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CHAPTER
ONE

GENERAL

1.1 Introduction

The ADF COSMO-RS (COnductor like Screening MOdel for Realistic Solvents) program is a program that can be used
for calculating thermodynamic properties of (mixed) fluids. The COSMO-RS method was developed by Klamt and
coworkers'>®. On the basis of the framework of COSMO-RS, Lin and Sandler® suggested a variation, the COSMO-
SAC (where SAC denotes segment activity coefficient) model. There are different implementations of COSMO-RS and
COSMO-SAC or derivatives, and different parametrizations. The implementation of COSMO-RS in ADF is described
in Ref.*, which is based on the COSMO-RS method developed by Klamt et al.”’. The implementation of COSMO-
SAC 2013-ADF in ADF is based on the COSMO-SAC model developed by Xiong et al.”. The implementation of
COSMO-SAC 2016-ADF in ADF is based on the COSMO-SAC model developed by Hsieh et al.”, but the parameters in
COSMO-SAC 2016-ADF were optimized by Chen et al., like in®, for use with ADF. The implementation of COSMO-
SAC DHB-ADF in ADF is based on the COSMO-SAC-DHB model developed by Chen et al.”, but the parameters were
reoptimized by Chen et al. for use with ADF.

An alternative to COSMO-SAC or COSMO-RS based methods is the UNIFAC (UNIQUAC Functional-group Activity
Coeflicients) method, which was developed by Fredenslund, Jones, and Prausnitz, see'?. The empirical UNIFAC method
is a group contribution based method to predict activity coefficients and other thermodynamic properties, in which the
group specific parameters and are parametrized against a large data base. The implementation in ADF uses to so called
original UNIFAC parameters.

Our COSMO-RS capabilities are summarized on the product page (https://www.scm.com/product/cosmo-rs).

With COSMO-RS itis possible to use a thermodynamically consistent combinatorial contribution to the chemical potential
as is used in Ref.”, and a temperature dependent hydrogen bond interaction, also described in Ref.’. The parameters in

! A. Klamt, Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys.
Chem. 99, 2224 (1995) (https://doi.org/10.1021/71000072062)

2 A. Klamt, V. Jonas, T. Biirger and J.C. Lohrenz, Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074 (1998)
(https://doi.org/10.1021/jp980017s)

3 A. Klamt, COSMO-RS From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier. Amsterdam (2005), ISBN 0-444-
51994-7.

6 S.T. Lin and S.I. Sandler, A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model, Ind. Eng. Chem. Res. 41, 899
(2002) (https://doi.org/10.1021/ie001047w)

4C.C. Pye, T. Ziegler, E. van Lenthe, J.N. Louwen, An implementation of the conductor-like screening model of solvation within the Amsterdam
density functional package. Part Il. COSMO for real solvents. Can. J. Chem. 87, 790 (2009) (https://doi.org/10.1139/V(09-008)

7 R. Xiong, S.I. Sandler, R.I. Burnett, An improvement to COSMO-SAC for predicting thermodynamic properties, Ind. Eng. Chem. Res. 53, 8265
(2014) (https://doi.org/10.1021/ie404410v)

5 CM. Hsieh, S.I. Sandler, S.T. Lin, Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions, Fluid Phase Equilib.
297,90 (2010) (https://doi.org/10.1016/j.fluid.2010.06.011)

8 W.L. Chen, C.M. Hsieh, L. Yang, C.C. Hsu, S.T. Lin, A Critical Evaluation on the Performance of COSMO-SAC Models for Vapor-Liquid
and Liquid-Liquid Equilibrium Predictions Based on Different Quantum Chemical Calculations, Ind. Eng. Chem. Res. 55, 9312 (2016)
(https://doi.org/10.1021/acs.iecr.6b02345)

9 W.L. Chen, S.T. Lin, Explicit consideration of spatial hydrogen bonding direction for activity coefficient prediction based on implicit solvation
calculations, Phys.Chem.Chem.Phys. 19, 20367 (2017) (https://doi.org/10.1039/c7cp02317k)

10 A, Fredenslund, R.L. Jones, and J.M. Prausnitz, Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE Journal
21, 1086 (1975) (https://doi.org/10.1002/aic.690210607)
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the paper’ were reparametrized for ADF, see Ref.’ for details.

The parameters in COSMO-SAC 2013-ADF, COSMO-SAC 2016-ADF, and COSMO-SAC DHB-ADF were optimized
for use with ADF COSMO result files. Other COSMO-SAC parameter sets exists that were optimized for different QM
packages.

The ADF COSMO-RS (and COSMO-SAC) command line program is called crs. The main authors of this program
are Cory Pye (Saint Mary’s University, Halifax NS Canada) and Jaap Louwen (Albemarle Corporation). COSMO-SAC
2013-ADF was implemented in collaboration with R. Xiong and R.I. Burnett (Sandler group, University of Delaware,
Newark, USA). Previous COSMO-SAC methods were implemented by Erin McGarrity (TU Delft, the Netherlands).
The COSMO-RS GUI AMScrs contains an input builder for COSMO-RS and can visualize results, see the COSMO-RS
GUI tutorials and the COSMO-RS GUI reference manual.

COSMO-RS (and COSMO-SAC) use the intermediate results from quantum mechanical (QM) calculations on individual
molecules to predict thermodynamic properties of mixtures of these molecules, for example, solubility. There are a fair
number of reports of accurate prediction by COSMO-RS of thermodynamic properties in general in the literature. Many
of these have been written by Klamt and co-workers, see Ref.’ and references therein. Instead of a relatively expensive
QM calculation one can use a fast Quantitative Structure-Property Relationship (QSPR) method to estimate the so called
COSMO sigma-profile of a molecule that is needed in COSMO-RS (and COSMO-SAC) calculations.

There are also empirical methods like UNIFAC that can predict thermodynamic properties (including the activity co-
efficients). These methods contain group specific parameters and are parametrized against a large data base. They will
often do better than COSMO-RS or COSMO-SAC methods (especially, of course, if the system of interest was part of
the data base used for parameter estimation). An advantage of these methods is that they require no QM calculations
to be done in order to provide an estimate of thermodynamics properties. However, these methods cannot handle every
type of molecule. In particular when unusual combinations of functional groups occur (such as in drug molecules), no
parametrization is available. COSMO-RS and COSMO-SAC methods, on the other hand, only feature general parame-
ters not specific to chemical groups or functionalities. All that is required is that a quantum mechanical calculation can
be done on the molecule. Therefore, COSMO-RS or COSMO-SAC can be a valuable tool for the prediction of chemical
engineering thermodynamical properties, like, for example, partial vapor pressures, solubilities, and partition coefficients.
An additional advantage of COSMO-RS and COSMO-SAC over empirical methods is that the molecules dissolved may
in fact be transition states of a chemical reaction. This follows from the fact that all that is required is that one can do a
QM calculation on the solute and QM on a transition state has become standard in the last two decades. This affords a
unique opportunity to predict the thermodynamics of a reaction including, for instance, the balance between kinetically
and thermodynamically favored reaction pathways as a function of the solvent used.

1.2 What’s new in COSMO-RS 2024.1

¢ A new Database module in pyCRS designed for the management of coskf files

* A new CRSManager module in pyCRS facilitates a streamlined scripting process for the creation and execution of
CRSJob in conjunction with the Database module

1.3 What’s new in COSMO-RS 2023.1

e pyCRS (page 81) is a new python module that provides an interface to the pure compound property prediction and
sigma profile prediction tools

* SG1: anew sigma profile prediction (page 22) method that relies on a database of pre-computed molecular subgraphs
* A new, temperature-dependent pure compound liquid viscosity model
* A synthetic accessibility estimation method — see the Property prediction documentation (page 63) for more details.

* Improved convergence criteria that make multispecies calculations more stable

2 Chapter 1. General
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1.4 What’s new in COSMO-RS 2022.1

* Pitzer-Debye-Hiickel long-range electrostatic correction

1.5 What’s new in COSMO-RS 2021.1

¢ Improved handling of compounds with multi-species components

1.6 What’s new in COSMO-RS 2020.1

* Support for compounds with multi-species components
— conformers
— dimers, trimers, ...
— dissociation

— association

1.4. What’s new in COSMO-RS 2022.1 3
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CHAPTER
TWO

COSMO-RS, COSMO-SAC, UNIFAC

2.1 COSMO-RS theory

Below some of the COSMO-RS theory is explained, but a more complete description can be found in Refs.! and”.

Although in principle all of chemistry can be predicted by appropriate solutions of the Schrodinger Equation, in practice
due to the extreme mathematical complexity of doing so only the smallest systems can be computed at an accuracy
rivaling that of the most accurate experiments. However, with suitable approximations, for isolated molecules of up to a
few hundred atoms these days quite reasonable results can be obtained. Of course, this means that direct computation of
thermodynamic properties is out of reach. Thermodynamic properties can only be computed as an average over a large
number of configurations of a large number of molecules. To address this, people have typically resorted to so-called
Molecular Dynamics (MD) or Monte Carlo (MC) methods where configurations are generated either by numerically
simulating the atomic motions over discrete time steps or by random generation, in either case using empirical molecular
models parametrized against quantum mechanical calculations and experimental data to compute energies. However,
even these approaches often fall short in generating sufficiently large ensembles, and there is little chance of that situation
improving dramatically in the near future.

Around 1995, Andreas Klamt, then working for Bayer, hit upon an approach that made it possible to compute the details of
molecules quantum mechanically and subsequently use these details in an approximate statistical mechanics procedure?.
This approach is called COSMO-RS (COnductor like Screening MOdel for Realistic Solvents) and has proven to be
quite powerful. It may currently be the best link between the world of chemical quantum mechanics and engineering
thermodynamics.

Thermodynamic reference states can be chosen arbitrarily. They do not even have to be physically realizable, as long as
it is consistently used. We are at liberty to choose as reference state a molecule embedded in a perfect conductor, that
is a material with an infinitely large dielectric constant (‘the perfectly screened state’). Suppose a molecule A resides in
a molecule shaped cavity. Everywhere outside of this cavity is conductor material. Although it would be hard to realize
this in practice, it is relatively easy to do quantum mechanical calculations on this hypothetical state. Since the molecule
will in general have a charge distribution and therefore possess an electric field, it will polarize the embedding medium.
That will result in another electric field, given by a charge distribution on the surface of the molecule shaped cavity. This
charge distribution is generated by the quantum mechanical calculations, for example with ADF if one uses COSMO.
From now on the surface of the molecule shaped cavity will be called molecular surface, and the volume of the molecule
shaped cavity will be called molecular volume.

I A. Klamt, V. Jonas, T. Biirger and J.C. Lohrenz, Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074 (1998)
(https://doi.org/10.1021/jp980017s)

2 A. Klamt, COSMO-RS From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier. Amsterdam (2005), ISBN 0-444-
51994-7.

3 A. Klamt, Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys.
Chem. 99, 2224 (1995) (https://doi.org/10.1021/j1000072062)
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Cosmo charge density on the COSMO surface of water (picture made with AMSview).

Although the actual charge distribution on the molecular surface will be highly detailed, let us for the moment consider the
molecular surface as consisting of segments with a constant charge density (i.e. the detailed charge distribution averaged
over segments). Now instead of the single molecule A consider, as an arbitrary example, a fluid consisting of three types
of molecules: A, B and C. In a fluid not too close too the critical temperature, the molecular surfaces present in the fluid
will all be in close contact. That means that the segments of constant density introduced above are in close contact.

We now compare our molecule A in the fluid with our chosen reference state. Any segment of the molecular surface
with a charge density of o; will be aligned with a segment with charge density o; of another molecule. If the two charge
densities happen to be opposite (i.e. o; + o; = 0) the charges required for achieving the perfectly screened state will
vanish. However, this will not happen too often and in general an excess charge density is left of o; + o between the
two segments. From electrostatic theory it follows that this introduces an energy penalty proportional to the segment
size and (0; 4+ ;)% . In principle this gives a way to compute the chemical potential of component A, by going over all
possible conformations of a large number of molecules A, B and C (in their proper molar fractions) and do computations
on the statistical ensemble. However, in practice that would be similar to doing Molecular Dynamics calculations using
empirical structure models and about as computationally prohibitive. Instead, an approximation can be made that is not
easily justified a priori and must be judged by the results of subsequent simulations. This assumption is that all segments
in the fluid are able to make contact independent of one another. In a way it can be said, that the segments are cut loose
from the original (rigid) molecular surfaces.

As one would guess, the approximation of independent segments makes the mathematics of computing ensemble proper-
ties quite tractable. In fact, computing the chemical potential of component A (or B or C) in the mixture by means of the
COSMO-RS and related methods takes in the order of seconds on a normal PC (given the results of quantum mechanical
calculations that may have taken days, of course). Note that the molecular surface around the molecule is divided rather
arbitrarily in segments and that the assumption was that the segment of one molecule will overlap perfectly with that of
another. How can this be true? The answer is that one can split up the molecular surface into segments in an infinite
number of ways. However, the molecules in a fluid are always in contact with another. At any given time, molecule A
will be in contact with a number of other molecules and share patches of, for example, 7 square Angstroms of its surface
with each of the surrounding molecules. At that particular time, the segments will be those patches. A split second later,
of course, there will be a different set of segments. That is not a problem. One needs to do statistical mechanics with
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charged segments for which one needs to know how many 7 square Angstrom segments a particular molecule brings into
the fluid and the probability of any segment having an average charge density o (for all values of o). Both can be computed
from the results of the quantum mechanical calculation on the molecule in the perfect conductor. Just to get a flavor,
in the figure below the so-called o-profile of water is given. These are the statistical distributions of possible segments
over charge densities multiplied by the surface area of the molecular volume. The o-profile relates to the detailed charge
distribution on the molecular surface.

plsigma) sigma-profile
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sigma (e/A**2)

o-profile of water (picture made with the CRS-GUI), smoothed curve, Delley COSMO surface construction

In principle vapor pressures of pure liquids can be computed directly with COSMO-RS. COSMO-RS calculations yield
the chemical potential of a component in a liquid with respect to the perfectly screened reference state. It is easy to
compute the energy difference between the reference state and the gas phase by doing an additional quantum mechanical
calculation (of the isolated molecule). However, often experimental vapor pressures for the pure liquid are known. Using
such experimental data for pure liquids can help in predicting the correct partial vapor pressures in a mixture.

2.1.1 COSMO-RS combinatorial term

In Ref.” a thermodynamically inconsistent combinatorial contribution uf‘"”b to the chemical potential was used:

Mfomb _ _)\RTln(qau/AQ)

Qav = Z Tiq;
i

In this equation g; is the surface area of the molecular volume of compound i, x; is the molar fraction of compound i in
the solution, and A is a COSMO-RS parameter.

The importance of using a thermodynamically consistent combinatorial contribution is discussed in Ref.”. In the ADF
COSMO-RS program it is possible to use a thermodynamically consistent combinatorial contribution of the form (Equa-
tion C.4 of Ref.”, with \g = A1 = Xo = \):
o2
pm™ = ART(1 — 7 /Taw + (7 /Tas) + 1 — €5 /Gaw — In(qaw /A7)

Tav = E Z;Ty
%

In this equation 7; is the molecular volume of compound i. In the ADF COSMO-RS program this combinatorial term is
used by default, see also Ref A

4 C.C. Pye, T. Ziegler, E. van Lenthe, J.N. Louwen, An implementation of the conductor-like screening model of solvation within the Amsterdam
density functional package. Part Il. COSMO for real solvents. Can. J. Chem. 87, 790 (2009) (https://doi.org/10.1139/V(09-008)
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2.1.2 Fast approximation for COSMO-RS calculations

In the 1998 COSMO-RS model each segment of the molecular surface has a charge density of o, , but also a second charge
density o~ , which is a descriptor for the correlation between the charge density on the segment with its surrounding. In
the original ADF COSMO-RS implementation this was treated as a 2-dimensional problem, in the fast approximation
this is effectively reduced to 1-dimension. Starting from COSMO-RS 2010 this fast approximation is now the default.

This approximation reduces the computation time, especially in cases of more than 1 compound.

2.1.3 Temperature dependent hydrogen bond interaction

In Ref.” a temperature dependent hydrogen bond interaction is suggested, which is used by default in the ADF COSMO-
RS program. The temperature dependence (Equation 6.2 of Ref.”) is of the form:

term(T) = Tin[l + exp(20kJ /mol /RT')/200]
fro(T) = term(T) /term(298.15K)

Note that here the correct formula is used with a plus sign before 20 kJ/mol (there is a sign error in Equation 6.2 of Ref.’,
see online ‘List of Errata in the COSMO-RS book’ by Andreas Klamt), such that this factor goes to zero for large T. In this
equation R is the gas constant and T the temperature (in Kelvin). In the ADF COSMO-RS program the hydrogen bond
interaction of Ref.” is multiplied by this factor fi;, (T) to make the hydrogen bond interaction temperature dependent.

2.2 COSMO-SAC 2013-ADF, 2016-ADF, DHB-ADF

On the basis of the framework of COSMO-RS, Lin and Sandler’ suggested a variation, the COSMO-SAC (where SAC
denotes segment activity coefficient) model by invoking a necessary thermodynamic consistency criterion. Although there
are differences, COSMO-RS and COSMO-SAC share some similarities. Later improvements of COSMO-SAC appeared,
like in Refs.” .

The COSMO-SAC 2013-ADF method used in ADF is the one developed by Xiong et al., which is described in de-
tail in Ref.”. The COSMO-SAC 2013-ADF parameters in Ref.” were optimized for use with ADF COSMO result
files. COSMO-SAC 2013-ADF is an improved COSMO-SAC method compatible to ADF and different than previous
COSMO-SAC methods. The main difference compared to previous COSMO-SAC methods is that the COSMO-SAC
2013 model includes a dispersion contribution in the mixture interaction.

In Ref.> COSMO-SAC model parameters were optimized by Chen et al. for different quantum mechanical calculations.
The authors of Ref.” also reoptimized the revised COSMO-SAC model’ parameters for quantum mechanical calculations
with ADF, which will be called here the COSMO-SAC 2016-ADF method.

In Ref.® a COSMO-SAC model was proposed that uses a directional hydrogen bond approach, denoted as the COSMO-
SAC(DHB) model. The parameters were reoptimized by Chen et al. for use with ADF, which will be called here the
COSMO-SAC DHB-ADF method.

U'S.T. Lin and S.I. Sandler, A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model, Ind. Eng. Chem. Res. 41, 899
(2002) (https://doi.org/10.1021/ie001047w)

2s. Wang, S.I. Sandler, C.C. Chen, Refinement of COSMO-SAC and the Applications, Ind. Eng. Chem. Res. 46, 7275 (2007)
(https://doi.org/10.1021/ie070465z)

3 C.M. Hsieh, S.I. Sandler, S.T. Lin, Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions, Fluid Phase Equilib.
297,90 (2010) (https://doi.org/10.1016/j.fluid.2010.06.011)

4 R. Xiong, S.I. Sandler, R.I. Burnett, An improvement to COSMO-SAC for predicting thermodynamic properties, Ind. Eng. Chem. Res. 53, 8265
(2014) (https://doi.org/10.1021/ie404410v)

5 W.L. Chen, C.M. Hsieh, L. Yang, C.C. Hsu, S.T. Lin, A Critical Evaluation on the Performance of COSMO-SAC Models for Vapor-Liquid
and Liquid-Liquid Equilibrium Predictions Based on Different Quantum Chemical Calculations, Ind. Eng. Chem. Res. 55, 9312 (2016)
(https://doi.org/10.1021/acs.iecr.6b02345)

6 W.L. Chen, S.T. Lin, Explicit consideration of spatial hydrogen bonding direction for activity coefficient prediction based on implicit solvation
calculations, Phys.Chem.Chem.Phys. 19, 20367 (2017) (https://doi.org/10.1039/c7cp02317k)
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The ADF COSMO-RS program can calculate activity coefficients using the COSMO-SAC 2013-ADF model or the
COSMO-SAC 2016-ADF model. Like in the COSMO-RS method, pure compound vapor pressures can be given as
input, for example, if experimental values are available. In case of the COSMO-SAC 2013-ADF model, if these values
are not specified then the pure compound vapor pressure will be calculated according to the COSMO-SAC 2013-ADF
model. However, in case of COSMO-SAC 2016-ADF, if these values are not specified then the pure compound vapor
pressures will be approximated using a method similar as in the COSMO-RS method. It is also possible to use some
earlier COSMO-SAC methods’’, but note that the parameters in those papers were not optimized for use with ADF
COSMO result files.

The COSMO-SAC 2013 model includes a dispersion contribution in the mixture interaction. This dispersion contribution
is a complicated expression which also depends on the liquid molar volume of the pure compounds and on the molar
volume of the mixture. The molar volume of the mixture is calculated from the pure compound liquid molar volumes
assuming ideal mixing. In the input for the ADF COSMO-RS program one include for each compound the experimental
pure compound liquid density (kg/L), from which the program can calculated the pure compound liquid molar volumes.
If this density is not given the pure compound liquid molar volume will be calculated from its COSMO volume. Note that
in the calculations with the COSMO-SAC 2013-ADF model in Ref.” often experimental pure compound liquid molar
volumes were used.

2.3 UNIFAC theory

Below some of the UNIFAC method is explained, but a more complete description can be found in Ref.'.

The UNIFAC method is an activity coefficient model derived from the UNIQUAC model. Both UNIFAC and UNIQUAC
are thermodynamic models based on local composition theory, which holds that the local environment of a molecule in
solution can be used to calculate the probabilities of molecular configurations in the bulk solution. While UNIQUAC
requires parameters for every compound in solution and interaction parameters for every pair of compounds, UNIFAC
estimates these parameters as functions of the number of occurrences of various molecular substructures, or groups, in a
molecule. This means that UNIFAC can be applied to estimate activity coefficients for arbitrary systems, so long as every
group is defined and an interaction parameter exists for every pair of groups in the composition.

The UNIFAC method calculates the activity coefficient as a function of two contributions: (1) the residual contribution,
meant to account for the interactions of groups in the mixture; and (2) the combinatorial contribution, meant to account
for entropic effects due to differences in molecular shape. Using these two components, the activity coefficient for each
compound i is calculated as follows:

Invy; = In~yf +ln7ic

where In v/ corresponds to the residual contribution to the activity coefficient and Iny¢ to the combinatorial contribution.

2.3.1 Residual term

In the UNIFAC method, we first define n¥ to be the number of times group k occurs in molecule i. Using this with the
mole fraction z; of each compound i, we calculate the group mole fraction, Xy, or the amount of groups of type k as a
fraction of the total groups:

Sowing
7

Xp=
> wm]
TG

We use the X, values to then determine the relative surface area each group represents in the mixture. This is done by
taking an average of the X values weighted with the surface area contributions, Q, of each group k. We define the

! A. Fredenslund, R.L. Jones, and J.M. Prausnitz, Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE Journal
21, 1086 (1975) (https://doi.org/10.1002/aic.690210607)
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result as the area fraction of group k:

X Qr

O = =k
Z IQO
m

the surface area and volume of a molecule is estimated as a linear function of the number and types of groups that are
present. Each group k occurs a n¥ times in molecule i.

Additionally, between every pair of groups, k and m an interaction energy is defined as ay,,. This energy is given in Kelvin
and is used to calculate the group interaction paramter W, :

Wgm = €xp <_(¥m)

where T is the temperature of the system in Kelvin. Note that Ug,,, # U,,1.

These parameters are then used to calculate the residual contribution to the activity coefficient for each group k:

Om¥sm
InTy = Qs 1—an® o — ZZ@\;

Additionally, one must also calculate In I‘(l) which follows the same procedure as above for each compound assuming it
exists in a pure form, i.e., z; = 1. Then, the residual contribution to the activity coefficient is calculated as follows:

Inyf =3 nk (1an - 1nr,(j>)
k

2.3.2 Combinatorial term

To estimate the combinatorial contribution to the activity coefficient, first the surface area, ¢;, and volume, r;, of molecule
i are estimated as follows:

G=Y Qnf ri=)» Rinf
i %

where (), is the surface area contribution of group k and Ry, is the volume contribution. Using these parameters we can
define the relative surface area and relative volume (also called fractional surface area and fractional volume) corresponding
to molecule i in solution. This is simply an average of the surface areas/volumes of each compound weighted by the mole
fraction of that compound in solution:

Tidi LiT
0; = ¢ =
>4 2Ty
J J
Additionally, we calculate the parameter L;:
z
L; = 5(%‘ —q)—(ri —1)

where 7 is the coordination number and is usually taken to be equal to 10. All of these parameters are then used to
calculate the combinatorial contribution to the activity coefficient:

(bz 01’ ¢z
ln%- ln;+§qilna+Li_E;ijj
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2.4 Calculation of properties

The COSMO-RS method allows to calculate the (pseudo-)chemical potential of a compound in the liquid phase, as well
as in the gas phase, see the the COSMO-RS theory that was discussed before and Ref.!. In the ADF COSMO-RS
implementation the following equations were used to calculate properties using these chemical potentials.

szzz vapor _ sz—l

[
—_ pure ave
ave __ . pure
Mave = § 2 M!

P = capl (T — ) [RTY
PP = wieap{ (15 — ")/ RT}
pvapor _ Z p;)apw'
R —
i = eap{ (i — u""*)/RT}
A = Vi

GE — HE _ TSE le solv _ pure)

’L

HY = —RT?0{G* /RT} /0T

AvapH _ RT2 /pvapora{pvapor}/aT
kH = 1/Viotwentexp{ (p"* — ui*"")/ RT}
i =1/ (knViotvent) = P!
xfOL =1/7%(T > T)
7% = 1/viexp{AH rus(1/Ton = 1/T)/ R = AC(In(Tyn/T) = T /T + 1)/ RUT < Typ)

lig—solv solv pure
Gsolv - /j“z - My
gas—solv solv __ 9‘13
Gsolv - /’Lz + RTZ”( solvent/ans)

loglOPsol'ul/solv2 - l/ln(lo)( solv2 solvl)/RT + loglO( sol'ul/‘/sol'UQ)
1/LFme = Z(y;Japor/LFLi)
i
The above equations are not always exact, some assume perfect gas behavior, for example.

The molar fraction z; of each compound i of the solvent should add up to 1.

With the COSMO-RS method it is possible to predict vapor pressures. In the COSMO-RS model the free energy dif-
ference between the chemical potential in the gas phase (perfect gas with a reference state of 1 bar) and the chemical
potential of the liquid phase has been defined in such a way that the equation: p; = exp(uf™"™® — u?**)/RT, will give
the pressure in units of bar. It is also possible to use experimental vapor pressures of pure compounds as input data for
the calculation. This may increase the accuracy of the calculated vapor pressures in a mixture, for example.

In the COSMO-RS method the volume of 1 molecule in the liquid phase is approximated with the volume of the molecule
shaped cavity, that is used in the COSMO calculations. In this way it is possible to calculate the volume of 1 mole of

I A. Klamt, V. Jonas, T. Biirger and J.C. Lohrenz, Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074 (1998)
(https://doi.org/10.1021/jp980017s)
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solvent molecules in the liquid phase. However, for properties that depend on such volumes, one can also use (related)
experimental data as input data for the calculation.

The calculation of the boiling temperature of a solvent is performed with an iterative method. The temperature is varied
until the calculated vapor pressure is within a certain threshold of the desired pressure.

Also the calculation of solubility of compound i is performed with an iterative method, since the activity coefficient ;
depends on the molar fraction of this compound. The COSMO-RS method does not predict AH s, AC), , or Ty, .
These can be given as input data for the calculation of solubility calculations of solid compounds.

Starting from ADF2012 the Gibbs-Helmholtz equation is used to calculate the excess enthalpy of a mixture. Previously
it was estimated using the misfit and hydrogen bonding energy of the mixture and its pure compounds.

Quantity Meaning
R Gas constant
T Temperature
x; The molar fraction of compound i in a liquid solution
y; P The molar fraction of compound i in the gas phase
w; The mass fraction of compound i in a liquid solution
M, pure The molar mass of the pure compound i
Meave The average molar mass of the mixture
Yi Activity coefficient of compound i in a liquid solution
a; Activity of compound i in a liquid solution
e The vapor pressure of the pure compound i
rer The partial vapor pressure of compound i
prerer The total vapor pressure
Wi &8 The pseudochemical potential of the pure compound i in the gas phase
i Pure The pseudochemical potential of the pure compound i in the liquid phase
i SV The pseudochemical potential of compound i in a liquid solution
GF The excess Gibbs free energy
or The excess enthalpy, Gibbs-Helmholtz equation
G™* The Gibbs energy of mixing
AyopH The enthalpy of vaporization, Clausius-Clapeyron equation
BB pure The hydrogen bond energy of the pure compound i in the liquid phase, see Ref.”
ERB The partial hydrogen bond energy of compound i in a liquid solution
Erislitpure The misfit energy of the pure compound i in the liquid phase, see Ref.”
Bl The partial misfit energy of compound i in a liquid solution
AGHa—so The solvation Gibbs free energy from the pure compound liquid phase
to the solvated phase
AGIe s The solvation Gibbs free energy from the pure compound gas phase
to the solvated phase, with a reference state of 1 mol/L in both phases
kg Henry’s law constant: ratio between the liquid phase concentration of a compound
and its partial vapor pressure in the gas phase
k% dimensionless Henry’s law constant: ratio between the liquid phase concentration
of a compound and its gas phase concentration
Ky e Henry’s law constant, representing the volatility instead of the solubility,
ratio between the partial vapor pressure of a compound in the gas phas
and the molar fraction in the liquid phase”
Visolvent Volume of 1 mole of solvent molecules in the liquid phase
Vias Volume of 1 mole of molecules in the gas phase (at 1 atm, perfect gas)
z7OF Solubility of compound i in a solvent (molar fraction)
AHpys The enthalpy of fusion of compound i
continues on next page
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Table 2.1 - continued from previous page

Quantity Meaning

AC, The A heat capacity of fusion of compound i

T The melting temperature of compound i

10910 Psorv1 /solv2 The logarithm of the partition coefficient P, which is the ratio of the concentrations
of a compound in two immiscible solvents, solvent 1 and solvent 2

LFL,; The flash point (lower flammable limit, LFL) of compound i

LFL,, ;. The flash point (lower flammable limit, LFL) of a mixture, Le Chatelier’s mixing rule

See also the COSMO-RS GUI tutorial for the calculation of the following properties:
* solvent vapor pressure [1, 2]
* boiling point of a solvent [1]
* partition coefficients (log P) [1, 2], Octanol-Water partition coefficients (log Pow ) [1]
* activity coefficients [1, 2], solvation free energies [ 1], Henry’s law constants [1], pK, values [1]
* solubility [1, 2]
* vapor-liquid diagram binary mixture (VLE/LLE) [1, 2]
Ionic liquids in COSMO-RS 2020

The activity coefficient of a compound i solvated in an ionic liquid is an important thermodynamic property. In COSMO-
RS 2020 one can treat the ionic liquid as one compound, which means that the value of the activity coefficient is calculated
in the standard way most applications report them. In particular, in COSMO-RS 2020 one can treat the ionic liquid as
one compound, which only has the dissociated form.

* jonic liquids tutorial
Ionic liquids in COSMO-RS <=2019

The activity coefficient of a compound i solvated in an ionic liquid is an important thermodynamic property. The cation
and anion, which have been treated separately, will be used in equal amounts to ensure an electroneutral mixture in the
COSMO-RS calculation.

In other applications cation-anion pair have been treated as one molecule, however, below we will treat the cation and
anion as two separate molecules, which is needed in older versions of COSMO-RS <=2019. This has consequences for
the value of the activity coefficient.

For example, for a 1:1 IL (i.e., [A]* [B] ), the activity coefficient at a finite concentration of solute i in the binary mixture
(IL + solute) can be calculated by

Vi bin _ (Yi tern X; tern ) /Xi bin _ Yi tern /(1 X1 bin )

where the superscript “tern” represents the hypothetical ternary system comprising cation, anion and solute i, with

. tern _ .
Xcanon - Xamon

tern tern tern _
Xcation + Xanion + X =1

and the superscript “bin” represents the binary mixture comprising solute and IL, with

XL bin + X bin _ 1
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Accordingly, the activity coefficient of a solute i in the binary mixture (IL + solute) at infinite dilution is simplified as

vi M =0.5v; ®" (at infinite dilution)

Thus in this case we should scale the activity coefficient at infinite dilution vy; *™ , which is directly obtained from the
COSMO-RS calculation, with a factor of 0.5.

Similarly, for a ternary system comprising component i, component j and an ionic liquid, the activity coefficient at finite
concentration of component i can be calculated by

Yi tern = Yl quart /(1+XIL tern )

where the superscript “quart” represents the hypothetical quaternary system comprised of cation, anion, solute i and solute
j, with:

uart _ . uart
q = Xan q

Xcation ion

uart uart uart uart _
Xcation g + Xanion g + X g + Xj q =1

and the superscript “tern” represents the ternary mixture comprising solute i, j, and IL, with

XIL tern + X] tern + XJ tern - 1
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CHAPTER
THREE

COSMO RESULT FILES

COSMO-RS needs as input for the calculation so called COSMO result files for each compound, which are results of
quantum mechanical calculation using COSMO. In ADF such a COSMO result file is called an adf.rkf file (previously
ADF<=2019 known as TAPE2I or as a .t21 file) or a COSKEF file (.coskf). With Fast Sigma such a COSMO result
file is a COMPKEF file (.compkf). With MOPAC such a COSMO result file is a .cos file, which can be converted to a
COSKEF file. In other programs such a file can be a .cosmo file. ADF has databases of .coskf files, the COSMO-RS
compound database ADFCRS-2018 (page 20) (including ionic liquids) and the COSMO-RS polymer database ADFCRS-
2019 (page 22). At http://www.design.che.vt.edu/VT-Databases.html a database of .cosmo files can be found, which
were made with a different program. Note that the optimal COSMO-RS parameters may depend on the program chosen.

3.1 ADF COSMO calculation

3.1.1 ADF COSMO settings

Here it is described briefly how to make COSMO result files consistent with the way they were made for the ADF
parametrization of COSMO-RS to ensure full parameter applicability. First a gas phase geometry optimization should be
performed with ADF, with a small core TZP basis set, the Becke-Perdew functional (BP86), the relativistic scalar ZORA
method (which is the default in ADF2020), and good numerical integration quality:

AMS_JOBNAME=GASPHASE "SAMSBIN/ams" << eor
Task GeometryOptimization
System

Atoms

End
End
Engine ADF
Basis
Type TZP
Core Small
PerAtomType Symbol=I File=ZORA/TZ2P/I.4p
End
XC
GGA Becke Perdew
End
BeckeGrid
Quality Good
End
Relativity
Level Scalar
Formalism ZORA

(continues on next page)
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(continued from previous page)

End
EndEngine
eor

For heavier elements than krypton (Z>36), like iodine, a small core TZ2P basis set is required. The resulting adf.rkf
(previously ADF<=2019 TAPEZ21 file or .t21 file) of the molecule is used as a restart file in the COSMO calculation, and
the system is loaded using the resulting ams.rkf. The ADF COSMO calculation is performed with the following settings:

AMS_JOBNAME=COSMO "S$SAMSBIN/ams" << eor
Task SinglePoint
LoadSystem
File GASPHASE/ams.rkf
End
EngineRestart GASPHASE/adf.rkf
Engine ADF
Basis
Type TZP
Core Small
PerAtomType Symbol=I File=ZORA/TZ2P/I.4p
End
XC
GGA Becke Perdew
End
BeckeGrid
Quality Good
End
Relativity
Level Scalar
Formalism ZORA
End
Symmetry NOSYM
SOLVATION
Surf Delley
Solvent name=CRS emp=0.0 cav0=0.0 cavl=0.0
Charged method=CONJ corr
C-Mat EXACT
SCEF VAR ALL

RADTI
H 1.30
c 2.00
N 1.83
o 1.72
F 1.72
Si 2.48
P 2.13
S 2.16
Cl 2.05
Br 2.16
I 2.32
SubEnd
END
EndEngine
eor

In this COSMO calculation the Delley type of cavity construction is chosen (See Ref.! for details on the Delley surface

U'B. Delley, The conductor-like screening model for polymers and surfaces. Molecular ~ Simulation 32, 117 (2006)
(https://doi.org/10.1080/08927020600589684)
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construction). The name of the solvent is CRS, which sets the dielectric constant to infinite and sets the radius of the
probing sphere to determine the solvent excluded part of the surface to 1.3 Angstrom.

In case of a cation or an anion, in both the gas phase calculations as well as in the COSMO calculation one should include
the charge with the subkey CHARGE of the key SYSTEM in the AMS part of the input.

In the Radii subblock key the Klamt atomic cavity radii are chosen. The parameters emp, cav0, and cavl are zero.
The corr option to the CHARGED subkey constrains the computed solvent surface charges to add up to the negative of
the molecular charge. Specifying exact for the C-MAT subkey causes ADF to compute straightforwardly the Coulomb
potential due to the charge ¢ in each point of the molecular numerical integration grid and integrate against the electronic
charge density. This is, in principle, exact but may have inaccuracies when the numerical integration points are very close
to the positions of a charge g. To remedy this, starting from ADF2010 the electrostatic potential is damped in case of
(very) close lying numerical integration points and COSMO surface points. The numerical stability of the results compare
to those of ADF2009 was increased as a result of this. Specifying exact for the C-MAT subkey also requires that the
ADF calculation uses SYMMETRY NOSYM.

The resulting adf.rkf (previously ADF<=2019 TAPE21 file or .t21 file) of the COSMO calculation is a COSMO result
file.

In a COSMO-RS calculation only the ‘COSMO’ part of this file is needed. One can make a kf file compound.coskf, which
only consists of the section ‘COSMO’ if one does:

SAMSBIN/cpkf adf.rkf compound.coskf "COSMO"

The file compound.coskf should not exist before this command is given. Note that such a .coskf file is not a complete
adf .rkf anymore. For example, only the COSMO surface can be viewed with AMSview. It is useful mostly for COSMO-
RS calculations.

Links COSMO-RS GUI tutorial: COSMO result files [1]

3.1.2 Atomic cation or anion

In case of an atomic calculation one should of course not perform a geometry optimization. In case of a cation or an
anion, in both the gas phase calculations as well as in the COSMO calculation one should include the charge with the key
CHARGE. Only for atomic calculations one should include the argument met hod=at om to the subkey Charged of the
key SOLVATION:

SOLVATION
Surf Delley
Solvent name=CRS cav0=0.0 cavl=0.0
Charged method=atom corr
C-Mat EXACT
SCF VAR ALL
END

3.1.3 Accuracy

Several parameters in the COSMO calculation can influence the accuracy of the result of the quantum mechanical cal-
culation. Some of these parameters will be discussed. Note that if one chooses different parameters in the COSMO
calculation one may also have to reparametrize the ADF COSMO-RS parameters. A list of some of the ADF COSMO
parameters.

e XC functional
¢ basis set

* fit set

3.1. ADF COSMO calculation 17
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e atomic cavity radii and radius of the probing sphere
e cavity construction
e geometry

The atomic cavity radii and the radius of the probing sphere are the same as in Ref.?, which describes the COSMO-RS
method developed by Klamt et al., which is implemented in ADF. The Becke Perdew functional is relatively good for
weakly bound systems, but may not be so good in other cases. The basis set TZP is a compromise basis set. For heavier
elements than krypton (Z>36), like iodine, a TZ2P basis set is required, including the relativistic scalar ZORA method.
Since the relativistic method hardly cost extra time compared to a non-relativistic method, the scalar relativistic scalar
ZORA method is recommended to be used also for light elements. The Delley type of cavity construction in ADF can
give a large number of COSMO points. The XC functional, basis set, and cavity construction chosen in the ADF COSMO
calculation have a similar accuracy as those that were used in Ref.”. Note that they are not exactly the same as were used
in Ref.’, since in that paper a different quantum mechanical program was used.

In the parametrization for ADF the same geometry was used for the gas phase and the COSMO calculation, which is
different than in Ref.”. It depends on the actual solvent if reoptimizing the molecule in the COSMO calculation may
give better results. Note that the dielectric medium used in the COSMO model has an infinite dielectric constant in the
COSMO-RS model. Thus a geometry optimization of the molecule in the COSMO calculation might be more appropriate
for a molecule dissolved in water than for a molecule dissolved in n-hexane.

The fit set in ADF is not always able to describe the Coulomb potential accurately at each of the COSMO surface points.
In regular ADF calculations this problem is not apparent since the numerical errors in the integrals computed in the
vicinity of the COSMO surface have little impact. However, in COSMO calculations this may have some effect. This is
why the option C-Mat exact was selected above, instead of the default C-Mat pot option. Another possibility is to add
more fit functions, for example, using ‘FitQuality Good’ for the key ZImFit in the input for the adf calculation.

3.1.4 Cavity construction

The Esurf type of cavity construction in ADF with default settings does not give a large number of COSMO points.
Therefore it is recommended to use the so called Delley type of cavity construction (Ref.”), which allows one to construct
a surface which has many more points. The Esurf type of cavity construction also allows many more points if one sets
the option NFDiv of the subkey DIV of the key SOLVENT to a larger value than the default value of 1. This will not be
discussed here further. In ADF2010 the numerical stability of the Delley surface has been improved, by merging close
lying COSMO surface points, and removing COSMO surface points with a small surface area. A figure of a COSMO
surface with the Esurf type of cavity construction with default settings is given below. In this figure the small spheres
represent the COSMO surface points that are used for the construction of the COSMO surface. The red part represents
positive COSMO charge density, the blue part negative COSMO charge density (the coloring scheme is chosen to match
the one by Klamt):

2 A. Klamt, V. Jonas, T. Biirger and J.C. Lohrenz, Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074 (1998)
(https://doi.org/10.1021/jp980017s)
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Cosmo charge density on the COSMO surface of methanol, Esurf surface (picture made with AMSview).

One can construct a surface which has many more points using a so called Delley surface. For the subkey SURF of the
key SOLVENT one can choose delley. The subkey DIV of the key SOLVENT has extra options lebl (default value 23),
leb2 (default value 29), and rleb (default value 1.5 Angstrom). If the cavity radius of an atom is lower than rleb use
leb1, otherwise use leb2. These values can be changed: using a higher value for lebl and leb2 gives more surface points
(maximal value lebl, leb2 is 29). A value of 23 means 194 surface points in case of a single atom, and 29 means 302
surface points in case of a single atom Typically one could use lebl for the surface point of H, and leb2 for the surface
points of other elements.

The next figure is made with the following (default for the Delley surface) settings:

SOLVATION

SURF Delley

DIV lebl=23 1leb2=29 rleb=1.5
END

0.0100

0.00500

-0.00500

-0.0100

Cosmo charge density on the COSMO surface of methanol, Delley surface (picture made with AMSview).

The different ways of constructing the cavity has some consequences for the o-profile of methanol, see the figure below:

3.1. ADF COSMO calculation 19
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o-profiles of methanol (picture made with the CRS-GUI). In this picture the blue line is the o-profile with the Esurf type
of construction, the red line is that with the Delley type of construction with many surface points. For comparison, the
green line is the o-profile of methanol if a large QZAP basis set is used, again with the Delley type of construction with
many surface points.

3.2 ADFCRS-2018 Database

The COSMO-RS Database ADFCRS-2018 contains 2560 compounds. This database combines the COSMO-RS
database ADFCRS-2010, the ionic liquid database ADFCRS-IL-2014, and some extra compounds.

Follow the COSMO-RS GUI Tutorial on the COSMO-RS compound database for more information on how to
download and install the zipped COSMO-RS Database ADFCRS-2018 https://downloads.scm.com/Downloads/crs/
ADFCRS-2018.zip, and how to use it.

The database contains CAS Registry Numbers. CAS Registry Number is a Registered Trademark of the American
Chemical Society.

Note: Update on ADFCRS-2018-4 Some compounds have been updated with the correct CAS number and SMILES.
Upon updating the SMILES, the coskf file has been rerun.
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Table 3.1: Update on ADFCRS-2018-4

File Name

Corrected SMILES/CAS number

2-
Mercaptobenzothiazole.cq

S=C1SC=2C=CC=CC2N1
skf

2-
Hydroxypyridine.coskf

0=C1C=CC=CN1

2-
Hydroxynicotinic_acid.co|

skf

0=C(0)C1=CC=CNC1=0

2-Hydroxy-6-

methylnicotinic_acid.coskif

0=C(0)C1=CC=C(NCI=0)C

Chloropyrifos.coskf

S=P(OC1=NC(CI)=C(Cl)C=C1CI)(OCC)OCC

Phospho-
rus_pentasulfide.coskf

P12(=S)SP3(=S)SP(=S)(S1)SP(=S)(52)S3

tert-
Dodecyl_mercaptan.coskf]

CCOCOOCONOCCYO)S

Hypophospho- O=[PH2]O

rous_acid.coskf

Perfluoro-n- FC(F)(F)CE)(F)CEF)F)CE)F) CE)FE)CE)F)CE)NF)CE)E) CE)F) CE)F)CEF)F)(J
hexadecane.coskf

Dehydroabiety- CC(C)C1=CC2=C(C=C1)[C@]3(CCC[C@]([C@@H]3CC2)(C)CN)C

lamine.coskf

4-Methyl-1H- CC1=CN=CN1

imidazole.coskf

Cellobiose.coskf C([C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O[C@@H]2[C@H](OC([C@@H]
Triolein.coskf O=C(OCC(OC(=0)CCCcCrcrre=ceececeeccococ(=o)cececceccece=cececcecced
Perfluoro-n- FC(F)(F)C(F)(F)CE)F)CE)EF) CE)E)CE)E)CENEF)CE)E)CE)E)CE)F)CF)F)(J
dodecane.coskf

1,2- 0=P(0)(0)CCP(=0)(0O)O

ethane_diphosphonic_acid.coskf

Trilinolein.coskf

C(OC(CCCCCCC/C=CC/C=CCCCCC)=0)(Coc(cceeeee/c=ce/ec=cececo)=0

Tetramantane.coskf

C123C4C5C67C(CI1CBC(C4CC(C2)CB)CH)CIC(C3)C5CC(CTCY

2-Ethyl-1-hexanol.coskf

OCc(co)cecece

4-
Bromobenzoic_acid.coskf

586-76-5

3.2.1 ADFCRS-2010

The COSMO-RS Database ADFCRS-2010 contains 1892 compounds, mostly solvents and small molecules. This

database consists of ADF COSMO result (.coskf) files, which are results of ADF quantum mechanical calculations using

COSMO, with settings suitable for use in our COSMO-RS module. The geometries have been optimized with ADF. This
database makes the COSMO-RS functionality much easier and faster (the time-consuming DFT step is already done ..)

to use.

The starting point for this database was a database of structures made by Prof. Sandler’s group at the University of

Delaware. The work of the Sandler group is based in part on earlier work by the group of Prof. Liu at Virginia Technical
University, reported in these papers:

Mullins, E.; Oldland, R.; Liu, Y.A.; Wang, S.; Sandler, S.I.; Chen, C.-C.; Zwolak, M.; Seavey, K.C. Sigma-Profile

Database for Using COSMO-Based Thermodynamic Methods. Ind. Eng. Chem. Res. 2006, 45 (12), 4389-4415.
(https://doi.org/10.1021/ie060370h)

Mullins, E.; Liu, Y.A.; Ghaderi, A.; Fast, S.D. Sigma Profile Database for Predicting Solid Solubility in Pure and Mixed Sol-
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vent Mixtures for Organic Pharmacological Compounds with COSMO-Based Thermodynamic Methods. Ind. Eng. Chem.
Res. 2008, 47 (5), 1707-1725. (https://doi.org/10.1021/ie0711022)

Phillips, K.L.; Sandler, S.1.; Greene, R.-W.; Di Toro, D.M. Quantum Mechanical Predictions of the Henry's Law Constants
and Their Temperature Dependence for the 209 Polychlorinated Biphenyl Congeners. Environ. Sci. Technol. 2008, 42
(22), 8412-8418. (https://doi.org/10.1021/es800876w)

All structures in the database ADFCRS-2010 differ from those in the papers above, as they are the result of ADF geometry
optimizations.

3.2.2 ADFCRS-IL-2014

Ionic liquids (ILs), usually consisting of a large organic cation and a small inorganic polyatomic anion, have attracted
considerable attention in recent years due to their unique thermophysical properties. The low vapor pressure and high
conductivity of these molten salts combined with highly tunable properties, have resulted in highly diverse applications
across many different fields in chemistry, materials science (battery electrolytes), chemical engineering (gas sorption and
purification), and many more.

The COSMO-RS ionic liquid database ADFCRS-IL-2014 contains 80 cations and 56 anions. This ADFCRS-IL-2014
database consists of ADF COSMO result (.coskf) files, from standard ADF quantum mechanical calculations, as described
in COSMO-RS GUI Tutorial: COSMO result files.

SCM gratefully acknowledges Prof. Zhigang Lei’s research group (State Key Laboratory of Chemical Resource En-
gineering, Beijing University of Chemical Technology, China) for providing the ionic liquid database as well as the
corresponding tutorial.

The work of Zhigang Lei group based on the COSMO-RS model using the ADF software is listed as follows:

Z. Lei, C. Dai, J. Zhu, B. Chen, Extractive distillation with ionic liquids: A review, AIChE Journal 60, 3312 (2014)
(https://doi.org/10.1002/aic.14537)

Z. Lei, C. Dai, B. Chen, Gas solubility in ionic liquids, Chemical Reviews 14, 1289 (2014)
(https://doi.org/10.1021/cr300497a)

Z. Lei, J. Han, Q. Li, and B. Chen, Process Intensification on the Supercritical Carbon Dioxide Extraction of
Low-Concentration Ethanol from Aqueous Solutions, Industrial Engineering Chemistry research 51, 2730 (2012)
(https://doi.org/10.1021/ie2021027)

Z. Lei, J. Han, B. Zhang, Q. Li, J. Zhu, and B. Chen, Solubility of CO, in Binary Mixtures of Room-Temperature Ionic
Liquids at High Pressures, Journal of Chemical Engineering data 57, 2153 (2012) (https://doi.org/10.1021/je300016q)

Z. Lei, C. Dai, X. Liu, L. Xiao, and B. Chen, Extension of the UNIFAC Model for lonic Liquids, Industrial Engineering
Chemistry research 51, 12135 (2012) (https://doi.org/10.1021/ie301159v)

Z. Lei, C. Dai, Q. Yang, J. Zhu, and B. Chen, UNIFAC model for ionic liquid-CO (H, ) systems: An experimental and
modeling study on gas solubility, AIChE Journal (2014), DOI: 10.1002/aic.14606 (https://doi.org/10.1002/aic.14606)

3.3 ADFCRS-POLYMERS-2019 Database

The COSMO-RS database ADFCRS-POLYMERS-2019 contains data for more than 200 polymers. The zipped
COSMO-RS database ADFCRS-POLYMERS-2019 can be downloaded from https://downloads.scm.com/Downloads/
crs/ ADFCRS-POLYMERS-2019.zip. The database needs to be unzipped.
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3.4 FastSigma: a QSPR method to estimate COSMO sigma-profiles

3.4.1 Introduction

The traditional workflow for performing a COSMO-RS/-SAC calculation first involves a very expensive DFT geometry
optimization and single point calculation in the COSMO phase to generate o-profiles and other necessary parameters for
COSMO-RS/-SAC. Once these parameters are known, the COSMO-RS/-SAC calculation can be performed extremely
efficiently, often in only a matter of milliseconds. This imbalance of computational expense means there is a significant
opportunity in circumventing the expensive DFT steps.

The FastSigma program reads a molecule in several possible formats (SMILES, .mol, .sdf) and estimates all of the
properties required for a COSMO-RS/-SAC calculation: the HB-/Non-HB-/OT-/OH- o-profiles, COSMO surface area,
and COSMO volume as well as bond energies that can be important for vapor phase or multispecies calculations. This
code incorporates two distinct methods that are able to estimate these important COSMO-RS/-SAC properties. The first
uses QSPR techniques similar to those applied in our Property Prediction program which shares the same accepted atom
types. The second uses a database of o-profiles and a custom molecular graph hashing algorithm to build o-profiles for
query molecules using a set of the o-profiles from molecules in the database containing similar substructures.

Both of these techniques are extremely efficient and are capable of providing estimates for these essential COSMO-RS/-
SAC properties in milliseconds. This allows for quick thermodynamic calculations to be done for a new molecule of
interest as well as drastically expedites searches through screening databases of molecular candidates as compared to the
traditional, full-fledged COSMO-RS/-SAC workflow.

Important: To use the SG1 method, users will have to first download the Subgraph Sigma Profile Estimation (SG1)
Database (molsg_sgldb) using the AMS Package Manager.

Note: pyCRS (page 81) can be used for python scripting with FastSigma. Several python examples are given in the
pyCRS documentation.

3.4.2 Input options

A list of the input options and examples of their usage is given below.

Flag Purpose Example

-h [-help] Produces help message $AMSBIN/fast_sigma —help

-8 [-smiles] Input molecule as SMILES sting $AMSBIN/fast_sigma —smiles
<SMILES> ...

-m [-mol] Input molecule as .mol file $AMSBIN/fast_sigma —mol <mol
file> ...

—sdf Input molecule as an .sdf file $AMSBIN/fast_sigma —sdf
<file.sdf> ...

—model Choose from 2 possible techniques $AMSBIN/fast_sigma —model FS1

-d [display] Display problem results $AMSBIN/fast_sigma -d ...

-0 [—output] Write output to file $AMSBIN/fast_sigma -0 <out-
put.compkf> ...

—method Chose a COSMO-RS/-SAC method $AMSBIN/fast_sigma  —method
COSMO-RS ...
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——model FS1 The FS1 model is a QSPR model. It currently has two supported methods: COSMO-RS and COS-
MOSAC2016. One of these method names must be entered after the —method flag. The default method is
COSMO-RS.

—-model SG1 The SG1 model is based on substructure hashing and database searching. It currently has two supported
methods: COSMO-RS and COSMOSAC2013.

Note: This model can take a few seconds to load the required database. If the user would like to use this method
to estimate multiple compounds, it is recommended to use pyCRS. With pyCRS, the database will only be loaded
during the first calculation and then stay in memory.

—o <output.compkf> The fast sigma program writes the output results to a file in .compkf format. The chosen
output filename should generally end with .compkf. This suffix helps other parts of the code (COSMO-RS/-SAC/-
UNIFAC/Solvent Optimization) recognize the format and use the file accordingly. If no filename is supplied the
program writes to a file called CRSKF.compkf.

—s <SMILES_string or .mol file> Though COSMO-RS/-SAC can make estimates for many types of
molecular species, the fast sigma program currently only supports organic, neutral, closed shell molecules.

3.4.3 GUI Input

The simplest way to use the Fast Sigma program is through the COSMO-RS GUI. There are two ways to do this:

e SMILES string: Compounds — List of Compounds — Add Compound using FastSigma — SMILES and

select Add.

¢ xyz file: Compounds — List of Compounds — Add Compound using FastSigma — .xyz, and select Add.

A .compkf file will be saved that can be used as input in COSMO-RS calculations.

3.4.4 Examples

This example calculates COSMO-RS (the default) parameters for phenol:

SAMSBIN/fast_sigma —-smiles

"clccececl (O)"

-d

sigma value Total profile HB profile
-0.025 0.000 0.000
-0.024 0.000 0.000
-0.023 0.000 0.000
-0.022 0.002 0.002
-0.021 0.054 0.054
-0.020 0.263 0.263
-0.019 0.523 0.523
-0.018 0.684 0.684
-0.017 0.828 0.828
-0.016 0.801 0.801
-0.015 0.732 0.716
-0.014 0.642 0.597
-0.013 0.653 0.519
-0.012 0.678 0.487
-0.011 0.607 0.423
-0.010 0.567 0.382
-0.009 0.646 0.245

(continues on next page)
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(continued from previous page)

-0.008 4.183 0.023
-0.007 7.405 0.000
-0.006 7.912 0.000
-0.005 6.701 0.000
-0.004 5.544 0.000
-0.003 4.658 0.000
-0.002 3.899 0.000
-0.001 4.097 0.000
0.000 6.109 0.000
0.001 7.854 0.000
0.002 8.640 0.000
0.003 9.726 0.000
0.004 11.175 0.000
0.005 12.524 0.000
0.006 8.673 0.000
0.007 2.255 0.000
0.008 1.174 0.161
0.009 1.279 1.159
0.010 1.442 1.442
0.011 1.759 1.751
0.012 1.795 1.788
0.013 0.838 0.829
0.014 0.095 0.093
0.015 0.054 0.054
0.016 0.030 0.030
0.017 0.000 0.000
0.018 0.000 0.000
0.019 0.000 0.000
0.020 0.000 0.000
0.021 0.000 0.000
0.022 0.000 0.000
0.023 0.000 0.000
0.024 0.000 0.000
0.025 0.000 0.000
Molecular Mass = 94.0418648120 g/mol
COSMO Area = 127.5012207186 Angstrom**2
COSMO Volume = 122.0791950835 Angstrom**3
Gas Phase Bond Energy = -2.9875007647 Hartree
Bond Energy = -2.9968155744 Hartree
Dispersion = -4.5319123638 kcal/mol
Deltaediel = 0.0000000000 Hartree
Nring = 6
Chemical Formula = C6H60
SMILES = clcccecel (0)

Additionally, we calculate the COSMOSAC2016 parameters for Ibuprofen as a mol file:

SAMSBIN/fast_sigma —-mol Ibuprofen.mol —--method COSMOSAC2016 -d

sigma value Total profile OH profile OT profile
-0.025 0.000 0.000 0.000
-0.024 0.000 0.000 0.000
-0.023 0.000 0.000 0.000
-0.022 0.000 0.000 0.000
-0.021 0.009 0.009 0.000
-0.020 0.062 0.061 0.000

(continues on next page)
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-0.019 0.395 0.385 0.000
-0.018 0.914 0.881 0.000
-0.017 0.925 0.879 0.000
-0.016 0.840 0.781 0.000
-0.015 0.652 0.590 0.000
-0.014 0.697 0.606 0.000
-0.013 0.604 0.499 0.000
-0.012 0.561 0.398 0.000
-0.011 0.725 0.418 0.000
-0.010 0.833 0.350 0.000
-0.009 1.282 0.230 0.000
-0.008 2.141 0.158 0.000
-0.007 5.133 0.085 0.000
-0.006 10.428 0.048 0.000
-0.005 14.386 0.000 0.000
-0.004 23.816 0.000 0.000
-0.003 26.081 0.000 0.000
-0.002 23.295 0.000 0.000
-0.001 21.443 0.000 0.000
0.000 22.124 0.000 0.000
0.001 20.652 0.000 0.000
0.002 24.315 0.036 0.000
0.003 15.722 0.086 0.035
0.004 11.878 0.171 0.092
0.005 13.670 0.288 0.197
0.006 10.405 0.381 0.307
0.007 5.479 0.561 0.413
0.008 3.525 0.713 0.613
0.009 3.358 0.823 1.055
0.010 3.879 0.639 1.840
0.011 4.503 0.180 3.025
0.012 2.708 0.083 2.006
0.013 0.930 0.020 0.745
0.014 0.061 0.000 0.104
0.015 0.000 0.000 0.000
0.016 0.000 0.000 0.000
0.017 0.000 0.000 0.000
0.018 0.000 0.000 0.000
0.019 0.000 0.000 0.000
0.020 0.000 0.000 0.000
0.021 0.000 0.000 0.000
0.022 0.000 0.000 0.000
0.023 0.000 0.000 0.000
0.024 0.000 0.000 0.000
0.025 0.000 0.000 0.000
Molecular Mass = 206.1306798160 g/mol
COSMO Area = 278.4276940312 Angstrom**2
COSMO Volume = 279.3341044098 Angstrom**3
Gas Phase Bond Energy = -7.1463537624 Hartree
Bond Energy = -7.1619486814 Hartree
Dispersion = -9.7153055452 kcal/mol
Deltaediel = 0.0007518662 Hartree
Nring = 6
Chemical Formula = C13H1802
SMILES = CC(C)Cclccc (C(C)C(=0)0)ccl

We can also use the SG1 model for phenol.
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SAMSBIN/fast_sigma —-smiles "clcccccl (O

)" ——model SG1 -d

sigma value

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
.000
.001
.002
.003
.004
.005
.006
.007
.008
.009
.010
.011
.012
.013
.014
.015
.016
.017
.018
.019
.020
.021
.022
.023
.024
.025

O O O O O O OO OO OO OO0 oooooooo

o

025
024
023
022
021
020
019
018
017
016
015
014
013
012
011
010
009
008
007
006
005
004
003
002
001

Molecular Mass =

COSMO Area
COSMO Volume

Total profile

0.

000

0.000

= e
ONNOJU BB DU dJIdEP OO0 O00O0O00O000O0O oo O

.000
.003
.067
.434
.878
.995
.996
.942
771
.684
.610
.693
.671
.755
.344
.312
.751
.855
.819
.226
.612
.654
.679
.969
.814
.672
711
.231
.061
.394

3.355

[eeoNeololNeolBoloNolBoloBoNoRoRNE il

.677
.434
.566
.972
.133
.966
.062
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

HB profile

0.
.000
.000
.003
.067
.434
.878
.995
.996
. 940
.766
.635
.549
.486
.397
.350
.255
.026
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.153
.226
.566
.972
.133
. 966
.062
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

O O O O O O O OO OOOONE PP OOOOOOOOOOOOOOO OO OO0 O0OOOOOOoOOooOoOOoOoOo

000

94.0418648120 g/mol
133.1606910587 Angstrom**2
122.0268006780 Angstrom**3

(continues on next page)
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Gas Phase Bond Energy =

Bond Energy
Dispersion
Deltaediel

Nring

-2.
-2.
0.
0.

6

9830476046
9928087890
0000000000
0000000000

Chemical Formula
SMILES

C6H60
clcccccel (0)

Hartree
Hartree
kcal/mol
Hartree

The warning message will be displayed if a molecule contains atoms or substructures that are not listed in the accepted
atom types table. For example, in the compound C1=CC=[Ge]C=C1, the atom ‘Ge’ is not available in the QSPR method.
As a result, the property prediction tool will yield incorrect sigma profile.

SAMSBIN/fast_sigma ——-smiles "Cl1=CC=[Ge]C=C1"

-d

WARNING: there are atoms and/or substructures in the molecule which cannot be.

—estimated.

This will affect the accuracy of the results.

Atoms which cannot be estimated:

Ge
sigma value Total profile HB profile
-0.025 0.000 0.000
-0.024 0.000 0.000
-0.023 0.000 0.000
-0.022 0.000 0.000
-0.021 0.000 0.000
-0.020 0.000 0.000
-0.019 0.000 0.000
-0.018 0.000 0.000
-0.017 0.000 0.000
-0.016 0.000 0.000
-0.015 0.000 0.000
-0.014 0.000 0.000
-0.013 0.000 0.000
-0.012 0.000 0.000
-0.011 0.000 0.000
-0.010 0.000 0.000
-0.009 0.000 0.000
-0.008 0.896 0.000
-0.007 2.280 0.000
-0.006 5.170 0.000
-0.005 9.078 0.000
-0.004 9.044 0.000
-0.003 4.854 0.000
-0.002 4.211 0.000
-0.001 4.505 0.000
-0.000 4.415 0.000
0.001 4.824 0.000
0.002 4.750 0.000
0.003 5.745 0.000
0.004 3.006 0.000
0.005 4.904 0.000
0.006 5.411 0.000
0.007 4.222 0.000
0.008 2.623 0.000
(continues on next page)
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.009
.010
.011
.012
.013
.014
.015
.016
.017
.018
.019
.020
.021
.022
.023
.024
0.025

Molecular Mass =

COSMO Area =

COSMO Volume =

Gas Phase Bond Energy =

Bond Energy =

Dispersion =

Deltaediel =

Nring =

Chemical Formula =

SMILES =

O O O O O O OO OO o oo oo

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
138.9603029600 g/mol

O O O O O OO OO0 OoOoooo oo

e eoNeolNeoNoNeoNoNeoBooNoNoNoBoNeoNoNe]

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

79.9378826526 Angstrom**2
88.0443110798 Angstrom**3

-2.2538026599 Hartree
-2.2571102789 Hartree
-2.9625031363 kcal/mol

0.0000000000 Hartree

C5H5Ge
Cl=CC=[Ge]C=C1

3.5 MOPAC COSMO calculation

Here it is described briefly how to make MOPAC COSMO result files.

The simplest way is to use AMSinput. Draw the molecule using AMSinput, and save the .ams file. Select Right Panel
— MOPAC - Solvation method - COSMO-CRS. Select 362 for NSPA. Press Run to run the MOPAC calculation.

A .coskf file will be saved that can be used as input in COSMO-RS calculations.

In AMS2019 AMSinput uses the MOPAC engine, which is part of the AMS driver. Note that this is different than
in AMS2018 and before. In the Atoms block key in the AMS driver part of the input one puts the coordinates of the

molecule. The main input keys for the AMS driver and the MOPAC engine are:

$SAMSBIN/ams << eor
Task GeometryOptimization
System

Atoms

End
End

Engine MOPAC
Solvation
Enabled Yes
NSPA 362
Solvent
Name CRS

(continues on next page)
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End
End
EndEngine

eor

The use of the solvent CRS makes the MOPAC engine to create a .cos file, which is converted to a .coskf file by $AMS-
BIN/cosmo2kf

cosmo2kf file.cos file.coskf

Note that this is automatically done if one uses AMSinput.

Compared to the default ADF COSMO-RS values a few COSMO-RS parameters (page 31) were reoptimized for MOPAC
PM6 COSMO result files to improve the calculation of a number of partition coefficients, when compared to experimental
values. Note that MOPAC is a semi-empirical quantum chemistry program, whereas ADF is based on density functional
theory (DFT). Thus the MOPAC COSMO result files will not be of the same quality as the ADF COSMO result files.
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CHAPTER
FOUR

THE COSMO-RS PROGRAM

The ADF COSMO-RS command line program crs is described here, including all input options.

4.1 Running the COSMO-RS program

Running the COSMO-RS program involves the following steps:
 Construct an ASCII input file, say in.
* Run the program by typing (under UNIX): SAMSBIN/crs < in > out

* Move / copy relevant result files (in particular CRSKF) to the directory where you want to save them, and give them
appropriate names.

* Inspect the standard output file out to verify that all has gone well.

Note that in the one can also put the call to $AMSBIN/crs inside a script, which could be named, for example, ‘exam-
ple.run’. Such shell script ‘example.run’ needs be executable, if it isn’t you will need to make it executable, e.g. chmod
u+x example.run. The ‘example.run’ file needs to be executed as a shell script, not as input to SAMSBIN/crs.

4.2 COSMO-RS and COSMO-SAC parameters

The COSMO-RS model has general parameters and element specific parameters. ADF's COSMO-SAC 2013-ADF
model has general parameters, but also uses some of the COSMO-RS parameters, such as the element specific parameters.
There are also technical and accuracy parameters, such as convergence criteria. This section explains how to set these
parameters, and shows the default values for these parameters. By default the COSMO-RS method is chosen.

4.2.1 COSMO-RS general parameters

CRSPARAMETERS

{RAV rav}
{APRIME aprime}
{FCORR fcorr}
{CHB chb}
{SIGMAHBOND sigmahbond}
{AEFF aeff}
{LAMBDA lambda}
{OMEGA omega }
{ETA eta}
{CHORTF chortf}

(continues on next page)
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{combi11998 | combi2005}

{hb_all | hb_hnof}

{hb_temp | hb_notemp}

{fast | nofast}
End

The ADF default values are optimized parameters for ADF calculations. The Klamt values can be found in Ref.!. See

also Ref.” for the meaning of the parameters.

symbol ADF Default ADF combi1998 Klamt MOPAC PM6
Ref.” Ref.” Ref.”
rav (rqy ) 0.400 0.415 0.5 0.400
aprime (2°) 1510.0 1515.0 1288.0 1550.0
feorr (feorr ) 2.802 2.812 2.4 2.802
chb (cpp ) 8850.0 8850.0 7400.0 8400.0
sigmahbond (opy, ) 0.00854 0.00849 0.0082 0.00978
aeff (acsys) 6.94 7.62 7.1 5.96
lambda () 0.130 0.129 0.14 0.135
omega (w ) -0.212 -0.217 -0.21 -0.212
eta (1) -9.65 -9.91 -9.15 -9.65
chortf (¢1) 0.816 0.816 0.816 0.816
combil998 | combi2005 | combi2005 combil998 combil998 combi2005
hb_all | hb_hnof hb_hnof hb_hnof hb_hnof hb_hnof
hb_temp | hb_notemp hb_temp hb_notemp hb_notemp hb_temp
fast | nofast fast fast fast fast

chortf See Ref.” for the definitions: o;- = 00 — cto,

combil998 | combi2005 If the subkey combil998 is included a thermodynamically inconsistent combinatorial

contribution to the chemical potential 5™ of Ref.’ is used. If the subkey combi2005 is included (default) a
thermodynamically consistent combinatorial contribution of Ref.? is used. See the section on the combinatorial
term (page 7) and Ref.”.

hb_all | hb_hnof If the subkey hb_all is included hydrogen bond interaction can be included between segments
that belong to H atoms and all other segments. If the subkey hb_hbnof is included (default) hydrogen bond inter-
action can be included only between segments that belong to H atoms that are bonded to N, O, or, F, and segments

that belong to

N, O, or F atoms.

hb_temp | hb_notemp If the subkey hb_notemp is included the hydrogen bond interaction is not temperature
dependent, as in Ref.”. If the subkey hb_temp is included (default) the hydrogen bond interaction is temperature
dependent, as in Ref.”. See the section on the temperature dependent hydrogen bond interaction (page 8) and Ref.”.

fast | nofast If the subkey fast is included the fast approximation is used. This fast approximation is the default.
Use nofast for the original approach. See the section on the fast approximation for COSMO-RS calculations (page 7).

Links COSMO-RS GUI tutorial: set COSMO-RS parameters [1]

I'A. Klamt, V. Jonas, T. Biirger and J.C. Lohrenz, Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074 (1998)
(https://doi.org/10.1021/jp980017s)

2 C.C. Pye, T. Ziegler, E. van Lenthe, J.N. Louwen, An implementation of the conductor-like screening model of solvation within the Amsterdam
density functional package. Part Il. COSMO for real solvents. Can. J. Chem. 87, 790 (2009) (https://doi.org/10.1139/V09-008)

3 A. Klamt, COSMO-RS From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier. Amsterdam (2005), ISBN 0-444-

51994-7.
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4.2.2 COSMO-RS element specific parameters

DISPERSION
{H dispH}
{C dispC}
{N dispN}
{...}

End

The following table gives the element specific dispersion constants. The ADF default values are optimized parameters
for ADF calculations. The Klamt values can again be found in Ref .”. The constants for F, Si, P, S, Br, and I in the ADF
defaults were only fitted to a small number of experimental values or taken from Ref.’.

element ADF Default ADF combi1998 Klamt
Ref.”

H -0.0340 -0.0346 -0.041
C -0.0356 -0.0356 -0.037
N -0.0224 -0.0225 -0.027
(0] -0.0333 -0.0322 -0.042
Cl -0.0485 -0.0487 -0.052
F -0.026

Si -0.04

P -0.045

S -0.052

Br -0.055

| -0.062

Note that not for all elements in the periodic system COSMO-RS parameters were fitted.
Links COSMO-RS GUI tutorial: set COSMO-RS parameters [1]

4.2.3 COSMO-SAC general parameters

The ADF COSMO-RS program can calculate activity coefficients using the COSMO-SAC 2013-ADF model, based on
Ref.*. Like in the COSMO-RS method, pure compound vapor pressures can be given as input, for example, if experi-
mental values are available. If these values are not specified then the pure compound vapor pressure will be calculated
according to the COSMO-SAC 2013-ADF model. This part of the COSMO-SAC 2013-ADF has been implemented in
ADF2016. The COSMO-SAC 2013-ADF parameters in Ref.” are optimized parameters for use with ADF COSMO
result files. The authors of Ref.® reoptimized the revised COSMO-SAC model® parameters for use with ADF COSMO
result files, which is called here the COSMO-SAC 2016-ADF method. Note that the earlier COSMO-SAC papers’’ do
not include parameters that were optimized for use with ADF COSMO result files. The key COSMOSAC2013 needs to
be included if one wants to do a COSMO-SAC 2013-ADF calculation. The key COSMOSACDHB needs to be included
if one wants to do a COSMO-SAC DHB-ADF calculation. For other COSMO-SAC methods one needs to include the
key COSMOSAC.

4 R. Xiong, S.I Sandler, R.I. Burnett, An improvement to COSMO-SAC for predicting thermodynamic properties, Ind. Eng. Chem. Res. 53, 8265
(2014) (https://doi.org/10.1021/ie404410v)

6 W.L. Chen, C.M. Hsieh, L. Yang, C.C. Hsu, S.T. Lin, A Critical Evaluation on the Performance of COSMO-SAC Models for Vapor-Liquid
and Liquid-Liquid Equilibrium Predictions Based on Different Quantum Chemical Calculations, Ind. Eng. Chem. Res. 55, 9312 (2016)
(https://doi.org/10.1021/acs.iecr.6b02345)

5 C.M. Hsieh, S.I. Sandler, S.T. Lin, Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions, Fluid Phase Equilib.
297,90 (2010) (https://doi.org/10.1016/j.fluid.2010.06.011)

7S. Wang, S.I Sandler, C.C. Chen, Refinement of COSMO-SAC and the Applications, Ind. Eng. Chem. Res. 46, 7275 (2007)
(https://doi.org/10.1021/ie070465z)
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COSMOSAC2013 | COSMOSAC | COSMOSACDHB
SACPARAMETERS
{AEFF aeff}
{FDECAY fdecay}
{SIGMAOQ sigmal}
{RN rn}
{QN an}
{AES aes}
{BES bes}
{COHOH cohoh}
{COTOT cotot}
{COHOT cohot}
{RAV rav}
{Qs as}
{rhbcut rhbcut}
{hb_temp | hb_notemp}
End
symbol 2013-ADF 2016-ADF DHB-ADF 2010 Hsieh 2007 Wang
Xiong Chen Chen
Ref.” Ref.’ Ref.® Ref.” Ref.”
aeff (aef ) 6.4813 5.8447 5.8447 7.25 7.25
fdecay (fgecay ) 3.57 3.57 3.57 3.57
sigma0 (¢ ) 0.01233 0.007 0.0063 0.007 0.007
n (1) 66.69 66.69 66.69 66.69
gn (q) 79.352 79.53 79.53 79.53 79.53
aes (Ags ) 7877.13 5920.84 5920.84 6525.69 8451.77
bes (Bgs ) 0.0 1.3950 108 1.3950 108 1.4859 108 0.0
cohoh (con.on ) 5786.72 3551.10 33306.83 4013.78 3484.42
cotot (cor.oT ) 2739.58 1077.26 33306.83 932.31 3484.42
cohot (con-ot ) 4707.75 3099.31 33306.83 3016.43 3484.42
rav (ryy ) 0.51
as (qs) 0.57
rhbcut 1.4432
hb_temp | | hb_notemp hb_notemp hb_notemp hb_notemp hb_notemp
hb_notemp

See also Refs.”” for the meaning of the parameters acg , fgecay » 70 » I 4, Ags » BEs , COH-0H » COT-OT » COH-OT > Tav » Qs
. The parameter names in’ have been translated into parameter names used in Ref 7, by calculating Ags from 0.3 £
a2 1(2€p ), using Bgs = 0, and using cog.on = CoT-0T = COH-OT = Chp - The parameters fgecay and r are not used in
COSMO-SAC 2013-ADF’. The parameters r,, and g are only used in COSMO-SAC 2013-ADF. The element specific
COSMO-SAC 2013-ADF epsilon constants can be set with the block key EPSILON (page 35). These element specific
epsilon constants can not be used in ADF’s implementation of earlier COSMO-SAC methods. The parameter rhbcut is
only used in COSMO-SAC DHB-ADF’. Note that the parameters for COSMO-SAC DHB-ADF were reoptimized by
Chen et al., and are different than in Ref.’.
hb_temp | hb_notemp If the subkey hb_notemp is included (default) the hydrogen bond interaction is not tem-
perature dependent, as in Refs.”””. If the subkey hb_temp is included the temperature dependence of the hydrogen
bond interaction fy, (T) is the same as is described in the section on the temperature dependent hydrogen bond
interaction (page 8).

Except for COSMO-SAC 2013-ADF, some COSMO-RS specific parameters are used in the next COSMO-SAC methods:

8 W.L. Chen, S.T. Lin, Explicit consideration of spatial hydrogen bonding direction for activity coefficient prediction based on implicit solvation
calculations, Phys.Chem.Chem.Phys. 19, 20367 (2017) (https://doi.org/10.1039/c7cp02317k)
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COSMOSAC
SACPARAMETERS

{OMEGA omega }
{ETA eta}
End

symbol 2013-ADF Xiong 2016-ADF Chen, DHB-ADF Chen, 2010 Hsieh, 2007 Wang
omega -0.212

(w)
eta (n) -9.00

In ADF2016 these parameters are not used in the COSMO-SAC 2013-ADF method, only in the ADF implementation
of the other COSMO-SAC methods. The parameters w,  and the element specific COSMO-RS dispersion constants are
taken from the COSMO-RS model. The element specific COSMO-RS dispersion constants can be set with the block key
DISPERSION. w, 7, and the element specific COSMO-RS dispersion constants are used in a COSMO-RS like method
for the calculation of pure compound vapor pressures.

4.2.4 COSMO-SAC element specific parameters

COSMOSAC2013

EPSILON
{H epsH}
{C epsC}
{N epsN}
{...}

End

The following table gives the element specific epsilon constants in case of COSMO-SAC 2013-ADF, see Ref.’. Like in
the COSMO-RS method, pure compound vapor pressures can be given as input, for example, if experimental values are
available. In these values ar not given, in ADF2016 the pure compound vapor pressure will be approximated using the
the COSMO-SAC 2013-ADF method, which depend on these element specific epsilon constants. These constants will
also have an effect on the calculated activity coefficients in case of a mixture. Note that these only have an effect in the
ADFs COSMO-SAC 2013-ADF implementation.

4.2. COSMO-RS and COSMO-SAC parameters 35




COSMO-RS Manual, Amsterdam Modeling Suite 2024.1

element 2013-ADF Xiong
Ref.”
H 338.13
C.sp3 29160.92
C.sp2 30951.83
C.sp 20685.98
N.sp3 23488.54
N.sp2 22663.34
N.sp 6390.40
O.sp3-H 8527.06
O.sp3 8484.38
O.sp2 6736.85
O.sp2-N 12145.28
Cl 8435.13
F 82512.21
P 56067.81
S 45065.19
Br 62947.83
| 105910.88

Note that not for all elements in the periodic system COSMO-SAC 2013-ADF parameters were fitted.

If one leaves the EPSILON block keyword empty the contribution of the mixture dispersion to the activity coefficient will
be zero.

EPSILON
End

Links COSMO-RS GUI tutorial: Expert option: set COSMO-SAC 2013-ADF parameters [1]

4.2.5 Technical and accuracy parameters

TECHNICAL
{RSCONV rsconv}
{SACCONV sacconv}
{MAXITER maxiter}
{BPCONV bpconv}
{BPMAXITER bpmaxiter}
{SOLCONV solconv}
{SOLMAXITER solmaxiter}
{SOLXILARGE solxilarge}
{EHDELTAT ehdeltaT}

End
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symbol Default values
rsconv 10”7 kcal/mol
sacconv 1077

maxiter 10000

bpconv 107 bar
bpmaxiter 40

solconv 10" molar fraction
solmaxiter 40

solxilarge 0.99 molar fraction
ehdeltaT 1.0 Kelvin

rsconv Convergence criterion in kcal/mol in chemical potential calculation, not used in COSMO-SAC 2013-ADF.
Default value 1e-7 kcal/mol.

sacconv Convergence criterion in activity coefficient calculation, only used in COSMO-SAC 2013-ADF. Default value
le-7.

maxiter Maximum number of cycles in chemical potential or activity coefficients calculation. Default value 10000.
bpconv Convergence criterion (bar) for isobar or solvent boiling point calculation. Default value 1e-6 bar.
bpmaxiter Maximum number of cycles in isobar or solvent boiling point calculation. Default value 40.

solconv Convergence criterion (molar fraction) used in solubility calculations. Default value 1e-5 molar fraction.
solmaxiter Maximum number of cycles in solubility calculation. Default value 40.

solxilarge Threshold for (im-)miscibility (molar fraction) in solubility calculations. Above this value the mixture is
considered to be fully miscible. Default value 0.99.

ehdeltaT AT (Kelvin) used in the calculation of the excess enthalpy using the Gibbs-Helmholtz equation and in the
calculation of the enthalpy of vaporization using the Clausius-Clapeyron equation using a numerical derivative with
respect to T. Default value 1.0 Kelvin.

Links COSMO-RS GUI tutorial: set COSMO-RS or COSMO-SAC 2013-ADF parameters [1]

4.3 Compounds

For each compound one has to add the keyword COMPOUND

COMPOUND filename
{cosmofile}

{drophbond}

{NRING nring}

{FRAC1 fracl}

{FRAC2 frac2}

{PVAP pvap}

{TVAP tvap}

{Antoine A B C}
{MELTINGPOINT meltingpoint}
{HFUSION hfusion}
{CPFUSION cpfusion}
{FLASHPOINT flashpoint}
{DENSITY density}
{SCALEAREA scalearea}
End
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filename The filename (can be a full path, otherwise relative path is assumed) should be a COSMO result file. How
to make an ADF COSMO result file can be found Zere (page 14).

cosmofile If the subkey cosmofile is included the file should be an ASCII COSMO file (.cosmo). If not specified
(default) the file should be a kf file, either an ADF COSMO result file adf.rkf (previously ADF<=2019 TAPE21
file or .t21 file) or a COSKEF file (.coskf).

drophbond If the subkey drophbond is included no hydrogen-bond terms will be included for this compound. If not
specified (default) the hydrogen-bond terms are included for this compound.

nring The number of ring atoms. This is a COSMO-RS parameter. It should be 6 for benzene, for example. Default
value is 0.

fracl The molar fraction of the compound in the solvent (mass fraction if the key MASSFRACTION is used). This
is solvent 1 in case of the calculation of partition coefficients (Log P) or in case of a composition line.

frac2 The molar fraction of solvent 2 (mass fraction if the key MASSFRACTION is used), only used in case of the
calculation of partition coefficients (Log P) or in case of a composition line.

pvap, tvap Pure compound vapor pressure pvap (bar) at temperature tvap (Kelvin). Used only if both pvap and tvap
are specified, and then will have an effect on the calculated vapor pressures or boiling points. Alternative is to set
the Antoine coefficients. If both are not specified the pure compound vapor pressure is approximated using the
COSMO-RS method.

A, B, C A, B, and C are the pure compound Antoine coefficients, such that: log P = A - B/(T+C). This Antoine
equation is a 3-parameter fit to experimental pure compound vapor pressures P (bar) over a restricted temperature
T (Kelvin) range. If the Antoine coeflicients are specified this will have an effect on the calculated vapor pressures
or boiling points. Alternative is to give input values for the pure compound vapor pressure at a fixed temperature.
If both are not specified the pure compound vapor pressure is approximated using the COSMO-RS method.

meltingpoint, hfusion, cpfusion Pure compound melting point meltingpoint (Kelvin), pure compound
enthalpy of fusion hfusion (kcal/mol), and pure compound heat capacity of fusion cpfusion (kcal/(mol K)). Only
used if both meltingpoint and hfusion are specified (cpfusion optional), and will then have an effect in solubility
calculations if the temperature of the solvent is below the melting point.

flashpoint Pure compound flash point flashpoint (Kelvin).
density Pure compound density density (kg/L). Used for calculating the volume of a solvent molecule.
dielectric_const The dielectric constant of the solvent.

scalearea Inputscaling of COSMO surface area for a given compound. Default value 1.0 means the COSMO surface
area is not scaled. Changing this value is an expert option, for example, to fit to experiment.

Links COSMO-RS GUI tutorial: set pure compound parameters [1]

4.4 Temperature

’TEMPERATURE temperature {temperature_high ntemp}

temperature Temperature (Kelvin) at which temperature the COSMO-RS calculation should take place. Default
room temperature 298.15. The first temperature in case of a range of temperatures.

temperature_high The last temperature (Kelvin) in case of a range of temperatures. Only used in case of solvent
vapor pressure calculations or solubility calculations.

ntemp The number of temperatures in case of a range of temperatures.
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4.5 Pressure

’PRESSURE pressure {pressure_high npress}

pressure Pressure (bar) at which pressure the COSMO-RS calculation should take place. Default 1.01325 bar (1
atm). The first pressure in case of a range of pressures.

pressure_high The last pressure (bar) in case of a range of pressures. Only used in case of solvent boiling point
calculations.

npress The number of pressures in case of a range of pressures.

4.6 Molar fractions and mass fraction

By default the ADF COSMO-RS program assumes molar fractions as input. This can be changed into mass fractions if
one includes:

’MASSFRACTION

4.7 Properties

4.7.1 Vapor pressure

The vapor pressure of a mixture can be calculated with:

PROPERTY vaporpressure
End

In case of a mixture the mole fraction of each compound of the solvent should be given with the subkey FRACI of the
key COMPOUND for each compound. In case of a mixture also activity coefficients, and excess energies are calculated.

To calculate pure compound vapor pressures for more than one compound use:

PROPERTY purevaporpressure
End

It is possible to calculate the vapor pressure for a temperature range, see key TEMPERATURE.

The input pure compound vapor pressure will be used in the calculation of the vapor pressure of this compound if it
is supplied with the key COMPOUND for this compound. If it is not specified then it will be approximated using the
COSMO-RS method.

Links COSMO-RS GUI tutorial: solvent vapor pressure [1, 2]
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4.7.2 Boiling point

The boiling point of a mixture can be calculated with the block key:

PROPERTY boilingpoint
End

In case of a mixture the mole fraction of each compound of the solvent should be given with the subkey FRACI of the
key COMPOUND for each compound. In case of a mixture also activity coefficients, and excess energies are calculated.

To calculate pure compound boiling points for more than one compound use:

PROPERTY pureboilingpoint
End

It is possible to calculate the boiling temperature for a pressure range, see key PRESSURE.

The input pure compound vapor pressure will be used in the calculation of the vapor pressure of this compound in the
mixture if it is supplied with the key COMPOUND for this compound. If it is not specified then it will be approximated
using the COSMO-RS method.

The COSMO-RS calculation of the boiling temperature of a solvent is performed with an iterative method. The temper-
ature is varied until the calculated vapor pressure is within a certain threshold of the desired pressure.

Links COSMO-RS GUI tutorial: boiling point of a solvent [1]

4.7.3 Solvent flash point

The flash point (lower flammable limit) of a compound is the lowest temperature at which the vapor of the compound
forms an ignitable mixture in air. The COSMO-RS module can calculate the flash point of a mixture. The COSMO-RS
module, however, does not calculate or predict the flash point of pure compounds. The COSMO-RS method is used to
calculate the partial vapor pressures of each compound in the mixture, and it uses Le Chatelier’s mixing rule to calculate
the flash point of this mixture in the gas phase. Input pure compound flash points should be provided by the user, with
the subkey FLASHPOINT flashpoint of the key COMPOUND.

PROPERTY flashpoint
End

The mole fraction of each compound of the solvent should be given with the subkey FRAC1 of the key COMPOUND
for each compound.

4.7.4 Partition coefficients (LogP)

The partition coefficient of a compound in a mixture of two immiscible solvents, can be calculated with:

PROPERTY logp
{VOLUMEQUOTIENT volumequotient}
End

volumequotient If the subkey VOLUMEQUOTIENT is included the volumequotient will be used for quotient of
the molar volumes of solvent 1 and solvent 2 instead of calculated values.

The mole fraction of each compound of the solvent 1 and solvent 2 should be given with the subkey FRAC1 and subkey
FRAC?2 of the key COMPOUND for each compound, respectively. In case of partly miscible liquids, like, for example,
the Octanol-rich phase of Octanol and Water, both components have nonzero mole fractions. The compounds that are
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included without a given mole fraction are considered to be infinite diluted solutes. The partition coefficients are calculated
for all compounds.

One can use some compounds that are present in $AMSHOME/atomicdata/ ADFCRS (Water, 1-Octanol, Benzene,
Ethoxyethane, Hexane), or one can use compounds from the ADFCRS-2010 database. For example, for Octanol/Water
partition coefficients one can use:

Property logp
VolumeQuotient 4.93

End

Compound "S$AMSHOME/atomicdata/ADFCRS/1-Octanol.coskf"
fracl 0.725

End

Compound "S$SAMSHOME/atomicdata/ADFCRS/Water.coskf"
fracl 0.275
frac2 1.0

End

Links COSMO-RS GUI tutorial: partition coefficients (log P) [1, 2], Octanol-Water partition coefficients (log Pow ) [1]

4.7.5 Activity coefficients solvent and solute

The mole fraction of each compound of the solvent should be given with the subkey FRAC1 of the key COMPOUND
for each compound. The compounds that are included without a given mole fraction are considered to be infinite diluted
solutes. The activity coefficients are calculated for all compounds.

PROPERTY activitycoef
{DENSITYSOLVENT densitysolvent}
End

densitysolvent If the subkey DENSITYSOLVENT is included the densitysolvent will be used for the density of
the solvent (kg/L) instead of calculated values. Relevant for the calculation of the Henry’s law constant.

The input pure compound vapor pressure will be used in the calculation of the partial vapor pressure of this compound in
the mixture if it is supplied with the key COMPOUND for this compound. If it is not specified then it will be approximated
using the COSMO-RS method. Relevant for the calculation of the Henry’s law constant.

The Henry’s law constants are calculated in 2 units. The Henry’s law constant kg is the ratio between the liquid phase
concentration of a compound and its partial vapor pressure in the gas phase. The dimensionless Henry’s law constant ky
¢ is the ratio between the liquid phase concentration of a compound and its gas phase concentration.

Also calculated is AGZ%;SOZ” , which is the solvation Gibbs free energy from the pure compound liquid phase to the

solvated phase, and AGgglsv_sow , which is the solvation Gibbs free energy from the pure compound gas phase to the
solvated phase, with a reference state of 1 mol/L in both phases. In addition a Gibbs free energy is calculated which is the
free energy of the solvated compound with respect to the gas phase energy of the spin restricted spherical averaged neutral
atoms, the compound consist of. Note that zero-point vibrational energies are not taken into account in the calculation of

this free energy. This energy could be used in the calculation of pK, values.

Links COSMO-RS GUI tutorial: activity coefficients [1, 2], solvation free energies [1], Henry’s law constants [1], pK,
values [1]
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4.7.6 Solubility

The solubility of solutes in 1 mixture can be calculated with:

PROPERTY solubility
End

The mole fraction of each compound of the solvent should be given with the subkey FRACI1 of the key COMPOUND
for each compound, and should add up to 1.0. The solutes should have zero molar fraction in the solvent. The solubility
of 1 solute in pure solvents can be calculated with

PROPERTY puresolubility
End

The mole fraction of each pure solvent should be 1.0, and should be set the subkey FRACT1 of the key COMPOUND for
each compound. The solute should have zero molar fraction in the solvent. It is possible to calculate the solubility of a
solute at a temperature range, see key TEMPERATURE.

For solubility calculations of a solid compound one should add the pure compound melting point 7;,, , pure compound
enthalpy of fusion AH f, , and optionally the pure compound heat capacity of fusion AC), using the subkeys meltingpoint,
hfusion, and cpfusion, respectively, of the key COMPOUND for this compound. The COSMO-RS method does not
predict these AH ¢, AC), or Ty, .

The assumption made in the solubility calculation may be invalid in case of a solubility of a liquid in a solvent, especially if
the solubility of the solvent in the liquid is high. For binary systems one may check this by calculating the miscibility gap
in the binary mixture of the two liquids. It is possible to calculate the solubility of a gas in a solvent, if one adds the subkey
isobar and adds the partial vapor pressure partialvaporpressure (bar) of the gas as argument for the key PRESSURE:

PROPERTY solubility
isobar
End

PRESSURE partialvaporpressure

The solubility of a gas in a solvent can also be calculated using Henry’s law, which is valid for ideal dilute solutions, see
see the key PROPERTY activitycoef. The COSMO-RS calculation of the solubility of a compound is performed with an
iterative method, since the activity coefficient of the compound depends on the molar fraction of this compound.

Links COSMO-RS GUI tutorial: solubility [1, 2]

4.7.7 Binary mixture (VLE/LLE)

The COSMO-RS module can automatically calculate properties of a binary mixture, by calculating these properties for a
number of different compositions.

Exactly two compounds should be given in the input file.

PROPERTY binmixcoef

{Nfrac nfrac}

{isotherm | isobar | flashpoint}
End

nfrac Number of different mixtures for which the binary mixture is calculated will be nfrac+5. Default value for nfrac
is 10, which means 15 different mixtures.

isotherm | isobar |flashpoint If the subkey isotherm is included (default) the binary mixture will be cal-
culated at a fixed temperature. If the subkey isobar is included the binary mixture will be calculated at a fixed vapor
pressure. If the subkey flashpoint is included the flash point of the binary mixture will be calculated.
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The input pure compound vapor pressure will be used in the calculation of the partial vapor pressure of this compound in
the mixture if it is supplied with the key COMPOUND for this compound. If it is not specified then it will be approximated
using the COSMO-RS method.

In case of a miscibility gap (LLE) data of the 2 immiscible liquid phases will be calculated. Also information about
possible azeotropes will be calculated. With the COSMO-RS GUI, activity coefficients, (partial) vapor pressures, and
excess energies can be viewed.

Links COSMO-RS GUI tutorial: vapor-liquid diagram binary mixture (VLE/LLE) [1, 2]

4.7.8 Ternary mixture (VLE/LLE)

The COSMO-RS module can automatically calculate properties of a ternary mixture, by calculating these properties for
a number of different compositions. Exactly three compounds should be given in the input file.

PROPERTY ternarymix

{Nfrac nfrac}

{isotherm | isobar |flashpoint}
End

nfrac Number of different mixtures for which the ternary mixture is calculated will be (nfrac+1)*(nfrac+2)/2. Default
value for nfrac is 10, which means 55 different mixtures.

isotherm | isobar | flashpoint If the subkey isotherm is included (default) the ternary mixture will be
calculated at a fixed temperature. If the subkey isobar is included the ternary mixture will be calculated at a fixed
vapor pressure. If the subkey flashpoint is included the flash point of the ternary mixture will be calculated.

The input pure compound vapor pressure will be used in the calculation of the partial vapor pressure of this compound in
the mixture if it is supplied with the key COMPOUND for this compound. If it is not specified then it will be approximated
using the COSMO-RS method.

In case of a miscibility gap liquid-liquid equilibrium (LLE) data such as tie lines and an approximate phase diagram, are
calculated. With the COSMO-RS GUI, activity coefficients, (partial) vapor pressures, and excess energies can be viewed
as a colormap in a 2-dimensional plot with 2 of the liquid compositions on the axes.

Links COSMO-RS GUI tutorial: ternary mixtures (VLE/LLE) [1]

4.7.9 Solvents s1 - s2 Composition Line

The COSMO-RS module can linear interpolate between the compositions of solvent 1 and solvent 2, which both could
be mixtures, and calculate properties, like activity coefficients, and excess energies. This property calculation does not
calculate a possible miscibility gap. The mole fraction of each compound of the solvent 1 and solvent 2 should be given
with the subkey FRAC1 and subkey FRAC2 of the key COMPOUND for each compound, respectively.

PROPERTY compositionline

{Nfrac nfrac}

{isotherm | isobar | flashpoint}
End

nfrac Number of different mixtures of the 2 solvents is calculated will be (nfrac+1). Default value for nfrac is 10,
which means 11 different mixtures.

isotherm | isobar | flashpoint If the subkey isotherm is included (default) a fixed temperature will be
used. If the subkey isobar is included a fixed vapor pressure will be used. If the subkey flashpoint is included the
flashpoint will be calculated.

Links COSMO-RS GUI tutorial: A composition line between solvents s1 and s2 [1]
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4.8 Analysis

4.8.1 Sigma profile

The sigma profile of a mixture can be calculated with:

PROPERTY sigmaprofile
{Nprofile nprofile}
{SigmaMax sigmamax}
End

In case of a mixture the mole fraction of each compound in the mixture should be given with the subkey FRAC1 of the
key COMPOUND for this compound.

The sigma profile pure compounds can be calculated with:

PROPERTY puresigmaprofile
{Nprofile nprofile}
{SigmaMax sigmamax}

End

nprofile Number of data points for which to calculate the sigma profile. default value 50.
sigmamax The sigma profile is calculated between -sigmamax and sigmamax. Default value 0.025.

The hydrogen bonding part (HB) of the sigma profile(s) will also be calculated. In case of a COSMO-SAC 2013-ADF cal-
culation also the OH component of hydrogen bonding (HB-OH) is calculated, and the other type component of hydrogen
bonding (HB-OT) is calculated.

Links COSMO-RS GUI tutorial: sigma profile [1]

4.8.2 Sigma potential

The sigma potential of a mixture can be calculated with:

PROPERTY sigmapotential
{Nprofile nprofile}
{SigmaMax sigmamax}

End

In case of a mixture the mole fraction of each compound in the mixture should be given with the subkey FRAC1 of the
key COMPOUND for this compound.

The sigma profile pure compounds can be calculated with:

PROPERTY puresigmapotential
{Nprofile nprofile}
{SigmaMax sigmamax}

End

nprofile Number of data points for which to calculate the sigma potential. default value 50.
sigmamax The sigma potential is calculated between -sigmamax and sigmamax. Default value 0.025.

Links COSMO-RS GUI tutorial: sigma potential [1]
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4.9 Other inputs

4.9.1 Pitzer-Debye-Hickel long-range electrostatic correction

’ PDH_CORRECTION Yes/No

PDH_CORRECTION
Type Bool
Default value No

Description Logical to use Pitzer Debye-Hueckel electrostatic correction

4.9.2 Elbro Combinatorial term for polymers

USEPOLYCOMBIFORPOLYMER Yes/No

USEPOLYCOMBIFORPOLYMER
Type Bool
Default value Yes

Description Logical to use polymer-specific combinatorial term
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CHAPTER
FIVE

POLYMERS WITH COSMO-RS(-SAC)

Many types of polymers can be described with COSMO-RS theory. However, the typical procedure for calculating o-
profiles (a geometry optimization with ADF, a single point COSMO calculation, processing the surface points to make
a o-profile) is far too expensive for generating the o-profiles of polymers. Instead, the o-profile of a polymer can be
represented as the o-profile of a monomer scaled to the size of the polymer. This means that given a o-profile of an
“average monomer,” we can generate a o-profile for the polymer by multiplying the monomer o-profile by a factor equal
to the number of repeat units in the polymer. This procedure, though not without some shortcomings, makes the treatment
of polymers with COSMO-RS computationally tractable.

Fig. 5.1: COSMO surface of the Polyether ether ketone (PEEK) monomer within a trimer. The “average monomer”
o-profile is calculated from the central monomer unit of the trimer.

There are many possible approaches to generating the o-profile for an “average monomer.” The approach used to generate
the monomers in the 2019 ADFCRS-Polymer Database is the following:

(1) Construct a trimer from 3 units of the monomer
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Fig. 5.2: COSMO surface of the isolated Polyether ether ketone (PEEK) monomer.

(2) Cap the ends of the outer two monomers with methyl groups
(3) Optimize the geometry of the trimer with ADF

(4) Do a single point COSMO calculation

(5) Generate the o-profile for only the central unit of the trimer

This method provides the o-profile of a monomer surrounded by two copies of itself on either side. Though perhaps
longer polymer chains could be considered in the determination of the “average monomer,” the trimer representation was
found to be sufficiently accurate for calculating various thermodynamic properties while not being exorbitantly expensive
in the ADF step. In cases where this monomer representation fails to capture the behavior of the polymer, the following
alternative procedures are possible:

 Generating a structure from a longer polymer chain and taking the “average monomer” o-profile as an average of
the o-profiles of all of the interior monomers

» Sampling the conformational space of the polymer and using different structures for different problems (e.g., a
polymer with a possible intramolecular H-bond may exhibit this internal H-bonding in a neutral solvent but not in
a more polar one)

5.1 Additional properties/units for polymer systems

5.1.1 Average molecular weight

As mentioned above, polymers in COSMO-RS are calculated using a scaled version of a monomer’s o-profile. However,
because polymers come in many different lengths, we must be able to adjust the length of the polymer and accordingly
adjust the scaling of the monomer o-profile. This is done with an average molecular weight parameter, which represents
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the Number Average Molecular Weight M, defined as the following:

AN 2
Zj nj

where j is in index over all different molecules (different-length polymers are different molecules) in solution, w; is the
weight of each molecule, and n; is the number of molecules of type j in solution. Because this parameter is adjustable,
the same monomer o-profile can be used for calculations with polymers of different lengths. Note that a default value of
10000 g/mol is used if no input is given.

5.1.2 Mole fractions of the monomers and polymers

Because a typical polymer consists of many polymer chains of different lengths, the mole fraction of the polymer is
well-defined. In the COSMO-RS program, there are two mole fractions defined:

x(monomer)

x(monomer) is simply the mole fraction of a monomer in the solution, treating all polymeric species as a number of
monomers equal to the length of the polymer chain. For non-polymeric components, x(monomer) is the mole fraction in
relation to a solution of monomers.

x(polymer)

x(polymer) defines a mol of each polymer chain using the average molecular weight parameter to determine the average
chain length. Specifically, we can define a term R; as the number of repeat units in the average polymer of species i. For
non-polymeric components, R; = 1. R; is shown below:

MN

Ri=— i
M (monomer);

where M (monomer); refers to the molar mass of the monomer. Using this R;, we can define x(polymer);:

x(monomer);/R;

l i=
x(polymer) Zj x(monomer);/R;

where now j is an index over all distinct components. All polymers of the same type are assumed to be of length R;.

5.1.3 Weight- and volume-fraction activity coefficients

As a further consequence of the ill-defined mole fraction for polymer solutions, activity coefficients are often reported in
the literature in terms of weight- or volume-fraction. These are also reported for calculations in the COSMO-RS program
in which at least one species is a polymer. They are defined from the activity of each species:

a; = vy;x(polymer);

where -y; is the activity coefficient in relation to the polymer mole fractions. Note: this is the default value for ~y; in
polymer calculations. The weight-fraction activity coefficient (2;) can then be calculated as:
a
Q= —
w;
where w; is the weight fraction of component i. Finally, the volume fraction activity coefficient (’yf ) can be defined as
follows:
¢ _ i
Vi =
b

where ¢; is the volume fraction of component i.
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5.1.4 Flory-Huggins parameter

The Flory-Huggins model is used extensively for binary polymer/solvent and polymer/polymer mixtures. In the Flory-
Huggins model, the x parameter is the single system-specific parameter and is intended to quantify the enthalpic inter-
actions between system components. Users of the Flory-Huggins model can deduce important system behavior (phase
stability, solubility, etc.) from the value of the y parameter.

The x parameter was originally intended to be composition-and temperature- independent, although it is now known

to vary significantly across compositions and temperatures for many systems. Fortunately, system changes related to

composition and temperature are captured in the COSMO-RS program and are reflected in the calculation of the Flory-

Huggins x parameter. This is due to the calculation of the y parameter from the free energy of mixing of two species:
Gmiac _ ¢1 ¢

2 P1P2X12
RIV ~ v, n(f1) + ?an(¢2) + T

where G, 18 the free energy of mixing, R is the gas constant, T is the absolute temperature, V is the system volume,
¢; is the volume fraction of component i, v; is the molar volume of species i, and v,. is a reference volume. Note that the
difference in v; and v5 can be significant in the case of a polymer/solvent mixture. Since G, does vary with composition
and temperature, the x parameter will also exhibit this variance.

Important: Reference volumes ( v,- ) used in calculating the Flory-Huggins parameter
* polymer/solvent systems: v, is equal to the molar volume of the solvent

* polymer/polymer systems: v, is set to a value of 0.6022140857 L /mol, which corresponds to a site size of 1 nm3

The COSMO-RS program can calculate thermodynamic properties for multi-component systems, including polymer-
containing systems. However, the Flory-Huggins x parameter is traditionally defined for binary mixtures (although some
extensions to multi-component mixtures exist). In the case of multi-component mixtures containing polymers, we calcu-
late a x parameter for each species. This is summarized in the following:

Note: Calculating the Flory-Huggins parameter for systems with more than 2 components

For systems with more than 2 components, a x parameter is defined for each component. This x; parameter is calculated
as the x parameter for a species i as if all the other species in solution were combined into one component. This means
that for a ternary mixture of solvent/polymer A/polymer B, the y parameter of the solvent would correspond to the
parameter of the system defined by the solvent and the co-polymer of A and B. Similarly, the y parameter of polymer
A would correspond to the x parameter of the binary system of polymer A and the meta-solvent of a combination of
polymer B and the solvent.

5.2 Modified combinatorial term

The entropy of polymer solutions cannot be calculated in the same way as the entropy of small molecule solutions. For this
reason, the normal combinatorial term in COSMO-RS is replaced with a polymer-specific combinatorial term. Specifi-
cally, the combinatorial term used is that of Elbro (1990)', which has previously been applied successfully in the context
of COSMO-RS?. The Elbro combinatorial requires the free volume fraction (qbf ) of each component:

I H.S. Elbro, A. Fredenslund, and P. Rasmussen, A new simple equation for the prediction of solvent activities in polymer solutions, Macromolecules
23,4707 (1990) (https://doi.org/10.1039/c7cp02317k)

2 C. Loschen and A. Klamt, Prediction of solubilities and partition coefficients in polymers using COSMO-RS, Industrial & Engineering Chemistry
Research 53, 11478 (2014) (https://doi.org/10.1021/ie501669z)
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where z; is the (polymer) mole fraction of compound i, v; is the molar volume of compound i, v} is the molar hard-core
volume of compound i, and j is also an index over the compounds. Using the values of (;5{ Y for each component, the
combinatorial contribution to the activity coefficient can be defined as follows:

fv fv
ln('yif”) =In (i) +1- &

K3 x’b
Finally, this combinatorial term is used to calculate the final activity coefficient:
In(v;) = In(v§"*) + In(y]")

where {7 is the activity coefficient calculated with COSMO-RS without any combinatorial corrections.

i

5.3 General application guidelines/warnings

At present, the quality of the predictions of the COSMO-RS program is unreliable or untested for the following types of
systems:

¢ Cross-linked polymers. The structures of cross-linked polymers are not perfectly compatible with the assumptions
in the COSMO-RS model for polymers. These types of systems are not recommended to be used with COSMO-RS.

¢ Polymers with significant swelling behavior. Polymer swelling is not easily captured with COSMO-RS. It is
likely that some of the error due to swelling can be offset by using correct molar volume values for the polymers in
different solvents/at different temperatures.

5.4 Downloading the ADFCRS-POLYMER-2019 database

See the section on the ADFCRS-POLYMER-2019 database (page 22) on how to download this database.

5.5 Tutorial on polymer calculations

There is a tutorial on COSMO-RS calculations with polymers that demonstrates basic the basic functionality of the
COSMO-RS GUI with polymers. This will cover calculations using the polymer database as well as inputting your own
polymer structures.
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CHAPTER
SIX

PITZER-DEBYE-HUCKEL LONG-RANGE ELECTROSTATIC
CORRECTION

Systems with charged species often demonstrate behavior that is not easily captured with standard thermodynamic models
meant for neutral molecules. A major reason for this that the chemical potential requires an additional contribution due
to the electrostatic potential. The electrostatic potential decays with »—!, where r is the distance between two charges.
This inverse dependence on r makes the electrostatic potential a long-range term, especially as compared to other inter-
molecular energetic contributions, which are typically only relevant at short distances. One successful model for adding
necessary electrostatic corrections for systems with charged species is the Pitzer-Debye-Hiickel (PDH)' model. In the
COSMO-RS package, we use a modification of the PDH term that allows for mixed solvents.

6.1 Mixing rules and required property inputs for the PDH term

In the original publication, the PDH model is used only for pure solvents. To generalize to mixed solvent systems, we
have included mixing rules to estimate required parameters for the PDH model. These are discussed below in addition to
required parameters.

6.1.1 Molecular weight

No additional input is needed for this property as this is directly determined by the atomic composition of a molecule.
The average molecular weight for the entire system, M, is given as a function of all the individual molecular weights m;; :

> nim;
M=-
2n

where n; is the number of moles of species .

6.1.2 Density

The density of each compound is also required for the calculation of the PDH term. For ionic species, one may simply use
the density of the combined salt. The average density for the entire system, D, is given as a function of all the individual
densities d; :

S
1
I

?

D =

! Pitzer, Kenneth S., and John M. Simonson. Thermodynamics of multicomponent, miscible, ionic systems: theory and equations. The Journal of
Physical Chemistry 90 (1986): 3005-3009. (https://doi.org/10.1021/j100404a042)
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6.1.3 Dielectric constant

Additionally, the dielectric constant of each compound is required for the PDH term. These terms do not need to be
experimentally accurate numbers, but should be approximate. The dielectric constant of a combined salt can be used
for the individual ionic species. The average dielectric constant for the entire system, &£, is given as a function of all the
individual dielectric constants ¢; :

i
E= 1n——

6.2 Derivation of the PDH term for general mixtures

In’ , the Debye-Hiickel model is adapted to account for higher concentrations of ions (the Debye-Hiickel model works
well for low concentrations). The authors choose from a variety of possible models, ultimately deciding on one that is
deemed most accurate empirically. The expression for the PDH excess energy (long range electrostatic correction) is
given below.

PDH 1 V2 nAT
¢ =4 ( 000) L In(1 + pIt/?)

RT M p
where I, is the ionic strength of the system, which is a function of the charge z; of each species:
I, = -—=

and A, is the Debye-Hiickel parameter, defined as:

1 (2nN4De)1/2

A, ==
3 (4meoEkT)3/2

where e is the charge of the electron, N4 is Avogadro’s number, & is the Boltzmann constant, and € is the permittivity
of free space.

Finally, p is the closest approach parameter. The specifics of this parameter are still under development, and for now the
following simple formula from”’ is used.
D\ /2
= 2150
’ (é‘T)

Finally, we can calculate the PDH contribution to the activity coefficient as follows:

5 GPDH
In(+7"PH) = ( )
T,P

“on; \ RT
1/2 2
1000 Al M—m;  z
— 4 (=2 222 | n(1 4 pr/2y [ == F
(M) “(ﬂ’w)( oM 'l

1 D 3N m; €; N ép
(i) (-9 -2
j J

1/2
" 1 oL/ (ZLQ -~ 1> eV op
1+ p[;/Q 2N 21 r (5nl

Note that in the above, the analytical form of the term - is not used to simplify the expression.
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6.3 Tutorial on using the PDH correction

There is a tutorial on using the PDH correction that demonstrates the use of this correction with the GUL

References
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CHAPTER
SEVEN

THE UNIFAC PROGRAM

Using the UNIFAC program from the command line is documented in the following:

7.1 Compound Input

7.1.1 Basic Input

In the UNIFAC program, compounds are expected to be input as SMILES strings, and their ratios are expected as mole
fractions. A summary of basic compound input is given below:

Flag Purpose Example

-h Produces help message $AMSBIN/unifac —help

-smiles Input molecule as SMILES sting $ AMSBIN/unifac -smiles
<SMILES1> <SMILES2> ...

-frac Input the mole fractions $AMSBIN/unifac -frac <mol frac-
tion 1> <mol fraction 2> ...

-solute Specify a molecule as a solute $AMSBIN/unifac -smiles CCC -
solute -smiles ...

-0 Write output to file $AMSBIN/unifac -0 <output file>

Note that the -smiles and -frac flags are only specified one time and all information ( SMILES strings and mole fractions
) comes after these flags. It is assumed that the order of the mole fractions after the -frac corresponds to the order of the
SMILES strings after the -smiles flag. A simple example demonstrating an activity coefficient calculation for a mixture
of three compounds is given below:

SAMSBIN/unifac —-smiles CCCCCC CCCO CCCCBr -solute —-frac 0.2 0.3 0.5 -t ACTIVITYCOEF

The -solute flag is used to specify which compounds should be treated as solutes for the PURESOLUBILITY template.
See the PURESOLUBILITY section for more information.
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7.1.2 Physical Property Input

A number of problem templates require physical property information to be input. Physical property information should
be input directly after a compound’s SMILES representation. A list of the physical property flags and examples of usage
are given below:

Flag Purpose Example

-pvap Vapor pressure (bar) $ AMSBIN/unifac -smiles
<SMILES> -pvap 0.43 ...

-tvap Temperature (K) corresponding to pvap $ AMSBIN/unifac -smiles
<SMILES> -tvap 320.1 ...

-antoine Antoine coefficients for compound $AMSBIN/unifac -smiles
<SMILES> -antoine 7.23 1504.2
246.87 ...

-hfusion Enthalpy of fusion in kJ/mol $AMSBIN/unifac -smiles
<SMILES> -hfusion 6.4

-meltingpoint Melting point of compound (K) $ AMSBIN/unifac -smiles
<SMILES> -meltingpoint 421.12

Below is an example (with synthetic antoine parameters) demonstrating the command line input for a binary mixture
calculation (BINMIXCOEF) using vapor pressure estimated from the antoine parameters.

SAMSBIN/unifac —-smiles "CCCCOCC" -antoine 5 1500 30 \
"CCCCCC" —antoine 6 1234 10 -t BINMIXCOEF

Additionally, we present an example for calculating the solubility of DDT in ethanol. Since DDT is a solid at room
temperature, this requires us to input Enthalpy of Fusion and Melting Point data.

SAMSBIN/unifac -smiles \
"C1=CC (=CC=C1C (C2=CC=C(C=C2)Cl)C(Cl) (Cl)Ccl)Cl" —hfusion 26.28 -meltingpoint 383 \
"cco" -frac 0.0 1.0 -t SOLUBILITY

7.2 Program Input

7.2.1 List of possible input flags

The UNIFAC program accepts a few additional flags to specify system conditions, choose a template for the calculation,
or set the number of points taken over a provided range (e.g., a temperature range). A summary of these input options is
provided below. In the following section, examples are given for each flag.

Flag Meaning

-t One of a number of template strings to indicate the problem type

-temperature One/two values (K) to specify the system temperature/temperature range

-steps the number of steps taken if a range is specified or for a BINMIXCOEF or
TERNARYMIX calculation

-preset an integer to indicate which solvent system is chosen for logP calculations
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7.2.2 Examples of general program flags

In this section, we provide a brief example of each of the above flags.

-t

The -t flag has been shown in previous examples and will be described in more detail in the following section. The -t flag
must be followed by one of the following template names:

LOGP

ACTIVITYCOEF
PURESOLUBILITY
SOLUBILITY
VAPORPRESSURE
PUREVAPORPRESSURE
BINMIXCOEF
TERNARYMIX

A brief example of this for the ACTIVITYCOEF template is given below:

SAMSBIN/unifac -smiles "CCCCO" "cccoccc" -frac 0.5 0.5 -t SOLUBILITY

-temperature

In this example, we take the previous DDT solubility calculation and perform the calculation at a temperature of 310 K.
This is shown below:

AMSBIN/unifac -smiles \
"C1=CC (=CC=C1C (C2=CC=C(C=C2)Cl)C(Cl) (Cl)Ccl)Cl" —hfusion 26.28 -meltingpoint 383 \
"cco" —-frac 0.0 1.0 —-temperature 310 -t SOLUBILITY

If we want to calculate the solubility over a temperature range (say, 310-350 K), we need to specify the temperature flag
twice and also include a number of steps to take between the two temperatures with the -steps flag. This looks like the
following:

SAMSBIN/unifac -smiles \
"C1=CC (=CC=C1C (C2=CC=C(C=C2)Cl)C(Cl) (Cl)Cl)Cl" -hfusion 26.28 -meltingpoint 383 \
"cCcO" —-frac 0.0 1.0 —-temperature 310 —-temperature 350 —-steps 10 -t SOLUBILITY

-steps

The -steps flag specifies a number of steps to take between a temperature range or the number of steps to take along each
mole fraction axis for a BINMIXCOEF or a TERNARYMIX calculation. For an input value of N for the -steps flag, the
BINMIXCOEF and TERNARYMIX templates consider the following number of distinct mole fraction combinations:

Template Number of distinct systems considered
BINMIXCOEF N+5
TERNARYMIX (N+1)(N+2)/2

If we wanted to calculate the thermodynamic properties of a binary mixture with a very small step size, we could input a
N value of 1000 to take 1005 samples of the mole fraction space:
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SAMSBIN/unifac -smiles \
"CCCCOCC" -antoine 5 1500 30 \
"CCCCCC" —antoine 6 1234 10 \
-t BINMIXCOEF -steps 1000

-preset

The preset flag is used for a logP calculation. A preset of 2 (default) indicates that that we do a logP calculation on the
traditional Octanol/Water system. This looks like the following:

’ﬁ‘TS?T?/unifac -smiles "CCCCOCC" -t LOGP -preset 2

More information on the preset flag options for the LOGP template will be given in the templates section.

7.3 Templates

The -t flag indicates which of several problem types, or templates, should be used. Different templates expect different
input options and produce different results. A summary of the different templates is given below.

7.3.1 ACTIVITYCOEF

Number of compounds required >=2
Mole fraction values (-frac) required Yes
-solute flag used No
-antoine or pvap/tvap required No
-hfusion/-meltingpoint required No

The activity coefficient template calculates activity coefficients from a set of mole fraction values. In the following example,
we calculate the activity coefficients of the water/propanol system over a temperature range of 230-298.15 K.

SAMSBIN/unifac -smiles "O" "CCCO" -frac 0.2 0.8 \
-t ACTIVITYCOEF -temperature 230 -temperature 298.15 -steps 20

7.3.2 LOGP
Number of compounds required >=1
Mole fraction values (-frac) required No
-solute flag used No
-antoine or pvap/tvap required No
-hfusion/-meltingpoint required No

The logP template calculate the partition coefficient (P) of input structures between a variety of common liquid/liquid
systems. The specific set of liquids can be chosen with the -preset flag. A summary of the -preset options is given below:
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-preset value Liquid phases

2 Octanol/Water

3 Benzene/Water

4 Diethyl ether/Water
5 Hexane/Water

In the following example, we calculate the logP of Sertraline in the Octanol/Water system.

SAMSBIN/unifac -smiles "CNC1CCC (C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)Cl" -t LOGP -preset 2

7.3.3 PURESOLUBILITY

Number of compounds required >=2

Mole fraction values (-frac) required No

-solute flag used Yes

-antoine or pvap/tvap required No
-hfusion/-meltingpoint required if solute is a solid

The pure solubility template calculates the solubility of a solute (designated by the -solute flag) in a variety of pure solutes.
More specifically, the solute’s solubility is calculated in every one of the other input molecules.

In the following example we calculate the solubility of Undecanedioic acid (a solid at 298.15 K) in n-Hexane, Benzene,
‘Water, and Ethanol.

SAMSBIN/unifac -smiles \
"C (CCCCC (=0)0)CCCCC (=0)0" —hfusion 39.65 -meltingpoint 385 -solute \
"ccceee" "clccccecl™ "O" "CCO"™ -t PURESOLUBILITY

7.3.4 SOLUBILITY

Number of compounds required >=2

Mole fraction values (-frac) required Yes

-solute flag used No

-antoine or pvap/tvap required No
-hfusion/-meltingpoint required if solute is a solid

The solubility template calculates the solubility of every input molecule in the system defined by the remaining molecules.
For example, assume we input a system with molecules A, B, and C with mole fractions 0.2, 0.6, and 0.2. The solubility
of molecule A is then calculated in a mixture of B/C where the mole fraction ratio is fixed to 3/1 (from the 0.6/0.2 in
the input). The solubility of A may very well be 0.6, but this would mean the remaining mole fractions would be 0.3/0.1
(B/C). The same calculation is then also done for B and C.

In the following example we calculate the solubilities of Benzene, n-Hexane, 1-Hexanol, and Acetic acid. Note that the
mole fraction of Benzene is set to 0.0. This means that Benzene’s solubility will still be calculated, but it will not be part
of the solvent system when the other molecules’ solubilities are being calculated.

SAMSBIN/unifac \
-smiles "clcccccl™ "CCCCCC™ "CCCCCCO"™ "CC(=0)0"™ \
—-frac 0.0 0.2 0.3 0.5 -t SOLUBILITY
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7.3.5 PUREVAPORPRESSURE

Number of compounds required >=1
Mole fraction values (-frac) required No
-solute flag used No
-antoine or pvap/tvap required Yes
-hfusion/-meltingpoint required No

The pure vapor pressure template simply calculates the vapor pressure of a pure component. Because this requires the
antoine parameters as input, this template simply evaluates the antoine equation, possibly over a temperature range.

The following example calculates the pure vapor pressure (again using synthetic antoine coefficients) for two molecules
over a temperature range:

SAMSBIN/unifac \

—smiles "clcccccl" —antoine 4 1245 123 \

"CCCCC"™ —-antoine 5 1241 242 \

-t PUREVAPORPRESSURE -temperature 320 -temperature 350 -steps 10

7.3.6 VAPORPRESSURE

Number of compounds required >=1
Mole fraction values (-frac) required Yes
-solute flag used No
-antoine or pvap/tvap required Yes
-hfusion/-meltingpoint required No

The vapor pressure template calculates the vapor pressure of a mixture (or a pure component if only one compound is
entered). This again requires the antoine parameters for each compound as input.

We repeat the previous example, now calculating the vapor pressure of the 0.2/0.8 mole fraction mixture.

SAMSBIN/unifac \

—smiles "clcccccl" —antoine 4 1245 123 \

"CCCCC" —antoine 5 1241 242 \

—-frac 0.2 0.8 \

-t VAPORPRESSURE -temperature 320 —-temperature 350 —-steps 10

7.3.7 BINMIXCOEF

Number of compounds required 2

Mole fraction values (-frac) required No
-solute flag used No
-antoine or pvap/tvap required Yes
-hfusion/-meltingpoint required No

The binary mixture template takes exactly 2 compounds as input. Unlike other templates where thermodynamic properties
are calculated over a range of temperatures, the binary mixture template calculates properties over a range of mole
fractions. In other words, it takes a number of samples of the mole fraction space. If no antoine coefficients are given,
then no gas phase thermodynamic properties are reported.
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In this example we calculate binary mixture properties for the Water/Ethanol system (again with synthetic antoine pa-
rameters).

SAMSBIN/unifac -smiles "O" -—-antoine 4 1245 123 "Ccco" \
—antoine 5 1241 242 -t BINMIXCOEF -steps 10

7.3.8 TERNARYMIX

Number of compounds required 3

Mole fraction values (-frac) required No
-solute flag used No
-antoine or pvap/tvap required Yes
-hfusion/-meltingpoint required No

The ternary mixture template takes exactly 3 molecules as input and performs similar calculations to those done in the
binary mixture template. Note that tie lines are not calculated like they are in the COSMO-RS/-SAC programs.

In this example we add a Acetone to our previous two compounds and change the temperature to 330 K.

SAMSBIN/unifac —-smiles "O" -—-antoine 4 1245 123
"CCO" —-antoine 5 1241 242 \

"CC(=0)C" -antoine 6 2414 221 \

-t TERNARYMIX -steps 20 —-temperature 330
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CHAPTER
EIGHT

PURE COMPOUND PROPERTY PREDICTION

8.1 Introduction

The Property Prediction program in ADF provides quick, accurate estimates for many important pure component physical
properties. Atits core, the Property Prediction program maps various QSPR descriptors of an input molecule onto a single
numerical value, the property estimate. Many of these property models rely on easy-to-evaluate QSPR descriptors and
numerically straightforward computations, meaning that an estimate can be provided for every property in << s per
molecule. The general expression for the models used in the Property Prediction program is as follows:

f(P)=C+yg (ZW%) +h <dez‘,T>

where f is a function that transforms the property value space, g is a function that maps QSPR descriptors onto a numerical
value, and 4 is a function which also captures temperature-dependence of certain properties by including temperature,
T, as an input. Additionally, C is a constant, n; refers to QSPR values of QSPR descriptor i, and ¢; and d; are fitted
coefficients corresponding to each QSPR descriptor i.

The accuracy of the property estimates depends on the nature/complexity of the input molecular structure. For many
common organic structures, the property estimates should be reasonably accurate. However, as is always the case with
QSPR models, the Property Prediction program will likely lose accuracy for molecules outside its training domain, i.e.,
for molecules that are very “dissimilar” to compounds which occur in the training set. In general, the program can be
used for molecules with the following atom types:

Accepted atom types Example functional groups which can be used with atom type

H Alkanes, Alkenes, Alkynes, Aldehydes, Amides, Amines, Aromatics, Carboxylic Acids,
Hydroxides, Sulfides, Thiols

C Acid chlorides, Alkanes, Alkenes, Alkynes, Aldehydes, Amides, Aromatics, Carboxylic
Acids, Esters, Ethers, Ketones, C-X (halogens)

N Amides, Amines, Aromatics, Cyanides, Imines, Nitro groups

O Acid chlorides, Aldehydes, Amides, Aromatics, Carboxylic Acids, Esters, Ethers, Ke-
tones, Nitro groups

F -CF, -CF2, -CF3

S Sulfides, Thiols

Cl Acid chlorides, -CCl, -CCl2, -CCI3

Br -CBr

I -CI

A brief description of molecule types for which this method will not work well is given in the General warnings section.
Common molecules for which this method will fail are: (1) those that contain only one non-hydrogen atom, e.g., Methane
or Water; (2) those that contain atoms not listed in the table above.
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8.2 Available properties

The Property Prediction program can predict the values of various pure component physical properties. These properties
can be of interest themselves or can be used in conjunction with other COSMO-RS property calculations (e.g., to calculate
the solubility of a solid in a liquid, we must know the enthalpy of fusion and melting point of the solid — both of these
properties can be estimated with the Property Prediction program). The available properties and their units are listed

below:
Property Name Units Additional Typical error
Information
Boiling point K at 1 atm 15K
Critical Pressure bar 1.5 bar
Critical Temperature K 30K
Critical Volume L/mol 0.02 L/mol
Dielectric Constant 3
Ideal Gas Entropy J/(mol K) at 298.15 K | 20 J/(mol K)
and 1 bar
Flash point K I5K
Gibbs Energy Ideal Gas kJ/mol at 298.15 K | 25 kJ/mol
and 1 bar
Enthalpy of Combustion kJ/mol at298.15 K 50 kJ/mol
Std. Enthalpy of Formation kJ/mol at 298.15 K | 30 kJ/mol
and 1 bar
Enthalpy of Fusion kJ/mol at  Normal | 4 kJ/mol
Melting Point
Enthalpy of Form. Ideal Gas kJ/mol at 298.15 K | 25 kJ/mol
and 1 bar
Enthalpy of Sublimation kJ/mol 5 kJ/mol
Melting point K at 1 atm 35K
Liquid Molar volume L/mol at 298.15K 0.005 L/mol
(Liquid Density) kg/L. at 298.15 K uses Liquid Molar Volume
Liquid Vapor Pressure bar 10-30%
Liquid Viscosity (1) Pa-s 20-50%
Parachor 7
Solubility Parameter (cal/cm”3)M /2| at 298.15 K 0.7
Synthetic accessibility’ scored from 1
(easy) to 10
(hard)
Triple point temperature K 35K
Van der Waals Area A? 6 A?
Van der Waals Volume A’ 3A3

1

P. Ertl and A. Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment con-

tributions Journal of cheminformatics 1 (2009): 1-11. (https://doi.org/10.1186/1758-2946-1-8)
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8.3 Running the Property Prediction program

The Property Prediction program can be run from the command line. The following general flags are used by the program:

Flag Purpose Example

-h [—— | Produces help message SAMSBIN/prop_prediction

help] —-—help

-s [-— | Input molecule as SMILES sting SAMSBIN/prop_prediction

smiles] ——smiles <SMILES>

-m [-—mol] Input molecule as .mol file SAMSBIN/prop_prediction
——-mol <mol file>

——sdf Input molecule as an .sdf file $SAMSBIN/prop_prediction
——-sdf <file.sdf>

- Set temperature/range (K) SAMSBIN/prop_prediction

temperature ——temperature 298.15

-n number of steps for temperature range SAMSBIN/prop_prediction
--n 20

-d [—— | Display calculated properties SAMSBIN/prop_prediction

display] -—d ...

-0 [—— | Write output to file SAMSBIN/prop_prediction

output] --0 <output file>

Note, if no output flag is supplied, then the results are written to a file called CRSKF by default. Additionally, the user
may enter as many compounds as desired on the command line in either of the two available input formats.

The program can be run in 2 ways:
 Estimating all available properties for every molecule
 Estimating specific properties for every molecule

To estimate all properties for every input compound, simply execute the program with all molecules specified on the
command line. Don’t forget that the -d flag is required to display the results in the terminal. An example of this is below.

SAMSBIN/prop_prediction —--smiles CCCCCCO -o example.crskf —-temperature 298.15 -
—temperature 398.15 —-n 20 -d

Boiling point at standard pressure

CCcccco 435.777 K
Critical pressure

CCCccco 34.3493 Dbar
Critical temperature

CCcccco 576.466 K
Critical volume

CCcccco 0.404124 L/mol
Liquid density

CCccceco 0.79182 kg/L
Dielectric constant

CCCcccco 10.9512

Absolute entropy of an ideal gas at 298.15 K and 1 bar
CCCCcCCo 439.885 J/(mol K)
Flash point

CCcccco 342.271 K

Gibbs energy of formation for an ideal gas at 298.15 K and 1 bar

(continues on next page)

8.3. Running the Property Prediction program 67




COSMO-RS Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)

ccceeco -131.869 kJ/mol

Net enthalpy of combustion at 298.15 K
cccececo -3678.12 kJ/mol
Standard state enthalpy of formation at 298.15 K and 1 bar
Cccccececo -384.388 kJ/mol
Enthalpy of fusion at normal melting point
Ccccececo 18.5054 kJ/mol
Enthalpy of formation for an ideal gas 298.15 K
cccececo -316.821 kJ/mol
Enthalpy of sublimation

Cccccececo 80.9799 kJ/mol

Melting point at 1 atm

cccececo 231.141 K

Liquid molar volume

cccececo 0.128949 L/mol

Parachor

ccccececo 289.059

Solubility parameter

cccececo 10.1294 (cal/cm”3)70.5
Triple point temperature

cccececo 230.404 K

Van der Waals area

ccceeco 171.059 A~2

Van der Waals volume

Cccceco 120.519 A~3

Liquid viscosity
Molecule: CCCCCCO

Temperature (K) Liquid viscosity (Pa-s)
298.15 0.004465
303.15 0.003865
308.15 0.003364
313.15 0.002942
318.15 0.002584
323.15 0.002281
328.15 0.002021
333.15 0.001798
338.15 0.001606
343.15 0.001439
348.15 0.001294
353.15 0.001168
358.15 0.001057
363.15 0.000959
368.15 0.000873
373.15 0.000797
378.15 0.000729
383.15 0.000669
388.15 0.000615
393.15 0.000567
398.15 0.000523

Liquid vapor pressure
Molecule: CCCCCCO

Temperature (K) Vapor pressure (bar)
298.15 0.001229
303.15 0.001809
308.15 0.002623
313.15 0.003750
318.15 0.005289

(continues on next page)
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323.15 0.007362
328.15 0.010123
333.15 0.013757
338.15 0.018487
343.15 0.024582
348.15 0.032357
353.15 0.042182
358.15 0.054484
363.15 0.069757
368.15 0.088563
373.15 0.111537
378.15 0.139394
383.15 0.172929
388.15 0.213022
393.15 0.260644
398.15 0.316852

For most applications, it is not necessary to calculate all of the available physical properties (although doing so is practically
just as fast). In these cases, additional property flags need to be specified on the command line to restrict the program to
calculating only certain physical properties. For example, if we were doing solid/liquid solubility calculations on Ibuprofen
and Paracetamol, we would require the Enthalpy of Fusion and the Melting Point of both compounds. To calculate only
these two properties, we simply have to add the two property flags “-hfusion” and “-meltingpoint” to the command line.
Using the .mol file for Ibuprofen and the SMILES string for Paracetamol, we execute the following:

SAMSBIN/prop_prediction -d -m Ibuprofen.mol -s 'CC (=0)NC1=CC=C(C=C1)0' -hfusion -

—meltingpoint

Enthalpy of fusion at normal melting point
CC (=0)NC1=CC=C (C=C1)0 33.0298 kJ/mol
Ibuprofen.mol 24.0336 kJ/mol

Melting point at 1 atm
CC (=0)NC1=CC=C (C=C1)0 469.282 K
Ibuprofen.mol 331.887 K

8.4 Index of property keys

The available properties and their corresponding property flags are listed below:

8.4. Index of property keys
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Property Name Property Flag

Boiling point ——boilingpoint
Critical Pressure —-—-criticalpressure
Critical Temperature —-—criticaltemp
Critical Volume ——criticalvol

Dielectric Constant

——dielectricconstant

Ideal Gas Entropy —-—entropygas

Flash point ——flashpoint

Gibbs Energy Ideal Gas --gidealgas

Enthalpy of Combustion ——hcombust

Std. Enthalpy of Formation ——hformstd

Enthalpy of Fusion ——hfusion

Enthalpy of Form. Ideal Gas —-—hidealgas

Enthalpy of Sublimation ——hsublimation
Melting point —-—meltingpoint
Liquid Molar volume --molarvol

(Liquid Density) —-—molarvol

Liquid Vapor Pressure —-—-vaporpressure
Liquid Viscosity ——liquidviscosity
Parachor ——-parachor

Solubility Parameter --solubilityparam
Synthetic accessibility —-—synacc

Triple point temperature -—tpt

Van der Waals Area --vdwarea

Van der Waals Volume —-—vdwvol

8.5 General warnings

This method will fail for the following types of molecules:

» Those that contain only one non-hydrogen atom (e.g., Methane or Water). However, experimental data is ample
for these small molecules. The vapor pressure model is the exception in that it can represent such small structures.

¢ Those that contain atoms or substructures that are not listed in the Accepted atom types table (page 65) above.

* Polymers and Ionic Liquids

This method will lose accuracy for some properties in the following domains:

¢ Molecules with many different types of functional groups

* Molecules that are extremely light (< 3 non-Hydrogen atoms) or heavy (> 30 non-Hydrogen atoms)
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8.6 Equations for temperature-dependent properties

8.6.1 VPM1: liquid vapor pressure

In(P)=A/T+BIn(T)+CT+ D

Symbol Meaning

P vapor pressure

T absolute temperature
A,B,C.D estimated constants

8.6.2 empirical-VIS1: Liquid Viscosity

In(p) = A+ B/T+CIn(T) + (D/T)exp(E/T)

Symbol Meaning

W liquid viscosity

T absolute temperature
AB,C\D.E estimated constants

8.7 References
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CHAPTER
NINE

SOLVENT OPTIMIZATION

9.1 Introduction

The choice of solvent or solvent system can have a dramatic impact on the solubility of solutes, the performance of
the solvent system for liquid-liquid extraction, or reaction rates/selectivities for many chemical reactions. The solvent
is also one of the most accessible variables in formulation/reaction/extraction design as many of the other species in
these problems (active ingredients, co-solvents, reactants, catalysts, extracts, raffinates, etc. ) are often fixed or tightly
constrained. However, the solvent selection problem is combinatorially complex and non-trivial. As an example of this
complexity, consider the problem of choosing up to 4 solvents for a process from a set of 100 possible solvents. The
number of combinations alone is over 4 million, a number that makes laboratory- or pilot-scale testing for every system
untenable. An additional complication is that the identities of the solvents alone do not determine a solvent system: we
must also know the mole fractions. Of course, there are an infinite number of possible mole fraction values for a solvent
system ( a value of 1 = 0.3, x2 = 0.7 is just as valid as z; = 0.29999, x5 = 0.70001 ), meaning a high-throughput
approach would still require multiple mole fraction values for each solvent system to effectively sample the mole fraction
space.

Luckily, the complexity of this problem can be addressed with modern mathematical optimization approaches. Following
the approach of!, we re-structure the COSMO-RS/-SAC parameters and equations and incorporate them into a Mixed
Integer Nonlinear Programming (MINLP) formulation. Using this generic formulation, we can apply a number of op-
timization solvers and solution techniques to the problem of determining an optimal solvent system. We note that the
optimization methods currently in use only guarantee local solutions, but the formulation should be robust enough to
provide high-quality solutions for many types of problems. In fact, for most of our example problems, our optimization
approach was able to find the globally optimal solution (as determined by an exhaustive enumeration of the solvent space
and dense sampling of the mole fractions space). There are additionally some features in the program (e.g., the -multistart
flag) which help to provide a diversity of starting conditions so the solvers can find high-quality solutions.

9.2 Problem types

At present, the program has two problem templates:

e The SOLUBILITY template: this selects a solvent system and mole fractions in order to maximize or minimize
the mole fraction solubility of a solid solute in the liquid mixture. Note that currently only solid/liquid equilibria
calculations are supported.

¢ The LLEXTRACTION template: this selects a two-phase solvent system and mole fractions in order to maximize
(or minimize) the distribution ratio (D) of two solutes between the two liquid phases. The distribution ratio for
these problems is defined in terms of mole fractions rather than concentrations. The formula for this is given in an
equation below. Note that LLEXTRACTION problems will fail if all possible solvents are miscible.

I N.D. Austin, N.V. Sahinidis, D.W. Trahan, COSMO-based computer-aided molecular/mixture design: A focus on reaction solvents, AIChE Journal
64, 104 (2018) (https://doi.org/10.1002/aic.15871)
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Because liquid densities are not always known, we calculate the distribution ratio (D) in terms of mole fractions. The
liquid-liquid phase equilibrium condition provides an equivalent expression for D. More precisely, this means that D can
be calculated as follows:
_ SRR Mo
D=maz | 7T 71
M2 2T

where 'yf represents the activity coefficient of solute i in phase j. Here, we assume that the two solutes to be separated
are indexed with ¢ € {1, 2}. The max operator, though not used in the optimization problem itself, allows us to express
the correct value of D in the equation above. In other words, the max operator removes the dependence of the D value
on arbitrary indexing of solutes and phases.

Note: For LLEXTRACTION problems, the mole fractions of the solutes are fixed to O unless they are also specified as
solvents. This means that the distribution coefficient is calculated using the infinite dilution activity coefficients.

A brief summary of what to expect for solvent optimization problems using the two templates is given below:

SOLUBILITY LLEXTRACTION
Minimum number of sol- | 1 2
vents
Preferred number of sol- | >1 >4
vents
Typical solution times <2s 1-30s
Recommended multistarts | <5 if any 5-10
Warmstart recommended | No Problem-dependent

The warmstart and multistart options will be explained in a later section.

9.3 Running the Solvent Optimization program

The Solvent Optimization program can be run from the command line. The following general flags are used by the

program:

Flag Purpose Example

-h [-help] Produces help message $AMSBIN/solvent_opt —help

-s [—smiles] Input molecule as SMILES sting $AMSBIN/solvent_opt —smiles
<SMILES> ...

-m [-mol] Input molecule as .mol file $AMSBIN/solvent_opt —mol <mol
file> ...

-c [—coskf] Input molecule as .coskf file $AMSBIN/solvent_opt —coskf
<.coskf file> ...

-d [display] Display problem results $AMSBIN/solvent_opt —d ...

-0 [—output] Write output to file $AMSBIN/solvent_opt —o <output
file> ...

Additionally, physical properties required for the calculation can be input on the command line. Presently, only two
physical properties (Enthalpy of Fusion and Melting Point) are required for certain calculations. These flags must follow
a molecule input and be followed by the property value. Some examples are given below:
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Flag Property Example
-hfusion H of Fusion (kJ/mol) | $AMSBIN/solvent_opt -c Ibuprofen.coskf -hfusion 26.6 ...
-meltingpoint Melting point (K) $AMSBIN/solvent_opt -c Ibuprofen.coskf -meltingpoint 349.2 ...

Optimization problem specifications and method options can be input with the following flags:

Flag Meaning Example

-method Choice of method | ... -method COSMO-RS ...
(COSMO-RS COS-
MOSAC2016)

-max maximize the Solubil-
ity/Extraction ratio

-min minimize the Solubil-
ity/Extraction ratio

-solute specify which | ... -s CCCO -solute ...
molecules are so-
lutes

-t [-template] choose a problem | ... -t LLEXTRACTION ...
template

-temperature input 1 or 2 tempera- | ... -temperature 298.15 ...
tures (K)

Note that, like the -hfusion and -meltingpoint flags, the -solute flag comes after a compound identifier (SMILES
string/filename).

Finally, there are two more optimization problem flags which can be altered for problems that do not converge. The
first is the -multistart flag. This flag takes an integer N as input and instructs the algorithm to begin from N randomly-
generated starting points. This can be useful for difficult problems because not only will the algorithm begin from more
starting points, but it will also adjust internal parameters every time a problem fails. The -warmstart flag instructs the
main algorithm to attempt to make the convert the initial starting point to a high-quality, feasible starting point which
can then be given to the optimization algorithm. This option can be helpful for many problems, especially those with
small numbers of solvents or LLEXTRACTION problems where the solvents are extremely immiscible (e.g., Water and
n-Hexane). A summary of these options is presented below:

Flag Meaning Example

-multistart Start from a num- | ... -multistart5 ...
ber of random start-
ing points

-warmstart Use the warmstart | SAMSBIN/solvent_opt —warmstart ...
strategy

9.4 Examples

In this section, we provide a few example problems to demonstrate a few of the features available in the Solvent Opti-
mization program. We first do a sample problem with the SOLUBILITY template, and then we provide an example of
the usage of the LLEXTRACTION template.
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9.4.1 Solubility

For a first example, we determine a mixture of solvents to maximize the solubility of Paracetamol. For the purposes of
illustrating features, we assume that we do not have an available .coskf file for Paracetamol and must use its SMILES
string. We can use a few common solvents from the ADFCRS-2018 database:

SAMSBIN/solvent_opt -t SOLUBILITY -d -max \
-5 "CC(=0)NC1=CC=C(C=C1)0" -solute -meltingpoint 443.1 \
-c SAMSHOME/atomicdata/ADFCRS-2018/Acetic_acid.coskf \
-c SAMSHOME/atomicdata/ADFCRS-2018/Hexane.coskf \

-c SAMSHOME/atomicdata/ADFCRS-2018/Toluene.coskf \

-c OME/atomicdata/ADFCRS-2018/Butanoic_acid.coskf \
-c SHOME /atomicdata/ADFCRS-2018/Ethanol.coskf
Estimating missing property values
Estimated values
Molecule Missing Property Estimated Value
CC (=0)NC1=CC=C (C=C1)0 Hfusion 7.89433

khkhkhkhkkhkhkhkhkkhkhhkhkhkhkhhkhkkhkhkhhkkhkhhhkkhkhAhhkkhhkrhkkhhkhrhkkhkdhkhrhkhktx

Iteration 1
LR S R B R B I I i I b e b b I e I b b b b b b b b b b b b 4

Initial guess x1: 0.0235183
Initial guess x2: 0.0758477
Initial guess x3: 0.220089
Initial guess x4: 0.283974
Initial guess x5: 0.314382
Initial guess x6: 0.082189

777777 > Solver Status: CONVERGED
Objective value: 0.159729

x1: 0.159729 CC (=0)NC1l=CC=C(C=C1)0
X2 0 Acetic_acid.coskf

x3: 0 Hexane.coskf

x4 0 Toluene.coskf

x5: 0 Butanoic_acid.coskf
X6: 0.840271 Ethanol.coskf

The problem correctly selects Ethanol as the solvent in which Paracetamol is most soluble. Single solvent solutions are
common in SOLUBILITY problems as often no mixed solvent system outperforms single solvents. Notice that in this
example any required property values for solid/liquid equilibria that are missing are estimated based on the input SMILES
string. Because the -meltingpoint flag provided a value for the Melting Point, only the Enthalpy of Fusion is estimated.
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9.4.2 Liquid-liquid extraction

Our next example focuses on a classic liquid-liquid extraction problem: separating Acetic acid and Water. In this example,
we assume that we want to replace a standard solvent for this extraction (n-Hexane) with something more environmentally-
friendly. Consulting GSK’s Solvent Selection Guide”, we restrict our problem to the solvents with the fewest issues: Water,

1-Butanol, 2-Butanol, t-Butyl acetate, Isopropyl acetate, Propyl acetate, and Dimethyl carbonate.

SAMSBIN/solvent_opt —-d -t LLEXTRACTION -max \

—-c SA

VSHOME /atomicdata/ADFCRS-2018/Acetic_acid.coskf —-solute \

-c $AMSHOME/atomicdata/ADFCRS-2018/Water.coskf -solute \

SAMSHOME /atomicdata/ADFCRS-2018/Water.coskf \
SAMSHOME/atomicdata/ADFCRS-2018/1-Butanol.coskf \

-c SAMSHOME/atomicdata/ADFCRS-2018/2-Butanol.coskf \
SAMSHOME/atomicdata/ADFCRS-2018/tert-Butyl_acetate.coskf \

SAMSHOME/atomicdata/ADFCRS-2018/Isopropyl_acetate.coskf \

-c $SAMSHOME/atomicdata/ADFCRS-2018/Propyl_acetate.coskf \

-c SAMSHOME/atomicdata/ADFCRS-2018/Dimethyl_carbonate.coskf

Notice that water is repeated because it is both a solute and a solvent in the solvent space. The output produced is the

following:

Removing duplicate entry:

KKK AR AR AAIRAA I A A A A AR A AR A R A AR A A A A A A A A A A AR KA, KK

Iteration 1

KKK AR KA AR KA AR AR A AR A AR A AR A AR AR A AR A A A A AR A AR AR, * K

Phase I Phase II
Initial guess x1: 0.0818796 0.241048
Initial guess x2: 0.162378 0.185238
Initial guess x3: 0.198892 0.0429676
Initial guess x4: 0.114387 0.152842
Initial guess x5: 0.0267187 0.0437898
Initial guess x6: 0.232349 0.042073
Initial guess x7: 0.112232 0.182333
Initial guess x8: 0.071164 0.109708
777777 > Solver Status: CONVERGED
Objective value: 232.779

/home/austin/amshome/atomicdata/ADFCRS-2018/Water.coskf

x1: 0 0 Acetic_acid.coskf
X2 0.994592 0.0358616 Water.coskf
x3: 0 0 1-Butanol.coskf
x4 0 0 2-Butanol.coskf
x5: 0.000100098 0.186012 tert-Butyl_acetate.coskf
X6: 0 0 Isopropyl_acetate.coskf
x7: 0 0 Propyl_acetate.coskf
x8: 0.00530747 0.778127 Dimethyl_carbonate.coskf
Extraction values
Distribution
coefficient (D) 1logl0 (D)

(continues on next page)

2 GSK Solvent Selection Guide. Accessed 1/9/18. http://www.rsc.org/suppdata/gc/c0/c0gc00918k/c0gc00918k.pdf
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(continued from previous page)

232.779 2.36694
Solute 1 ID: Acetic_acid.coskf
Solute 2 ID: Water.coskf
Partition ratio Partition
Phase I Phase II coefficient (P) logl0 (P)
Solute 1: 1 8.39321 0.119144 -0.923928
Solute 2: 27.7342 1 27.7342 1.44302

In this problem, we obtain a mostly aqueous phase and a dimethyl carbonate/tert-butyl acetate phase as the solution. This
solvent system provides a distribution coefficient (D) of 232.779. This is a good value for a separation, but it is still worse
than the distribution coefficient of the water/hexane solvent system (D = 1372.14) by roughly a factor of 6.

We then increase our solvent search space to include the solvents deemed to have “some issues” by GSK and are also
present in our database: Ethanol, 1-Propanol, 2-Propanol, Methanol, Ethyl acetate, Methyl acetate, Methyl isobutyl
ketone, Acetone, p-xylene, Toluene, Isooctane, Cyclohexane, Heptane, and DMSO.

SAMSBIN/solvent_opt —-d -t LLEXTRACTION -max \
—-c SAMSHOME/atomicdata/ADFCRS-2018/Acetic_acid.coskf —-solute \
SAMSHOME/atomicdata/ADFCRS-2018/Water.coskf —-solute \
SAMSHOME /atomicdata/ADFCRS-2018/Water.coskf \
—-c SAMSHOME/atomicdata/ADFCRS-2018/1-Butanol.coskf \
SAMSHOME /atomicdata/ADFCRS-2018/2-Butanol.coskf \
SAMSHOME /atomicdata/ADFCRS-2018/tert-Butyl_acetate.coskf \

-c MSHOME/atomicdata/ADFCRS-2018/Isopropyl_acetate.coskf \
e ISHOME /atomicdata/ADFCRS-2018/Propyl_acetate.coskf \
-c SHOME /atomicdata/ADFCRS-2018/Dimethyl_carbonate.coskf

HOME/atomicdata/ADFCRS-2018/Ethanol.coskf \
HOME/atomicdata/ADFCRS-2018/1-Propanol.coskf \
SAMSHOME/atomicdata/ADFCRS-2018/2-Propanol.coskf \
—-c SAMSHOME/atomicdata/ADFCRS-2018/Methanol.coskf \

e JOHOWT/atomicdata/ADFCR572OiS/Ethyl acetate.coskf \

-c MSHOME /atomicdata/ADFCRS-2018/Methyl_acetate.coskf \

-c SAMSHOME/atomicdata/ADFCRS-2018/Methyl_isobutyl_ketone.coskf \
e ISHOME/atomicdata/ADFCRS-2018/Acetone.coskf \

-c EHLTE/atomlcdata/ADFCRS 2018/p-Xylene.coskf \

-c MSHOME/atomicdata/ADFCRS-2018/Toluene.coskf \

-c ST“TT/atomlcdata/ADFCRS 2018/2,2,4-Trimethylpentane.coskf \
-c \MSHOME/atomicdata/ADFCRS-2018/Cyclohexane.coskf \

-c S ’”H“Jh/atomlcdata/ADFCRS 2018/Heptane.coskf \

-c SAMSHOME/atomicdata/ADFCRS-2018/Dimethyl_sulfoxide.coskf

This produces the following:

X2 0.999972 7.50215e-05 Water.coskf

x15: 5.58242e-06 0.00252496 Methyl_ isobutyl_ketone.coskf

(continues on next page)
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x20: 2.27012e-05 0.9974 Cyclohexane.coskf

Distribution

coefficient (D) 1ogl0 (D)

1892.42 3.27702
Solute 1 ID: Acetic_acid.coskf
Solute 2 ID: Water.coskf

Partition ratio Partition
Phase I Phase II coefficient (P) logl0 (P)

Solute 1: 7.04343 1 7.04343 0.847784
Solute 2: 13329.1 1 13329.1 4.1248

As shown, this solvent system has a D value of 1892.42, better than that of the hexane/water system. Removing cyclo-
hexane from the possible solvents, we still obtain a solution with a D value of 1891.09. Successively removing the best
non-aqueous solvents from the solvent list, we obtain solutions with D values of: 1864.41, 1645.38, 1597.42, and finally
232.779 again. The number of good solutions for this problem lends credence to the idea of using such a solvent selection
algorithm in general extraction design.

Additionally, there is a tutorial on solvent optimization which demonstrates running the program from the COSMO-RS
GUL

9.5 Guidelines for difficult problems

The Solvent Optimization program should produce high-quality solutions for many problems. However, there may be
examples where the algorithm struggles to produce solutions at all. Below we list troubleshooting guidelines to help solve
problematic solvent optimizations:

(1) For LLEXTRACTION problems, ensure that there are at least 2 immiscible solvents

Because the LLEXTRACTION template requires that both the liquid-liquid phase equilibria condition is met and that
there are two distinct liquid phases, the Solvent Optimization program will fail if all of the available solvents are miscible
in all mole fractions (no phase separation is possible).

(2) Re-execute the program several times

The Solvent Optimization program is not entirely deterministic. In particular, starting points are selected at random for
every iteration. These starting points affect the convergence of the problem and in some cases can have a large impact
on the optimization. This means that if one execution of the Solvent Optimization program fails to produce a solution,
then it is possible that a subsequent execution could succeed. If the program continues to fail after multiple attempts at
re-execution, consider using the multistart or warmstart flags.

(3) Use the -multistart flag

This flag executes the program multiple times from multiple starting points. If problems fail, the program uses information
from these problems and updates internal optimization parameters to aid in the convergence of successive problems.
Because each iteration takes a relatively short amount of time, the multistart flag can be used with high numbers of
different starting points. It is useful to first try a smaller number of multistarts (5-15). If this produces no solution, try
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using the -warmstart flag in addition to the multistarts. If the problems continue to fail, use gradually higher numbers of
multistarts (20,40,60,80,100+).

(4) Use the -warmstart flag

If this flag is present, the program attempts to find a good starting point for LLEXTRACTION problems rather than
simply using the randomly-generated starting point. This can be useful with or without the -multistart flag and is very
problem-dependent. In our experience, LLEXTRACTION problems sometimes have difficulty converging if there are a
small number of solvents and/or if the solution contains two highly-immiscible liquids (e.g., Hexane/Water). We reiterate
that this is very problem-dependent.

9.6 Differences from standard implementations

The COSMO-RS method of the Solvent Optimization program is nearly identical to the ADF combi2005 implementation
(the default COSMO-RS method). The single difference is that there is no f_corr parameter in the Solvent Optimization
implementation. This parameter is used for the perpendicular component of the sigma values and has only a small effect
on the results. Removing it from the Solvent Optimization program was done to improve solution times and robust-
ness. Though the calculated values will be similar, results from the Solvent Optimization program can easily be input to
ADFCRS and checked against the full ADF combi2005 method if desired.

The COSMOSAC2016 implementation in Solvent Optimization is identical to the 2016-ADF Chen implementation in
ADFCRS.

To reproduce the results from the Solvent Optimization program to within tolerance, parameters must be changed in the
GUI or from the command line. The following parameter changes are required:

Method Required parameter changes
COSMO-RS set f_corr to 0
COSMOSAC2016 none

In the current version of the program, the COSMO-RS/-SAC parameters cannot be changed/customized.
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CHAPTER
TEN

PYTHON SCRIPTING WITH COSMO-RS

10.1 pyCRS: a python wrapper for thermodynamic calculation

10.1.1 General Information

Attention: Windows and Mac users may find it helpful to first read the Getting Started guides for scripting: scripting
with Windows | scripting with MacOS

It is recommended to use the version of python that is shipped with AMS. This version ensures that all the necessary
libraries (e.g., PLAMS) are properly imported and are mutually compatible. The best way to do this is to run the am—
spython program. That can be executed from the command line as follows:

’STNS?Tﬂ/amspython <your_program.py>

Furthermore, interactive usage of the amsipython program can be beneficial. To do so, execute the following command
in your terminal:

’ﬁANSBIH/amsipython # in terminal

’run <your_program.py> # in interactive python

where <your_program. py> should of course be replaced by the name of your program.

10.1.2 Overview

The pyCRS Python library offers a convenient wrapper for various thermodynamic calculations, providing the following
utilities:
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Mod- | APDescription

ules

Databas¢ AlPProvides an interface to a SQL database for managing COSKF files with conformers.
(page 82) (page 89)

CRS- APIt’s a python wrapper based on PLAMS library for facilitating the COSMO-RS calculation. It is designed
Man- (page B2)used in conjunction with Database.

ager

(page 84

Prop- AlPPredicts physical properties based on QSPR descriptors derived from SMILES.

Pred (page 101)

Fast- AlPPredicts sigma profiles based on QSPR descriptors derived from SMILES.

Sigma | (page 102)

Future releases will incorporate more functionality.

In addition to introducing the Database and CRSManager in the following section, the examples section (page 111) contains
various template scripts and helpful examples. Exploring the example section is one of the simplest ways to get started
with the module.

Database

Introduction

The sql database contains the following tables.

Table | Description

name

Com- | contains unique compounds along with their COSKF file based on either CAS number or any preferred
pound | identifier

Con- contains multiple conformers along with their COSKEF file

former

Phys- contains the physical properties input by user

ical-

Prop-

erty

Prop- contains the estimated physical properties using QSPR methods based on SMILES
Pred

These tables can be visualized using open-source tools like DB Browser (https://sqlitebrowser.org) or accessed directly
through methods within the COSKFDatabase class.

Attention: This module currently does not support charged species, polymers, or multiple-species with dissociation
and association. While it’s feasible to add these compounds to the database, it’s worth noting that the SMILES
generated from the coordinates using OpenBabel might be inaccurate. Additionally, the PropPred tool should not be
utilized for charged species and polymers.

Note:

Currently, the .coskf files themselves are stored as raw .coskf files in a directory called

SCM_PYCRS_COSKF_DB, which will be created in the parent directory of the path variable. This database will
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not be overwritten or deleted by this COSKFDatabase class. This directory exists for the convenience of the user, but
it is best to access all files via the API below as the exact format of the database may evolve over time.

Basic Usage

In this brief example, we’ll demonstrate how to interact with the database. This includes adding a compound, searching
for a compound, specifying experimental physical properties, and utilizing PropPred to estimate physical properties.

There are a few important points to note when using the add_compound method:

1. If the coskf_path parameter is not provided by the user, the method will attempt to locate the ADFCRS-2018
database path if it’s available. Please ensure to install the ADFCRS-2018 database via amspackages (SCM->Packages)
before running the below script.

2. If the cas parameter is not provided by the user, the method will attempt to use the value stored in the ‘Compound
Data’ section within the .coskf file if it’s available.

3. If the name parameter is not provided by the user, the method will prioritize using the [IUPAC name, CAS number,
identifier, or the name of the .coskf file. The IUPAC name will be attempted to be retrieved from the ‘Compound Data’
section within the .coskf file.

from pyCRS.Database import COSKFDatabase
import os

#Please ensure to install the

db = COSKFDatabase ("my_coskf_db.db")

db.add_compound ("Water.coskf", name="Water", cas="7732-18-5")
db.add_compound ("Methanol.coskf")

db.add_compound ("Ethanol.coskf™")

db.add_compound ("Benzene.coskf")

db.add_compound ('

'Tbuprofen.coskf")

rows = db.get_compounds (["7732-18-5", "Ibuprofen"])
for r in rows:
print (r)

db.add_physical_property ("Ibuprofen", "meltingpoint",347.6)
db.add_physical_property ("Ibuprofen", "hfusion",27.94,unit="kJ/mol")
db.estimate_physical_property ("Ibuprofen")

EXP = db.get_physical_properties ("Ibuprofen") [0]
QSPR = db.get_physical_properties ("Ibuprofen", source="PropPred") [0]

print ("experimental value = ", EXP.hfusion, " estimated value = ",QSPR.hfusion)

The output produced is the following:

CompoundRow (compound_id=1, conformer_id=1, name='water',6 cas='7732-18-5",.

—identifier=None, smiles='0', resolved_smiles='0', coskf='Water_1.coskf', Egas=-323.

—935, Ecosmo=-330.386, nring=0)

CompoundRow (compound_id=4, conformer_id=4, name='ibuprofen', cas='15687-27-1",.

—identifier=None, smiles='CC (Cclccc(ccl) [CQEH] (C(=0)0)C)C', resolved_smiles=

—'CC(Cclccc(ccl) [CRQRH] (C(=0)0)C)C"', coskf="Ibuprofen_l.coskf', Egas=-4486.784,_
Ecosmo=-4494 859, nring=6)

(continues on next page)
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(continued from previous page)

experimental value = 6.678 estimated value = 5.744

Adding multiple conformers

When adding multiple conformers (i.e. multiple COSKF files) of a compound to the database using add_compound
method, three confirmation steps are attempted:

1. Initially, the set of conformers in the database is retrieved by matching the CAS numner or identifier. If it’s not found
the compound will be added to the database as a new compound.

2. Subsequently, it attempts to generate the canonical SMILES from its coordinates to confirm that the compound
matches the one in the database. If this resolution fails, one can bypass this check by setting ignore_smiles_check=True.

3. Lastly, it conducts duplicate recognition using UniqueConformersCrest in AMSConformer tool to ensure that it’s not
a duplicate in the database. If this recognition fails, one can skip this step by setting ignore_duplicates=True.

By default, the conformer with the lowest gas phase bond energy is stored in the COMPOUND TABLE. However, a
specific conformer can be chosen using its conformer ID through the update_compound_by_conformer_id
method.

For detailed information on these methods, please refer to the Database API documentation (page 89).

CRSManager

Introduction

The module provides a user-friendly approach for configuring standard crsJob setups via Python scripting.

For instance, here is an example how we set up the solid solubility calculation using CRSManager once the database has
been set up in advance. This approach provides a more convenient method for conducting high-throughput calculations
without the need for specific handling, such as solubility screening (page 132).

Python code using pyCRS

from pyCRS.CRSManager import CRSSystem
System = CRSSystem()

mixture = {}
mixture["Water"] = 1.0
mixture["Ibuprofen"] = 0

System.add_Mixture ( mixture,
database="my_coskf_db.db",
temperature=298.15,
problem_type="solubility",
solute="solid")

print (System.get_input (0))

Alternatively, the same calculation can be set up through PLAMS, as demonstrated below. This approach requires users
to input correct settings but provides greater flexibility in managing complex workflows. For example, the advanced
scripting example section (page 128) demonstrates various tasks, such as eutectic and ionic liquid calculations, and more.

Python code using PLAMS
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from scm.plams import Settings, init, finish, CRSJob
import os

######## Note: Please ensure to install the ADFCRS-2018 database via amspackages.
— (SCM->Packages) before running the below script ########

coskf_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"] , "ADFCRS-2018")

settings = Settings()

settings.input.property._h = "SOLUBILITY"
settings.input.method = "COSMORS"

num_compounds = 2

compounds = [Settings () for i in range (num_compounds) ]
compounds [0] ._h = os.path.join(coskf_path, "Water.coskf" )
compounds [0] .fracl = 1.0

compounds [1]._h = os.path.join(coskf_path, "Ibuprofen.coskf" )
compounds[1].fracl = 0.0

compounds[1].nring = 6

compounds [1] .hfusion = 27.94/4.184
compounds [1] .meltingpoint = 347.6

settings.input.temperature = 298.15

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds

# create a job that can be run by COSMO-RS

my_Jjob = CRSJob (settings=settings)

print (my_job.get_input ())

Attention: This module currently does not support charged species, polymers, or multiple-species with dissociation
and association.

Basic Usage

In this example, we’ll create a database containing ethanol and benzene from the ADFCRS-2018 database. Then, we’ll
instantiate a CRSSystem and generate several CRSMixture instances using the add_Mixture method. After executing
the calculation with the runCRSJob method, the corresponding CRSResults instances will be generated and stored in the
outputs attribute. Finally, we can retrieve the .crskf file and the activity coefficient using methods provided by CRSResults.

from scm.plams import Settings, init, finish, CRSJob, config
from pyCRS.CRSManager import CRSSystem

from pyCRS.Database import COSKFDatabase

import numpy as np

import os, sys

init ()
config.log.stdout = 0 # suppress plams output default=3

(continues on next page)
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(continued from previous page)

#create a database containing ethanol and benzene. please ensure install the ADFCRS-
2018 database first via amspackages (SCM —-> Packages)

db = COSKFDatabase ("my_coskf_db.db")

db.add_compound ("Ethanol.coskf™)

db.add_compound ("Benzene.coskf",cas="71-43-2")

#create a CRSSystem instance
System = CRSSystem()

#generate several CRSMixture instance
for i, x in enumerate(np.linspace (0, 1, 11)):

mixture = {}

mixture["ethanol"] = x

mixture["71-43-2"] = 1-x

System.add_Mixture (mixture,database="my_coskf_ db.db",temperature=298.15,problem_
—type="ACTIVITYCOEF", method="COSMORS")

#print out the first calculation setting in the CRSSystem class
#print (System.get_input (0))

#execution calculation for all CRSMixture
System.runCRSJob ()

gamma_ethanol [
gamma_benzene = []
#retrieve result using methods provided by CRSResults
for out in System.outputs:
crskf = out.kfpath()

res = out.get_results()
gamma_ethanol.append(res["gamma"] [0] [0])
gamma_benzene.append (res["gamma"] [1]1[0])
print (f"the last crskf file = {os.path.basename (crskf) /")
print (f"activity coefficient of ethanol = {gamma_ethanol /")
print (f"activity coefficient of benzene = {gamma_lbenzene /")
finish ()

This generates the following output:

the last crskf file = crsJob_10.crskf

activity coefficient of ethanol = [41.59625151549539, 3.539543443573337, 2.
—234237060852824, 1.712495443157569, 1.4321494593043322, 1.2612087014707123, 1.
—1507589807729406, 1.0784886266786704, 1.0329501218595156, 1.0079137778145097, 1.0]
activity coefficient of benzene = [1.0, 1.0632078891234995, 1.1497425466225775, .
—2547602114699132, 1.3804970769948137, 1.5309168719748845, 1.7115353244885652, 1.
—9297200775482874, 2.1952374886461046, 2.521062652267439, 2.9247536001030006]
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Additional Keywords

Additional keywords can be used in conjunction with certain problem types:

Key- Description
words
name

vp_corrWhen set to True, it attempts to use the vapor pressure of pure compounds to adjust the gas phase chemical
potential, potentially increasing vapor pressures in a mixture. The default value is False.

lute | UBILITY problem types. The default value is ‘solid’.

den— | When set to True, it attempts to utilize the volume of a pure compound derived from its density instead of
sity_acthe cavity volume used in the COSMO calculation. The default value is False.
so— This parameter allows you to specify ‘solid’, ‘gas’, or ‘liquid,” applicable to SOLUBILITY and PURESOL-

iso This parameter offers the choice between ‘isotherm’, ‘isobar’ or “flashpoint’, applicable to BINMIXCOEF,
TERNARYMIX, and COMPOSITIONLINE. The default value is ‘isotherm’.

tional_ Npiofile/SigmaMax in SIGMAPROFILE/SIGMAPOTENTIAL.

ad- This parameter provides the PLAMS approach to set up various parameters such as the VolumeQuotient in
di- LOP, DensitySolvent in SOLUBILITY, Nfrac in BINMIXCOEF/TERNARYMIX/COMPOSITIONLINE,

For certain problem types, necessary physical properties are retrieved from the PhysicalProperty TABLE and PropPred
TABLE in the database. The value from the PhysicalProperty TABLE is prioritized; if unavailable, the system attempts
to use the value from the PropPred TABLE instead. Failure to obtain either value may result in calculation failure.

For instance, you can find the following examples.

# Solid solubility calculation

db.add_physical_property ("Benzene", "hfusion",2.37,unit="kcal/mol")

db.add_physical_property ("Benzene", "meltingpoint",278.7)

mixture = {}
mixture["Water"] =1
mixture["Benzene"] = 0

System.add_Mixture ( mixture,
database="my_coskf_db.db",
temperature="273.15 373.15 10",
problem_type="SOLUBILITY",
solute="solid")

# Binary isobar VLE using the vapor pressure from PropPred

mixture = {}

mixture["methanol"] = 0.5

mixture["ethanol"] = 0.5

db.estimate_physical_property (["methanol","ethanol"])

additional_sett = Settings()

additional_sett.input.property.Nfrac = 10

System.add_Mixture ( mixture,
database="my_coskf_db.db",
pressure=1.01325,
problem_type="BINMIXCOEEF",
iso="isobar",
additional_sett=additional_sett,
vp_corr=True)

# Partition Coefficient for benzene/water
mixture = {}

mixture["benzene"] = [1, 0] #[mole fraction in phasel, mole fraction in

phasel2]

(continues on next page)
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(continued from previous page)

mixture["water"] = [0, 1] #[mole fraction in phasel, mole fraction in phaseZl]
mixture["ethanol"] = [0, 0] #[0, 0] for solute
additional_sett = Settings()
additional_sett.input.property.VolumeQuotient = 4.93
System.add_Mixture ( mixture,
database="my_coskf_db.db",
problem_type="LOGP",
additional_sett=additional_sett)

# Sigma profile

mixture = {}

mixture["benzene"] = 1

additional_sett = Settings()

additional_sett.input.property.Nprofile = 100

additional_sett.input.property.SigmaMax 0.05

System.add_Mixture ( mixture,
database = "my_coskf_db.db",
problem_type="PURESIGMAPROFILE",
method="COSMORS",
additional_sett=additional_sett)

The available problem types is listed below.

problem_type value | Problem type

ACTIVITYCOEF Activity Coefficient

BINMIXCOEF Binary mixture LLE/VLE

TERNARYMIX Ternary mixture LLE/VLE
COMPOSITIONLINE Solvent composition line interpolation
SOLUBILITY Solubility calculation in a mixed solvent
PURESOLUBILITY Solubility calculation in a pure solvent

LOGP Partition coefficient calculation
VAPORPRESSURE Vapor pressure calculation for a mixed solvent
PUREVAPORPRES- Vapor pressure calculation for a pure solvent
SURE

BOILINGPOINT Boiling point calculation for a mixture
PUREBOILINGPOINT | Boiling point calculation for a pure solvent(s)
FLASHPOINT Flashpoint calculation for a mixture
SIGMAPROFILE Sigma profile calculation for a mixture
PURESIGMAPROFILE | Sigma profile calculation for a pure component(s)
SIGMAPOTENTIAL Sigma potential calculation for a mixture
PURESIGMAPOTEN- Sigma potential calculation for a pure component(s)
TIAL

For detailed information on these methods, please refer to the CRSManager API documentation (page 97).
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10.1.3 API

Database

The submodule contain several class for providing an interface to a sql database for managing COSKEF files and physical

properties.

class pyCRS.Database.COSKFDatabase (path)
A class provide an interface to a sql database containing the following tables.

Table | Description

name

Com- | contains unique compounds along with their COSKEF file based on either CAS number or any prefered
pound | identifier

Con- contains mutiple conformers along with their COSKF file

former

Phys- | contains the physical properties input by user

ical-

Prop-

erty

Prop- | contains the estimated physical properties using QSPR methods based on SMILES
Pred

Parameters path (str) — a path to the database file. If this file does not exist, it will be created.

add_compound (coskf_file, name=None, cas=None, identifier=None, coskf_path=None, smiles=None,

nring=None, ignore_smiles_check=False, ignore_duplicates=False)

Adds a new . coskf file to the database.

Parameters coskf_file (str)—a path to the . coskf file, or alternatively, the file name of
the . coskf file if the coskf_path is provided.

Keyword Arguments

name (str) — The entry’s name, such as the compound name. If not provided, it will
prioritize using the [UPAC name, CAS number, identifier, or the name of the .coskf file
if such value is provided through the add_compound() method or stored in the ‘Compound
Data’ section in the .coskf file.

cas (str) — The CAS number of the molecule. If not provided, it will attempt to use the
CAS within the . coskf file if available.

identifier (str) - The chemical identifier of the molecule.

coskf_path (str)— The directory path to the coskf file. If not provided, it will attempt
to locate the path of ADFCRS-2018 database.

smiles (str) — The SMILES string of the molecule. If not provided, it will attempt to
use the SMILES within the . coskf file if available

nring (int) — The numbr of ring atoms. If not provided, it will attempt to use the Nring
within the . coskf file if available

ignore_smiles_check (bool) — If set to True, skip generating the SMILES from
compound’s coordinates to confirm its identity against the database. Default is False.

ignore_duplicates (bool) - If set to True, skip duplicate recognition using Unique-
ConformersCrest in AMSConformer tool. Default is False.

10.1. pyCRS: a python wrapper for thermodynamic calculation

89



COSMO-RS Manual, Amsterdam Modeling Suite 2024.1

Note: Ensure every compound has a unique representation, either by CAS number or a preferred identifier.
During the add_compound process, both the CAS number and identifier are checked for uniqueness in the
database. If multiple compounds share the same CAS number and identifier, an ERROR will be raised. For
instance, the below operation is not allowed since both compound shared the same identifier="CRS0001’

db.add_compound ("Benzene.coskf",cas="71-43-2",identifier="CRS0001")
db.add_compound ("Ethanol.coskf",cas="64-17-5",identifier="CRS0001")

add_physical_property (identifier, attribute, value, unit=None)
Add a value of a physical property to the PhysicalProperty TABLE in the database by compound’s identifier

Parameters
e identifier (str)-the string representing either CAS, identifier or name of a compound
e attribute (str)—the name of the physical property (eg. meltingpoint or hfusion)
* value (float) — the value of the physical property

Keyword Arguments unit (str) — (optional) the unit of the input value. The default unit is K
and kcal/mol. The accepted unit now has K, C, kcal/mol, kJ/mol, cal/g, J/g

Example

db.add_physical_property(‘Benzene’, meltingpoint’,278.7) db.add_physical_property(‘Benzene’, hfusion’,9.91,unit="kJ/mol’)

del_row (dbrow: pyCRS.Database. CompoundRow.CompoundRow)
Remove a compound from the database and delete the corresponding . coskf file.

Parameters dbrow (CompoundRow (page 93)) — the row to remove from the database

del_row_by_conformer_id (conformer_id)
Remove the conformer from the database.

Parameters conformer_id (int) — A integer of intergers representing the conformer in the
CONFORMER TABLE.

Example

db.del_row_by_conformer_id(1)

del_rows (dbrows)
Remove multiple compounds from the database and delete the corresponding . coskf files.

Parameters dbrows (1ist) — the rows to remove from the database, represented as a list of
CompoundRow objects
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Example

db.del_rows(db.get_compounds(‘benzene’))

estimate_physical_property (identifier=None, compound_id=None)
Estimate the physical properties using the property prediction tool and add the values to the PropPred TABLE
in the database

Keyword Arguments

e identifier (str or 1list) — a string or a list of string representing either CAS,
identifier or name of a compound

e compound_id (int or list)-an integer or a list representing the compound ID(s).

Note:  The QSPR descriptor used in the property prediction tool is determined from the SMILES
string. It first attempts to use the SMILES string provided by user via the add_compound method or mod-
ify_attribute_by_compound_id method. If unavailable, it will used the SMILES generating by OpenBabel
using the compound’s coordinates in the COSKF file. Please note that the resolved SMILES may be incor-
rect for some molecules, for instance when bond orders cannot be automatically determined and species with
charges.

Example :

db.estimate_physical_property ("Benzene'")

get_all_compounds ()
Collect all compounds in the database

Returns The full list of CompoundRow instances in the database
Return type list of CompoundRow

get_all_conformers ()
Collects all conformers in the database

Returns The full list of ConformerRow instances in the database.
Return type List of ConformerRow

get_all_physical_properties (source='PhysicalProperty')
Collect all physical properties in the database

Keyword Arguments source (str) — The string should be either ‘PhysicalProperty’ or ‘Prop-
Pred’. Defaults to ‘PhysicalProperty’, returning properties from the PhysicalProperty TABLE.
If set to ‘PropPred’, it will return the estimated properties in PropPred TABLE.

Returns The full list of PhysicalPropertyRow instances or PropPredRow instances in the database

get_attribute_by_compound_id (attributes, compound_id)
Retrieve the list of values for compounds with specified compound_id(s)

Parameters

e attributes (str or list)-— A stringor a list of strings used for searching for in the
COMPOUND TABLE.

e compound_id (int or list) — A integer or a list of intergers used to search for
compounds in the COMPOUND TABLE.

Returns A list of tuples containing the values of the specified attributes for the compounds.
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Return type list of attributes

get_compounds (values)
Retrieves compounds from the COMPOUND TABLE in the database by matching CAS number, chemical
identifier, or name.

Parameters values (str or list)-— A string or a list of strings used for searching, repre-
senting CAS numbers, chemical identifiers, or names.

Returns A list of CompoundRow instances that match the search criteria
Return type list of CompoundRow

get_compounds_id (values)
Retrieves compound id from the COMPOUND TABLE in the database by matching CAS number, chemical
identifier, or name.

Parameters values (str or list)— A string or a list of strings used for searching, repre-
senting CAS numbers, chemical identifiers, or names.

Returns A list of compound IDs that match the search criteria.
Return type list of int

get_conformers (values)
Retrieves conformers from the CONFORMER TABLE in the database by matching CAS number, chemical
identifier, or name.

Parameters values (str or list)— A string or a list of strings used for searching, repre-
senting CAS numbers, chemical identifiers, or names.

Returns A list of ConformerRow instances that match the search criteria.
Return type list of ConformerRow

get_physical_properties (identifier=None, compound_id=None, source="'PhysicalProperty')
Collect physical properties in the database by matching CAS number, chemical identifier, name or compound
id.

Keyword Arguments

e identifier (str or list) — a string or a list of string representing either CAS,
identifier or name of a compound

e compound_id (int or list)-— Aninteger or a list of integers representing the com-
pound ID(s) in the database.

* source (str) — The string should be either ‘PhysicalProperty’ or ‘PropPred’. Defaults
to ‘PhysicalProperty’, returning properties from the PhysicalProperty TABLE. The set to
‘PropPred’, it will return the estimated properties in PropPred TABLE.

Returns The list of PhysicalPropertyRow instances or PropPredRow instances in the database
Return type list of PhysicalPropertyRow or PropPredRow (page 96)

modify_ attribute_by compound_id (attribute, value, compound_id)
Modify the attribute value for an entry associated with the compound id.

Parameters

* attribute (str) — the attribute to be modified. It can be one of the following: ‘name’,
‘cas’, ‘identifier’, ‘smiles’, ‘nring’.

¢ value (str) — the new value of the specified attribute for the compound ID(s).

¢ compound_id (int) — an integer representing the compound ID.
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Example :

db.modify_attribute_by_compound_id("identifier","InChI=1S/C6H6/cl-2-4-6-5-3-1/
Sh1-6H", 0)

update_compound_by_conformer_id (compound_id, conformer_id)
Update the data for a compound ID row in the COMPOUND TABLE using the data from a conformer ID
row in the CONFORMER TABLE.

Parameters

e compound_id (int) — A integer representing compound id corresponding to a specific
row in the COMPOUND TABLE of the database

e conformer_id (int) — A integer representing conformer id corresponding to a specific
row in the CONFORMER TABLE of the database

update_compound_by_lowestE (compound_id=None)
Update the data for a compound ID row in the COMPOUND TABLE using the data from a conformer ID
row with the lowest energy having the same compound ID in the CONFORMER TABLE.

Keyword Arguments

e compound_id (int or list)-— Aninteger or a list of integers representing the com-
pound id(s) that represent specific rows in the COMPOUND TABLE of the database.

* the compound_id is not specified, the method will be applied
to the whole database. (If)-

visualize_conformers (compound_id)
Visualize a set of conformers in the order of the conformers id

Parameters compound_id (int or 1list)-an integer or a list representing the compound
ID(s).

class pyCRS.Database.CompoundRow (compound_id: int, conformer_id: int, name: str, cas: str, identi-
fier: str, smiles: str, resolved_smiles: str, coskf: str, Egas: float,

Ecosmo: float, nring: int)
A data class to represent the contents of a row in a COMPOUND TABLE in COSKFDatabase

compound_id
A unique identifer for a specific row in the COMPOUND TABLE of the database

Type int

conformer_id
A unique identifer for a specific row in the CONFORMER TABLE of the database

Type int

name
The name associated with the row in the COMPOUND TABLE

Type str

cas
The CAS number associated with the row, i.e., the compound

Type str

identifier
The chemical identifier associated with the row, i.e., the compound

Type str
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smiles
The SMILES string provided by user

Type str

resolved_smiles
The derived SMILES string obtained using OpenBabel from the coordinates in the COSKF file.

Type str

coskf
The filename of the . coskf file stored in the local SCM_PYCRS_COSKF_DB directory

Type str

Egas
The gas phase bond energy rounded to 3 decimal places in kcal/mol

Type float

Ecosmo
The bond energy in a perfect conductor rounded to 3 decimal places in kcal/mol

Type float

nring
The number of ring atoms

Type int

db_path
The path to the . coskf file directory

Type str

get_full_coskf_path()
Returns the full path of the corresponding . coskf file

read_coskf ()
Opens the . coskf file corresponding to the database entry and returns a scm.plams.KFFile instance

class pyCRS.Database.ConformerRow (conformer_id: int, compound_id: int, name: str, cas: str, identi-
fier: str, smiles: str, resolved_smiles: str, coskf: str, Egas: float,
Ecosmo: float, nring: int)
A data class to represent the contents of a row in a CONFORMER TABLE in COSKFDatabase

conformer_id
A unique identifer for a specific row in the CONFORMER TABLE of the database

Type int

compound_id
A unique identifer for a specific row in the COMPOUND TABLE of the database

Type int

name
The name associated with the row in the CONFORMER TABLE

Type str

cas
The CAS number associated with the row, i.e., the compound

Type str
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identifier
The chemical identifier associated with the row, i.e., the compound

Type str

smiles
The SMILES string provided by user

Type str

resolved_smiles
The derived SMILES string obtained using OpenBabel from the coordinates in the COSKF file

Type str

coskf
The filename of the . coskf file stored in the local SCM_PYCRS_COSKF_DB directory

Type str

Egas
The gas phase bond energy rounded to 3 decimal places in kcal/mol

Type float

Ecosmo
The bond energy in a perfect conductor rounded to 3 decimal places in kcal/mol

Type float

nring
The number of ring atoms

Type int

db_path
The path to the . coskf file directory

Type str

get_full_coskf_path()
Returns the full path of the corresponding . coskf file

read_coskf ()
Opens the . coskf file corresponding to the database entry and returns a scm.plams.KFFile instance

class pyCRS.Database.PhysicalPropertyRow (compound_id: int, meltingpoint: float, hfusion:

float, cpfusion: float, boilingpoint: float, density:
float, flashpoint: float, dielectricconstant: float,

vp_equation: str, vp_params: str, Mn: float)
A data class to represent the contents of a row in a PhysicalProperty TABLE in COSKFDatabase

compound_id
A unique identifer for a specific row in the COMPOUND TABLE of the database

Type int

meltingpoint
melting temperature (K)

Type float

hfusion
enthalpy of husion (kcal/mol)

Type float
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cpfusion
heat capacity of fusion (kcal/mol-K) calculated as the difference between the heat capacity in the liquid state
and the heat capacity in the solid state.

Type float

boilingpoint
boiling pointK (K)

Type float

density
liquid density (kg/L)

Type float

flashpoint
flash point (K)

Type float

dielectricconstant
dielectric constant

Type flash
vp_equation

Type str
vp_params

Type str or list

Mn
polymer average molecular weight (g/mol)

Type float

class pyCRS.Database.PropPredRow (compound_id: int, adopt_smiles: str, meltingpoint: float, hfu-
sion: float, boilingpoint: float, density: float, flashpoint: float,
dielectricconstant: float, vp_equation: str, vp_params: str)
A data class to represent the contents of a row in a PropPred TABLE in COSKFDatabase

compound_id
A unique identifer for a specific row in the COMPOUND TABLE of the database

Type int

adopt_smiles
The SMILES used for QSPR method

Type str

meltingpoint
melting temperature (K)

Type float

hfusion
enthalpy of husion (kcal/mol)

Type float

boilingpoint
boiling pointK (K)
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Type float

density
liquid density (kg/L)

Type float

flashpoint
flash point (K)

Type float

dielectricconstant
dielectric constant

Type flash
vp_equation
Type str

vp_params
Type str or list

CRSManager

This submodule facilitate the creation, execution, and output processes for mutiple crsJob and is intended to be used
in conjunction with the pyCRS.database module.

class pyCRS.CRSManager.CRSSystem
This class is designed to manage multiple instances of the CRSMixture class, facilitating the creation, execution,
and output processes.

A CRSSsytem instance can create mutiple CRSMixute instance associated with its mixture attribute by
add_compound method. The resulting mutiple CRSResults will be stored in its outputs attribute. This
functionality requires the concurrent use of the pyCRS.database module.

num_mix
The numbers of mixture

Type int
mixture
A list of CRSMixture class
Type list of |CRSMixture]

outputs
A list of CRSResults class corresponding to the each CRSMixture in the mixture

Type list of |CRSResults|

add_Mixture (mixture: dict, temperature=298.15, problem_type='activitycoef",
database='"my_coskf_db.db', method='"COSMORS', pressure=1.01325, jobname=None,
conformer=False, massfraction=False, density_corr=False, vp_corr=False, solute='solid’,
iso="isotherm', additional_sett= None, multi_species=None)
Add a new CRSMixture to the mixture attribute in CRSSystem class

Parameters mixture (dictionary)— A dictionary representing the composition of the mix-
ture, where keys are Identifiers and values are mole fractions or mass fractions.

Keyword Arguments
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* temperature (float) — The temperature in Kelvin. Default is 298.15K.
* problem_type (str)— The type of problem for the calculation. Default is ‘activitycoef’.
* database (str) — The fullpath of a COSKFDatabase. Default is ‘my_coskf_db.db’.

* method (str) — A str indicating the version of COSMORS or COSMOSAC to be used.
Default is ‘COSMORS’.

* pressure (float)— The pressure in bar. Default is 1.01325bar

* jobname (str)— The name of the job and the directory within plam_workdir. Defaults
to “crsJob_07, “crsJob_17, etc.

e conformer (bool) — A boolean indicating if multiple conformers are used in COSMO-
RS. Default is False.

* massfraction (bool) — A boolean indicating if the input fraction is a mass fraction.
Default is False.

* density_ corr (bool)- A boolean indicating whether to correct the volume of the com-
pound using the density of the pure compound. Default is False, indicating the COSMO
volume will be used instead.

* vp_corr (bool)— A boolean indicating whether to correct the gas phase chemical poten-
tail using the vapor pressure. Default is False.

* solute (str)— A str indicating the solute state to be ‘solid’, ‘gas’ or ‘liquid’, applicable to
problem type SOLUBILITY and PURESOLUBILITY. Default is ‘solid’.

* iso(str)-Astrindicating the calculation condition to be ‘isotherm’, ‘isobar’ or ‘flashpoint’,
applicable to problem types BINMIXCOEF, TERNARYMIX and COMPOSITIONLINE.
Default is ‘isotherm’

* additional_sett (|Settings|) — A Setfings object that allows for additional cus-
tomized settings.

* multi_species (dictionary) — A dictionary representing multi-species settings,
where keys are Identifiers and values are Setfings objects

Note: The identifiers for a compound can be the name, the CAS number, or the chemical identifier stored in
the pyCRS.database. When searching in the database, the input string will be converted to lowercase, except
when it starts with InChI’.

The available problem types is listed below.
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problem_type Problem type

value

ACTIVITYCOEF Activity Coefficient

BINMIXCOEF Binary mixture LLE/VLE

TERNARYMIX Ternary mixture LLE/VLE

COMPOSITION- Solvent composition line interpolation

LINE

SOLUBILITY Solubility calculation in a mixed solvent
PURESOLUBILITY | Solubility calculation in a pure solvent

LOGP Partition coefficient calculation
VAPORPRESSURE Vapor pressure calculation for a mixed solvent
PUREVAPORPRES- | Vapor pressure calculation for a pure solvent
SURE

BOILINGPOINT Boiling point calculation for a mixture
PUREBOILING- Boiling point calculation for a pure solvent(s)
POINT

FLASHPOINT Flashpoint calculation for a mixture
SIGMAPROFILE Sigma profile calculation for a mixture
PURESIGMAPRO- Sigma profile calculation for a pure component(s)
FILE

SIGMAPOTENTIAL | Sigma potential calculation for a mixture
PURESIGMAPO- Sigma potential calculation for a pure component(s)
TENTIAL

get_activity_ coefficients (idx=None)
Return the activity coefficient of all CRSMixture or the ith CRSMixture.

Keyword Arguments idx (interger) — Index of the specific CRSMixture to be returned

runCRSJob ()
Run all CRSJob" " _ in each ' 'CRSMixture

class pyCRS.CRSManager.CRSMixture (**kwargs)
This class is used to generate the CRSJob class

CRSJob
The CRSJob class.

Type |CRSJoDb|

mixture
A dictionary representing the composition of the mixture, where keys are Identifiers and values are mole
fractions or mass fractions.

Type dictionary

temperature
The temperature in Kelvin. Default is 298.15K.

Type float

problem_type
The type of problem for the calculation. Default is ‘activitycoef’.

Type str

database
The fullpath of a COSKFDatabase. Default is ‘my_coskf_db.db’.
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Type str

method
A str indicating the version of COSMORS or COSMOSAC to be used. Default is ‘COSMORS’.

Type str

pressure
The pressure in bar. Default is 1.01325bar

Type float

jobname
The name of the job and the directory within plam_workdir. Defaults to “crsJob_0”, “crsJob_1", etc.

Type str

conformer
A boolean indicating if multiple conformers are used in COSMO-RS. Default is False.

Type bool

massfraction
A boolean indicating if the input fraction is a mass fraction. Default is False.

Type bool

density_corr
A boolean indicating whether to correct the volume of the compound using the density of the pure compound.
Default is False, indicating the COSMO volume will be used instead.

Type bool

vp_corr
A boolean indicating whether to correct the gas phase chemical potentail using the vapor pressure. Default is
False.

Type bool

solute
A str indicating the solute state to be ‘solid’, ‘gas’ or ‘liquid’, applicable to problem type SOLUBILITY and
PURESOLUBILITY. Default is ‘solid’.

Type str
iso
A str indicating the calculation condition to be ‘isotherm’, ‘isobar’ or ‘flashpoint’, applicable to problem types
BINMIXCOEF, TERNARYMIX and COMPOSITIONLINE. Default is ‘isotherm’
Type str

additional_sett
A Settings object that allows for additional customized settings.

Type |Settings|

multi_species
A dictionary representing multi-species settings, where keys are Identifiers and values are Settings objects

Type dictionary

Reference

Settings exmples with COSMO-RS (page 106)
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Settings API
CRSJob API
CRSResults API

PropPred

An interface to the PropPred program for the prediction of physical properties.

PyCRS.PropPred.units
a dictionary which maps property names to strings representing the units

Type dict

pPYCRS.PropPred.available_properties
a list of the property names available in PropPrediction

Type 1list

PropPred.estimate (molecule: pyCRS_internal. Molecule, properties: Union[str, List[str]] = 'all’, tempera-

tures: List[float] = [298.1499938964844], show_errors: bool = False) — None
Estimates one or more properties with PropPrediction. The results are written to the pyCRS.Molecule object

provided to the function.
Parameters
* molecule (pyCRS.Molecule (page 104)) — A pyCRS.Molecule object

* properties (str or list (str))-astring naming a property for calculating a single
property value or a list of strings naming all the desired properties to calculate

* temperatures (list (float))—alist of temperature values with which to calculate the
temperature-dependent properties

* show_errors (bool) — indicate whether errors should be shown in std out

Example

import pyCRS

mol = pyCRS.Input.read_smiles ("clcccccl (OCC)™)

# estimate all properties by default
PpyCRS.PropPred.estimate (mol, temperatures=[290,295,300,305])

for prop, value in mol.properties.items():
unit = pyCRS.PropPred.units|[prop]
print (£'{prop:<20s/: {value:.3f unit}"')

for prop, value in mol.properties_tdep.items() :
print (£'{prop:<20s/:")
unit = pyCRS.PropPred.units|[prop]
propunit = f'{prop} ({unit/)'
print ("T (K)".rjust (30)+f'{propunit:>30s}")
for t,v in value:
print (£'{t:>30.3f}{v:>30.8g}")

boilingpoint : 432.028 K
criticalpressure : 34.205 bar
criticaltemp : 569.012 K

(continues on next page)
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(continued from previous page)

criticalvol 0.376 L/mol

density 0.958 kg/L (298.15 K)

dielectricconstant -3.824

entropygas 366.424 J/ (mol K)

flashpoint 319.734 K

gidealgas 29.448 kJ/mol

hcombust -4173.723 kJ/mol

hformstd -165.241 kJ/mol

hfusion 10.622 kJ/mol

hidealgas -115.682 kJ/mol

hsublimation 66.720 kJ/mol

meltingpoint 202.182 K

molarvol 0.127 L/mol

parachor 305.809

solubilityparam 9.356 ¥ (cal/cm”3)

synacc 1.042

tpt 201.439 K

vdwarea 161.566 A?

vdwvol 122.256 A?®

liquidviscosity

T (K) liquidviscosity (Pa-s)

290.000 0.0014622948
295.000 0.0013171559
300.000 0.0011921719
305.000 0.0010839762

vaporpressure

T (K) vaporpressure (bar)
290.000 0.0010699197
295.000 0.0015221786
300.000 0.0021369822
305.000 0.0029624981
FastSigma

This submodule provides an interface to the FastSigma program.

pyCRS.FastSigma.estimate (molecule: pyCRS_internal. Molecule, method: str = 'COSMO-RS', model: str

= 'FSI', display: bool = False) — None
Uses the FastSigma program to estimate a sigma profile. The results are written to the pyCRS.Molecule object

provided to the function.

Parameters

* molecule (pyCRS.Molecule (page 104)) — the molecule to estimate

* method (str) — the COSMO-RS/-SAC method to use. Available options are (COSMO-
RS,COSMOSAC2013,COSMOSAC2016). Not every method is available for every model.

* model (str) — the estimation technique for the sigma profile. Available options are (FS1,
SG1). FS1 is a QSPR approach and SG1 uses a database of sigma profiles and matches the

query molecule’s substructures against substructures in that database.

* display (bool) — whether to display the results to standard out
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Example
import pyCRS
mol = pyCRS.Input.read_smiles ("clcccccl (OCC)™)
pyCRS.FastSigma.estimate (mol, method='COSMO-RS', model='SGl', display=True)
sigma value Total profile HB profile
-0.002 10.689 0.000
-0.001 9.453 0.000
0.000 9.216 0.000
0.001 10.264 0.000
0.002 12.356 0.000
0.003 12.007 0.000
0.004 13.050 0.000
0.005 11.818 0.000
0.006 7.250 0.000
0.007 2.643 0.000
0.008 1.218 0.101
0.009 1.131 0.890
0.010 1.248 1.185
0.011 1.209 1.181
0.012 1.251 1.239
0.013 1.233 1.228
0.014 0.422 0.420
0.015 0.025 0.024
Molecular Mass = 122.0731649400 g/mol
COSMO Area = 174.8609437511 Angstrom**2
COSMO Volume = 165.2344104876 Angstrom**3
Gas Phase Bond Energy = -4.1647328138 Hartree
Bond Energy = -4.1720958091 Hartree

Input

This submodule provides functions used to initialize a pyCRS.Molecule.
Input .read_smiles (smiles: str) — pyCRS_internal.Molecule

Parameters smiles (string) — the SMILES string to be used

Example

import pyCRS

mol = pyCRS.Input.read_smiles ("clcccccl (OCC)™)

mol = pyCRS.Input.read_smiles("clccccedfgl (OCC)™)

print ("Check if the molecule is valid:", mol.is_valid)

Input .read_sdf (filename: str) — pyCRS_internal.Molecule

Parameters filename (string) — the .sdf file containing the input molecule
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Example

import pyCRS
mol = pyCRS.Input.read_sdf ("molecule.sdf")

Output

This submodule provides functions to write output in kf format.

pPyCRS.Output .write_k£ (molecule: pyCRS_internal. Molecule, filename: str) — None

writes a molecule to a kf file with the name <filename>. The saved file can then be used directly with AMS

COSMO-RS/-SAC.
Parameters
* molecule (pyCRS.Molecule (page 104)) — the molecule to write to kf

* filename (str) — the filename for the output file. If the filename does not end with .
compk £, then this extension is appended

Example

import pyCRS

mol = pyCRS.Input.read_smiles("clcccccl (OCC)™)
pyCRS.FastSigma.estimate (mol)
pyCRS.Output .write_kf (mol, "example.compkf")

Molecule

class pyCRS.Molecule

This class stores inforation about a molecule and serves as the main interface for accessing estimated properties.

Attributes

area The COSMO surface area of the molecule

bond_energy The Bond Energy (in Hartrees) for the molecule in the
COSMO conductor phase.

dispersion The dispersion energy

formula The molecular formula

gas_phase_bond_energy The Bond Energy (in Hartrees) for the molecule in the
gas phase

is_valid A bool that indicates whether the molecule is valid or
if there were errors in processing it (e.g., invalid SMI-
LESS)

method The method (COSMO-RS, COSMO-SAC, etc.) for
which the estimate is made.

molar_mass The molar mass in g/mol

nring The nring parameter used in COSMO-RS

continues on next page
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Table 10.1 - continued from previous page

parameters A dictionary of parameters that can be used for certain
models (e.g., vapor pressure model parameters)

properties A dictionary of property values for temperature-
independent properties

properties_tdep A dictionary of (temperature,property) pairs for
temperature-dependent properties

smiles The SMILES string of a molecule, if available

volume The COSMO volume of the molecule

Methods

get_sigma_profile (self: pyCRS_internal. Molecule) — Dict[str, List[float]]
Returns a dictionary of sigma profiles values. For COSMO-RS, the dictionary has two entries (Total Profile
and H-Bonding Profile). For COSMO-SAC, the dictionary has Total Profile, OH Profile, and OT Profile
entries.

Example

import pyCRS
mol = pyCRS.Input.read_smiles ("CCCCCN")
pyCRS.FastSigma.estimate (mol, method='COSMO-RS', model = 'FS1', display=False)
for k,v in mol.get_sigma_profile () .items():
print (k, wv)

H-Bonding Profile [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.051576871269907, O.

—093772696234738, ... , 0.36159288378918, 0.14796979638662, 0.0]
Total Profile (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.051576871269907, O.
—094440478268766, ... , 0.36159288378918, 0.147976661591423, 0.0]

get_tdep_values (self: pyCRS_internal. Molecule, arg0: str) — Tuple[List[float], List[float]]
Returns a tuple of (temperatures, values) for a temperature-dependent property given as an argument to the
function.

Example

import pyCRS
mol = pyCRS.Input.read_smiles ("OCCCCCC")
pyCRS.PropPred.estimate (mol, 'vaporpressure', temperatures=list (range (270,330,

—10)))
unit = pyCRS.PropPred.units|['vaporpressure']
print ( "Temperature (K)".rjust(15)+f'Vapor pressure ({unit})'.rjust(25) )

for temp, val in zip (*mol.get_tdep_values ('vaporpressure')):
print (f'{temp:>15.3f }{val:>25.3f}")

Temperature (K) Vapor pressure (bar)
270.000 0.000
280.000 0.000
290.000 0.001
300.000 0.001
310.000 0.003
320.000 0.006
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has_missing_atoms (self: pyCRS_internal. Molecule, arg0: str) — bool

missing_atoms (self: pyCRS_internal. Molecule, arg0: str) — List[str]
A list of atom symbols which could not be mapped to a descriptor

10.2 Python scripting for COSMO-RS with PLAMS

10.2.1 General Information

Attention: Windows and Mac users may find it helpful to first read the Getting Started guides for scripting: scripting
with Windows | scripting with MacOS

Python and the PLAMS library can be used for scripting with COSMO-RS. Due to the speed of COSMO-RS calculations,
these jobs can be run interactively from the python interpreter. Larger numbers of jobs or high-throughput calculations
can also easily be automated with python scripting. All results are returned as a python object, meaning the properties
calculated with COSMO-RS can immediately be post-processed or used directly in other python functions.

Note: COSMO-RS calculations require a . coskf or . compk £ file for every compound in the system. .coskf and
. compk £ files only need to be calculated once and then are stored in a database and can be used for any future calculation
containing the corresponding compound. Generating these files requires calculating the COSMO surface with ADF (a
relatively more expensive DFT calculation). Setting up these calculations is not directly supported with this version of
PLAMS but can be done using scripting with amsprep.

10.2.2 Executing the code from the command line

It is recommended to use the version of python that is shipped with AMS. This version ensures that all the necessary
libraries (e.g., PLAMS) are properly imported and are mutually compatible. The best way to do this is to run the am—
spython program. That can be executed from the command line as follows:

SAMSBIN/amspython <your_program.py>

where <your_program.py> should of course be replaced by the name of your program.

10.2.3 Specifying a problem type

To run COSMO-RS, the user must first provide a problem type for the calculation. This can be done by first creating
a Settings object and then specifying the . input .property._h attribute. For example, to set up an activity
coeflicient calculation, we do the following:

from scm.plams import Settings, init, finish, CRSJob

settings = Settings /()
settings.input.property._h = "ACTIVITYCOEE'

For other problem types, the . input .property._h attribute must be set to other values. The other options for this
value are summarized below:
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._hvalue Problem type

ACTIVITYCOEF Activity Coefficient

BINMIXCOEF Binary mixture LLE/VLE

TERNARYMIX Ternary mixture LLE/VLE
COMPOSITIONLINE Solvent composition line interpolation
SOLUBILITY Solubility calculation in a mixed solvent
PURESOLUBILITY Solubility calculation in a pure solvent

LOGP Partition coefficient calculation
VAPORPRESSURE Vapor pressure calculation for a mixed solvent
PUREVAPORPRES- Vapor pressure calculation for a pure solvent
SURE

BOILINGPOINT Boiling point calculation for a mixture
PUREBOILINGPOINT | Boiling point calculation for a pure solvent(s)
FLASHPOINT Flashpoint calculation for a mixture
SIGMAPROFILE Sigma profile calculation for a mixture
PURESIGMAPROFILE | Sigma profile calculation for a pure component(s)
SIGMAPOTENTIAL Sigma potential calculation for a mixture
PURESIGMAPOTEN- Sigma potential calculation for a pure component(s)
TIAL

10.2.4 Inputting Compounds

In PLAMS, each compound is also input as a Sett ings object. Additional information about the compounds required
for the calculation (e.g., mole fraction) can be specified as an attribute of the compound’s Set t ings object. An example
for a calculation with two compounds is given below.

# set the number of compounds

num_compounds = 2

compounds = [Settings() for i in range (num_compounds) ]
compounds [0] ._h = "Water.coskf"

compounds[1]._h = "l-Hexanol.coskf"

10.2.5 Specifying mole fractions, temperatures, and pressures

Mole fractions are attributes of the compound Sett ings object. There are two types of mole fractions used in COSMO-
RS. frac1 is for standard specification of mole fractions in most problem types. frac? is used when the problem type
requires two distinct liquid phases (COMPOSITIONLINE or LOGP). Additionally, the temperature can be specified
using the input . temperature attribute of the Settings object. An example of this is shown below:

#set compound mole fractions
compounds [0] .fracl = 0.3
compounds[1].fracl = 0.7

#set temperature (range)

#to specify a range, use 3 numbers: (1) the lowest temperature,

#(2) the highest temperature, and (3) the steps taken between these temperatures
settings.input.temperature = "298.15"

To specify a temperature range, set the input . temperature object equal to a python st r which contains the lower
temperature, upper temperature, and number of steps taken between the temperatures. These values should simply be
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separated by spaces. For example, to specify that a calculation should go over the temperature range 298.15K to 398.15K
with 10 temperature steps, do the following:

settings.input.temperature = "298.15 398.15 10"

Pressure works in much the same way. To input the system pressure (in bar), do the following:

settings.input.pressure = "1.5"

10.2.6 Running jobs

To run a job with COSMO-RS, first assign the input . compound attribute to the list of compound Settings ob-
jects used previously. Then, simply create the job using CRSJob (settings=<your previously defined
Settings object>). Once a job is created, you can run it with the . run () function. An example of this is given
below:

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds

# create a job that can be run by COSMO-RS

my_job = CRSJob (settings=settings)

# run the job

init ()
out = my_job.run()
finish ()

10.2.7 Reading the results of a job

Once a job has finished running, we can access the results directly in python. First, we can check to see which properties
are available. We can do this using the get_prop_names () function on the output. For example, adding the line:

# check for the available properties
print ( "Available properties:", out.get_prop_names () )

gives us the available properties as a python set for our calculation type (“ACTIVITYCOEF” in this case). The result
of the print statement is the following:

Available properties: {'henrycnodim', 'property', 'deltag', 'henryc', 'nitems', 'gamma

. ]
—

'ncomp', 'filename', 'temperature', 'fracl', 'G solute', 'mu gas', 'molmass', 'E gas',

v v

mu', 'usepolyunits', 'mu pure', 'method'}

We can also convert all of the calculation results to a python dict using the get_results () function. For example,
to collect all of the results and then print the activity coefficient values (“gamma”), we write the following code:

# convert all the results into a python dict
res = out.get_results/()
print ( "Activity coef values:\n", res["gamma"] )

This results in the following program output:

Activity coef values:
[[ 3.71486 ]
[ 1.04484607]]
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Here the two activity coefficient values are returned as elements in a numpy . ndarray. Properties with multiple values
are always stored as a numpy array.

Note: For properties with multiple values, the dictionary values are stored as a numpy . ndarray. If applicable to
the calculation, the rows of the array represent different compounds and the columns represent different steps of the
calculation (e.g., different temperatures/pressures or different mole fractions for a binary/ternary mixture calculation).

Putting all the previous code together, we have the following working example for calculating activity coefficients for 2
components:

from scm.plams import Settings, init, finish, CRSJob
import os

######## Note: Ensure to configure the database path to either the installed ADFCRS-
2018 directory or your own specified directory ########

database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADFCRS-2018")
if not os.path.exists (database_path):
raise OSError (f"The provided path does not exist. Exiting.")

# initialize settings object
settings = Settings()
settings.input.property._h = "ACTIVITYCOEE"

# set the number of compounds
num_compounds = 2

compounds = [Settings () for i in range (num_compounds) ]
compounds [0] ._h = os.path.join(database_path, "Water.coskf")
compounds[1]._h = os.path.join(database_path, "l-Hexanol.coskf")

# set compound mole fractions
compounds [0] .fracl = 0.3
compounds [1].fracl 0.7

# set temperature (range)

# to specify a range, use 3 numbers: (1) the lowest temperature,

# (2) the highest temperature, and (3) the steps taken between these temperatures
settings.input.temperature = "298.15"

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds

# create a job that can be run by COSMO-RS

my_job = CRSJob (settings=settings)

# run the job

init ()
out = my_job.run()
finish ()

# check for the available properties
print ("Available properties:", out.get_prop_names/())

# convert all the results into a python dict
res = out.get_results()
print ("Activity coef values:\n", res["gamma"])

10.2. Python scripting for COSMO-RS with PLAMS 109




COSMO-RS Manual, Amsterdam Modeling Suite 2024.1

10.2.8 Plotting results

2D graphs can also be generated to visualize the results with the plot function. The plot function takes as a first
argument any (or multiple) of the following:

e a numpy.ndarray object. This can be passed to the function as a dictionary value after calling the
get_results () function.

* the name of a property. This property is read from the results and plotted. For a list of available properties, use the
get_prop_names () function.

Additionally, the plot function takes the following keyword arguments:

e x_axis. This can be the name of a property or a numpy . ndarray object. This represents the independent
variable in the plot. This value must be one dimensional, meaning it cannot be indexed over both compounds and
temperatures.

* x_label. This can be used to label the x axis in the plot.

e y_label. This can be used to label the y axis in the plot.

e plot_fig. Thisis set to True/False to indicate whether a plotted figure should be displayed. The default is True.
The results of plot are returned as amatplotlib.pyplot object and can be further modified.

To demonstrate the use of plot, we do an example in which we calculate the solubility of methane gas in 1-Octanol and
Ethanol across the temperature range from 298.15K to 398.15K. We also include the vapor pressure of methane using
the VPM1 model. The code is shown below:

from scm.plams import Settings, init, finish, CRSJob
import os

######## Note: Ensure to configure the database path to either the installed ADFCRS-
2018 directory or your own specified directory ########

database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADFCRS-2018")
if not os.path.exists (database_path):
raise OSError (f"The provided path does not exist. Exiting.")

# initialize settings object
settings = Settings /()
settings.input.property._h = "PURESOLUBILITY"

# this indicates we're calculating gas solubility
settings.input.property.isobar = ""

# set the number of compounds
num_compounds = 3

compounds = [Settings() for i in range (num_compounds) ]
compounds [0] ._h = os.path.join(database_path, "Methane.coskf")
compounds [1]._h os.path.join (database_path, "1-Octanol.coskf")
compounds [2] ._h os.path.join (database_path, "Ethanol.coskf")

# set compound mole fractions

# for pure solubility the solvent gets a mole fraction of 1
# and the solute does not have the fracl attribute
compounds [1].fracl = 1

compounds [2] .fracl = 1

(continues on next page)
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(continued from previous page)

# specify the vapor pressure equation for methane

compounds [0] .vp_equation = "VPML1"

compounds [0] .vp_params = "-1039.67755001 -0.183945615995 0.00061368649128 10.
1113503603315 0.0"

# set temperature (range)

# to specify a range, use 3 numbers: (1) the lowest temperature,

# (2) the highest temperature, and (3) the steps taken between these temperatures
settings.input.temperature = "298.15 398.15 10"

# 1 atm = 1.01325 bar
settings.input.pressure = "1.01325"

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds

# create a job that can be run by COSMO-RS

my_job = CRSJob (settings=settings)

# run the job

init ()
out = my_job.run()
finish ()

# convert all the results into a python dict
res = out.get_results/()

# plot the solubilities in g/L solution
# the [1:] indicates that we're not plotting the values for methane (these are.
—automatically set to 0)
plt = out.plot(
res["solubility g_per_IL_solution"][1:],
x_axis="temperature",
x_label="Temperature",
y_label="solubility g/L solution",
)
# plt.savefig("./PLAMS_gas_solubility.png")

This code generates the following plot:

10.3 Examples for pyCRS/PLAMS

10.3.1 pyCRS : Basic usage for Database and CRSManager

Adding compound to a pyCRS database

First, we’ll add ethanol and water to the database and search for a list of compounds. When adding a compound, along with
the COSKF file, it is necessary to provide a compound name and an unique chemical identifier. If only the COSKEF file
is provided, the method will attempt to utilize the [IUPAC as the compound name and the CAS number as the chemical
identifier, extracted from the Compound Data section within the COSKEF file. In case such data is unavailable in the
COSKTF file, the user can specify the name parameter to define the compound name and either cas or identifier as the
chemical identifier.
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Fig. 10.1: The output of the plot function for a gas solubility calculation.

from pyCRS.Database import COSKFDatabase
from pyCRS.CRSManager import CRSSystem
import os

######## Note: Please ensure to install the ADFCRS-2018 database via amspackages.
— (SCM->Packages) before running the below script ########

db = COSKFDatabase ("my_coskf_db.db™)
db.add_compound ("1-Hexanol.coskf", cas="111-27-3")
db.add_compound ("Water.coskf", identifier="InChI=1S/H20/h1H2")

rows = db.get_compounds (["111-27-3", "Water"])
for r in rows:
print (r)

The output produced is the following

Succesfully add new COMPOUND :compound_id=1 conformer_id=1 name=1-hexanol
Succesfully add new COMPOUND :compound_id=2 conformer_id=2 name=water

CompoundRow (compound_id=1, conformer_id=1, name='l-hexanol', cas='111-27-3",_
—~identifier=None, smiles='CCCCCCO', resolved_smiles='CCCCCCO', coskf='l-Hexanol.coskf
', Egas=-2562.015, Ecosmo=-2567.296, nring=0)

CompoundRow (compound_id=2, conformer_id=2, name='water',6 cas='7732-18-5", identifier=
—'InChI=1S/H20/h1H2"', smiles='0"', resolved_smiles='0"', coskf='Water.coskf', Egas=-
—323.935, Ecosmo=-330.386, nring=0)
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Activity coefficient calculation

from scm.plams import Settings, init, finish, CRSJob
from pyCRS.Database import COSKFDatabase
from pyCRS.CRSManager import CRSSystem

db = COSKFDatabase ("my_coskf_db.db")
System = CRSSystem()

mixture = {}
mixture["7732-18-5"] = 0.3
mixture["111-27-3"] = 0.7

System.add_Mixture (mixture, database="my_coskf_db.db", temperature=298.15, problem_
—type="activitycoef")

init ()
System.runCRSJob ()
finish ()

for out in System.outputs:
print (f"Property = {out.section/")
res = out.get_results ()
for name, x, gamma in zip(res["name"], res["fracl"], res["gamma"]):
print (name, x, gamma)

The output produced is the following

Property = ACTIVITYCOEF
water [0.3] [3.71486029]
l-hexanol [0.7] [1.04484603]

Solid Solubility calculation

Next, we can add the melting point and heat of fusion if experimental data is available or estimate these values using
PropPred and then perform the solid solubility calculation.

from scm.plams import Settings, init, finish, CRSJob
from pyCRS.Database import COSKFDatabase

from pyCRS.CRSManager import CRSSystem

import os

######## Note: Please ensure to install the ADFCRS-2018 database via amspackages.
— (SCM->Packages) before running the below script ########

db = COSKFDatabase ("my_coskf_db.db™)

db.add_compound ("Ibuprofen.coskf")

db.add_compound ("Water.coskf™)

db.add_physical_property ("Ibuprofen", "hfusion", 27.94, unit="kJ/mol")
db.add_physical_property ("Ibuprofen", "meltingpoint", 347.6)
db.estimate_physical_property ("Ibuprofen™)

EXP = db.get_physical_properties ("Ibuprofen”) [0]
QSPR = db.get_physical_properties ("Ibuprofen", source="PropPred") [0]

(continues on next page)
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print ("experimental value = ", EXP.hfusion, " estimated value = ", QSPR.hfusion)
mixture = {}

mixture["Water"] = 1.0
l]:O

mixture["Ibuprofen'
init ()

System = CRSSystem()
System.add_Mixture (mixture, database="my_coskf db.db", temperature=293.15, problem_
—type="solubility", solute="solid")

System.runCRSJob ()

for out in System.outputs:

print (f"Property = {out.section}")
res = out.get_results()
print (f"{res['name'] [1]} in {res['name'][0]} (g/L)= {res['solubility g_per_IL_
—solvent '] [1][0]}™)
finish ()
The output produced is the following
experimental value = 6.678 estimated value = ©5.744

Property = SOLUBILITY
ibuprofen in water (g/L)= 0.022067656192544072

Establishment of a pyCRS database from the ADFCRS-2018 database

The script facilitates the automatic creation of a sql database utilizing the COSKF file from the ADFCRS-2018 database
(page 20).

from scm.plams import KFFile
from pyCRS.Database import COSKFDatabase
import glob, os, sys

######## Note: Please ensure to install the ADFCRS-2018 database via amspackages.
— (SCM->Packages) before running the below script ########

db = COSKFDatabase ("ADFCRS-2018.db")
files = glob.glob(os.path.join(db.ADFCRS2018_path, "*.coskf"))
for £ in files:

coskf = os.path.basename (f)

if "IL_" != coskf[0:3]:
db.add_compound (coskf)
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10.3.2 pyCRS : Conformer usage for Database and CRSManager
Generating multiple conformers for a compound

Different conformers of a molecule can have significantly different sigma profiles, which can lead to big differences in
predicted properties with COSMO-RS. For this reason, it’s important for COSMO-RS calculations to use geometries
corresponding to the lowest-energy conformer or a set of low-energy conformers when it’s possible several conformers may
exist in significant amounts. The script shows how to use the adfcosmorsconformers recipe based on the ConformerTools
functionality in AMS to generate a set of low-energy conformers, refine the geometries with a semi-empirical method and
finally perform the ADF and COSMO calculations necessary to produce . coskf files.

from scm.plams import Settings, init, finish, from_smiles

from scm.plams.recipes.adfcosmorsconformers import ADFCOSMORSConfJob, ..
—ADFCOSMORSConfFilter

from scm.conformers import ConformersJob

init ()
mol = from_smiles ("CC (=0)0")

conf_sett = Settings()

conf_sett.input.AMS.Generator.RDKit
conf_sett.input.AMS.Generator.RDKit.InitialNConformers = 50

conf_job = ConformersJob (name="conformers_uff", molecule=mol, settings=conf_sett)

dftb_sett = Settings()
dftb_sett.input.AMS.Task = "Optimize"
dftb_sett.input.DFTB

# ADFCOSMORSConfFilter (max number of conformers, max energy range)
fil1l ADFCOSMORSConfFilter (20, 22) # applied to UFF

fil2 = ADFCOSMORSConfFilter (10, 12) # applied to DFTB

£fil3 = ADFCOSMORSConfFilter (5, 7) # applied to ADF gas phase

mol_info = {"CAS":"64-19-7", "IUPAC":"Acetic acid", "SMILES":"CC(=0)O0"}

job = ADFCOSMORSConfJob (
mol,
conf_gen=conf_job,
first_filter=£fill,
additional=[ (dftb_sett, fil2)],
final filter=£fil3,
coskf_name="acetic_acid",
coskf_dir="coskf_ acetic_acid",
mol_info=mol_info,

)

job.run ()

finish ()
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Adding conformers to the database

This script shows how to add mutiple conformers into the database. Please generate the conformers for acetic acid using
above script or download the files from the below link before running the below script.

Download relevant coskf file

from pyCRS.Database import COSKFDatabase
from pyCRS.CRSManager import CRSSystem
import os, glob

#HEAFFHAFAAFAFAHA#H  Note: Ensure to download the coskf_acetic_acid or generating.
—conformers for acetic acid before running the script #########HHF#FHFHFH

conformer_path = os.path.join(os.getcwd(), "coskf acetic_acid")
db = COSKFDatabase ("my_coskf_db.db")

db.add_compound ("acetic_acid_0.coskf",coskf_path=conformer_path)
db.add_compound ("acetic_acid_1.coskf",coskf_path=conformer_path)

print ("Displaying all conformers for acetic acid")
for row in db.get_conformers ("Acetic acid"):
print (row)

print ("Displaying the conformer with lowest energy structure for acetic acid")
for row in db.get_compounds ("Acetic acid"):
print (row)

The output produced is the following

Displaying all conformers for acetic acid

ConformerRow (conformer_id=1, compound_id=1, name='acetic acid', cas='64-19-7",.
—identifier=None, smiles='CC(=0)0', resolved_smiles='CC(=0)0'"', coskf='acetic_acid 0.
—~coskf', Egas=-1061.593, Ecosmo=-1068.344, nring=0)

ConformerRow (conformer_id=2, compound_id=1, name='acetic acid', cas='64-19-7",.
—identifier=None, smiles='CC(=0)0', resolved_smiles='CC(=0)0', coskf='acetic_acid 1.
—~coskf', Egas=-1056.631, Ecosmo=-1066.71, nring=0)

Displaying the conformer with lowest energy structure for acetic acid

CompoundRow (compound_id=1, conformer_id=1, name='acetic acid', cas='64-19-7",_
—~identifier=None, smiles='CC(=0)0', resolved_smiles='CC(=0)0', coskf='acetic_acid_ 0.
—coskf', Egas=-1061.593, Ecosmo=-1068.344, nring=0)

Activity coefficient calculation considering conformers

This calculation models acetic acid as a mixture of conformers and plots activity coefficients and the conformer distribution
over the mole fraction range. Please generate the conformers for acetic acid using above script or download the files from
the below link before running the below script.

Download relevant coskf file

from scm.plams import Settings, init, finish, CRSJob
from pyCRS.Database import COSKFDatabase

from pyCRS.CRSManager import CRSSystem

import matplotlib.pyplot as plt

import numpy as np

import os, glob

(continues on next page)
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######## Note: Please ensure to install the ADFCRS-2018 database via amspackages.
— (SCM->Packages) before running the below script ########

db = COSKFDatabase ("my_coskf_db.db")
db.add_compound ("Water.coskf")
System = CRSSystem()

mixture = {}
Xx_range = np.linspace(0, 1, 11)
for x in x_range:

mixture["Acetic acid"] = x

mixture["Water"] = 1 - x

System.add_Mixture (

mixture, database="my_coskf_db.db", temperature=298.15, problem_type=

—"activitycoef", conformer=True

)

init ()
System.runCRSJob ()
finish ()

gamma_water = []
gamma_acid = []
comp_acetic = {}
for out in System.outputs:
res = out.get_results()
gamma_acid.append (res["gamma"] [0])
gamma_water.append (res["gamma™] [1])
if comp_acetic == {}:
comp_acetic = out.get_multispecies_dist () [0]
else:
tmp_comp_acetic = out.get_multispecies_dist () [0]
for key in comp_acetic:
comp_aceticlkey] .extend (tmp_comp_aceticlkey])

fig, axs = plt.subplots(2)
axs[0] .plot (x_range, gamma_acid, label="S$\gamma_1$ (acetic)™)
axs[0] .plot (x_range, gamma_water, label="S$\gamma_2$ (water)™)

for struct, val in comp_acetic.items():
axs[1l].plot (x_range, val, label=os.path.basename (struct))

plt.setp(axs[0], ylabel="Activity coefficients")
plt.setp(axs([1], ylabel="Distribution™)
for i in range(2):

axs[i].legend()

axs[i] .grid()

plt.xlabel ("$x_1$ (acetic acid)")
# plt.savefig('./pyCRS_activitycoef_conformer',dpi=300)
plt.show ()

This code produces the following figure which plots activity coefficients and the distribution of two conformers.
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10.3.3 pyCRS : Basic usage for PropPred and FastSigma

Basic usage

This basic example provides a minimal script input a molecule (paracetamol) as a smiles string, calculate a single property,
and then estimate the default (COSMO-RS) sigma profile.

import pyCRS
mol = pyCRS.Input.read_smiles ("CC (=0)Nclccc(0)ccl") # paracetamol
print ("available properties:", pyCRS.PropPred.available_properties)

pyCRS.PropPred.estimate (mol, "hfusion™)
print ("hfusion value:", mol.properties["hfusion"], pyCRS.PropPred.units["hfusion"])

pyCRS.FastSigma.estimate (mol, method="COSMO-RS", display=False)

sigma_profiles = mol.get_sigma_profile()
print ("Total sigma profile:")

print (sigma_profiles["Total Profile"])
print ("H-Bonding:")

print (sigma_profiles["H-Bonding Profile"])

The output produced is the following:

available properties: ['acentricfactor', 'autoignitiontemp', 'boilingpoint',
—'critcompress', 'criticalpressure', 'criticaltemp', 'criticalvol', 'density',
—'dielectricconstant', 'dipolemoment', 'entropygas', 'entropystd', 'flashpoint',
—'gformstd', 'gidealgas', 'hcombust', 'hformstd', 'hfusion', 'hidealgas',

S nsublrimationt, Tfquidviscosity ™, TowfTamiimper , MelCingpoint ',  TO(¢ontnGes on next page)
—'parachor', 'radgyration', 'refractiveindex', 'solubilityparam', 'synacc', 'tpp',
'tot ! 'uoflamlimper! 'vapnorpre ure! 'vrdwareg! "srdwszol ']
g T T T T g T T T T
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hfusion value: 28.084352493286133 kJ/mol

Total sigma profile:

[0.0, 0.0, 0.0, 0.002353191375733, 0.050697326660157, 0.24713134765625, O.
—~5523872375488279, 0.840805053710938, 1.301651000976562, 1.316818237304688, 1.
—~408416748046875, 1.173583984375, 1.027912139892578, 1.160888671875, O.
—979301452636719, 0.8482666015625, 0.5888519287109371, 5.276319718325397, 11.
—539728505193898, 13.300330108724362, 12.906459205297642, 10.834775504652777, 8.
—539289410607651, 7.653812772468701, 7.964459592741903, 6.8641550757498555, 9.
—304299127480718, 7.66864582217209, 11.452185796196918, 12.639082653211547, 13.
—748599090727417, 11.745518829550344, 3.4796992518586065, 3.1053283341103315, 2.
—864667892456055, 3.6309814453125, 4.3218994140625, 3.9415283203125, 2.786376953125,
—0.968017578125, 0.48760986328125, 0.319122314453125, 0.047515869140625, 0.0, 0.0, O.
-0, 0.0, 0.0, 0.0, 0.0, 0.0]

H-Bonding:

[0.0, 0.0, 0.0, 0.002353191375733, 0.050697326660157, 0.246719360351562, 0.
—552310943603516, 0.840805053710938, 1.301651000976562, 1.313278198242188, 1.
3948974609375, 1.173583984375, 1.027912139892578, 1.15216064453125, O.
—979301452636719, 0.8482666015625, 0.5888519287109371, 0.065513610839843, 0.0, 0.0,
-0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.277877807617188, .
—2.451416015625, 3.6309814453125, 4.3218994140625, 3.9354248046875, 2.78125, 0.
968017578125, 0.48760986328125, 0.319122314453125, 0.047515869140625, 0.0, 0.0, 0.0,
— 0.0, 0.0, 0.0, 0.0, 0.0]

Temperature-dependent properties

This example calculates the vapor pressure and produces a plot of vapor pressure against temperature.

import pyCRS
import matplotlib.pyplot as plt

mol = pyCRS.Input.read_smiles ("CCCCCCO")

prop_name = "vaporpressure"
pyCRS.PropPred.estimate (mol, temperatures=[290, 295, 300, 305, 310, 3151])
print ("Results:", mol.properties_tdep[prop_name])

X, y = mol.get_tdep_values (prop_name)

unit = pyCRS.PropPred.units|[prop_name]
plt.plot(x, y, "-o")

plt.ylabel (f"vapor pressure ({unit})")
plt.xlabel ("Temperature (K)")

# plt.savefig('./pyCRS_PropPred_Tdep.png')
plt.show()

The output shows the format of the results: (temperature, vapor pressure) pairs

Results: [(290.0, 0.0006316340979498092), (295.0, 0.0009549864170162676), (300.0, O.
—0014201952225525484), (305.0, 0.002079200184963613), (310.0, 0.0029991100667307634),
— (315.0, 0.004265490872465904) ]

Finally, the plot produced is the following:
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Fig. 10.2: The estimated vapor pressure versus temperature for 1-Hexanol

Estimating multiple properties

Estimating multiple properties is as simple as supplying a list of property names to the PropPred interface. All proper-
ties are estimated by default if no property argument is supplied. In this example, we first estimate a few properties, and

then estimate all properties.

import pyCRS

def print_props (mol) :
for prop, value in mol.properties.items() :
unit = pyCRS.PropPred.units[prop]
print (f" {prop:<20s/}: {value:.3f unit ")

for prop, value in mol.properties_tdep.items() :
print (f" {prop:<20s/:")
unit = pyCRS.PropPred.units|[prop]
propunit = f"{prop} ({funit/)"
print ("T (K)".rjust(30) + f£"{propunit:>30s}")

for t, v in value:
print (£"{t:>30.3f}{v:>30.8g}")
mol = pyCRS.Input.read_smiles ("CCCCCCO")

props = ["meltingpoint", "boilingpoint", "density", "flashpoint",
pyCRS.PropPred.estimate (mol, props, temperatures=[298.15, 308.15,

"vaporpressure"]

318.15,

328.157)

(continues on next page)
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print ("Results
print ("Results

(temp—-independent) :",
(temp—-dependent) :", mol.properties_tdep)

mol.properties)

# we can also estimate all properties by supplying the property name 'all' or simply.
—omitting this argument
pyCRS.PropPred.estimate (mol, temperatures=[298.15, 308.15, 318.15, 328.15])

print_props (mol)

The output produced is the following:

Results (temp-independent) {'boilingpoint': 435.7771752780941, 'density': 0.
—7918196941677842, 'flashpoint': 342.2705857793571, 'meltingpoint': 231.
1412353515625, 'molarvol': 0.1289491355419159}

Results (temp-dependent) {'vaporpressure': [(298.1499938964844, 0.

—00122854727137622),

—0.00528858292845777

boilingpoint :
criticalpressure
criticaltemp
criticalvol
density
dielectricconstant
entropygas
flashpoint
gidealgas
hcombust
hformstd

hfusion
hidealgas
hsublimation
meltingpoint
molarvol
parachor
solubilityparam
synacc

tpt

vdwarea

vdwvol
liquidviscosity

vaporpressure

(308.1499938964844, 0.0026233569814824815), (318.1499938964844, ..
), (328.1499938964844, 0.010122673317257832) 1}

435.777 K
34.349 bar
878.101 K
0.404 L/mol
0.792 kg/L
10.951
439.885 J/ (mol K)
342.271 K
-131.869 kJ/mol
-3678.121 kJ/mol
-384.388 kJ/mol
18.505 kJ/mol
-316.821 kJ/mol
80.980 kJ/mol

(298.15 K)

231.141 K
0.129 L/mol
289.059
10.129 vV (cal/cm”3)
6.747
230.404 K
171.059 A?
120.519 A3
T (K) liguidviscosity (Pa-s)
298.150 0.0044653385
308.150 0.003363708
318.150 0.0025843814
328.150 0.0020210327
T (K) vaporpressure (bar)
298.150 0.0012285473
308.150 0.002623357
318.150 0.0052885829
328.150 0.010122673
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Calculating sigma profiles with all models

This example demonstrates how to calculate COSMO-RS sigma profiles with both available models (SG1 and FS1).
We’ll use 4-Methylphenol for this example. The variable ref_sp in the script is the o-profile calculated in the AMS
COSMO-RS.

import pyCRS
import matplotlib.pyplot as plt

chdens = [-0.025 + 0.001 * x for x in range (51)]
ref_sp = [
0.00000000,
.00000000,
.00000000,
.00000000,
.00000000,
.170502009,
.73517288,
.98383886,
.86397332,
.15571158,
.67051286,
.79380670,
.71422825,
.68854784,
.72126747,
.72414167,
.83293801,
.33617486,
.42197092,
.58230745,
.84294559,
.81993395,
.80932110,
.79578176,
.5776429¢6,
.07802490,
.19651976,
.04721719,
.80255519,
.17672544,
.28788009,
.72121222,
.77829981,
.11136819,
.58235813,
.13444125,
.81316980,
.44468560,
.02558727,
.01243933,
.00000000,
.00000000,
.00000000,
.00000000,
.00000000,
.00000000,
.00000000,

oY O O 00 O W O U N O O O O O O OFr OO O OoOoOoOOo o o

S N )
o NN

O O O O O OO O NNEFE P P -
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.00000000,
.00000000,
.00000000,
.00000000,

O O O O

mol = pyCRS.Input.read_smiles("Cclccc(0)ccl™)

pyCRS.FastSigma.estimate (mol, method="COSMO-RS", model="FS1")
sp_fsl = mol.get_sigma_profile() ["Total Profile"]

pyCRS.FastSigma.estimate (mol, method="COSMO-RS", model="SG1")
sp_sgl = mol.get_sigma_profile() ["Total Profile"]

plt.plot (chdens, ref_sp, "--", label="Reference $\sigma$S-profile™)
plt.plot (chdens, sp_fsl, label="FS1 S$\sigmaS-profile")

plt.plot (chdens, sp_sgl, label="SG1l S$\sigmaS-profile")

plt.ylabel ("Area (S\AR"2S)")

plt.xlabel ("S$\sigma$")

plt.grid()

plt.legend()

# plt.savefig('./pyCRS_PropPred_SigmaProfile.png')

plt.show ()

Finally, the plot produced shows the various o-profiles produced.

1
12 1 T —— FS1 o-profile
—— 5SG1 g-profile

10

Area (42)

A ——- Reference g-profile

T T T T T
—0.02 —0.01 0.00 0.01 0.02

Fig. 10.3: The sigma profile of 4-Methylphenol
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10.3.4 Examples using PLAMS

Partition coefficient

In this example, we calculate the logP of Ibuprofen. We use the standard octanol/water system. The code is as follows:

from scm.plams import Settings, init, finish, CRSJob
import os

######## Note: Ensure to configure the database path to either the installed ADFCRS-
2018 directory or your own specified directory ########

database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADEFCRS-2018")
if not os.path.exists (database_path) :
raise OSError (f"The provided path does not exist. Exiting.")

# initialize settings object
settings = Settings|()
settings.input.property._h = "LOGP"

# set the number of compounds

num_compounds = 3
compounds = [Settings () for i in range (num_compounds) ]
compounds [0]._h = os.path.join(database_path, "1-Octanol.coskf™)

compounds[1]._h = os.path.join (database_path, "Water.coskf")
compounds [2]._h = os.path.join(database_path, "Ibuprofen.coskf")

# phasel (octanol phase)
compounds [0] . fracl = 0.725
compounds[1].fracl = 0.275

# phase2 (water phase)
compounds [0] .frac2 = 0
compounds [1].frac2 = 1

# set temperature (range)

# to specify a range, use 3 numbers: (1) the lowest temperature,

# (2) the highest temperature, and (3) the steps taken between these temperatures
settings.input.temperature = "298.15"

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds

# create a job that can be run by COSMO-RS

my_Jjob = CRSJob (settings=settings)

# run the job

init ()

out = my_job.run()

finish ()

# convert all the results into a python dict
res = out.get_results()

# print the logP of Ibuprofen
print ("logP of Ibuprofen:", res["logp"][2])

This generates the following output:
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logP of Ibuprofen: [ 4.67381309]

Binary mixture

In this example, we calculate a binary mixture of water and 2-Hexanone and plot the vapor pressures as a function of
composition. We also show how to change the method and calculate the binary mixture with the COSMO-SAC2013-
Xiong model.

from scm.plams import Settings, init, finish, CRSJob
import os

######## Note: Ensure to configure the database path to either the installed ADFCRS-
2018 directory or your own specified directory ########

database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADECRS-2018")
if not os.path.exists (database_path) :
raise OSError (f"The provided path does not exist. Exiting.")

# initialize settings object
settings = Settings /()
settings.input.property._h = "BINMIXCOEEF"

# let's also change to the COSMOSAC2013 method
settings.input.method = "COSMOSAC2013"

# set the number of compounds
num_compounds = 2

compounds = [Settings() for i in range (num_compounds) ]
compounds [0] ._h = os.path.join (database_path, "Water.coskf")

compounds[1]._h = os.path.join(database_path, "2-Hexanone.coskf")

# use the vapor pressures from the VPMI1 model

compounds [0] .vp_equation = "VPM1"

compounds [0] .vp_params = "-6093.40215895 -3.09584608667 0.000498622924643 34.
—~47450247140318 0.0"

compounds [1] .vp_equation = "VPM1"

compounds [1] .vp_params = "-6474.348470271438 ~-6.057589837807771 0.003390587477679571..

—51.07134238467479 0.0"

# set temperature (range)

# to specify a range, use 3 numbers: (1) the lowest temperature,

# (2) the highest temperature, and (3) the steps taken between these temperatures
settings.input.temperature = "298.15"

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds

# create a job that can be run by COSMO-RS

my_Jjob = CRSJob (settings=settings)

# run the job

init ()
out = my_job.run()
finish ()

# convert all the results into a python dict
res = out.get_results/()

(continues on next page)
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# plot all the pressures as a function of mole fraction of water
out.plot (

"vapor pressure",

"pressure",

X_axis=res["molar fraction"][O0],

X_label="mole fraction water",

y_label="Pressure (bar)",

The code generates the following plot:

0.07 A
—— vapor pressure 1
—— wvapor pressure 2
0061 ___ pressure
0.05 ~
™~
E 0.04 ~
g
=
@ 0.03
g
=8
0.02 4
0.01
0.00 +
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

#/ € HQ =B

Fig. 10.4: A plot showing the total and partial vapor pressures for the water/2-Hexanone system.

Water and 2-Hexanone do not mix so well, thus there will be a miscibility gap, which is not taken into account in the
graph. COSMO-SAC calculates the miscibility gap for the water/2-Hexanone system for molar fraction of water between

around 0.29 and around 0.998. Within the miscibility gap the results shown in the graph use the unphysical condition that
the two liquids are forced to mix.
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Solid solubility

In this example, we calculate the solubility of ibuprofen in water at 298.15K. When considering a compound in its solid
state, it’s essential to account for the energy change of a compound from the subcooled liquid state to the ordered solid
state. The energy change can be estimated using its heat of fusion and melting point. The heat capacity of fusion, while
beneficial, is often not readily available.

from scm.plams import Settings, init, finish, CRSJob
import os

######## Note: Ensure to configure the database path to either the installed ADFCRS-
<2018 directory or your own specified directory ########

database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADEFCRS-2018")
if not os.path.exists (database_path):

raise OSError (f"The provided path does not exist. Exiting.")

settings = Settings /()

settings.input.property._h = "SOLUBILITY"

settings.input.method = "COSMORS"

num_compounds = 2

compounds = [Settings () for i in range (num_compounds) ]
compounds [0] ._h = os.path.join(database_path, "Water.coskf")
compounds [0] . fracl 1.0

compounds [1]._h = os.path.join(database_path, "Ibuprofen.coskf")
compounds[1].fracl = 0.0

compounds [1].nring = 6

compounds [1] .hfusion = 27.94 / 4.184 # kcal/mol

compounds [1] .meltingpoint = 347.6 # K
# compounds([1].cpfusion = #kcal/mol-K

settings.input.temperature = 298.15

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds

# create a job that can be run by COSMO-RS

my_job = CRSJob (settings=settings)

# print out the input file

# print (my_job.get_input ())

# run the job

init ()
out = my_job.run()
finish ()

# convert all the results into a python dict
res = out.get_results()

# print the solubility of Ibuprofen in water
print ("Solubility of Ibuprofen in water [g/L]:", res["solubility g_per_L_solvent"][1])

This generates the following output:
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Solubility of Ibuprofen in water [g/L]: [0.02799089]

10.3.5 Advanced scripting examples with PLAMS/pyCRS

COSMO-RS is capable of calculating a wide variety of important thermodynamic properties, but not all of those properties
are easily available from the GUL. In this section, several scripts are provided that calculate more complex properties and
demonstrate additional useful workflows. These scripts can be used as they are or used as a template to develop additional
or more specific functionality.

Note: To ensure compatibility among the necessary python modules, it is recommended to use SCM’s python dis-
tribution, amspython. Executing the scripts in this section from the command line can be done simply as follows:
amspython <script_name.py>. Those users with more python experience or who prefer to use their own ver-
sion of python are welcome to use alternatives to amspython.

Table of Contents:

Changing the default parameters or re-parameterizing the COSMO-RS/-SAC methods

There are many situations for which changing the default COSMO-RS/-SAC parameters may be useful. Most commonly,
users may wish to try a certain parameterization that is not available from the program. Alternatively, some users may
have a customized or proprietary dataset which they would like to use to re-fit the main model parameters. All of these
tasks are straightforward via python scripting.

The following scripts will demonstrate how to alter parameters for COSMO-RS and COSMO-SAC.

Python code (COSMO-RS parameters)

import os
from scm.plams import Settings, init, finish, CRSJob, config

######## Note: Ensure to configure the database path to either the installed ADFCRS-
2018 directory or your own specified directory ########

database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADFCRS-2018")
if not os.path.exists (database_path):
raise OSError (f"The provided path does not exist. Exiting.")

init ()
# suppress plams output
config.log.stdout = 0

# our system of interest
files = ["Acetone.coskf", "Water.coskf"]
fracs = [0.3, 0.7]

# initialize settings object

settings = Settings /()
settings.input.property._h "ACTIVITYCOEF"
settings.input.temperature = 298.15

(continues on next page)
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compounds = [Settings() for i in range(len(files))]

for i, (name, frac) in enumerate(zip(files, fracs)):
compounds [i]._h = os.path.join(database_path, name)
compounds [i].fracl = frac

settings.input.compound = compounds

# Here, we will change the method parameters specific to COSMO-RS
# Main CRS parameters

settings.input.CRSParameters.rav = 0.400
settings.input.CRSParameters.aprime = 1510.0
settings.input.CRSParameters.fcorr = 2.802
settings.input.CRSParameters.chb = 8850.0
settings.input.CRSParameters.sigmahbond = 0.00854
settings.input.CRSParameters.aeff = 6.94
settings.input.CRSParameters.Lambda = 0.130
settings.input.CRSParameters.omega = -0.212
settings.input.CRSParameters.eta = -9.65
settings.input.CRSParameters.chortf = 0.816
settings.input.CRSParameters.HB_HNOF = "" # hb for only H,N,O,F

mmn

# settings.input.CRSParameters.HB ALL
settings.input.CRSParameters.HB_TEMP = ""
# settings.input.CRSParameters.HB_NOTEMP

# hb for all elements
# temperature-dependent H-bond
= "" # non-temperature-dependent H-bond

settings.input.CRSParameters.COMBI2005 = "" # default combinatorial term
# settings.input.CRSParameters.COMBI1998 mr

# Dispersion parameters
settings.input.Dispersion.
settings.input.Dispersion.
settings.input.Dispersion.
settings.input.Dispersion.
settings.input.Dispersion.
settings.input.Dispersion.
settings.input.Dispersion.
settings.input.Dispersion.
settings.input.Dispersion.
settings.input.Dispersion.Br
settings.input.Dispersion.I

-0.
= -0.
-0.

0340
0356
0224
-0.0333
-0.026
-0.04
-0.045
-0.052
-0.0485
-0.055
-0.062

# Technical and accuracy parameters
settings.input.Technical.rsconv le-7
settings.input.Technical .maxiter 10000
settings.input.Technical .bpconv le-6
settings.input.Technical.bpmaxiter 40
settings.input.Technical.solconv le-5
settings.input.Technical.solmaxiter = 40
settings.input.Technical.solxilarge 0.99
settings.input.Technical.ehdeltaT 1.0

# We will vary the chb parameter (default value 8850.0)
# and observe the effect on activity coefficients

print ("Resulting Activity Coefficients:")

print ("chb value".ljust (15), "activity coefficients".ljust (20))
hbvals [8700.0 + 50 * i for i in range(7)]

for hbval in hbvals:

(continues on next page)
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settings.input.CRSParameters.chb = hbval

# create a job that can be run by COSMO-RS
my_job = CRSJob (settings=settings)

# run the job

out = my_job.run ()

# convert all the results into a python dict

res = out.get_results /()
print (str (hbval) .1ljust (15), str(res["gamma"].flatten()) .ljust (20))
finish ()

Python code (COSMO-SAC parameters)

import os
from scm.plams import Settings, init, finish, CRSJob, config

######## Note: Ensure to configure the database path to either the installed ADFCRS-
2018 directory or your own specified directory ########

database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADECRS-2018")
if not os.path.exists (database_path) :
raise OSError (f"The provided path does not exist. Exiting.")

init ()
# suppress plams output
config.log.stdout = 0

# our system of interest
files = ["Acetone.coskf", "Water.coskf"]
fracs = [0.3, 0.7]

# initialize settings object

settings = Settings()
settings.input.property._h = "ACTIVITYCOEE"
settings.input.temperature = 298.15

compounds = [Settings() for i in range(len(files))]

for i, (name, frac) in enumerate(zip(files, fracs)):
compounds [i]._h = os.path.join(database_path, name)
compounds [i].fracl = frac

settings.input.compound = compounds

# Here, we will change the method parameters specific to COSMO-SAC
# First, change the method to COSMOSAC2013
settings.input.method = "COSMOSAC2013"

# Main SAC parameters
settings.input.SACParameters.aeff = 6.4813
settings.input.SACParameters.fdecay = 0.0
settings.input.SACParameters.sigmal0 = 0.01233
settings.input.SACParameters.rn = 0.0
settings.input.SACParameters.qn = 79.532

(continues on next page)
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settings.input.SACParameters.aes = 7877.13
settings.input.SACParameters.bes = 0.0
settings.input.SACParameters.cohoh = 5786.72
settings.input.SACParameters.cotot = 2739.58
settings.input.SACParameters.cohot 4707.75
settings.input.SACParameters.rav = 0.51
settings.input.SACParameters.qgs = 0.57
settings.input.SACParameters.rhbcut = 0.0
settings.input.SACParameters.omega = 0.0
settings.input.SACParameters.eta = 0.0

settings.input.SACParameters.HB_NOTEMP = "" # non-temperature-dependent H-bonding.

— (default)

# settings.input.SACParameters.HB_TEMP = "" # temperature-dependent H-bonding

# Epsilon Constants
settings.input.Epsilon.H = 338.13
settings.input.Epsilon["C.sp3"] = 29160.92
settings.input.Epsilon["C.sp2"] = 30951.83
settings.input.Epsilon["C.sp"] = 20685.98
settings.input.Epsilon["N.sp3"] 23488.54
settings.input.Epsilon["N.sp2"] = 22663.38
settings.input.Epsilon["N.sp"] = 6390.40
settings.input.Epsilon["O.sp3-H"] = 8527.06
settings.input.Epsilon["0.sp3"] 8484.38
settings.input.Epsilon["O.sp2"] = 6736.85
settings.input.Epsilon["O.sp2-N"] = 12145.28
settings.input.Epsilon.F = 8435.13
settings.input.Epsilon.P = 82512.21
settings.input.Epsilon.S 56067.81
settings.input.Epsilon.Cl = 45065.19
settings.input.Epsilon.Br = 62947.83
settings.input.Epsilon.I = 105910.88

# Technical and accuracy parameters

settings.input.Technical.sacconv = le-7
settings.input.Technical .maxiter = 10000
settings.input.Technical .bpconv = le-6
settings.input.Technical.bpmaxiter = 40
settings.input.Technical.solconv = le-5
settings.input.Technical.solmaxiter = 40
settings.input.Technical.solxilarge = 0.99

settings.input.Technical.ehdeltaT = 1.0

# We will vary the cohot parameter (default value 4707.75)

# and observe the effect on activity coefficients
print ("Resulting Activity Coefficients:")

print ("cohot wvalue".ljust (15), "activity coefficients".ljust (20))

cohot_vals = [4707.75 + 50 * 1 for i in range (-3,
for cohot in cohot_vals:

settings.input.SACParameters.cohot = cohot

# create a job that can be run by COSMO-RS
my_job = CRSJob (settings=settings)

# run the job

out = my_job.run()

# convert all the results into a python dict
res = out.get_results /()

(continues on next page)
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print (str (cohot) .1ljust (15), str(res["gamma"].flatten()) .ljust (20))

finish ()

Solubility screening for solid solute

Download relevant coskf file

In this example, we explore the solubility of avobenzone in several solvents and compare the predicted solubility with
experimental data'. When conducting solid solubility calculations, it’s crucial to provide the melting point and melting
enthalpy of the solid solute. If experimental melting properties are not available, it’s possible to estimate these values
using the pure properties prediction tool, which is based on the group contribution method. Alternatively, the ranking of
solubility can also be compared using the infinite dilution activity coefficient.

In the first script example, it utilizes the pyCRS. Database (page 82) and pyCRS.CRSManager (page 84) modules to sys-
tematically set up solubility calculations and infinite dilution activity coefficients calculation. These modules significantly
simplify the process, providing users with a direct and efficient method to perform high-throughput screening tasks.

Python code using pyCRS

from scm.plams import Settings, init, finish, CRSJob, config, JobRunner, KFFile
from pyCRS.Database import COSKFDatabase

from pyCRS.CRSManager import CRSSystem

import os, glob, multiprocessing

import matplotlib.pyplot as plt

import numpy as np

init ()

####### Step 1 : add compounds to a pyCRS.databse. Ensure coskf_solubility is.
—~downloaded #######

####### Note: Ensure to download the coskf_solubility before running the script ####
—H#t#AAAAFAH

db = COSKFDatabase ("my_coskf_db.db")
coskf_path = os.path.join(os.getcwd(), "coskf solubility")

if not os.path.exists (coskf_path):
raise OSError (f"The provided path does not exist. Exiting.")

files = glob.glob(os.path.join(coskf_path, "*.coskf"))
for £ in files:

coskf = os.path.basename (f)
if coskf == "avobenzone.coskf":

db.add_compound (
coskf,

(continues on next page)

! Benazzouz, Adrien, et al. “Hansen approach versus COSMO-RS for predicting the solubility of an organic UV filter in cosmetic solvents.” Colloids
and Surfaces A: Physicochemical and Engineering Aspects 458 (2014): 101-109.
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name="avobenzone",
cas="70356-09-1",
coskf_path=coskf_path,

db.add_physical_property ("avobenzone", "meltingpoint", 347.6)
db.add_physical_property ("avobenzone", "hfusion", 5.565, unit="kcal/mol")
db.estimate_physical_property ("avobenzone")

else:
db.add_compound (coskf, coskf_path=coskf_path)

# Experimental solubility data in $w/w
exp_data = {
"Glycerol": 0.1,
"1l,2-Propylene glycol": 0.2,
"Hexadecane": 1,
"Ethanol": 2,
"Di-n-octyl ether": 5,

"beta-Pinene": 7.7,
"Isopropyl myristate": 10,
"Propylene carbonate": 10.7,

"Di-2-ethylhexyl-adipate": 12,
"Dimethyl-isosorbide": 38.2,
"Dimethoxymethane": 73,

####### Step2 : Iterately set up calculation for solubility and activitycoef #######

## Set up for parallel run ##
if True:
config.default_jobrunner = JobRunner (
parallel=True, maxjobs=8
) # Set jobrunner to be parallel and specify the numbers of jobs run.
—simutaneously (eg. multiprocessing.cpu_count())
config.default_jobmanager.settings.hashing = None # Disable rerun prevention
config.job.runscript.nproc = 1 # Number of cores for each job
config.log.stdout = 1 # suppress plams output default=3

System = CRSSystem()
System2 = CRSSystem()

for solvent in exp_data.keys():

mixture = {}
mixture[solvent] = 1.0
mixture["avobenzone"] = 0.0

System.add_Mixture (
mixture,
database="my_coskf_db.db",
temperature=298.15,
problem_type="solubility",
solute="solid",
jobname="solubility",
)
System2.add_Mixture (
mixture, database="my_coskf db.db", temperature=298.15, problem_ type=

—"activitycoef", Jjobname="IDAC" (continues on next page)
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System.runCRSJob ()
System2.runCRSJob ()

#H##### Step3 : Output processing to retrive results for plotting #######

solubility = []

1InIDAC = []

for out, out2 in zip (System.outputs, System2.outputs):
res out.get_results ()
res2 = out2.get_results()

solubility.append(res|["solubility massfrac"][1][0] * 100)
InIDAC.append(np.log(res2["gamma"] [1][0]))

plt.rcParams|["figure.figsize"] = (9, 4)

fig, axs = plt.subplots(l, 2)

axs[0] .plot (solubility, exp_data.values(), "o", color="Red", markerfacecolor="none")
axs .plot ([-5, 801, [-5, 80], color="gray")

.set_x1lim([-5, 80])

0]
axs[0]
0].set_ylim([-5, 801])
0]
0]

axs
axs .set_xlabel ("predicted solubility ($w/w)")
axs .set_ylabel ("experimental solubility ($w/w)")

axs[1l].plot (InIDAC, exp_data.values(), "o", color="Blue", markerfacecolor="none")
axs[1l].set_xlabel ("In(infinite dilution activitycoef) ")

axs[1] .set_ylabel ("experimental solubility ($w/w)")

plt.tight_layout ()

# plt.savefig('./pyCRS_solubility_screening.png',dpi=300)

plt.show ()

finish ()
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Fig. 10.5: The comparison of experimental solubility with (1) predicted solubility and (2) infinite dilution activity coef-
ficient.

In the second script example, the solubility screening is configured using the sez_CRSJob_solubility function within the
script. While this approach require appropriately setting up the PLAMS input setting (page 106) within the function, it
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provide greater flexibility for configuring unconventional calculations, such as ionic liquids screening (page 140).

Python code using PLAMS

import os, time

import multiprocessing

import numpy as np

import matplotlib.pyplot as plt

from scm.plams import Settings, init, finish, CRSJob, config, JobRunner

init ()
####### Note: Ensure to download the coskf _solubility before running the script ####

i

def set_CRSJob_solubility(index, ncomp, coskf, database_path, cal_type, method, .
—temperature, comp_input={}):

s = Settings() # initialize a settings object
s.input.property._h = cal_type # specify problem type
s.input.method = method # specify method
s.input.temperature = temperature # specify temperature
compounds = [Settings () for i in range (ncomp) ] # initialization of compounds
for i in range (ncomp) :
compounds[i]._h = os.path.join(database_path, coskf[i]) # specify absolute.
—directory of coskf file
for column, value in comp_input.items(): # specify compound's information.
—through comp_input, for example
if value[i] != None: # column: fracl, meltingpoint, hfusion
compounds [1] [column] = valuel[i]

s.input.compound = compounds

my_Jjob = CRSJob (settings=s) # create jobs
my_Jjob.name = cal_type + "_" + str(index) # specify job name

return my_job

Parallel_run = True
Plot_option = True

if Parallel_run:
config.default_jobrunner = JobRunner (
parallel=True, maxjobs=8
) # Set jobrunner to be parallel and specify the numbers of jobs run.
—simutaneously (eg. multiprocessing.cpu_count ())
config.default_jobmanager.settings.hashing = None # Disable rerun prevention
config.job.runscript.nproc = 1 # Number of cores for each job
config.log.stdout = 1 # suppress plams output default=3

###————INPUT YOUR DATA HERE-————###
database_path = os.path.join(os.getcwd (), "coskf_ solubility")
cal_type = "solubility"

(continues on next page)
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method = "COSMORS"

ncomp = 2

solvents = [
"Glycerol.coskf",
"1,2-Propylene_glycol.coskf",
"Hexadecane.coskf",
"Ethanol.coskf",
"Di-n-octyl_ether.coskf",
"beta-Pinene.coskf",
"Isopropyl _myristate.coskf",
"Propylene_carbonate.coskf",
"Di-2-ethylhexyl-adipate.coskf",
"Dimethyl-isosorbide.coskf",
"Dimethoxymethane.coskf",

]

solute = "avobenzone.coskf"
temperature = 298.15 # K

# store input data along with the necessary thermal property in comp_input dictionary

comp_input = {}

comp_input ["name"] = ["solvent", "solute"]

comp_input ["fracl"] = [1, O] # mole fraction
comp_input["meltingpoint"] = [None, 355] # melting point (K)
comp_input ["hfusion"] = [None, 5.565] # heat of fusion (Kcal/mol)

# Experimental solubility data in Sw/w
exp_sol = [0.1, 0.2, 1, 2, 5, 7.7, 10, 10.7, 12, 38.2, 73]

###—-———INPUT END————###

index = 0
outputs = []
for solv in solvents:
coskf = [solv, solute]
job = set_CRSJob_solubility (index, ncomp, coskf, database_path, cal_type, method, .
—temperature, comp_input)
index = index + 1
outputs.append (job.run())

print (job.get_input ())

# In a parallel run, the get_results function will wait for the completion of the.
—corresponding jobs.
results = []
for out in outputs:
results.append(out.get_results())

if Plot_option:

if cal_type == "solubility":
cal_sol = [res["solubility massfrac"][1]1[0] * 100 for res in results]
cal_lnact = [np.log(res["gamma"][1][0]) for res in results]

plt.figure (figsize=(5, 4))
plt.plot (cal_sol, exp_sol, "o", color="Red", markerfacecolor="none", .

—label=method) (continues on next page)
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plt.plot ([-5, 801, [-5, 80], color="gray")
plt.xlim([-5, 80])

plt.ylim([-5, 80])

plt.xlabel ("predicted solubility ($w/w)")
plt.ylabel ("experimental solubility (Sw/w)")

plt.tight_layout ()
# plt.savefig('./PLAMS_solubility_screening.png',dpi=300)
plt.show ()

finish ()

References

Screening for cocrystals

In this section, we provide an example application that can be used as a template for many high-throughput screening
scripts. Cocrystals are crystals formed from two or more compounds in a defined stoichiometry. There are many uses for
cocrystals, especially for pharmaceutical applications where one compound is an active pharmaceutical ingredient (API).
This example problem screens multiple compounds for their potential as components of a (1:2) cocrystal with Itraconazole.
This problem uses the excess enthalpy for a hypothetical supercooled liquid phase as a proxy for cocrystallization affinity.
The rankings of the solvents are in good agreement with model and experimental results for this problem given in' .

Download relevant coskf file: coskf_Hex.zip

Python code

import os, time

import multiprocessing

import numpy as np

import matplotlib.pyplot as plt

from scm.plams import Settings, init, finish, CRSJob, config, JobRunner

def set_CRSJob_Hex_conf (index, ncomp, coskf, database_path, cal_type, method, .
—temperature, comp_input={}, comp_type=[]):

= Settings() # initialize a settings object
.input.property._h = cal_type # specify problem type
.input.method = method # specify method
.input.temperature = temperature # specify temperature

n n n n

compounds = [Settings() for i in range(ncomp)] # initialization of compounds
for i in range (ncomp) :
if len(comp_type) > 1i:
if "conf" in comp_typel[i]:
form = [Settings() for i in range(len(coskf[i]))] # initialize._
—compound in multiple form
for j in range(len(coskf[i])):
form[j]._h = os.path.join(

(continues on next page)

! Abramov, Yuriy A., Christoph Loschen, and Andreas Klamt. “Rational coformer or solvent selection for pharmaceutical cocrystallization or
desolvation.” Journal of pharmaceutical sciences 101.10 (2012): 3687-3697. (https://doi.org/10.1002/jps.23227)
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database_path, coskf[i][]]
) # specify conformer's coskf file for each form
compounds [i] .form = form
else:
compounds [i]._h = os.path.Jjoin(database_path, coskf[i]) # specify.
—absolute directory of coskf file
else:
compounds[i]._h = os.path.join(database_path, coskf[i]) # specify.
—absolute directory of coskf file

for column, value in comp_input.items () : # specify compound's information.
—through comp_input, for example
if value[i] != None: # column: fracl, meltingpoint, hfusion
compounds [1] [column] = value[i]

s.input.compound = compounds

my_Jjob = CRSJob (settings=s) # create jobs
my_Jjob.name = cal_type + "_" + str(index) # specify job name

return my_job

init ()

Parallel_run = True
Plot_option = True

if Parallel_run:
config.default_jobrunner = JobRunner (
parallel=True, maxjobs=8
) # Set jobrunner to be parallel and specify the numbers of jobs run.
—simutaneously (eg. multiprocessing.cpu_count())
config.default_jobmanager.settings.hashing = None # Disable rerun prevention
config.job.runscript.nproc = 1 # Number of cores for each job
config.log.stdout = 1 # suppress plams output default=3

###————INPUT YOUR DATA HERE-———###

database_path = os.path.join(os.getcwd(), "coskf Hex")

cal_type = "VAPORPRESSURE"
method = "COSMORS"

ncomp = 2

solute = "itz_cl.coskf"

# a list of different conformers for the screening each line contains 3 conformers of.
—the same molecule

solvents = [
["tartaric_acid_cl.coskf", "tartaric_acid_c2.coskf", "tartaric_acid_c3.coskf"],

"fumaric_acid_cl.coskf", "fumaric_acid_c2.coskf", "fumaric_acid_c3.coskf"],
"succinic_acid_cl.coskf", "succinic_acid_c2.coskf", "succinic_acid_c3.coskf"],

"malic_acid_cl.coskf", "malic_acid_c2.coskf", "malic_acid_c3.coskf"],
"malonic_acid_cl.coskf", "malonic_acid_c2.coskf", "malonic_acid_c3.coskf"],

"adipic_acid_cl.coskf", "adipic_acid_c2.coskf", "adipic_acid_c3.coskf"],

[
[
[
["glutaric_acid_cl.coskf", "glutaric_acid_c2.coskf", "glutaric_acid_c3.coskf"],
[
[
["maleic_acid_cl.coskf", "maleic_acid_c2.coskf", "maleic_acid_c3.coskf"],

(continues on next page)
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temperature = 298.15 # K

# store input data along with the necessary thermal property in comp_input dictionary
comp_input = {}

comp_input["fracl"] = [0.33333, 0.66667] # the stoichiometric ratio of the co-
—crystal (solvent:solute)

# enter 'conf' for compound with multiple conformers; '' for compound with single.
—~Structure
comp_type = ["conf", ""]

###————INPUT END————###

outputs = []

solv_name = []
for index, solv in enumerate (solvents):

solv_name.append(solv([0] .replace("_cl.coskf", ""))

coskf = [solv, solute]

comp_input ["name"] = [solv[0].replace("_cl.coskf", ""), solute.replace("_cl.coskf
;}ll, HII)J

job = set_CRSJob_Hex_conf (index, ncomp, coskf, database_path, cal_type, method, .
—temperature, comp_input, comp_type)
outputs.append (job.run())

finish ()

# In a parallel run, the get_results function will wait for the completion of the.
—corresponding jobs.
results = []
excess_h = []
print ("")
print ("Solvent".ljust (14), "Population of solvent's conformers")
for out, name in zip (outputs, solv_name):
res = out.get_results /()
results.append(res)
excess_h.append (res["excess H"])

compositions = out.get_multispecies_dist () [0]
print (name.ljust (15), end="")
for conf, frac in compositions.items() :

print (£f"{frac[0]:.5f}", end=" ")

print ("")
print("")
print ("Solvent".ljust (15), "Excess enthalpy (kcal/mol)")
for (

name,

Hex,

) in zip(solv_name, excess_h):
print (name.ljust (15), round(Hex, 5))

if Plot_option:
plt_index = [1i for i in range(len(excess_h))]
plt.xlabel ("Excess enthalpy (kcal/mol)")

(continues on next page)
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plt.barh (plt_index, excess_h, zorder=3)

plt.yticks (plt_index, solv_name)
plt.grid(axis="x", 1ls="--", zorder=0)

plt.gca() .invert_xaxis ()

plt.tight_layout ()

# plt.savefig('./Cocrystal_screening.png',dpi=300)
plt.show ()

This figure (produced by the code) shows the excess enthalpy values of all solvents in a supercooled liquid mixture with
Itraconazole. The lowest 4 excess enthalpy values correspond to 4 solvent for which a stable co-crystal with Itraconazole
is known’ .

maleic_acid

adipic_acid

malonic_acid

glutaric_acid

malic_acid

succinic_acid

fumaric_acid

tartaric_acid

Excess enthalpy (kcal/mol)

References

Automated screening of ionic liquids

Download python script and relevant file

In this example, we provide a template for the high-throughput screening with ionic liquid. The script will automates the
screening of the infinite dilution activity coefficient (IDAC) of a solute among all combinations of available ionic liquids
in the directory. The set_CRSJob_IL in this script adopt the same structure as set_CRSJob_Hex_conf in previous example
but have an additional input variable, comp_stoichiometric, to specify the stoichiometric number of cation and anion. The
stoichiometric number will be determined from their charge, and it is crucial to ensure that the IL_list.csv file contains
the minimum required information for each ion, such as abbreviation, charge and coskf file name. Furthermore, if the
vapor pressure of the solute (Pvap) is provided, you can calculate the Henry’s constant and solute solubility at 1 bar under
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the assumption of ideal gas by setting cal_Henry=True.

H(bar) = IDAC % Pvap
x(1bar) = 1bar/H (bar)

This figure (produced by the code) illustrates the screening outcomes for carbon dioxide involving 7 cations and 5 anions
which have proven to be useful tool for searching good candidates' .

In(H[bar]) of CO2 in IL at 298.15K

3.9
PF6
3.8
bFAP L 3.7
TF2N 36
3.5
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Python code

import os, sys, time, glob

import multiprocessing

import numpy as np

import matplotlib.pyplot as plt

from scm.plams import Settings, init, finish, CRSJob, config, JobRunner
import pandas as pd

from math import gcd

####### Note: Ensure to download the coskf_IL before running the script #######

mrrn
The Python script automates the screening of the infinite dilution activity.
—coefficient (IDAC)

of a solute among all combinations of available ionic liquids in the corresponding.
—directory.

(continues on next page)

! Zhang, Xiaochun, Zhiping Liu, and Wenchuan Wang. “Screening of ionic liquids to capture CO2 by COSMO-RS and experiments.” AIChE
journal 56.10 (2008): 5617-5628.
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In(IDAC) of CO2 in IL at 298.15K
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(continued from previous page)

To run the script, ensure that the coskf file of ions and solute is stored in the.
—database_path

and the coskf file of ions follows a specific naming convention, such as IL_*cation_*.
—coskf or IL_ *anion_*.coskf.

For example, you should have files like IL_cation_Il-butyl-3-methyl-imidazolium.coskf,
IL_anion_hexafluorophosphate.coskf and Carbon_dioxide.coskf in ./coskf-IL/

Additionally, you need to provide the ion's information in the IL_list.csv file as.
—input including:
name, [abbreviation], type, charge, coskf, smiles (optional)
l-butyl-3-methyl-imidazolium, [C4MIM ; C4Clim ; BMIM], cation, 1.0, IL_cation_1-
—butyl-3-methyl-imidazolium.coskf, CCCCnlcc[n+] (C)cl
The IIL_1list.csv file contain the information of 80 cations and 56 anions in the.
—ADFCRS-IL-2014 database.

Furthermore, 1f the vapor pressure of the solute (Pvap) 1is provided, you can.
—calculate the Henry's constant and
solute solubility at 1 bar under the assumption of ideal gas by setting cal_
—Henry=True.

H(bar) = IDAC*Pvap

x (lbar)= lbar/H

The parallel calculation can be enabled by setting the Parallel_run=True and.
—maxjobs=numners_of_processes.

The calculated result will be saved in a pandas dataframe (df) and a csv file (result_
—csv="IL_screening.csv').

The visualization of the result using a contour plot can be enable by setting Plot_

np#v’ n=True

(continues on next page)
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Please ensure that you have installed the Pandas library. It's recommended to install.
—1t through AMSpackages.
"S{AMSBIN}/amspackages" install pandas

min

init ()

def set_CRSJob_IL(
index,
ncomp,
coskf,
database_path,
cal_type,
method,
temperature,
comp_input={},
comp_type=[],
comp_stoichiometric=[],

= Settings() # initialize a settings object
.input.property._h = cal_type # specify problem type
.input.method = method # specify method
.input.temperature = temperature # specify temperature

compounds = [Settings() for i in range (ncomp) ] # initialization of compounds
for i in range (ncomp) :
if len(comp_type) > 1i:
if "conf" in comp_typel[i]:
form = [Settings() for i in range(len(coskf[i]))] # initialize.
—compound in multiple form
for j in range(len(coskf[i])):
form[j]._h = os.path.join(
database_path, coskf[i][]]
) # specify conformer's coskf file for each form

compounds [i] .form = form
elif "IL" in comp_type[i]:
form = [Settings() for j in range(l)] # initialize IL in one form:.
—dissociated IL
species = [Settings() for j in range(2)] # initialize dissociated IL.

—1in two species: cation and anion
for j in range(2):
struct = [Settings() for k in range(1)] # initialize cation and.
—anion 1in one structure
struct[0]._h = os.path.join (database_path, coskf[i][]j])
struct[0] .count = comp_stoichiometric[i] []] # specify the.
—~Stoichiometric number of cation and anion
species[Jj] = struct
form[0] .species = species
compounds [i].form = form
else:
compounds[i]._h = os.path.join(database_path, coskf[i]) # specify.
—absolute directory of coskf file
else:
compounds[i]._h = os.path.join(database_path, coskf[i]) # specify.

—absolute directory of coskf file (continues on next page)
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for column, value in comp_input.items () : # specify compound's information.
—through comp_input, for example
if value[i] != None: # column: fracl, meltingpoint, hfusion
compounds [i] [column] = wvaluel[i]

s.input.compound = compounds

my_job = CRSJob (settings=s) # create jobs
my_Jjob.name = cal_type + "_" + str(index) # specify job name

return my_job

Parallel_run = True # If True -> parallel calculation
cal_Henry = True # If True -> calculation of Henry's constant using IDAC*Pvap
Plot_option = True # If True -> visualization of the results with a contour plot

if Parallel_run:
config.default_jobrunner = JobRunner (
parallel=True, maxjobs=8
) # Set jobrunner to be parallel and specify the numbers of jobs run.
—simutaneously (eg. multiprocessing.cpu_count())
config.default_jobmanager.settings.hashing = None # Disable rerun prevention
config.job.runscript.nproc = 1 # Number of cores for each job
config.log.stdout = 1 # suppress plams output default=3

###————INPUT YOUR DATA HERE-———###

database_path = os.path.join(os.getcwd (), "coskf IL")
cal_type = "activitycoef"

method = "COSMORS"

ncomp = 2

solute = "Carbon_dioxide.coskf"

solute_abb = "co2"

temperature = 298.15

# Retrive all coskf file for cation and anion in database_path. Note the file must be.
—named as: IL_*cation_*.coskf and IL_*anion*.coskf

cations_coskf = [os.path.basename (x) for x in glob.glob(os.path.join(database_path,
—"IL_*cation_*.coskf"))]
anions_coskf = [os.path.basename (x) for x in glob.glob(os.path.join(database_path,
—"IL_*anion_*.coskf"))]

# store input data along with the necessary thermal property in comp_input dictionary
comp_input = {}
comp_input["fracl"] = [1.0, 0.0]

# enter 'IL' for ionic liquid; 'conf' for compound with multiple conformers; '' for.
—compound with single structure
comp_type = [HIL", "H]

# Read ion's information from IL_list.csv where contain name, [abbreviation], type,.
—charge, coskf, smiles (optional)

df_IL = pd.read_csv("IL list.csv")

# Write the screening result

(continues on next page)
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result_csv = "result_IL_screening.csv"
###-———INPUT END-———###

index = 0

outputs = []

df = pd.DataFrame ()
for cation in cations_coskf:
for anion in anions_coskf:

cur_df = df_IL.loc[df_IL["coskf"] == cation]

cation_abb = cur_df["abbreviation"].values[0].split (";") [0].rstrip() #_
—abbreviation

cation_charge = int (cur_df["charge"].values|[0]) # charge

cur_df = df_IL.loc[df_IL["coskf"] == anion]

anion_abb = cur_df["abbreviation"].values[0].split (";") [0].rstrip() #._
—abbreviation

anion_charge = int (cur_df["charge"].values[0]) # charge

# find the Least Common Multiple of cation charge and anion charge

IL_lcm = cation_charge * anion_charge / gcd(cation_charge, anion_charge)

cation_v = -IL_lcm / cation_charge # stoichiometric number of cation

anion_v = IL_lcm / anion_charge # stoichiometric number of anion

IL_abb = [cation_abb, anion_abb] # abbreviation

IL_coskf = [cation, anion]

IL_v = [cation_v, anion_v] # stoichiometric number

coskf = [IL_coskf, solute]

comp_stoichiometric = [IL_v, 1.0] # stoichiometric number used for multi-
—species

comp_input ["name"] = [cation_abb + "_" + anion_abb, solute_abb]

df.loc[index, "cation"] = cation_abb

df.loc[index, "anion"] = anion_abb

df.loc[index, "solute"] = solute.replace(".coskf", "")

df.loc|

[

index, "charge_c"] = int (cation_charge)
df.loc[index, "charge_a"] = int (anion_charge)
job = set_CRSJob_IL(

index,

ncomp,

coskf,

database_path,

cal_type,

method,

temperature,

comp_input,

comp_type,

comp_stoichiometric,
)
outputs.append (job.run())

index = index + 1

(continues on next page)
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# In a parallel run, the get_results function will wait for the completion of the.
—corresponding jobs.
results = []
for index, out in enumerate (outputs):
res = out.get_results ()
results.append(res)
df.loc[index, "IDAC"] = res["gamma"][-1][0]

if cal_Henry:
if solute == "Carbon_dioxide.coskf":
Pvap = np.power (10, 6.35537 - 2067.0 / (temperature + 156.462))
# antonie equation (unit in bar), parameters are fitted by SCM in temperature.
—range 260-305K
else:
Pvap = np.nan
print ("The vapor pressure of the solute is not defined")
if not np.isnan (Pvap):
df ["H(bar)"] = df["IDAC"] * Pvap
df ["x (lbar)"] = 1 / (df["IDAC"] * Pvap)

df.to_csv(result_csv, index=None)

if Plot_option:
# contour visulization
nx = len(cations_coskf)
ny = len(anions_coskf)

# Extract the 1st abbreviation of the ions. For instance, [C4MIM ; C4Clim ; BMIM]._
——=> C4MIM

cation_name = [df_IL.loc[df_IL["coskf"] == x]["abbreviation"].values[0].split(";
—")[0] for x in cations_coskf]

anion_name = [df_IL.loc[df_IL["coskf"] == x]["abbreviation"].values[0].split (";
") [0] for x in anions_coskf]

x = [1 for i in range (nx)]
vy [i for i in range(ny)]

if cal_Henry and not np.isnan (Pvap):
cal_data = df["H(bar)"].values

sub_title = "In(H[bar]) of " + solute_abb + " in IL at " + str(temperature) +
< "K"

fig_title = "IL_screening_lnH.png"

else:

cal_data = df["IDAC"].values

sub_title = "In(IDAC) of " + solute_abb.replace("_", " ") + " in IL at " +.
—str (temperature) + "K"

fig_title = "IL_screening_ lnIDAC.png"

plt_data = np.zeros((ny, nx))
for i in range (ny):
for j in range (nx) :
plt_datali]l[j] = np.log(cal_datal[j * ny + i])

fig, ax = plt.subplots()

(continues on next page)
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plt.imshow (plt_data, cmap="RdGy", interpolation="nearest")
if len(x) > 10:
x = [0+ 5 * n for n in range((len(x) // 5) + 1)1
plt.xticks (x, x, rotation=70)
else:
plt.xticks (x, cation_name, rotation=70)
if len(y) > 10:
y = [0+ 5 * n for n in range((len(y) // 5) + 1)]
plt.yticks(y, vy)
else:
plt.yticks (y, anion_name)
plt.colorbar ()
plt.title(sub_title)
plt.tight_layout ()
# plt.savefig(fig_title)
plt.show ()

finish ()

References

Calculating and estimating sigma profiles

Sigma profiles are one of the fundamental pieces of a COSMO-RS/-SAC calculation. They are also widely used as an
important empirical descriptor for a molecule’s behavior in a solution as well as for a molecule’s properties in a number
of applications. In the standard COSMO-RS/-SAC workflow, sigma profiles are generated after a sequence of DFT
calculations which — for large molecular systems — can take considerable time to complete. For computationally expensive
systems or high-throughput screening applications, it is sometimes advantageous to approximate sigma profiles using tools
like fast_sigma from AMS.

In the following python script, we generate sigma profiles for n-Hexanoic acid using the two approaches discussed above.
The function calc_sigma_profile will generate sigma profiles from . coskf files, and the function fast_sigma
will generate sigma profiles from SMILES strings using the fast_sigma tool.

Python code

import os
import numpy as np
import matplotlib.pyplot as plt

from scm.utils.runsubprocess import RunSubprocess
from scm.plams import Settings, init, finish, CRSJob, config, KFFile
import subprocess

######## Note: Ensure to configure the database path to either the installed ADFCRS-
2018 directory or your own specified directory ########

database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADFCRS-2018")
if not os.path.exists (database_path):

raise OSError (f"The provided path does not exist. Exiting.")

init ()

(continues on next page)
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# suppress plams output
config.log.stdout = 0

class SigmaProfile:
def _ _init__ (self, chdens, profiles, profile_names):
if len(profiles) != len(profile_names) :
print ("Error: profiles_names and profiles of different sizes")
self.chdens = chdens.flatten() if isinstance (chdens, np.ndarray) else chdens
self.profiles = {
name: prof.flatten() if isinstance(prof, np.ndarray) else prof
for name, prof in zip(profile_names, profiles)

def _ str (self):

line "—mo& (15 * (1 + len(self.profiles)))
ret = (
line
+ u\nu
+ "".join(["Charge Dens.".ljust (15)] + [name.ljust(15) for name in self.
—profiles])
+ u\nu
+ line
+ vl\nn

for i in range(len(self.chdens)):
ret += "{0:.5g}".format (self.chdens[i]) .1ljust (15) + "".join(
["{0:.5g}".format (v[i]).1ljust (15) for k, v in self.profiles.items()]

)
ret += "\n"
return ret

def fast_sigma(smiles):

results_file = "tmp_resultsl18954.compkf"

subprocess_string = " —--smiles '" + smiles + "'"

if not os.path.isfile(os.path.join(os.path.expandvars ("SAMSBIN"), "fast_sigma")):
raise OSError ("ERROR: cannot find fast_sigma ... has amsbashrc been executed?

. ")

fs = os.path.join(os.path.expandvars ("$AMSBIN"), "fast_sigma")

scm_sp = RunSubprocess (fs + subprocess_string + " -o " + results_file)
if os.path.isfile(results_file):
crskf = KFFile(results_file)
res = crskf.read_section ("PURESIGMAPROFILE™)
sp = SigmaProfile(
chdens=res|["chdval"],
profiles=[res["profil"], res["hbprofil"]],
profile_names=["total profile", "HB profile"],

)
os.remove (results_file)
return sp, scm_sp
else:
return None, scm_sp

(continues on next page)
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def calc_sigma_profile(coskf_file, cosmosac=False):

# initialize settings object
settings = Settings ()
settings.input.property._h = "SIGMAPROFILE"

# set the number of compounds
compounds = [Settings()]
compounds [0] ._h = os.path.join(database_path, coskf_file)
compounds [0] . fracl = 1
# to change to the COSMOSAC2013 method
if cosmosac:

settings.input.method = "COSMOSAC2013"

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds

# create a job that can be run by COSMO-RS

my_Jjob = CRSJob (settings=settings)

out = my_job.run()
res = out.get_results ()

if cosmosac:
prof_len = len(res|["hbprofil"]) // 3
sp = SigmaProfile(
chdens=res["chdval"],
profiles=[res["profil"]] + [res["hbprofil"][i * prof_len : (i + 1) * prof_
—~len] for i in range(3)],
profile_names=["total_ profile", "HB", "HB-OH", "HB-OT"],
)
else:
sp = SigmaProfile(
chdens=res|["chdval"],
profiles=[res["profil"], res["hbprofil"]],
profile_names=["total_ profile", "HB_profile"],
)

return sp

# regular way to generate a sigma profile from a .coskf file
filename = "n-Hexanoic_acid.coskf"
sp = calc_sigma_profile(filename, cosmosac=False)

# way using the fast_sigma estimation method
fs_sp, err = fast_sigma ("CCCCCC (=0)0")
if fs_sp is None or len(err[l]) > O:
print ("fast_sigma generated the following output:\n" + err[1])

plt.xlabel ("o value (e/A"2)")
plt.ylabel ("p(o)")

plt.plot (sp.chdens, sp.profiles["total profile"], label="Calculated sigma profile")
if fs_sp is not None:
plt.plot (fs_sp.chdens, fs_sp.profiles["total profile"], label="Estimated sigma.

—profile") (continues on next page)
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plt.legend(loc="upper right")
plt.grid()

# plt.savefig(f"./Sigma_profile.png")
plt.show ()

finish ()

This code produces the following output:

17.5
—— Calculated sigma profile

\ Estimated sigma profile

N
15.0 4

12.5 \

10.0 \

C)
2 7.5
5.0 -
2.5 N \/.0
0.0 J e
T T T T T
—0.02 —0.01 0.00 0.01 0.02

o value (e/a™2)

Sigma Moments

Sigma moments are useful chemical descriptors derived from the sigma profile. They are analogous to moments of a
statistical distribution and can be thought of as a way to reduce the high-dimensional information present in a sigma
profile to a smaller number of descriptors that characterize that sigma profile. Sigma moments are known to be valuable
descriptors in QSPR and are thought to represent the solvent space well'.

The following script will calculate the first several sigma moments as well as a H-bond acceptor and H-bond donor moment
for a few common molecules.

U A. Klamt, COSMO-RS From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier. Amsterdam (2005), ISBN 0-444-
51994-7.
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Python code

import os
import numpy as np
from scm.plams import Settings, init, finish, CRSJob, config

######## Note: Ensure to configure the database path to either the installed ADFCRS-
<2018 directory or your own specified directory ########

database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADFCRS-2018")
if not os.path.exists (database_path):
raise OSError (f"The provided path does not exist. Exiting.")

init ()

# suppress plams output
config.log.stdout = 0

class SigmaMoments:

def

def

def

def

_ init_ (self, filenames, hb_cutoff=0.00854):
self.filenames = filenames
self.hb_cutoff = hb_cutoff

calculate_moments (self) —> dict:
self.moments = {}
self.calc_profiles_and_chdens ()
self.calc_standard_moments ()
self.calc_hb_moments ()

return self.moments

calc_profiles_and_chdens (self) :

# initialize settings object
settings = Settings()
settings.input.property._h = "PURESIGMAPROFILE"
# set the cutoff value for h-bonding
settings.parameters.sigmahbond = self.hb_cutoff
compounds = [Settings() for i in range(len(self.filenames))]
for i, filename in enumerate (filenames) :
compounds[i]._h = os.path.join(database_path, filename)

settings.input.compound = compounds

# create a job that can be run by COSMO-RS
my_Jjob = CRSJob (settings=settings)

# run the job

out = my_job.run()

# convert all the results into a python dict
res = out.get_results()

# retain profiles and charge density values
self.tot_profiles = res|["profil"]
self.hb_profiles = res["hbprofil"]
self.chdens = res["chdval"]

calc_standard_moments (self, max_power=3) :

(continues on next page)
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for i in range (max_power + 1):
tmp_moms = []
for prof in self.tot_profiles:
tmp_moms.append (np.sum(prof * np.power (self.chdens, 1i)))
self.moments["MOM_" + str(i)] = tmp_moms

def calc_hb_moments (self):
self.moments ["MOM_hb_acc"] = []
self.moments["MOM_hb_don"] = []

zeros = np.zeros(len(self.chdens))
for prof in self.hb_profiles:
self.moments["MOM_hb_acc"].append(np.sum(prof * np.maximum(zeros, self.

—chdens - self.hb_cutoff)))
self.moments["MOM_hb_don"] .append(np.sum(prof * np.maximum(zeros, -self.
—chdens - self.hb_cutoff)))

# the files we want to use to calculate sigma moments
filenames = ["Water.coskf", "Hexane.coskf", "Ethanol.coskf", "Acetone.coskf"]

sm = SigmaMoments (filenames)

moms = sm.calculate_moments ()

max_mom_len = max([len(m) for m in moms])

print ()

print ((" " * 5).join(["Moment".ljust (max_mom_len)] + filenames))
lens = [len(fn) for fn in filenames]

for mom_name in moms:
print (
(" " * 5).join(
[mom_name.ljust (max_mom_len)] + [("{0:.59}".format (m)).rjust(l) for m, 1l_
—in zip (moms[mom_name], lens)]

)

finish ()

The output produced is the following

Moment Water.coskf Hexane.coskf Ethanol.coskf Acetone.coskf
MOM_0 43.011 160.38 90.019 103.28
MOM_1 0.00026666 0.002145 0.00089555 0.0011418
MOM_ 2 0.0062556 0.001061 0.0046302 0.004566
MOM_ 3 -3.8253e-07 1.1557e-07 1.5947e-05 2.883e-05
MOM_hb_acc 0.078179 0 0.06562 0.068401
MOM_hb_don 0.078272 0 0.034516 0
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Eutectic systems

A eutectic point of a chemical mixture defines the minimum melting composition of that system over the composition
range. In other words, the eutectic point will have a lower melting point than the pure components making up the mixture
as well any other possible mixture. In this example, we calculate the eutectic point of a binary mixture of ethanol and
water as the intersection of the solid-liquid equilibrium curves of two systems: (1) Solid ethanol dissolved in water and
(2) Solid water dissolved in ethanol. This script will output the mole fraction of ethanol at the eutectic point as well as the
temperature. For comparison, Takaizumi and Wakabayashi' provide an experimental eutectic point with a mole fraction
value of 0.86 for ethanol and a melting temperature of -124.3 °C.

Python code

import os
import matplotlib.pyplot as plt
from scm.plams import Settings, init, finish, CRSJob, config

######## Note: Ensure to configure the database path to either the installed ADFCRS-
2018 directory or your own specified directory ########

database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADFCRS-2018")
if not os.path.exists (database_path) :
raise OSError (f"The provided path does not exist. Exiting.")

init ()
# suppress plams output
config.log.stdout = 0

# the ethanol water system

# experimental numbers for this eutectic are 0.86 mole fraction ethanol at a.
—temperature of -124.3 degrees C

files = ["Ethanol.coskf", "Water.coskf"]

tm = [158.5, 273.15] # K

hfus = [1.2, 1.43] # kcal/mol

initial_t_range = [100, 300] # K —— the temperature range over which the eutectic.
—search is done

steps = 20 # number of steps to take within the temperature range
# another eutectic system

# files = ["L-Menthol.coskf","Camphor.coskf"]

# tm = [316.2,451.5] #K

# hfus = [2.84,1.63] #kcal/mol

# initial_t_range = [100,460] #K

# steps = 20

# 1f we know the eutectic temperature is bounded to within a range of <= estimate_
—precision, we simply use a linear interpolation between two x,T pairs
estimate_precision = 1.0 # K

(continues on next page)

! Takaizumi, K., and T. Wakabayashi. “The freezing process in methanol-, ethanol-, and propanol-water systems as revealed by differential scanning
calorimetry.” Journal of solution chemistry 26.10 (1997): 927-939.
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class Eutectic:

def _ _init__ (self, files, tm, hfus, steps=10):
self.files = files
self.tm = tm
self.hfus = hfus
self.steps = steps

if not (len(self.files) == len(self.tm) == len(self.hfus)):
print ("Error. Inputs must be the same length.")

def calc_xt_curves(self, t_range):

# initialize settings object
settings = Settings()

settings.input.property._h = "SOLUBILITY"
# optionally, change to the COSMOSAC2013 method
settings.input.method = "COSMOSAC2013"

# make compounds
compounds = [Settings () for i in range(len(files))]
for i, file in enumerate(self.files):
compounds[i]._h = os.path.join(database_path, file)

compounds [1] .meltingpoint = self.tm[i]
compounds [i].hfusion = self.hfus[i]
compl_fracs = []
for i, fracl in enumerate([0.0, 1.0]):
compounds [0] . fracl = fracl
compounds [1].fracl = 1.0 - fracl
settings.input.temperature = " ".join([str(t) for t in t_range] +._

< [str(self.steps)])

# add the compounds to the settings object
settings.input.compound = compounds

# create a job that can be run by COSMO-RS
my_job = CRSJob (settings=settings)

# run the job

out = my_job.run()

# convert all the results into a python dict

res = out.get_results/()
if i == 0:
compl_fracs.append(res["molar fraction"][0])
else:
compl_fracs.append (1.0 - res["molar fraction"][1])

return compl_fracs

def calc_eutectic(self, t_range, history=[[], [1, []1]):
compl_fracs = self.calc_xt_curves (t_range)
# the temperatures used in the calculation

temps = [t_range[0] + (t_range[l] - t_range[0]) / self.steps * 1 for i in.
—range (self.steps + 1)1

(continues on next page)
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history[0].extend (compl_fracs[0])
history[l].extend(compl_fracs[1])
history[2].extend (temps)
# the difference between compound 1's mole fraction in the two calculations
# when these mole fractions are the same, we've found the eutectic
diffs = compl_fracs[0] - compl_fracs[1]
# find where the sign changes (intersection of SLE lines)
for i in range(self.steps):
if diffs[i] * diffs[i + 1] < O:

if temps[i + 1] - temps[i] < estimate_precision:
# use linear combination of t's
tot = abs(diffs[i]) + abs(diffs[i + 11)
wl = tot - abs(diffs[i]) # same as abs(diffs[i+1])
w2 = tot - abs(diffs[i + 1])

return (
(
(wl * compl_fracs[0][i] + w2 * compl_fracs[1][1 + 1]1) /_
—tot,
(wl * temps[i] + w2 * temps[i + 1]) / tot,
)
), history
else:

return self.calc_eutectic([temps[i], temps[i + 1]], history)

return None, None

eutectic_calc = Eutectic(files, tm, hfus, steps=steps)
eutectic, history = eutectic_calc.calc_eutectic(initial_t_range)

if not eutectic:

print ("No eutectic point found in the temperature range")
else:

print ("Found eutectic point:")

print ("x_1".rjust (10), "T (K)".rjust(10), "T (C)".rjust(10))

x, t = eutectic

print (str(x.round(5)) .rjust (10), str(t.round(5)).rjust(10), str((-273.15 + t).
—round (5)) .rjust (10))

# plot the solubility curves and eutectic point
h_sl = sorted(list(zip(history[0], history[2])), key=lambda x: x[0])
h_s2 = sorted(list(zip(history[1], history[2])), key=lambda x: x[0])

_ ] >= eutectic[1]]
h s2 = [x for x in h_s2 if x[0] <= eutectic[0] and x[1] >= eutectic[1]]

h s1 = [x for x in h_s1 if x[0] >= eutectic[0] and x[1

# adjust the melting point back to the correct value for high or low solubility
for i in range(len(h_s1)):
if h_s1[i][0] > 0.9999:
h_s1[i] = (h_s1[i]1([0], tm([O0])
for i in range(len(h_s2)):
if h_s2[i][0] < 0.0001:
h_s2[i] = (h_s2[i]1[0], tm[1])

plt.plot ([x[0] for x in h_sl1], [x[1l] for x in h_sl], label="x_1 (solvent compound.

~1)M (continues on next page)
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plt.plot ([x[0] for x in h_s2], [x[1] for x in h_s2], label="x_1 (solvent compound.
—=2)")

plt.plot (eutectic[0], eutectic[1], "o", label="Eutectic point")

if eutectic[0] < 0.5:

plt.annotate (" " + str(tuple([xt.round(3) for xt in eutectic])), eutectic,.
—va="center", ha="left")
else:
plt.annotate (str (tuple ([xt.round(3) for xt in eutectic])) + " ", eutectic,.

—va="center", ha="right")

plt.xlabel ("Mole fraction compound 1")
plt.ylabel ("Melting point of mixture (K)")
plt.legend(loc="upper right")

plt.grid()

plt.show()

finish ()

This figure (produced by the code) shows the two solubility curves calculated by the program.

—— x_1 (solvent compound 1)
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Binodal and Spinodal Curves

Binodal and spinodal curves are useful for understanding phase stability. The binodal curve (or coexistence curve) defines
the temperatures and compositions at which phase separation is thermodynamically favorable. The spinodal curve is
located within the binodal curve and indicates the limit of local phase stability. Compositions between the spinodal and
binodal curves — while not thermodynamically stable — are robust against small fluctuations (i.e., the free energy surface
is locally convex for points in this region).

Python code (Binary mixture)

import os

import numpy as np

import matplotlib.pyplot as plt

from scm.plams import Settings, init, finish, CRSJob, config

######## Note: Ensure to configure the database path to either the installed ADFCRS-
2018 directory or your own specified directory ########

database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADFCRS-2018")
if not os.path.exists (database_path) :
raise OSError (f"The provided path does not exist. Exiting.")

init ()

# suppress plams output
config.log.stdout = 0

files = ["Nitrobenzene.coskf", "Hexane.coskf"]

nring = [6, 0]

# problem paramters

temp_range = [203.15, 243.15] # K ——- the temperature range over which the curves are.

—calculated
steps = 40 # number of steps to take within the temperature range
def binmix_at_T(files, temp):

# initialize settings object

settings = Settings()

settings.input.property._h = "BINMIXCOEF"

settings.input.property.nfrac = 100

# make compounds

compounds = [Settings () for i in range(len(files))]
for i, (file, nr) in enumerate(zip(files, nring)):
compounds[i]._h = os.path.join(database_path, file)

compounds [i] .nring = nr
settings.input.temperature = temp

# optionally, change to the COSMOSAC2013 method
settings.input.method = "COSMOSAC2013"

(continues on next page)
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def

def

# we'll also tighten the convergence threshold for better numerical accuracy
settings.input.Technical.sacconv = 1e-10

# add the compounds to the settings object
settings.input.compound = compounds

# create a job that can be run by COSMO-RS
my_Jjob = CRSJob (settings=settings)

# run the job

out = my_job.run ()

# convert all the results into a python dict
res = out.get_results()

return res

calc_binodal_at_T(res):

# this is the miscibility gap, so we can use the result calculated by the program
if res["showmiscgap"]:

return res["xlle"][:2]
else:

return None

calc_spinodal_at_T(res):

# here, we'll look for points with d"2(G_mix)/dx"2 = 0

# we'll calculate a numerical second derivative for every point
spinodal = []

gmix = res["Gibbs energy of mixing"]

fracl = res["molar fraction"][0]

second_deriv = np.zeros (len(gmix))

# initial values for endpoints (assuming convexity close to pure compounds)
second_deriv[0] = 0.0001

second_deriv[-1] = 0.0001
for i in range (1, len(gmix) - 1):
deltal = fracl[i] - fracl[i - 1]
delta?2 = fracl[i + 1] - fracl[i]
dl = (gmix[i] - gmix[i - 1]) / deltal
d2 = (gmix[i + 1] - gmix[i]) / delta2
second_deriv[i] = 2 * (d2 - d1) / (deltal + delta?2)
for i in range(len(second_deriv) - 1):
if second_deriv[i] * second_deriv[i + 1] < O:
distl = abs(second_deriv[il])
dist2 = abs(second_deriv[i + 1])
tot = distl + dist2
zero = (dist2 * fracl[i] + distl * fracl[i + 1]) / tot

spinodal.append(zero)

return spinodal if spinodal else None

temps = [temp_range[0] + (temp_range[l] - temp_range[0]) / steps * i for 1 in.

—range (steps + 1)]

(continues on next page)
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bin_left_points = []
bin_right_points =
spin_left_points = []

spin_right_points = []

print ("Temperature".ljust (15), "Binodal points".ljust (25), "Spinodal points")
for temp in temps:

|
—

res = binmix_at_T(files, temp)

binodal = calc_binodal_at_T (res)

spinodal = calc_spinodal_at_T (res)

bin_str = "(" + ",".Join(["{0:<10.5g}".format (x) for x in binodal]) + ")" if._
—binodal is not None else "——"

spin_str = " (" + ",".Join(["{0:<10.5g}".format (x) for x in spinodal]) + ")" if_
—spinodal is not None else "—-"

print ("{0:.5g}".format (temp) .1just (15), bin_str.ljust (25), spin_str)

if binodal is not None:
bin_left_points.append((binodal[0], temp))
bin_right_points.append((binodal[l], temp))

if spinodal is not None:
spin_left_points.append((spinodal[0], temp))
spin_right_points.append((spinodal[-1], temp))

bin_points = bin_left_points + list (reversed(bin_right_points))
spin_points = spin_left_points + list (reversed(spin_right_points))

plt.plot ([x[0] for x in bin_points], [y[l] for y in bin_points], label="Binodal curve
="

plt.plot ([x[0] for x in spin_points], [yI[l] for y in spin_points], label="Spinodal.
—curve")

plt.xlabel ("Mole fraction compound 1")

plt.ylabel ("Temperature (K)")

plt.legend(loc="upper right")

plt.grid()

# plt.savefig('./Binodalspinodal_binary.png',dpi=300)

plt.show ()

finish ()

This code produces the following output:

Python code (Ternary mixture)

Note: This example uses the python package ternary, but this is only required for plotting. This external python
package can be installed from the internet in amspython using pip as follows: amspython -m pip install
python-ternary. Users may choose to remove the plotting features of the code and not install ternary.

import os

import numpy as np

import matplotlib.pyplot as plt

from scm.plams import Settings, init, finish, CRSJob, config

######## Note: Ensure to configure the database path to either the installed ADFCRS-

2018 directory or your own specitied directory FHAFHRH (continues on next page)
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database_path = os.path.join(os.environ["SCM_PKG_ADFCRSDIR"], "ADECRS-2018")
if not os.path.exists (database_path) :
raise OSError (f"The provided path does not exist. Exiting.")

init ()
# suppress plams output
config.log.stdout = 0

files = ["Nitrobenzene.coskf", "Hexane.coskf"]

nring = [6, 0]

# problem paramters

temp_range = [203.15, 243.15] # K —-- the temperature range over which the curves are.
—calculated

steps = 40 # number of steps to take within the temperature range

def binmix_at_T(files, temp):

# initialize settings object
settings = Settings()
settings.input.property._h = "BINMIXCOEF"

settings.input.property.nfrac 100

# make compounds
compounds [Settings () for i in range(len(files))]
for i, (file, nr) in enumerate(zip(files, nring)):

(continues on next page)
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def

def

compounds[i]._h = os.path.join(database_path, file)
compounds [i] .nring = nr

settings.input.temperature = temp

# optionally, change to the COSMOSAC2013 method

settings.input.method = "COSMOSAC2013"

# we'll also tighten the convergence threshold for better numerical accuracy
settings.input.Technical.sacconv = 1e-10

# add the compounds to the settings object
settings.input.compound = compounds

# create a job that can be run by COSMO-RS
my_job = CRSJob (settings=settings)

# run the job

out = my_job.run ()

# convert all the results into a python dict
res = out.get_results ()

return res

calc_binodal_at_T(res):

# this is the miscibility gap, so we can use the result calculated by the program
if res["showmiscgap"]:

return res["x1lle"][:2]
else:

return None

calc_spinodal_at_T (res):

# here, we'll look for points with d"2(G_mix)/dx"2 = 0

# we'll calculate a numerical second derivative for every point
spinodal = []

gmix = res["Gibbs energy of mixing"]

fracl = res["molar fraction"][O0]

second_deriv = np.zeros (len(gmix))

# initial values for endpoints (assuming convexity close to pure compounds)
second_deriv[0] = 0.0001

second_deriv[-1] = 0.0001
for i in range(l, len(gmix) - 1):
deltal = fracl[i] - fracl[i - 1]
delta2 = fracl[i + 1] - fracl[i]
dl = (gmix[i] - gmix[i - 1]) / deltal
d2 = (gmix[i + 1] - gmix[i]) / delta2
second_deriv[i] = 2 * (d2 - d1) / (deltal + delta?2)
for i in range(len(second_deriv) - 1):
if second_deriv[i] * second_deriv[i + 1] < O:
distl = abs(second_deriv[i])
dist2 = abs(second_deriv[i + 17)
tot = distl + dist2
zero = (dist2 * fracl[i] + distl * fracl[i + 1]) / tot

(continues on next page)
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spinodal.append(zero)

return spinodal if spinodal else None

temps = [temp_range[0] + (temp_range[l] - temp_range[0]) / steps * i for 1 in.
—range (steps + 1)]
bin_left_points = []
bin_right_points = []
spin_left_points = []
spin_right_points = []
print ("Temperature".ljust (15), "Binodal points".ljust (25), "Spinodal points")
for temp in temps:

res = binmix_at_T(files, temp)

binodal = calc_binodal_at_T (res)

spinodal = calc_spinodal_at_T (res)

bin_str = "(" + ",".join([" " format (x) for x in binodal]) + ")" if._.
—binodal is not None else "——"

spin_str = "(" + "," Join([" " format (x) for x in spinodal]) + ")" if.
—spinodal is not None else "—-"

print (" ".format (temp) .1just (15), bin_str.ljust(25), spin_str)

if binodal is not None:
bin_left_points.append((binodal[0], temp))
bin_right_points.append((binodal[1l], temp))

if spinodal is not None:
spin_left_points.append((spinodal[0], temp))
spin_right_points.append((spinodal[-1], temp))

bin_points = bin_left_points + list (reversed(bin_right_points))
spin_points = spin_left_points + list (reversed(spin_right_points))

plt.plot ([x[0] for x in bin_points], [y[l] for y in bin_points], label="Binodal curve
")

plt.plot ([x[0] for x in spin_points], [y[l] for y in spin_points], label="Spinodal.
—curve")

plt.xlabel ("Mole fraction compound 1")

plt.ylabel ("Temperature (K)")

plt.legend(loc="upper right")

plt.grid()

plt.show()

finish ()

This code produces the following output:
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—— Binodal T=273.15K
1.0 —— Spinodal T=273.15 K

Distribution of species in multispecies calculations

COSMO-RS can be used with compounds which can be composed of multiple possible species . For these types of
calculations, it is often desirable to know the distribution of the various possible forms/species that constitute a certain
compound. In the following script, a binary mixture calculation is performed using benzene and an acetic acid compound
which is capable of existing as either of 2 conformers or as a dimer. The distribution of these species is plotted as a
function of mole fraction.

Download relevant coskf file

Python code (Binary mixture)

import os
import matplotlib.pyplot as plt
from scm.plams import Settings, init, finish, CRSJob, config

FHARHFARHHFAHH###H#### Note: Ensure to download the coskf_acetic_acid before running the.
—Sscript ######EEFAEEAAEEAS
database_path = os.path.abspath("./coskf_acetic_acid")

if not os.path.exists (database_path):

raise OSError (f"The provided path does not exist. Exiting.")

def adjust_name(s):
return os.path.basename (s)

(continues on next page)
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init ()
# suppress plams output
config.log.stdout = 0

# initialize settings object
settings = Settings()

settings.input.property._h = "BINMIXCOEE"
# optionally, change to the COSMOSAC2013 method
# settings.input.method = 'COSMOSAC2013'

# set the number of compounds

num_compounds = 2

compounds = [Settings() for i in range (num_compounds) ]
compounds [1] .name = "acetic_acid"

form = [Settings() for i in range(3)]

form[0]._h = os.path.join(database_path, "acetic_acid_0.coskf")
form[1]._h = os.path.join(database_path, "acetic_acid_1.coskf")

form[2]._h = os.path.join(database_path, "acetic_dimer.coskf")
form[2].count = 2
form[2] .Hcorr = 9.25

compounds [0] . form = form

compounds[1]._h = os.path.join(database_path, "Benzene.coskf")
compounds [1] .name = "compl"

settings.input.temperature = 298.15

# specify the compounds as the compounds to be used in the calculation
settings.input.compound = compounds

# create a job that can be run by COSMO-RS

my_Jjob = CRSJob (settings=settings)

# run the job

out = my_job.run()

# convert all the results into a python dict

res = out.get_results/()
compositions = out.get_multispecies_dist ()
mfl = res["molar fraction"][0]

plot_comp = 0 # we'll plot the first compound (acetic acid)
for struct, wvals in compositions[plot_comp].items() :
plt.plot (mfl, vals, label=adjust_name (struct))

plt.xlabel ("Mole fraction compound 1")
plt.ylabel ("Species composition of compound")
plt.legend(loc="upper right")

plt.grid()

# plt.savefig("./ms_distribution.png", dpi=300)
plt.show()

(continues on next page)
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finish ()

This code produces the following output:

1.0 1 —— acetic_acid_0.coskf
—— acetic_acid_1.coskf
S —— acetic_dimer.coskf
5 0.8 A
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Mole fraction compound 1
Automated pKa calculation
Download relevant coskf file
Python code
import os, math
from scm.plams import Settings, init, finish, CRSJob, config
import matplotlib.pyplot as plt
init ()
# suppress plams output
config.log.stdout = 0
class PkaSystem:
def _ init_ (
self,
comp_protonated: Settings = None,
comp_deprotonated: Settings = None,

systype="acid",

(continues on next page)
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self.comp_protonated = comp_protonated
self.comp_deprotonated = comp_deprotonated
self.type = systype.lower ()

self.g_cp = []

self.g_cd = []

self.pka = {}

self.error = self.check_type ()

def check_type(self):

if not all (isinstance(x, Settings) for x in

—deprotonated]) :

print ("Incorrect input type for compounds in PkaSystem...

—Settings instance")
return False
return True

class PkaCalculator:
def _ init_ (

self,
systems=None,
solv_protonated=None,
solv_deprotonated=None,
temp_range=[298.15, 298.15],
steps=0,
use_correction=True,

self.systems = systems
self.solv_protonated =
self.solv_deprotonated =
self.temp_range = temp_range
self.steps = steps
self.use_correction = use_correction

self.R_const = 0.001987 # kcal/(mol K)

solv_protonated
solv_deprotonated

self.
self.

g_sp = [
g_sd

1
e

if self.steps ==
self.temp_vals =
else:
self.temp_vals = [
self.temp_range[0] *
— (t_idx / self.steps)
for t_idx in range(self.steps + 1)

[temp_range[0]]

(1 - t_idx / self.steps)

self.calc_G_values ()
self.calc_pkas()

def calc_G_values (self):

for temp in self.temp_vals:
settings = Settings()

settings.input.property._h = "ACTIVITYCOEE"

[self.comp_protonated,

self.comp_

must be a plams.

+ self.temp_range[l] *._

(continues on next page)
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# optionally, change to the COSMOSAC2013 method
# settings.input.method = 'COSMOSAC2013'
settings.input.temperature = temp

compounds = [Settings ()] * (2 + 2 * len(systems))
compounds [0] = self.solv_deprotonated
compounds [0] .fracl = 1.0

compounds[1] = self.solv_protonated

for i, system in enumerate (systems) :
compounds [2 + 2 * i] = system.comp_deprotonated
compounds [2 + 2 * i + 1] = system.comp_protonated

settings.input.compound = compounds
my_job = CRSJob (settings=settings)

out = my_job.run()
res = out.get_results()
g_vals = res["G solute"]

for i, system in enumerate (systems) :
system.g_cd.append(g_vals[2 + 2 * 1i])
system.g_cp.append(g_vals[2 + 2 * i + 17])

self.g_sd.append(g_vals[0])

self.g_sp.append(g_vals[1l])

def calc_pkas(self):
for i, temp in enumerate(self.temp_vals):
temp_key = round(temp, 3)
for system in self.systems:

g_diss = system.g_cd[i] - system.g_cp[i] + self.g_spl[i] - self.g_sd[i]
if self.use_correction:

pka = self.calc_corrected_pka(g_diss, system, temp)
else:

pka = g_diss / (self.R_const * temp * math.log(10)) - 1.74

system.pka[temp_key] = pka

def calc_corrected_pka(self, g_diss, system, temp):

if system.type == "acid":
return 0.62 * g_diss / (self.R_const * temp * math.log(10)) + 2.1
else:
return 0.67 * g_diss / (self.R_const * temp * math.log(10)) - 2.0
if _ name_ == "_ main__ ":

#HEAAFAHAFFAHFAFAHA#F  Note: Ensure to download the coskf_pkas before running the.
wscript #####FHEAEAFHEAEAFEA
database_path = os.path.abspath("./coskf_pkas")

if not os.path.exists (database_path):
raise OSError (f"The provided path does not exist. Exiting.")

systems = []
benzoic_acid = Settings ({"_h": os.path.join (database_path, "Benzoic_acid.coskf")})

benzoic_acid_deprotonated = Settings ({"_h": os.path.join (database_path,
—"conjugate_base_Benzoic_acid.coskf")})

(continues on next page)
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systems.append (PkaSystem (comp_protonated=benzoic_acid, comp_deprotonated=benzoic_
—acid_deprotonated, systype="acid"))

pyridine = Settings ({"_h": os.path.join (database_path, "Pyridine.coskf")})

pyridineH = Settings ({"_h": os.path.join(database_path, "conjugate_acid Pyridine.
—coskf") })

systems.append (PkaSystem (comp_protonated=pyridineH, comp_deprotonated=pyridine, .
—systype="base"))

water = Settings({"_h": os.path.join(database_path, "Water.coskf")})
h3o = Settings({"_h": os.path.join(database_path, "conjugate_acid_Water.coskf")})

PkaCalculator (systems, solv_protonated=h3o, solv_deprotonated=water, temp_
—range=[298.15, 348.15], steps=5)

for system in systems:
print (system.pka)

finish ()
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CHAPTER
ELEVEN

COMMAND LINE SCRIPTING WITH COSMO-RS

11.1 AMSprep: construct an ADF COSMO results file

The module amsprep is intended to facilitate scripting. More details on amsprep can be found in the AMSprep section in
the Scripting manual. For COSMO-RS the most relevant is the ADFCRS template. The template ADFCRS will perform
a gas phase geometry optimization, and next a COSMO calculation at the gas phase optimized geometry.

In the next example the result of the ADF calculation is a file called adfwater.coskf, which is an ADF COSMO result file,
that can be used as input for a COSMO-RS calculation, see also the Example: COSMO-RS Tutorial 1 (page 174).

cat << eor > water.xyz

3

H 0.00000000 0.77121000 0.18071000
0 0.00000000 -0.00000000 -0.36142000
H 0.00000000 -0.77121000 0.18071000
eor

"SAMSBIN/amsprep" -t ADFCRS -m water.xyz -Jj adfwater >job
chmod +x job
./job

11.2 CRSprep: generate (multiple) COSMO-RS jobs

The module crsprep is intended to facilitate scripting: it makes it easier to construct proper jobs, from within a script.
This module can be used, for example, to run the same type of COSMO-RS job on various compounds, or to change
input settings. This module can also be used to put pure compound data on an ADF COSMO result file.

In SAMSHOME/examples/crs one can find examples that follow the COSMO-RS GUI tutorials, which are also described
in the section Scripting Examples (page 173).

The most convenient way to see the options of crsprep is to run the crsprep command without arguments. You will get
output very much alike the following description, but probably more up-to-date.

[}

% crsprep —h

CRSprepare (crsprep) saves pure compound data on an ADF COSMO result file
or generates a job script for COSMO-RS calculations,

with user specified changes to input options / method / system.

Required is at least 1 compound and -savecompound or -t template

(continues on next page)
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Usage:

crsprep —-savecompound —-s compound.coskf
[-nring nring] [-pvap pvap] [-tvap tvap] [-antoine "A B C"]
[-meltingpoint meltingpoint] [~hfusion hfusion] [-cpfusion cpfusion]
[-flashpoint flashpoint] [-density density] [-scalearea scalearea]

crsprep -t template
[-s compound. (coskf|compoundlist)] [-c compound. (coskf|compoundlist) ]
[-nring nring] [-pvap pvap] [-tvap tvap] [-antoine "A B C"]
[-meltingpoint meltingpoint] [~hfusion hfusion] [-cpfusion cpfusion]
[-flashpoint flashpoint] [-density density] [-scalearea scalearea]
[-fracl fracl] [-frac2 frac2]
[-densitysolvent densitysolvent] [-solphase solphase]
[-volumequotient volumequotient] [-preset preset]
[-method method] [-temperature temperature] [-pressure pressure]
[-iso iso] [-n n] [—inputpurevap inputpurevap]
[-inputpuredensity inputpuredensity]
[-sigmax sigmax] [-massfraction] [-file filename] [-J jobname]

SAVE PURE COMPOUND DATA
—savecompound
use to save pure compound data on an existing ADF COSMO result file

TEMPLATE
-t template
use for COSMO-RS property calculation
template should be one of:
VAPORPRESSURE, PUREVAPORPRESSURE,
BOILINGPOINT, PUREBOILINGPOINT, FLASHPOINT,
LOGP, ACTIVITYCOEF, SOLUBILITY, PURESOLUBILITY,
BINMIXCOEF, TERNARYMIX, COMPOSITIONLINE,
SIGMAPROFILE, PURESIGMAPROFILE, SIGMAPOTENTIAl, PURESIGMAPOTENTIAL

COMPOUNDS
at least 1 compound is required
-s file: the special compound(s) to be used, should be a .coskf file,
or a .compoundlist file. The -s key has to be repeated for each file
—-c file: additional compound(s) to be used, should be a .coskf file,
or a .compoundlist file. The -c key has to be repeated for each file
the order of the compounds is: first all compound defined with -s,
then those with -c
LOGP, ACTIVITYCOEF, SOLUBILITY: use -s for the solvent and -c for the solutes
PURESOLUBILITY: use -s for the solute and -c for the solvents

PURE COMPOUND DATA
-nring: number of ring atoms
—-pvap: pure compound vapor pressure (bar) at tvap
—-tvap: at this temperature (Kelvin) pure compound has pressure pvap
—antoine: Antoine coefficients A, B, and C
-meltingpoint: melting point (Kelvin)
~hfusion: enthalpy of fusion (kcal/mol)
—cpfusion: heat capacity of fusion (kcal/ (mol K))
—flashpoint: flash point (Kelvin)
—-density: liquid density (kg/L)
—scalearea: COSMO surface area scale factor
these keys can be repeated for each compound,
first appearance of the key will be for compound 1, second for compound 2, etc.
note the order of the compounds

(continues on next page)
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SOLVENT
—fracl: define solvent
—frac2: define solvent 2 (LogP, composition line)
the —-fracl and -frac2 key have to be repeated for
each compound that should have a non-default value
first appearance of the key will be for compound 1, second for compound 2, etc.
note the order of the compounds
—-densitysolvent: density solvent (kg/L)
-solphase: pure compound phase solute in solubility calculation
-volumequotient: molar volume phase 1/molar volume phase 2 (LogP)
-preset: LogP preset 0, 2, 3, 4, 5
0: user defined; 2: Octanol/Water; 3: Benzene/Water; 4: Ether/Water;
5: Hexane/Water

METHOD, SYSTEM
-method: COSMO-RS, COSMOSAC2013, COSMOSAC2016
—~temperature: temperature (Kelvin)

the -temperature key can be used twice to give a range
—-pressure: pressure (bar)

the -pressure key can be used twice to give a range
—-iso: isotherm, isobar, flashpoint
-n: number of steps
—inputpurevap: if 1 use input pure compound pvap and tvap or Antoine equation
—inputpuredensity: if 1 use input pure compound liquid density
—-sigmax: maximum value sigma (sigma profile, sigma potential)
-massfraction: use mass fractions

INPUT FILE
—file: content of the file will be added at the end of the input for the
COSMO-RS calculation. The -file key has to be repeated for each file

OUTPUT

-j: produce a fully runnable job (as the .job files from AMSjobs),
using the specified jobname. The job script produces files like jobname.out,
jobname.crskf etc. Several job scripts can simply be concatenated,
the results will be stored in different files using the jobname parameter
the default is a simple run script

EXAMPLES
crsprep -s benzene.coskf -nring 6 -savecompound
crsprep -t VAPORPRESSURE -temperature 273.15 —temperature 373.15 -s methanol.coskf

11.3 AMSreport: generate report

The module amsreport is intended to facilitate scripting. More details on amsreport can be found in the AMSreport
section in the Scripting manual. It makes it very easy to get results calculated by COSMO-RS (or other programs in
the ADF suite) in your own script. Compared to ADF2014 AMSreport has been extended to get easier results from
COSMO-RS result files (.crskf files). It was already possible to report any proper KF variable from the .crskf file. Now
a few predefined keys are added. See the SAMSHOME/examples/crs directory for use of amsreport in COSMO-RS
calculations. Depending on the kind of calculation one can use:
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Command line option Property

TOC Table of contents

PROPERTY General:Property

METHOD Property:Method

NITEMS Property:Number of Items

FRAC1 Property:Solvent: molar fraction

FRAC2 Property:Solvent 2: molar fraction
SOLVENT-FRACTION Property:Solvent: solvent fraction

TEMPERATURE Property:Temperature (in Kelvin)

PRESSURE Property:Pressure (in bar)

GIBBS-ENERGY-MIXING Property:Gibbs free energy of Mixing (in kcal/mol)
GIBBS-ENERGY-SOLVATION Property:Gibbs free energy of Solvation (in kcal/mol)
GIBBS-ENERGY-SOLUTE Property:Gibbs free energy solute (in kcal/mol)
EXCESS-G Property:Excess Gibbs free energy (in kcal/mol)
EXCESS-H Property:Excess Enthalpy (in kcal/mol)
ENTHALPY-VAPORIZATION Property:Enthalpy of vaporization (in kcal/mol)
LOGP Property:LogP

MOLAR-FRACTION Property:Molar Fraction

ACTIVITY-COEFFICIENT Property:Activity Coefficient

VAPOR-PRESSURE Property:Vapor Pressure (in bar)

SOLUBILITY-X Property:Solubility: molar fraction

SOLUBILITY-M Property:Solubility: moles per liter (in mol/ (L solution))
SOLUBILITY-G Property:Solubility: gram per liter (in g/ (L solution))
SOLUBILITY-MASS-FRACTION Property:Solubility: mass fraction

HENRY Property:Henry Constant (in mol/ (L atm))
HENRY-NODIM Property:Henry Constant dimensionless
MISCIBILITY-GAP Property:Miscibility gap

MISCIBILITY-GAP-T Property:Miscibility gap temperature (in Kelvin)
MISCIBILITY-GAP-P Property:Miscibility gap pressure (in bar)
MISCIBILITY-GAP-X Property:Miscibility gap molar fraction x1 x1'
MISCIBILITY-GAP-A Property:Miscibility gap activities al a2
TIE-LINES-X Property:Tie Lines molar fraction x1 x2 x3 x1' x2' x3'
TIE-LINES-A Property:Tie Lines activities al a2 a3
CHEMICAL-POTENTIAL Property:Chemical Potential
CHEMICAL-POTENTIAL-PURE Property:Chemical Potential Pure Compounds Liquid
CHEMICAL-POTENTIAL-GAS Property:Chemical Potential Pure Compounds Gas
SIGMA Property:Sigma

SIGMA-PROFILE Property:Sigma Profile

SIGMA-PROFILE-HB Property:Sigma Profile Hydrogen Bonding part
SIGMA-PROFILE-TOTAL Property:Total Sigma Profile
SIGMA-PROFILE-HB-TOTAL Property:Total Sigma Profile Hydrogen Bonding part
SIGMA-POTENTIAL Property:Sigma Potential

SIGMA-POTENTIAL-TOTAL Property:Total Sigma Potential

NCOMP Compounds :Number of Compounds

COMPOUNDS-FILENAME Compounds:Filename

COMPOUNDS—-NAME Compounds :Name (from filename)
COMPOUNDS-MOLAR-MASS Compounds:Molar Mass

Example

"SAMSBIN/amsreport" file.crskf TOC

"SAMSBIN/amsreport" file.crskf ncomp

"SAMSBIN/amsreport" file.crskf ncomp -plain
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11.4 KF utilities for COSMO-RS

11.4.1 KF browser

With the GUI module kfbrowser one can browse through the raw data on KF files (like the .crskf COSMO-RS result
files).

SAMSBIN/kfbrowser file.crskf

11.4.2 kf2cosmo and cosmo2kf

The two COSMO-RS command line utility programs kf2cosmo and cosmo2kf convert COSMO kf files from binary to
ASCII and vice versa.

kf2cosmo file.coskf file.cosmo

kf2cosmo reads from the kf file file.coskf (should exist) the section ‘COSMO’ and writes to the ASCII file file.cosmo
(should not exist). Instead of a .coskf file, the file can also be a TAPE21 file which is a result file from an ADF COSMO
calculation.

cosmo2kf file.cosmo file.coskf

cosmo2kf reads from the ASCII file file.cosmo (should exist) and writes a section ‘COSMO’ to the kf file file.coskf (should
not exist). Note that only a section ‘COSMO’ is written to the kf file, which means that this file can not be used like an
ordinary adf.rkf file (previously ADF<=2019 TAPE21 file or .t21 file).

cosmo2kf file.cos file.coskf

cosmo2kf can also read a MOPAC COSMO result file file.cos (should exist and should have the file extension .cos) and
writes a section ‘COSMO’ to the kf file file.coskf (should not exist).

11.4.3 pkf, cpkf, dmpkf, udmpkf

’pkf file.crskf

pkf prints a summary of the contents of a kf file

’cpkf adf.rkf file.coskf COSMO

With the ADF kf utility cpkf one can copy the section ‘COSMO’ from an adf.rkf (should exist) to a file.coskf (should not
exist). The file file.t21 should be a result of an ADF COSMO calculation. The file file.coskf is much smaller than adf.rkf.
This file file.coskf can not be used like an ordinary adf.rkf file, but it contains all necessary information such that it can
be used as input for a COSMO-RS calculations.

With the ADF kf utilities dmpkf and udmpkf one can also convert COSMO kf files from binary to ASCII and vice versa.
Note that the ASCII files in this case are not so called .cosmo files.

dmpkf file.coskf > ascii_result
udmpkf < ascii_result newfile.coskf
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11.5 Scripting Examples

11.5.1 Example: COSMO result files

Download COSMO_files.run

#! /bin/sh

# This example tries to do the same as in the COSMO-RS GUI Tutorial: COSMO result.
—~files,

# using scripts.

#

# In the first part of the example you will find how to use amsprep to construct

# an ADF COSMO results file.

# The template ADFCRS will perform a gas phase geometry optimization (for water, in.
—~this case),

# and next a COSMO calculation at the gas phase optimized geometry.

# The result file adfwater.coskf, which is an ADF COSMO result file, can be used as.
—input for

# a COSMO-RS calculation. amsreport is used to extract data from the resulting .coskf.
—file.

echo "Results"
rm -f water.xyz

rm —-f job.sh
cat << eor > water.xyz

3

H 0.00000000 0.77121000 0.18071000
0 0.00000000 -0.00000000 -0.36142000
H 0.00000000 -0.77121000 0.18071000
eor

"SAMSBIN/amsprep" -t GO -runtype "COSMO-RS Compound" -m water.xyz -3J adfwater >job.sh
chmod +x job.sh
./job.sh

echo "ADE"

"SAMSBIN/amsreport" adfwater.results geometry-a
cp adfwater.coskf adffile.coskf
"SAMSBIN/amsreport" adffile.coskf energies

# The template ADFCRS can also be used for generating an "average monomer" COSMO.
—result file.
# The calculation could take up quite some time.

echo "POLYMER"

SAMSBIN/amsprep -t GO —-runtype "COSMO-RS Compound" -smiles "C{-}C{n+} (clcccccl)" —-j_
—adfpolystyrene >job3.sh

grep -i coskfatoms job3.sh |wc -w

# A MOPAC COSMO result file can also be constructed.

# Note that the syntax for MOPAC is not the same as in ADF2018.

# The template MOPAC-GO will perform a COSMO geometry optimization,

# 1f —-g "mopac.solvation.enabled 1" -g "mopac.solvation.solvent.name CRS" is included.

(continues on next page)
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# If —g "mopac.solvation.nspa 362" is included the maximum number of COSMO surface.
—points

# is 362, which is more than the default 42.

# The result file mopacwaterresults/mopac.coskf is a MOPAC COSMO result file,

# which can be used as input for a COSMO-RS calculation.

"SAMSBIN/amsprep" -t MOPAC-GO -m water.xyz —g "mopac.solvation.enabled 1" \
-g "mopac.solvation.solvent.name CRS" -g "mopac.solvation.nspa 362".
=\
—j mopacwater >job2.sh
chmod +x job2.sh
./job2.sh

echo "MOPAC"
"SAMSBIN/amsreport" mopacwater.results geometry-a
"SAMSBIN/amsreport" mopacwater.results/mopac.coskf energies

# Fast Sigma can provide estimates of COSMO-RS sigma profiles in milliseconds.

echo "FAST SIGMA"

"SAMSBIN/fast_sigma" —--smiles "CC(Cclccc(ccl) [CRRH] (C(=0)0)C)C" —o ibuprofen.compkf
"SAMSBIN/amsreport" ibuprofen.compkf formula

"SAMSBIN/amsreport" ibuprofen.compkf energies

echo "Ready"

11.5.2 Example: COSMO-RS parameters and analysis

Download Parameters_and_Analysis.run

#! /bin/sh

# This example tries to part of the COSMO-RS GUI Tutorial: parameters and analysis.
—using scripts.
#

# First some .coskf files are copied to the location where the scripts are running.

cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/benzene.coskf
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/ethanol.coskf
cp SAMSHOME/examples/COSMO-RS/Parameters_and_Analysis/methanol.coskf
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/water.coskf

# Set pure compound parameters

# In the first part of the example you will find how to use crsprep to set pure.
—compound parameters,

# in this case to set the number of ring atoms for the benzene molecule, which has 6.
—ring atoms.

# The file benzene.coskf is changed, such that it contains the value "6" for the.
—number of ring compounds.

"SAMSBIN/crsprep" -c benzene.coskf -nring 6 -savecompound

# The sigma profile and the sigma potential

(continues on next page)
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# Next for convenience a file tutoriall2.compoundlist is made that consists of 4 coskf.
—~files.

rm -f tutorial2.compoundlist

rm -f job

cat << eor > tutorial2.compoundlist
benzene.coskf

ethanol.coskf

methanol.coskf

water.coskf

eor

# In the second part of the example sigma profiles are calculated for the four.
—compounds

# (result file step6.crskf), and next the sigma potentials of the four pure compounds
# (result file step7.crskf).

# With *amsreport* one can get the calculated sigma profile or sigma potential from

# the .crskf file on standard output.

"SAMSBIN/crsprep" -t PURESIGMAPROFILE -c tutorial2.compoundlist —-j step6 > job.sh
"SAMSBIN/crsprep" -t PURESIGMAPOTENTIAL -c tutorial2.compoundlist -j step7 >> Jjob.sh
chmod +x job.sh

./job.sh

echo "Results"

"SAMSBIN/amsreport" step6.crskf sigma

"SAMSBIN/amsreport" step6.crskf sigma-profile

"SAMSBIN/amsreport" step6.crskf sigma-profile-hb

"SAMSBIN/amsreport" step7.crskf sigma-potential

echo "Ready"

11.5.3 Example: COSMO-RS properties

Download Properties.run

#! /bin/sh

# This example tries to do the same as COSMO-RS GUI Tutorial: Properties, using.
—scripts.

echo "Results"

# This example starts with copying 4 coskf files to the current directory,
# and modifying the benzene.coskf file such that the number of ring atoms 1is 6,
# like in the previous example.

rm —-f job.sh

cp $SAMSHOME/examples/COSMO-RS/Parameters_and_Analysis/benzene.coskf
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/ethanol.coskf
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/methanol.coskf
cp $AMSHOME/examples/COSMO-RS/Parameters_and_Analysis/water.coskf

cp SAMSHOME/examples/COSMO-RS/Properties/2-hexanone.coskf

(continues on next page)

176 Chapter 11. Command Line Scripting with COSMO-RS




COSMO-RS Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)

cp $AMSHOME/examples/COSMO-RS/Properties/acetic_acid.coskf
"SAMSBIN/crsprep" —-c benzene.coskf -nring 6 —-savecompound

# Step 2: Vapor pressure

# ,,,,,,,,,,,,,,,,,,,,,,

# In step 2 of the example the vapor pressure of methanol is calculated at the
# default temperature of 298.15 K (result file stepZa.crskf),

# and next for a series of temperatures ranging from 273.15 K to 373.15 K

# in 10 steps (result file stepZb.crskf).

touch job.sh
chmod +x job.sh
"SAMSBIN/crsprep" -t PUREVAPORPRESSURE -3j step2a \

—-c methanol.coskf > job.sh
"SAMSBIN/crsprep" -t PUREVAPORPRESSURE -temperature 273.15 —-temperature 373.15 —j._
—step2b \

—-c methanol.coskf >> job.sh
./job.sh
echo "Step 2a"
"SAMSBIN/amsreport" step2a.crskf temperature
"SAMSBIN/amsreport" stepl2a.crskf pressure
"SAMSBIN/amsreport" step2a.crskf enthalpy-vaporization
echo "Step 2b"
"SAMSBIN/amsreport" step2b.crskf temperature
"SAMSBIN/amsreport" step2b.crskf pressure
"SAMSBIN/amsreport" step2b.crskf enthalpy-vaporization

# Step 3: Boiling point

In step 3 of the example the boiling point of a mixture of methanol and ethanol
is calculated, for a series of pressures ranging from 0.101325 to 1.01325 bar

in 10 steps (result file step3.crskf).

This mixture consist of 50% mole fraction methanol and 50% mole fraction ethanol.

H R HH

"SAMSBIN/crsprep" -t BOILINGPOINT -pressure 0.101325 -pressure 1.01325 -j step3 \
-c methanol.coskf —-fracl 0.5 \
—-c ethanol.coskf —-fracl 0.5 > job.sh

./job.sh

echo "Step 3"

"SAMSBIN/amsreport" step3.crskf temperature

"SAMSBIN/amsreport" step3.crskf pressure

# Step 4: Flash point

# In step 4 of the example the flash point of a mixture of ethanol and water

# is calculated (result file step4.crskf).

# This mixture consist of 44.2% mass fraction methanol and 55.8% mass fraction.
—ethanol.

# For a flash point calculation the pure compound flash points are needed as input,
# since COSMO-RS does not predict pure compound flash points.

(continues on next page)
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# For pure ethanol a flash point of 286 K is saved in the file ethanol.coskf.

"SAMSBIN/crsprep" -c ethanol.coskf -flashpoint 286 -savecompound

"SAMSBIN/crsprep" -t FLASHPOINT -massfraction -j stepd \
—c ethanol.coskf —fracl 0.442 \
-c water.coskf -fracl 0.558 > job.sh
./job.sh
echo "Step 4 flash point"
SAMSBIN/amsreport stepd.crskf temperature

# Step 5: Activity coefficients, Henry coefficients, Solvation free energies

# __________________________________________________________________________

In step 5 of the example the infinite diluted solutes benzene, methanol,and
ethanol are calculated in the solvent water (result file step5.crskf).
Activity coefficients, Henry coefficients and solvation free energies

will be calculated.

One one should include -s flag for water, since it is the solvent,

and considered here to be a special compound.

S o HHR R W

"SAMSBIN/crsprep" -t ACTIVITYCOEF -3j step5 \

-s water.coskf \

—c benzene.coskf -c ethanol.coskf -c methanol.coskf > job.sh
./job.sh
echo "Step 5 Activity coefficients, Henry's law constants, Solvation energy"
"SAMSBIN/amsreport" step5.crskf Activity-Coefficient
"SAMSBIN/amsreport" step5.crskf Henry
"SAMSBIN/amsreport" step5.crskf Gibbs-energy-solvation

# Step 6: Partition coefficients (log P)
# ______________________________________

# In step 6 of the example the partition coefficients of infinitely diluted

# solutes in a mixture of two immiscible solvents are calculated.

# In step 6a the default Octanol/Water partition coefficients are calculated

# (default -preset 2) (result file stepé6ba.crskf).

# In step 6b a user defined (-preset 0) Benzene/Water partition coefficients

# are calculated (result file step6b.crskf).

# In this case one should include -s flag for benzene and water, since these

# are the two immiscible solvents, and considered here to be the special compounds.
# The order of the compounds benzene and water is important, because the

# molar volume of phase 1 (benzene) divided by the the molar volume of phase 2
# (water) is given with the flag -volumequotient.

"SAMSBIN/crsprep" -t LOGP -j stepé6a \
—c benzene.coskf -c ethanol.coskf -c methanol.coskf > job.sh
"SAMSBIN/crsprep" -t LOGP -preset 0 -volumequotient 4.93 -j step6b \
-s benzene.coskf -s water.coskf \
—c ethanol.coskf -c methanol.coskf >> job.sh
./job.sh
echo "Step 6a octanol/water"
"SAMSBIN/amsreport" step6a.crskf logp
echo "Step 6b benzene/water"

(continues on next page)
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"SAMSBIN/amsreport" step6b.crskf logp

# Step 7: Solubility

# In step 7 of the example the solubility of a compound is calculated.

# The solute can either be a liquid, solid, or gas.

# First some pure compound properties for benzene are set: the melting point,
# enthalpy of fusion, and the boiling point (file benzene.coskf).

"SAMSBIN/crsprep" —-c benzene.coskf -meltingpoint 278.7 —-hfusion 2.37 —-savecompound
"SAMSBIN/crsprep" -c benzene.coskf —-tvap 353.3 -pvap 1.01325 -savecompound

# In step 7a the solubility of benzene in water is calculated for a range of
# temperatures ranging from 273.15 K to 373.15 K in 10 steps (result file step7a.

—cCcrskf).

# If the template PURESOLUBILITY is used, the special compound is the solute,

# benzene in this case.

# Below 278.7 K, benzene 1is a solid. This will be taken into account, since the
# melting point and enthalpy of fusion are present on the file benzene.coskf.

# At higher temperatures benzene is assumed to be a liquid.

# Note that tn this calcuation above the normal boiling point of benzene

# the vapor pressure of benzene will be higher than 1.01325 bar.

"SAMSBIN/crsprep" -t PURESOLUBILITY -temperature 273.15 —-temperature 373.15 -j step7a.
=\

-s benzene.coskf \

-c water.coskf > job.sh

In step 7b again the solubility of benzene in water is calculated for a (different)
range of temperatures (result file step7b.crs) using the template SOLUBILITY.

If the template SOLUBILITY is used, the special compound is the solvent,

water in this case.

For the density of the solvent water 1.0 kg/L is used.

Below 278.7 K benzene is a solid. This will be taken into account, since the melting
point and enthalpy of fusion are present on the file benzene.coskf.

At higher temperatures benzene is assumed to be a liquid.

H ¥ HH R W R R W

"SAMSBIN/crsprep" -t SOLUBILITY -temperature 273.15 —-temperature 283.15 \
—-densitysolvent 1.0 -3 step7b \

-s water.coskf \

—c benzene.coskf >> job.sh
In step 7c again the solubility of benzene in water is calculated for a range
of temperatures above the boiling point of benzene (result file step7/c.crs)
using the template SOLUBILITY.
If the template SOLUBILITY is used, the special compound is the solvent,
water in this case.
For the density of water 1.0 kg/L is used.
For the vapor pressure of benzene 1.01325 bar is used.

o H R R R R

"SAMSBIN/crsprep" -t SOLUBILITY -temperature 353.3 —temperature 373.15 \
—-densitysolvent 1.0 —-solphase Gas -pressure 1.01325 —-3J step7c \
-s water.coskf \
—c benzene.coskf >> job.sh

# The solubility of a gas in a solvent can also be calculated using Henry's law,

(continues on next page)
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which is valid for ideal dilute solutions.

Henry coefficients can be calculated with the template ACTIVITYCOEF.

In step 7d of the example the infinite diluted solutes benzene is calculated
in the solvent water (result file step7d.crskf)

at a temperature of 363.15 K.

If the template ACTIVITYCOEF is used, the special compound is the solvent,
water in this case.

For the density of water 1.0 kg/L is used.

S oW W HH W R H

"SAMSBIN/crsprep" -t ACTIVITYCOEF -temperature 363.15 —-densitysolvent 1.0 -j step7d \
-s water.coskf \
—c benzene.coskf >> job.sh

# Next the job.sh is run which will produce the crskf files,
# and a report is made for all calculations in step 7.

./job.sh

echo "Step 7a"

"SAMSBIN/amsreport" step7a.crskf solubility-x
echo "Step 7b"

"SAMSBIN/amsreport" step7b.crskf solubility-g
echo "Step 7c"

"SAMSBIN/amsreport" step7c.crskf solubility-m
echo "Step 74"

"SAMSBIN/amsreport" step7d.crskf henry

In step 8 phase diagrams of a mixture of two components are be calculated
with the template BINMIXCOEF.

Exactly two compound should be given.

In step 8a of the example a binary mixture of water and methanol

is calculated at 298.14 K (result file step8a.crskf).

H R HH W

"SAMSBIN/crsprep" -t BINMIXCOEF -temperature 298.14 -j step8a \
-s water.coskf \
—-s methanol.coskf > job.sh

# In step 8b of the example a binary mixture of water and ethanol is calculated
# at 322.45 K (result file step8b.crskf).

# Pure compound vapor pressures are given with —-tvap (temperature in K)

# and -pvap (vapor pressure in bar).

# Preferably both -tvap and -pvap should be included for both compounds.

# If only one -tvap and one -pvap 1is given, it 1is assumed to be for the first.
—compound.

# Note that these pure compound values are not saved to water.coskf or
# ethanol.coskf in this case.

"SAMSBIN/crsprep" -t BINMIXCOEF -temperature 322.45 —7j step8b \
-s water.coskf —-tvap 322.45 -pvap 0.123416 \
-s ethanol.coskf -tvap 322.45 -pvap 0.294896 >> job.sh

# In step 8c of the example a binary mixture of water and benzene
# is calculated at 323.15 K (result file step8c.crskf).

(continues on next page)
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# Water and benzene do not mix very well. In this case a

# liquid-liquid equilibrium (LLE) will be calculated.

# The number of mixtures for which the binary mixture is calculated should be not too.
—small,

# otherwise the properties of the 2 immiscible liquid phases will not be so accurate.
# In this case for the number of mixtures 100 is chosen.

# The actual number of mixtures is 5 more, thus 105 in this case.

"SAMSBIN/crsprep" -t BINMIXCOEF -temperature 323.15 -n 100 —-3j step8c \
-s water.coskf \
—-s benzene.coskf >> job.sh

# In step 8d of the example a binary mixture of methanol and ethanol is calculated

# at a constant total vapor pressure (—-iso isobar) of 1.01325 bar (result file step8d.
—Crskf).

# Pure compound vapor pressures are given with —-tvap (temperature in K)

# and -pvap (vapor pressure 1in bar).

# Preferably both —-tvap and -pvap should be included for both compounds.

# If only one —tvap and one -pvap 1is given, it is assumed to be for the first.
—compound.

# Note that these pure compound values are not saved to methanol.coskf

# or ethanol.coskf in this case.

"SAMSBIN/crsprep" -t BINMIXCOEF -iso isobar -pressure 1.01325 -3j step8d \
-s methanol.coskf —-tvap 338 -pvap 1.01325 \
—-s ethanol.coskf —-tvap 351 -pvap 1.01325 >> job.sh

# Next the job.sh is run which will produce the crskf files,
# and a report is made for all calculations in step 8.

./job.sh

echo "Step 8a"

"SAMSBIN/amsreport" step8a.crskf molar-fraction
"SAMSBIN/amsreport" step8a.crskf excess-g
"SAMSBIN/amsreport" step8a.crskf excess-h

echo "Step 8b"

"SAMSBIN/amsreport" step8b.crskf vapor-pressure
echo "Step 8c"

"SAMSBIN/amsreport" step8c.crskf miscibility-gap
"SAMSBIN/amsreport" step8c.crskf miscibility-gap-x
"SAMSBIN/amsreport" step8c.crskf miscibility-gap-a
echo "Step 84"

"SAMSBIN/amsreport" step8d.crskf temperature

# Step 9: Ternary mixtures VLE/LLE

# ________________________________

#

# In step 9 phase diagrams of a mixture of three components are be calculated
# with the template TERNARYMIX.

# Exactly three compound should be given.

# For convenience first some pure compound properties (normal boiling points)
# are saved to the .coskf files.

"SAMSBIN/crsprep" —-c water.coskf —tvap 373.15 -pvap 1.01325 -savecompound

"SAMSBIN/crsprep" -c methanol.coskf -tvap 338 -pvap 1.01325 -savecompound
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"SAMSBIN/crsprep" -c ethanol.coskf ~—tvap 351 -pvap 1.01325 -savecompound
"SAMSBIN/crsprep" -c benzene.coskf ~—tvap 353.3 -pvap 1.01325 -savecompound

# In step 9a of the example a ternary mixture of methanol, ethanol, and benzene
# is calculated at 343.15 K (result file step9a.crskf).

# In step 9b of the example a ternary mixture of water, ethanol, and benzene 1is.
—calculated

# at a constant total vapor pressure (—-iso isobar) of 1.01325 bar (result file step9b.
—Crskf).

In step 9b a miscibility gap of the ternary mixture will be calculated.

In this case, within the miscibility gap there are two immiscible phases of
the liquid in equilibrium.

The composition of the two phases, which are in equilibrium,

can be found at the end points of the tie lines, that are calculated.

HH H W HH H

"SAMSBIN/crsprep" -t TERNARYMIX -temperature 343.15 —7j step9a \
-s methanol.coskf -s ethanol.coskf -s benzene.coskf > job.sh
"SAMSBIN/crsprep" -t TERNARYMIX -iso isobar -pressure 1.01325 -3j step9b \
-s water.coskf -s ethanol.coskf -s benzene.coskf >> job.sh
./job.sh
echo "Step 9a"
"SAMSBIN/amsreport" step9a.crskf molar-fraction
"SAMSBIN/amsreport" step9a.crskf pressure
"SAMSBIN/amsreport" step9a.crskf miscibility-gap
echo "Step 9b"
"SAMSBIN/amsreport" step9b.crskf miscibility-gap
echo "First 4 tie-lines"
"SAMSBIN/amsreport" step9b.crskf -r "TERNARYMIXS$Sx11#1:24#12.4f##6"
"SAMSBIN/amsreport" step9b.crskf temperature

# Note that for printing all tie—lines that are calculated in step9b one can simply.

—use

# "SAMSBIN/amsreport" step9b.crskf tie-lines-x

# instead of the more complicated

# "SAMSBIN/amsreport" step9b.crskf —-r "TERNARYMIXS$x11#1:24#12.4f##6"
# which also only reports the first 4 tie-lines

# Step 10: A composition line between solvents sl and s2
# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

# In step 10 a phase diagram of a mixture of two solvents, which both are mixtures,
# 1is calculated with the template COMPOSITIONLINE.

# In this step one of the tie lines of the ternary mixture of water, ethanol, and.
—benzene

# of step 9b will be investigated in more detail.

# Note that here the .coskf files are used in which the normal boiling points were.
—saved to (in step 9).

# The mixture will be calculated for a list of molar (or mass) fractions of the.
—solvents

# between zero and one, and the compositions of solvent 1 and solvent 2 are linearly.
—lIinterpolated.

# In this case solvent 1 consists of 0.3 molar fraction ethanol and 0.7 molar.
—fraction benzene, and

# solvent 2 consists of 0.9 molar fraction water and 0.1 molar fraction ethanol.

# In step 10a of the example this mixture is calculated at a constant total vapor.
—pressure (—-iso isobar)

# of 1.01325 bar (result file steplOa.crskf).
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# In step 10b of the example this mixture is calculated at 341.05 K (result file.
—steplOb.crskf).

# Why this temperature was chosen can be found in step 10 of COSMO-RS GUI Tutorial:.
—Properties.

"SAMSBIN/crsprep" -t COMPOSITIONLINE -iso isobar —-pressure 1.01325 -n 100 -j steplOa \
-s water.coskf —fracl 0.0 —-frac2 0.9 \
-s ethanol.coskf -fracl 0.3 -frac2 0.1 \
—-s benzene.coskf —-fracl 0.7 —-frac2 0.0 > job.sh
"SAMSBIN/crsprep" -t COMPOSITIONLINE -temperature 341.05 -n 100 -j stepl0b \
-s water.coskf —fracl 0.0 —-frac2 0.9 \
-s ethanol.coskf -fracl 0.3 —-frac2 0.1 \
-s benzene.coskf -fracl 0.7 —-frac2 0.0 >> job.sh
./job.sh
echo "Step 10a"
SAMSBIN/amsreport steplOa.crskf ncomp
SAMSBIN/amsreport steplOa.crskf fracl
SAMSBIN/amsreport steplOa.crskf frac2
SAMSBIN/amsreport steplOa.crskf solvent-fraction
SAMSBIN/amsreport steplOa.crskf molar—fraction
SAMSBIN/amsreport steplOa.crskf activity-coefficient

echo "Step 10b"
SAMSBIN/amsreport steplOb.crskf Gibbs-energy-mixing

# Step 11: Pure Compound Properties

# In step 11 a QOSPR (Quantitative Structure-Property Relationship) method is used
# to estimate some pure compound properties.
# This QSPR method needs a SMILES string as input.

echo "Step 11"
"SAMSBIN"/prop_prediction --smiles "clcccccl" —--boilingpoint -d

# Step 12: Solvent Optimizations: Optimize Solubility

# In this step a solvent is optimized in order to maximize or minimize
# the mole fraction solubility of a solid solute in the liquid mixture.

echo "Step 12"
"SAMSBIN"/solvent_opt -t SOLUBILITY -method COSMO-RS —-temperature 273.15 -max \
-c "benzene.coskf" -solute -meltingpoint 278.7 -hfusion 2.37 \
—-c "ethanol.coskf" —-c "methanol.coskf" -c "water.coskf" -d >.
—max_solubility
grep benzene.coskf max_solubility
grep " ethanol.coskf" max_solubility
"SAMSBIN"/solvent_opt -t SOLUBILITY -method COSMO-RS —-temperature 273.15 -min \
-c "benzene.coskf" -solute -meltingpoint 278.7 -hfusion 2.37 \
—-c "ethanol.coskf" -c "methanol.coskf" -c "water.coskf" -d >.
—min_solubility
grep benzene.coskf min_solubility
grep water.coskf min_solubility

# Step 13: Solvent Optimizations: Optimize Liquid-Liquid Extraction
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# In this step a mixture of immiscible solvents is optimized in order to maximize or.
—minimize
# the distribution ratio (D) of two solutes between the two liquid phases.

"SAMSBIN"/solvent_opt -t LLEXTRACTION -method COSMO-RS -multistart 10 -temperature.
298.15 —-max \

—-c "water.coskf" -—-solute -c "acetic_acid.coskf" -solute \

-c "benzene.coskf" -c "water.coskf" -c "2-hexanone.coskf" -c
—"ethanol.coskf" —-d > max_1lle

echo "Step 13"
"SAMSBIN/amsreport" CRSKF -r "OPT_LLEXTRACTION%obj#8.3f"

echo "Ready"

11.5.4 Example: The COSMO-RS compound database

Download Database.run

#! /bin/sh

# This example tries to do the same as in the COSMO-RS GUI Tutorial: The COSMO-RS.
—compound database,

# using scripts.

# In many of the next examples fewer compounds are included than in the COSMO-RS GUI.
—Tutorial.

# First some .coskf files are copied to the location where the scripts are running.
# These .coskf files are a sample of the full database.

echo "Results"
cp SAMSHOME/examples/COSMO-RS/Database/*coskf

rm —-f job.sh
touch job.sh
chmod +x job.sh

# 4.2 Octanol-Water partition coefficients (log P_OW)

"SAMSBIN/crsprep" -t LOGP -3j t4.2 \

—c Methanol.coskf > job.sh
./job.sh
echo "4.2"
"SAMSBIN/amsreport" t4.2.crskf compounds—name
"SAMSBIN/amsreport" t4.2.crskf logp

# 4.3: Henry's law constants

(continues on next page)
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"SAMSBIN/crsprep" -t ACTIVITYCOEF -temperature 293.15 -densitysolvent 0.998 -j t4.3a \
-s Water.coskf \
—c Acetone.coskf -c Benzene.coskf -c Ethanol.coskf -c Methanol.

—~coskf > job.sh

./job.sh

echo "4.3a"

"SAMSBIN/amsreport" t4.3a.crskf compounds-name

"SAMSBIN/amsreport" té4.3a.crskf henry

"SAMSBIN/crsprep" -s Acetone.coskf -pvap 0.246 -tvap 293.15 -savecompound
"SAMSBIN/crsprep" -s Benzene.coskf -pvap 0.100 -tvap 293.15 —-savecompound
"SAMSBIN/crsprep" —-s Ethanol.coskf -pvap 0.059 -tvap 293.15 —-savecompound
"SAMSBIN/crsprep" -s Methanol.coskf -pvap 0.129 -tvap 293.15 —-savecompound
"SAMSBIN/crsprep" -s Water.coskf -pvap 0.02536 —-tvap 293.15 -savecompound

"SAMSBIN/crsprep" -t ACTIVITYCOEF -temperature 293.15 -densitysolvent 0.998 -j t4.3b \
-s Water.coskf \
—c Benzene.coskf -c Ethanol.coskf -c Methanol.coskf > job.sh
./job.sh
echo "4.3b"
"SAMSBIN/amsreport" t4.3b.crskf henry

# 4.4: Solubility of Vanillin in organic solvents

"SAMSBIN/crsprep" -s Vanillin.coskf -meltingpoint 355 -hfusion 5.35 -savecompound
"SAMSBIN/crsprep" -t PURESOLUBILITY -3j t4.4 \
—-s Vanillin.coskf \
—-c Ethanol.coskf -c Methanol.coskf -c Water.coskf > job.sh
./job.sh
echo "4.4"
"SAMSBIN/amsreport" t4.4.crskf compounds—name
"SAMSBIN/amsreport" t4.4.crskf solubility-x
"SAMSBIN/amsreport" t4.4.crskf solubility-m

# 4.5: Binary mixture of Methanol and Hexane

"SAMSBIN/crsprep" -s Methanol.coskf -pvap 0.845 -tvap 333.15 —-savecompound
"SAMSBIN/crsprep" -s Hexane.coskf -pvap 0.77 —tvap 333.15 -savecompound
"SAMSBIN/crsprep" -t BINMIXCOEF -temperature 333.15 -n 100 -j t4.5a \
—-s Methanol.coskf \
-s Hexane.coskf > job.sh
./job.sh
echo "4.5a"
"SAMSBIN/amsreport" t4.5a.crskf compounds-name
"SAMSBIN/amsreport" t4.5a.crskf molar-fraction
"SAMSBIN/amsreport" td.5a.crskf pressure
"SAMSBIN/amsreport" t4.5a.crskf miscibility-gap
"SAMSBIN/amsreport" td.5a.crskf miscibility-gap-x
"SAMSBIN/amsreport" t4.5a.crskf miscibility-gap-a

"SAMSBIN/crsprep" -s Methanol.coskf -pvap 1.01325 -tvap 337.8 -savecompound

"SAMSBIN/crsprep" -s Hexane.coskf -pvap 1.01325 -tvap 342 —savecompound

"SAMSBIN/crsprep" -t BINMIXCOEF -pressure 1.01325 -iso isobar -n 100 -j t4.5b \
—-s Methanol.coskf \
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-s Hexane.coskf > job.sh
./job.sh
echo "4.5b"
"SAMSBIN/amsreport" t4.5b.crskf molar-fraction
"SAMSBIN/amsreport" t4.5b.crskf temperature
"SAMSBIN/amsreport" t4.5b.crskf miscibility-gap
"SAMSBIN/amsreport" t4.5b.crskf miscibility-gap-x
"SAMSBIN/amsreport" t4.5b.crskf miscibility-gap-a

# 4.6: Large infinite dilution activity coefficients in Water

"SAMSBIN/crsprep" -t ACTIVITYCOEF -temperature 298.15 —-j t4.6 \
-s Water.coskf \
—c Benzene.coskf > job.sh
./job.sh
echo "4.6"
"SAMSBIN/amsreport" t4.6.crskf compounds—name
"SAMSBIN/amsreport" t4.6.crskf activity-coefficient

# 4.7: Parametrization of ADF COSMO-RS: solvation energies,
# vapor pressures, partition coefficients

cat << eor > small.compoundlist
Hexane.coskf

Methanol.coskf

Ethanol.coskf

Acetone.coskf

Benzene.coskf

Water.coskf

eor

"SAMSBIN/crsprep" -t ACTIVITYCOEF -temperature 298.15 —-densitysolvent 0.997 -j t4.7a \
—inputpurevap 0 \
-s Water.coskf \
—c small.compoundlist > job.sh

./job.sh

echo "4.7a"

"SAMSBIN/amsreport" té4.7a.crskf compounds-name

"SAMSBIN/amsreport" t4.7a.crskf gibbs-energy-solvation

"SAMSBIN/crsprep" -t PUREVAPORPRESSURE -temperature 298.15 -j t4.7b \
—c small.compoundlist -inputpurevap 0 > job.sh

./job.sh

echo "4.7b"

"SAMSBIN/amsreport" t4.7b.crskf compounds-name

"SAMSBIN/amsreport" td.7b.crskf vapor-pressure

"SAMSBIN/crsprep" -t LOGP -j t4.7c -c small.compoundlist > job.sh
./job.sh

echo "4.7c Octanol/Water"

"SAMSBIN/amsreport" t4.7c.crskf compounds-name
"SAMSBIN/amsreport" td.7c.crskf logp

"SAMSBIN/crsprep" -t LOGP -preset 5 -3J t4.7d -c small.compoundlist > Jjob.sh
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./job.sh
echo "4.7d Hexane/Water"
"SAMSBIN/amsreport" t4.7d.crskf logp

"SAMSBIN/crsprep" -t LOGP -preset 3 —-j t4.7e -c small.compoundlist > job.sh
./job.sh

echo "4.7e Benzene/Water"

"SAMSBIN/amsreport" téd.7e.crskf logp

"SAMSBIN/crsprep" -t LOGP -preset 4 -j t4.7f -c small.compoundlist > Jjob.sh
./job.sh

echo "4.7f Ether/Water"

"SAMSBIN/amsreport" t4.7f.crskf logp

# 4.8: COSMO-SAC 2013-ADF

"SAMSBIN/crsprep" -t PURESIGMAPROFILE -method COSMOSAC2013 -c Water.coskf \
—-c Ethanol.coskf -j t4.8a > job.sh

./job.sh

echo "4.8a"

"SAMSBIN/amsreport" t4.8a.crskf sigma

"SAMSBIN/amsreport" t4.8a.crskf sigma-profile

"SAMSBIN/amsreport" t4.8a.crskf sigma-profile-hb

"SAMSBIN/crsprep" -s Methanol.coskf -density 0.7918 -savecompound
"SAMSBIN/crsprep" -s Ethanol.coskf -density 0.789 -savecompound
"SAMSBIN/crsprep" -s Acetone.coskf -density 0.791 -savecompound

"SAMSBIN/crsprep" -t LOGP -method COSMOSAC2013 -j t4.8b \
—c Methanol.coskf -c Ethanol.coskf -c Acetone.coskf > job.sh
./job.sh
echo "4.8b Octanol/Water"
"SAMSBIN/amsreport" t4.8b.crskf compounds-name
"SAMSBIN/amsreport" t4.8b.crskf logp

"SAMSBIN/crsprep" -t LOGP -method COSMOSAC2013 -preset 5 -7 t4.8c \
—c Methanol.coskf -c Ethanol.coskf -c Acetone.coskf > job.sh
./job.sh
echo "4.8c Hexane/Water"
"SAMSBIN/amsreport" t4.8c.crskf logp

"SAMSBIN/crsprep" -t LOGP -method COSMOSAC2013 -preset 3 —-3j t4.8d \
—c Methanol.coskf -c Ethanol.coskf -c Acetone.coskf > job.sh
./job.sh
echo "4.8d Benzene/Water"
"SAMSBIN/amsreport" t4.8d.crskf logp

"SAMSBIN/crsprep" -t LOGP -method COSMOSAC2013 -preset 4 —-3j t4.8e \
—c Methanol.coskf -c Ethanol.coskf -c Acetone.coskf > job.sh
./job.sh
echo "4.8e Ether/Water"
"SAMSBIN/amsreport" t4.8e.crskf logp

"SAMSBIN/crsprep" —-s Acetone.coskf —-density 0.791 -pvap 3.7 —tvap 373.15 -
—savecompound
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"SAMSBIN/crsprep" -s Water.coskf —density 0.997 -pvap 1.01325 -tvap 373.15 -
—savecompound

"SAMSBIN/crsprep" -t BINMIXCOEF -method COSMOSAC2013 -temperature 373.15 -n 20 —-j t4.

—8f \

-s Acetone.coskf \

—-s Water.coskf > job.sh
./job.sh
echo "4.8f"
"SAMSBIN/amsreport" t4.8f.crskf molar-fraction
"SAMSBIN/amsreport" t4.8f.crskf vapor-pressure
"SAMSBIN/amsreport" t4.8f.crskf pressure

echo "Ready"

11.5.5 Example: pKa values

Download pKa.run

#! /bin/sh

# This example tries to do the same as in the COSMO-RS GUI Tutorial: pKa values,

# using scripts

# First some .coskf files are copied to the location where the scripts are running,
# next the jobs are prepared and the reports are made.

# Check the COSMO-RS GUI Tutorial: pKa values to see what to do with the results.

echo "Results"

rm -f job.sh
cp SAMSHOME/examples/COSMO-RS/pKa/*.coskf
cp SAMSHOME/examples/COSMO-RS/pKa/*compoundlist

touch job.sh
chmod +x job.sh

echo "Acids"
"SAMSBIN/crsprep" -t ACTIVITYCOEF -j t5.l1a \

—-c tutoralb5.1_acid.compoundlist -no_pdh > job.sh
./job.sh
"SAMSBIN/amsreport" t5.la.crskf compounds-name
"SAMSBIN/amsreport" t5.la.crskf Activity-Coefficient
"SAMSBIN/amsreport" t5.la.crskf Gibbs-energy-solvation
"SAMSBIN/amsreport" t5.la.crskf Gibbs-energy-solute

"SAMSBIN/crsprep" -t ACTIVITYCOEF -3J t5.1b \

-c tutoralb5.1_base.compoundlist -no_pdh > job.sh
./job.sh
"SAMSBIN/amsreport”" t5.1b.crskf compounds-name
"SAMSBIN/amsreport" t5.1b.crskf Activity-Coefficient
"SAMSBIN/amsreport” t5.1b.crskf Gibbs-energy-solvation
"SAMSBIN/amsreport" t5.1b.crskf Gibbs-energy-solute

echo "Ready"
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11.5.6 Example: Polymers

Download Polymers.run

#! /bin/sh

# This example tries to do the same as in the COSMO-RS GUI Tutorial: Polymers,
# using scripts.

# First some .coskf files are copied to the location where the scripts are running.

# Some of the .coskf files are a sample of the full polymer database ADFCRS—-POLYMERS—
—2019.

# In the first part of the example crsprep is used to set pure compound parameters.

# Pure compound densities are required for every species in a calculation involving.
—any polymers.

# For some pure compounds the VPM1 vapor pressure equation is set including vapor.
—pressure coefficients.

echo "Results"

cp SAMSHOME/examples/COSMO-RS/Database/*coskf
cp $AMSHOME/examples/COSMO-RS/Polymers/*coskf

"SAMSBIN/crsprep" —-c Benzene.coskf -density 0.876 —-savecompound

"SAMSBIN/crsprep" -c Water.coskf -density 1.0 -savecompound

"SAMSBIN/crsprep" —c Methanol.coskf -density 0.792 -savecompound \
-vp_equation VPM1 -vp_params "-7057.597287 -9.936895562 0.

—~00608530790 77.10002032 O"

"SAMSBIN/crsprep" —-c Hexane.coskf —-density 0.655 —-savecompound \
-vp_equation VPM1 -vp_params "-5575.417318 -6.612402250 0.

—00437376138 53.36969532 0"

rm —-f job.sh
touch job.sh
chmod +x job.sh

"SAMSBIN/crsprep" -t ACTIVITYCOEF -3j Polymers.l \
-s "Poly (ethylene) .coskf" —-fracl 0.5 -s Benzene.coskf —fracl 0.5 \
-massfraction > job.sh
./job.sh
echo "Polymers.1l"
"SAMSBIN/amsreport" Polymers.l.crskf compounds-name Flory-Huggins WF-activity-
—coefficient

"SAMSBIN/crsprep" -t VAPORPRESSURE -temperature 298.15 -temperature 398.15 -n 10 -j_
—Polymers.2 \

-s "Poly(dimethylsiloxane).coskf" —-fracl 0.5 -s Methanol.coskf -
—fracl 0.25 \

—-s Hexane.coskf —-fracl 0.25 \

-massfraction > job.sh
./job.sh
echo "Polymers.2"
"SAMSBIN/amsreport" Polymers.2.crskf compounds—name temperature pressure

"SAMSBIN/crsprep" -t LOGP -preset 0 —-3j Polymers.3 \
-s "Poly(ethylene) .coskf" —-s Water.coskf \
—c Methanol.coskf > job.sh

./job.sh
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echo "Polymers.3"
"SAMSBIN/amsreport" Polymers.3.crskf logp

"SAMSBIN/crsprep" -t PURESOLUBILITY -temperature 398.15 -temperature 498.15 -n 10 -j_
—Polymers.4 \
-s Hexane.coskf -solphase Gas -pressure 1.01325 \
—-c "Poly (styrene) .coskf" > job.sh
./job.sh
echo "Polymers.4"
"SAMSBIN/amsreport" Polymers.4.crskf solubility-g

"SAMSBIN/crsprep" -t BINMIXCOEF -method COSMOSAC2013 -3j Polymers.5 \
-s "Poly (ethyl ethylene).coskf" —-s Benzene.coskf \
-massfraction > job.sh

./job.sh

echo "Polymers.5"

"SAMSBIN/amsreport" Polymers.5.crskf polymer-fraction Flory-Huggins

echo "Ready"
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CHAPTER
TWELVE

REQUIRED CITATIONS

When you publish results in the scientific literature that were obtained with programs of the ADF package, you are
required to include references to the program package with the appropriate release number, and a few key publications.

12.1 General References

For calculations with the COSMO-RS program, version 2023.1:

1. C.C. Pye, T. Ziegler, E. van Lenthe, J.N. Louwen, An implementation of the conductor-like screening model of solvation
within the Amsterdam density functional package. Part I. COSMO for real solvents, Can. J. Chem. 87, 790 (2009)
(https://doi.org/10.1139/V09-008)

2. AMS 2024.1 COSMO-RS, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://
www.scm.com Optionally, you may add the following list of authors and contributors: J.N. Louwen, C.C. Pye, E. van
Lenthe, N.D. Austin, E.S. McGarrity, R. Xiong, S.I. Sandler, R.I. Burnett

If you use COSMO-SAC 2013-ADF you must also add

3. R. Xiong, S.I. Sandler, R.I. Burnett, An improvement to COSMO-SAC for predicting thermodynamic properties, Ind.
Eng. Chem. Res. 53, 8265 (2014) (https://doi.org/10.1021/ie404410v)

12.2 Solvent Optimizations
For solvent optimizations:

N.D. Austin, N.V. Sahinidis, D.W. Trahan, COSMO-based computer-aided molecular/mixture design: A focus on reaction
solvents, AIChE Journal 64, 104 (2018) (https://doi.org/10.1002/aic.15871)

12.3 External programs and Libraries

Click here for the list of programs and/or libraries used in the ADF package. On some platforms optimized libraries have
been used and/or vendor specific MPI implementations.
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CHAPTER
THIRTEEN

COMPOUND (page 37)
COSMOSAC (page 34)
COSMOSAC2013 (page 34)
COSMOSACDHB (page 34)
CRSPARAMETERS (page 31)
DISPERSION (page 33)

EPSILON (page 35)
MASSFRACTION (page 39)
PRESSURE (page 39)
PROPERTY activitycoef (page 41)
PROPERTY binmixcoef (page 42)
PROPERTY boilingpoint (page 40)
PROPERTY compositionline (page 43)
PROPERTY flashpoint (page 40)
PROPERTY logp (page 40)

KEYWORDS

PROPERTY pureboilingpoint (page 40)
PROPERTY puresigmapotential (page 44)
PROPERTY puresigmaprofile (page 44)
PROPERTY puresolubility (page 42)
PROPERTY purevaporpressure (page 39)
PROPERTY sigmapotential (page 44)
PROPERTY sigmaprofile (page 44)
PROPERTY solubility (page 42)
PROPERTY ternarymix (page 43)
PROPERTY vaporpressure (page 39)
TECHNICAL (page 36)

TEMPERATURE (page 38)
PDH_CORRECTION (page 45)
USEPOLYCOMBIFORPOLYMER (page 45)
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CHAPTER
FOURTEEN

FAQ

14.1 | want to include solvent effects, do | need COSMO-RS?

You do not need COSMO-RS to do ADF calculations with continuum solvation (see COSMO vs COSMO-RS FAQ). If
you want to calculate thermodynamic properties like partition coefficients, VLE, solubilities, etc. you do need COSMO-
RS. COSMO-RS usually also yields more accurate solvation free energies and pKa values than COSMO.

14.2 Can | use a .cosmo file from COSMOIlogic, Dmol3, or Gaussian
with ADF COSMO-RS?

In principle, yes, but your are advised to rerun the COSMO calculation with ADF rather than using sigma profiles from
Turbomole, Gaussian, DMol3 or another code. Since ADF uses a slightly different procedure (gas phase optimiza-
tion followed by COSMO calculation with an infinite dielectric constant) as well as different technical settings (scalar
relativistic, triple-zeta Slater-type basis set, integration, surface charge generation with a finer grid), our COSMO-RS
implementation has been reparametrized specifically for use with sigma profiles generated in that way. Therefore, you
are advised to follow the set procedure in ADF, easiest is to use the COSMO-RS preset in the ADF GUI. See for de-
tails: C.C. Pye, T. Ziegler, E. van Lenthe, J.N. Louwen, An implementation of the conductor-like screening model of
solvation within the Amsterdam density functional package. Part II. COSMO for real solvents, Can. J. Chem.87, 790
(2009) (http://dx.doi.org/10.1139/V09-008). If you do insist on using sigma profiles generated with the other programs
with different defaults, you can use the cosmo2kf (page 173) utility to convert the plain ascii cosmo files to our binary
file format. There are also scripting tools for COSMO-RS (page 169) to facilitate screening solvent (combinations) for
activities, partition coefficients, VLE, etc.

14.3 For which compounds do you have sigma profiles in the
database?

We have text files for the regular compounds (https://www.scm.com/wp-content/uploads/COSMO-
RS_compounds_database.txt) and ionic liquids (https://www.scm.com/wp-content/uploads/COSMO-
RS_ionic_liquids_database.txt). If you install the databases you can also search on elemental composition.
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14.4 | have COSMO-RS download permissions but | can not automat-
ically download the COSMO-RS databases?

Some firewalls prevent the automatic download of the COSMO-RS database. With your SCM User ID and password
you can download the compounds database manually <ADFCRS-2018> (see also video on how to install it on Windows
(https://downloads.scm.com/distr/adfcrs_from_zip.mp4) for AMS2021).
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A

activity coefficients,4l
add_compound () (pyCRS.Database. COSKFDatabase

method), 89

add_Mixture () (pyCRS.CRSManager.CRSSystem
method), 97

add_physical_property () (py-
CRS.Database. COSKFDatabase method),

90
additional_sett

attribute), 100
ADF COSMO calculation, 15
ADF COSMO settings, 15
ADFCRS-2010, 21
ADFCRS-2018,20
ADFCRS-IL-2014,22
ADFCRS-POLYMERS-2019, 22
adf.rkf file, 15

(pyCRS.CRSManager. CRSMixture

adopt_smiles (pyCRS.Database.PropPredRow  at-
tribute), 96

amsprep module, 169

amsreport module, 171

available_properties (in module py-

CRS.PropPred), 101

B

binary mixture, 42
boiling point, 39
boilingpoint (pyCRS.Database.PhysicalPropertyRow

attribute), 96

boilingpoint (pyCRS.Database.PropPredRow at-
tribute), 96

C

calculation of properties, 10

cas (pyCRS.Database. CompoundRow attribute), 93
cas (pyCRS.Database.ConformerRow attribute), 94
cavity construction:, 18
combinatorial term,7

.compkf file,?24

composition line, 43

INDEX

compound_id  (pyCRS.Database.CompoundRow  at-
tribute), 93

compound_id (pyCRS.Database.ConformerRow  at-
tribute), 94

compound_id (pyCRS.Database.PhysicalPropertyRow
attribute), 95

compound_id  (pyCRS.Database.PropPredRow  at-

tribute), 96

CompoundRow (class in pyCRS. Database), 93

compounds, 37

conformer (pyCRS.CRSManager.CRSMixture attribute),
100

conformer_id
attribute), 93

conformer_id
attribute), 94

ConformerRow (class in pyCRS. Database), 94

.cos file, 30

coskf (pyCRS.Database. CompoundRow attribute), 94

coskf (pyCRS.Database.ConformerRow attribute), 95

COSKF file, 15

.coskf file, 15

COSKFDatabase (class in pyCRS. Database), 89

COSMO accuracy:, 17

COSMO cavity construction:, I8

COSMO file, 15

.cosmo file, 15

cosmo2kf, 173

COSMO-RS parameters, 31

COSMO-RS program crs, 31

COSMO-RS theory,5

COSMO-SAC, 8

COSMO-SAC 2013-ADF, 8

COSMO-SAC 2013-ADF parameters, 33

COSMO-SAC 2016-ADF, 8

COSMO-SAC DHB-ADF, 8

COSMO-SAC parameters, 33

COSMO-SAC theory, 8

cpfusion (pyCRS. Database. PhysicalPropertyRow
attribute), 95

CRSJob (pyCRS.CRSManager.CRSMixture attribute), 99

CRSMixture (class in pyCRS.CRSManager), 99

(pyCRS. Database. CompoundRow

(pyCRS. Database. ConformerRow
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crsprep module, 169
CRSSystem (class in pyCRS.CRSManager), 97

D

database (pyCRS.CRSManager.CRSMixture attribute),
99

db_path (pyCRS.Database.CompoundRow attribute), 94

db_path (pyCRS.Database.ConformerRow attribute), 95

del_row () (pyCRS.Database. COSKFDatabase method),
90

del_row_by_conformer_id() (py-
CRS.Database. COSKFDatabase method),
90

del_rows () (pyCRS. Database. COSKFDatabase
method), 90

density (pyCRS.Database.PhysicalPropertyRow  at-
tribute), 96

density (pyCRS.Database.PropPredRow attribute), 97
density_corr (pyCRS.CRSManager.CRSMixture
attribute), 100

dielectricconstant (py-
CRS.Database. PhysicalPropertyRow  attribute),
96

dielectricconstant (py-

CRS.Database. PropPredRow attribute), 97

E

Ecosmo (pyCRS.Database. CompoundRow attribute), 94
Ecosmo (pyCRS.Database.ConformerRow attribute), 95
Egas (pyCRS.Database. CompoundRow attribute), 94
Egas (pyCRS.Database. ConformerRow attribute), 95
element specific parameters, 32
estimate () (in module pyCRS.FastSigma), 102
estimate () (pyCRS.PropPred method), 101
estimate_physical_property ()
CRS.Database. COSKFDatabase
91
examples, 173
excess energies, 42
execution of COSMO-RS, 31
execution of UNIFAC, 57,58, 60

F

fast approximation,?

Fast Sigma COSMO file,?22

Fast Sigma COSMO settings, 22

flash point, 40

flashpoint (pyCRS.Database.PhysicalPropertyRow at-
tribute), 96

flashpoint (pyCRS.Database.PropPredRow attribute),
97

Flory-Huggins parameter, 49

(py-
method),

get_activity_coefficients() (py-
CRS.CRSManager.CRSSystem method), 99

get_all_compounds () (py-
CRS.Database. COSKFDatabase method),
91

get_all_conformers () (py-
CRS. Database. COSKFDatabase method),
91

get_all_physical_properties () (py-
CRS.Database. COSKFDatabase method),
91

get_attribute_by_compound_id () (py-
CRS.Database. COSKFDatabase method),
91

get_compounds () (pyCRS.Database. COSKFDatabase
method), 92

get_compounds_id () (py-
CRS. Database. COSKFDatabase method),
92

get_conformers () (py-
CRS.Database. COSKFDatabase method),
92

get_full_coskf_path() (py-
CRS. Database.CompoundRow method), 94

get_full_coskf_path() (py-
CRS. Database.ConformerRow method), 95

get_physical_properties() (py-
CRS.Database. COSKFDatabase method),
92

get_sigma_profile () (pyCRS.Molecule method),
105

get_tdep_values () (pyCRS.Molecule method), 105

H

has_missing_atoms () (pyCRS.Molecule method),
105

Henry's law constants,4l

hfusion (pyCRS.Database. PhysicalPropertyRow
tribute), 95

hfusion (pyCRS.Database.PropPredRow attribute), 96

hydrogen bond interaction,8

ar-

identifier  (pyCRS.Database.CompoundRow  at-
tribute), 93

identifier  (pyCRS.Database.ConformerRow  at-
tribute), 94

infinite dilute, 4l
iso (pyCRS.CRSManager.CRSMixture attribute), 100

J

jobname (pyCRS.CRSManager.CRSMixture attribute),
100
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K

kf2cosmo, 173

L

liquid-liquid extraction, 73
LLE binary mixture, 42

LLE diagram,42

LLE ternary mixture, 43

log P,40

M

mass fractions, 39
massfraction
attribute), 100
meltingpoint (pyCRS.Database.PhysicalPropertyRow
attribute), 95
meltingpoint (pyCRS.Database.PropPredRow at-
tribute), 96
method (pyCRS.CRSManager. CRSMixture attribute), 100
missing_atoms () (pyCRS.Molecule method), 106
mixture (pyCRS.CRSManager. CRSMixture attribute), 99
mixture (pyCRS.CRSManager.CRSSystem attribute), 97
Mn (pyCRS.Database. PhysicalPropertyRow attribute), 96
modify_attribute_by_compound_id/() (py-
CRS.Database. COSKFDatabase method), 92
module
PYCRS.
PYCRS.
PYCRS.

(pyCRS.CRSManager. CRSMixture

CRSManager, 97
Database, 89
FastSigma, 102
pPyCRS. Input, 103
pyCRS.Output, 104
PyCRS.PropPred, 101
molar fractions, 39
Molecule (class in pyCRS), 104
MOPAC COSMO file, 29
MOPAC COSMO settings, 29
multi_species (pyCRS.CRSManager.CRSMixture at-
tribute), 100

N

name (pyCRS. Database. CompoundRow attribute), 93
name (pyCRS.Database.ConformerRow attribute), 94
nring (pyCRS.Database.CompoundRow attribute), 94
nring (pyCRS.Database. ConformerRow attribute), 95
num_mix (pyCRS.CRSManager.CRSSystem attribute), 97

O

Octanol/Water partition coefficients,40
optimizing solubility, 73

optimizing the solvent, 73

outputs (pyCRS.CRSManager.CRSSystem attribute), 97

P

partition coefficients,40

PhysicalPropertyRow (class in pyCRS.Database),
95
pKa values, 41
polymer sigma-profile, 47
pressure (pyCRS.CRSManager.CRSMixture attribute),
100
problem_type
attribute), 99
property prediction, 65
PropPredRow (class in pyCRS.Database), 96
pyCRS.CRSManager
module, 97
pyCRS.Database
module, 89
pyCRS.FastSigma
module, 102
pyCRS. Input
module, 103
pyCRS.Output
module, 104
PyCRS.PropPred
module, 101

Q

QSPR COSMO file,?22

(pyCRS.CRSManager. CRSMixture

Fq

read_coskf () (pyCRS.Database. CompoundRow
method), 94

read_coskf () (pyCRS. Database.ConformerRow
method), 95

read_sdf () (pyCRS.Input method), 103
read_smiles () (pyCRS.Input method), 103
resolved_smiles (pyCRS.Database.CompoundRow

attribute), 94

resolved_smiles (pyCRS.Database.ConformerRow
attribute), 95

runCRSJob () (pyCRS.CRSManager.CRSSystem

method), 99

S

scripting examples, 173

sigma potential:,44

sigma profile, 44

smiles (pyCRS.Database.CompoundRow attribute), 93
smiles (pyCRS.Database.ConformerRow attribute), 95
solubility,4l

solute (pyCRS.CRSManager.CRSMixture attribute), 100
solvation energies,4l

solvent boiling point, 39

solvent flash point,40

solvent vapor pressure, 39
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.t21 file, 15

temperature (pyCRS.CRSManager.CRSMixture at-
tribute), 99

ternary mixture, 43

theory COSMO-RS, 5

theory COSMO-SAC, 8

theory UNIFAC,9

Tuorial Polymers, 188

Tutorial COSMO files, 174

Tutorial parameters and analysis, 175

Tutorial pKa, 188

Tutorial Properties, 176

U

UNIFAC,9
UNIFAC program unifac, 57
units (in module pyCRS.PropPred), 101

update_compound_by_conformer_id () (py-
CRS.Database. COSKFDatabase method), 93

update_compound_by_lowestE () (py-
CRS.Database. COSKFDatabase method),
93

Vv

vapor pressure, 39

visualize_conformers () (py-
CRS.Database. COSKFDatabase method),
93

VLE binary mixture, 42

VLE diagram, 42

VLE ternary mixture,43

vp_corr (pyCRS.CRSManager.CRSMixture  attribute),
100

vp_equation (pyCRS.Database.PhysicalPropertyRow
attribute), 96

vp_equation  (pyCRS.Database.PropPredRow  at-
tribute), 97

vp_params (pyCRS.Database.PhysicalPropertyRow at-
tribute), 96

vp_params (pyCRS.Database.PropPredRow attribute),
97

W

write_kf () (in module pyCRS.Output), 104
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