#!/usr/bin/env plams class GammaResults(Results): @staticmethod def get_difference(job, jobplus): """Calculate the difference between HOMO and IP. *jobplus* should be the counterpart of *job* with one less electron.""" homo = job.results.readrkf("Properties", "HOMO", file="engine") IP = jobplus.results.get_energy() - job.results.get_energy() return IP + homo def get_J(self): N = GammaResults.get_difference(self.job.children[1], self.job.children[2]) A = GammaResults.get_difference(self.job.children[0], self.job.children[1]) return (N**2 + A**2) ** 0.5 class GammaJob(MultiJob): _result_type = GammaResults def __init__(self, molecule, gamma, charge, spins, **kwargs): MultiJob.__init__(self, **kwargs) self.molecule = molecule self.charge = charge self.spins = spins self.gamma = gamma def prerun(self): charges = [self.charge - 1, self.charge, self.charge + 1] for charge, spin in zip(charges, self.spins): name = "{}_charge_{}".format(self.name, charge) newjob = AMSJob(name=name, molecule=self.molecule, settings=self.settings) newjob.molecule.properties.charge = charge newjob.settings.input.adf.xc.rangesep = "gamma={:f}".format(self.gamma) if spin != 0: newjob.settings.input.adf.unrestricted = True newjob.settings.input.adf.SpinPolarization = spin self.children.append(newjob) def gamma_scan(gammas, settings, molecule, name="scan", charge=0, spins=(1, 0, 1)): """Calculate values of J function for given range of gammas. Arguments: gammas - list of gamma values to calculate the J function for settings - Settings object for an ADF calculation molecule - Molecule object with the system of interest name - base name of all the jobs charge - base charge of the system of interest. The J function is going to be calculated based on two systems: with charge, and charge-1 spins - values of spin polarization for jobs with, respectively, charge-1, charge and charge +1 In other words, if charge=X and spins=(a,b,c) the three resulting jobs are going to have the following values for charge and spin: Charge=X-1 SpinPolarization=a Charge=X SpinPolarization=b Charge=X+1 SpinPolarization=c Returns a list of pairs (gamma, J) of the same length as the parameter *gammas* """ jobs = [ GammaJob( molecule=molecule, settings=settings, gamma=g, charge=charge, spins=spins, name=name + "_gamma_" + str(g) ) for g in gammas ] results = [j.run() for j in jobs] js = [r.get_J() for r in results] return list(zip(gammas, js)) # ============================================================= # Now we simply use the gamma_scan function to find the optimal # gamma value for a toy system (H2) # ============================================================= import multiprocessing import numpy as np # Run as many jobs in parallel as there are cores: config.default_jobrunner = JobRunner(parallel=True, maxjobs=multiprocessing.cpu_count()) # Settings of the ADF calculations # ================================ s = Settings() s.input.ams.task = "SinglePoint" s.input.adf.basis.type = "DZP" s.input.adf.basis.core = "None" s.input.adf.xc.gga = "PBE" s.input.adf.xc.xcfun = True s.runscript.nproc = 1 # The molecule (here we just use H2) # ================================== mol = Molecule() mol.add_atom(Atom(symbol="H", coords=(0, 0, -0.3540))) mol.add_atom(Atom(symbol="H", coords=(0, 0, 0.3540))) # The list of gamma values # ======================== # Here we scan just a few values for gamma. # In practice, you want to scan a wider range and smaller step. gammas = np.around(np.arange(1.2, 1.9, 0.2), decimals=3) results = gamma_scan(gammas, s, mol) print("== Results ==") print("gamma \t J") for g, j in results: print("{:.4f} \t {:.8f}".format(g, j)) print("Optimal gamma value: {:.4f}".format(min(results, key=lambda x: x[1])[0]))