{ "cells": [ { "cell_type": "markdown", "id": "05a81f03-503e-414a-877b-4f8837d37eb5", "metadata": {}, "source": "## Initial imports" }, { "cell_type": "code", "execution_count": 1, "id": "3fe257a7-2374-49d6-94a2-d648a30c3ad4", "metadata": { "execution": { "iopub.status.busy": "2024-05-31T12:23:03.063079Z", "iopub.execute_input": "2024-05-31T12:23:03.063238Z", "iopub.status.idle": "2024-05-31T12:23:05.147695Z", "shell.execute_reply": "2024-05-31T12:23:05.147135Z" } }, "outputs": [], "source": [ "import scm.plams as plams\n", "from scm.params import ResultsImporter\n", "from scm.plams import Settings, AMSJob, log, Molecule, packmol_on_slab\n", "from pathlib import Path\n", "import matplotlib.pyplot as plt\n", "\n", "# common_ru_h.py must exist in the current working directory\n", "from common_ru_h import (\n", " rotation,\n", " dft_settings,\n", " QEKPointsConfig,\n", " m3gnet_up_settings,\n", " replay_settings,\n", " slice_slab,\n", " check_installation,\n", ")\n", "\n", "# register dependencies for AMSjobs, to support submitting this notebook directly to a cluster in AMS2025+ \n", "# dependency: {} common_ru_h.py\n", "# dependency: {} reference_data_2" ] }, { "cell_type": "markdown", "id": "2c19c0f9-001b-4ced-96ce-19a0878f9806", "metadata": {}, "source": "## Initialize PLAMS working directory" }, { "cell_type": "code", "execution_count": 2, "id": "81d242b7-b776-491d-a463-cca1b62a70c0", "metadata": { "execution": { "iopub.status.busy": "2024-05-31T12:23:05.151046Z", "iopub.execute_input": "2024-05-31T12:23:05.151250Z", "iopub.status.idle": "2024-05-31T12:23:07.427804Z", "shell.execute_reply": "2024-05-31T12:23:07.426505Z" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "Current AMS version: 2024.102\n05-31 14:23:05 m3gnet is installed: M3GNet ML Backend v[0.2.4] - build:0 [06668e0a45ce742d8f66ff23484b8a1e]\n05-31 14:23:06 qe is installed: Quantum ESPRESSO (AMSPIPE) v[7.1] - build:115 [777d72eb480fe4d632a003cc62e9c1cb]\nPLAMS working folder: /home/hellstrom/SALRuH/fix2024/plams_workdir.003\n" } ], "source": "old_ref_dir = \"reference_data_2\"\ncheck_installation(old_ref_dir)\nnew_ref_dir = \"reference_data_3\"\nri = ResultsImporter.from_yaml(old_ref_dir)\nplams.init()" }, { "cell_type": "markdown", "id": "31ab389e-ad8d-4753-b0a2-ea8d434ad794", "metadata": {}, "source": "## Construct the Ru(10-10)/H2(gas) interface\n\nFor details about the construction of the slab, see the previous notebook." }, { "cell_type": "code", "execution_count": 3, "id": "380b978e-ee27-493e-ad72-61e59c719c6f", "metadata": { "execution": { "iopub.status.busy": "2024-05-31T12:23:07.433072Z", "iopub.execute_input": "2024-05-31T12:23:07.433431Z", "shell.execute_reply": "2024-05-31T12:23:08.084862Z", "iopub.status.idle": "2024-05-31T12:23:08.085851Z" } }, "outputs": [ { "output_type": "display_data", "metadata": { "needs_background": "light" }, "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFwAAACLCAYAAADs1P7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfg0lEQVR4nO2deZRU1bX/P+fW3NVdPTB3g4CigAgYQKZGAQecfjFEQ2LQxMREfVHzkvdejGb9jD/zMrxML4PR+EQxmMEYiU9/zkZl0KYBQWxBRh80TUMDPVd1TbeGu98ftxqrq6eqrivaCd+1eq2+p+7d99xv7Tp3n3323keJCKdw8qB91B34R8Mpwk8yThF+knGK8JOMU4SfZJwi/CTjY0G4UupspdTWj7ofmVBKTVNKVVsp0zLClVIHlVIRpVRQKXVMKbVKKVWY5eXfB36eJut2pdRWpZSulFrVw70uUkrtUUqFlVJrlVJj++jXKKXUs0qpBqWUKKXGZXzuUko9qpQKpPr9r52fich2oF0p9cksn6N/iIglf8BB4OLU/yOBd4EfZnHdKKAVcKe1XQ0sBR4EVmWcPxTwA8sAN/AzYFMf8kcAtwLzAAHGZXz+H8CbQCkwGTgGXJb2+XXA85bx9GEQnjr+KfACsAg43MeX80XgtV5k/qAHwm8GqtOOvUAEmNRP/+y9EH4EWJJ2/H3gibTjipR8lxU8fShjuFJqNHA58D9ZnD4V2JuD+CmYvx4ARCQE7E+15wSlVClQni4v9f8JWSJyBIgDE3OV3xOsJvwZpVQHUA80Av8vi2tKgI4c7lGIOaSkww8U5SAjXVbn9X3J6sDsZ96wmvClIlKEOYxMwhxv+0MbuZEVBHwZbT6gQyl1fuqlHVRK7cxSVuf1XWRlnFcEtOfQx17xoQwpIrIeWIVpeYSAgs7PlFI2YFja6duBs3IQvxOYnibPC5wB7BSRN0WkMPXX7xAjIm3A0XR5qf9PfFlKqXLASW7DXq/4MO3wXwGXYJLtVkpdqZRyAHcDrrTzXgVmKKXcnQ1KKXvq2AbYlFJupZQ99fHTwDlKqWtS59wDbBeRPb11JHVe5z1d6fcCfg/crZQqVUpNAm7CVJZOLALWiIie2+P3gg/LSkm1PQg8BXwJU5MagW9lngusBj6XdnwvpkWR/ndv2ucXA3swrYd1ZFgePfQtU5akfeYCHgUCwHHgXzOufQG4yiqeVEroRwql1NnAY8Bs+Th0KAWl1FRghYjMs0zmx+j5/iHwsfCl/CPhFOEnGacIP8k4RfhJxinCTzJOEX6S8WF5Cz+rlJr1Ycj+qKCUmqSU+mrecqy0w5VSCjgf+DQwFtNP8veAIszFiVEi8ol8BFlGeBrZFZjT7qSYS1SDGkqpMZg+oU3A6SLyfD7yLBlSUmQvwHTmPwOMA862QvZHCaVUBbAEWAs0p/7PC/b+T+m3U51kjwGeFpGIUmovpktz0CJF9qWYnsLalBt4Tb5yrdDwmZguzKdFJJJqm4A55g1KpNzI3wbWiUhtqtkNXJSv7Lw1HNO9eS5wp6nsgLnAYFdKWbIO+BHAhum5PJDW1ukKzgtWEN4G/FZEXu9sUEpdCRSLyOMWyD/pSC12HM1odgGLMf37A4YVhPsw41DScYAPFmgHIxRwZkZbBHgjX8FWjOF+oCmjbSy5rVN+3JDEVJp0OIGF+Qq2QsMLMaOb0lGHOdQMZpyecawDVfkKtULDOzBt1HRUMIg1XEQMTKVJhx1zYpcXrNDwArrHnxzGDI8YzBirlFJpa6xxIO9IWis0PET3IJlRDGINT+EQ5suzEzagMl+hVmi4BzPyNB0NmBoxmFFOV8LjmP6UvGCFhofpHus3AnO2OZjRQFfCNWBuvkKtmmmWZLQdo2tnByOG0/UZksCWfIVaoeFRugc/DqO7WTXY0EhXwhVwXr5CrdBwB92jXxvpGj84GFFGV8IN4J18hVqh4THMaW86hmD6xAczWuk+LM7IV6gVhNtJC0dOoRkzKH8ww0ca4anJUI1Kc4kOBFZpeGYobylwmgWyP0oE6K7h03poywlWEG7DdM6now0zWWkwo4Du5G7voS0nWPHSTNB9kuMDRmeeqJQahplhUIL5EmoFtopIMPPcvqCUOh3TfVqMaSU1AVtEJJGDDJXqSwWmA64D0yWxIzWdD9Od3LN7aMsJVhCuMC2VdPhJOfBTD1apud3fUg7Hpc6RI3Wb16vEMEgGgxJvbHRoLtcfJRb7lYjs7vUm5qLAVZrHc6fmck11jhoV0zweTeJxI9HWphIdHXFlt99HMrlCRI71IacIuF5zu7+tnM6hjqFDk5rbrYxoVOKNjXZJJI4qpX6CmY6YSW6v/csWeYdJpLKAF4nIY2lt04HZwBrlcr2gud2jSxct8hTNnq3ZCrq+X+NtbQSqqxP+qqo4sMmIRq8WkfaMe1ykHI4nnSNGOEoWLy4qnDYNZe+qK/rhw7S/8UYkWFOj0LRHRdf/WUSSXeTY7f+slPqx56yzjJJFi7yeCRNIfweKYRDet4/2deuCkfffdyLyb2IY96f14xfAXSISGzBfFhA+DrhQRB5Nazsd+CR2+/cKp0/3JQMBlQgEEF1Hc7uxl5RQNHs2hVOnniBOEgman3lGD2zZclRisUoRaQBQNtty7PZHimbM8MSPHSMZCiGJBJrHg3PECHzz5pFOXDIU4ujKlWG9oaFadP1KEYkppZRyOn+peTw3F0yc6Ik1NJCMREAEW0EB7nHj8M2fj2vUqBPP1fzsswS2bg2Lrv/K0PX/m3qurwErP2rCTwMuEZGVaW3X4nD8QbPb7e5x4/DNnYtj2DA0lwsjGiV2/DiB6mpix4/jmzuXkoULsXm9ALS8/HK8fd26WtH1WcBy5XI9gFK2wmnTKJo5E3txMcpux4hEiNTWEtiwAQGKKyspnj8fZbMhiQRHV66MRGprXxBd/yyatkrzeK4HNN+cORROnYrm9aKUIhkKEdq1i8DGjTiGD6dk4UIKp06lff16PJMnc/S//iucCAS+I4nEfUqpnwL3iEj0Y0O4Umqqcjrf8Z13nq1k0SIcQ3tP1YwdO0bb2rVEa2spv/lmHEOHIiIc/+Mf9WBNzVplt19WumQJxXPnnvhCMiEiRPfvp/WVV1B2OyNvuAHN7caIxTj085+HEq2tG20ez8VDP/UpvNOnozkyXzcpOYkEwR07aH3pJbznnIOtqAjfnDkYkQiHfvrTiMRiUzEDgX6XD+FWmIUGpmloBjw6HBuHLVtmG/aZz/RJNoBz5EhGfP7zFF9wAUceeIB4WxtKKTwTJrg0p/Oyittuo+yii3olO3VPPBMmUP5P/4S9uJiGFSsw4nE0pxNXebnXUVZ28Zg77qBo1qxeyQZQdjtFn/gEo7/xDaK1tYR27EAMA8eQIfjmzbMph+PrmJZXXpxZoeEVmHn1f1FO5/tDr756ePGcOTmbTm1r1tD2+usYhoEyDCpuvx33mDE5yRDD4NiqVURqa5FYDM3t5rQ77sBWmFsAQTISoe5HP0IMA5JJ808plM120IhGvwP8NRcTNB1WEF4OLEUprWDy5B+X33RT7+rYB0SEI7/5DQAFU6ZQdtHAgpyMWIzae+/F5vEwYvlyPGecMSA5zc8+S2DLFsbedRfK4TDfGfv307ZmTTDe1BQnmbxPksn/yDVh1go7XICYcjq/W7J4cc5kx5qaCO/dixEKoXk8hPfsoWTRIsQwUFp2v14RQa+rI1pXRzIcxu7zkQwGUa7cHJaSTBLes4dYYyOxo0dRmkbLCy9QtmSJaVnNmEHRjBmFekMDzc8+++3owYOXK6UuzTRj+4IVGj4KuMteWnrj2O9+tzAb344YBuFdu/Bv2EC0vp7Cc87B5vOBppEMhYgeOIDE4xTPn0/R7Nlk2u6dMHSdjm3b8G/YgOg6BZMmoXm9YE6qCO3ahaO0lOIFCyicPr2b7d6JRCBAYNMmAhs3YisuxjN+PJrHgxGLkWhpIbxvH54zzqC4shLPmWeiNA0xDJr++le9Y9u2vaLrc9PiKvvmywLCR6Bpj5dddtnisksu6ZfteFsbRx95BGW3m0Sce263l5mIED14EP+GDYR372b4tddSOHVql3MitbUc+93vcI8di6+ykoKzzur2i5BkktDOnfg3bCDe1MSom27qYmsDBDZtovnZZymcPp3iykpco7t5JDCiUTrefhv/hg1oHg+jbrwRm9eLiHDssccikb17X0hGIsuy4ssSwu32vw1ftmyab/bsPs+NNTXR8NvfUnzBBZQsWkQ2v4booUMcXbmSIVdcgW/OHABCu3fT+PjjDF++HO/k7IJ0O95+m+ZnnmHUV7+Ke6xZIqvt9dfxb9xI+c034xw+vF8ZYhi0vPACoR07qLj9duw+H4auU3vPPVGJxc4SkX5d0paYhUop1dvPtRPJYJCjK1ZQeskllC5enBXZAO7TTqPi9tvNB929m2h9PY2PP87Ir3wla7IBimbOZPi113J05Urizc0EtmzBX13N6K9/PSuyAZSmMfSTn6RoxgyOPvIIhq6juVwUnXeeUg7HrdnIsIJwJYYRMyJ9D2Gtr75KwcSJFM+fn/MNnMOGMfKLX6TpySdpeuophlx1FZ5x43KW450yhZKFC2l6+ukT2m4vLs5ZTumll2IvLcVfZUa+lZx/vgv4mlKq3yQEKwhPkEz+T/j998O9nWDoOh1bt1Jy4YUDvolnwgSUx0OirY2iGQNf6SqurCTy/vt4Tj+923ieLZRSlF50Ef7qasQwcI4Ygd3nU5hx8n3CCsI1oDW8c6crGezZrd3xzju4x4/HUVaW143sXu8Jf8lAoVwuNI+H4gUL8uqL+7TTsHm9hPeYdXFsRUWCufDcJ/Kbpiq1RLndLyu7/SuOESOUf1PPgUkdmzcPaChJhxGPEz18GN+8/EqX6PX1KIcDz5mZ4d+5o3j+fAKbN5sHphL07jtIYUCEK6WU5nDcqTyep4tmz57pmTDB6R43TvOvX0+io3uBtnhrK67y8oHc6gSSwSCay4Xdl1lfLDckUn3JdlLVF5zl5SRaWwEwwmHIIkR7YHe12f5dOZ3/bnO5CqL795vOIrcb+9ChNDz4IEa0qzPNiEbR3JnLnrnBChkn5Hg8ecsBTK9kNEoyFCLe1OQiixWhnKf2StPuUzbb171TplC8YAGOYcNoX7eOIZdfjojQ/NRTHL7vPkbddBOOUjPGU3M6T3wpA4XmdCKxAfv9P+i/04lhgRwAicVQTieBt94ylN3+vBGPt/R3TU6Ea07nvbaiotsrbrvthO1q6Dr2FLFKKYZecw3ta9dS/7OfUTB5MsWVldiKiog3N2MvGkgtRxO2wkKSodAJ23fAcnw+4k2ZGTIDQ7y1FVthIe3r1kWMaPQ/s7km6yFF2Wxf1TyeO8d861uqy0RBhETLB1+sUorSCy9k7N134z7tNBqfeIKE349/w4YcHqWHjrpcuCoq6Hj77bzkeMaPJ9HWhn4k/yiOwKZN2H0+MXS9HticzTVZEa6UKlWadl/Fbbe5u2mppmEfMqTbNbaCAkoWLuS0u+5i+PLlhLZvJxnu1VTPCpJI0LZ2Lfm6I8QwaF+/Pi8Z8eZmogcP0lFT0yG6flW21eiy03BN+1LB2WdLj1Ngkb5/oiJ4xo3DNWYM/uqBZ2zEm5uJNTVhRKNED2QmmGWP4PbtOIYMIfjuu/Q2b8gG7W+8gZFIxEgkLhGR97O9rt8xXCmlKZfrWyULF/bsI9U0HMOGdWkSEaJ1dQSqqghu345yOEAp9Pp6POPH57wokIxEOPLgg+ZBIsHRRx/ltDvuwF5SkpOc2LFjNP7lL6ZJqGk0PPQQo7/xjV7dtr2ho6aGwKZNSeLxi0TkrVyuzeZOC2xeb5F7/PiePxUhfvz4icPQ7t20vPACouv4KisZ9+lPn1iTDO/dy9Hf/Y6RX/gCBROzywpPdHTQ8NBDeCdPZug116CUom3tWg7ffz/lt9yCM+PL7g364cM0rFjBsKuvxjd7NmIYHP/DH2hYsYJRN96YtQXVsW0bjU88EZF4vFJEcg5f7tc9q5T6cuG55/5m5A039LiaI4kEga1bKZ47F391Na0vv8zwz32OgsmTe5xcRPbv59iqVXinT6dkwQKcIzOTmE0kw2ECb72Ff/16iubMoezSS7t4GP3V1bS+9BK+BQsonju3VydUvLUV/4YNBDZvZviyZRRO/6CurySTND39NJF9+yhZtIiimTN7tYCihw7Rvm5dPPTeeyGJxxcOtBZMNoR/0zd//o+HL1vWY0+MeJyW557DNWYMrS+9RMWtt/a7Wp9ob8e/caMZCzJsGEUzZ2IrKkLZbBiRCKHduwnv2nXCrPSc3nMyhd7QgL+qimBNDZ4zzzTDGwoKQIRkKETHtm3ohw9TNGsWxQsW9PhrEBEie/fi37CByIEDFJ57Lp4zzkDzeJB4nEQggL+qKp5oa/NLIrEOw/iBiLzbQ3eyQjaE31w0a9YvR1x3XY9juCSTtL32Gv6qKipuu61Xje3x2lQsSGDjRmJHj2IvKSERCOCbN4/iysqs7fZkJELHli0ENm/GiETMd4YIJYsXm1rrzK50S7ytjcDGjabpqRSOoUPRPB5C27frGMZw4FrM7RMG/NbOxko5Hmtq6j0kQITg9u34KitzIhs+iAWpuPVWnBUVJKNRhl97LUMuuyynSZLN46HkggsY8y//ghGPkwwEqLj9dornzcuabABHaSlDrriC8ltuIRkMMuSyyxh1ww14JkyIA5/CLPA+oPCITmRD+KuxhgZbPOWkyYSh68RbWiiem19GXcHEieZCcJYv056g7HZc5eV4zjwzLyeXc/hwHEOGEK0zs79do0d7MCseeckzd6lfwkUkjFKrUtGt3RCsqaFg4sScTbRMxBoaKL7ggry8eCJCorWVkoV5F32gbMkSgu+aQ7Xm8diw2cowsyLySvjN6ukkFrsvsHFjwtC7x7xEDhzAOyXnDUa6y6mtpXDatLxkGKEQyVAIdy8v2VzgnTKF6MGDiGEgum6QTLZjJhrk5bLMjnCRfSLy9LFVq8JiGF0+M8LhPmP/soURieQtJ5mSkWfeE2AOT53RvnpDQxQzM7mN7vlMOSHr36/o+pcjtbU1x1atihjxwZ5Gnz0SwSCRffs8wMuYqTJ5OdOzJ1wkJrp+UXjfvtfrf/7zUMc775iB8QUFeTulADSPh2Qov4oftpQMK4pfSjKJoesEa2qw+XwGmrYcMx1ywKHKkOOKj4hERdc/FW9s/HLT6tVv195zTyQZChmhHTvy6QMA7vHjyVeO5vVi83rzcm51IrRzJ67Ro+nYuJGi2bNt2O13YJYlyWvcy9kkEBFDRFYnw+FZRiRyXuTAgUfDu3eT8GcWlMgNrlGjaF+/nsx3RC5QSmEvLaVt7dq8+gLQ/Nxz6MePk9R1gu+8g2a3D8dmu0+5XD/Kp5BxXtGzIrITuElzOs/yV1dXDrn88gHHL4T37QOlCO/dm1NEVZf+JBLoR48iuk4iEBiwLR5rbMQIhVAOB+Vf/vIJ72YyGLT7N226wr9+/YU2j6fOiEa/lKu30JLasxKPN7avW6diaV7DXBDcvh29rg7N7abpqafMhKcBoOXFF9HsdjSvl8YnnxzQr0WSSRqffBJlt2Nzu2l88kkCmzZhxGLYCgspu/hibdz3vlcwbNmyycrpXKuUuioX+ZZUV1ZK3YbN9ku7z+fIxnmVjvD773Ps0UcpvfhiHCNGnAg9Lr/55pwWndvWrjUXs6+8Es3louWll/CccQbDrrkm+zjzZJLjf/oTscZGM6rX7Uaz2wnu2EG0ro6imTO7OMGihw5x5IEHIhKLXS7mdmj9wirCX/ecddZ5hVOnFrW++irDr72WgokT+3xQSSTwb9pE6yuvMPKGGyiYYBYQEsOgafVqovX1jFi+vN94lmQoROsrrxDeu5fyW245Ed2VSh/E5vMxbOnSfmfC8ZYWGlevRmmamZiV4aaNt7bir64msGkTwz/zGQrPPRcwh8KjjzwSkHh8jIgE+qHKMsIfLpw167qR113nCe3aRcvzzyOJBMWVlRSdd16XgPp4ayv+qio6tmzBWV7O0KVLu8X4iQj+N9+kbc0aHGVlZhx5RjJs9NAh2t98k/DOnXinTGHo0qXdJk5GPE7L88/TsXUrngkTKF6woEtOpxgG4T17aH/zTfT6eornzzf97n2E0ulHjtDw8MNm+HQqPLvh4YdD4d277xTDeKBfriwivKpw5swZI6+/3gOpJbbaWvwbNhDasQPldKI5HKa9rhS+uXMpnj+/3zDhEwH1VVVEDhxAczrNuJJQCM3rpeT88/HNmdNv0lRnQH17VRXxpiZsqUCgZDiMc+RISi64gMJPfCJrz2Ls+HGO3H8/I774RQrOPLNzWKwzotHx/S0mW0X4Lz2TJn2l4pZbuvlUJZnEiETwb9xIZP9+Rt10E9oAgjGTZr4kjmHD8IwdS9kVV+Q8hRcRYseOUf/rX2MvLGTo0qUUnnNOzn0BCL77Lm1r1zLmm99ERKj7/veDiba2K0Wkz/q0Vm26MTJy4ICjp4gmZbOheb0Ea2oovfDCAZEN5izSN3s2el0dJQsXDshfopTCNWoU7ooKlFJ5Od28U6eSDASI1tebsqZNc5NF1TerCP+L0rStne7MTERra5FEIu+IVaVpFEyalHPeZU9yis8/Py8nl9I0fPPmEUiFfti8Xjs2W7/mmVWEXy7R6APta9f2uLdxcNs2fLNn5+3FC733HiXn51f+1YjFiB46RH/5SNnAN3cuHdu2mb4b8y/Z3zVWEf4c8Hy8pSUQ2LKl20sh0dGBo4forFyR6OjoMcorFxjhsGlfWxCJ27kMKLEYyY6OGIbRbzCnVYT/H8AjsdiSptWrg6GdXfd/llgs5yTVniC6ntMaZU8wYrG8ZaRDczpJRqMEa2riZLFlgVWE/38gLCK7JB5fcuyxxwJt69aJJMz11k5Hfr7QPB56WnXKSUYqptsqGNEo+sGDSDJ5SES29nt/i+57FalikSKySeLxWa0vv7z/wN13R5ufey6uFRQQa2jI+yb2srK85di8XiSRINHennd/Yo2NaG43/qqqoBGJ/CSba6wi/Gk+2CMeEXlfdP0l0fVKf1XVw4G33or4q6ro1PiBwjt5ct6uV2Wz4Ro7Nq/A0k74q6txjRtHtK4uCjyZzTVWEb4Us8JaOjYCuw1dv41ksgR4N5jnAkMiEECvryfenFmQPzckg0H8VVVIsl+jolcYsRgdb71FeM+ekMTjF2eba28V4U9hhhCkYy6pGA4RiRnR6A/a/va34EAfMtHRQWDzZgT2tb722oBzRiIHDxJvbASR+o6tWwc8zfZXVyMiSRKJJbmEvllF+NV0L9q+ga4r3E/H29o2H//zn6O5+qkNXafhwQdFksmXiMfnB995p9FfVZWzszve0sLRFStE4vG7jWj0qqb//u9wZADLceG9e2l98cWkRKNXiEhOY5NVhK+me8pcJWkr3CKSFF3/VOi99/Yc+/3vI9mO54mODg7/+tfReGvrEyQSV4pIi8Rii5qffbat7bXXEtn6gvQjR6j/xS+iRix2u4j8UERqJBa7puGhh8KhXbuyfEwzyffoypVhiccXicjfsr4wBaucV/cD/5m2bxlKqWuAl0UklHGuR7lcf9WczoUlCxd6fHPnaj3Fo8Sbm2nfsCEW2LjRwDB+LfH4d9I9cUqp0crlWuMoKxtZsnhxUW9lQPRDh2hfvz4c2rFDSTJ5gxjG6oz+zFMOx4vu00+3lyxaVNhjGZBUfZe2tWvDen19TOLxCwcSGw7WEX4BUJPugFdK/Qr4oYh0y0dJVeucrbnd/yaJxFUFkycnnCNGeJTTqRmRSDJ66FBYr6vT0LRHJRb7TW8pHalqnVdoHs+3xTBmFk6bhr2kxKXsdpUMheLhPXuiifb2iCQSv8AwVopIj2/b1E6CyzW3+07ldI4snDrVYSsqciIiiY6OePDddxMkk3VGNLoWc0O81T3JyYoriwj/DXBfOjFKqaWYob19JtIopYZiWjkj0bQiDKMNcw+dZ7J986fkTMAsdlaGpnlS0+wdwN9SpaizkaEwX/bzUGo+4MbcY+4NEXlbKXUukBCR97LtV7d7WER4JfCeiPjT2n4J/KSvOrAfZyilxgPu9Hq4SqnPACIiA94Az4oiYwCfxYxKSg9OWcPg3jxpOuamfunp3HvzFWqVlfIEkBkjcSFmtOlgxTtA5kr8WeS5MatVhH8Oc6OhdLxK991PBhOm032H2D3kWdLaKsL/jBnOm46L6b6/z2BCDfB6RttEYGCLoClYRfi1dN/z4RW672A1mDANcxPqdOwGBmyhgHWE/4nuu5osIYuSRB9j1GAqTTomkkVdq75gFeGfp/u+PS8xuDcxnQZcmdG2G/OLGDCsMgv/CBzMaLs01dZu0T1ONmqA2oy2iZibQg3Yz2yVhl9H990FXwT6XVT9GGMa5gw4HbuBfpfR+oJVGv4Huo/hl/NBItJgRA3dt+mdiJkF8bHQ8MwdYp+n+27ggwnTgGsy2naT5yamVmn47+luh1+JOd3vOYX54493MbfpTcdEzC3kP3INvx5zF6d0PIe5kelgxVTM+UU6dpHnVutWanimL+WTmBOfwazhhzPaJmFuSTZgDbeK8C9gThLWwYmNOELAF5RS+SdxfjQYB5yulFqTOrZhTnryMgKs8odPAppEpCVF9hJMp/3+vIV/REgtjAwRkb2pMtWdv9g12S5o9ASrxvAvAOemyL6UQU52ClOAG1NkX4UZBvJ6PmSDdRp+FubwNBdY/3dANkqpMkybeyKmm/m1bGsT9gWrNPxW4CvAm38PZKcwFfgRJtmvW0E2WKfh04GvMbjNwEy4MasAXW8V2WAR4aeQPawaUk4hS5wi/CTjFOEnGacIP8k4RfhJxinCTzJOEX6ScYrwk4z/Bb9OQHq2J2gLAAAAAElFTkSuQmCC\n" } } ], "source": "optimized_bulk = ri.job_collection[\"hcp_lattopt_Ru_dft\"].molecule\nslab_100 = slice_slab(\n optimized_bulk, miller=(1, 0, 0), thickness=7.0, cell_z=15, ref_atom=0\n)\nslab_100 = slab_100.supercell(3, 2, 1)\nfor at in slab_100:\n at.properties = Settings() # remove details about supercell generation\nplams.plot_molecule(slab_100, rotation=rotation)\nplt.title(\"Ru(10-10)\");" }, { "cell_type": "markdown", "id": "3e8bc326", "metadata": {}, "source": "Now use the ``packmol_slab`` function to add hydrogen molecules:" }, { "cell_type": "code", "execution_count": 4, "id": "8965d84c-e662-4dd4-aef0-d99f9460ea41", "metadata": { "execution": { "iopub.status.busy": "2024-05-31T12:23:08.089688Z", "iopub.execute_input": "2024-05-31T12:23:08.089820Z", "shell.execute_reply": "2024-05-31T12:23:34.527995Z", "iopub.status.idle": "2024-05-31T12:23:34.529332Z" } }, "outputs": [], "source": "from scm.plams import packmol_on_slab\n\nh2_mol = plams.from_smiles(\"[HH]\")\ndensity = 0.3 # approximate density of the gas phase in g/cm^3\nslab_100_H2_gas_raw = packmol_on_slab(slab_100, h2_mol, density=density)\nslab_100_H2_gas = plams.preoptimize(\n slab_100_H2_gas_raw, settings=m3gnet_up_settings(), maxiterations=100\n)" }, { "cell_type": "code", "execution_count": 5, "id": "ee06a313-36af-4ca6-944d-b02c94eb3b75", "metadata": { "execution": { "iopub.status.busy": "2024-05-31T12:23:34.534127Z", "iopub.execute_input": "2024-05-31T12:23:34.534370Z", "shell.execute_reply": "2024-05-31T12:23:35.212795Z", "iopub.status.idle": "2024-05-31T12:23:35.213795Z" } }, "outputs": [ { "output_type": "display_data", "metadata": { "needs_background": "light" }, "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFYAAAB7CAYAAADuZHcfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAxF0lEQVR4nO19eZQURbb+F1lVuVRWZlZV793QIA2yCIhsQoMsjqK4gOLKqDwVQVvH0VHHGdH31Ic+540+mXFwG3fADfcZ3EbFBbpZZRGRzWZpoHe6u/aqrMy8vz+qum2K3qpb+L3zjt85dU5VZMSNG19FxnIj4gYjIvyCnx/c/28F/q/iF2KPE34h9jjhF2KPE34h9jjhF2KPE34h9jjhF2KPE342Yhlj4xljl/xc8v43gDF2GWNsbHfS2n8mBQYD+BWAsxljw34OmccJDEBXp5q9AQwCUANgVto5EVGPPgBOBnAdgGEAprUT5xyv17ve7XZ/BKAwGaYAuB7AFQBsPdWjEx2zVFXdyhizVFVdC0DtIC4DMBHArwGMAjCyW3n+DKReDyAHwGAAf2wjTi+n0xlavnw53XvvvYaqqt8D4F0u146zzz47eOqppwZUVV1+PImVZXnxDTfcoOu6TpdeemnU4XA80EGZxgGYDcAJ4DwAl59QYpOkXgsgJ/k7F8CFydqxzOv1fgHgTAATBw0a5CMiqqmpIZ7nIwBOLSgoCFiWRcFgkDiOMwFwbeQxAsBMAO6eEKsoyssPPvigSUR0++23G4IgPNZOmcYDuAqAnPw9DMC4E0YsABXA0wAuBXBKMqw/gN9rmlZWUlKiv/zyyyRJUgjA6bIsH7z44ovDw4cPDyqK8gqATEEQQnfddRfdc889psvlqkjNw263z3W73aEJEyb4ZVk+DMDbg0owSJKkhsLCQp/T6axJEjYSwCyO4x4GMBXAUACPNJOaTHc2gMu6kydLCkgLjLEcWZbLe/fu7aiqqmLBYPBfpmnuBFBot9tn3nrrrbzdbsff/vY3MgyDAIQMw9gAoAHADwCy7Xb7Dfn5+bbKykoYhvEOgO2t8xAE4bezZ8/29OnTB0uWLNH37du3AsA2AH3tdvtllmXxRLSbiKqS4T4ANgAW2u6geAAeALzdbr+a53kOgH306NFYt25dPBaLfQzAIKKWkQ1j7FQk2uNVaZPUzRpw6YgRI6KWZdHGjRtJUZRqACcBuENV1aVjxowJjRo1yrjqqqvIsiz6/e9/b7hcrhea00uS9MT9999vEREtWrSINE17NTUPt9v91YIFC4zvvvuO8vPzgwBu93g8W2RZjq9YsYKuvvpqOu200+jGG2+Mi6LYoCjKazabzRBF0QdgQnu6ezyeFX/729/ommuuoeeff56IiB555BHieX4JgNkp5ZwM4JIT2RRMyczMjO3cuZP++te/Wi6XayeAcwBcg8QQ7nqbzfbFddddF7csixYsWGAoivJyc3qbzXbXlClTwrt376YLLrggIknSw23k0VvTtDWKolQLgrBQFMXg8uXLyeVyUXl5OeXl5dG+ffuIiGjgwIHB3r17RwKBAL311lukquqe9nRXVfXVO+64I/7YY4/RsGHD6LXXXqO+ffuGANwB4MoUHUYA+NWJJNbF8/xnTqezyel0VsmyHC0oKAi5XK5yAI5knCyXy1WuqmrY6XRWATipVXpB07RXXS5XraZp7wJwdpLfyRkZGSHTNOnPf/4zKYpCHo/HuO6668yXX36ZBEHQBw0aFI7H4/Tll1+SoiiNADLakZWvqup2AKbT6dzt9Xr/5XA47nE6nXsBWJqmfQJASMYtBnDxiSTWCeBWIoIsyw1bt24lwzCoX79+EQCTW8WzAShoJru7HwA2RVG+nTBhQnD48OEBWZY/BzDV5XKtycjIMKZOnRp1uVyGx+MxnU4nTZw4UZdleX8zQe3IZM3fNU1bPm/ePOPVV1+lKVOmhACUJOOcBmB6d3TuycwrBwA4jgvs2LHD4/V60dTUxCHRiQAAiMgEcLgHebTIYYxNLC0tnQUgBuA9IjIzMzOFpUuX2qZPn2679tprY6+88gpfVVWF3NxcR69evbyhUGgAgO/bkdnSwXEcpxYUFNiCwSB69eplB+BKPrIj0el1S+nu1CARwE3J7+NkWa52OBwxQRA+6knNTPejquorl19+efSzzz6j/Pz8oCiKlffee6/x1FNPkSRJPgBaF8szVhCEQGZmZliW5YMAspLhIwFcdCKbAhHA4ylh2QBuPJHEAlBUVV3q9Xq/43n+VgB9NE172+12f4rENLtPGrJOB/BnAFKrsBEALuiObt1tCiykjDuTcLURljYYY6cA8AJYS0Tx9uIRUQCJkUjrtP/mcrnWFxUV/bW6utrOcdx1lmW92YVsAwD2INHUNMOGRH+SPrpZU3gAT6eEZQC4PvmdATgFQFG6siVJ+oPb7Q4VFRX5FUVZizQ7PgCXjhs3zm9ZFn355ZekadreTuIzAJc6HI6IKIq6oijf4KeRzVB0s/Pqrj3WAlCWEsYByGOMMVVVX8vIyFivKMo2l8t1fzqCiei+DRs2OHfv3q1kZWUNQeIVTQeNlZWVrLq6Gt999x0xxhrbi8gYy1AU5Qee59/Kzc0Vn332WcdJJ510GoDpySgCgMw0828pSHdqrB3AyylhbgBzABRpmhYOh8NUXV1NNpstDsDehgwJCSPNaAB3ArgdgMvpdFZdc8019Prrr5OqqmEAg9PUjblcrkU8z0cVRdkLYEh7cR0Ox8I5c+bolmXRnDlzaMyYMdS/f/8AgHOTsgYCOOdEt7EfM8ZsAKYlf29GwuL1ma7rrLKyEnV1dbDZbHHTNK3WiRljssvl2lRYWJhXUVHhmjZtmhmLxYyVK1fexBhz2+12uvHGG1k4HF5GRDs6U4YxxkmS9KAoilfIsrw6GAzeSES/60I6h9PpZIwxaJqGLVu2kCRJKwD8KxlFQcLgnT66WWM5AG+pqvrRoEGDAgMGDAgoivJPJOfaoij+xuFwREVR9AO4BMCVSPTSNyFRC2aNGzfOv3//fsrOzibLssg0TRIEwXzooYeIiOiZZ54ht9td7nA4Yoqi7AMwqAN9bhw8eLD52WefUXFxMQmC8E4n+tuSetwiy7Lh8XgsURSbADybEq8IwFnd4qibxDIA1zudzmgsFqNIJEKCIOgAFqfEyVcUJTZo0CDyer00cuTIuNPpDAK4Ni8vL7h9+3byer306KOP0sKFC02e55uGDh0a+vzzz6m4uDialZUVq62tpccff9xyu91rOnil31+4cCEREf39738nt9sd7kB3QVXVdZmZmSFRFOnhhx+mp59+mnie9wGYmhJ3NIBbThixyUxX8DwfWrFiBb3//vskimIQwJU2m222IAhBQRCCHMd9PXDgQLIsi3788UfKzMykP/zhDxZj7EGn07lQkiS/LMvlqqqu1DTtPQCjZVne6vV6g6IobigqKor279+fRo8eTaqq/tiBLvNlWaaSkhLKysoiSZL2tXrmASC2+n3JqFGjAqZp0ocffkijRo0iv9/fbGz/a4rcPgCmnGhizwNwlqZp5Zqm7QFwkSRJe3iep82bN9OWLVuI53lD0zTaunUrPf/881RUVEQDBw4MAriqLZlut/uz66+/Pvbaa6+RJEnR7Oxsa/PmzXTfffeRqqo/pL41TqfzAY/Hs0fTtDcFQVhis9likiQdRmKYxFRVfUkQBF0QhDDHcTOS6W7Ozs6Orl27ll566SXKzMw0CwsLAy6XawmAiW3U2DtPNLEfoVVvz3HcXePGjYu5XC5qamoin89HgiDooihWy7JMqqpaiqIccDqdD6CVAaT1R1GU2p07dxIR0aBBg8KTJ08OExGVlZWRpmkHUvK/pKioKFhWVkaXXnqp4XK5drRuhwGMyc3NDQYCAVq1ahXJslwHYILT6QxdfvnlcVmWm1//WwBMSbanqWPzglSyTwSxZ6LVOpXD4Xjinnvuod/97neUnZ1NXq/XUBTlmWRb60Uba1ptELt46NChwfnz5+uiKDbKsny4uLjY7/V6Qw6HoyQl/7tLSkp0IqK3336bTjnlFJIkqRHJJRwAY/Py8oKhUIjKysrI6XQekWX5uT//+c9ElDCwK4rySit5CoDTU/IYBeDeE03sv1LaruGSJIUmTpzYJIpiCInl4zzYbA9ykrSPORxNjOcbOUnaCcZuQxsGkuRo4yoAdyfbNw3ARQDOADCfORxPMEF4ERz3JwBzJEnyz5w5k/Lz8+mNN96gQYMG+QAUJ2UxVVVflSQpxvN8hOO4WQ6H43djx44NlZaWUnFxcdjhcNzdKu9+OHZsngtgfHf46daaFwAwxooBrKOEaRCMMQXAUgDPA/iRE8UHyTRnukaOJG3cONHu8YAsC/G6OvhWrQqHd+7kYLM9TbHY75tltJFHHyYI/wHTnC2dfLIl9e8vM7sdVihE/o0bQ0YgEBQYsxUXF2tnnHGG49FHH/VFIpF+RNTYSkY2gBASNoAZoiw/ITgcOTFdN2KWVQnTfI/i8cUA6gAMJKJNrdKOAjCTiP4jbX56QOxKABcSUSj52wFgEoAN4PlSsbDwZHnIEJ4xBk6SIJ18MhweT0t6w+dD9SuvhGOVld9QLHYhERkp8kfBbv9C7NNH4bOzOcbzsCsKXKeeCkdmJogI0X37UPf++2GrtrZOsNs/C4VC/0NEO4/R1Wabw+z2RY7MTIdn6lRF6N0bzG6HGQwisGmT7l+71gLwLel6PRFd1EqHLCQsZBvT5qcHxI4EsLVVjZUBLIfdPpgThJPsHg/E3r3BHA6YwSDCO3dC6tcP2sSJcA4cCAAgw8DhZ54Jxw4dWmpFoze1kn0FE4RljOPsrhEj4MjKAgAYDQ0IbN4MsbAQ7qlT4RwwAGSaqF6yJBretWsVxWLTU2s/x/P3caJ4T94NNzjFwsI2y2LpOho+/jjetHq1H4YxiogOtCrjlUR0d9r89IDYrwHMICJf8vdAxvPrnIMGaZ5f/QqphbBiMQQ2bULjF1/ANXw4Mi64AIzjYEYi2H///TGKx4uI6DCz22/kHI6nMi68kFNGjQInCMeQENyyBQ0ffwxt8mR4pkwBGQYOPv54UK+qmkdEb7ToyHFX21yuZ3vfeafTrmkdlife2IjKZ58lo7HxAOn6MCIKMsa8SGyJ2pI2Pz0gdgiA3URkMMbymcOxNePCCzPdZ5zRYTozFELlc89BKipC5oUXAgBq33wzGti48TEyze2c0/lSr9tuE/lkLW0P8cZGVD71VKLmnnwyGj//HP5vv62CYTwOoBzAx4znD+bNm5dpHDmC4JYtMAIBMAA2VYUyahRcp54KZk+YS8gwEG9oQN2774Yiu3bdRUTPJGvsdUR0a9r89IDYUiRq7BGbJH2mnXHGlIzzzuuSUccMBnHw8cehTZ6M6N69iPz4I6xwGMxuR6/bb4dQUNAlHfS6Ohx89FHA4YBr6FDYZBlkGPHogQPRWGWljTkcAmPMJvbtC/X002FPtvHx+nr4166FXlkJ95QpcJ95JsxEmw97ZibC27dHwNgGEPmtSGQ9gP8honBa/PSA2CIABwAUMJ7fedJ//qeY+tp2hMavv0bTF1/AO20a5GHDEPzuO0T27EHe9denpUf1smXgs7PhnTatJYxME5XPPgsyTeRcdRUcXm+bafXaWtS+/jo4lwtkWYju3Qt1zBiIffuCORywwmEENm6MR/fv18FxL5KuLyCiYFf06gmx6wBcyOz2u9Rx427LuuSSLq1mxhsa4CsrQ3DTJhg+HxjHwaYoINNExgUXQB0zpkv5x6qq4C8tRaS8HIbPB0dGBoTevaFNmADfqlUwAgHkXX89mM3WoRxL13Fw0SJYug4YBtRx4+DweCCfeipskpTQ+cgRHPnww1johx/2USw2iYjqOtOvJ8T2AlDFOZ3b8q6/frBUVNRxAWIx1C5fjvCuXVBGj4Z6+ulwZGS0KO4rK0Nw82Y4Bw5E9uWXH9NpNSNWVYW6t99GvL4e6vjxkAcNAieKsGIxhHfvhq+0FKTryLvhBkj9+nWoU+iHH9D09dfQKyshDRkCuyyD8Tz0qipE9uyBa8QIuKdMAZ+dDSLCkX/8Q/etWbOTYrFxRBTpkJ8eELsRwAxOFNcX/Pa3BUJeXrtxrVgMh596CnxuLrIuuQQc33bltnQdde++C72qCgUlJeBE8ajnkb17Uf3SS/BOnw719NPbrI1kmghs2oT6Dz5A7pw5cJ588rFxiNDw0UcIbN6MjOnTj+rEmmH4fPCvWQNfaSlyrr4azoEDQUQ4/OST4Wh5+R1E9GxH/PTkDMJ0ADVgLErxdhdSAQA1y5ZByM9H9pVXtksqAHA8j+wrroBQUIDqZcuOeqbX1aH65ZeR/etfQysubvcVZzYb1DFjkHfttahZuhSxqqpj4jR+9hnCO3ag9+23Qxk16hhSAcCuafCeey5yr70W1UuXInrgABhj8J59tpMTxT8wxlhHZe4Jsf8C0AtE26L797db7WOHDyN26BCyLr0UnegCAGCMIeuSS6BXViJ68GBLeNMXX0ArLoY8eHCXlJP694f7zDPR+PnnR4Xr1dXwrVqFvPnzYXN1vlovFRUh+/LLUfPaayAiSAMGgAlCFhKblNtFT4idDOCgFY3+pemrr0LtNSm+0lKo48d32om0BrPZoI4fD39ZYiHYDIcR/O47qBMmpKWgOm4cwjt2wAgEjtanuBh2Ve2yHHnYMDCbDZEffwTjODgHDOCQ2LzcLnpC7Gok9sR+Y4bDDeGdx0zRW9o7ddy4tIWr48YhsHkzyDAQ3LQJzsGDYVeUtGTYJAmu4cMRWL8ewE+zP218h5XtGDDGEqON1asBAJwk2QHIHaXpCbFjAOwjIqJY7MaaJUsiem3tURHM5KA/ndrRDLuigHM4YIbD0OvqIPTu3mKp0Ls34vX1ABLNgMPrhd3tTluOfMopiO7bBwAwQyEDgL+j+D0hdhOA221O57ew2d63olHx4KJFCH3/PchKrnZbFhjXgyw4DrAskGGAa6OD6QqYwwEyEoYzKxoFlxybpq1KckhHhoHwjh0Mx25YOQrd0pYxdhFstgK+oOAB79SpijRwIDhBQOj771H/wQewli+HNmkShIICmOEwLF3vcDTQFqx4HGYwiKbVq2H4fLCl2Qw0wwwGW8hkPJ+YCHQDzWUIbtsGAD8Q0Q8dxU+bWGazXctJ0lM2l0vKufJK8Dk5LbXSNXw45GHDEKuoQMNnn6Hpyy8tjueN4JYtvDo2vZOTwS1bIPbpkzCe+P2WXlkJ7znncF0ZWaTK8Z5zDgCAz8pCvLYWZjgMmzO9vW6R8nLwublo+OSTkBWJ/Hdn8dN6TxljE5nD8aT33HMlm6Lg4KJFKL/rLpTffTcO/uUv8K9fD4rHIfbpg/wbbkDBLbdwVjxOjStXpmXAAICmL7+EZZrgs7ORc9VVnBkOW5Hy8rRkRCsqEG9oaLHn2lwuOAcPRmDDhnTVgW/1apiRiG74fF8AeKez+GnNvDhB2MYcjqF8bi5Mvx/Zs2dD7NsXpOuI/PgjfKWliFZUIOvii6GMGgUAaFq1io6sWBHLvPhiXhs3rkt/pG/dOhxZsQLgOPT54x/BCQL23ntvjM/MpF633Sa2NaBPBZkmDi9eDDMSgRkMgs/JgV3TYAYC0Gtr0efee7vcPEUPHMDhp58GEX0EXb+EiKKdpekysYyxW5goLs6fOxdS//6wolEwh+OY8Wns8GFUvfAC3GeeCffEibCiUez993+PMcYcWZdeynXWJPg3bMCRf/4T+SUlqHv77cQfRAT/pk2kHzoUFvv1c+Zddx3riBQyDNS8/jr0qioYoRA4SQKFwxD69oVd0xDdvx92RUkYaTr5k+L19Ti4aBFZ4fDTSJy7sDpM0MxXV4hljJ3GeH5dr9/+1tFsKz381FPInDmzTdtpvKEBh554At5zz4VeVYXgli1EhgFOFBmfkwNtwgQ4Bw9uaZvJshDesQO+0lLoNTXInzcPfG4ugtu2ofa11+AcPBhCQQFihw8jsmcPbIoC95QpcI0YcVStI8NAcOtWNH31FexuN3KuuQZ177yDaEUFtPHjwXgefGYmhMJC1CxbBjMcRtZFF0Ho1euYMpBpIrRtG2qXL49Zun47GcYzXSE0LWJtkvS+Z9q0GZ6pU1t6DjMYBCeK7f7jgc2bUffWW9AmTkTs0CGIRUVwn3EGglu2wFdaCqOxEfakndRobITd7YY2YQJcI0aAcRyC27Yh9P33CO/aBSE/H3xeHiLl5fCcdRY4h6Ol2ZGKihJDoWgU0b17wefnQ5swAUwQ4C8rQ2TPHoh9+sCekQEyDMQqKkCGAbW4GKTr8K9ZA5umQRk9GnZVBZkm9Koq07d6tQ6ifVY06iairlne0yGWMZbDHI79fR98ULS1GgNWPvccvOeeCzFl4G4Gg/CvW4fg1q3Q6+pgk6REQcaOhWfatJYaFq+vb5lq2hUlsfJqmmj84gv4Vq8Gn5MD18iRLYWNHT6cCM/Ohvfcc+EcOBDx+nrEDh1KNEuCAKGgAI7MTBz56CMEN2+G58wzoYwadZSVrHl1t+mbb6BXVyPvhhsQr65GcOtWBL//HoyxtWSa35Ku/x2JEzfOrhq30yX2t66RI/+Ue801R42sDZ8PnNMJzuEAkBjn1b/3HoJbtkAePhzKmDFwuN2JvQS1tfCVlSF64ADckyfDc9ZZx0wcLF1H9UsvAQAyZ84En5t7jC7Nr2fdu+8i47zz2pwq169YgciePcifN69TI0vT11+jadUq9LrtNtgVBXUffGD6ysrepFjsqmTZcwF8TUQDOxTUBjrtXpnd3lfIzz9mulL//vtwT50KsbAQVjSKymefhd3rRZ/77oNNPnoazWdnQx46FPGGBtQsXYp4XR2yZ8/+qY0lQs2rr4KTJORcdVWHJkHXiBHgCwpw+MknwckyXMN+soVEyssR3LQJve+4o0uWK/fkyTACAdS98w7yrr0W4e+/t8E0ZzHGtOTqcy06sWK1h86HP4zZ0ca0NGPGDPC5uSAiVC9dCj4nBzlXX30Mqa3h8HqRX1KCeEMDjnz0UUt4ZPduxGtqkPPrX3fJCsZnZSF3zhzUv/feT9NnJCxX7ilTukRqM7xnnYXInj0wmpqQN28ebJqmI2FcAhJ7ztI/+Y0uEEvxeJXR0HCMJbvh44+hV1cjum8f4nV1yLrssi7ZWzmeR95118FfVtbSxvpKS6FNmtTp0Kc1pH79YFNVhH9IzCwNvz+x7NPFNbMWfUQRymmnwbd2LWqWLgXH84SfLFcNSPgsSBtdGbC/G9i40Wg2ZDTDO20a+Oxs+FavTvTCadhbbS4X5OHDEVi3DobPh0h5ecuEIh1oEybAl7TZRsrLIRUVwdYNI4t86qmI7N6N7NmzYUUiHH6yXKkAPklbILpSY4l2gbFtwa1bjwpvXLkS0QMHEN6xA0qadgAA0IqL4V+3DnpNDYT8/HYXDzuCVFQEvboaAGBFImnP/5thczphRaOoff11mKEQAdidfORHwnVK2ujSFNOKRB6s/+CDcGtLvHvyZDCeh03TulVLhIICxBsaEkOlNC1fzeBaWauYwwEr5a3qKsgwwBwO2L3eOIieJaLm04lOAO92S7cuZUz0kRWN/uXwE0+EjKYmAICvrAzx2tq02sWjc+YAIgQ2b4bp79Bm3C7McLilpvPZ2YnBv9WlGedRiB44ALumIbRtmwOm+WmrR2EkPBqljS5btygev89oanr4wCOPROvee0+XTj4ZfH4+zGAQ3VlCb95SxDgOenU1jG6QG9q2DeA4BDZtghEOA0SI7NmTlgwiSsziDh6EcNJJFhyOlxljGcnHAhJ7ftNG14klIisef4R0fYh/zZrF1S++qB9+5pkw6TpF9+5NO+NAch0rXlsLMNbkW7MmrfeYLAu+NWsAxnDkww9Ru2yZZTQ1VTR8/nk8nT86vHMnTL8f2sSJsMsyp5x2WjYThEXJxzEA89LRqxlpr5sQ0T5L1++EZU2kcPgcKxL5S9NXX3W4K6QNGfCtWgUzFILd7YbN4xF9X39NrdvwzhD49luYwSDsbjd633031LFjGVlWKFZR4Wv49NM2d4inQq+rSwyxFAXuSZPgnjwZ3nPO4WGalzHG3EgctHs6nbI1oyc7YR4A8CmAHcxuP5RfUiJ3tqWnGb41a1D/wQdw5OWhV0kJYocO4fCzzwYdHo/Q6ze/cXQ2wA/t2JGweg0ZgsjevYl23jQh9u0L2GxGaMsWu2vkSGScd16bExayLIR37kTtG2/AO306wrt2geJx6DU1sGIxWOEwAJgcz1dasdg/QHQ/ER1Ji58eEDsawGEiqmKMncNEcUXBjTfaxb59O0wX2LQJ9e+9h4yLLkL9e+8h/6abEPnxRxz59NM4TNNuV1XmPeechEkwaYdoRryhAb7SUgQ2bEDutdeCkyQcfuYZODQNfF4e7KoKobAQtcuXw3nyyQjv2AF52DC4RoxIbPGMxxE9eBD+sjIwhwMZF1wAefBgWLqO/Q88ALGoCN7zzwefkQGYJmJVVWj6+msrvH27njwvcdfPao9th9g/AviGiMoYYx5wXDUnSbwyciS0CRPA5+S0xG22KPlKSxHduxd58+ZByM9HzRtvILBpE1wjRoCiUZBptuwWjB06BHnYMNhUNVHIykpE9++HMno0+IICBNavR7yuDsqoUYmlF8ZgHDkC/9q1YKKIrJkzIfbtC/+6dQjv2gUrEgFzOODIzIQ6fnyidlsWQtu3w7d6NSJ79wKmCXAchPx8qMXFUEaOBCcIMAIBVD3/fEivqfmMYrFLukJuT4gdh0SNPchstjvkYcMWZs6c6fSvWQP/2rWwe72waxpAhHhtLciyEvbWkSNbSI78+CPAGEAEThAgDxuGzAsvhM3lgl5Xh/APPyT2JthscHi9kIcNg6+0FL5Vq5AxYwZcw4cfM+Mj00Ro+3bUf/AB1NNPP2rfbGuE9+xB7Wuvwe7xQJs4EfKQIWCCADIMRMrLE1tE9+5F5owZUE8/HVY8jsOLF4f0mponrWj0D8eT2NsBrCeiMpvTuT333/5tSOtDG5F9+2AGg2AcB7umQSgsRKyiAtVLlrQYteVhw8DxPIgIsYMH4SstRWjbNrgnTYLnnHOOsT34ysrQ9OWXKLjllk43XRh+Pw4/9RS04mK4J0066lno++9R++abyLnmmjZ3IzZDr6lB5XPPQZswAZ6pU2H4fDjw0EMRMoy85rMX7aEn7qE2AKgEALKsTHurXdPMbodzwICjIof37EHNkiXIvvJKyKecctQzxhjEwkKIhYUwzj8fVS+8ACMQOGojnRkO48iKFej1u991aSeLXVWRP38+Dj72GFynndayPSlWVYWaN95A/vz5xxxASQWfk4Nev/kNDj3xBPisLMhDh8I5aJAV2r59DoC/dZS2JzthhgPIBwDGGKGDmh9vbETNkiXImTPnGFJTYVdVFJSUIHrgAHyrfrLYBdavh3PwYHR26KM1HF4v5OHD4V+3riWs6auv4JkypVNSW/Rxu5E1axYaPvsMAKBNmiRzotjpYY+eEPsDEqf5AI6rite1v3vct3o1XKNGHVOL21VKFJEzezYaV64EmWZi3FtWBi3N3YZAwgLmLysDWRbMUAihbdvS3qTnHDIEZiCAaEVFYne3YRy7vJFahrQ1/QlFALIAwAqHn/KtWtXmupAVjyOwfn3apAgFBXB4vQht3w7SdRhNTRBPOqnzhCkQe/duGZsGt26Fc9CgtAzhAMA4LrH7cePGRGdJ1KmNtCfE7gPQfGb1tUh5ORdvPNZhUGTXLvC5uWm9ws1Qx41D4NtvE5vZRLFLhvS2wAkCrGgUhs8HPju7WzL47GwYPl/iQIrd3mHHBfSM2HwkPBeBiELguL9Wv/xyNNUgbvh8LVt80oUjMzOxaJlc3u7uCMaKxRIrtZaFtpaZuoSkNc6/fr1Opvl6p9G7lwuAhBv7ltefdP0+vbp676Enn4ya4Z+2ahFRYqzaHSQLw3gedo8H3TH2RCsqwHgeTJJgc7nQbPZMF0ZjIzhRhH/tWit5WrxD9IRYD1rtaiYii3T993pl5Vv7H3ggVvvmm9FYVRVssgyjjSaiKzAaGxFvaEDl008DlmU2ffVV2jKavvkGVjSKioceIv+mTcHApk1pb+UkIvg3bIAZDscZx31DRPs6S9MTYv0AUjUsIl1/lOLxosDGjf9z6C9/aahZssRqXgVNO4N166CNG4fIvn2xeH39PeGdO3W9pqbL6eP19Qht2waKxxuNpqbZekXFr8HYtuDmzWnpETtwAKbPh/Du3ZVWNHplV9L0hFgBgCMlbC+AIBEdtuLx+6xYLAOABI770FdWlpZpv3mXS+iHH0KM454mokfJskoOP/lkuK1OMhVGUxMOLV4MEG2HaY4gojeJ6J8Ujd5e/49/hLv6R1u6jtrly2FGo4cRj49t7WSiI/SE2LYOd+Uj5dCDzWa7zCUIZwZWr+Zih7vmo5cMA7VvvgkwpsePHFlOun4nAJBpvmhFIv9+8LHHwv4NG2C1cb6MDAOBTZtQ8dhjcSsU+pOl60OJqKLlOdFK0vX/OvTEE+F4Q0OHepiRCA4/9RTFjxxZA8PoQ0S1HSZohZ7YCs4F0EBE61uFzQCwg4ha1kcyMjI2vvzyy6PC4TCuueEG5Myb1+Gsx4rFUPXii4geOBClWOwWAC9RipKMsV9xkvSfZFkj1bFjbY7MTAcYQ7y+3gisXx8HY9usSOR+Imp36ZrZ7bcxjvuTMmYMc59xhtB6S5PR1ARfaanpKy3VyTA2Ujx+YWe2gWPk94DY8wH4iGh1q7A5ADYRUYv7Zk3TXps1a9YlN998M3/++edH6xsbmXPwYNM9ebJT7NevZWxqNDXBV1ZGvtWrTTLNr0jXz6NWvmOTfhQHA6gnoupk2AAwNpvxfB8AoHj8ICzrjbbcl7RTht7Mbr8ZjJVwomjjRNFm6bpphUI2cNxrpOuLkHD28yQRNaVFULPXnXQ/SLiHGpMSNgsp3jMBeDRN+6fb7d6f9LnlBmO3MUE4xAlC2O52+2wuV4DZ7WEmCC8g4XD8YiSuV7ElZfCqqq7Jzc0NSpIU5jjukpQ87KqqviEIQljTtI0ActvR+RQk3KYedWmQLMsP2Ww23W63hwD8Fkff3vEbdNEl9VF59YDYCwGcmRJ2BYChbcS1I7EotwA/3Y7EAPRCwqtbPyTcnjJVVb8ZMWJEYPDgwQFVVd9Nxr1g+PDhftM06csvvyRVVStS5M8dM2ZMaP/+/XTrrbfGVVV9rVUeVwC4U5Kkv7jd7nCvXr0Cqqp+gqQfMADDvV5vqLKykubPn09Op7M6RfadADzp8tMTs2Ejx3GTMzIy/maaZoXP55sLwEQbHaKqqq8MGjTootNOO41fsmTJnYyxAUTUAOBQ8gMg6Q6KsdEbN26U4vE4FEWZIYriUwBqmpqamN/vx8GDB8EYC6VkcfLevXudAwYMwPDhw+02my0XAGRZfqx37943jh8/3rF06VK+vLwcmZmZ6NWr10S/338KElepKIqiWFlZWRg0aBAsy0rdfdJmmTpFD2rsb1VVjX766ad05513xjVNK0WiPTqmxkqS5D906BAREY0cObIJKa5DAeSoqrqF4zhDURTjzTffpGXLllGzt8z8/PyQLMsrOY4znE5nHYDRrdNrmvblI488QrquU3FxMQH4byKCqqpV27ZtI8uyyOVy0Ycffkg//PADybIcwU9vjk1V1S9yc3ODPM/rdrv9gRTdbkY3LhDqCbF3TZgwIUhE9P3335OiKLVIvHajUuNqmrZ6/vz5+gsvvEBJN6eFrZ8rivJiSUmJHgwGadq0aTFRFGs0Tau/+eabiYjohRdeII/H8w7acePn8Xi+eu6558iyLDr//PNjABYk8/30+uuvj7311lskSVJEluV6URQDgiCUABihadp2VVUPcRx3DYBTkfBx2yu1nACyTySxVzmdzsaZM2eG+vTpE3Q6nQ8h4aHzlJR4TJKkP3k8niZN0yrRhmtmt9v97qJFiywioptuusmSJKlBFMW38/PzQy+88AINHDgwyPN8u35cAYwVRTGQmZlJHo/HlCQpiIRzNa+qqssyMjJKkXKfgcvlOvjcc89RaWkpybIcRsLl3+9S3zgkLoJr83qV40XsaUh4sZwL4FwAlwF4FcCslHiX9+/fP/jNN9/QjBkzIi6Xa3FbsiRJ8vfr10/XNI0WLlxIAwYMCHIc96TH43mX5/nfoB0Pnsn0mQD+PmvWrHg8Hqfnn3+evF7vpx3p73A4opWVlWRZFvXp0ycAYCwSe2ELUmT/EUBeuvz0pPM6KVnYF1wu18P5+fm3TZ48WXz11VcvZYw9bLfbZcMw9gPIvOCCC8QzzjgDlZWV4urVq4emCiKizYyxvjU1NTu9Xm/W8uXLwXGc07KsQw0NDbd0pARjbIIkSZ/m5OTYVq5cadu5cyc2btwYj8fj1R2lEwThydGjR9+YnZ1tNTQ0lAM4gkQFqcfR17gcxLE2kc7Rgxo7DMCw5Kt8YOPGjUREdOGFF1JGRgZNmzbNGjNmTEiW5TckSQpeeeWVIY/HE2KMtXmjGwCe4zizqamJdF0nj8dDaOdyy9Yfr9f75YsvvkhERJdddplpt9tjmqatRfJakw70Z0h4+bxAUZS3FEWJOByOmM1muy0l3r0Aep/IpuASJJ2da5r2/uzZs+NvvfUW5ebm0uLFi2nq1Kn03XffkaZph5C49m8eOrh/EAAnCIL/gw8+oLKyMhJFMQogszM9NE17f8GCBUYgEKDx48eHAMxNsxwjc3JyguFwmG677TbieT6U8nwWTnAbOxDJOwYAaC6X65OMjAzrjjvuoLPOOotGjx5NY8eOjamq+lYaMicpilLhcrlqbDbbFV1MU6goyk6O4wxVVT9A+jd9DPV6vaGGhgZ65plnSBTFxpTn9wPoe6Jr7LWtwziOe8Dr9W5wuVz7CgsLjSFDhsQURSlDF7wdt5PH6R6P5yu32/0hgP6dxG23c+vs43K5Hrfb7YbNZtMZY3elyD2/K2/Oz0lsEVLuJkDiOtXpHMcZfr+fDMOgzMzMYGq8DmT2V1V1qaIoLwIYLEmS//nnn6eHH37YlGX5YCdpJbRzMRoSpsxbkRhOuVOenYrEtHUaEs7Oc1OeL+zsT/25ib0UKddMIXH/1QBJkhpef/11WrlyJUmSFO6sI0mmFZxOZ+39999v3nnnnXFJkg7n5OQELMuiWCxGHMdZ7b3msizfY7fbdYfDERNFcW6KXKaq6vrp06eHZ82aFU06SW827ox2Op2hkpKSWEZGRgjAG0hxz4/EEOyEtrF9AAxICbsOCePM6Zqm7VJVtYLjuIu6KK+vx+MJERFZlkUOhyPucrl+nDlzZnjixIlBVVX/1UyUy+Va5HK56lRV3edwOMKiKNLhw4dp165d5HA4YgD4VnI1nufjpmmSZVnkdrtDSd05xtjCBQsWWEREy5YtI0VRViN5gXGr9P/V1Tfu56yxv00JG4puXDWVTOuQZXn/3Llz9SuvvDKmKMr3SCyv/waJSQifjDdrwIABwZ07d9Itt9xC5557LmmaRkeOHKGKigqy2+06EisZzbZmTpblyoceeshctGiRJUlSk6Io3zLGLEVR9vbp0yf40Ucf0eTJk8M2m+1rAGen6HXGia6x+QD6pYTNRXfvcU24y7/VZrO9zXHc/altYat4t1xxxRURIqL33nuPpkyZQiUlJSRJEomiqEuSFJIkqbnTFJNp+mua9r6maR/a7fY3Lr/88piu63T11VfHBEH4MiMjY4PL5VqEhL02KyW//0ZyvH4ia+zvU8IGotU1qWnI4l0u146zzjorOHTo0ICqqm90EDfX6XTWFhcX+xRFMb1eb0RV1TDP8/drmrZ68eLFlmEYNGnSpCCSF7cl04mqqq5TVdVQVZVWr15NCxYsMJ1O59Ot4twP4PyU/E7HCbZuZSPlTkIkJgGzu5A2X9O0UkVRamVZ/i8AM7xerzFp0iR6//33m+996cg24E225UOQmOOfTETweDzfPPPMM2SaJk2dOjUE4IZWaa4qLi4OmqZJr776KmVkZJiSJB1p3XQhMU3PTMnrfwCMTJefntgKJidr6ENAyz0ILgCnMcYGAvCoqnoJEamRSKTUMIyWvZSKolw1d+7cfnPnzuWmT59+F4D43XffbRswYADmzJkDQRCCkUjk/i7s1Wo5gJuMu+P2228fc9ddd9kBNAE4KXkIBQCGRiIRh2maCIfDiMfjTZFI5BsAN7UynE8BUM0Ya14zU5GYuhtIOHDrOnpQYzOQtAQh0T5ejVZrYJqmbVi4cKG5ceNG8nq9IbQyTnu93u2ffvopERHNmDEjxHGc5fP5yLIsKiwsNJBiIUtTLwFAHlImJQAcqqp+6nA44pIkBRVFiUybNs3vdDrrAeQn4/TCT1eqFCBhMuzbLT16UIDLkBg8q0lSjzJwK4pStWnTJiIiGjdunB+JGzBARLDZbFdpmhaaMGGC3+l0ViuK8s7QoUMDZ599dliW5XokmpRuzda6oLfq8Xi+++STT4iI6LLLLgsjOR4H8J9IGOt7IzHZSbu/+DmI1ZBYBLwGKau1RARRFO/MzMwMFhcX+5PXRSsp6YcicbLag8RBtfkOhyNcUlJinHrqqSFFUY6x2/5cH03T3i8pKdE3btxIvXv3DiJ5kycSt0MPSdbUbpPaU2J/DeDDtkhtFed0JJay1S7Iu+zss8/2ESWWelRVrTxexALIcrvdn2qaViFJ0r/jpzHv4wD+3lNSiXp2iY8LwGMAOjQop4FMh8Mx/7zzznOIohj75JNP/uXz+dLrMHoOJxI3Kad9oUQquk3s8QBj7Byv13unrus/BoPBPxJR987b/y/A/ypi/y+hJ7sNf0EH+IXY44RfiD1O+IXY44RfiD1O+IXY44RfiD1O+IXY44T/BwUK9niyx1vZAAAAAElFTkSuQmCC\n" } } ], "source": "plams.plot_molecule(slab_100_H2_gas, rotation=rotation, radii=0.8)" }, { "cell_type": "markdown", "id": "cfa49bac-c717-46c3-92cf-66122c111564", "metadata": {}, "source": "Now let's run some MD:" }, { "cell_type": "code", "execution_count": 6, "id": "ca15cd63-1daa-4b63-b444-958d153a699c", "metadata": { "execution": { "iopub.status.busy": "2024-05-31T12:23:35.218018Z", "iopub.execute_input": "2024-05-31T12:23:35.218246Z", "iopub.status.idle": "2024-05-31T13:08:28.369092Z", "shell.execute_reply": "2024-05-31T13:08:28.368018Z" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "[31.05|14:23:35] JOB md_ru10-10_h2_m3gnet STARTED\n[31.05|14:23:35] JOB md_ru10-10_h2_m3gnet RUNNING\n[31.05|15:08:27] JOB md_ru10-10_h2_m3gnet FINISHED\n[31.05|15:08:28] JOB md_ru10-10_h2_m3gnet SUCCESSFUL\n" } ], "source": "mdjob = plams.AMSNVTJob(\n settings=m3gnet_up_settings(),\n name=\"md_ru10-10_h2_m3gnet\",\n temperature=501,\n nsteps=10000,\n molecule=slab_100_H2_gas,\n samplingfreq=100,\n)\nmdjob.run();" }, { "cell_type": "code", "execution_count": 7, "id": "e1be713a-337c-4741-80fd-41cf5fa2038e", "metadata": { "execution": { "iopub.status.busy": "2024-05-31T13:08:28.372220Z", "iopub.execute_input": "2024-05-31T13:08:28.372569Z", "shell.execute_reply": "2024-05-31T13:08:28.852576Z", "iopub.status.idle": "2024-05-31T13:08:28.853117Z" } }, "outputs": [], "source": "from scm.params import ResultsImporter\n\nri = ResultsImporter.from_yaml(old_ref_dir)" }, { "cell_type": "code", "execution_count": 8, "id": "97daf2eb-5f73-4f22-8fd1-8fbed3286cab", "metadata": { "execution": { "iopub.status.busy": "2024-05-31T13:08:28.855711Z", "iopub.execute_input": "2024-05-31T13:08:28.855826Z", "iopub.status.idle": "2024-05-31T13:46:36.826972Z", "shell.execute_reply": "2024-05-31T13:46:36.826155Z" }, "scrolled": true }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "[31.05|15:08:28] JOB snapshots_from_md_ru10-10_h2_dft STARTED\n[31.05|15:08:28] JOB snapshots_from_md_ru10-10_h2_dft RUNNING\n[31.05|15:08:29] snapshots_from_md_ru10-10_h2_dft: AMS 2024.102 RunTime: May31-2024 15:08:29 ShM Nodes: 1 Procs: 1\n[31.05|15:08:29] snapshots_from_md_ru10-10_h2_dft: Starting trajectory replay ...\n[31.05|15:08:29] snapshots_from_md_ru10-10_h2_dft: Replaying frame #1/5 (#10 in original trajectory)\n[31.05|15:08:29] snapshots_from_md_ru10-10_h2_dft: NOTE: a single QE.Label is assigned to atoms of different species.\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: AMS Pseudopotentials Finder\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: ---------------------------\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: PP library: /home/hellstrom/.scm/packages/AMS2024.1.packages/qe-_5399rm6/content/upf_files\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: * Ru\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: Path: GGA/PBE/SR/SSSP_Efficiency_v1.3.0/UPFs\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: File: Ru_ONCV_PBE-1.0.oncvpsp.upf\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: * H\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: Path: GGA/PBE/SR/SSSP_Efficiency_v1.3.0/UPFs\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: File: H.pbe-rrkjus_psl.1.0.0.UPF\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: recommended ecutwfc: 60.0 Ry\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: recommended ecutrho: 480.0 Ry\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: recommended ratio: 8.0x\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: NOTE: System%ecutwfc (40.0 Ry) is below the recommended threshold (60.0 Ry)\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: NOTE: System%ecutrho not specified in input. Using recommended ecutrho to ecutwfc ratio: ecutrho = 8.0 * ecutwfc = 320.0 Ry\n[31.05|15:08:30] snapshots_from_md_ru10-10_h2_dft: Starting QuantumEspresso worker ... (see output file for progress information)\n[31.05|15:14:14] snapshots_from_md_ru10-10_h2_dft: Replaying frame #2/5 (#30 in original trajectory)\n[31.05|15:20:39] snapshots_from_md_ru10-10_h2_dft: Replaying frame #3/5 (#50 in original trajectory)\n[31.05|15:28:07] snapshots_from_md_ru10-10_h2_dft: Replaying frame #4/5 (#70 in original trajectory)\n[31.05|15:37:02] snapshots_from_md_ru10-10_h2_dft: Replaying frame #5/5 (#90 in original trajectory)\n[31.05|15:45:36] snapshots_from_md_ru10-10_h2_dft: Trajectory replay complete.\n[31.05|15:46:36] snapshots_from_md_ru10-10_h2_dft: Number of QE evaluations: 5\n[31.05|15:46:36] snapshots_from_md_ru10-10_h2_dft: NORMAL TERMINATION\n[31.05|15:46:36] JOB snapshots_from_md_ru10-10_h2_dft FINISHED\n[31.05|15:46:36] JOB snapshots_from_md_ru10-10_h2_dft SUCCESSFUL\n" }, { "output_type": "execute_result", "metadata": {}, "data": { "text/plain": "" }, "execution_count": 8 } ], "source": "settings = dft_settings(QEKPointsConfig(3, 3, 1))\nsettings += replay_settings(mdjob.results.rkfpath(), frames=[10, 30, 50, 70, 90])\n\ndft_replay_job = plams.AMSJob(\n settings=settings,\n name=\"snapshots_from_md_ru10-10_h2_dft\",\n)\ndft_replay_job.run(watch=True)" }, { "cell_type": "code", "execution_count": 9, "id": "26f350af", "metadata": { "execution": { "iopub.status.busy": "2024-05-31T13:46:36.831595Z", "iopub.execute_input": "2024-05-31T13:46:36.831886Z", "shell.execute_reply": "2024-05-31T13:46:37.120352Z", "iopub.status.idle": "2024-05-31T13:46:37.121330Z" } }, "outputs": [ { "output_type": "execute_result", "metadata": {}, "data": { "text/plain": "['reference_data_3/job_collection.yaml',\n 'reference_data_3/results_importer_settings.yaml',\n 'reference_data_3/training_set.yaml']" }, "execution_count": 9 } ], "source": "ri.add_trajectory_singlepoints(dft_replay_job, properties=[\"energy\", \"forces\"])\nri.store(new_ref_dir)" } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.8.12", "mimetype": "text/x-python", "codemirror_mode": { "name": "ipython", "version": 3 }, "pygments_lexer": "ipython3", "nbconvert_exporter": "python", "file_extension": ".py" } }, "nbformat": 4, "nbformat_minor": 5 }