g SCM

Software for
Chemistry &
Materials

Scripting Manual
Amsterdam Modeling Suite 2024.1

www.scm.com

Apr 05, 2024

CONTENTS

1 Getting Started 1
L1 Linux e e e e 1

1.2 MacOS . . . e 1

1.3 WIndowso o o e e e 1

1.4 NotesonPython e e e e e 2

2 Command Line Tools 3
2.1 AMSprep: generate (multiple) ADF jobs L 3
2.1.1 Additional Notes L e e e e e 7

2.2 Tutorial: Generate structures for substituent effects screening 7

2.3 AMSreport: generate rePOItS e e i e e e e e e e e e e e e e e e e 11
2.3.1 Additional notes L. e e e e e e e e e e 18

24 KFcommand line utilities L e e 18

3 Python Stack in Amsterdam Modeling Suite 23
3.1 General e e e e e 23
32 Includedmodules L e 23

3.3 Using other modules with the AMS Python Stack 24
3.4 Install and run Jupyter Lab (Jupyter Notebooks) e 24
341 InstallJupyterLab 24

342 RunlupyterLab 25

3.4.3 Execute a notebook from the command-line, 25

3.5 Pythonvirtual environment e e e e e e e e e e e e e 25
3.5.1 Default python virtual environment e e e 25

3.5.2 Virtual environments for different AMS versions 0. 26

3.5.3 Changing the location of the python virtual environment 26

3.5.4 Disabling the virtual environmento Lol 26

3.5.5 Uninstalling the virtual environment e 26

3.5.6 Reinstalling the virtual environmentt e e e e e e 26

3.6 Usefulcommands L e e e 26

4 SCM libbase 29
4.1 Chemical System o e e e e e e e e e e e e e e 29
411 OVeIVIEW . . . o oo e e e e e e e 29

4.1.2 Readingand writing e 30

413 AOMS . . oL e e e e e e e 31

4.1.4 Molecular propertieso e e e e e e e e e e 33

4.1.5 Geometry and manipulation L ..o e e e e e 34

4.1.6 Bonds e 36

4.1.77 Lattice and Periodic Systems L e 40

4.1.8 ReZIONS e e
4.1.9 Atomselection. L. e e e e e e
4.1.10 Atomic Properties L. e e e e e e e e
4.1.11 Converting to and from PLAMS Molecules
42 UNitS . . . o o e e e e e
42.1 Listofavailableunits
43 InputFile o e e e e e e e e
44 KFFile e e
5 ASE
6 FlexMD
6.1 Basic philosophy and intended usage e
6.2 FlexMD functionality summary e e e e e e e
6.3 Introduction
6.4 Molecular Dynamics L e e e e e e e e e
6.5 Multi-scale Molecular Dynamics Lo e e
6.6 Biased Molecular Dynamics e
6.7 Workingwith FlexMD e
6.7.1 Creatingamolecule object e e e e e e
6.7.2 Creatinga ForceJob e e e
6.7.3 Creatingand runningthe MD job oL oo
6.8 Required Citations L e e e
6.8.1 External programs and Libraries Lo o
6.9 References
7 PLAMS
7.1 Required Citations L . e e e e e e e e
7.1.1 External programs and Libraries o
8 AuToGraFS
8.1 General AuToGraFS Scripting CONCepts« o v v v v vt ittt e e e e e
8.1.1 Components of AuToGraFS e
The Fragment class e e e e e e
The Modelclass e
The Autografs class e e
8.1.2 About the databases of building units L
8.1.3 Using the overhauled Atom Typer i i ittt e e
8.2 AuToGraFS Examples e e e e e e
8.2.1 Generation of all available pillared SURMOF
8.2.2 Generation of a defectuous UIO-66 MOF from customfiles
8.2.3 Generation of conformers inthe IRMOF-5
9 AKFReader
Index

65

67
67
67
69
69
70
71
71
71
72
73
74
74
74

77
77
77

79
79
79
79
80
81
81
82
83
83
83
84

85

89

CHAPTER
ONE

GETTING STARTED

To conveniently use the scripting tools of the Amsterdam Modeling Suite you need to set some shell environment variables
and add the AMSBIN folder to your PATH. This can be done by sourcing file amsbashrc. sh, which is located in the
Amsterdam Modeling Suite installation directory.

1.1 Linux

Note: if you followed the Linux Quickstart installation Guide, the amsbashrc. sh should be automatically sourced
when you start up a new terminal, and you can ignore the following steps.

» Start up a terminal

e Source the amsbashrc.sh with the following command (note: you should replace
path_to_installation_directory with the actual path to your AMS installation directory:

’. path_to_installation_directory/amsbashrc.sh

 To test that you properly sourced the amsbashrc. sh file you can type the following command, which should
yeld the help message for the amsprep (page 3) command line tool:

’amsprep -h

1.2 MacOS

¢ From the AMSjobs GUI module, click on the Help dropdown menu and select Terminal. This will open a new
terminal with all necessary environment variables already set and the AMSBIN folder already added to the PATH.

Alternatively, you can follow the Linux steps.

1.3 Windows

Every Windows installation of AMS2019 and newer, as well as older ADF versions, come with a pre-configured command
line. The easiest way to access the command line is via the Help menu of the graphical user interface:

Go to Help - Command-line
Inside the command line window, type bash and hit ENTER (alternative: type sh)

../Installation/Appendix_A_Environment_Variables.html
../Installation/Linux_Quickstart_Guide.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

ADFinp

18.105 o x
SCM Fie Edit Select Atoms Bonds View | Hep
ADF Main | Model Properties Details MultiLevel Q
Task: Single Roint v ®
Total charge: o
esPRESSO | unvestricied Yes
se Update = °
oz
Laroe 2
\umerical qualty: | Mormal -)

Help -» Command-line

$CONTH X0 Fe Ry

:: ADF_DATA o x

$CONHCOX O * UG

The advantage of calling the command line from the GUI is that you will find yourself in the current working directory
right away. In situations in which the GUI is not available, it is also possible to use the pre-configured command line

directly:

Double click the file ams_command_line.bat in your AMS installation directory (e.g. C:/AMS2021.101)

1.4 Notes on Python

Python scripts should be executed using the python3 interpreter shipped with Amsterdam Modeling Suite:

’ SAMSBIN/amspython scriptname.py

Further information can be found here: Python Stack in Amsterdam Modeling Suite (page 23).

Chapter 1. Getting Started

CHAPTER
TWO

COMMAND LINE TOOLS

» amsprep: prepare an ADF job from a script (or command line).

e amsreport: get information (including images) from an ADF result file (for use in your script, or to generate an
HTML or tab-separated report).

 pkf, cpkf, dmpkf, udmpkf: the KF utilities, which are command-line utilities to process KF files.

2.1 AMSprep: generate (multiple) ADF jobs

AMSprep allows one to generate input files for the different programs of the Amsterdam Modeling Suite by means of
console commands. As such AMSprep can be used to run the same type of calculation on a series of different chem-
ical systems. Another important example are automatic checks of the convergence of the results with respect to the
computational parameters e.g. by varying input settings such as basis set choice or numerical integration accuracy while
recomputing the same system.

AMSprepare (SAMSBIN/amsprep) generates a job script from a template .ams file. Such a template file can either be
produced by AMSinput or simply be found among the default templates included. These default templates are identical
to those present in AMSinput.

Two examples are presented here to demonstrate the capabilities of AMSprep:

* In BakersetSP you will see how to use amsprep to run a particular job for a test set of molecules. The individual
molecular structures are provided as xyz-files which contain no ADF specific information. AMSreport is used to
collect the values of the bonding energies resulting from these calculations.

 In ConvergenceTestCH4 you will see how to use AMSprep to test convergence of the bonding energy with respect
to the basis set and the numerical integration grid.

The options of AMSprep are listed when running the module without further command line arguments, or with the -h
flag:

)

% amsprep -h
AMSprepare (amsprep) generates a job script from a .ams file (the template),
with user specified changes to input options / method / system.

Usage: amsprep -t template.ams [-m molecule. (ams|adf|xyz|mol|t21)] [-z charge] [-s_
—spin]
[-runtype SinglePoint |GeometryOptimization|Frequencies]
[-gradientsonly]
[-q quality] [-zlmfit quality] [-kspace quality]
[-lattice vli.x vl.y vl.z ...]
[-1 integration] [-b basis] [-c core] [-r relativity]

[-basiscacheid id]

(continues on next page)

../../ADF/Examples/BakersetSP.html
../../ADF/Examples/ConvergenceTestCH4.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)

[-x xcpotential] [-e xcenergy] [-bondsonly]
[-dftbmodel DFTB|SCC-DFTB|DFTB3] [-dftbparameters dir]
[-dftbdispersion None|Default|D3-BJ|D2|ULG|UFF]
[-logfile logfile] [-J jobname] [-a amsfile]

[-dist "atoml atom2 distance ..."]

[-angle "atoml atom2 atom3 angle ..."]

[-dihed "atoml atom2 atom3 atom4 angle ..."]

[-atomtype "atom type ..."]

[-structure "atom structure ..."]

[-pointcharges file]

[-efield "Ex Ey Ez"]

[-rxforcefield fname] [-rxniter n] [-rxnrstep n] [-
—rxtstep T]

[-rxmethod method] [-rxmdtemp T] [-rxmdpres p]

[-region "name atl at2... "]

[-fragments prefix] [-onejob]

[-g "key value"]

Start with a job template, adjust it for this particular job, and write the resulting.
<~>jOb

to standard output. Values specified should match exactly the values as you would.
—specify

using AMSinput, also for menu choices.

TEMPLATE
-t: the .ams file (saved by AMSinput) to be used as template, defining the whole job
All other options override values from this job

Instead of a .ams file, you may also specify the name of one of the standard.
—templates

as defined in AMSinput: "Single Point", Frequencies, "Geometry Optimization", etc

A special option for energy and gradients

for the current geometry: EG (see also —-gradientsonly)

Some shortcuts: SP, EG, GO, FREQ, optionally prefixed by.
— (ADF | BAND | DFTB | UFF | MOPAC) —
For example: ADF-FREQ, BAND-SP, DFTB-GO, MOPAC-EG

Some ReaxFF shortcuts: REAXFF-EG for a single ReaxFF iteration

CHANGES TO TEMPLATE

-m: the molecule to use, element types and coordinates
This can be taken from anything that AMSinput can import,
for example .ams, .mol, xyz or .t2l1 files

The -m flag may be repeated, each molecule added will be in its own region
This may be used for fragment calculations, but it does not work with .ams files

If you specify an .sdf file, you can select which frames to import:
conformers.sdf#1-10 loop over the first 10 frames
conformers.sdf#e2.0 loop over all frames with energy below 2.0

(units as in the file, wrt the lowest energy of all frames in the file,
energies from comment lines)

conformers.sdf#1-10e2.0 loop over the first 10 frames,
and use only those with energy below 2.0
conformers.sdf use the first frame of the sdf file

(continues on next page)

4 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)

If you specify a .t21 file, you can select which frames or range of frames to._
—import:

ajob.t21#ircf3 3rd frame in the IRC forward path
ajob.t21#ircb2 2nd frame in the IRC backward path
ajob.t21#h7 7th frame in the history
ajob.t21#1t8 8th frame in the LT path
ajob.t21#ircf3-10 IRCForward frame 3, 4, ... 10
ajob.t21l#irct IRCForward all frames, starting at 1
ajob.t21#ircf0- IRCForward all frames, starting at 0

(original geometry, before first step)

If you specify a .cry file, the compound to import may be specified:
SAMSHOME/atomicdata/Molecules/Crystals/Cubic/CsCl.cry#MgTl

When looping, all resulting jobs will be joined together, the jobname and ams.
—~files

get the frame sequence number appended after an _

When looping only one -m flag may be specified

-xyz: use xyz coordinates from specified file, not touching anything else
it is applied after -t and -m
the elements and number of atoms should match
currently works with KF and xyz files

-smiles: use smiles to describe the molecule

—irc: when using IRC frames in the -m flag, revert the backwards order

—dist: change the distance between atoml and atom2 to the specified distance
the arguments must be enclosed in quotes, and may be repeated for multiple.
—distances
—angle: change the angle (atoml, atom2, atom3) to the specified angle
the arguments must be enclosed in quotes, and may be repeated for multiple.
—angles
—dihed: change the dihedral (atoml, atom2, atom3, atom4) to the specified angle
the arguments must be enclosed in quotes, and may be repeated for multiple.
—angles
—atomtype: set the type (element) of atom to type
the arguments must be enclosed in quotes, and may be repeated for multiple.
—types
—-structure: add a structure just as if using the structure tool in AMSinput
atom is the selected atom, structure is the name of the structure file
the arguments must be enclosed in quotes, and may be repeated for multiple.
—changes
—liststructures: list available structure files for use with -structure, and exit

-runtype: run type (SinglePoint,GeometryOptimization,Frequencies)
—gradientsonly: after calculating the gradients, stop
works also for excited state gradients if requested in your template
—z: charge (real number)
-s: spin (integer), if not zero this implies an unrestricted calculation
-g: quality (Basic, Normal, Good, VeryGood or Excellent), default for Becke/ZlmFit
—-i: integration (integer)
—-i: Becke integration (Basic, Normal, Good, VeryGood or Excellent)
—-i: teVelde integration (integer)
—zlmfit: ZlmFit quality (Basic, Normal, Good, VeryGood or Excellent)
—-kspace: KSpace quality (GammaOnly, Basic, Normal, Good, VeryGood or Excellent)

(continues on next page)

2.1. AMSprep: generate (multiple) ADF jobs 5

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)

—-lattice: lattice vectors first three numbers for the first vector, next for the.
—second etc
The dimension follows from the number of vectors
-b: basis type (Sz, Dz, DzP, TZ, TCP, TZ2P, QZ4P)
-c: core type (None, Small, Medium, Large)
—-basiscacheid id: refer to t21 files from previous runs prefixed with this id
-r: relativistic level (None, Scalar, Spin-Orbit), using ZORA
-x: XC potential during SCF, one from the options available in AMSinput:
LDA,
GGA:BP, GGA:BLYP, GGA:PW91, GGA:mPW, GGA:PBE, GGA:RPBE, GGA:revPBE, GGA:mPBE,
GGA:0LYP, GGA:0OPBE,
Model:SAOP, Model:LB94,
Hartree-Fock,
Hybrid:B3LYP, Hybrid:B3LYP*, Hybrid:B1LYP, Hybrid:KMLYP, Hybrid:O03LYP,.
—Hybrid:X3LYP,
Hybrid:BHandH, Hybrid:BHandHLYP, Hybrid:B1PW91, Hybrid:MPW1PW, Hybrid:MPWIK,
Hybrid:PBEO, Hybrid:OPBEO
—e: XC energy after SCF (Default, LDA+GGA_METAGGA, LDA+GGA+METAGGA+HYBRIDS)
-pointcharges: file, file with point charges, one point charge per line (ADF only)
x y z charge, xyz in Angstrom, charge in elementary units (+1 for a.
—proton)
-efield: Ex Ey Ez the electric field vector (in Hartree/ (e Bohr))
-k: replace any key, the single argument will be broken into:
the key, the replacement value, and END for a block key
all separated by spaces. To insert a return, add a |
When the key is not found, it is added just before the ATOMS key
The -k key may be repeated, and is applied at the end, replacing even earlier.
—changes

—-dftbmodel DFTB|SCC-DFTB|DFTB3: select the DFTB model

—dftbparameters dir: select the directory with DFTB parameters

—dftbdispersion [None|Default |D3-BJ|D2|ULG|UFF]: dispersion option to use, default is.
—None

-rxforcefield fname: the ReaxFF force field file

—-rxniter n: number of ReaxFF iterations

—-rxnrstep n: number of non-reactive iterations (out of the total number of iterations)
-rxtstep T: the time step used in the MD simulation

—-rxmethod string: the simulation type: Velocity Verlet + Berendsen|NPT|NVE

-rxmdtemp T: the thermostat temperature

-rxmdpres p: the required pressure

-region name atl at2 ...: make a region with specified name and atoms, may be repeated
The atom numbers atl at2 refer to input order, after geometry modifications,.
—start at 1
Use atl-at2 to refer to all atoms between atl and including at2
If the region key is present all regions already present are deleted
-fragments prefix: set up a fragment calculation, prefix fragment run/job scripts.
—with prefix
if this key is present fragment run/job scripts will be saved.
< (unless -onejob)
if a job script is requested, the fragment job names will be.
—prefix.fragname. job
-onejob: for fragment jobs, concatenate the fragment jobs and final job into one on.
—stdout

-g "key wvalue": set any key to the specified value (note key value within quotes)
key: internal name in AMSinput for some option, see bin/amsinput.tcl/tpl/
—Defaults.tpl (continues on next page)

6 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)

value: set gin(key) to the specified value
-nochain: unset chain option (used internally by chain jobs)

OUTPUT
-bondsonly: only the bonds as generated by the GUI will be exported (the GUIBONDS.
—block)
—-logfile: force the specified logfile to be used in the run script
-Jj: produce a fully runnable job (as the .job files from AMSjobs),

using the specified jobname.

The job script produces files like jobname.out, jobname.t2l1 etc. Several job.
—scripts can simply

be concatenated, the results will be stored in different files using th jobname._
—parameter

the default is a simple run script (the .run file from AMSinput, files are left.
—as they are)
-a: save a .ams file that matches the run script, except for the -k arguments

(they are listed in the user input field)

amsfile is the name of the AMSinput, including the .ams extension (required)

Example: calculate gradients for a molecule in file mymol.xyz
amsprep -t GO -m mymol.xyz -k "stopafter ggrads"

Example: calculate gradients for a molecule in file mymol.xyz, using good quality..
—integration and fit:
amsprep -t GO —-g Good —m mymol.xyz -k "stopafter ggrads"

Example: calculate DFTB frequencies for a molecule in file mymol.xyz
amsprep -t DFTB-FREQ -m mymol.xyz

2.1.1 Additional Notes

CRSprep represents a scripting solution which is exclusively oriented towards generating input files for the COSMO-RS
program.

2.2 Tutorial: Generate structures for substituent effects screening

Overview

Screening substituent patterns of a base compound is a common task in computer aided materials design. In the following
short tutorial we demonstrate how you can use amsprep to automatize the replacement of substituents with just a few lines
of simple shell scripting.

2.2. Tutorial: Generate structures for substituent effects screening 7

../../COSMO-RS/CRSprep.html
../../COSMO-RS/index.html
../../COSMO-RS/index.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

Contents:

* The library of substituents in AMSinput

¢ Exchanging substituents with AMSprep

¢ Combining AMSprep and AMSreport in shell script
The substituent library in AMSinput

AMSinput comes with a customizable library of common substituents that we can use for our screening purposes right
away. It can be accessed via the structure builder tool in AMSinput:

5 ADFinput 2017.111 -+ x

SCM Eile Edt Select Atoms Bonds View Help ‘

ADF . Main Model Properties Details MultiLevel Q
Alkyl Chains =
Amino Acids -
Task: Single Point v [} Aromatic .
Cyclic Hydrocarbons -
Total charge: (] DNA
Spin polarization: o . i
Unrestricted: Yes Ligands I Bidentates =
Metal Complexes « Multidentates -
%C functional: LDA = e Polyhedra - CN
Ralativity (ZORA): None - (-] Solvents < Co
] co3
) Manage Structures... NC |
fasts st e " ® Save As Structure... NH2 b
Alkyl Chains Frozen core; Large -]
Amino Acids Numerical quality: Normal - ®
Aromatic - NH3
Cyclic Hydrocarbons oc
DA P
Ligwnds " Bidentates =
Metal Complexes * Mulidentates - OH
Polyhedra ‘N PH3
Solvents - co -
Manage Structures. &3 Pyrldlne
Save As Structure. "::n L |
NH2CH3
NH3
oc
OCH3
oH
PH3
Pyridine

Note how the entries are organized. For example the isocyanide functional group (“NC”) can be found in “Ligands”.

Its also possible to add your own compounds: Simply draw the structure of interest and select the atom which will serve

8 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

as an anchor.

This is how you would add a carboxylic acid group:

ADFiegut 2017111

ICH B B it gums ks e lnp SO P 4 dat fmom fonds Ve i
ADF main Modal Properties Detai MuiLevel a P ———— a
T s . e Tag: angh Part = e
T —] o q
e] S5 o o
e = T =
F X danctionst = e pry— woa @
Reiatrety (Z08AI: Hene ® Relatrety CZ0RAL: e)
Sanis set 0z [Baak set oz
Frigen Core: Large ko T Frogen cane Lange
sematical quatty: wermal o A Ackds earmrical quaty:) B @
Aromatic
! Cprhe Hydrocarhons.
et
W Coryln .
1. Draw -COOH oot 3. Click Structure Tool
— 2. Select C-atom .|| 4. Select "Save As [....]"
SCM Bl Edi Select Aloms Bonds Wi el
ADPF Main Modal Propsties Details Mubtieval a
Tach. Singla Pt e
5 Alkyl Chains
0 Aming Acids -
r Aromatic -
s CT1) i i, E e Cyclic Hydrocarbons -~
Cancel o-f} | = @ DA -
Ligands -
R s L Metal Complexes
Frzen core Large Polyhedra -
Memiical quatty: semal [Solvents ~
5. Enter a name Manage Structures... The compound can now

Save As Structure...

v | 6. Click "OK" be selected from the list
B e e e |

|

AMSinput will always consider the atom that lies in the origin of the coordinate system to be the anchor. If you use the
Save As Structure command this will be done for you. More information, including another example, can be found in the
Building Molecules GUI tutorial.

Exchanging substituents with amsprep

Let us consider a simple benzene ring as the base compound:

2.2. Tutorial: Generate structures for substituent effects screening 9

../../Tutorials/BuildingStructures/BuildingMolecules.html#your-own-structures-library

Scripting Manual, Amsterdam Modeling Suite 2024.1

The amsprep command to exchange Hydrogen atom #12 with an isocyanide group (“NC”) and create a runfile for a UFF
geometry optimization is:

"SAMSBIN/amsprep" -t UFF-GO -m benzene.xyz -structure "12 Ligands/NC.ams" > "benzene_
—NC.run"

Remember that the “CN” group was located in the “Ligands” menu hence “Ligands/NC.ams”. In case the path contains
whitespace, you need to escape the whitespace as in this example

"SAMSBIN/amsprep" -t UFF-GO -m benzene.xyz -structure "12 Alkyl\ Chains/Ethyl.ams" >
—"ethyl_benzene.run"

When using custom substituents, e.g. the hydroxylic_acid in the above example, a full path need to be provided to
amsprep. The path is displayed when clicking on the Structure Tool in AMSinput and selecting “Manage your structures”.
On an ubuntu linux system the path is “/home/[your_username]/.scm_gui/Structures” and the command to use your own
structures becomes:

"SAMSBIN/amsprep" -t UFF-GO -m benzene.xyz —structure "12 /home/[your_username]/.scm_
—guil/Structures/carboxylic_acid.ams" > "benzoic_acid.run"

Bringing it all together

The following few lines of shell script demonstrate how to automatically exchange the substituents on a benzene ring, run
a UFF optimization on the new structure and extract the optimized geometry with amsreport.

#! /bin/sh

#

copy the file benzene.xyz from the ADF compounds database
#

cp "SAMSHOME/atomicdata/Molecules/ADF/Benzene.xyz"

#

loop through different substituents

#

(continues on next page)

10 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)

for ligand in CN CO CO3 NC NH2 NH2CH3 NH3 OC OCH3 OH PH3 Pyridine; do

#

prepare the coordinates and the UFF calculation

#

"SAMSBIN/amsprep" -t UFF-GO -m Benzene.xyz —-structure "12 Ligands/S$ligand.ams" >
—"benzene_$ligand.run"

#

run UFF GeoOpt

#

sh "./benzene_S$ligand.run"

#

extract the optimized geometry via amsreport

#

"SAMSBIN/amsreport" uff.rkf SDF > "benzene_S$ligand.mol"

#

rename the generic UFF output file

#

mv uff.rkf "benzene_S$ligand.rkf"
done

Running the script

Linux and Mac: Copy and paste the above into a file called substituents_script and execute it in the command
line

sh substituents_script

Windows: Just use the pre-configured shell ams_command_line.bat shipped with ADF to run the same command
as the Linux and Mac users.

2.3 AMSreport: generate reports

The utility AMSreport ($AMSBIN/amsreport) allows to retrieve the results (including images) computed from the binary
output files of either ADF, BAND, ReaxFF, DFTB, UFF, or MOPAC. For ADF this is the .t21 file (TAPE21). It can
also be the .runkf file from BAND, the .rxkf file from ReaxFF or the .rkf file from DFTB, MOPAC or UFF.

The selected results are printed out via standard output or, alternatively, either written to a tab separated file or an HTML
file. When creating a new output file AMSreport will also generate a line with headers identifying the information. Images
are generated using the ADF-GUIL

Also individual KF variables can be retrieved from the file as shown by the following example, which illustrates how to
obtain the bonding energy from a .t21 file.

amsreport job.t21 BondingEnergy

Also high-quality pictures of orbitals can be obtained as shown below.

amsreport job.t21 HOMO LUMO+1 -v "-grid Fine" -v "-antialias" -v "-bgcolor #ffffff"

The options of AMSreport are listed when running the module without further command line arguments. At present the
following command line options are available

-h prints the help screen.

2.3. AMSreport: generate reports 11

Scripting Manual, Amsterdam Modeling Suite 2024.1

Hint: If used with the name of a valid KF file in the command line the -h option lists the names of all data blocks present
in that file. It is strongly encouraged to use this option to retrieve the names of the options available in a given situation.

amsreport -h Jjob.t21

-i specifies the input file (.t21 etc). If the specified input file is not present ADF tries to find a valid input file based on
the information in the matching .ams file or the most recent available binary output file.

-usefile specifies the input file like -i but without attempting to find a matching file if the specified input file does not
exist. Typically -usefile is used to avoid reading data from the result file.

-I <pattern> glob files, and run over all matching result files

-0 the name of the html file in which the output of AMSreport will be stored. The output will be printed to standard
output if this option is absent.

-plain print only output data from AMSreport without any labels and/or units. The same can be achieved by setting the
environment variable SCM_AMSREPORT_PLAIN to yes.

-noplain print output data with tab separators, labels, and units. Used to override the aforementioned variable
SCM_AMSREPORT_PLAIN.

-v command line to pass to amsview (without filenames) to generate images. The image will be generated by AMSview
stored in a directory with a name based on the result file, and with extension .jpgs. The result file will contain a
path to the image file (directly, or in an IMG tag) After the -v the arguments must be listed, with proper quoting.
Repeat the -v flag for multiple arguments. The individual -scmgeometry, -bgcolor, -zoom, -viewplane, -antialias
and -grid options will be collected and applied to all view options.

Some shortcuts are predefined (HOMO, HOMO+1, LUMO, Molecule, Density, Potential) and some additional
useful flags include

-scmgeometry (default 200x200) -bgcolor (default #220000), -zoom (default 1.0) -viewplane (default {1 2 5}) -
antialias (off when not present, especially useful with light bgcolors) -grid (Coarse when not present, Medium when
specified, or value after flag if a value is present)

examples HOMO-1 LUMO+1 -v “-viewplane {0 0 1}” -v “-grid Fine” -v “-antialias”

-r Specifies the result to be retrieved by AMSreport from the binary output file. If this command is omitted all unspecified
command line arguments but the first (denotes input file name) will be considered as arguments for this flag.

If -r is present, the desired result is specified as a string either in form of its preset name (see below) or via a
section%variable pair (see the KF utilities documentation). The -r flag (or arguments without flag) may be repeated
for multiple results. Additional details can be specified after the variable name, separated by “#”. For example

range “variable#index” or “variable#firstindex:lastindex”, index starts at 1
format TclTk format string, e.g. 8.3f or 12.6g

examples prints a formatted table of the coordinates

’fr "GeometrySxyz#12. . 4f443"

prints a formatted table for the first two atoms only

’fr "Geometryexyz#1:9#12 . 4f443"

coordinates of the first two atoms in one line

’fr "GeometrySxyz#12.4f41:9"

12 Chapter 2. Command Line Tools

KF_command_line_utilities.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

print just the first coordinate

’fr "GeometrySxyz#1"

print the bond energy

’fr "Energys%Bond Energy"

While any proper KF variable can be accessed via a “section%variable” construct, the following predefined keys
are available for the KF files resulting from the various programs of the Amsterdam Modeling Suite.

ADF-specific " -r" presets for .t21 files

orient* affine transform (3x4) from input to internal ADF orientation, format after #
iorient* affine transform (3x4) from internal ADF to input orientation, format after #
title title of the calculation

type calculation type (single point, geometry optimization, ...)

weight molecular weight

symmetry molecular symmetry

natoms number of atoms

integration integration accuracy

integration-min minimum integration accuracy

integration—-max maximum integration accuracy

scfstatus SCF convergence status

charge the requested charge

charges shorthand for Voronoi, Hirshfeld and Mulliken charges

voronoi Voronoi deformation charges

hirshfeld Hirshfeld fragment charges, atomic fragment definition required
mdc All available MDC atom charges

mdc—-m MDC-M charges

mdc—-d MDC-D charges

mdc—gq MDC-Q charges

mulliken Mulliken charges

bondorders Mayer bond orders

nmr NMR shieldings

nmr-shieldings NMR shieldings

nmr-shielding-tensor NMR shielding tensor
nmr-j—-coupling-tensor NMR j coupling tensor
nmr-k—-coupling-tensor NMR k coupling tensor
nmr-j—coupling—-constant NMR j coupling constant

nmr-k-coupling—-constant NMR k coupling constant

2.3. AMSreport: generate reports 13

Scripting Manual, Amsterdam Modeling Suite 2024.1

dipolev* dipole vector
dipole dipole moment (length of dipole vector)
quadrupole quadrupole tensor

orbital-info orbital info (energy, occupation and label), format for energy after #, range after # with HOMO or
LUMO for example:

orbital-info#HOMO, orbital-info#HOMO-1,
orbital-info#HOMO-2:LUMO+2, orbital-info#HOMO#12.8f

orbital-e* orbital energies, format and range after # as in orbital-info
orbital-o* orbital occupations, format and range after # as in orbital-info
orbital-1* orbital labels, format and range after # as in orbital-info
homo-lumo—-gap* HOMO-LUMO gap, format after #

atomlabels name of atoms with sequence number, starting at O
atomlabels—from0O name of atoms with sequence number, starting at 0
atomlabels-froml name of atoms with sequence number, starting at 1
nstep number of steps in history / LT / IRC data, type (h,lt,ircf,ircb) after #
spin the requested spin polarization

step use coordinates from history / LT / IRC data, step number after # with h for history, 1t for LT, ircf/ircb for
forward/backward IRC if no letter after #, history data will be used (if not, last step will be used) for example:

step#23 (or step#h23), step#lt4, step#ircf3

geometry, geometry-a*, geometry-b* geometry (element type and coordinates), in input order, in
angstrom or bohr (default)

sdf geometry in SDF format

bgf geometry in BGF format

distance distance between two atoms, in angstrom. Input separated by #
labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order

examples

distance#2#3, distance#labels#2#3, distance#-8.31#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5, distance#labels#l#2#3#4

angle angle between three atoms, in degrees. Input see distance, but with three atoms per angle
dihedral dihedral between four atoms, in degrees. Input see distance, but with our atoms per dihedral
hessian* Hessian matrix (from GeoOpt%Hessian_CART), fmt and nperline options after #

gradients* gradients with respect to nuclear displacements (from GeoOpt%Gradients), fmt and nperline options
after #

energies* all available energies (bonding up to xc, with labels), fmt option after #

bonding total bonding energy

14 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

pauli total pauli repulsion

steric total steric interaction

orbital total orbital interaction

electrostatic electrostatic energy

kinetic kinetic energy

coulomb electrostatic (steric and orbital interaction) energy

xc exchange-correlation energy

dispersion dispersion energy

frequencies* IR Frequencies, format, nperline and range (n, or n:n, start at 1) after #

freqgint* IR Intensities, format, nperline and range (n, or n:n, start at 1) after #

freqlabel* IR Frequencies label (symmetry), format, nperline and range (n, or n:n, start at 1) after #
normalmode* normal modes (mass weighted), format, nperline and range (n, or n:n, start at 1) after #
zeropoint* zero-point energy

excitation* Excitation energies, format, nperline and range (n, or n:n, start at 1) after #

oscillatorstrength* Oscillator strengths for the excitation energies format, nperline and range (n, or n:n, start
at 1) after #

excitlabel* Excitation labels (symmetry), format, nperline and range (n, or n:n, start at 1) after #
BAND specific **-r"" presets for .runkf files
natoms number of atoms

geometry, geometry-a*, geometry-b* geometry (element type and coordinates), in input order, in
angstrom or bohr (default)

sdf geometry in SDF format

bgf geometry in BGF format

distance distance between two atoms, in angstrom. Input separated by #
labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order

examples

distance#2#3, distance#labels#2#3, distance#-8.3f#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5, distance#labels#l1#2#3#4

angle angle between three atoms, in degrees. #4 Input see distance, but with three atoms per angle
dihedral dihedral between four atoms, in degrees. Input see distance, but with our atoms per dihedral
atomlabel, atomlabel-fromO name of atoms with sequence number, starting at 0
atomlabel-froml name of atoms with sequence number, starting at 1

ReaxFF specific presets for .rxkf files

natoms number of atoms

2.3. AMSreport: generate reports 15

Scripting Manual, Amsterdam Modeling Suite 2024.1

geometry, geometry-a*, geometry-b* geometry (element type and coordinates), in input order, in
angstrom or bohr (default)

distance distance between two atoms, in angstrom. Input separated by #
labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order

examples

distance#2#3, distance#labels#2#3, distance#-8.3f#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5, distance#labels#l1#2#3#4

angle angle between three atoms, in degrees. #4 Input see distance, but with three atoms per angle
dihedral dihedral between four atoms, in degrees. Input see distance, but with our atoms per dihedral
atomlabel, atomlabel-fromO name of atoms with sequence number, starting at 0
atomlabel-froml name of atoms with sequence number, starting at 1

rx—frame n options information for a particular reaxff frame. Note the spaces, you will need to quote this key.

n: frame number 0, 1, 2, ... (is not the ReaxFF step number)
options: combination of the following (if omitted, all will be reported)
nframes: total number of frames
step: the ReaxFF step number for the specified frame
nats: number of atoms
xyz: the xyz coordinates

names: element names (C, H etc) for each atom in the same order as the..
—coordinates

neighbors: bond information

cell: cell information

example

amsreport water.rxkf "rx-frame 20 step xyz cell"

pdbtrajectory the trajectory information (including molecule details) as a sequence of PDB models due to limita-
tions of the PDB format to less than 100000 atoms and it will not be a standard conforming PDB file

pdbtrajectory- (nobonds |usepdbinfo)

nobonds: as pdbtrajectory, but no bond info (CONECT records)

usepdbinfo: as pdbtrajectory, but use pdb residue info from first step instead of.
—reaxff mol info

xmol: the trajectory information (only element, xyz) in xmol format

(continues on next page)

16 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)

gro: trajectory as .gro file (xyz and velocities) options after a - sign:
m : print list of molecule names and formulas only
x : allow xyz only frames (missing velocities)
f : add forces if available

tf : add the time step, f is a floating point number that is the time per step in.
—PSs

examples: gro-x, gro—-f, gro-xf, gro—-ft0.0001, gro-xt0.001, etc.

Special features for ReaxFF parameter optimization: a geo file in biograph format can.
—be converted from a DFT result file using the bfg option above.

example Input file: geo (biograph format)

-rxtrainset: run over frames in the input file (should be a bgf BIOGRAPH file), put all charges, bonds and angles
in the trainset.in (on stdout).

Input file: ffield (reaxff force field file). The source ffield file determines which atoms, bonds etc are present.
-flield-min: generate flield file with all values replaced by min values
-flield-max: generate ffield file with all values replaced by max values
-flield-bool: generate flield file with all values replaced by bool values
-minmax filename: use data from filename for min and max values,
format: see RxParRange.txt in atomicdata/ForceFields/ReaxFF
General presets for .rkf files
natoms number of atoms

geometry, geometry-a*, geometry-b* geometry (element type and coordinates), in input order, in
angstrom or bohr (default)

sdf geometry in SDF format

bgf geometry in BGF format

distance distance between two atoms, in angstrom. Input separated by #
labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order

examples

distance#2#3, distance#labels#2#3, distance#-8.3f#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5, distance#labels#l#2#3#4

angle angle between three atoms, in degrees. #4 Input see distance, but with three atoms per angle
dihedral dihedral between four atoms, in degrees. Input see distance, but with our atoms per dihedral

hessian* Hessian matrix (from GeoOpt%Hessian_CART), fmt and nperline options after #

2.3. AMSreport: generate reports 17

Scripting Manual, Amsterdam Modeling Suite 2024.1

gradients* gradients with respect to nuclear displacements (from GeoOpt%Gradients), fmt and nperline options
after #

energies all available energies (bonding up to xc, with labels), fmt option after #

2.3.1 Additional notes

* SDF and BGF records can be produced from from ANY file that can be read by AMSinput.

* KFreader is a free (LGPL) alternative to AMSreport. The C sources are available in our download section
(http://www.scm.com/Downloads/KFReader-20140106.zip) and can be modified for more specific needs.

2.4 KF command line utilities

There are four utility programs for manipulating files in the so-called Keyed File (KF) format from the command shell.
Two of them convert KF files from binary to ASCII and vice versa. See the pkf and dmpkf utilities for a description of
the ASCII format of a kf file. Such a readable version of a KF file can be useful to inspect its contents in detail.

All programs from the package will convert a KF file to the binary format native to this platform if necessary. In such
a case, the original file will be renamed to a file with tilde “~” appended to its name and a message will printed on the
standard output.

The KF software was developed at the Vrije Universiteit Amsterdam as a general-purpose package for storing data and
re-accessing it via keyword-driven procedures.

pkf

pkf filel { file2 ... filen }

pkf prints a summary of the contents of the kf files filel... filen.

All variables are listed by name, type (integer, real, character, logical), and size (number of array elements) and bundled
into named sections.

To put the results in an ASCII file for later inspection:

pkf file > ascii_result

Each section on the file contains an index of its variables and their associated values. All data are organized in blocks.
Each section may have any number of index blocks and any number of data blocks (this depends simply on the amount
of data to be stored in such a block). In addition there is one special section, the SuperIndex, which is an index of all
sections on the file.

The output of pkf consists of:
* General information about the file (name of the file, internally used unit numbers during processing the file...)
¢ A summary of the SuperIndex, hence an index of blocks in the file and the associated sections.
¢ A summary: total numbers of blocks associated with the different types of blocks.
* For each section a list of its variables. For each variable in the list the following is displayed
— The variable name.
— Its length, i.e. the storage requirements of the variable within the file.

— Its ‘used’ size, hence the file storage associated with the variable (in units off 8 Bytes for double precision real
numbers, 4 for integers, etc.).

18 Chapter 2. Command Line Tools

http://www.scm.com/Downloads/KFReader-20140106.zip

Scripting Manual, Amsterdam Modeling Suite 2024.1

The number of actual elements within the variable (for real, integer, and logical data types) or the number of
characters in a string.

The (logical) index of the data block it is stored in.
— The off-set of the data within its data block.

Its value or the first element of an array variable, respectively.

cpkf

cpkf filel file2 {keyl .. keyn}

cpkf copies the sections and/or variables key| .. keyn from filel to file2.

If a referenced section or variable already exists on file2 it is overwritten, else it is created. Sections and variables which
are already present on file2 but which are not referenced in the command are not affected.

If no sections and/or variables are explicitly mentioned at all the copying is carried out for all sections and variables on
filel.

As aside effect of this operation any ‘holes’ eventually present in the original due to the formal deletion of obsolete sections
and variables are not copied. Note that the KF file is not rearranged upon deletion of data. Rather only the corresponding
entries in the index tables are removed in this case. During the copying process the data is however rearranged for optimum
storage efficiency and the resulting file copy may therefore be smaller than the corresponding original.

Skipping specific sections during the copying process can be manually controlled as follows:

cpkf filel file2 -rm sectionl

In this form, all sections will be copied except for the ones specified on the command line, thus effectively removing them
from the file.

To copy and rename a section:

cpkf filel file2 "section_name —--rename new_section_name"

dmpkf

A utility to extract information from a KF file and make it available in ASCII format:

’dmpkf file {keyl .. keyn}

dmpkf prints the sections and/or variables from the file file indicated by key1 .. keyn on standard output. The complete
file is printed if no sections or variables are specified.

The format to be used for the individual keys:

’Sec%Var

where Var the variable of interest present in section Sec. The complete section is dumped if no variable name is specified.

By redirecting the result to another file a human readable output is obtained:

’dmpkf file > ascii_result

The output contains for each printed variable:
* One line with the name of the section it belongs to;
¢ One line with the name of the variable itself;

* One line with three integers:

2.4. KF command line utilities 19

Scripting Manual, Amsterdam Modeling Suite 2024.1

— The amount of space reserved for the variable on the file which is, however, relevant for programs operating
with KF files only;

— The amount of data associated with the variable: for reals, integers, logicals: the number of such elements;
for strings: the number of characters;

— An integer code for the data type of the variable: 1=integer, 2=real, 3=character, 4=logical;

» The values of the variable (on as many lines as necessary): for scalar variables only one value, for arrays as many
values as the array contains.

udmpkf

A utility to put information read from standard input into a KF file:

udmpkf file

udmpkf reads an ASCII file in the format created by dmpkf from standard input and creates the binary KF file therefrom.
If such a KF file is already present the sections and variables in the input file are appended to the existing KF file. Whenever
a section or variable already exists in target file it will be overwritten. Other data on the target file are not affected.

The combination of dmpkf and udmpkf makes it easy to modify KF files with a normal text editor:

’dmpkf TAPE21 > t21_ASCII

After the desired modifications within t21_ASCII this file may be reconverted into a binary KF file:

’udmpkf < t21_ASCII TAPE21_new

Also note that dmpkf and udmpkf only require a single argument here, respectively, as “< t21_ASCII” passes the content
of the edited file via the standard input.

akf
The ak £ utility is the command line version of the AKFReader python library described here: AKFReader (page 85).

For more information, refer to the help function of the ak £ tool:

akf —-help

which we display below for convenience:

usage: -c¢ [~-h] [-c] [-cc] [-v] [-a] [-pal [-ps] [-J] [-pv PRINT_VARIABLE [PRINT_
—VARIABLE ...]] [-n] file [file ...]

A utility tool for Annotated KF files (akf).
positional arguments:
file Path to a kf file of a folder (if a folder is specified, the.

—~tool will recursively loop over all files with the '.rkf' extension)

optional arguments:

~h, —-help show this help message and exit
-c, ——-check Check (i.e. validate) a kf file
—-cc, ——check-conditional

Check (i.e. validate) a kf file, but only if the calculation.
—ended with 'normal termination' status

-v, ——verbose verbose printing to stdout
-a, ——augment include the kf definitions to the file
-pa, ——print-all Print all the values in the kf file

(continues on next page)

20 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)

-ps, ——print-skeleton
print skeleton
-j, ——check-json Check a JSON definition file for validity instead of checking.

—~a KF file against a JSON definition. This can be used to check for obvious errors.
—when writing the JSON definition

files for KF contents.
—-pv PRINT_VARIABLE [PRINT_VARIABLE ...], --print-variable PRINT_VARIABLE [PRINT_
—VARIABLE ...]
Print a variable. Note: you cannot have additional optional.

—arguments after this. If you want to have multiple optional arguments, specify them.

—before —-print-variable
-n, ——no-metadata Do not print metadata information, such as comments, shapes, .
—etc... (only relevant for print commands)

Example usage:
akf path_to_file.rkf —--check —-—augment
akf path_to_file.rkf —--print-skeleton

akf path_to_file.rkf —--no-metadata —-print-variable Molecule%Coords

2.4. KF command line utilities 21

Scripting Manual, Amsterdam Modeling Suite 2024.1

22 Chapter 2. Command Line Tools

CHAPTER
THREE

PYTHON STACK IN AMSTERDAM MODELING SUITE

3.1 General

The Amsterdam Modeling Suite includes a python stack based on the Enthought Python Distribution
(https://www.enthought.com/products/epd/).

AMS version | Python version
AMS2024 3.8.12

AMS2023 3.8.12
AMS2022 3.69
AMS2021 3.69

AMS2020 3.69

This python stack is completely separate from any other python installations on the system.

All programs within the Amsterdam Modeling Suite launch python via a special command, amspython.

3.2 Included modules

Some of the included modules are:

e numpy (1.21.2) and scipy (1.8.0): Big modules with a lot of functionality for math and science, more information
on the SciPy website (https://www.scipy.org/).

 [Python (7.22.0): An improved interactive python shell, more information can be found on the iPython website
(https://ipython.org/). Can be started with:

SAMSBIN/amsipython

* ase (3.22.1): ASE (Atomic Simulation Environment) is a python module for atomistic simulations, more informa-
tion in the ASE documentation (page 65).

e matplotlib (3.5.1): A library for plotting data in 2D, more information on the Matplotlib website
(https://matplotlib.org/). We do not ship an interactive backend for matplotlib, so make sure to set a non-interactive
backend (https://matplotlib.org/faq/howto_faq.html#generate-images-without-having-a-window-appear) when us-
ing it. For example the Agg backend for PNGs:

import matplotlib
matplotlib.use ('Agg"')

23

https://www.enthought.com/products/epd/
https://www.scipy.org/
https://ipython.org/
https://matplotlib.org/
https://matplotlib.org/faq/howto_faq.html#generate-images-without-having-a-window-appear
https://matplotlib.org/faq/howto_faq.html#generate-images-without-having-a-window-appear

Scripting Manual, Amsterdam Modeling Suite 2024.1

* pip (21.3.1): The recommended tool for installing packages from the Python Package Index (PyPI). The pip doc-
umentation (https://pip.pypa.io/en/stable/) explains in detail how to use this tool, but for the Python stack shipped
with the Amsterdam Modeling Suite all pip commands need to be prefixed with $AMSBIN/amspython -m:

$SAMSBIN/amspython -m pip list
$SAMSBIN/amspython -m pip show scipy
SAMSBIN/amspython -m pip search rotate-backups
SAMSBIN/amspython -m pip install rotate-backups

¢ flexmd: A module for running MD simulations with adaptive QM/MM regions. Details can be found in the FlexMD
documentation (page 67).

¢ plams: PLAMS (Python Library for Automating Molecular Simulation) is a collection of tools that aim at providing
powerful, flexible and easily extendable Python interface to molecular modeling programs. It takes care of input
preparation, job execution, file management and output processing as well as helps with building more advanced
data workflows. See the PLAMS tutorials and PLAMS documentation for more information.

* autografs: AuToGraFS stands for Automatic Topological Generator for Framework Structures. Information and
examples can be found in the AuToGraFS documentation (page 79).

3.3 Using other modules with the AMS Python Stack

You can extend the the AMS Python Stack with other modules. You can use pip (see above) to install additional modules
if they are available on the Python Package Index (PyPI (https://pypi.python.org/pypi)). This is the recommended way
of installing packages:

’$AMSBIN/amspython -m pip install name_of_package

You can also do this for your own packages that you develop, for example:

’$AMSBIN/amspython -m pip install -e .

Alternatively, you can add the location of the source to the SCM_PYTHONPATH variable to make the module available in
the AMS Python Stack. To avoid collisions with other python installations on the system, we unload PYTHONPATH and
PYTHONHOME from the environment when launching the ADF Python Stack and put the content of SCM_PYTHONPATH
into PYTHONPATH.

Hint: If you for some reason have to use the PYTHONPATH variable and are unable to use SCM_PYTHONPATH,
you can modify $AMSBIN/amspython and $ AMSBIN/amsipython to not have it cleared when starting python.

3.4 Install and run Jupyter Lab (Jupyter Notebooks)

3.4.1 Install Jupyter Lab

AMS2023 or later: Install Jupyter lab in the Package Manager (GUI: SCM — Packages, Command-line: $AMSBIN/
amspackages gui or SAMSBIN/amspackages -h).

24 Chapter 3. Python Stack in Amsterdam Modeling Suite

https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/
../../Tutorials/WorkflowsAndAutomation/PythonScriptingWithPLAMS.html
../../plams/index.html
https://pypi.python.org/pypi
../../Installation/Optional_Components.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

3.4.2 Run Jupyter Lab

In a command-line, run:

"SAMSBIN/amspython" -m jupyterlab

This will open up Jupyter Lab in your web browser.
To create a new notebook, click the blue plus (+) button at the top left and select Notebook — Python 3 (ipykernel).

3.4.3 Execute a notebook from the command-line

If you want to run a Jupyter notebook from the command-line, for example when submitting to a cluster, you can do
something like the following

cat > template.tpl <<EOF
{%— block body %}

{{ nb | json_dumps }}

{% endblock body %}

EOF

"SAMSBIN/amspython" \
-m nbconvert \
——to custom \
——template template.tpl \
—-RegexRemovePreprocessor.patterns=""!" \
——execute \
——output output.ipynb \
notebook.ipynb

Above, the purpose of template. tpl isto allow the use of the RegexRemovePreprocessor. It will exclude cells
starting with an exclamation mark !, for example commands used to launch GUI modules like AMSmovie or AMSspectra.

3.5 Python virtual environment

3.5.1 Default python virtual environment

Starting with AMS2020, the amspython command by default checks for a python virtual environment inside the user’s
home directory. If it does not find a virtual environment, it will create one in the following location (these are the default
values for the SCM_PYTHONDIR environment variable):

¢ Windows: SUSERPROFILE/.scm/python
e Mac: SHOME/Library/Application Support/SCM/python
e Linux: $HOME/ .scm/python
amspython then launches the python binary located inside the virtual environment.

If you install additional packages via pip (see above), they will be installed into the virtual environment’s site-—
packages.

3.5. Python virtual environment 25

Scripting Manual, Amsterdam Modeling Suite 2024.1

3.5.2 Virtual environments for different AMS versions

The virtual environment is tied to the major release version of AMS, which is reflected in the name of the virtual envi-
ronment directory (e.g. AMS2020.1.venv).

Thus, upgrading from AMS2020.101 to AMS2020.102 will automatically let you use all python packages that you in-
stalled into the AMS2020.101 virtual environment.

To use previously installed python packages when upgrading from AMS2020.101 to e.g. AMS2020.301 or
AMS2021.101, simply copy or rename AMS2020.1.venv to AMS2020.3.venv or AMS2021.1.venv in the same directory.

If you have several installations of different major releases of the Amsterdam Modeling Suite on the same computer,
multiple virtual environments will also be created, one for each installation.

3.5.3 Changing the location of the python virtual environment

Set the SCM_PYTHONDIR environment variable to a directory in which the virtual environment will be installed. If you
use the graphical user interface (GUI), this environment variable can be changed in the GUI preferences. If you use the
command line, set it in your amsbashrc. sh. If you use both the GUI and the command line, you should change it in
both places.

3.5.4 Disabling the virtual environment

Follow the steps for changing the location of the python virtual environment, but set SCM_PYTHONDIR to be empty.

3.5.5 Uninstalling the virtual environment

Just delete the directory containing the virtual environment. This will also delete any packages that you have installed into
it.

3.5.6 Reinstalling the virtual environment

To force a reinstallation of the virtual environment, even if it already exists, run $SAMSBIN/amspython —-—
install_venv. This will not remove any packages inside the virtual environment.

3.6 Useful commands

e Start a python shell:

’$AMSBIN/amspython

* Install new packages via pip:

’$AMSBIN/amspython -m pip install name_of_package

* Find out the location of an installed package (e.g. numpy):

’$AMSBIN/amspython —-c 'import numpy; print (numpy.__file_)’

¢ Find out which python binary is launched by amspython:

26 Chapter 3. Python Stack in Amsterdam Modeling Suite

Scripting Manual, Amsterdam Modeling Suite 2024.1

’$AMSBIN/amspython —-c 'import sys; print (sys.executable)'

¢ Disable the virtual environment (one-time):

’ SCM_PYTHONDIR='"' S$AMSBIN/amspython

3.6. Useful commands 27

Scripting Manual, Amsterdam Modeling Suite 2024.1

28 Chapter 3. Python Stack in Amsterdam Modeling Suite

CHAPTER
FOUR

SCM LIBBASE

The module scm.libbase

4.1 Chemical System

4.1.1 Overview

The ChemicalSystem class serves as a versatile representation of a chemical system. It’s designed to handle various types
of chemical structures, such as molecules, surfaces, or crystals.

Here’s how you can initialize a ChemicalSystem object using a System Block string:

from scm.libbase import UnifiedChemicalSystem as ChemicalSystem

Initialize a Chemical System from a 'System Block' string

mol = ChemicalSystem(
System
Atoms
0 0.0 0.0 0.0
H 1.0 0.0 0.0
H 0.0 1.0 0.0
End
End

mn ”)

Guess the bonds in the molecule based on the atomic coordinates
mol.guess_bonds ()

Translate the molecule so that the origin coincide with it's center of mass
mol.translate(-mol.center_of mass())

Print the molecule in 'System Block' format
print (mol)

29

../../AMS/System.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

4.1.2 Reading and writing

You can create or serialize a ChemicalSystem object using various file formats. Among these, System Block is one of
the most significant, offering a versatile text-based way to describe your chemical system. For more information on the
syntax and options for the System Block, see the AMS System Block documentation.

When you convert a ChemicalSystem object into a string (either by explicitly calling st r (my_chemical_system)
or by using a print statement) the output will be in the System Block format

>>> from scm.libbase import UnifiedChemicalSystem as ChemicalSystem

>>> # Read it from a text file in the 'System Block' format:
>>> my_chemical_system = ChemicalSystem.from_in (filename="water.in")

>>> print (my_chemical_system)

System
Atoms
0 0.0000000000000000 0.0000000000000000 0.0000000000000000
H 1.0000000000000000 0.0000000000000000 0.0000000000000000
H 0.0000000000000000 1.0000000000000000 0.0000000000000000
End
End

>>> # Write it to a file in the 'System Block' format:
>>> my_chemical_system.write_in (filename="another_water.in")

Note on Serialization

When you read or write a ChemicalSystem using either the System Block format or a kf file (page 60), the object is
perfectly serialized. In other words, writing the object to a kf file and reading it back will result in an identical Chemi-
calSystem.

However, be cautious when using the xyz format as it doesn’t offer lossless serialization. Writing and reading back using
this format may result in the loss of certain information, such as bonds between atoms.

Available Methods for Serialization
Below are the methods you can use for reading and writing (also known as serializing and deserializing) a ChemicalSystem:

class UnifiedChemicalSystem
class UnifiedChemicalSystem (system_block: str)
A class representing a chemical system in the Amsterdam Modeling Suite.

classmethod from_in (filename: str, name: str = ") — UnifiedChemicalSystem
Constructs and returns a new ChemicalSystem from a (possibly named) System block in an AMS input file.

classmethod from_kf£ (filename: str, section: str = 'Molecule') — UnifiedChemicalSystem
classmethod from_k£ (kf: libbase.KFFile (page 60), section: str = 'Molecule’) — UnifiedChemical-

System
Constructs and returns a new ChemicalSystem from a section on a KF file.

classmethod from_xyz (filename: str) — UnifiedChemicalSystem
Constructs and returns a new ChemicalSystem from an extended XYZ file.

classmethod from_input (input_file: libbase.InputFile (page 58), prefix: str) — UnifiedChemical-

System
Constructs and returns a new ChemicalSystem from an InputFile instance,