𝑜𝑚𝑒𝑟)𝑖

where 𝑀(𝑚𝑜𝑛𝑜𝑚𝑒𝑟)𝑖 refers to the molar mass of the monomer. Using this 𝑅𝑖, we can define 𝑥(𝑝𝑜𝑙𝑦𝑚𝑒𝑟)𝑖:

𝑥(𝑝𝑜𝑙𝑦𝑚𝑒𝑟)𝑖 =
𝑥(𝑚𝑜𝑛𝑜𝑚𝑒𝑟)𝑖/𝑅𝑖∑︀
𝑗 𝑥(𝑚𝑜𝑛𝑜𝑚𝑒𝑟)𝑗/𝑅𝑗

where now j is an index over all distinct components. All polymers of the same type are assumed to be of length 𝑅𝑖.

5.1.3 Weight- and volume-fraction activity coefficients

As a further consequence of the ill-defined mole fraction for polymer solutions, activity coefficients are often reported
in the literature in terms of weight- or volume-fraction. These are also reported for calculations in the COSMO-RS
program in which at least one species is a polymer. They are defined from the activity of each species:

𝑎𝑖 = 𝛾𝑖𝑥(𝑝𝑜𝑙𝑦𝑚𝑒𝑟)𝑖

where 𝛾𝑖 is the activity coefficient in relation to the polymer mole fractions. Note: this is the default value for 𝛾𝑖 in
polymer calculations. The weight-fraction activity coefficient (Ω𝑖) can then be calculated as:

Ω𝑖 =
𝑎𝑖
𝑤𝑖

where 𝑤𝑖 is the weight fraction of component i. Finally, the volume fraction activity coefficient (𝛾𝜑
𝑖 ) can be defined as

follows:

𝛾𝜑
𝑖 =

𝑎𝑖
𝜑𝑖

where 𝜑𝑖 is the volume fraction of component i.
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5.1.4 Flory-Huggins parameter

The Flory-Huggins model is used extensively for binary polymer/solvent and polymer/polymer mixtures. In the Flory-
Huggins model, the 𝜒 parameter is the single system-specific parameter and is intended to quantify the enthalpic
interactions between system components. Users of the Flory-Huggins model can deduce important system behavior
(phase stability, solubility, etc.) from the value of the 𝜒 parameter.

The 𝜒 parameter was originally intended to be composition-and temperature- independent, although it is now known
to vary significantly across compositions and temperatures for many systems. Fortunately, system changes related
to composition and temperature are captured in the COSMO-RS program and are reflected in the calculation of the
Flory-Huggins 𝜒 parameter. This is due to the calculation of the 𝜒 parameter from the free energy of mixing of two
species:

𝐺𝑚𝑖𝑥

𝑅𝑇𝑉
=

𝜑1

𝑣1
𝑙𝑛(𝜑1) +

𝜑2

𝑣2
𝑙𝑛(𝜑2) +

𝜑1𝜑2𝜒12

𝑣𝑟

where 𝐺𝑚𝑖𝑥 is the free energy of mixing, R is the gas constant, T is the absolute temperature, V is the system volume,
𝜑𝑖 is the volume fraction of component i, 𝑣𝑖 is the molar volume of species i, and 𝑣𝑟 is a reference volume. Note that
the difference in 𝑣1 and 𝑣2 can be significant in the case of a polymer/solvent mixture. Since 𝐺𝑚𝑖𝑥 does vary with
composition and temperature, the 𝜒 parameter will also exhibit this variance.

Important: Reference volumes ( 𝑣𝑟 ) used in calculating the Flory-Huggins parameter

• polymer/solvent systems: 𝑣𝑟 is equal to the molar volume of the solvent

• polymer/polymer systems: 𝑣𝑟 is set to a value of 0.6022140857 𝐿/𝑚𝑜𝑙, which corresponds to a site size of
1 𝑛𝑚3

The COSMO-RS program can calculate thermodynamic properties for multi-component systems, including polymer-
containing systems. However, the Flory-Huggins 𝜒 parameter is traditionally defined for binary mixtures (although
some extensions to multi-component mixtures exist). In the case of multi-component mixtures containing polymers,
we calculate a 𝜒 parameter for each species. This is summarized in the following:

Note: Calculating the Flory-Huggins parameter for systems with more than 2 components

For systems with more than 2 components, a 𝜒 parameter is defined for each component. This 𝜒𝑖 parameter is calcu-
lated as the 𝜒 parameter for a species i as if all the other species in solution were combined into one component. This
means that for a ternary mixture of solvent/polymer A/polymer B, the 𝜒 parameter of the solvent would correspond
to the 𝜒 parameter of the system defined by the solvent and the co-polymer of A and B. Similarly, the 𝜒 parameter
of polymer A would correspond to the 𝜒 parameter of the binary system of polymer A and the meta-solvent of a
combination of polymer B and the solvent.

5.2 Modified combinatorial term

The entropy of polymer solutions cannot be calculated in the same way as the entropy of small molecule solutions.
For this reason, the normal combinatorial term in COSMO-RS is replaced with a polymer-specific combinatorial term.
Specifically, the combinatorial term used is that of Elbro (1990)1, which has previously been applied successfully in

1 H.S. Elbro, A. Fredenslund, and P. Rasmussen, A new simple equation for the prediction of solvent activities in polymer solutions, Macro-
molecules 23, 4707 (1990) (https://doi.org/10.1039/c7cp02317k)
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the context of COSMO-RS2. The Elbro combinatorial requires the free volume fraction (𝜑𝑓𝑣
𝑖 ) of each component:

𝜑𝑓𝑣
𝑖 =

𝑥𝑖(𝑣𝑖 − 𝑣*𝑖 )∑︀
𝑗 𝑥𝑗(𝑣𝑗 − 𝑣*𝑗 )

where 𝑥𝑖 is the (polymer) mole fraction of compound i, 𝑣𝑖 is the molar volume of compound i, 𝑣*𝑖 is the molar hard-
core volume of compound i, and j is also an index over the compounds. Using the values of 𝜑𝑓𝑣

𝑖 for each component,
the combinatorial contribution to the activity coefficient can be defined as follows:

𝑙𝑛(𝛾𝑓𝑣
𝑖 ) = 𝑙𝑛

(︃
𝜑𝑓𝑣
𝑖

𝑥𝑖

)︃
+ 1 − 𝜑𝑓𝑣

𝑖

𝑥𝑖

Finally, this combinatorial term is used to calculate the final activity coefficient:

𝑙𝑛(𝛾𝑖) = 𝑙𝑛(𝛾𝑐𝑟𝑠
𝑖 ) + 𝑙𝑛(𝛾𝑓𝑣

𝑖 )

where 𝛾𝑐𝑟𝑠
𝑖 is the activity coefficient calculated with COSMO-RS without any combinatorial corrections.

5.3 General application guidelines/warnings

At present, the quality of the predictions of the COSMO-RS program is unreliable or untested for the following types
of systems:

• Cross-linked polymers. The structures of cross-linked polymers are not perfectly compatible with the assump-
tions in the COSMO-RS model for polymers. These types of systems are not recommended to be used with
COSMO-RS.

• Polymers with significant swelling behavior. Polymer swelling is not easily captured with COSMO-RS. It is
likely that some of the error due to swelling can be offset by using correct molar volume values for the polymers
in different solvents/at different temperatures.

5.4 Downloading the ADFCRS-POLYMER-2019 database

See the section on the ADFCRS-POLYMER-2019 database (page 19) on how to download this database.

5.5 Tutorial on polymer calculations

There is a tutorial on COSMO-RS calculations with polymers that demonstrates basic the basic functionality of the
COSMO-RS GUI with polymers. This will cover calculations using the polymer database as well as inputting your
own polymer structures.

2 C. Loschen and A. Klamt, Prediction of solubilities and partition coefficients in polymers using COSMO-RS, Industrial & Engineering Chem-
istry Research 53, 11478 (2014) (https://doi.org/10.1021/ie501669z)
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CHAPTER

SIX

THE UNIFAC PROGRAM

Using the UNIFAC program from the command line is documented in the following:

6.1 Compound Input

6.1.1 Basic Input

In the UNIFAC program, compounds are expected to be input as SMILES strings, and their ratios are expected as mole
fractions. A summary of basic compound input is given below:

Flag Purpose Example
-h Produces help message $AMSBIN/unifac –help
-smiles Input molecule as SMILES sting $AMSBIN/unifac -smiles

<SMILES1> <SMILES2> . . .
-x Input the mole fractions $AMSBIN/unifac -x <mol fraction

1> <mol fraction 2> . . .
-solute Specify a molecule as a solute $AMSBIN/unifac -smiles CCC -

solute -smiles . . .
-o Write output to file $AMSBIN/unifac -o <output file>

. . .

Note that the -smiles and -x flags are only specified one time and all information ( SMILES strings and mole fractions
) comes after these flags. It is assumed that the order of the mole fractions after the -x corresponds to the order of
the SMILES strings after the -smiles flag. A simple example demonstrating an activity coefficient calculation for a
mixture of three compounds is given below:

$AMSBIN/unifac -smiles CCCCCC CCCO CCCCBr -solute -x 0.2 0.3 0.5 -t ACTIVITYCOEF

The -solute flag is used to specify which compounds should be treated as solutes for the PURESOLUBILITY template.
See the PURESOLUBILITY section for more information.

6.1.2 Physical Property Input

A number of problem templates require physical property information to be input. Physical property information
should be input directly after a compound’s SMILES representation. A list of the physical property flags and examples
of usage are given below:
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Flag Purpose Example
-pvap Vapor pressure (bar) $AMSBIN/unifac -smiles

<SMILES> -pvap 0.43 . . .
-tvap Temperature (K) corresponding to pvap $AMSBIN/unifac -smiles

<SMILES> -tvap 320.1 . . .
-antoine Antoine coefficients for compound $AMSBIN/unifac -smiles

<SMILES> -antoine 7.23 1504.2
246.87 . . .

-hfusion Enthalpy of fusion in kJ/mol $AMSBIN/unifac -smiles
<SMILES> -hfusion 6.4

-meltingpoint Melting point of compound (K) $AMSBIN/unifac -smiles
<SMILES> -meltingpoint 421.12

Below is an example (with synthetic antoine parameters) demonstrating the command line input for a binary mixture
calculation (BINMIXCOEF) using vapor pressure estimated from the antoine parameters.

$AMSBIN/unifac -smiles "CCCCOCC" -antoine 5 1500 30 \
"CCCCCC" -antoine 6 1234 10 -t BINMIXCOEF

Additionally, we present an example for calculating the solubility of DDT in ethanol. Since DDT is a solid at room
temperature, this requires us to input Enthalpy of Fusion and Melting Point data.

$AMSBIN/unifac -smiles \
"C1=CC(=CC=C1C(C2=CC=C(C=C2)Cl)C(Cl)(Cl)Cl)Cl" -hfusion 26.28 -meltingpoint 383 \
"CCO" -x 0.0 1.0 -t SOLUBILITY

6.2 Program Input

6.2.1 List of possible input flags

The UNIFAC program accepts a few additional flags to specify system conditions, choose a template for the calcula-
tion, or set the number of points taken over a provided range (e.g., a temperature range). A summary of these input
options is provided below. In the following section, examples are given for each flag.

Flag Meaning
-t One of a number of template strings to indicate the problem type
-temperature One/two values (K) to specify the system temperature/temperature range
-n the number of steps taken if a range is specified or for a BINMIXCOEF or

TERNARYMIX calculation
-preset an integer to indicate which solvent system is chosen for logP calculations

6.2.2 Examples of general program flags

In this section, we provide a brief example of each of the above flags.

-t

The -t flag has been shown in previous examples and will be described in more detail in the following section. The -t
flag must be followed by one of the following template names:
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LOGP
ACTIVITYCOEF
PURESOLUBILITY
SOLUBILITY
VAPORPRESSURE
PUREVAPORPRESSURE
BINMIXCOEF
TERNARYMIX

A brief example of this for the ACTIVITYCOEF template is given below:

$AMSBIN/unifac -smiles "CCCCO" "CCCOCCC" -x 0.5 0.5 -t SOLUBILITY

-temperature

In this example, we take the previous DDT solubility calculation and perform the calculation at a temperature of 310
K. This is shown below:

$AMSBIN/unifac -smiles \
"C1=CC(=CC=C1C(C2=CC=C(C=C2)Cl)C(Cl)(Cl)Cl)Cl" -hfusion 26.28 -meltingpoint 383 \
"CCO" -x 0.0 1.0 -temperature 310 -t SOLUBILITY

If we want to calculate the solubility over a temperature range (say, 310-350 K), we need to specify the temperature
flag twice and also include a number of steps to take between the two temperatures with the -n flag. This looks like
the following:

$AMSBIN/unifac -smiles \
"C1=CC(=CC=C1C(C2=CC=C(C=C2)Cl)C(Cl)(Cl)Cl)Cl" -hfusion 26.28 -meltingpoint 383 \
"CCO" -x 0.0 1.0 -temperature 310 -temperature 350 -n 10 -t SOLUBILITY

-n

The -n flag specifies a number of steps to take between a temperature range or the number of steps to take along each
mole fraction axis for a BINMIXCOEF or a TERNARYMIX calculation. For an input value of N for the -n flag, the
BINMIXCOEF and TERNARYMIX templates consider the following number of distinct mole fraction combinations:

Template Number of distinct systems considered
BINMIXCOEF N+5
TERNARYMIX (N+1)(N+2)/2

If we wanted to calculate the thermodynamic properties of a binary mixture with a very small step size, we could input
a N value of 1000 to take 1005 samples of the mole fraction space:

$AMSBIN/unifac -smiles \
"CCCCOCC" -antoine 5 1500 30 \
"CCCCCC" -antoine 6 1234 10 \
-t BINMIXCOEF -n 1000

-preset

The preset flag is used for a logP calculation. A preset of 2 (default) indicates that that we do a logP calculation on the
traditional Octanol/Water system. This looks like the following:
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$AMSBIN/unifac -smiles "CCCCOCC" -t LOGP -preset 2

More information on the preset flag options for the LOGP template will be given in the templates section.

6.3 Templates

The -t flag indicates which of several problem types, or templates, should be used. Different templates expect different
input options and produce different results. A summary of the different templates is given below.

6.3.1 ACTIVITYCOEF

Number of compounds required >= 2
Mole fraction values (-x) required Yes
-solute flag used No
-antoine or pvap/tvap required No
-hfusion/-meltingpoint required No

The activity coefficient template calculates activity coefficients from a set of mole fraction values. In the following
example, we calculate the activity coefficients of the water/propanol system over a temperature range of 230-298.15
K.

$AMSBIN/unifac -smiles "O" "CCCO" -x 0.2 0.8 \
-t ACTIVITYCOEF -temperature 230 -temperature 298.15 -n 20

6.3.2 LOGP

Number of compounds required >= 1
Mole fraction values (-x) required No
-solute flag used No
-antoine or pvap/tvap required No
-hfusion/-meltingpoint required No

The logP template calculate the partition coefficient (P) of input structures between a variety of common liquid/liquid
systems. The specific set of liquids can be chosen with the -preset flag. A summary of the -preset options is given
below:

-preset value Liquid phases
2 Octanol/Water
3 Benzene/Water
4 Diethyl ether/Water
5 Hexane/Water

In the following example, we calculate the logP of Sertraline in the Octanol/Water system.

$AMSBIN/unifac -smiles "CNC1CCC(C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)Cl" -t LOGP -preset 2
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6.3.3 PURESOLUBILITY

Number of compounds required >= 2
Mole fraction values (-x) required No
-solute flag used Yes
-antoine or pvap/tvap required No
-hfusion/-meltingpoint required if solute is a solid

The pure solubility template calculates the solubility of a solute (designated by the -solute flag) in a variety of pure
solutes. More specifically, the solute’s solubility is calculated in every one of the other input molecules.

In the following example we calculate the solubility of Undecanedioic acid (a solid at 298.15 K) in n-Hexane, Benzene,
Water, and Ethanol.

$AMSBIN/unifac -smiles \
"C(CCCCC(=O)O)CCCCC(=O)O" -hfusion 39.65 -meltingpoint 385 -solute \
"CCCCCC" "c1ccccc1" "O" "CCO" -t PURESOLUBILITY

6.3.4 SOLUBILITY

Number of compounds required >= 2
Mole fraction values (-x) required Yes
-solute flag used No
-antoine or pvap/tvap required No
-hfusion/-meltingpoint required if solute is a solid

The solubility template calculates the solubility of every input molecule in the system defined by the remaining
molecules. For example, assume we input a system with molecules A, B, and C with mole fractions 0.2, 0.6, and
0.2. The solubility of molecule A is then calculated in a mixture of B/C where the mole fraction ratio is fixed to 3/1
(from the 0.6/0.2 in the input). The solubility of A may very well be 0.6, but this would mean the remaining mole
fractions would be 0.3/0.1 (B/C). The same calculation is then also done for B and C.

In the following example we calculate the solubilities of Benzene, n-Hexane, 1-Hexanol, and Acetic acid. Note that
the mole fraction of Benzene is set to 0.0. This means that Benzene’s solubility will still be calculated, but it will not
be part of the solvent system when the other molecules’ solubilities are being calculated.

$AMSBIN/unifac \
-smiles "c1ccccc1" "CCCCCC" "CCCCCCO" "CC(=O)O" \
-x 0.0 0.2 0.3 0.5 -t SOLUBILITY

6.3.5 PUREVAPORPRESSURE

Number of compounds required >= 1
Mole fraction values (-x) required No
-solute flag used No
-antoine or pvap/tvap required Yes
-hfusion/-meltingpoint required No

The pure vapor pressure template simply calculates the vapor pressure of a pure component. Because this requires the
antoine parameters as input, this template simply evaluates the antoine equation, possibly over a temperature range.
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The following example calculates the pure vapor pressure (again using synthetic antoine coefficients) for two
molecules over a temperature range:

$AMSBIN/unifac \
-smiles "c1ccccc1" -antoine 4 1245 123 \
"CCCCC" -antoine 5 1241 242 \
-t PUREVAPORPRESSURE -temperature 320 -temperature 350 -n 10

6.3.6 VAPORPRESSURE

Number of compounds required >= 1
Mole fraction values (-x) required Yes
-solute flag used No
-antoine or pvap/tvap required Yes
-hfusion/-meltingpoint required No

The vapor pressure template calculates the vapor pressure of a mixture (or a pure component if only one compound is
entered). This again requires the antoine parameters for each compound as input.

We repeat the previous example, now calculating the vapor pressure of the 0.2/0.8 mole fraction mixture.

$AMSBIN/unifac \
-smiles "c1ccccc1" -antoine 4 1245 123 \
"CCCCC" -antoine 5 1241 242 \
-x 0.2 0.8 \
-t VAPORPRESSURE -temperature 320 -temperature 350 -n 10

6.3.7 BINMIXCOEF

Number of compounds required 2
Mole fraction values (-x) required No
-solute flag used No
-antoine or pvap/tvap required Yes
-hfusion/-meltingpoint required No

The binary mixture template takes exactly 2 compounds as input. Unlike other templates where thermodynamic
properties are calculated over a range of temperatures, the binary mixture template calculates properties over a range
of mole fractions. In other words, it takes a number of samples of the mole fraction space. If no antoine coefficients
are given, then no gas phase thermodynamic properties are reported.

In this example we calculate binary mixture properties for the Water/Ethanol system (again with synthetic antoine
parameters).

$AMSBIN/unifac -smiles "O" -antoine 4 1245 123 "CCO" \
-antoine 5 1241 242 -t BINMIXCOEF -n 10
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6.3.8 TERNARYMIX

Number of compounds required 3
Mole fraction values (-x) required No
-solute flag used No
-antoine or pvap/tvap required Yes
-hfusion/-meltingpoint required No

The ternary mixture template takes exactly 3 molecules as input and performs similar calculations to those done in the
binary mixture template. Note that tie lines are not calculated like they are in the COSMO-RS/-SAC programs.

In this example we add a Acetone to our previous two compounds and change the temperature to 330 K.

$AMSBIN/unifac -smiles "O" -antoine 4 1245 123
"CCO" -antoine 5 1241 242 \
"CC(=O)C" -antoine 6 2414 221 \
-t TERNARYMIX -n 20 -temperature 330
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CHAPTER

SEVEN

PURE COMPOUND PROPERTY PREDICTION

7.1 Introduction

The Property Prediction program in ADF provides quick, accurate estimates for many important pure component
physical properties. At its core, the Property Prediction program maps various QSPR descriptors of an input molecule
onto a single numerical value, the property estimate. Many of these property models rely on easy-to-evaluate QSPR
descriptors and numerically straightforward computations, meaning that an estimate can be provided for every property
in << 1s per molecule. The general expression for the models used in the Property Prediction program is as follows:

𝑓(𝑃 ) = 𝐶 + 𝑔

(︃∑︁
𝑖

𝑐𝑖𝑛𝑖

)︃
+ ℎ

(︃∑︁
𝑖

𝑑𝑖𝑛𝑖, 𝑇

)︃

where f is a function that transforms the property value space, g is a function that maps QSPR descriptors onto a
numerical value, and h is a function which also captures temperature-dependence of certain properties by including
temperature, T, as an input. Additionally, C is a constant, 𝑛𝑖 refers to QSPR values of QSPR descriptor i, and 𝑐𝑖 and
𝑑𝑖 are fitted coefficients corresponding to each QSPR descriptor i.

The accuracy of the property estimates depends on the nature/complexity of the input molecular structure. For many
common organic structures, the property estimates should be reasonably accurate. However, as is always the case with
QSPR models, the Property Prediction program will likely lose accuracy for molecules outside its training domain,
i.e., for molecules that are very “dissimilar” to compounds which occur in the training set. In general, the program can
be used for molecules with the following atom types:

Accepted atom types Example functional groups which can be used with atom type
H Alkanes, Alkenes, Alkynes, Aldehydes, Amides, Amines, Aromatics, Carboxylic

Acids, Hydroxides, Sulfides, Thiols
C Acid chlorides, Alkanes, Alkenes, Alkynes, Aldehydes, Amides, Aromatics, Car-

boxylic Acids, Esters, Ethers, Ketones, C-X (halogens)
N Amides, Amines, Aromatics, Cyanides, Imines, Nitro groups
O Acid chlorides, Aldehydes, Amides, Aromatics, Carboxylic Acids, Esters, Ethers, Ke-

tones, Nitro groups
F -CF, -CF2, -CF3
S Sulfides, Thiols
Cl Acid chlorides, -CCl, -CCl2, -CCl3
Br -CBr
I -CI

A brief description of molecule types for which this method will not work well is given in the General warnings
section. Common molecules for which this method will fail are: (1) those that contain only one non-hydrogen atom,
e.g., Methane or Water; (2) those that contain atoms not listed in the table above.
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7.2 Available properties

The Property Prediction program can predict the values of various pure component physical properties. These prop-
erties can be of interest themselves or can be used in conjunction with other COSMO-RS property calculations (e.g.,
to calculate the solubility of a solid in a liquid, we must know the enthalpy of fusion and melting point of the solid
– both of these properties can be estimated with the Property Prediction program). The available properties and their
units are listed below:

Property Name Units Additional
Information

Typical error

Boiling point K at 1 atm 15 K
Critical Pressure bar 1.5 bar
Critical Temperature K 30 K
Critical Volume L/mol 0.02 L/mol
Dielectric Constant 3
Ideal Gas Entropy J/(mol K) at 298.15 K

and 1 bar
20 J/(mol K)

Flash point K 15 K
Gibbs Energy Ideal Gas kJ/mol at 298.15 K

and 1 bar
25 kJ/mol

Enthalpy of Combustion kJ/mol at 298.15 K 50 kJ/mol
Std. Enthalpy of Formation kJ/mol at 298.15 K

and 1 bar
30 kJ/mol

Enthalpy of Fusion kJ/mol at Normal
Melting
Point

4 kJ/mol

Enthalpy of Form. Ideal Gas kJ/mol at 298.15 K
and 1 bar

25 kJ/mol

Enthalpy of Sublimation kJ/mol 5 kJ/mol
Melting point K at 1 atm 35 K
Liquid Molar volume L/mol at 298.15 K 0.005 L/mol
(Liquid Density) kg/L at 298.15 K uses Liquid Molar Volume
Liquid Vapor Pressure bar 10-30%
Parachor 7
Solubility Parameter (cal/cm^3)^1/2 at 298.15 K 0.7
Triple point temperature K 35 K
Van der Waals Area Å2 6 Å2

Van der Waals Volume Å3 3 Å3

7.3 Running the Property Prediction program

The Property Prediction program can be run from the command line. The following general flags are used by the
program:
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Flag Purpose Example
-h
[--help]

Produces help message $AMSBIN/prop_prediction
--help

-s
[--smiles]

Input molecule as SMILES sting $AMSBIN/prop_prediction
--smiles <SMILES> ...

-m [--mol] Input molecule as .mol file $AMSBIN/prop_prediction
--mol <mol file> ...

--temperatureSet temperature/range (K) $AMSBIN/prop_prediction
--temperature 298.15
...

-n number of steps for temperature range $AMSBIN/prop_prediction
--n 20 ...

-d
[--display]

Display calculated properties $AMSBIN/prop_prediction
--d ...

-o
[--output]

Write output to file $AMSBIN/prop_prediction
--o <output file> ...

Note, if no output flag is supplied, then the results are written to a file called CRSKF by default. Additionally, the user
may enter as many compounds as desired on the command line in either of the two available input formats.

The program can be run in 2 ways:

• Estimating all available properties for every molecule

• Estimating specific properties for every molecule

To estimate all properties for every input compound, simply execute the program with all molecules specified on the
command line. Don’t forget that the -d flag is required to display the results in the terminal. An example of this is
below.

$AMSBIN/prop_prediction --smiles CCCCCCO -o example.crskf -temperature 298.15 -
→˓temperature 398.15 -n 20 -d

Boiling point at standard pressure :
CCCCCCO 435.777 K
Critical pressure :
CCCCCCO 34.3493 bar
Critical temperature :
CCCCCCO 576.466 K
Critical volume :
CCCCCCO 0.404124 L/mol
Liquid density :
CCCCCCO 0.79182 kg/L
Dielectric constant :
CCCCCCO 10.9512
Absolute entropy of an ideal gas at 298.15 K and 1 bar :
CCCCCCO 439.885 J/(mol K)
Flash point :
CCCCCCO 342.271 K
Gibbs energy of formation for an ideal gas at 298.15 K and 1 bar :
CCCCCCO -131.869 kJ/mol
Net enthalpy of combustion at 298.15 K :
CCCCCCO -3678.12 kJ/mol
Standard state enthalpy of formation at 298.15 K and 1 bar :
CCCCCCO -384.388 kJ/mol
Enthalpy of fusion at normal melting point :

(continues on next page)
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(continued from previous page)

CCCCCCO 18.5054 kJ/mol
Enthalpy of formation for an ideal gas 298.15 K :
CCCCCCO -316.821 kJ/mol
Enthalpy of sublimation :
CCCCCCO 80.9799 kJ/mol
Melting point at 1 atm :
CCCCCCO 231.141 K
Liquid molar volume :
CCCCCCO 0.128949 L/mol
Parachor :
CCCCCCO 289.059
Solubility parameter :
CCCCCCO 10.1294 (cal/cm^3)^0.5
Triple point temperature :
CCCCCCO 230.404 K
Van der Waals area :
CCCCCCO 171.059 Å^2
Van der Waals volume :
CCCCCCO 120.519 Å^3
Liquid vapor pressure :
Molecule: CCCCCCO

Temperature (K) Vapor pressure (bar)
298.15 0.001229
303.15 0.001809
308.15 0.002623
313.15 0.003750
318.15 0.005289
323.15 0.007362
328.15 0.010123
333.15 0.013757
338.15 0.018487
343.15 0.024582
348.15 0.032357
353.15 0.042182
358.15 0.054484
363.15 0.069757
368.15 0.088563
373.15 0.111537
378.15 0.139394
383.15 0.172929
388.15 0.213022
393.15 0.260644
398.15 0.316852

For most applications, it is not necessary to calculate all of the available physical properties (although doing so is
practically just as fast). In these cases, additional property flags need to be specified on the command line to restrict
the program to calculating only certain physical properties. For example, if we were doing solid/liquid solubility
calculations on Ibuprofen and Paracetamol, we would require the Enthalpy of Fusion and the Melting Point of both
compounds. To calculate only these two properties, we simply have to add the two property flags “-hfusion” and
“-meltingpoint” to the command line. Using the .mol file for Ibuprofen and the SMILES string for Paracetamol, we
execute the following:

$AMSBIN/prop_prediction -d -m Ibuprofen.mol -s 'CC(=O)NC1=CC=C(C=C1)O' -hfusion -
→˓meltingpoint
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Enthalpy of fusion at normal melting point :
CC(=O)NC1=CC=C(C=C1)O 33.0298 kJ/mol
Ibuprofen.mol 24.0336 kJ/mol

Melting point at 1 atm :
CC(=O)NC1=CC=C(C=C1)O 469.282 K
Ibuprofen.mol 331.887 K

7.4 Index of property keys

The available properties and their corresponding property flags are listed below:

Property Name Property Flag
Boiling point --boilingpoint
Critical Pressure --criticalpressure
Critical Temperature --criticaltemp
Critical Volume --criticalvol
Dielectric Constant --dielectricconstant
Ideal Gas Entropy --entropygas
Flash point --flashpoint
Gibbs Energy Ideal Gas --gidealgas
Enthalpy of Combustion --hcombust
Std. Enthalpy of Formation --hformstd
Enthalpy of Fusion --hfusion
Enthalpy of Form. Ideal Gas --hidealgas
Enthalpy of Sublimation --hsublimation
Melting point --meltingpoint
Liquid Molar volume --molarvol
(Liquid Density) --molarvol
Liquid Vapor Pressure --vaporpressure
Parachor --parachor
Solubility Parameter --solubilityparam
Triple point temperature --tpt
Van der Waals Area --vdwarea
Van der Waals Volume --vdwvol

7.5 General warnings

This method will fail for the following types of molecules:

• Those that contain only one non-hydrogen atom (e.g., Methane or Water). However, experimental data is am-
ple for these small molecules. The vapor pressure model is the exception in that it can represent such small
structures.

• Those that contain atoms or substructures that are not listed in the Accepted atom types table (page 53) above.

• Polymers and Ionic Liquids

This method will lose accuracy for some properties in the following domains:

• Molecules with many different types of functional groups
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• Molecules that are extremely light (< 3 non-Hydrogen atoms) or heavy (> 30 non-Hydrogen atoms)

7.6 Equations for temperature-dependent properties

7.6.1 VPM1: liquid vapor pressure

𝑙𝑛(𝑃 ) = 𝐴/𝑇 + 𝐵𝑙𝑛(𝑇 ) + 𝐶𝑇 + 𝐷

Symbol Meaning
P vapor pressure
T absolute temperature
A,B,C,D estimated constants
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CHAPTER

EIGHT

SOLVENT OPTIMIZATION

8.1 Introduction

The choice of solvent or solvent system can have a dramatic impact on the solubility of solutes, the performance of
the solvent system for liquid-liquid extraction, or reaction rates/selectivities for many chemical reactions. The solvent
is also one of the most accessible variables in formulation/reaction/extraction design as many of the other species in
these problems (active ingredients, co-solvents, reactants, catalysts, extracts, raffinates, etc. ) are often fixed or tightly
constrained. However, the solvent selection problem is combinatorially complex and non-trivial. As an example of
this complexity, consider the problem of choosing up to 4 solvents for a process from a set of 100 possible solvents.
The number of combinations alone is over 4 million, a number that makes laboratory- or pilot-scale testing for every
system untenable. An additional complication is that the identities of the solvents alone do not determine a solvent
system: we must also know the mole fractions. Of course, there are an infinite number of possible mole fraction
values for a solvent system ( a value of 𝑥1 = 0.3, 𝑥2 = 0.7 is just as valid as 𝑥1 = 0.29999, 𝑥2 = 0.70001 ), meaning
a high-throughput approach would still require multiple mole fraction values for each solvent system to effectively
sample the mole fraction space.

Luckily, the complexity of this problem can be addressed with modern mathematical optimization approaches. Fol-
lowing the approach of1, we re-structure the COSMO-RS/-SAC parameters and equations and incorporate them into a
Mixed Integer Nonlinear Programming (MINLP) formulation. Using this generic formulation, we can apply a number
of optimization solvers and solution techniques to the problem of determining an optimal solvent system. We note
that the optimization methods currently in use only guarantee local solutions, but the formulation should be robust
enough to provide high-quality solutions for many types of problems. In fact, for most of our example problems, our
optimization approach was able to find the globally optimal solution (as determined by an exhaustive enumeration of
the solvent space and dense sampling of the mole fractions space). There are additionally some features in the program
(e.g., the -multistart flag) which help to provide a diversity of starting conditions so the solvers can find high-quality
solutions.

8.2 Problem types

At present, the program has two problem templates:

• The SOLUBILITY template: this selects a solvent system and mole fractions in order to maximize or minimize
the mole fraction solubility of a solid solute in the liquid mixture. Note that currently only solid/liquid equilibria
calculations are supported.

• The LLEXTRACTION template: this selects a two-phase solvent system and mole fractions in order to maxi-
mize (or minimize) the distribution ratio (D) of two solutes between the two liquid phases. The distribution ratio
for these problems is defined in terms of mole fractions rather than concentrations. The formula for this is given
in an equation below. Note that LLEXTRACTION problems will fail if all possible solvents are miscible.

1 N.D. Austin, N.V. Sahinidis, D.W. Trahan, COSMO-based computer-aided molecular/mixture design: A focus on reaction solvents, AIChE
Journal 64, 104 (2018) (https://doi.org/10.1002/aic.15871)
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Because liquid densities are not always known, we calculate the distribution ratio (D) in terms of mole fractions. The
liquid-liquid phase equilibrium condition provides an equivalent expression for D. More precisely, this means that D
can be calculated as follows:

𝐷 = 𝑚𝑎𝑥

(︂
𝛾𝐼
1

𝛾𝐼𝐼
1

𝛾𝐼𝐼
2

𝛾𝐼
2

,
𝛾𝐼
2

𝛾𝐼𝐼
2

𝛾𝐼𝐼
1

𝛾𝐼
1

)︂
where 𝛾𝑗

𝑖 represents the activity coefficient of solute i in phase j. Here, we assume that the two solutes to be separated
are indexed with 𝑖 ∈ {1, 2}. The max operator, though not used in the optimization problem itself, allows us to express
the correct value of D in the equation above. In other words, the max operator removes the dependence of the D value
on arbitrary indexing of solutes and phases.

Note: For LLEXTRACTION problems, the mole fractions of the solutes are fixed to 0 unless they are also specified
as solvents. This means that the distribution coefficient is calculated using the infinite dilution activity coefficients.

A brief summary of what to expect for solvent optimization problems using the two templates is given below:

SOLUBILITY LLEXTRACTION
Minimum number of sol-
vents

1 2

Preferred number of sol-
vents

>1 >4

Typical solution times <2s 1-30s
Recommended multistarts <5 if any 5-10
Warmstart recommended No Problem-dependent

The warmstart and multistart options will be explained in a later section.

8.3 Running the Solvent Optimization program

The Solvent Optimization program can be run from the command line. The following general flags are used by the
program:

Flag Purpose Example
-h [–help] Produces help message $AMSBIN/solvent_opt –help
-s [–smiles] Input molecule as SMILES sting $AMSBIN/solvent_opt –smiles

<SMILES> . . .
-m [–mol] Input molecule as .mol file $AMSBIN/solvent_opt –mol <mol

file> . . .
-c [–coskf] Input molecule as .coskf file $AMSBIN/solvent_opt –coskf

<.coskf file> . . .
-d [–display] Display problem results $AMSBIN/solvent_opt –d . . .
-o [–output] Write output to file $AMSBIN/solvent_opt –o <output

file> . . .

Additionally, physical properties required for the calculation can be input on the command line. Presently, only two
physical properties (Enthalpy of Fusion and Melting Point) are required for certain calculations. These flags must
follow a molecule input and be followed by the property value. Some examples are given below:
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Flag Property Example
-hfusion H of Fusion (kJ/mol) $AMSBIN/solvent_opt -c Ibuprofen.coskf -hfusion 26.6 . . .
-meltingpoint Melting point (K) $AMSBIN/solvent_opt -c Ibuprofen.coskf -meltingpoint 349.2 . . .

Optimization problem specifications and method options can be input with the following flags:

Flag Meaning Example
-method Choice of method

(COSMO-RS COS-
MOSAC2016)

. . . -method COSMO-RS . . .

-max maximize the Sol-
ubility/Extraction ra-
tio

-min minimize the Solu-
bility/Extraction ra-
tio

-solute specify which
molecules are solutes

. . . -s CCCO -solute . . .

-t [–template] choose a problem
template

. . . -t LLEXTRACTION . . .

-temperature input 1 or 2 tempera-
tures (K)

. . . -temperature 298.15 . . .

Note that, like the -hfusion and -meltingpoint flags, the -solute flag comes after a compound identifier (SMILES
string/filename).

Finally, there are two more optimization problem flags which can be altered for problems that do not converge. The
first is the -multistart flag. This flag takes an integer N as input and instructs the algorithm to begin from N randomly-
generated starting points. This can be useful for difficult problems because not only will the algorithm begin from more
starting points, but it will also adjust internal parameters every time a problem fails. The -warmstart flag instructs the
main algorithm to attempt to make the convert the initial starting point to a high-quality, feasible starting point which
can then be given to the optimization algorithm. This option can be helpful for many problems, especially those with
small numbers of solvents or LLEXTRACTION problems where the solvents are extremely immiscible (e.g., Water
and n-Hexane). A summary of these options is presented below:

Flag Meaning Example
-multistart Start from a num-

ber of random start-
ing points

. . . -multistart 5 . . .

-warmstart Use the warmstart
strategy

$AMSBIN/solvent_opt –warmstart . . .

8.4 Examples

In this section, we provide a few example problems to demonstrate a few of the features available in the Solvent
Optimization program. We first do a sample problem with the SOLUBILITY template, and then we provide an
example of the usage of the LLEXTRACTION template.
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8.4.1 Solubility

For a first example, we determine a mixture of solvents to maximize the solubility of Paracetamol. For the purposes of
illustrating features, we assume that we do not have an available .coskf file for Paracetamol and must use its SMILES
string. We can use a few common solvents from the ADFCRS-2018 database:

$AMSBIN/solvent_opt -t SOLUBILITY -d -max \
-s "CC(=O)NC1=CC=C(C=C1)O" -solute -meltingpoint 443.1 \
-c $AMSHOME/atomicdata/ADFCRS-2018/Acetic_acid.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Hexane.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Toluene.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Butanoic_acid.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Ethanol.coskf

================================================
Estimating missing property values

================================================

Estimated values
--------------------------------------------------------------------------------------
Molecule Missing Property Estimated Value

--------------------------------------------------------------------------------------
CC(=O)NC1=CC=C(C=C1)O Hfusion 7.89433

--------------------------------------------------------------------------------------

================================================
Beginning solvent optimization problem

================================================

**********************************************
Iteration 1

**********************************************

Initial guess x1: 0.0235183
Initial guess x2: 0.0758477
Initial guess x3: 0.220089
Initial guess x4: 0.283974
Initial guess x5: 0.314382
Initial guess x6: 0.082189
------> Solver Status: CONVERGED
Objective value: 0.159729
---------------------------------------------------------------------------------

Variable values
---------------------------------------------------------------------------------

x1: 0.159729 CC(=O)NC1=CC=C(C=C1)O
x2: 0 Acetic_acid.coskf
x3: 0 Hexane.coskf
x4: 0 Toluene.coskf
x5: 0 Butanoic_acid.coskf
x6: 0.840271 Ethanol.coskf

The problem correctly selects Ethanol as the solvent in which Paracetamol is most soluble. Single solvent solutions
are common in SOLUBILITY problems as often no mixed solvent system outperforms single solvents. Notice that in
this example any required property values for solid/liquid equilibria that are missing are estimated based on the input
SMILES string. Because the -meltingpoint flag provided a value for the Melting Point, only the Enthalpy of Fusion is
estimated.
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8.4.2 Liquid-liquid extraction

Our next example focuses on a classic liquid-liquid extraction problem: separating Acetic acid and Water. In this
example, we assume that we want to replace a standard solvent for this extraction (n-Hexane) with something more
environmentally-friendly. Consulting GSK’s Solvent Selection Guide2, we restrict our problem to the solvents with the
fewest issues: Water, 1-Butanol, 2-Butanol, t-Butyl acetate, Isopropyl acetate, Propyl acetate, and Dimethyl carbonate.

$AMSBIN/solvent_opt -d -t LLEXTRACTION -max \
-c $AMSHOME/atomicdata/ADFCRS-2018/Acetic_acid.coskf -solute \
-c $AMSHOME/atomicdata/ADFCRS-2018/Water.coskf -solute \
-c $AMSHOME/atomicdata/ADFCRS-2018/Water.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/1-Butanol.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/2-Butanol.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/tert-Butyl_acetate.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Isopropyl_acetate.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Propyl_acetate.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Dimethyl_carbonate.coskf

Notice that water is repeated because it is both a solute and a solvent in the solvent space. The output produced is the
following:

Removing duplicate entry: /home/austin/amshome/atomicdata/ADFCRS-2018/Water.coskf
================================================

Beginning solvent optimization problem
================================================

**********************************************
Iteration 1

**********************************************
Phase I Phase II

Initial guess x1: 0.0818796 0.241048
Initial guess x2: 0.162378 0.185238
Initial guess x3: 0.198892 0.0429676
Initial guess x4: 0.114387 0.152842
Initial guess x5: 0.0267187 0.0437898
Initial guess x6: 0.232349 0.042073
Initial guess x7: 0.112232 0.182333
Initial guess x8: 0.071164 0.109708
------> Solver Status: CONVERGED
Objective value: 232.779
---------------------------------------------------------------------------------

Variable values
---------------------------------------------------------------------------------

x1: 0 0 Acetic_acid.coskf
x2: 0.994592 0.0358616 Water.coskf
x3: 0 0 1-Butanol.coskf
x4: 0 0 2-Butanol.coskf
x5: 0.000100098 0.186012 tert-Butyl_acetate.coskf
x6: 0 0 Isopropyl_acetate.coskf
x7: 0 0 Propyl_acetate.coskf
x8: 0.00530747 0.778127 Dimethyl_carbonate.coskf

---------------------------------------------------------------------------------
Extraction values

---------------------------------------------------------------------------------
Distribution
coefficient (D) log10(D)

(continues on next page)

2 GSK Solvent Selection Guide. Accessed 1/9/18. http://www.rsc.org/suppdata/gc/c0/c0gc00918k/c0gc00918k.pdf
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---------------------------------
232.779 2.36694

Solute 1 ID: Acetic_acid.coskf
Solute 2 ID: Water.coskf

-------------------------
Partition ratio Partition

Phase I Phase II coefficient (P) log10(P)
-------------------------------------------------------------

Solute 1: 1 8.39321 0.119144 -0.923928
Solute 2: 27.7342 1 27.7342 1.44302

In this problem, we obtain a mostly aqueous phase and a dimethyl carbonate/tert-butyl acetate phase as the solution.
This solvent system provides a distribution coefficient (D) of 232.779. This is a good value for a separation, but it is
still worse than the distribution coefficient of the water/hexane solvent system (D = 1372.14) by roughly a factor of 6.

We then increase our solvent search space to include the solvents deemed to have “some isssues” by GSK and are also
present in our database: Ethanol, 1-Propanol, 2-Propanol, Methanol, Ethyl acetate, Methyl acetate, Methyl isobutyl
ketone, Acetone, p-xylene, Toluene, Isooctane, Cyclohexane, Heptane, and DMSO.

$AMSBIN/solvent_opt -d -t LLEXTRACTION -max \
-c $AMSHOME/atomicdata/ADFCRS-2018/Acetic_acid.coskf -solute \
-c $AMSHOME/atomicdata/ADFCRS-2018/Water.coskf -solute \
-c $AMSHOME/atomicdata/ADFCRS-2018/Water.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/1-Butanol.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/2-Butanol.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/tert-Butyl_acetate.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Isopropyl_acetate.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Propyl_acetate.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Dimethyl_carbonate.coskf
-c $AMSHOME/atomicdata/ADFCRS-2018/Ethanol.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/1-Propanol.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/2-Propanol.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Methanol.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Ethyl_acetate.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Methyl_acetate.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Methyl_isobutyl_ketone.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Acetone.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/p-Xylene.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Toluene.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/2,2,4-Trimethylpentane.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Cyclohexane.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Heptane.coskf \
-c $AMSHOME/atomicdata/ADFCRS-2018/Dimethyl_sulfoxide.coskf

This produces the following:

...
---------------------------------------------------------------------------------

Variable values
---------------------------------------------------------------------------------

...
x2: 0.999972 7.50215e-05 Water.coskf
...
x15: 5.58242e-06 0.00252496 Methyl_isobutyl_ketone.coskf
...

(continues on next page)
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x20: 2.27012e-05 0.9974 Cyclohexane.coskf
...

---------------------------------------------------------------------------------
Extraction values

---------------------------------------------------------------------------------
Distribution
coefficient (D) log10(D)
---------------------------------
1892.42 3.27702

Solute 1 ID: Acetic_acid.coskf
Solute 2 ID: Water.coskf

-------------------------
Partition ratio Partition

Phase I Phase II coefficient (P) log10(P)
-------------------------------------------------------------

Solute 1: 7.04343 1 7.04343 0.847784
Solute 2: 13329.1 1 13329.1 4.1248

As shown, this solvent system has a D value of 1892.42, better than that of the hexane/water system. Removing
cyclohexane from the possible solvents, we still obtain a solution with a D value of 1891.09. Successively removing
the best non-aqueous solvents from the solvent list, we obtain solutions with D values of: 1864.41, 1645.38, 1597.42,
and finally 232.779 again. The number of good solutions for this problem lends credence to the idea of using such a
solvent selection algorithm in general extraction design.

Additionally, there is a tutorial on solvent optimization which demonstrates running the program from the COSMO-RS
GUI.

8.5 Guidelines for difficult problems

The Solvent Optimization program should produce high-quality solutions for many problems. However, there may be
examples where the algorithm struggles to produce solutions at all. Below we list troubleshooting guidelines to help
solve problematic solvent optimizations:

(1) For LLEXTRACTION problems, ensure that there are at least 2 immiscible solvents

Because the LLEXTRACTION template requires that both the liquid-liquid phase equilibria condition is met and that
there are two distinct liquid phases, the Solvent Optimization program will fail if all of the available solvents are
miscible in all mole fractions (no phase separation is possible).

(2) Re-execute the program several times

The Solvent Optimization program is not entirely deterministic. In particular, starting points are selected at random
for every iteration. These starting points affect the convergence of the problem and in some cases can have a large
impact on the optimization. This means that if one execution of the Solvent Optimization program fails to produce a
solution, then it is possible that a subsequent execution could succeed. If the program continues to fail after multiple
attempts at re-execution, consider using the multistart or warmstart flags.

(3) Use the -multistart flag

This flag executes the program multiple times from multiple starting points. If problems fail, the program uses in-
formation from these problems and updates internal optimization parameters to aid in the convergence of successive
problems. Because each iteration takes a relatively short amount of time, the multistart flag can be used with high
numbers of different starting points. It is useful to first try a smaller number of multistarts (5-15). If this produces
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no solution, try using the -warmstart flag in addition to the multistarts. If the problems continue to fail, use gradually
higher numbers of multistarts (20,40,60,80,100+).

(4) Use the -warmstart flag

If this flag is present, the program attempts to find a good starting point for LLEXTRACTION problems rather than
simply using the randomly-generated starting point. This can be useful with or without the -multistart flag and is very
problem-dependent. In our experience, LLEXTRACTION problems sometimes have difficulty converging if there are
a small number of solvents and/or if the solution contains two highly-immiscible liquids (e.g., Hexane/Water). We
reiterate that this is very problem-dependent.

8.6 Differences from standard implementations

The COSMO-RS method of the Solvent Optimization program is nearly identical to the ADF combi2005 implemen-
tation (the default COSMO-RS method). The single difference is that there is no f_corr parameter in the Solvent
Optimization implementation. This parameter is used for the perpendicular component of the sigma values and has
only a small effect on the results. Removing it from the Solvent Optimization program was done to improve solution
times and robustness. Though the calculated values will be similar, results from the Solvent Optimization program can
easily be input to ADFCRS and checked against the full ADF combi2005 method if desired.

The COSMOSAC2016 implementation in Solvent Optimization is identical to the 2016-ADF Chen implementation in
ADFCRS.

To reproduce the results from the Solvent Optimization program to within tolerance, parameters must be changed in
the GUI or from the command line. The following parameter changes are required:

Method Required parameter changes
COSMO-RS set f_corr to 0
COSMOSAC2016 none

In the current version of the program, the COSMO-RS/-SAC parameters cannot be changed/customized.
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CHAPTER

NINE

SCRIPTING WITH COSMO-RS

9.1 Python scripting for COSMO-RS with PLAMS

9.1.1 General Information

Attention: Windows and Mac users may find it helpful to first read the Getting Started guides for scripting:
scripting with Windows | scripting with MacOS

Python and the PLAMS library can be used for scripting with COSMO-RS. Due to the speed of COSMO-RS calcu-
lations, these jobs can be run interactively from the python interpreter. Larger numbers of jobs or high-throughput
calculations can also easily be automated with python scripting. All results are returned as a python object, mean-
ing the properties calculated with COSMO-RS can immediately be post-processed or used directly in other python
functions.

Note: COSMO-RS calculations require a .coskf or .compkf file for every compound in the system. .coskf
and .compkf files only need to be calculated once and then are stored in a database and can be used for any future
calculation containing the corresponding compound. Generating these files requires calculating the COSMO surface
with ADF (a relatively more expensive DFT calculation). Setting up these calculations is not directly supported with
this version of PLAMS but can be done using scripting with amsprep.

9.1.2 Executing the code from the command line

It is recommended to use the version of python that is shipped with AMS. This version ensures that all the necessary
libraries (e.g., PLAMS) are properly imported and are mutually compatible. The best way to do this is to run the
amspython program. That can be executed from the command line as follows:

$AMSBIN/amspython <your_program.py>

where <your_program.py> should of course be replaced by the name of your program.

9.1.3 Specifying a problem type

To run COSMO-RS, the user must first provide a problem type for the calculation. This can be done by first creating
a Settings object and then specifying the .input.property._h attribute. For example, to set up an activity
coefficient calculation, we do the following:
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from scm.plams import *

settings = Settings()
settings.input.property._h = 'ACTIVITYCOEF'

For other problem types, the .input.property._h attribute must be set to other values. The other options for
this value are summarized below:

._h value Problem type
ACTIVITYCOEF Activity Coefficient
BINMIXCOEF Binary mixture LLE/VLE
TERNARYMIX Ternary mixture LLE/VLE
COMPOSITIONLINE Solvent composition line interpolation
SOLUBILITY Solubility calculation in a mixed solvent
PURESOLUBILITY Solubility calculation in a pure solvent
LOGP Partition coefficient calculation
VAPORPRESSURE Vapor pressure calculation for a mixed solvent
PUREVAPORPRESSURE Vapor pressure calculation for a pure solvent
BOILINGPOINT Boiling point calculation for a mixture
PUREBOILINGPOINT Boiling point calculation for a pure solvent(s)
FLASHPOINT Flashpoint calculation for a mixture
SIGMAPROFILE Sigma profile calculation for a mixture
PURESIGMAPROFILE Sigma profile calculation for a pure component(s)
SIGMAPOTENTIAL Sigma potential calculation for a mixture
PURESIGMAPOTENTIALSigma potential calculation for a pure component(s)

9.1.4 Inputting Compounds

In PLAMS, each compound is also input as a Settings object. Additional information about the compounds
required for the calculation (e.g., mole fraction) can be specified as an attribute of the compound’s Settings object.
An example for a calculation with two compounds is given below.

# set the number of compounds
num_compounds = 2

compounds = [Settings() for i in range(num_compounds)]
compounds[0]._h = "Water.coskf"
compounds[1]._h = "1-Hexanol.coskf"

9.1.5 Specifying mole fractions, temperatures, and pressures

Mole fractions are attributes of the compound Settings object. There are two types of mole fractions used in
COSMO-RS. frac1 is for standard specification of mole fractions in most problem types. frac2 is used when
the problem type requires two distinct liquid phases (COMPOSITIONLINE or LOGP). Additionally, the temperature
can be specified using the input.temperature attribute of the Settings object. An example of this is shown
below:

#set compound mole fractions
compounds[0].frac1 = 0.3
compounds[1].frac1 = 0.7

(continues on next page)
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#set temperature (range)
#to specify a range, use 3 numbers: (1) the lowest temperature,
#(2) the highest temperature, and (3) the steps taken between these temperatures
settings.input.temperature = "298.15"

To specify a temperature range, set the input.temperature object equal to a python str which contains the
lower temperature, upper temperature, and number of steps taken between the temperatures. These values should
simply be separated by spaces. For example, to specify that a calculation should go over the temperature range
298.15K to 398.15K with 10 temperature steps, do the following:

settings.input.temperature = "298.15 398.15 10"

Pressure works in much the same way. To input the system pressure (in bar), do the following:

settings.input.pressure = "1.5"

9.1.6 Running jobs

To run a job with COSMO-RS, first assign the input.compound attribute to the list of compound Settings
objects used previously. Then, simply create the job using CRSJob(settings=<your previously defined
Settings object>). Once a job is created, you can run it with the .run() function. An example of this is given
below:

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
init()
out = my_job.run()
finish()

9.1.7 Reading the results of a job

Once a job has finished running, we can access the results directly in python. First, we can check to see which
properties are available. We can do this using the get_prop_names() function on the output. For example, adding
the line:

# check for the available properties
print( "Available properties:", out.get_prop_names() )

gives us the available properties as a python set for our calculation type (“ACTIVITYCOEF” in this case). The result
of the print statement is the following:

Available properties: {'henrycnodim', 'property', 'deltag', 'henryc', 'nitems', 'gamma
→˓',
'ncomp', 'filename', 'temperature', 'frac1', 'G solute', 'mu gas', 'molmass', 'E gas',
'mu', 'usepolyunits', 'mu pure', 'method'}

We can also convert all of the calculation results to a python dict using the get_results() function. For
example, to collect all of the results and then print the activity coefficient values (“gamma”), we write the following
code:
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# convert all the results into a python dict
res = out.get_results()
print( "Activity coef values:\n", res["gamma"] )

This results in the following program output:

Activity coef values:
[[ 3.71486 ]
[ 1.04484607]]

Here the two activity coefficient values are returned as elements in a numpy.ndarray. Properties with multiple
values are always stored as a numpy array.

Note: For properties with multiple values, the dictionary values are stored as a numpy.ndarray. If applicable to
the calculation, the rows of the array represent different compounds and the columns represent different steps of the
calculation (e.g., different temperatures/pressures or different mole fractions for a binary/ternary mixture calculation).

Putting all the previous code together, we have the following working example for calculating activity coefficients for
2 components:

from scm.plams import *
from os import path

################## Be sure to add the path to your own ADFCRS directory here #######
→˓###########
######################################################################################
→˓###########
database_path = "<Path to ADFCRS directory containing .coskf files>"
######################################################################################
→˓###########

if not path.exists(database_path):
raise OSError(f'The provided path does not exist. Exiting.')

# initialize settings object
settings = Settings()
settings.input.property._h = 'ACTIVITYCOEF'

# set the number of compounds
num_compounds = 2

compounds = [Settings() for i in range(num_compounds)]
compounds[0]._h = path.join( database_path, "Water.coskf" )
compounds[1]._h = path.join( database_path, "1-Hexanol.coskf" )

#set compound mole fractions
compounds[0].frac1 = 0.3
compounds[1].frac1 = 0.7

#set temperature (range)
#to specify a range, use 3 numbers: (1) the lowest temperature,
#(2) the highest temperature, and (3) the steps taken between these temperatures
settings.input.temperature = "298.15"

# specify the compounds as the compounds to be used in the calculation

(continues on next page)
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settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
init()
out = my_job.run()
finish()

# check for the available properties
print( "Available properties:", out.get_prop_names() )

# convert all the results into a python dict
res = out.get_results()
print( "Activity coef values:\n", res["gamma"] )

9.1.8 Plotting results

2D graphs can also be generated to visualize the results with the plot function. The plot function takes as a first
argument any (or multiple) of the following:

• a numpy.ndarray object. This can be passed to the function as a dictionary value after calling the
get_results() function.

• the name of a property. This property is read from the results and plotted. For a list of available properties, use
the get_prop_names() function.

Additionally, the plot function takes the following keyword arguments:

• x_axis. This can be the name of a property or a numpy.ndarray object. This represents the independent
variable in the plot. This value must be one dimensional, meaning it cannot be indexed over both compounds
and temperatures.

• x_label. This can be used to label the x axis in the plot.

• y_label. This can be used to label the y axis in the plot.

• plot_fig. This is set to True/False to indicate whether a plotted figure should be displayed. The default is
True.

The results of plot are returned as a matplotlib.pyplot object and can be further modified.

To demonstrate the use of plot, we do an example in which we calculate the solubility of methane gas in 1-Octanol
and Ethanol across the temperature range from 298.15K to 398.15K. We also include the vapor pressure of methane
using the VPM1 model. The code is shown below:

from scm.plams import *
from os import path

################## Be sure to add the path to your own ADFCRS directory here #######
→˓###########
######################################################################################
→˓###########
database_path = "<Path to ADFCRS directory containing .coskf files>"
######################################################################################
→˓###########

if not path.exists(database_path):

(continues on next page)
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raise OSError(f'The provided path does not exist. Exiting.')

# initialize settings object
settings = Settings()
settings.input.property._h = 'PURESOLUBILITY'

# this indicates we're calculating gas solubility
settings.input.property.isobar = ''

# set the number of compounds
num_compounds = 3

compounds = [Settings() for i in range(num_compounds)]
compounds[0]._h = path.join( database_path, "Methane.coskf" )
compounds[1]._h = path.join( database_path, "1-Octanol.coskf" )
compounds[2]._h = path.join( database_path, "Ethanol.coskf" )

#set compound mole fractions
#for pure solubility the solvent gets a mole fraction of 1
#and the solute does not have the frac1 attribute
compounds[1].frac1 = 1
compounds[2].frac1 = 1

# specify the vapor pressure equation for methane
compounds[0].vp_equation = "VPM1"
compounds[0].vp_params = "-1039.67755001 -0.183945615995 0.00061368649128 10.
→˓1113503603315 0.0"

#set temperature (range)
#to specify a range, use 3 numbers: (1) the lowest temperature,
#(2) the highest temperature, and (3) the steps taken between these temperatures
settings.input.temperature = "298.15 398.15 10"

#1 atm = 1.01325 bar
settings.input.pressure = "1.01325"

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
init()
out = my_job.run()
finish()

# convert all the results into a python dict
res = out.get_results()

#plot the solubilities in g/L solution
#the [1:] indicates that we're not plotting the values for methane (these are
→˓automatically set to 0)
out.plot( res["solubility g_per_L_solution"][1:], x_axis = "temperature", x_label=
→˓"Temperature", y_label = "solubility g/L solution")

This code generates the following plot:
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Fig. 9.1: The output of the plot function for a gas solubility calculation.
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9.1.9 Examples

Partition coefficient

In this example, we calculate the logP of Ibuprofen. We use the standard octanol/water system. The code is as follows:

from scm.plams import *
from os import path

################## Be sure to add the path to your own ADFCRS directory here #######
→˓###########
######################################################################################
→˓###########
database_path = "<Path to ADFCRS directory containing .coskf files>"
######################################################################################
→˓###########

if not path.exists(database_path):
raise OSError(f'The provided path does not exist. Exiting.')

# initialize settings object
settings = Settings()
settings.input.property._h = 'LOGP'

# set the number of compounds
num_compounds = 3

compounds = [Settings() for i in range(num_compounds)]
compounds[0]._h = path.join( database_path, "1-Octanol.coskf" )
compounds[1]._h = path.join( database_path, "Water.coskf" )
compounds[2]._h = path.join( database_path, "Ibuprofen.coskf" )

#phase1 (octanol phase)
compounds[0].frac1 = 0.725
compounds[1].frac1 = 0.275

#phase2 (water phase)
compounds[0].frac2 = 0
compounds[1].frac2 = 1

#set temperature (range)
#to specify a range, use 3 numbers: (1) the lowest temperature,
#(2) the highest temperature, and (3) the steps taken between these temperatures
settings.input.temperature = "298.15"

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
init()
out = my_job.run()
finish()

# convert all the results into a python dict
res = out.get_results()

(continues on next page)
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# print the logP of Ibuprofen
print ("logP of Ibuprofen:", res["logp"][2])

This generates the following output:

logP of Ibuprofen: [ 4.67381309]

Binary mixture

In this example, we calculate a binary mixture of water and 2-Hexanone and plot the vapor pressures as a function of
composition. We also show how to change the method and calculate the binary mixture with the COSMO-SAC2013-
Xiong model.

from scm.plams import *
from os import path

################## Be sure to add the path to your own ADFCRS directory here #######
→˓###########
######################################################################################
→˓###########
database_path = "<Path to ADFCRS directory containing .coskf files>"
######################################################################################
→˓###########

if not path.exists(database_path):
raise OSError(f'The provided path does not exist. Exiting.')

# initialize settings object
settings = Settings()
settings.input.property._h = 'BINMIXCOEF'

# let's also change to the COSMOSAC2013 method
settings.input.method = 'COSMOSAC2013'

# set the number of compounds
num_compounds = 2

compounds = [Settings() for i in range(num_compounds)]
compounds[0]._h = path.join( database_path, "Water.coskf" )
compounds[1]._h = path.join( database_path, "2-Hexanone.coskf" )

# use the vapor pressures from the VPM1 model
compounds[0].vp_equation = "VPM1"
compounds[0].vp_params = "-6093.40215895 -3.09584608667 0.000498622924643 34.
→˓47450247140318 0.0"
compounds[1].vp_equation = "VPM1"
compounds[1].vp_params = "-6474.348470271438 -6.057589837807771 0.003390587477679571
→˓51.07134238467479 0.0"

#set temperature (range)
#to specify a range, use 3 numbers: (1) the lowest temperature,
#(2) the highest temperature, and (3) the steps taken between these temperatures
settings.input.temperature = "298.15"

# specify the compounds as the compounds to be used in the calculation

(continues on next page)
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settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
init()
out = my_job.run()
finish()

# convert all the results into a python dict
res = out.get_results()

#plot all the pressures as a function of mole fraction of water
out.plot( "vapor pressure", "pressure", x_axis = res["molar fraction"][0], x_label=
→˓"mole fraction water", y_label = "Pressure (bar)")

The code generates the following plot:

Fig. 9.2: A plot showing the total and partial vapor pressures for the water/2-Hexanone system.

9.2 AMSprep: construct an ADF COSMO results file

The module amsprep is intended to facilitate scripting. More details on amsprep can be found in the AMSprep section
in the Scripting manual. For COSMO-RS the most relevant is the ADFCRS template. The template ADFCRS will
perform a gas phase geometry optimization, and next a COSMO calculation at the gas phase optimized geometry.
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In the next example the result of the ADF calculation is a file called adfwater.coskf, which is an ADF COSMO result
file, that can be used as input for a COSMO-RS calculation, see also the Example: COSMO-RS Tutorial 1 (page 81).

cat << eor > water.xyz
3

H 0.00000000 0.77121000 0.18071000
O 0.00000000 -0.00000000 -0.36142000
H 0.00000000 -0.77121000 0.18071000
eor

"$AMSBIN/amsprep" -t ADFCRS -m water.xyz -j adfwater >job
chmod +x job
./job

9.3 CRSprep: generate (multiple) COSMO-RS jobs

The module crsprep is intended to facilitate scripting: it makes it easier to construct proper jobs, from within a script.
This module can be used, for example, to run the same type of COSMO-RS job on various compounds, or to change
input settings. This module can also be used to put pure compound data on an ADF COSMO result file.

In $AMSHOME/examples/crs one can find examples that follow the COSMO-RS GUI tutorials, which are also de-
scribed in the section Scripting Examples (page 81).

The most convenient way to see the options of crsprep is to run the crsprep command without arguments. You will get
output very much alike the following description, but probably more up-to-date.

% crsprep -h

CRSprepare (crsprep) saves pure compound data on an ADF COSMO result file
or generates a job script for COSMO-RS calculations,
with user specified changes to input options / method / system.
Required is at least 1 compound and -savecompound or -t template

Usage:
crsprep -savecompound -s compound.coskf

[-nring nring] [-pvap pvap] [-tvap tvap] [-antoine "A B C"]
[-meltingpoint meltingpoint] [-hfusion hfusion] [-cpfusion cpfusion]
[-flashpoint flashpoint] [-density density] [-scalearea scalearea]

crsprep -t template
[-s compound.(coskf|compoundlist)] [-c compound.(coskf|compoundlist)]
[-nring nring] [-pvap pvap] [-tvap tvap] [-antoine "A B C"]
[-meltingpoint meltingpoint] [-hfusion hfusion] [-cpfusion cpfusion]
[-flashpoint flashpoint] [-density density] [-scalearea scalearea]
[-frac1 frac1] [-frac2 frac2]
[-densitysolvent densitysolvent] [-solphase solphase]
[-volumequotient volumequotient] [-preset preset]
[-method method] [-temperature temperature] [-pressure pressure]
[-iso iso] [-n n] [-inputpurevap inputpurevap]
[-inputpuredensity inputpuredensity]
[-sigmax sigmax] [-massfraction] [-file filename] [-j jobname]

SAVE PURE COMPOUND DATA
-savecompound

use to save pure compound data on an existing ADF COSMO result file

(continues on next page)

9.3. CRSprep: generate (multiple) COSMO-RS jobs 77



COSMO-RS Manual, Amsterdam Modeling Suite 2022.1

(continued from previous page)

TEMPLATE
-t template

use for COSMO-RS property calculation
template should be one of:

VAPORPRESSURE, PUREVAPORPRESSURE,
BOILINGPOINT, PUREBOILINGPOINT, FLASHPOINT,
LOGP, ACTIVITYCOEF, SOLUBILITY, PURESOLUBILITY,
BINMIXCOEF, TERNARYMIX, COMPOSITIONLINE,
SIGMAPROFILE, PURESIGMAPROFILE, SIGMAPOTENTIAl, PURESIGMAPOTENTIAL

COMPOUNDS
at least 1 compound is required

-s file: the special compound(s) to be used, should be a .coskf file,
or a .compoundlist file. The -s key has to be repeated for each file

-c file: additional compound(s) to be used, should be a .coskf file,
or a .compoundlist file. The -c key has to be repeated for each file
the order of the compounds is: first all compound defined with -s,
then those with -c
LOGP, ACTIVITYCOEF, SOLUBILITY: use -s for the solvent and -c for the solutes
PURESOLUBILITY: use -s for the solute and -c for the solvents

PURE COMPOUND DATA
-nring: number of ring atoms
-pvap: pure compound vapor pressure (bar) at tvap
-tvap: at this temperature (Kelvin) pure compound has pressure pvap
-antoine: Antoine coefficients A, B, and C
-meltingpoint: melting point (Kelvin)
-hfusion: enthalpy of fusion (kcal/mol)
-cpfusion: heat capacity of fusion (kcal/(mol K))
-flashpoint: flash point (Kelvin)
-density: liquid density (kg/L)
-scalearea: COSMO surface area scale factor

these keys can be repeated for each compound,
first appearance of the key will be for compound 1, second for compound 2, etc.
note the order of the compounds

SOLVENT
-frac1: define solvent
-frac2: define solvent 2 (LogP, composition line)

the -frac1 and -frac2 key have to be repeated for
each compound that should have a non-default value
first appearance of the key will be for compound 1, second for compound 2, etc.
note the order of the compounds

-densitysolvent: density solvent (kg/L)
-solphase: pure compound phase solute in solubility calculation
-volumequotient: molar volume phase 1/molar volume phase 2 (LogP)
-preset: LogP preset 0, 2, 3, 4, 5

0: user defined; 2: Octanol/Water; 3: Benzene/Water; 4: Ether/Water;
5: Hexane/Water

METHOD, SYSTEM
-method: COSMO-RS, COSMOSAC2013, COSMOSAC2016
-temperature: temperature (Kelvin)

the -temperature key can be used twice to give a range
-pressure: pressure (bar)

the -pressure key can be used twice to give a range
-iso: isotherm, isobar, flashpoint

(continues on next page)
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-n: number of steps
-inputpurevap: if 1 use input pure compound pvap and tvap or Antoine equation
-inputpuredensity: if 1 use input pure compound liquid density
-sigmax: maximum value sigma (sigma profile, sigma potential)
-massfraction: use mass fractions

INPUT FILE
-file: content of the file will be added at the end of the input for the

COSMO-RS calculation. The -file key has to be repeated for each file

OUTPUT
-j: produce a fully runnable job (as the .job files from AMSjobs),

using the specified jobname. The job script produces files like jobname.out,
jobname.crskf etc. Several job scripts can simply be concatenated,
the results will be stored in different files using the jobname parameter
the default is a simple run script

EXAMPLES
crsprep -s benzene.coskf -nring 6 -savecompound
crsprep -t VAPORPRESSURE -temperature 273.15 -temperature 373.15 -s methanol.coskf

9.4 AMSreport: generate report

The module amsreport is intended to facilitate scripting. More details on amsreport can be found in the AMSreport
section in the Scripting manual. It makes it very easy to get results calculated by COSMO-RS (or other programs in
the ADF suite) in your own script. Compared to ADF2014 AMSreport has been extended to get easier results from
COSMO-RS result files (.crskf files). It was already possible to report any proper KF variable from the .crskf file. Now
a few predefined keys are added. See the $AMSHOME/examples/crs directory for use of amsreport in COSMO-RS
calculations. Depending on the kind of calculation one can use:

Command line option Property

TOC Table of contents
PROPERTY General:Property

METHOD Property:Method
NITEMS Property:Number of Items
FRAC1 Property:Solvent: molar fraction
FRAC2 Property:Solvent 2: molar fraction
SOLVENT-FRACTION Property:Solvent: solvent fraction
TEMPERATURE Property:Temperature (in Kelvin)
PRESSURE Property:Pressure (in bar)
GIBBS-ENERGY-MIXING Property:Gibbs free energy of Mixing (in kcal/mol)
GIBBS-ENERGY-SOLVATION Property:Gibbs free energy of Solvation (in kcal/mol)
GIBBS-ENERGY-SOLUTE Property:Gibbs free energy solute (in kcal/mol)
EXCESS-G Property:Excess Gibbs free energy (in kcal/mol)
EXCESS-H Property:Excess Enthalpy (in kcal/mol)
ENTHALPY-VAPORIZATION Property:Enthalpy of vaporization (in kcal/mol)
LOGP Property:LogP
MOLAR-FRACTION Property:Molar Fraction
ACTIVITY-COEFFICIENT Property:Activity Coefficient
VAPOR-PRESSURE Property:Vapor Pressure (in bar)
SOLUBILITY-X Property:Solubility: molar fraction
SOLUBILITY-M Property:Solubility: moles per liter (in mol/(L solution))

(continues on next page)

9.4. AMSreport: generate report 79

../Scripting/Commandline_Tools/AMSreport.html
../Scripting/Commandline_Tools/AMSreport.html


COSMO-RS Manual, Amsterdam Modeling Suite 2022.1

(continued from previous page)

SOLUBILITY-G Property:Solubility: gram per liter (in g/(L solution))
SOLUBILITY-MASS-FRACTION Property:Solubility: mass fraction
HENRY Property:Henry Constant (in mol/(L atm))
HENRY-NODIM Property:Henry Constant dimensionless
MISCIBILITY-GAP Property:Miscibility gap
MISCIBILITY-GAP-T Property:Miscibility gap temperature (in Kelvin)
MISCIBILITY-GAP-P Property:Miscibility gap pressure (in bar)
MISCIBILITY-GAP-X Property:Miscibility gap molar fraction x1 x1'
MISCIBILITY-GAP-A Property:Miscibility gap activities a1 a2
TIE-LINES-X Property:Tie Lines molar fraction x1 x2 x3 x1' x2' x3'
TIE-LINES-A Property:Tie Lines activities a1 a2 a3
CHEMICAL-POTENTIAL Property:Chemical Potential
CHEMICAL-POTENTIAL-PURE Property:Chemical Potential Pure Compounds Liquid
CHEMICAL-POTENTIAL-GAS Property:Chemical Potential Pure Compounds Gas
SIGMA Property:Sigma
SIGMA-PROFILE Property:Sigma Profile
SIGMA-PROFILE-HB Property:Sigma Profile Hydrogen Bonding part
SIGMA-PROFILE-TOTAL Property:Total Sigma Profile
SIGMA-PROFILE-HB-TOTAL Property:Total Sigma Profile Hydrogen Bonding part
SIGMA-POTENTIAL Property:Sigma Potential
SIGMA-POTENTIAL-TOTAL Property:Total Sigma Potential

NCOMP Compounds:Number of Compounds
COMPOUNDS-FILENAME Compounds:Filename
COMPOUNDS-NAME Compounds:Name (from filename)
COMPOUNDS-MOLAR-MASS Compounds:Molar Mass

Example
"$AMSBIN/amsreport" file.crskf TOC
"$AMSBIN/amsreport" file.crskf ncomp
"$AMSBIN/amsreport" file.crskf ncomp -plain

9.5 KF utilities for COSMO-RS

9.5.1 KF browser

With the GUI module kfbrowser one can browse through the raw data on KF files (like the .crskf COSMO-RS result
files).

$AMSBIN/kfbrowser file.crskf

9.5.2 kf2cosmo and cosmo2kf

The two COSMO-RS command line utility programs kf2cosmo and cosmo2kf convert COSMO kf files from binary to
ASCII and vice versa.

kf2cosmo file.coskf file.cosmo

kf2cosmo reads from the kf file file.coskf (should exist) the section ‘COSMO’ and writes to the ASCII file file.cosmo
(should not exist). Instead of a .coskf file, the file can also be a TAPE21 file which is a result file from an ADF COSMO
calculation.
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cosmo2kf file.cosmo file.coskf

cosmo2kf reads from the ASCII file file.cosmo (should exist) and writes a section ‘COSMO’ to the kf file file.coskf
(should not exist). Note that only a section ‘COSMO’ is written to the kf file, which means that this file can not be
used like an ordinary adf.rkf file (previously ADF<=2019 TAPE21 file or .t21 file).

cosmo2kf file.cos file.coskf

cosmo2kf can also read a MOPAC COSMO result file file.cos (should exist and should have the file extension .cos)
and writes a section ‘COSMO’ to the kf file file.coskf (should not exist).

9.5.3 pkf, cpkf, dmpkf, udmpkf

pkf file.crskf

pkf prints a summary of the contents of a kf file

cpkf adf.rkf file.coskf COSMO

With the ADF kf utility cpkf one can copy the section ‘COSMO’ from an adf.rkf (should exist) to a file.coskf (should
not exist). The file file.t21 should be a result of an ADF COSMO calculation. The file file.coskf is much smaller than
adf.rkf. This file file.coskf can not be used like an ordinary adf.rkf file, but it contains all necessary information such
that it can be used as input for a COSMO-RS calculations.

With the ADF kf utilities dmpkf and udmpkf one can also convert COSMO kf files from binary to ASCII and vice
versa. Note that the ASCII files in this case are not so called .cosmo files.

dmpkf file.coskf > ascii_result
udmpkf < ascii_result newfile.coskf

9.6 Scripting Examples

9.6.1 Example: COSMO result files

Download COSMO_files.run

#! /bin/sh

# This example tries to do the same as in the COSMO-RS GUI Tutorial: COSMO result
→˓files,
# using scripts.
#
# In the first part of the example you will find how to use amsprep to construct
# an ADF COSMO results file.
# The template ADFCRS will perform a gas phase geometry optimization (for water, in
→˓this case),
# and next a COSMO calculation at the gas phase optimized geometry.
# The result file adfwater.coskf, which is an ADF COSMO result file, can be used as
→˓input for
# a COSMO-RS calculation. amsreport is used to extract data from the resulting .coskf
→˓file.

(continues on next page)
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echo "Results"

rm -f water.xyz
rm -f job.sh
cat << eor > water.xyz
3

H 0.00000000 0.77121000 0.18071000
O 0.00000000 -0.00000000 -0.36142000
H 0.00000000 -0.77121000 0.18071000
eor

"$AMSBIN/amsprep" -t GO -runtype "COSMO-RS Compound" -m water.xyz -j adfwater >job.sh
chmod +x job.sh
./job.sh

echo "ADF"
"$AMSBIN/amsreport" adfwater.results geometry-a*
cp adfwater.coskf adffile.coskf
"$AMSBIN/amsreport" adffile.coskf energies

# The template ADFCRS can also be used for generating an "average monomer" COSMO
→˓result file.
# The calculation could take up quite some time.

echo "POLYMER"
$AMSBIN/amsprep -t GO -runtype "COSMO-RS Compound" -smiles "C{-}C{n+}(c1ccccc1)" -j
→˓adfpolystyrene >job3.sh
grep -i coskfatoms job3.sh |wc -w

# A MOPAC COSMO result file can also be constructed.
# Note that the syntax for MOPAC is not the same as in ADF2018.
# The template MOPAC-GO will perform a COSMO geometry optimization,
# if -g "mopac.solvation.enabled 1" -g "mopac.solvation.solvent.name CRS" is included.
# If -g "mopac.solvation.nspa 362" is included the maximum number of COSMO surface
→˓points
# is 362, which is more than the default 42.
# The result file mopacwaterresults/mopac.coskf is a MOPAC COSMO result file,
# which can be used as input for a COSMO-RS calculation.

"$AMSBIN/amsprep" -t MOPAC-GO -m water.xyz -g "mopac.solvation.enabled 1" \
-g "mopac.solvation.solvent.name CRS" -g "mopac.solvation.nspa 362"

→˓\
-j mopacwater >job2.sh

chmod +x job2.sh
./job2.sh

echo "MOPAC"
"$AMSBIN/amsreport" mopacwater.results geometry-a*
"$AMSBIN/amsreport" mopacwater.results/mopac.coskf energies

# Fast Sigma can provide estimates of COSMO-RS sigma profiles in milliseconds.

echo "FAST SIGMA"
"$AMSBIN/fast_sigma" --smiles "CC(Cc1ccc(cc1)[C@@H](C(=O)O)C)C" -o ibuprofen.compkf
"$AMSBIN/amsreport" ibuprofen.compkf formula

(continues on next page)
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"$AMSBIN/amsreport" ibuprofen.compkf energies

echo "Ready"

9.6.2 Example: COSMO-RS parameters and analysis

Download Parameters_and_Analysis.run

#! /bin/sh

# This example tries to part of the COSMO-RS GUI Tutorial: parameters and analysis
→˓using scripts.
#
# First some .coskf files are copied to the location where the scripts are running.

cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/benzene.coskf .
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/ethanol.coskf .
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/methanol.coskf .
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/water.coskf .

# Set pure compound parameters
# ----------------------------

# In the first part of the example you will find how to use crsprep to set pure
→˓compound parameters,
# in this case to set the number of ring atoms for the benzene molecule, which has 6
→˓ring atoms.
# The file benzene.coskf is changed, such that it contains the value "6" for the
→˓number of ring compounds.

"$AMSBIN/crsprep" -c benzene.coskf -nring 6 -savecompound

# The sigma profile and the sigma potential
# -----------------------------------------
#
# Next for convenience a file tutorial2.compoundlist is made that consists of 4 coskf
→˓files.

rm -f tutorial2.compoundlist
rm -f job
cat << eor > tutorial2.compoundlist
benzene.coskf
ethanol.coskf
methanol.coskf
water.coskf
eor

# In the second part of the example sigma profiles are calculated for the four
→˓compounds
# (result file step6.crskf), and next the sigma potentials of the four pure compounds
# (result file step7.crskf).
# With *amsreport* one can get the calculated sigma profile or sigma potential from
# the .crskf file on standard output.

(continues on next page)
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"$AMSBIN/crsprep" -t PURESIGMAPROFILE -c tutorial2.compoundlist -j step6 > job.sh
"$AMSBIN/crsprep" -t PURESIGMAPOTENTIAL -c tutorial2.compoundlist -j step7 >> job.sh
chmod +x job.sh
./job.sh
echo "Results"
"$AMSBIN/amsreport" step6.crskf sigma
"$AMSBIN/amsreport" step6.crskf sigma-profile
"$AMSBIN/amsreport" step6.crskf sigma-profile-hb
"$AMSBIN/amsreport" step7.crskf sigma-potential
echo "Ready"

9.6.3 Example: COSMO-RS properties

Download Properties.run

#! /bin/sh

# This example tries to do the same as COSMO-RS GUI Tutorial: Properties, using
→˓scripts.

echo "Results"

# This example starts with copying 4 coskf files to the current directory,
# and modifying the benzene.coskf file such that the number of ring atoms is 6,
# like in the previous example.

rm -f job.sh
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/benzene.coskf .
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/ethanol.coskf .
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/methanol.coskf .
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/water.coskf .
cp $AMSHOME/examples/COSMO-RS/Properties/2-hexanone.coskf .
cp $AMSHOME/examples/COSMO-RS/Properties/acetic_acid.coskf .

"$AMSBIN/crsprep" -c benzene.coskf -nring 6 -savecompound

# Step 2: Vapor pressure
# ----------------------

# In step 2 of the example the vapor pressure of methanol is calculated at the
# default temperature of 298.15 K (result file step2a.crskf),
# and next for a series of temperatures ranging from 273.15 K to 373.15 K
# in 10 steps (result file step2b.crskf).

touch job.sh
chmod +x job.sh
"$AMSBIN/crsprep" -t PUREVAPORPRESSURE -j step2a \

-c methanol.coskf > job.sh
"$AMSBIN/crsprep" -t PUREVAPORPRESSURE -temperature 273.15 -temperature 373.15 -j
→˓step2b \

-c methanol.coskf >> job.sh
./job.sh
echo "Step 2a"
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"$AMSBIN/amsreport" step2a.crskf temperature
"$AMSBIN/amsreport" step2a.crskf pressure
"$AMSBIN/amsreport" step2a.crskf enthalpy-vaporization
echo "Step 2b"
"$AMSBIN/amsreport" step2b.crskf temperature
"$AMSBIN/amsreport" step2b.crskf pressure
"$AMSBIN/amsreport" step2b.crskf enthalpy-vaporization

# Step 3: Boiling point
# ---------------------

# In step 3 of the example the boiling point of a mixture of methanol and ethanol
# is calculated, for a series of pressures ranging from 0.101325 to 1.01325 bar
# in 10 steps (result file step3.crskf).
# This mixture consist of 50% mole fraction methanol and 50% mole fraction ethanol.

"$AMSBIN/crsprep" -t BOILINGPOINT -pressure 0.101325 -pressure 1.01325 -j step3 \
-c methanol.coskf -frac1 0.5 \
-c ethanol.coskf -frac1 0.5 > job.sh

./job.sh
echo "Step 3"
"$AMSBIN/amsreport" step3.crskf temperature
"$AMSBIN/amsreport" step3.crskf pressure

# Step 4: Flash point
# -------------------

# In step 4 of the example the flash point of a mixture of ethanol and water
# is calculated (result file step4.crskf).
# This mixture consist of 44.2% mass fraction methanol and 55.8% mass fraction
→˓ethanol.
# For a flash point calculation the pure compound flash points are needed as input,
# since COSMO-RS does not predict pure compound flash points.
# For pure ethanol a flash point of 286 K is saved in the file ethanol.coskf.

"$AMSBIN/crsprep" -c ethanol.coskf -flashpoint 286 -savecompound

"$AMSBIN/crsprep" -t FLASHPOINT -massfraction -j step4 \
-c ethanol.coskf -frac1 0.442 \
-c water.coskf -frac1 0.558 > job.sh

./job.sh
echo "Step 4 flash point"
$AMSBIN/amsreport step4.crskf temperature

# Step 5: Activity coefficients, Henry coefficients, Solvation free energies
# --------------------------------------------------------------------------

# In step 5 of the example the infinite diluted solutes benzene, methanol,and
# ethanol are calculated in the solvent water (result file step5.crskf).
# Activity coefficients, Henry coefficients and solvation free energies
# will be calculated.
# One one should include -s flag for water, since it is the solvent,
# and considered here to be a special compound.
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"$AMSBIN/crsprep" -t ACTIVITYCOEF -j step5 \
-s water.coskf \
-c benzene.coskf -c ethanol.coskf -c methanol.coskf > job.sh

./job.sh
echo "Step 5 Activity coefficients, Henry's law constants, Solvation energy"
"$AMSBIN/amsreport" step5.crskf Activity-Coefficient
"$AMSBIN/amsreport" step5.crskf Henry
"$AMSBIN/amsreport" step5.crskf Gibbs-energy-solvation

# Step 6: Partition coefficients (log P)
# --------------------------------------

# In step 6 of the example the partition coefficients of infinitely diluted
# solutes in a mixture of two immiscible solvents are calculated.
# In step 6a the default Octanol/Water partition coefficients are calculated
# (default -preset 2) (result file step6a.crskf).
# In step 6b a user defined (-preset 0) Benzene/Water partition coefficients
# are calculated (result file step6b.crskf).
# In this case one should include -s flag for benzene and water, since these
# are the two immiscible solvents, and considered here to be the special compounds.
# The order of the compounds benzene and water is important, because the
# molar volume of phase 1 (benzene) divided by the the molar volume of phase 2
# (water) is given with the flag -volumequotient.

"$AMSBIN/crsprep" -t LOGP -j step6a \
-c benzene.coskf -c ethanol.coskf -c methanol.coskf > job.sh

"$AMSBIN/crsprep" -t LOGP -preset 0 -volumequotient 4.93 -j step6b \
-s benzene.coskf -s water.coskf \
-c ethanol.coskf -c methanol.coskf >> job.sh

./job.sh
echo "Step 6a octanol/water"
"$AMSBIN/amsreport" step6a.crskf logp
echo "Step 6b benzene/water"
"$AMSBIN/amsreport" step6b.crskf logp

# Step 7: Solubility
# ------------------

# In step 7 of the example the solubility of a compound is calculated.
# The solute can either be a liquid, solid, or gas.
# First some pure compound properties for benzene are set: the melting point,
# enthalpy of fusion, and the boiling point (file benzene.coskf).

"$AMSBIN/crsprep" -c benzene.coskf -meltingpoint 278.7 -hfusion 2.37 -savecompound
"$AMSBIN/crsprep" -c benzene.coskf -tvap 353.3 -pvap 1.01325 -savecompound

# In step 7a the solubility of benzene in water is calculated for a range of
# temperatures ranging from 273.15 K to 373.15 K in 10 steps (result file step7a.
→˓crskf).
# If the template PURESOLUBILITY is used, the special compound is the solute,
# benzene in this case.
# Below 278.7 K, benzene is a solid. This will be taken into account, since the
# melting point and enthalpy of fusion are present on the file benzene.coskf.
# At higher temperatures benzene is assumed to be a liquid.

(continues on next page)
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# Note that tn this calcuation above the normal boiling point of benzene
# the vapor pressure of benzene will be higher than 1.01325 bar.

"$AMSBIN/crsprep" -t PURESOLUBILITY -temperature 273.15 -temperature 373.15 -j step7a
→˓\

-s benzene.coskf \
-c water.coskf > job.sh

# In step 7b again the solubility of benzene in water is calculated for a (different)
# range of temperatures (result file step7b.crs) using the template SOLUBILITY.
# If the template SOLUBILITY is used, the special compound is the solvent,
# water in this case.
# For the density of the solvent water 1.0 kg/L is used.
# Below 278.7 K benzene is a solid. This will be taken into account, since the melting
# point and enthalpy of fusion are present on the file benzene.coskf.
# At higher temperatures benzene is assumed to be a liquid.

"$AMSBIN/crsprep" -t SOLUBILITY -temperature 273.15 -temperature 283.15 \
-densitysolvent 1.0 -j step7b \

-s water.coskf \
-c benzene.coskf >> job.sh

# In step 7c again the solubility of benzene in water is calculated for a range
# of temperatures above the boiling point of benzene (result file step7c.crs)
# using the template SOLUBILITY.
# If the template SOLUBILITY is used, the special compound is the solvent,
# water in this case.
# For the density of water 1.0 kg/L is used.
# For the vapor pressure of benzene 1.01325 bar is used.

"$AMSBIN/crsprep" -t SOLUBILITY -temperature 353.3 -temperature 373.15 \
-densitysolvent 1.0 -solphase Gas -pressure 1.01325 -j step7c \
-s water.coskf \
-c benzene.coskf >> job.sh

# The solubility of a gas in a solvent can also be calculated using Henry's law,
# which is valid for ideal dilute solutions.
# Henry coefficients can be calculated with the template ACTIVITYCOEF.
# In step 7d of the example the infinite diluted solutes benzene is calculated
# in the solvent water (result file step7d.crskf)
# at a temperature of 363.15 K.
# If the template ACTIVITYCOEF is used, the special compound is the solvent,
# water in this case.
# For the density of water 1.0 kg/L is used.

"$AMSBIN/crsprep" -t ACTIVITYCOEF -temperature 363.15 -densitysolvent 1.0 -j step7d \
-s water.coskf \
-c benzene.coskf >> job.sh

# Next the job.sh is run which will produce the crskf files,
# and a report is made for all calculations in step 7.

./job.sh
echo "Step 7a"
"$AMSBIN/amsreport" step7a.crskf solubility-x
echo "Step 7b"
"$AMSBIN/amsreport" step7b.crskf solubility-g
echo "Step 7c"
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"$AMSBIN/amsreport" step7c.crskf solubility-m
echo "Step 7d"
"$AMSBIN/amsreport" step7d.crskf henry

# Step 8: Binary mixtures VLE/LLE
# -------------------------------

# In step 8 phase diagrams of a mixture of two components are be calculated
# with the template BINMIXCOEF.
# Exactly two compound should be given.
# In step 8a of the example a binary mixture of water and methanol
# is calculated at 298.14 K (result file step8a.crskf).

"$AMSBIN/crsprep" -t BINMIXCOEF -temperature 298.14 -j step8a \
-s water.coskf \
-s methanol.coskf > job.sh

# In step 8b of the example a binary mixture of water and ethanol is calculated
# at 322.45 K (result file step8b.crskf).
# Pure compound vapor pressures are given with -tvap (temperature in K)
# and -pvap (vapor pressure in bar).
# Preferably both -tvap and -pvap should be included for both compounds.
# If only one -tvap and one -pvap is given, it is assumed to be for the first
→˓compound.
# Note that these pure compound values are not saved to water.coskf or
# ethanol.coskf in this case.

"$AMSBIN/crsprep" -t BINMIXCOEF -temperature 322.45 -j step8b \
-s water.coskf -tvap 322.45 -pvap 0.123416 \
-s ethanol.coskf -tvap 322.45 -pvap 0.294896 >> job.sh

# In step 8c of the example a binary mixture of water and benzene
# is calculated at 323.15 K (result file step8c.crskf).
# Water and benzene do not mix very well. In this case a
# liquid-liquid equilibrium (LLE) will be calculated.
# The number of mixtures for which the binary mixture is calculated should be not too
→˓small,
# otherwise the properties of the 2 immiscible liquid phases will not be so accurate.
# In this case for the number of mixtures 100 is chosen.
# The actual number of mixtures is 5 more, thus 105 in this case.

"$AMSBIN/crsprep" -t BINMIXCOEF -temperature 323.15 -n 100 -j step8c \
-s water.coskf \
-s benzene.coskf >> job.sh

# In step 8d of the example a binary mixture of methanol and ethanol is calculated
# at a constant total vapor pressure (-iso isobar) of 1.01325 bar (result file step8d.
→˓crskf).
# Pure compound vapor pressures are given with -tvap (temperature in K)
# and -pvap (vapor pressure in bar).
# Preferably both -tvap and -pvap should be included for both compounds.
# If only one -tvap and one -pvap is given, it is assumed to be for the first
→˓compound.
# Note that these pure compound values are not saved to methanol.coskf
# or ethanol.coskf in this case.
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"$AMSBIN/crsprep" -t BINMIXCOEF -iso isobar -pressure 1.01325 -j step8d \
-s methanol.coskf -tvap 338 -pvap 1.01325 \
-s ethanol.coskf -tvap 351 -pvap 1.01325 >> job.sh

# Next the job.sh is run which will produce the crskf files,
# and a report is made for all calculations in step 8.

./job.sh
echo "Step 8a"
"$AMSBIN/amsreport" step8a.crskf molar-fraction
"$AMSBIN/amsreport" step8a.crskf excess-g
"$AMSBIN/amsreport" step8a.crskf excess-h
echo "Step 8b"
"$AMSBIN/amsreport" step8b.crskf vapor-pressure
echo "Step 8c"
"$AMSBIN/amsreport" step8c.crskf miscibility-gap
"$AMSBIN/amsreport" step8c.crskf miscibility-gap-x
"$AMSBIN/amsreport" step8c.crskf miscibility-gap-a
echo "Step 8d"
"$AMSBIN/amsreport" step8d.crskf temperature

# Step 9: Ternary mixtures VLE/LLE
# --------------------------------
#
# In step 9 phase diagrams of a mixture of three components are be calculated
# with the template TERNARYMIX.
# Exactly three compound should be given.
# For convenience first some pure compound properties (normal boiling points)
# are saved to the .coskf files.

"$AMSBIN/crsprep" -c water.coskf -tvap 373.15 -pvap 1.01325 -savecompound
"$AMSBIN/crsprep" -c methanol.coskf -tvap 338 -pvap 1.01325 -savecompound
"$AMSBIN/crsprep" -c ethanol.coskf -tvap 351 -pvap 1.01325 -savecompound
"$AMSBIN/crsprep" -c benzene.coskf -tvap 353.3 -pvap 1.01325 -savecompound

# In step 9a of the example a ternary mixture of methanol, ethanol, and benzene
# is calculated at 343.15 K (result file step9a.crskf).
# In step 9b of the example a ternary mixture of water, ethanol, and benzene is
→˓calculated
# at a constant total vapor pressure (-iso isobar) of 1.01325 bar (result file step9b.
→˓crskf).
# In step 9b a miscibility gap of the ternary mixture will be calculated.
# In this case, within the miscibility gap there are two immiscible phases of
# the liquid in equilibrium.
# The composition of the two phases, which are in equilibrium,
# can be found at the end points of the tie lines, that are calculated.

"$AMSBIN/crsprep" -t TERNARYMIX -temperature 343.15 -j step9a \
-s methanol.coskf -s ethanol.coskf -s benzene.coskf > job.sh

"$AMSBIN/crsprep" -t TERNARYMIX -iso isobar -pressure 1.01325 -j step9b \
-s water.coskf -s ethanol.coskf -s benzene.coskf >> job.sh

./job.sh
echo "Step 9a"
"$AMSBIN/amsreport" step9a.crskf molar-fraction
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"$AMSBIN/amsreport" step9a.crskf pressure
"$AMSBIN/amsreport" step9a.crskf miscibility-gap
echo "Step 9b"
"$AMSBIN/amsreport" step9b.crskf miscibility-gap
echo "First 4 tie-lines"
"$AMSBIN/amsreport" step9b.crskf -r "TERNARYMIX%xll#1:24#12.4f##6"
"$AMSBIN/amsreport" step9b.crskf temperature

# Note that for printing all tie-lines that are calculated in step9b one can simply
→˓use
# "$AMSBIN/amsreport" step9b.crskf tie-lines-x
# instead of the more complicated
# "$AMSBIN/amsreport" step9b.crskf -r "TERNARYMIX%xll#1:24#12.4f##6"
# which also only reports the first 4 tie-lines

# Step 10: A composition line between solvents s1 and s2
# ------------------------------------------------------

# In step 10 a phase diagram of a mixture of two solvents, which both are mixtures,
# is calculated with the template COMPOSITIONLINE.
# In this step one of the tie lines of the ternary mixture of water, ethanol, and
→˓benzene
# of step 9b will be investigated in more detail.
# Note that here the .coskf files are used in which the normal boiling points were
→˓saved to (in step 9).
# The mixture will be calculated for a list of molar (or mass) fractions of the
→˓solvents
# between zero and one, and the compositions of solvent 1 and solvent 2 are linearly
→˓interpolated.
# In this case solvent 1 consists of 0.3 molar fraction ethanol and 0.7 molar
→˓fraction benzene, and
# solvent 2 consists of 0.9 molar fraction water and 0.1 molar fraction ethanol.
# In step 10a of the example this mixture is calculated at a constant total vapor
→˓pressure (-iso isobar)
# of 1.01325 bar (result file step10a.crskf).
# In step 10b of the example this mixture is calculated at 341.05 K (result file
→˓step10b.crskf).
# Why this temperature was chosen can be found in step 10 of COSMO-RS GUI Tutorial:
→˓Properties.

"$AMSBIN/crsprep" -t COMPOSITIONLINE -iso isobar -pressure 1.01325 -n 100 -j step10a \
-s water.coskf -frac1 0.0 -frac2 0.9 \
-s ethanol.coskf -frac1 0.3 -frac2 0.1 \
-s benzene.coskf -frac1 0.7 -frac2 0.0 > job.sh

"$AMSBIN/crsprep" -t COMPOSITIONLINE -temperature 341.05 -n 100 -j step10b \
-s water.coskf -frac1 0.0 -frac2 0.9 \
-s ethanol.coskf -frac1 0.3 -frac2 0.1 \
-s benzene.coskf -frac1 0.7 -frac2 0.0 >> job.sh

./job.sh
echo "Step 10a"
$AMSBIN/amsreport step10a.crskf ncomp
$AMSBIN/amsreport step10a.crskf frac1
$AMSBIN/amsreport step10a.crskf frac2
$AMSBIN/amsreport step10a.crskf solvent-fraction
$AMSBIN/amsreport step10a.crskf molar-fraction
$AMSBIN/amsreport step10a.crskf activity-coefficient
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echo "Step 10b"
$AMSBIN/amsreport step10b.crskf Gibbs-energy-mixing

# Step 11: Pure Compound Properties
# ---------------------------------

# In step 11 a QSPR (Quantitative Structure-Property Relationship) method is used
# to estimate some pure compound properties.
# This QSPR method needs a SMILES string as input.

echo "Step 11"
"$AMSBIN"/prop_prediction --smiles "c1ccccc1" --boilingpoint -d

# Step 12: Solvent Optimizations: Optimize Solubility
# ---------------------------------------------------

# In this step a solvent is optimized in order to maximize or minimize
# the mole fraction solubility of a solid solute in the liquid mixture.

echo "Step 12"
"$AMSBIN"/solvent_opt -t SOLUBILITY -method COSMO-RS -temperature 273.15 -max \

-c "benzene.coskf" -solute -meltingpoint 278.7 -hfusion 2.37 \
-c "ethanol.coskf" -c "methanol.coskf" -c "water.coskf" -d >

→˓max_solubility
grep benzene.coskf max_solubility
grep " ethanol.coskf" max_solubility
"$AMSBIN"/solvent_opt -t SOLUBILITY -method COSMO-RS -temperature 273.15 -min \

-c "benzene.coskf" -solute -meltingpoint 278.7 -hfusion 2.37 \
-c "ethanol.coskf" -c "methanol.coskf" -c "water.coskf" -d >

→˓min_solubility
grep benzene.coskf min_solubility
grep water.coskf min_solubility

# Step 13: Solvent Optimizations: Optimize Liquid-Liquid Extraction
# -----------------------------------------------------------------

# In this step a mixture of immiscible solvents is optimized in order to maximize or
→˓minimize
# the distribution ratio (D) of two solutes between the two liquid phases.

"$AMSBIN"/solvent_opt -t LLEXTRACTION -method COSMO-RS -multistart 10 -temperature
→˓298.15 -max -warmstart \

-c "water.coskf" -solute -c "acetic_acid.coskf" -solute \
-c "benzene.coskf" -c "water.coskf" -c "2-hexanone.coskf" -c

→˓"ethanol.coskf" -d > max_lle

echo "Step 13"
"$AMSBIN/amsreport" CRSKF -r "OPT_LLEXTRACTION%obj#8.3f"

echo "Ready"

9.6.4 Example: The COSMO-RS compound database

Download Database.run
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#! /bin/sh

# This example tries to do the same as in the COSMO-RS GUI Tutorial: The COSMO-RS
→˓compound database,
# using scripts.
# In many of the next examples fewer compounds are included than in the COSMO-RS GUI
→˓Tutorial.

# First some .coskf files are copied to the location where the scripts are running.
# These .coskf files are a sample of the full database.

echo "Results"

cp $AMSHOME/examples/COSMO-RS/Database/*coskf .

rm -f job.sh
touch job.sh
chmod +x job.sh

# 4.2 Octanol-Water partition coefficients (log P_OW)
# ---------------------------------------------------

"$AMSBIN/crsprep" -t LOGP -j t4.2 \
-c Methanol.coskf > job.sh

./job.sh
echo "4.2"
"$AMSBIN/amsreport" t4.2.crskf compounds-name
"$AMSBIN/amsreport" t4.2.crskf logp

# 4.3: Henry's law constants
# --------------------------

"$AMSBIN/crsprep" -t ACTIVITYCOEF -temperature 293.15 -densitysolvent 0.998 -j t4.3a \
-s Water.coskf \
-c Acetone.coskf -c Benzene.coskf -c Ethanol.coskf -c Methanol.

→˓coskf > job.sh
./job.sh
echo "4.3a"
"$AMSBIN/amsreport" t4.3a.crskf compounds-name
"$AMSBIN/amsreport" t4.3a.crskf henry

"$AMSBIN/crsprep" -s Acetone.coskf -pvap 0.246 -tvap 293.15 -savecompound
"$AMSBIN/crsprep" -s Benzene.coskf -pvap 0.100 -tvap 293.15 -savecompound
"$AMSBIN/crsprep" -s Ethanol.coskf -pvap 0.059 -tvap 293.15 -savecompound
"$AMSBIN/crsprep" -s Methanol.coskf -pvap 0.129 -tvap 293.15 -savecompound
"$AMSBIN/crsprep" -s Water.coskf -pvap 0.02536 -tvap 293.15 -savecompound

"$AMSBIN/crsprep" -t ACTIVITYCOEF -temperature 293.15 -densitysolvent 0.998 -j t4.3b \
-s Water.coskf \
-c Benzene.coskf -c Ethanol.coskf -c Methanol.coskf > job.sh

./job.sh
echo "4.3b"
"$AMSBIN/amsreport" t4.3b.crskf henry
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# 4.4: Solubility of Vanillin in organic solvents
# -----------------------------------------------

"$AMSBIN/crsprep" -s Vanillin.coskf -meltingpoint 355 -hfusion 5.35 -savecompound
"$AMSBIN/crsprep" -t PURESOLUBILITY -j t4.4 \

-s Vanillin.coskf \
-c Ethanol.coskf -c Methanol.coskf -c Water.coskf > job.sh

./job.sh
echo "4.4"
"$AMSBIN/amsreport" t4.4.crskf compounds-name
"$AMSBIN/amsreport" t4.4.crskf solubility-x
"$AMSBIN/amsreport" t4.4.crskf solubility-m

# 4.5: Binary mixture of Methanol and Hexane
# ------------------------------------------

"$AMSBIN/crsprep" -s Methanol.coskf -pvap 0.845 -tvap 333.15 -savecompound
"$AMSBIN/crsprep" -s Hexane.coskf -pvap 0.77 -tvap 333.15 -savecompound
"$AMSBIN/crsprep" -t BINMIXCOEF -temperature 333.15 -n 100 -j t4.5a \

-s Methanol.coskf \
-s Hexane.coskf > job.sh

./job.sh
echo "4.5a"
"$AMSBIN/amsreport" t4.5a.crskf compounds-name
"$AMSBIN/amsreport" t4.5a.crskf molar-fraction
"$AMSBIN/amsreport" t4.5a.crskf pressure
"$AMSBIN/amsreport" t4.5a.crskf miscibility-gap
"$AMSBIN/amsreport" t4.5a.crskf miscibility-gap-x
"$AMSBIN/amsreport" t4.5a.crskf miscibility-gap-a

"$AMSBIN/crsprep" -s Methanol.coskf -pvap 1.01325 -tvap 337.8 -savecompound
"$AMSBIN/crsprep" -s Hexane.coskf -pvap 1.01325 -tvap 342 -savecompound
"$AMSBIN/crsprep" -t BINMIXCOEF -pressure 1.01325 -iso isobar -n 100 -j t4.5b \

-s Methanol.coskf \
-s Hexane.coskf > job.sh

./job.sh
echo "4.5b"
"$AMSBIN/amsreport" t4.5b.crskf molar-fraction
"$AMSBIN/amsreport" t4.5b.crskf temperature
"$AMSBIN/amsreport" t4.5b.crskf miscibility-gap
"$AMSBIN/amsreport" t4.5b.crskf miscibility-gap-x
"$AMSBIN/amsreport" t4.5b.crskf miscibility-gap-a

# 4.6: Large infinite dilution activity coefficients in Water
# -----------------------------------------------------------

"$AMSBIN/crsprep" -t ACTIVITYCOEF -temperature 298.15 -j t4.6 \
-s Water.coskf \
-c Benzene.coskf > job.sh

./job.sh
echo "4.6"
"$AMSBIN/amsreport" t4.6.crskf compounds-name
"$AMSBIN/amsreport" t4.6.crskf activity-coefficient

# 4.7: Parametrization of ADF COSMO-RS: solvation energies,
(continues on next page)
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# vapor pressures, partition coefficients
# ---------------------------------------------------------

cat << eor > small.compoundlist
Hexane.coskf
Methanol.coskf
Ethanol.coskf
Acetone.coskf
Benzene.coskf
Water.coskf
eor

"$AMSBIN/crsprep" -t ACTIVITYCOEF -temperature 298.15 -densitysolvent 0.997 -j t4.7a \
-inputpurevap 0 \
-s Water.coskf \
-c small.compoundlist > job.sh

./job.sh
echo "4.7a"
"$AMSBIN/amsreport" t4.7a.crskf compounds-name
"$AMSBIN/amsreport" t4.7a.crskf gibbs-energy-solvation

"$AMSBIN/crsprep" -t PUREVAPORPRESSURE -temperature 298.15 -j t4.7b \
-c small.compoundlist -inputpurevap 0 > job.sh

./job.sh
echo "4.7b"
"$AMSBIN/amsreport" t4.7b.crskf compounds-name
"$AMSBIN/amsreport" t4.7b.crskf vapor-pressure

"$AMSBIN/crsprep" -t LOGP -j t4.7c -c small.compoundlist > job.sh
./job.sh
echo "4.7c Octanol/Water"
"$AMSBIN/amsreport" t4.7c.crskf compounds-name
"$AMSBIN/amsreport" t4.7c.crskf logp

"$AMSBIN/crsprep" -t LOGP -preset 5 -j t4.7d -c small.compoundlist > job.sh
./job.sh
echo "4.7d Hexane/Water"
"$AMSBIN/amsreport" t4.7d.crskf logp

"$AMSBIN/crsprep" -t LOGP -preset 3 -j t4.7e -c small.compoundlist > job.sh
./job.sh
echo "4.7e Benzene/Water"
"$AMSBIN/amsreport" t4.7e.crskf logp

"$AMSBIN/crsprep" -t LOGP -preset 4 -j t4.7f -c small.compoundlist > job.sh
./job.sh
echo "4.7f Ether/Water"
"$AMSBIN/amsreport" t4.7f.crskf logp

# 4.8: COSMO-SAC 2013-ADF
# -----------------------

"$AMSBIN/crsprep" -t PURESIGMAPROFILE -method COSMOSAC2013 -c Water.coskf \
-c Ethanol.coskf -j t4.8a > job.sh

./job.sh
echo "4.8a"
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"$AMSBIN/amsreport" t4.8a.crskf sigma
"$AMSBIN/amsreport" t4.8a.crskf sigma-profile
"$AMSBIN/amsreport" t4.8a.crskf sigma-profile-hb

"$AMSBIN/crsprep" -s Methanol.coskf -density 0.7918 -savecompound
"$AMSBIN/crsprep" -s Ethanol.coskf -density 0.789 -savecompound
"$AMSBIN/crsprep" -s Acetone.coskf -density 0.791 -savecompound

"$AMSBIN/crsprep" -t LOGP -method COSMOSAC2013 -j t4.8b \
-c Methanol.coskf -c Ethanol.coskf -c Acetone.coskf > job.sh

./job.sh
echo "4.8b Octanol/Water"
"$AMSBIN/amsreport" t4.8b.crskf compounds-name
"$AMSBIN/amsreport" t4.8b.crskf logp

"$AMSBIN/crsprep" -t LOGP -method COSMOSAC2013 -preset 5 -j t4.8c \
-c Methanol.coskf -c Ethanol.coskf -c Acetone.coskf > job.sh

./job.sh
echo "4.8c Hexane/Water"
"$AMSBIN/amsreport" t4.8c.crskf logp

"$AMSBIN/crsprep" -t LOGP -method COSMOSAC2013 -preset 3 -j t4.8d \
-c Methanol.coskf -c Ethanol.coskf -c Acetone.coskf > job.sh

./job.sh
echo "4.8d Benzene/Water"
"$AMSBIN/amsreport" t4.8d.crskf logp

"$AMSBIN/crsprep" -t LOGP -method COSMOSAC2013 -preset 4 -j t4.8e \
-c Methanol.coskf -c Ethanol.coskf -c Acetone.coskf > job.sh

./job.sh
echo "4.8e Ether/Water"
"$AMSBIN/amsreport" t4.8e.crskf logp

"$AMSBIN/crsprep" -s Acetone.coskf -density 0.791 -pvap 3.7 -tvap 373.15 -
→˓savecompound
"$AMSBIN/crsprep" -s Water.coskf -density 0.997 -pvap 1.01325 -tvap 373.15 -
→˓savecompound

"$AMSBIN/crsprep" -t BINMIXCOEF -method COSMOSAC2013 -temperature 373.15 -n 20 -j t4.
→˓8f \

-s Acetone.coskf \
-s Water.coskf > job.sh

./job.sh
echo "4.8f"
"$AMSBIN/amsreport" t4.8f.crskf molar-fraction
"$AMSBIN/amsreport" t4.8f.crskf vapor-pressure
"$AMSBIN/amsreport" t4.8f.crskf pressure

echo "Ready"

9.6.5 Example: pKa values

Download pKa.run
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#! /bin/sh

# This example tries to do the same as in the COSMO-RS GUI Tutorial: pKa values,
# using scripts
# First some .coskf files are copied to the location where the scripts are running,
# next the jobs are prepared and the reports are made.
# Check the COSMO-RS GUI Tutorial: pKa values to see what to do with the results.

echo "Results"

rm -f job.sh
cp $AMSHOME/examples/COSMO-RS/pKa/*.coskf .
cp $AMSHOME/examples/COSMO-RS/pKa/*compoundlist .

touch job.sh
chmod +x job.sh

echo "Acids"
"$AMSBIN/crsprep" -t ACTIVITYCOEF -j t5.1a \

-c tutoral5.1_acid.compoundlist > job.sh
./job.sh
"$AMSBIN/amsreport" t5.1a.crskf compounds-name
"$AMSBIN/amsreport" t5.1a.crskf Activity-Coefficient
"$AMSBIN/amsreport" t5.1a.crskf Gibbs-energy-solvation
"$AMSBIN/amsreport" t5.1a.crskf Gibbs-energy-solute

"$AMSBIN/crsprep" -t ACTIVITYCOEF -j t5.1b \
-c tutoral5.1_base.compoundlist > job.sh

./job.sh
"$AMSBIN/amsreport" t5.1b.crskf compounds-name
"$AMSBIN/amsreport" t5.1b.crskf Activity-Coefficient
"$AMSBIN/amsreport" t5.1b.crskf Gibbs-energy-solvation
"$AMSBIN/amsreport" t5.1b.crskf Gibbs-energy-solute

echo "Ready"

9.6.6 Example: Polymers

Download Polymers.run

#! /bin/sh

# This example tries to do the same as in the COSMO-RS GUI Tutorial: Polymers,
# using scripts.

# First some .coskf files are copied to the location where the scripts are running.
# Some of the .coskf files are a sample of the full polymer database ADFCRS-POLYMERS-
→˓2019.
# In the first part of the example crsprep is used to set pure compound parameters.
# Pure compound densities are required for every species in a calculation involving
→˓any polymers.
# For some pure compounds the VPM1 vapor pressure equation is set including vapor
→˓pressure coefficients.

echo "Results"
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cp $AMSHOME/examples/COSMO-RS/Database/*coskf .
cp $AMSHOME/examples/COSMO-RS/Polymers/*coskf .

"$AMSBIN/crsprep" -c Benzene.coskf -density 0.876 -savecompound
"$AMSBIN/crsprep" -c Water.coskf -density 1.0 -savecompound
"$AMSBIN/crsprep" -c Methanol.coskf -density 0.792 -savecompound \

-vp_equation VPM1 -vp_params "-7057.597287 -9.936895562 0.
→˓00608530790 77.10002032 0"
"$AMSBIN/crsprep" -c Hexane.coskf -density 0.655 -savecompound \

-vp_equation VPM1 -vp_params "-5575.417318 -6.612402250 0.
→˓00437376138 53.36969532 0"

rm -f job.sh
touch job.sh
chmod +x job.sh

"$AMSBIN/crsprep" -t ACTIVITYCOEF -j Polymers.1 \
-s "Poly(ethylene).coskf" -frac1 0.5 -s Benzene.coskf -frac1 0.5 \
-massfraction > job.sh

./job.sh
echo "Polymers.1"
"$AMSBIN/amsreport" Polymers.1.crskf compounds-name Flory-Huggins WF-activity-
→˓coefficient

"$AMSBIN/crsprep" -t VAPORPRESSURE -temperature 298.15 -temperature 398.15 -n 10 -j
→˓Polymers.2 \

-s "Poly(dimethylsiloxane).coskf" -frac1 0.5 -s Methanol.coskf -
→˓frac1 0.25 \

-s Hexane.coskf -frac1 0.25 \
-massfraction > job.sh

./job.sh
echo "Polymers.2"
"$AMSBIN/amsreport" Polymers.2.crskf compounds-name temperature pressure

"$AMSBIN/crsprep" -t LOGP -preset 0 -j Polymers.3 \
-s "Poly(ethylene).coskf" -s Water.coskf \
-c Methanol.coskf > job.sh

./job.sh
echo "Polymers.3"
"$AMSBIN/amsreport" Polymers.3.crskf logp

"$AMSBIN/crsprep" -t PURESOLUBILITY -temperature 398.15 -temperature 498.15 -n 10 -j
→˓Polymers.4 \

-s Hexane.coskf -solphase Gas -pressure 1.01325 \
-c "Poly(styrene).coskf" > job.sh

./job.sh
echo "Polymers.4"
"$AMSBIN/amsreport" Polymers.4.crskf solubility-g

"$AMSBIN/crsprep" -t BINMIXCOEF -method COSMOSAC2013 -j Polymers.5 \
-s "Poly(ethyl_ethylene).coskf" -s Benzene.coskf \
-massfraction > job.sh

./job.sh
echo "Polymers.5"
"$AMSBIN/amsreport" Polymers.5.crskf polymer-fraction Flory-Huggins

echo "Ready"
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CHAPTER

TEN

ADVANCED SCRIPTING EXAMPLES WITH PLAMS

COSMO-RS is capable of calculating a wide variety of important thermodynamic properties, but not all of those
properties are easily available from the GUI. In this section, several scripts are provided that calculate more complex
properties and demonstrate additional useful workflows. These scripts can be used as they are or used as a template to
develop additional or more specific functionality.

Note: To ensure compatibility among the necessary python modules, it is recommended to use SCM’s python dis-
tribution, amspython. Executing the scripts in this section from the command line can be done simply as follows:
amspython <script_name.py>. Those users with more python experience or who prefer to use their own
version of python are welcome to use alternatives to amspython.

Table of Contents:

10.1 Changing the default parameters or re-parameterizing the
COSMO-RS/-SAC methods

There are many situations for which changing the default COSMO-RS/-SAC parameters may be useful. Most com-
monly, users may wish to try a certain parameterization that is not available from the program. Alternatively, some
users may have a customized or proprietary dataset which they would like to use to re-fit the main model parameters.
All of these tasks are straightforward via python scripting.

The following scripts will demonstrate how to alter parameters for COSMO-RS and COSMO-SAC.

10.1.1 Python code (COSMO-RS parameters)

import os
from scm.plams import *

################## Note: Be sure to add the path to your own AMSCRS directory here #
→˓#################
database_path = os.getcwd()

if not os.path.exists(database_path):
raise OSError(f'The provided path does not exist. Exiting.')

init()
#suppress plams output
config.log.stdout = 0

(continues on next page)
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# our system of interest
files = ["Acetone.coskf","Water.coskf"]
fracs = [0.3,0.7]

# initialize settings object
settings = Settings()
settings.input.property._h = 'ACTIVITYCOEF'
settings.input.temperature = 298.15

compounds = [Settings() for i in range(len(files))]
for i,(name,frac) in enumerate(zip(files,fracs)):

compounds[i]._h = os.path.join( database_path, name )
compounds[i].frac1 = frac

settings.input.compound = compounds

# Here, we will change the method parameters specific to COSMO-RS
# Main CRS parameters
settings.input.CRSParameters.rav = 0.400
settings.input.CRSParameters.aprime = 1510.0
settings.input.CRSParameters.fcorr = 2.802
settings.input.CRSParameters.chb = 8850.0
settings.input.CRSParameters.sigmahbond = 0.00854
settings.input.CRSParameters.aeff = 6.94
settings.input.CRSParameters.Lambda = 0.130
settings.input.CRSParameters.omega = -0.212
settings.input.CRSParameters.eta = -9.65
settings.input.CRSParameters.chortf = 0.816
settings.input.CRSParameters.HB_HNOF = "" # hb for only H,N,O,F
# settings.input.CRSParameters.HB_ALL = "" # hb for all elements
settings.input.CRSParameters.HB_TEMP = "" # temperature-dependent H-bond
# settings.input.CRSParameters.HB_NOTEMP = "" # non-temperature-dependent H-bond
settings.input.CRSParameters.COMBI2005 = "" # default combinatorial term
# settings.input.CRSParameters.COMBI1998 = ""

# Dispersion parameters
settings.input.Dispersion.H = -0.0340
settings.input.Dispersion.C = -0.0356
settings.input.Dispersion.N = -0.0224
settings.input.Dispersion.O = -0.0333
settings.input.Dispersion.F = -0.026
settings.input.Dispersion.Si = -0.04
settings.input.Dispersion.P = -0.045
settings.input.Dispersion.S = -0.052
settings.input.Dispersion.Cl = -0.0485
settings.input.Dispersion.Br = -0.055
settings.input.Dispersion.I = -0.062

# Technical and accuracy parameters
settings.input.Technical.rsconv = 1e-7
settings.input.Technical.maxiter = 10000
settings.input.Technical.bpconv = 1e-6
settings.input.Technical.bpmaxiter = 40
settings.input.Technical.solconv = 1e-5
settings.input.Technical.solmaxiter = 40
settings.input.Technical.solxilarge = 0.99

(continues on next page)
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settings.input.Technical.ehdeltaT = 1.0

# We will vary the chb parameter (default value 8850.0)
# and observe the effect on activity coefficients

print ("Resulting Activity Coefficients:")
print ("chb value".ljust(15),"activity coefficients".ljust(20))
hbvals = [ 8700.0 + 50*i for i in range(7) ]
for hbval in hbvals:

settings.input.CRSParameters.chb = hbval
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
out = my_job.run()
# convert all the results into a python dict
res = out.get_results()

print (str(hbval).ljust(15), str(res["gamma"].flatten()).ljust(20))

finish()

10.1.2 Python code (COSMO-SAC parameters)

import os
from scm.plams import *

################## Note: Be sure to add the path to your own AMSCRS directory here #
→˓#################
database_path = os.getcwd()

if not os.path.exists(database_path):
raise OSError(f'The provided path does not exist. Exiting.')

init()
#suppress plams output
config.log.stdout = 0

# our system of interest
files = ["Acetone.coskf","Water.coskf"]
fracs = [0.3,0.7]

# initialize settings object
settings = Settings()
settings.input.property._h = 'ACTIVITYCOEF'
settings.input.temperature = 298.15

compounds = [Settings() for i in range(len(files))]
for i,(name,frac) in enumerate(zip(files,fracs)):

compounds[i]._h = os.path.join( database_path, name )
compounds[i].frac1 = frac

settings.input.compound = compounds

# Here, we will change the method parameters specific to COSMO-SAC
(continues on next page)
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# First, change the method to COSMOSAC2013
settings.input.method = 'COSMOSAC2013'

# Main SAC parameters
settings.input.SACParameters.aeff = 6.4813
settings.input.SACParameters.fdecay = 0.0
settings.input.SACParameters.sigma0 = 0.01233
settings.input.SACParameters.rn = 0.0
settings.input.SACParameters.qn = 79.532
settings.input.SACParameters.aes = 7877.13
settings.input.SACParameters.bes = 0.0
settings.input.SACParameters.cohoh = 5786.72
settings.input.SACParameters.cotot = 2739.58
settings.input.SACParameters.cohot = 4707.75
settings.input.SACParameters.rav = 0.51
settings.input.SACParameters.qs = 0.57
settings.input.SACParameters.rhbcut = 0.0
settings.input.SACParameters.omega = 0.0
settings.input.SACParameters.eta = 0.0
settings.input.SACParameters.HB_NOTEMP = "" # non-temperature-dependent H-bonding
→˓(default)
# settings.input.SACParameters.HB_TEMP = "" # temperature-dependent H-bonding

# Epsilon Constants
settings.input.Epsilon.H = 338.13
settings.input.Epsilon["C.sp3"] = 29160.92
settings.input.Epsilon["C.sp2"] = 30951.83
settings.input.Epsilon["C.sp"] = 20685.98
settings.input.Epsilon["N.sp3"] = 23488.54
settings.input.Epsilon["N.sp2"] = 22663.38
settings.input.Epsilon["N.sp"] = 6390.40
settings.input.Epsilon["O.sp3-H"] = 8527.06
settings.input.Epsilon["O.sp3"] = 8484.38
settings.input.Epsilon["O.sp2"] = 6736.85
settings.input.Epsilon["O.sp2-N"] = 12145.28
settings.input.Epsilon.F = 8435.13
settings.input.Epsilon.P = 82512.21
settings.input.Epsilon.S = 56067.81
settings.input.Epsilon.Cl = 45065.19
settings.input.Epsilon.Br = 62947.83
settings.input.Epsilon.I = 105910.88

# Technical and accuracy parameters
settings.input.Technical.sacconv = 1e-7
settings.input.Technical.maxiter = 10000
settings.input.Technical.bpconv = 1e-6
settings.input.Technical.bpmaxiter = 40
settings.input.Technical.solconv = 1e-5
settings.input.Technical.solmaxiter = 40
settings.input.Technical.solxilarge = 0.99
settings.input.Technical.ehdeltaT = 1.0

# We will vary the cohot parameter (default value 4707.75)
# and observe the effect on activity coefficients
print ("Resulting Activity Coefficients:")
print ("cohot value".ljust(15),"activity coefficients".ljust(20))
cohot_vals = [ 4707.75 + 50*i for i in range(-3,4) ]

(continues on next page)
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for cohot in cohot_vals:

settings.input.SACParameters.cohot = cohot
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
out = my_job.run()
# convert all the results into a python dict
res = out.get_results()

print (str(cohot).ljust(15), str(res["gamma"].flatten()).ljust(20))

finish()

10.2 Calculating and estimating sigma profiles

Sigma profiles are one of the fundamental pieces of a COSMO-RS/-SAC calculation. They are also widely used as
an important empirical descriptor for a molecule’s behavior in a solution as well as for a molecule’s properties in a
number of applications. In the standard COSMO-RS/-SAC workflow, sigma profiles are generated after a sequence of
DFT calculations which – for large molecular systems – can take considerable time to complete. For computationally
expensive systems or high-throughput screening applications, it is sometimes advantageous to approximate sigma
profiles using tools like fast_sigma from AMS.

In the following python script, we generate sigma profiles for n-Hexanoic acid using the two approaches discussed
above. The function calc_sigma_profile will generate sigma profiles from .coskf files, and the function
fast_sigma will generate sigma profiles from SMILES strings using the fast_sigma tool.

10.2.1 Python code

import os
import numpy as np
import matplotlib.pyplot as plt
from scm.utils.runsubprocess import RunSubprocess
from scm.plams import *
import subprocess

################## Note: Be sure to add the path to your own AMSCRS directory here #
→˓#################
database_path = os.getcwd()

if not os.path.exists(database_path):
raise OSError(f'The provided path does not exist. Exiting.')

init()
#suppress plams output
config.log.stdout = 0

class SigmaProfile:
def __init__(self,chdens,profiles,profile_names):

if len(profiles) != len(profile_names):
print("Error: profiles_names and profiles of different sizes")

self.chdens = chdens.flatten() if isinstance(chdens,np.ndarray) else chdens

(continues on next page)
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self.profiles = {name:prof.flatten() if isinstance(prof,np.ndarray) else prof
→˓for name,prof in zip(profile_names,profiles)}

def __str__(self):
line = " "*(15*(1+len(self.profiles)))
ret = line + '\n'+ "".join( ["Charge Dens.".ljust(15)]+[name.ljust(15) for

→˓name in self.profiles] ) + '\n' + line + '\n'
for i in range(len(self.chdens)):

ret += "{0:.5g}".format(self.chdens[i]).ljust(15) + "".join(["{0:.5g}".
→˓format(v[i]).ljust(15) for k,v in self.profiles.items()])

ret += '\n'
return ret

def fast_sigma( smiles ):

results_file = "tmp_results18954.crskf"
subprocess_string = " --smiles '" + smiles + "'"

if not os.path.isfile(os.path.join( os.path.expandvars("$AMSBIN") , "fast_sigma"
→˓)):

kf_and_sys_exit("ERROR: cannot find fast_sigma ... has amsbashrc been
→˓executed?")

fs = os.path.join( os.path.expandvars("$AMSBIN") , "fast_sigma" )
scm_sp = RunSubprocess( fs + subprocess_string + " -o " + results_file )

if os.path.isfile(results_file):
crskf = KFFile( results_file )
res = crskf.read_section( "PURESIGMAPROFILE" )
sp = SigmaProfile(chdens=res['chdval'],profiles=[res['profil'],res['hbprofil

→˓']],profile_names=["total_profile","HB_profile"])
os.remove(results_file)
return sp, scm_sp

else:
return None, scm_sp

def calc_sigma_profile(coskf_file,cosmosac=False):

# initialize settings object
settings = Settings()
settings.input.property._h = 'PURESIGMAPROFILE'

# set the number of compounds
compounds = [Settings()]
compounds[0]._h = os.path.join( database_path, coskf_file )

# to change to the COSMOSAC2013 method
if cosmosac:

settings.input.method = 'COSMOSAC2013'

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)

out = my_job.run()
res = out.get_results()

(continues on next page)
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if cosmosac:
prof_len = len(res['hbprofil'])//3
sp = SigmaProfile(chdens=res['chdval'],profiles=[res['profil']]+[res['hbprofil

→˓'][i*prof_len:(i+1)*prof_len] for i in range(3) ],profile_names=["total_profile","HB
→˓","HB-OH","HB-OT"])

else:
sp = SigmaProfile(chdens=res['chdval'],profiles=[res['profil'],res['hbprofil

→˓']],profile_names=["total_profile","HB_profile"])
return sp

# regular way to generate a sigma profile from a .coskf file
filename = "n-Hexanoic_acid.coskf"
sp = calc_sigma_profile(filename,cosmosac=False)

# way using the fast_sigma estimation method
fs_sp, err = fast_sigma("CCCCCC(=O)O")
if fs_sp is None or len(err[1])>0:

print("fast_sigma generated the following output:\n"+err[1])

plt.xlabel("𝜎 value (e/A^2)")
plt.ylabel("p(𝜎)")

plt.plot(sp.chdens , sp.profiles['total_profile'],label="Calculated sigma profile
→˓")
if fs_sp is not None:

plt.plot(fs_sp.chdens,fs_sp.profiles['total_profile'],label="Estimated sigma
→˓profile")

plt.legend(loc='upper right')
plt.grid()
plt.show()

finish()

This code produces the following output:

10.3 Sigma Moments

Sigma moments are useful chemical descriptors derived from the sigma profile. They are analogous to moments
of a statistical distribution and can be thought of as a way to reduce the high-dimensional information present in a
sigma profile to a smaller number of descriptors that characterize that sigma profile. Sigma moments are known to be
valuable descriptors in QSPR and are thought to represent the solvent space well1.

The following script will calculate the first several sigma moments as well as a H-bond acceptor and H-bond donor
moment for a few common molecules.

10.3.1 Python code

1 A. Klamt, COSMO-RS From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier. Amsterdam (2005), ISBN
0-444-51994-7.
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import os
import numpy as np
from scm.plams import *
################## Note: Be sure to add the path to your own AMSCRS directory here #
→˓#################
database_path = os.getcwd()

if not os.path.exists(database_path):
raise OSError(f'The provided path does not exist. Exiting.')

init()

#suppress plams output
config.log.stdout = 0

class SigmaMoments:

def __init__(self,filenames,hb_cutoff=0.00854):
self.filenames = filenames
self.hb_cutoff = hb_cutoff

def calculate_moments(self) -> dict:
self.moments = {}
self.calc_profiles_and_chdens()
self.calc_standard_moments()
self.calc_hb_moments()
return self.moments

(continues on next page)

106 Chapter 10. Advanced scripting examples with PLAMS



COSMO-RS Manual, Amsterdam Modeling Suite 2022.1

(continued from previous page)

def calc_profiles_and_chdens(self):

# initialize settings object
settings = Settings()
settings.input.property._h = 'PURESIGMAPROFILE'
# set the cutoff value for h-bonding
settings.parameters.sigmahbond = self.hb_cutoff
compounds = [Settings() for i in range(len(self.filenames))]
for i,filename in enumerate(filenames):

compounds[i]._h = os.path.join(database_path, filename)

settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
out = my_job.run()
# convert all the results into a python dict
res = out.get_results()
# retain profiles and charge density values
self.tot_profiles = res["profil"]
self.hb_profiles = res["hbprofil"]
self.chdens = res["chdval"]

def calc_standard_moments(self,max_power=3):
for i in range(max_power+1):

tmp_moms = []
for prof in self.tot_profiles:

tmp_moms.append( np.sum(prof*np.power(self.chdens,i)) )
self.moments["MOM_"+str(i)] = tmp_moms

def calc_hb_moments(self):
self.moments["MOM_hb_acc"] = []
self.moments["MOM_hb_don"] = []
zeros = np.zeros(len(self.chdens))
for prof in self.hb_profiles:

self.moments["MOM_hb_acc"].append(np.sum( prof * np.maximum(zeros,self.
→˓chdens-self.hb_cutoff) ))

self.moments["MOM_hb_don"].append(np.sum( prof * np.maximum(zeros,-self.
→˓chdens-self.hb_cutoff) ))

# the files we want to use to calculate sigma moments
filenames = ["Water.coskf", "Hexane.coskf","Ethanol.coskf","Acetone.coskf"]

sm = SigmaMoments(filenames)
moms = sm.calculate_moments()
max_mom_len = max([len(m) for m in moms])

print()
print( (" "*5).join(["Moment".ljust(max_mom_len)]+filenames))
lens = [len(fn) for fn in filenames]
for mom_name in moms:

print( (" "*5).join([mom_name.ljust(max_mom_len)]+[('{0:.5g}'.format(m)).rjust(l)
→˓for m,l in zip(moms[mom_name],lens)]))

(continues on next page)
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finish()

10.3.2 References

10.4 Screening for cocrystals

In this section, we provide an example application that can be used as a template for many high-throughput screening
scripts. Cocrystals are crystals formed from two or more compounds in a defined stoichiometry. There are many uses
for cocrystals, especially for pharmaceutical applications where one compound is an active pharmaceutical ingredient
(API). This example problem screens multiple compounds for their potential as components of a (1:2) cocrystal with
Itraconazole. This problem uses the excess enthalpy for a hypothetical supercooled liquid phase as a proxy for cocrys-
tallization affinity. The rankings of the solvents are in good agreement with model and experimental results for this
problem given in1 .

10.4.1 Python code

import os
import matplotlib.pyplot as plt
from scm.plams import *

################## Note: Be sure to add the path to your own AMSCRS directory here #
→˓#################
database_path = os.getcwd()

if not os.path.exists(database_path):
raise OSError(f'The provided path does not exist. Exiting.')

init()
#suppress plams output
config.log.stdout = 0

# temperature
sys_temp = 298.15 # K

# the solute we are trying to find a co-crystal for (Itraconazole)
solute = ["itz_1.coskf"]

# a list of different conformers for the screening
# each line contains 3 conformers of the same molecule
solv_list=[

["tartaric_acid_1.coskf","tartaric_acid_2.coskf","tartaric_acid_3.coskf"],
["fumaric_acid_1.coskf","fumaric_acid_2.coskf","fumaric_acid_3.coskf"],
["succinic_acid_1.coskf","succinic_acid_2.coskf","succinic_acid_3.coskf"],
["malic_acid_1.coskf","malic_acid_2.coskf","malic_acid_3.coskf"],
["glutaric_acid_1.coskf","glutaric_acid_2.coskf","glutaric_acid_3.coskf"],
["malonic_acid_1.coskf","malonic_acid_2.coskf","malonic_acid_3.coskf"],
["adipic_acid_1.coskf","adipic_acid_2.coskf","adipic_acid_3.coskf"],
["maleic_acid_1.coskf","maleic_acid_2.coskf","maleic_acid_3.coskf"]

(continues on next page)

1 Abramov, Yuriy A., Christoph Loschen, and Andreas Klamt. “Rational coformer or solvent selection for pharmaceutical cocrystallization or
desolvation.” Journal of pharmaceutical sciences 101.10 (2012): 3687-3697.
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]

print("Solvent".ljust(30),"Excess enthalpy (kcal/mol)")
excess_h = []
for solv in solv_list:

name = "_".join(solv[0].split("_")[:-1])

# initialize settings object
settings = Settings()
settings.input.property._h = 'VAPORPRESSURE'

# set the number of compounds
num_compounds = 2
compounds = [Settings() for i in range(num_compounds)]
compounds[0].name = "solvent"

form_s = [Settings() for i in range(len(solv))]
for j in range(len(solv)):

form_s[j]._h = os.path.join( database_path, solv[j] )

compounds[0].form = form_s

compounds[1].name = "Itraconazole"

form_sol = [Settings() for i in range(len(solute))]
for j in range(len(solute)):

form_sol[j]._h = os.path.join( database_path, solute[j] )

compounds[1].form = form_sol
# this is the stoichiometric ratio of the co-crystal
compounds[0].frac1 = 0.33333
compounds[1].frac1 = 0.66667

# to change to the COSMOSAC2013 method
settings.input.method = 'COSMOSAC2013'

#temperature
settings.input.temperature = str(sys_temp)
# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)

out = my_job.run()
res = out.get_results()

excess_h.append((res["excess H"],name))
print (name.ljust(30),round(res["excess H"],5))

plt.xlabel("Excess enthalpy (kcal/mol)")
plt.barh([i for i in range(len(excess_h))],[x[0] for x in excess_h],zorder=3)
plt.yticks([i for i in range(len(excess_h))],[x[1] for x in excess_h])
plt.grid(axis='x',ls="--",zorder=0)
plt.gca().invert_xaxis()

(continues on next page)
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plt.show()

finish()

This figure (produced by the code) shows the excess enthalpy values of all solvents in a supercooled liquid mixture
with Itraconazole. The lowest 4 excess enthalpy values correspond to 4 solvent for which a stable co-crystal with
Itraconazole is known1 .

10.4.2 References

10.5 Eutectic systems

A eutectic point of a chemical mixture defines the minimum melting composition of that system over the composition
range. In other words, the eutectic point will have a lower melting point than the pure components making up the
mixture as well any other possible mixture. In this example, we calculate the eutectic point of a binary mixture of
ethanol and water as the intersection of the solid-liquid equilibrium curves of two systems: (1) Solid ethanol dissolved
in water and (2) Solid water dissolved in ethanol. This script will output the mole fraction of ethanol at the eutectic
point as well as the temperature. For comparison, Takaizumi and Wakabayashi1 provide an experimental eutectic point
with a mole fraction value of 0.86 for ethanol and a melting temperature of -124.3 °C.

10.5.1 Python code

import os
import matplotlib.pyplot as plt
from scm.plams import *

################## Note: Be sure to add the path to your own AMSCRS directory here #
→˓################# (continues on next page)

1 Takaizumi, K., and T. Wakabayashi. “The freezing process in methanol-, ethanol-, and propanol-water systems as revealed by differential
scanning calorimetry.” Journal of solution chemistry 26.10 (1997): 927-939.
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database_path = os.getcwd()

if not os.path.exists(database_path):
raise OSError(f'The provided path does not exist. Exiting.')

init()
#suppress plams output
config.log.stdout = 0

# the ethanol water system
# experimental numbers for this eutectic are 0.86 mole fraction ethanol at a
→˓temperature of -124.3 degrees C
files = ["Ethanol.coskf","Water.coskf"]
tm = [158.5,273.15] #K
hfus = [1.2,1.43] #kcal/mol
initial_t_range = [100,300] #K -- the temperature range over which the eutectic
→˓search is done
steps = 20 # number of steps to take within the temperature range

# another eutectic system
# files = ["L-Menthol.coskf","Camphor.coskf"]
# tm = [316.2,451.5] #K
# hfus = [2.84,1.63] #kcal/mol
# initial_t_range = [100,460] #K
# steps = 20

# if we know the eutectic temperature is bounded to within a range of <= estimate_
→˓precision, we simply use a linear interpolation between two x,T pairs
estimate_precision = 1.0 #K

class Eutectic:

def __init__(self,files,tm,hfus,steps=10):
self.files = files
self.tm = tm
self.hfus = hfus
self.steps = steps

if not (len(self.files)==len(self.tm)==len(self.hfus)):
print("Error. Inputs must be the same length.")

def calc_xt_curves(self,t_range):

# initialize settings object
settings = Settings()
settings.input.property._h = 'SOLUBILITY'
# optionally, change to the COSMOSAC2013 method
settings.input.method = 'COSMOSAC2013'

# make compounds
compounds = [Settings() for i in range(len(files))]
for i,file in enumerate(self.files):

compounds[i]._h = os.path.join( database_path, file )
compounds[i].meltingpoint = self.tm[i]
compounds[i].hfusion = self.hfus[i]

(continues on next page)
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comp1_fracs = []
for i,frac1 in enumerate([0.0,1.0]):

compounds[0].frac1 = frac1
compounds[1].frac1 = 1.0-frac1

settings.input.temperature = " ".join([str(t) for t in t_range] +
→˓[str(self.steps)])

# add the compounds to the settings object
settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
out = my_job.run()
# convert all the results into a python dict
res = out.get_results()

if i==0:
comp1_fracs.append(res["molar fraction"][0])

else:
comp1_fracs.append(1.0-res["molar fraction"][1])

return comp1_fracs

def calc_eutectic(self,t_range,history=[[],[],[]]):

comp1_fracs = self.calc_xt_curves(t_range)

# the temperatures used in the calculation
temps = [t_range[0]+(t_range[1]-t_range[0])/self.steps * i for i in

→˓range(self.steps+1)]

history[0].extend(comp1_fracs[0])
history[1].extend(comp1_fracs[1])
history[2].extend(temps)
# the difference between compound 1's mole fraction in the two calculations
# when these mole fractions are the same, we've found the eutectic
diffs = comp1_fracs[0] - comp1_fracs[1]
#find where the sign changes (intersection of SLE lines)
for i in range(self.steps):

if diffs[i]*diffs[i+1] < 0:

if temps[i+1]-temps[i] < estimate_precision:
# use linear combination of t's
tot = abs(diffs[i])+abs(diffs[i+1])
w1 = tot-abs(diffs[i]) # same as abs(diffs[i+1])
w2 = tot-abs(diffs[i+1])
return (((w1*comp1_fracs[0][i]+w2*comp1_fracs[1][i+1])/tot,

→˓(w1*temps[i]+w2*temps[i+1])/tot)), history
else:

return self.calc_eutectic( [temps[i],temps[i+1]], history )

return None

eutectic_calc = Eutectic(files,tm,hfus,steps=steps)
(continues on next page)
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eutectic, history = eutectic_calc.calc_eutectic(initial_t_range)

if not eutectic:
print("No eutectic point found in the temperature range")

else:
print("Found eutectic point:")
print("x_1".rjust(10),"T (K)".rjust(10), "T (C)".rjust(10))
x,t = eutectic
print(str(x.round(5)).rjust(10),str(t.round(5)).rjust(10), str((-273.15+t).

→˓round(5)).rjust(10))

# plot the solubility curves and eutectic point
h_s1 = sorted( list(zip(history[0],history[2])), key=lambda x:x[0])
h_s2 = sorted( list(zip(history[1],history[2])), key=lambda x:x[0])

h_s1 = [x for x in h_s1 if x[0]>=eutectic[0]]
h_s2 = [x for x in h_s2 if x[0]<=eutectic[0]]

# adjust the melting point back to the correct value for high or low solubility
for i in range(len(h_s1)):

if h_s1[i][0] > 0.9999:
h_s1[i] = (h_s1[i][0],tm[0])

for i in range(len(h_s2)):
if h_s2[i][0] < 0.0001:

h_s2[i] = (h_s2[i][0],tm[1])

plt.plot([x[0] for x in h_s1],[x[1] for x in h_s1],label="x_1 (solvent compound 1)
→˓")

plt.plot([x[0] for x in h_s2],[x[1] for x in h_s2],label="x_1 (solvent compound 2)
→˓")

plt.plot(eutectic[0],eutectic[1],'o',label="Eutectic point")
if eutectic[0]<0.5:

plt.annotate( " "+str(tuple([xt.round(3) for xt in eutectic])),eutectic,va=
→˓'center',ha='left')

else:
plt.annotate( str(tuple([xt.round(3) for xt in eutectic]))+" ",eutectic,va=

→˓'center',ha='right')

plt.xlabel("Mole fraction compound 1")
plt.ylabel("Melting point of mixture (K)")
plt.legend(loc='upper right')
plt.grid()
plt.show()

finish()

This figure (produced by the code) shows the two solubility curves calculated by the program.

10.5.2 References

10.6 Binodal and Spinodal Curves

Binodal and spinodal curves are useful for understanding phase stability. The binodal curve (or coexistence curve)
defines the temperatures and compositions at which phase separation is thermodynamically favorable. The spinodal
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curve is located within the binodal curve and indicates the limit of local phase stability. Compositions between the
spinodal and binodal curves – while not thermodynamically stable – are robust against small fluctuations (i.e., the free
energy surface is locally convex for points in this region).

10.6.1 Python code (Binary mixture)

import os
import numpy as np
import matplotlib.pyplot as plt
from scm.plams import *

################## Note: Be sure to add the path to your own AMSCRS directory here #
→˓#################
database_path = os.getcwd()

if not os.path.exists(database_path):
raise OSError(f'The provided path does not exist. Exiting.')

init()
#suppress plams output
config.log.stdout = 0

files = ["Nitrobenzene.coskf","Hexane.coskf"]
nring = [6,0]
# problem paramters
temp_range = [203.15,243.15] #K -- the temperature range over which the curves are
→˓calculated
steps = 40# number of steps to take within the temperature range

(continues on next page)
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def binmix_at_T(files,temp):

# initialize settings object
settings = Settings()
settings.input.property._h = 'BINMIXCOEF'

settings.input.property.nfrac = 100

# make compounds
compounds = [Settings() for i in range(len(files))]
for i,(file,nr) in enumerate(zip(files,nring)):

compounds[i]._h = os.path.join( database_path, file )
compounds[i].nring = nr

settings.input.temperature = temp

# optionally, change to the COSMOSAC2013 method
settings.input.method = 'COSMOSAC2013'
# we'll also tighten the convergence threshold for better numerical accuracy
settings.input.Technical.sacconv = 1e-10

# add the compounds to the settings object
settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
out = my_job.run()
# convert all the results into a python dict
res = out.get_results()

return res

def calc_binodal_at_T(res):

# this is the miscibility gap, so we can use the result calculated by the program
if res["showmiscgap"]:

return res["xlle"][:2]
else:

return None

def calc_spinodal_at_T(res):

# here, we'll look for points with d^2(G_mix)/dx^2 = 0
# we'll calculate a numerical second derivative for every point
spinodal = []
gmix = res["Gibbs energy of mixing"]
frac1 = res["molar fraction"][0]
second_deriv = np.zeros(len(gmix))

# initial values for endpoints (assuming convexity close to pure compounds)
second_deriv[0] = 0.0001
second_deriv[-1] = 0.0001

(continues on next page)
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for i in range(1,len(gmix)-1):
delta1 = frac1[i]-frac1[i-1]
delta2 = frac1[i+1]-frac1[i]
d1 = (gmix[i]-gmix[i-1])/delta1
d2 = (gmix[i+1]-gmix[i])/delta2
second_deriv[i] = 2*(d2-d1)/(delta1+delta2)

for i in range(len(second_deriv)-1):
if second_deriv[i]*second_deriv[i+1] < 0:

dist1 = abs(second_deriv[i])
dist2 = abs(second_deriv[i+1])
tot = dist1+dist2
zero = (dist2*frac1[i]+dist1*frac1[i+1])/tot
spinodal.append(zero)

return spinodal if spinodal else None

temps = [temp_range[0] + (temp_range[1]-temp_range[0])/steps * i for i in
→˓range(steps+1)]
bin_left_points = []
bin_right_points = []
spin_left_points = []
spin_right_points = []
print("Temperature".ljust(15),"Binodal points".ljust(25),"Spinodal points")
for temp in temps:

res = binmix_at_T(files,temp)
binodal = calc_binodal_at_T(res)
spinodal = calc_spinodal_at_T(res)

bin_str = '(' + ",".join([ '{0:<10.5g}'.format(x) for x in binodal]) + ')' if
→˓binodal is not None else "--"

spin_str = '(' + ",".join([ '{0:<10.5g}'.format(x) for x in spinodal]) + ')' if
→˓spinodal is not None else "--"

print( '{0:.5g}'.format(temp).ljust(15), bin_str.ljust(25) ,spin_str)

if binodal is not None:
bin_left_points.append((binodal[0],temp))
bin_right_points.append((binodal[1],temp))

if spinodal is not None:
spin_left_points.append((spinodal[0],temp))
spin_right_points.append((spinodal[-1],temp))

bin_points = bin_left_points + list(reversed(bin_right_points))
spin_points = spin_left_points + list(reversed(spin_right_points))

plt.plot([x[0] for x in bin_points],[y[1] for y in bin_points],label="Binodal curve")
plt.plot([x[0] for x in spin_points],[y[1] for y in spin_points], label="Spinodal
→˓curve")
plt.xlabel("Mole fraction compound 1")
plt.ylabel("Temperature (K)")
plt.legend(loc='upper right')
plt.grid()
plt.show()

finish()
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This code produces the following output:

10.6.2 Python code (Ternary mixture)

Note: This example uses the python package ternary, but this is only required for plotting. This package can be
installed in amspython using pip as follows: amspython -m pip install python-ternary. Users may
choose to remove the plotting features of the code and not install ternary.

import os
import numpy as np
import matplotlib.pyplot as plt
from scm.plams import *

try:
import ternary

except ImportError:
print ("Cannot find ternary package.")
print ("Try to install with:")
print ("amspython -m pip install python-ternary")
exit()

################## Note: Be sure to add the path to your own AMSCRS directory here #
→˓#################
database_path = os.getcwd()

if not os.path.exists(database_path):

(continues on next page)

10.6. Binodal and Spinodal Curves 117



COSMO-RS Manual, Amsterdam Modeling Suite 2022.1

(continued from previous page)

raise OSError(f'The provided path does not exist. Exiting.')

init()
#suppress plams output
config.log.stdout = 0

files = ["Water.coskf","Chloroform.coskf","Acetic_acid.coskf"]
nring = [0,0,0]
nfrac = 50 # the nfrac parameter for ternary mixtures
temp_range = [273.15,273.15] #K -- the temperature range over which the curves are
→˓calculated
steps = 0 # number of steps to take within the temperature range

def ternmix_at_T(files,temp,nfrac=20):

# initialize settings object
settings = Settings()
settings.input.property._h = 'TERNARYMIX'
settings.input.property.nfrac = nfrac

# make compounds
compounds = [Settings() for i in range(len(files))]
for i,(file,nr) in enumerate(zip(files,nring)):

compounds[i]._h = os.path.join( database_path, file )
compounds[i].nring = nr

settings.input.temperature = temp

# optionally, change to the COSMOSAC2013 method
settings.input.method = 'COSMOSAC2013'
# we'll also tighten the convergence threshold for better numerical accuracy
settings.input.Technical.sacconv = 1e-10
settings.input.Technical.rsconv = 1e-10

# add the compounds to the settings object
settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
out = my_job.run()
# convert all the results into a python dict
res = out.get_results()

return res

def calc_binodal_at_T(res):

# this is the miscibility gap, so we can use the result calculated by the program
points_l = []
points_r = []

if res["nxll"]>0:
for i in range(len(res["xll"])//6):

points_l.append(res["xll"][6*i:6*i+3])
points_r.append(res["xll"][6*i+3:6*i+6])

(continues on next page)
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return points_l + list(reversed(points_r))
else:

return None

def calc_spinodal_at_T(res):

# in this function, we search for mole fraction values where the determinant of
→˓the hessian of G_mix with respect to mole fractions is 0

# using the first two mole fractions as degrees of freedom
spinodal = []
gmix_res = res["Gibbs energy of mixing"]
fracs = res["molar fraction"][:2]

step_size = abs(fracs[0][1]-fracs[0][0])
tot_steps = round(1.0/step_size)+1
gmix = np.empty((tot_steps,tot_steps))
gmix.fill(None)
det_mat = np.empty((tot_steps,tot_steps))
det_mat.fill(None)

for x1,x2,gmix_val in zip(fracs[0],fracs[1],gmix_res):
idx1 = int(round(x1/step_size,0))
idx2 = int(round(x2/step_size,0))
gmix[idx1,idx2] = gmix_val

# calculate second derivatives and determinants
for i in range(tot_steps):

for j in range(tot_steps-i):
# these finite difference expressions work because the ternary mixture

→˓always has a constant step size
if 0<i<tot_steps-1 and 0<j<tot_steps-1:

d_xx = (gmix[i+1,j]-2*gmix[i,j]+gmix[i-1,j])/(step_size**2)
d_yy = (gmix[i,j+1]-2*gmix[i,j]+gmix[i,j-1])/(step_size**2)
d_xy = (gmix[i+1,j+1]-gmix[i+1,j-1]-gmix[i-1,j+1]+gmix[i-1,j-1])/

→˓(4*step_size**2)
det_mat[i,j] = d_xx*d_yy-d_xy**2

for i in range(tot_steps):
for j in range(tot_steps-i):

# compare right and below
for (i1,j1),(i2,j2) in [[(i,j),(i+1,j)],[(i,j),(i,j+1)]]:

if i2 < tot_steps and j2 < tot_steps and not np.isnan(det_mat[i1,j1])
→˓and not np.isnan(det_mat[i2,j2]) and det_mat[i1,j1]*det_mat[i2,j2] < 0:

x1 = step_size*np.array([i1,j1,tot_steps-1-i1-j1])
x2 = step_size*np.array([i2,j2,tot_steps-1-i2-j2])

spin = (abs(det_mat[i2,j2])*x1+abs(det_mat[i1,j1])*x2)/(abs(det_
→˓mat[i1,j1])+abs(det_mat[i2,j2]))

spinodal.append(spin)

return spinodal

(continues on next page)

10.6. Binodal and Spinodal Curves 119



COSMO-RS Manual, Amsterdam Modeling Suite 2022.1

(continued from previous page)

## Make ternary figure
figure, tax = ternary.figure(scale=1.0)
tax.boundary(linewidth=2.0)
tax.gridlines(color="black", multiple=0.05)
# Set Axis labels and Title
fontsize = 10
tax.bottom_axis_label("$x_1$", fontsize=fontsize,offset=0.2)
tax.right_axis_label( "$x_2$", fontsize=fontsize,offset=0.2)
tax.left_axis_label( "$x_3$", fontsize=fontsize,offset=0.2)

tax.ticks(axis='lbr',multiple=0.1, linewidth=1, tick_formats="%.1f",offset=0.02,
→˓fontsize=fontsize)

# Remove default Matplotlib Axes
tax.clear_matplotlib_ticks()

temps = []
if steps > 0:

temps = [temp_range[0] + (temp_range[1]-temp_range[0])/steps * i for i in
→˓range(steps+1)]
else:

temps = [temp_range[0]] if isinstance(temps,list) else [temp_range]

for temp in temps:
res = ternmix_at_T(files,temp,nfrac)
binodal = calc_binodal_at_T(res)
spinodal = calc_spinodal_at_T(res)

# the sorting index might need to be changed here if the curves are in a
→˓different position

binodal.sort( key = lambda x: x[1])
spinodal.sort(key = lambda x: x[1])

tax.plot(binodal, label="Binodal T="+str(temp)+" K")
tax.plot(spinodal,label="Spinodal T="+str(temp)+" K")

tax.get_axes().axis('off')
ternary.plt.legend(bbox_to_anchor=(1.1,1.0), loc='right')
ternary.plt.show()

finish()

This code produces the following output:

10.7 Distribution of species in multispecies calculations

COSMO-RS can be used with compounds which can be composed of multiple possible species . For these types
of calculations, it is often desirable to know the distribution of the various possible forms/species that constitute a
certain compound. In the following script, a binary mixture calculation is performed using benzene and an acetic acid
compound which is capable of existing as either of 2 conformers or as a dimer. The distribution of these species is
plotted as a function of mole fraction.
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10.7.1 Python code (Binary mixture)

import os
import matplotlib.pyplot as plt
from scm.plams import *

################## Note: Be sure to add the path to your own AMSCRS directory here #
→˓#################
database_path = os.getcwd()

if not os.path.exists(database_path):
raise OSError(f'The provided path does not exist. Exiting.')

def adjust_name(s):
return os.path.basename(s)

init()
#suppress plams output
config.log.stdout = 0

# initialize settings object
settings = Settings()
settings.input.property._h = 'BINMIXCOEF'
# optionally, change to the COSMOSAC2013 method
# settings.input.method = 'COSMOSAC2013'

# set the number of compounds
num_compounds = 2
compounds = [Settings() for i in range(num_compounds)]

(continues on next page)
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compounds[1].name = "acetic_acid"
form = [Settings() for i in range(3)]

form[0]._h = os.path.join( database_path, "acetic_1.coskf" )

form[1]._h = os.path.join( database_path, "acetic_2.coskf" )

form[2]._h = os.path.join( database_path, "acetic_dimer.coskf" )
form[2].count = 2
form[2].Hcorr = 9.25

compounds[0].form = form

compounds[1]._h = os.path.join( database_path, "Benzene.coskf" )
compounds[1].name = "comp1"

settings.input.temperature = 298.15

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds
# create a job that can be run by COSMO-RS
my_job = CRSJob(settings=settings)
# run the job
out = my_job.run()

# convert all the results into a python dict
res = out.get_results()

struct_names = res['struct names'].split()
valid_structs = [[] for _ in range(len(compounds))]
for i in range(len(struct_names)):

for j in range(len(compounds)):
if res['valid structs'][i*len(compounds)+j]:

valid_structs[j].append(struct_names[i])

compositions = [ {vs:[] for vs in valid_structs[i]} for i in range(len(compounds)) ]
idx = 0
for i in range(len(compounds)):

for nfrac in range(len(res['molar fraction'][0])):
for j in range(len(valid_structs[i])):

compositions[i][valid_structs[i][j]].append(res['comp distribution'][idx])
idx += 1

mf1 = res['molar fraction'][0]

plot_comp = 0 # we'll plot the first compound (acetic acid)
for struct, vals in compositions[plot_comp].items():

plt.plot(mf1,vals,label=adjust_name(struct))

plt.xlabel("Mole fraction compound 1")
plt.ylabel("Species composition of compound")
plt.legend(loc='upper right')
plt.grid()
plt.show()

finish()
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This code produces the following output:
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CHAPTER

ELEVEN

REQUIRED CITATIONS

When you publish results in the scientific literature that were obtained with programs of the ADF package, you are
required to include references to the program package with the appropriate release number, and a few key publications.

11.1 General References

For calculations with the COSMO-RS program, version 2020.1:

1. C.C. Pye, T. Ziegler, E. van Lenthe, J.N. Louwen, An implementation of the conductor-like screening model of
solvation within the Amsterdam density functional package. Part II. COSMO for real solvents, Can. J. Chem. 87, 790
(2009) (https://doi.org/10.1139/V09-008)

2. AMS 2022.1 COSMO-RS, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http:
//www.scm.com Optionally, you may add the following list of authors and contributors: J.N. Louwen, C.C. Pye, E.
van Lenthe, N.D. Austin, E.S. McGarrity, R. Xiong, S.I. Sandler, R.I. Burnett

If you use COSMO-SAC 2013-ADF you must also add

3. R. Xiong, S.I. Sandler, R.I. Burnett, An improvement to COSMO-SAC for predicting thermodynamic properties,
Ind. Eng. Chem. Res. 53, 8265 (2014) (https://doi.org/10.1021/ie404410v)

11.2 Solvent Optimizations

For solvent optimizations:

N.D. Austin, N.V. Sahinidis, D.W. Trahan, COSMO-based computer-aided molecular/mixture design: A focus on
reaction solvents, AIChE Journal 64, 104 (2018) (https://doi.org/10.1002/aic.15871)

11.3 External programs and Libraries

Click here for the list of programs and/or libraries used in the ADF package. On some platforms optimized libraries
have been used and/or vendor specific MPI implementations.
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