
Scripting Manual
Amsterdam Modeling Suite 2024.1

www.scm.com

Apr 05, 2024

CONTENTS

1 Getting Started 1
1.1 Linux . 1
1.2 MacOS . 1
1.3 Windows . 1
1.4 Notes on Python . 2

2 Command Line Tools 3
2.1 AMSprep: generate (multiple) ADF jobs . 3

2.1.1 Additional Notes . 7
2.2 Tutorial: Generate structures for substituent effects screening . 7
2.3 AMSreport: generate reports . 11

2.3.1 Additional notes . 18
2.4 KF command line utilities . 18

3 Python Stack in Amsterdam Modeling Suite 23
3.1 General . 23
3.2 Included modules . 23
3.3 Using other modules with the AMS Python Stack . 24
3.4 Install and run Jupyter Lab (Jupyter Notebooks) . 24

3.4.1 Install Jupyter Lab . 24
3.4.2 Run Jupyter Lab . 25
3.4.3 Execute a notebook from the command-line . 25

3.5 Python virtual environment . 25
3.5.1 Default python virtual environment . 25
3.5.2 Virtual environments for different AMS versions . 26
3.5.3 Changing the location of the python virtual environment . 26
3.5.4 Disabling the virtual environment . 26
3.5.5 Uninstalling the virtual environment . 26
3.5.6 Reinstalling the virtual environment . 26

3.6 Useful commands . 26

4 SCM libbase 29
4.1 Chemical System . 29

4.1.1 Overview . 29
4.1.2 Reading and writing . 30
4.1.3 Atoms . 31
4.1.4 Molecular properties . 33
4.1.5 Geometry and manipulation . 34
4.1.6 Bonds . 36
4.1.7 Lattice and Periodic Systems . 40

i

4.1.8 Regions . 42
4.1.9 Atom selection . 45
4.1.10 Atomic Properties . 47
4.1.11 Converting to and from PLAMS Molecules . 49

4.2 Units . 50
4.2.1 List of available units . 51

4.3 Input File . 58
4.4 KFFile . 60

5 ASE 65

6 FlexMD 67
6.1 Basic philosophy and intended usage . 67
6.2 FlexMD functionality summary . 67
6.3 Introduction . 69
6.4 Molecular Dynamics . 69
6.5 Multi-scale Molecular Dynamics . 70
6.6 Biased Molecular Dynamics . 71
6.7 Working with FlexMD . 71

6.7.1 Creating a molecule object . 71
6.7.2 Creating a ForceJob . 72
6.7.3 Creating and running the MD job . 73

6.8 Required Citations . 74
6.8.1 External programs and Libraries . 74

6.9 References . 74

7 PLAMS 77
7.1 Required Citations . 77

7.1.1 External programs and Libraries . 77

8 AuToGraFS 79
8.1 General AuToGraFS Scripting concepts . 79

8.1.1 Components of AuToGraFS . 79
The Fragment class . 79
The Model class . 80
The Autografs class . 81

8.1.2 About the databases of building units . 81
8.1.3 Using the overhauled Atom Typer . 82

8.2 AuToGraFS Examples . 83
8.2.1 Generation of all available pillared SURMOF . 83
8.2.2 Generation of a defectuous UIO-66 MOF from custom files 83
8.2.3 Generation of conformers in the IRMOF-5 . 84

9 AKFReader 85

Index 89

ii

CHAPTER

ONE

GETTING STARTED

To conveniently use the scripting tools of the AmsterdamModeling Suite you need to set some shell environment variables
and add the AMSBIN folder to your PATH. This can be done by sourcing file amsbashrc.sh, which is located in the
Amsterdam Modeling Suite installation directory.

1.1 Linux

Note: if you followed the Linux Quickstart installation Guide, the amsbashrc.sh should be automatically sourced
when you start up a new terminal, and you can ignore the following steps.

• Start up a terminal
• Source the amsbashrc.sh with the following command (note: you should replace
path_to_installation_directory with the actual path to your AMS installation directory:

. path_to_installation_directory/amsbashrc.sh

• To test that you properly sourced the amsbashrc.sh file you can type the following command, which should
yeld the help message for the amsprep (page 3) command line tool:

amsprep -h

1.2 MacOS

• From the AMSjobs GUI module, click on the Help dropdown menu and select Terminal. This will open a new
terminal with all necessary environment variables already set and the AMSBIN folder already added to the PATH.

Alternatively, you can follow the Linux steps.

1.3 Windows

EveryWindows installation of AMS2019 and newer, as well as older ADF versions, come with a pre-configured command
line. The easiest way to access the command line is via the Help menu of the graphical user interface:

Go to Help → Command-line
Inside the command line window, type bash and hit ENTER (alternative: type sh)

1

../Installation/Appendix_A_Environment_Variables.html
../Installation/Linux_Quickstart_Guide.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

The advantage of calling the command line from the GUI is that you will find yourself in the current working directory
right away. In situations in which the GUI is not available, it is also possible to use the pre-configured command line
directly:

Double click the file ams_command_line.bat in your AMS installation directory (e.g. C:/AMS2021.101)

1.4 Notes on Python

Python scripts should be executed using the python3 interpreter shipped with Amsterdam Modeling Suite:

$AMSBIN/amspython scriptname.py

Further information can be found here: Python Stack in Amsterdam Modeling Suite (page 23).

2 Chapter 1. Getting Started

CHAPTER

TWO

COMMAND LINE TOOLS

• amsprep: prepare an ADF job from a script (or command line).
• amsreport: get information (including images) from an ADF result file (for use in your script, or to generate an
HTML or tab-separated report).

• pkf, cpkf, dmpkf, udmpkf: the KF utilities, which are command-line utilities to process KF files.

2.1 AMSprep: generate (multiple) ADF jobs

AMSprep allows one to generate input files for the different programs of the Amsterdam Modeling Suite by means of
console commands. As such AMSprep can be used to run the same type of calculation on a series of different chem-
ical systems. Another important example are automatic checks of the convergence of the results with respect to the
computational parameters e.g. by varying input settings such as basis set choice or numerical integration accuracy while
recomputing the same system.
AMSprepare ($AMSBIN/amsprep) generates a job script from a template .ams file. Such a template file can either be
produced by AMSinput or simply be found among the default templates included. These default templates are identical
to those present in AMSinput.
Two examples are presented here to demonstrate the capabilities of AMSprep:

• In BakersetSP you will see how to use amsprep to run a particular job for a test set of molecules. The individual
molecular structures are provided as xyz-files which contain no ADF specific information. AMSreport is used to
collect the values of the bonding energies resulting from these calculations.

• In ConvergenceTestCH4 you will see how to use AMSprep to test convergence of the bonding energy with respect
to the basis set and the numerical integration grid.

The options of AMSprep are listed when running the module without further command line arguments, or with the -h
flag:

% amsprep -h
AMSprepare (amsprep) generates a job script from a .ams file (the template),
with user specified changes to input options / method / system.

Usage: amsprep -t template.ams [-m molecule.(ams|adf|xyz|mol|t21)] [-z charge] [-s␣
↪→spin]

[-runtype SinglePoint|GeometryOptimization|Frequencies]
[-gradientsonly]
[-q quality] [-zlmfit quality] [-kspace quality]
[-lattice v1.x v1.y v1.z ...]
[-i integration] [-b basis] [-c core] [-r relativity]
[-basiscacheid id]

(continues on next page)

3

../../ADF/Examples/BakersetSP.html
../../ADF/Examples/ConvergenceTestCH4.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
[-x xcpotential] [-e xcenergy] [-bondsonly]
[-dftbmodel DFTB|SCC-DFTB|DFTB3] [-dftbparameters dir]
[-dftbdispersion None|Default|D3-BJ|D2|ULG|UFF]
[-logfile logfile] [-j jobname] [-a amsfile]
[-dist "atom1 atom2 distance ..."]
[-angle "atom1 atom2 atom3 angle ..."]
[-dihed "atom1 atom2 atom3 atom4 angle ..."]
[-atomtype "atom type ..."]
[-structure "atom structure ..."]
[-pointcharges file]
[-efield "Ex Ey Ez"]
[-rxforcefield fname] [-rxniter n] [-rxnrstep n] [-

↪→rxtstep T]
[-rxmethod method] [-rxmdtemp T] [-rxmdpres p]
[-region "name at1 at2... "]
[-fragments prefix] [-onejob]
[-g "key value"]

Start with a job template, adjust it for this particular job, and write the resulting␣
↪→job
to standard output. Values specified should match exactly the values as you would␣
↪→specify
using AMSinput, also for menu choices.

TEMPLATE
-t: the .ams file (saved by AMSinput) to be used as template, defining the whole job

All other options override values from this job

Instead of a .ams file, you may also specify the name of one of the standard␣
↪→templates

as defined in AMSinput: "Single Point", Frequencies, "Geometry Optimization", etc
A special option for energy and gradients
for the current geometry: EG (see also -gradientsonly)

Some shortcuts: SP, EG, GO, FREQ, optionally prefixed by␣
↪→(ADF|BAND|DFTB|UFF|MOPAC)-

For example: ADF-FREQ, BAND-SP, DFTB-GO, MOPAC-EG

Some ReaxFF shortcuts: REAXFF-EG for a single ReaxFF iteration

CHANGES TO TEMPLATE
-m: the molecule to use, element types and coordinates

This can be taken from anything that AMSinput can import,
for example .ams, .mol, xyz or .t21 files

The -m flag may be repeated, each molecule added will be in its own region
This may be used for fragment calculations, but it does not work with .ams files

If you specify an .sdf file, you can select which frames to import:
conformers.sdf#1-10 loop over the first 10 frames
conformers.sdf#e2.0 loop over all frames with energy below 2.0

(units as in the file, wrt the lowest energy of all frames in the file,
energies from comment lines)

conformers.sdf#1-10e2.0 loop over the first 10 frames,
and use only those with energy below 2.0

conformers.sdf use the first frame of the sdf file
(continues on next page)

4 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)

If you specify a .t21 file, you can select which frames or range of frames to␣
↪→import:

ajob.t21#ircf3 3rd frame in the IRC forward path
ajob.t21#ircb2 2nd frame in the IRC backward path
ajob.t21#h7 7th frame in the history
ajob.t21#lt8 8th frame in the LT path
ajob.t21#ircf3-10 IRCForward frame 3, 4, ... 10
ajob.t21#ircf IRCForward all frames, starting at 1
ajob.t21#ircf0- IRCForward all frames, starting at 0

(original geometry, before first step)

If you specify a .cry file, the compound to import may be specified:
$AMSHOME/atomicdata/Molecules/Crystals/Cubic/CsCl.cry#MgTl

When looping, all resulting jobs will be joined together, the jobname and ams␣
↪→files

get the frame sequence number appended after an _
When looping only one -m flag may be specified

-xyz: use xyz coordinates from specified file, not touching anything else
it is applied after -t and -m
the elements and number of atoms should match
currently works with KF and xyz files

-smiles: use smiles to describe the molecule

-irc: when using IRC frames in the -m flag, revert the backwards order

-dist: change the distance between atom1 and atom2 to the specified distance
the arguments must be enclosed in quotes, and may be repeated for multiple␣

↪→distances
-angle: change the angle (atom1, atom2, atom3) to the specified angle

the arguments must be enclosed in quotes, and may be repeated for multiple␣
↪→angles
-dihed: change the dihedral (atom1, atom2, atom3, atom4) to the specified angle

the arguments must be enclosed in quotes, and may be repeated for multiple␣
↪→angles
-atomtype: set the type (element) of atom to type

the arguments must be enclosed in quotes, and may be repeated for multiple␣
↪→types
-structure: add a structure just as if using the structure tool in AMSinput

atom is the selected atom, structure is the name of the structure file
the arguments must be enclosed in quotes, and may be repeated for multiple␣

↪→changes
-liststructures: list available structure files for use with -structure, and exit

-runtype: run type (SinglePoint,GeometryOptimization,Frequencies)
-gradientsonly: after calculating the gradients, stop

works also for excited state gradients if requested in your template
-z: charge (real number)
-s: spin (integer), if not zero this implies an unrestricted calculation
-q: quality (Basic, Normal, Good, VeryGood or Excellent), default for Becke/ZlmFit
-i: integration (integer)
-i: Becke integration (Basic, Normal, Good, VeryGood or Excellent)
-i: teVelde integration (integer)
-zlmfit: ZlmFit quality (Basic, Normal, Good, VeryGood or Excellent)
-kspace: KSpace quality (GammaOnly, Basic, Normal, Good, VeryGood or Excellent)

(continues on next page)

2.1. AMSprep: generate (multiple) ADF jobs 5

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
-lattice: lattice vectors first three numbers for the first vector, next for the␣
↪→second etc

The dimension follows from the number of vectors
-b: basis type (SZ, DZ, DZP, TZ, TCP, TZ2P, QZ4P)
-c: core type (None, Small, Medium, Large)
-basiscacheid id: refer to t21 files from previous runs prefixed with this id
-r: relativistic level (None, Scalar, Spin-Orbit), using ZORA
-x: XC potential during SCF, one from the options available in AMSinput:

LDA,
GGA:BP, GGA:BLYP, GGA:PW91, GGA:mPW, GGA:PBE, GGA:RPBE, GGA:revPBE, GGA:mPBE,
GGA:OLYP, GGA:OPBE,
Model:SAOP, Model:LB94,
Hartree-Fock,
Hybrid:B3LYP, Hybrid:B3LYP*, Hybrid:B1LYP, Hybrid:KMLYP, Hybrid:O3LYP,␣

↪→Hybrid:X3LYP,
Hybrid:BHandH, Hybrid:BHandHLYP, Hybrid:B1PW91, Hybrid:MPW1PW, Hybrid:MPW1K,
Hybrid:PBE0, Hybrid:OPBE0

-e: XC energy after SCF (Default, LDA+GGA_METAGGA, LDA+GGA+METAGGA+HYBRIDS)
-pointcharges: file, file with point charges, one point charge per line (ADF only)

x y z charge, xyz in Angstrom, charge in elementary units (+1 for a␣
↪→proton)
-efield: Ex Ey Ez the electric field vector (in Hartree/(e Bohr))
-k: replace any key, the single argument will be broken into:

the key, the replacement value, and END for a block key
all separated by spaces. To insert a return, add a |
When the key is not found, it is added just before the ATOMS key
The -k key may be repeated, and is applied at the end, replacing even earlier␣

↪→changes

-dftbmodel DFTB|SCC-DFTB|DFTB3: select the DFTB model
-dftbparameters dir: select the directory with DFTB parameters
-dftbdispersion [None|Default|D3-BJ|D2|ULG|UFF]: dispersion option to use, default is␣
↪→None

-rxforcefield fname: the ReaxFF force field file
-rxniter n: number of ReaxFF iterations
-rxnrstep n: number of non-reactive iterations (out of the total number of iterations)
-rxtstep T: the time step used in the MD simulation
-rxmethod string: the simulation type: Velocity Verlet + Berendsen|NPT|NVE
-rxmdtemp T: the thermostat temperature
-rxmdpres p: the required pressure

-region name at1 at2 ...: make a region with specified name and atoms, may be repeated
The atom numbers at1 at2 refer to input order, after geometry modifications,␣

↪→start at 1
Use at1-at2 to refer to all atoms between at1 and including at2
If the region key is present all regions already present are deleted

-fragments prefix: set up a fragment calculation, prefix fragment run/job scripts␣
↪→with prefix

if this key is present fragment run/job scripts will be saved␣
↪→(unless -onejob)

if a job script is requested, the fragment job names will be␣
↪→prefix.fragname.job
-onejob: for fragment jobs, concatenate the fragment jobs and final job into one on␣
↪→stdout
-g "key value": set any key to the specified value (note key value within quotes)

key: internal name in AMSinput for some option, see bin/amsinput.tcl/tpl/
↪→Defaults.tpl (continues on next page)

6 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
value: set gin(key) to the specified value

-nochain: unset chain option (used internally by chain jobs)

OUTPUT
-bondsonly: only the bonds as generated by the GUI will be exported (the GUIBONDS␣
↪→block)
-logfile: force the specified logfile to be used in the run script
-j: produce a fully runnable job (as the .job files from AMSjobs),

using the specified jobname.
The job script produces files like jobname.out, jobname.t21 etc. Several job␣

↪→scripts can simply
be concatenated, the results will be stored in different files using th jobname␣

↪→parameter
the default is a simple run script (the .run file from AMSinput, files are left␣

↪→as they are)
-a: save a .ams file that matches the run script, except for the -k arguments

(they are listed in the user input field)
amsfile is the name of the AMSinput, including the .ams extension (required)

Example: calculate gradients for a molecule in file mymol.xyz
amsprep -t GO -m mymol.xyz -k "stopafter ggrads"

Example: calculate gradients for a molecule in file mymol.xyz, using good quality␣
↪→integration and fit:

amsprep -t GO -q Good -m mymol.xyz -k "stopafter ggrads"

Example: calculate DFTB frequencies for a molecule in file mymol.xyz
amsprep -t DFTB-FREQ -m mymol.xyz

2.1.1 Additional Notes

CRSprep represents a scripting solution which is exclusively oriented towards generating input files for the COSMO-RS
program.

2.2 Tutorial: Generate structures for substituent effects screening

Overview
Screening substituent patterns of a base compound is a common task in computer aided materials design. In the following
short tutorial we demonstrate how you can use amsprep to automatize the replacement of substituents with just a few lines
of simple shell scripting.

2.2. Tutorial: Generate structures for substituent effects screening 7

../../COSMO-RS/CRSprep.html
../../COSMO-RS/index.html
../../COSMO-RS/index.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

Contents:
• The library of substituents in AMSinput
• Exchanging substituents with AMSprep
• Combining AMSprep and AMSreport in shell script

The substituent library in AMSinput
AMSinput comes with a customizable library of common substituents that we can use for our screening purposes right
away. It can be accessed via the structure builder tool in AMSinput:

Note how the entries are organized. For example the isocyanide functional group (“NC”) can be found in “Ligands”.
Its also possible to add your own compounds: Simply draw the structure of interest and select the atom which will serve

8 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

as an anchor.
This is how you would add a carboxylic acid group:

AMSinput will always consider the atom that lies in the origin of the coordinate system to be the anchor. If you use the
Save As Structure command this will be done for you. More information, including another example, can be found in the
Building Molecules GUI tutorial.
Exchanging substituents with amsprep
Let us consider a simple benzene ring as the base compound:

2.2. Tutorial: Generate structures for substituent effects screening 9

../../Tutorials/BuildingStructures/BuildingMolecules.html#your-own-structures-library

Scripting Manual, Amsterdam Modeling Suite 2024.1

The amsprep command to exchange Hydrogen atom #12 with an isocyanide group (“NC”) and create a runfile for a UFF
geometry optimization is:

"$AMSBIN/amsprep" -t UFF-GO -m benzene.xyz -structure "12 Ligands/NC.ams" > "benzene_
↪→NC.run"

Remember that the “CN” group was located in the “Ligands” menu hence “Ligands/NC.ams”. In case the path contains
whitespace, you need to escape the whitespace as in this example

"$AMSBIN/amsprep" -t UFF-GO -m benzene.xyz -structure "12 Alkyl\ Chains/Ethyl.ams" >
↪→"ethyl_benzene.run"

When using custom substituents, e.g. the hydroxylic_acid in the above example, a full path need to be provided to
amsprep. The path is displayed when clicking on the Structure Tool in AMSinput and selecting “Manage your structures”.
On an ubuntu linux system the path is “/home/[your_username]/.scm_gui/Structures” and the command to use your own
structures becomes:

"$AMSBIN/amsprep" -t UFF-GO -m benzene.xyz -structure "12 /home/[your_username]/.scm_
↪→gui/Structures/carboxylic_acid.ams" > "benzoic_acid.run"

Bringing it all together
The following few lines of shell script demonstrate how to automatically exchange the substituents on a benzene ring, run
a UFF optimization on the new structure and extract the optimized geometry with amsreport.

#! /bin/sh
#
copy the file benzene.xyz from the ADF compounds database
#
cp "$AMSHOME/atomicdata/Molecules/ADF/Benzene.xyz" .
#
loop through different substituents
#

(continues on next page)

10 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
for ligand in CN CO CO3 NC NH2 NH2CH3 NH3 OC OCH3 OH PH3 Pyridine; do

#
prepare the coordinates and the UFF calculation
#
"$AMSBIN/amsprep" -t UFF-GO -m Benzene.xyz -structure "12 Ligands/$ligand.ams" >

↪→"benzene_$ligand.run"
#
run UFF GeoOpt
#
sh "./benzene_$ligand.run"
#
extract the optimized geometry via amsreport
#
"$AMSBIN/amsreport" uff.rkf SDF > "benzene_$ligand.mol"
#
rename the generic UFF output file
#
mv uff.rkf "benzene_$ligand.rkf"

done

Running the script
Linux and Mac: Copy and paste the above into a file called substituents_script and execute it in the command
line

sh substituents_script

Windows: Just use the pre-configured shell ams_command_line.bat shipped with ADF to run the same command
as the Linux and Mac users.

2.3 AMSreport: generate reports

The utility AMSreport ($AMSBIN/amsreport) allows to retrieve the results (including images) computed from the binary
output files of either ADF, BAND, ReaxFF, DFTB, UFF, or MOPAC. For ADF this is the .t21 file (TAPE21). It can
also be the .runkf file from BAND, the .rxkf file from ReaxFF or the .rkf file from DFTB, MOPAC or UFF.
The selected results are printed out via standard output or, alternatively, either written to a tab separated file or an HTML
file. When creating a new output file AMSreport will also generate a line with headers identifying the information. Images
are generated using the ADF-GUI.
Also individual KF variables can be retrieved from the file as shown by the following example, which illustrates how to
obtain the bonding energy from a .t21 file.

amsreport job.t21 BondingEnergy

Also high-quality pictures of orbitals can be obtained as shown below.

amsreport job.t21 HOMO LUMO+1 -v "-grid Fine" -v "-antialias" -v "-bgcolor #ffffff"

The options of AMSreport are listed when running the module without further command line arguments. At present the
following command line options are available
-h prints the help screen.

2.3. AMSreport: generate reports 11

Scripting Manual, Amsterdam Modeling Suite 2024.1

Hint: If used with the name of a valid KF file in the command line the -h option lists the names of all data blocks present
in that file. It is strongly encouraged to use this option to retrieve the names of the options available in a given situation.

amsreport -h job.t21

-i specifies the input file (.t21 etc). If the specified input file is not present ADF tries to find a valid input file based on
the information in the matching .ams file or the most recent available binary output file.

-usefile specifies the input file like -i but without attempting to find a matching file if the specified input file does not
exist. Typically -usefile is used to avoid reading data from the result file.

-I <pattern> glob files, and run over all matching result files
-o the name of the html file in which the output of AMSreport will be stored. The output will be printed to standard

output if this option is absent.
-plain print only output data from AMSreport without any labels and/or units. The same can be achieved by setting the

environment variable SCM_AMSREPORT_PLAIN to yes.
-noplain print output data with tab separators, labels, and units. Used to override the aforementioned variable

SCM_AMSREPORT_PLAIN.
-v command line to pass to amsview (without filenames) to generate images. The image will be generated by AMSview

stored in a directory with a name based on the result file, and with extension .jpgs. The result file will contain a
path to the image file (directly, or in an IMG tag) After the -v the arguments must be listed, with proper quoting.
Repeat the -v flag for multiple arguments. The individual -scmgeometry, -bgcolor, -zoom, -viewplane, -antialias
and -grid options will be collected and applied to all view options.
Some shortcuts are predefined (HOMO, HOMO+1, LUMO, Molecule, Density, Potential) and some additional
useful flags include
-scmgeometry (default 200x200) -bgcolor (default #220000), -zoom (default 1.0) -viewplane (default {1 2 5}) -
antialias (off when not present, especially useful with light bgcolors) -grid (Coarse when not present, Medium when
specified, or value after flag if a value is present)
examples HOMO-1 LUMO+1 -v “-viewplane {0 0 1}” -v “-grid Fine” -v “-antialias”

-r Specifies the result to be retrieved by AMSreport from the binary output file. If this command is omitted all unspecified
command line arguments but the first (denotes input file name) will be considered as arguments for this flag.
If -r is present, the desired result is specified as a string either in form of its preset name (see below) or via a
section%variable pair (see the KF utilities documentation). The -r flag (or arguments without flag) may be repeated
for multiple results. Additional details can be specified after the variable name, separated by “#”. For example
range “variable#index” or “variable#firstindex:lastindex”, index starts at 1
format TclTk format string, e.g. 8.3f or 12.6g
examples prints a formatted table of the coordinates

-r "Geometry%xyz#12.4f##3"

prints a formatted table for the first two atoms only

-r "Geometry%xyz#1:9#12.4f##3"

coordinates of the first two atoms in one line

-r "Geometry%xyz#12.4f#1:9"

12 Chapter 2. Command Line Tools

KF_command_line_utilities.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

print just the first coordinate

-r "Geometry%xyz#1"

print the bond energy

-r "Energys%Bond Energy"

While any proper KF variable can be accessed via a “section%variable” construct, the following predefined keys
are available for the KF files resulting from the various programs of the Amsterdam Modeling Suite.

ADF-specific ``-r`` presets for .t21 files
orient* affine transform (3x4) from input to internal ADF orientation, format after #
iorient* affine transform (3x4) from internal ADF to input orientation, format after #
title title of the calculation
type calculation type (single point, geometry optimization, …)
weight molecular weight
symmetry molecular symmetry
natoms number of atoms
integration integration accuracy
integration-min minimum integration accuracy
integration-max maximum integration accuracy
scfstatus SCF convergence status
charge the requested charge
charges shorthand for Voronoi, Hirshfeld and Mulliken charges
voronoi Voronoi deformation charges
hirshfeld Hirshfeld fragment charges, atomic fragment definition required
mdc All available MDC atom charges
mdc-m MDC-M charges
mdc-d MDC-D charges
mdc-q MDC-Q charges
mulliken Mulliken charges
bondorders Mayer bond orders
nmr NMR shieldings
nmr-shieldings NMR shieldings
nmr-shielding-tensor NMR shielding tensor
nmr-j-coupling-tensor NMR j coupling tensor
nmr-k-coupling-tensor NMR k coupling tensor
nmr-j-coupling-constant NMR j coupling constant
nmr-k-coupling-constant NMR k coupling constant

2.3. AMSreport: generate reports 13

Scripting Manual, Amsterdam Modeling Suite 2024.1

dipolev* dipole vector
dipole dipole moment (length of dipole vector)
quadrupole quadrupole tensor
orbital-info orbital info (energy, occupation and label), format for energy after #, range after # with HOMO or

LUMO for example:

orbital-info#HOMO, orbital-info#HOMO-1,
orbital-info#HOMO-2:LUMO+2, orbital-info#HOMO#12.8f

orbital-e* orbital energies, format and range after # as in orbital-info
orbital-o* orbital occupations, format and range after # as in orbital-info
orbital-l* orbital labels, format and range after # as in orbital-info
homo-lumo-gap* HOMO-LUMO gap, format after #
atomlabels name of atoms with sequence number, starting at 0
atomlabels-from0 name of atoms with sequence number, starting at 0
atomlabels-from1 name of atoms with sequence number, starting at 1
nstep number of steps in history / LT / IRC data, type (h,lt,ircf,ircb) after #
spin the requested spin polarization
step use coordinates from history / LT / IRC data, step number after # with h for history, lt for LT, ircf/ircb for

forward/backward IRC if no letter after #, history data will be used (if not, last step will be used) for example:

step#23 (or step#h23), step#lt4, step#ircf3

geometry, geometry-a*, geometry-b* geometry (element type and coordinates), in input order, in
angstrom or bohr (default)

sdf geometry in SDF format
bgf geometry in BGF format
distance distance between two atoms, in angstrom. Input separated by #

labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order
examples

distance#2#3, distance#labels#2#3, distance#-8.3f#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5, distance#labels#1#2#3#4

angle angle between three atoms, in degrees. Input see distance, but with three atoms per angle
dihedral dihedral between four atoms, in degrees. Input see distance, but with our atoms per dihedral
hessian* Hessian matrix (from GeoOpt%Hessian_CART), fmt and nperline options after #
gradients* gradients with respect to nuclear displacements (from GeoOpt%Gradients), fmt and nperline options

after #
energies* all available energies (bonding up to xc, with labels), fmt option after #
bonding total bonding energy

14 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

pauli total pauli repulsion
steric total steric interaction
orbital total orbital interaction
electrostatic electrostatic energy
kinetic kinetic energy
coulomb electrostatic (steric and orbital interaction) energy
xc exchange-correlation energy
dispersion dispersion energy
frequencies* IR Frequencies, format, nperline and range (n, or n:n, start at 1) after #
freqint* IR Intensities, format, nperline and range (n, or n:n, start at 1) after #
freqlabel* IR Frequencies label (symmetry), format, nperline and range (n, or n:n, start at 1) after #
normalmode* normal modes (mass weighted), format, nperline and range (n, or n:n, start at 1) after #
zeropoint* zero-point energy
excitation* Excitation energies, format, nperline and range (n, or n:n, start at 1) after #
oscillatorstrength* Oscillator strengths for the excitation energies format, nperline and range (n, or n:n, start

at 1) after #
excitlabel* Excitation labels (symmetry), format, nperline and range (n, or n:n, start at 1) after #
BAND specific ``-r`` presets for .runkf files
natoms number of atoms
geometry, geometry-a*, geometry-b* geometry (element type and coordinates), in input order, in

angstrom or bohr (default)
sdf geometry in SDF format
bgf geometry in BGF format
distance distance between two atoms, in angstrom. Input separated by #

labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order
examples

distance#2#3, distance#labels#2#3, distance#-8.3f#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5, distance#labels#1#2#3#4

angle angle between three atoms, in degrees. #4 Input see distance, but with three atoms per angle
dihedral dihedral between four atoms, in degrees. Input see distance, but with our atoms per dihedral
atomlabel, atomlabel-from0 name of atoms with sequence number, starting at 0
atomlabel-from1 name of atoms with sequence number, starting at 1
ReaxFF specific presets for .rxkf files
natoms number of atoms

2.3. AMSreport: generate reports 15

Scripting Manual, Amsterdam Modeling Suite 2024.1

geometry, geometry-a*, geometry-b* geometry (element type and coordinates), in input order, in
angstrom or bohr (default)

distance distance between two atoms, in angstrom. Input separated by #
labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order
examples

distance#2#3, distance#labels#2#3, distance#-8.3f#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5, distance#labels#1#2#3#4

angle angle between three atoms, in degrees. #4 Input see distance, but with three atoms per angle
dihedral dihedral between four atoms, in degrees. Input see distance, but with our atoms per dihedral
atomlabel, atomlabel-from0 name of atoms with sequence number, starting at 0
atomlabel-from1 name of atoms with sequence number, starting at 1
rx-frame n options information for a particular reaxff frame. Note the spaces, you will need to quote this key.

n: frame number 0, 1, 2, ... (is not the ReaxFF step number)

options: combination of the following (if omitted, all will be reported)

nframes: total number of frames

step: the ReaxFF step number for the specified frame

nats: number of atoms

xyz: the xyz coordinates

names: element names (C, H etc) for each atom in the same order as the␣
↪→coordinates

neighbors: bond information

cell: cell information

example

amsreport water.rxkf "rx-frame 20 step xyz cell"

pdbtrajectory the trajectory information (including molecule details) as a sequence of PDB models due to limita-
tions of the PDB format to less than 100000 atoms and it will not be a standard conforming PDB file

pdbtrajectory-(nobonds|usepdbinfo)

nobonds: as pdbtrajectory, but no bond info (CONECT records)

usepdbinfo: as pdbtrajectory, but use pdb residue info from first step instead of␣
↪→reaxff mol info

xmol: the trajectory information (only element, xyz) in xmol format

(continues on next page)

16 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
gro: trajectory as .gro file (xyz and velocities) options after a - sign:

m : print list of molecule names and formulas only

x : allow xyz only frames (missing velocities)

f : add forces if available

tf : add the time step, f is a floating point number that is the time per step in␣
↪→ps

examples: gro-x, gro-f, gro-xf, gro-ft0.0001, gro-xt0.001, etc.

Special features for ReaxFF parameter optimization: a geo file in biograph format can␣
↪→be converted from a DFT result file using the bfg option above.

example Input file: geo (biograph format)
-rxtrainset: run over frames in the input file (should be a bgf BIOGRAPH file), put all charges, bonds and angles
in the trainset.in (on stdout).
Input file: ffield (reaxff force field file). The source ffield file determines which atoms, bonds etc are present.
-ffield-min: generate ffield file with all values replaced by min values
-ffield-max: generate ffield file with all values replaced by max values
-ffield-bool: generate ffield file with all values replaced by bool values
-minmax filename: use data from filename for min and max values,
format: see RxParRange.txt in atomicdata/ForceFields/ReaxFF

General presets for .rkf files
natoms number of atoms
geometry, geometry-a*, geometry-b* geometry (element type and coordinates), in input order, in

angstrom or bohr (default)
sdf geometry in SDF format
bgf geometry in BGF format
distance distance between two atoms, in angstrom. Input separated by #

labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order
examples

distance#2#3, distance#labels#2#3, distance#-8.3f#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5, distance#labels#1#2#3#4

angle angle between three atoms, in degrees. #4 Input see distance, but with three atoms per angle
dihedral dihedral between four atoms, in degrees. Input see distance, but with our atoms per dihedral
hessian* Hessian matrix (from GeoOpt%Hessian_CART), fmt and nperline options after #

2.3. AMSreport: generate reports 17

Scripting Manual, Amsterdam Modeling Suite 2024.1

gradients* gradients with respect to nuclear displacements (from GeoOpt%Gradients), fmt and nperline options
after #

energies all available energies (bonding up to xc, with labels), fmt option after #

2.3.1 Additional notes

• SDF and BGF records can be produced from from ANY file that can be read by AMSinput.
• KFreader is a free (LGPL) alternative to AMSreport. The C sources are available in our download section
(http://www.scm.com/Downloads/KFReader-20140106.zip) and can be modified for more specific needs.

2.4 KF command line utilities

There are four utility programs for manipulating files in the so-called Keyed File (KF) format from the command shell.
Two of them convert KF files from binary to ASCII and vice versa. See the pkf and dmpkf utilities for a description of
the ASCII format of a kf file. Such a readable version of a KF file can be useful to inspect its contents in detail.
All programs from the package will convert a KF file to the binary format native to this platform if necessary. In such
a case, the original file will be renamed to a file with tilde “~” appended to its name and a message will printed on the
standard output.
The KF software was developed at the Vrije Universiteit Amsterdam as a general-purpose package for storing data and
re-accessing it via keyword-driven procedures.
pkf

pkf file1 { file2 ... filen }

pkf prints a summary of the contents of the kf files file1… filen.
All variables are listed by name, type (integer, real, character, logical), and size (number of array elements) and bundled
into named sections.
To put the results in an ASCII file for later inspection:

pkf file > ascii_result

Each section on the file contains an index of its variables and their associated values. All data are organized in blocks.
Each section may have any number of index blocks and any number of data blocks (this depends simply on the amount
of data to be stored in such a block). In addition there is one special section, the SuperIndex, which is an index of all
sections on the file.
The output of pkf consists of:

• General information about the file (name of the file, internally used unit numbers during processing the file…)
• A summary of the SuperIndex, hence an index of blocks in the file and the associated sections.
• A summary: total numbers of blocks associated with the different types of blocks.
• For each section a list of its variables. For each variable in the list the following is displayed

– The variable name.
– Its length, i.e. the storage requirements of the variable within the file.
– Its ‘used’ size, hence the file storage associated with the variable (in units off 8 Bytes for double precision real
numbers, 4 for integers, etc.).

18 Chapter 2. Command Line Tools

http://www.scm.com/Downloads/KFReader-20140106.zip

Scripting Manual, Amsterdam Modeling Suite 2024.1

– The number of actual elements within the variable (for real, integer, and logical data types) or the number of
characters in a string.

– The (logical) index of the data block it is stored in.
– The off-set of the data within its data block.
– Its value or the first element of an array variable, respectively.

cpkf

cpkf file1 file2 {key1 .. keyn}

cpkf copies the sections and/or variables key1 .. keyn from file1 to file2.
If a referenced section or variable already exists on file2 it is overwritten, else it is created. Sections and variables which
are already present on file2 but which are not referenced in the command are not affected.
If no sections and/or variables are explicitly mentioned at all the copying is carried out for all sections and variables on
file1.
As a side effect of this operation any ‘holes’ eventually present in the original due to the formal deletion of obsolete sections
and variables are not copied. Note that the KF file is not rearranged upon deletion of data. Rather only the corresponding
entries in the index tables are removed in this case. During the copying process the data is however rearranged for optimum
storage efficiency and the resulting file copy may therefore be smaller than the corresponding original.
Skipping specific sections during the copying process can be manually controlled as follows:

cpkf file1 file2 -rm section1 ...

In this form, all sections will be copied except for the ones specified on the command line, thus effectively removing them
from the file.
To copy and rename a section:

cpkf file1 file2 "section_name --rename new_section_name"

dmpkf
A utility to extract information from a KF file and make it available in ASCII format:

dmpkf file {key1 .. keyn}

dmpkf prints the sections and/or variables from the file file indicated by key1 .. keyn on standard output. The complete
file is printed if no sections or variables are specified.
The format to be used for the individual keys:

Sec%Var

where Var the variable of interest present in section Sec. The complete section is dumped if no variable name is specified.
By redirecting the result to another file a human readable output is obtained:

dmpkf file > ascii_result

The output contains for each printed variable:
• One line with the name of the section it belongs to;
• One line with the name of the variable itself;
• One line with three integers:

2.4. KF command line utilities 19

Scripting Manual, Amsterdam Modeling Suite 2024.1

– The amount of space reserved for the variable on the file which is, however, relevant for programs operating
with KF files only;

– The amount of data associated with the variable: for reals, integers, logicals: the number of such elements;
for strings: the number of characters;

– An integer code for the data type of the variable: 1=integer, 2=real, 3=character, 4=logical;
• The values of the variable (on as many lines as necessary): for scalar variables only one value, for arrays as many
values as the array contains.

udmpkf
A utility to put information read from standard input into a KF file:

udmpkf file

udmpkf reads an ASCII file in the format created by dmpkf from standard input and creates the binary KF file therefrom.
If such a KF file is already present the sections and variables in the input file are appended to the existing KF file. Whenever
a section or variable already exists in target file it will be overwritten. Other data on the target file are not affected.
The combination of dmpkf and udmpkf makes it easy to modify KF files with a normal text editor:

dmpkf TAPE21 > t21_ASCII

After the desired modifications within t21_ASCII this file may be reconverted into a binary KF file:

udmpkf < t21_ASCII TAPE21_new

Also note that dmpkf and udmpkf only require a single argument here, respectively, as “< t21_ASCII” passes the content
of the edited file via the standard input.
akf
The akf utility is the command line version of the AKFReader python library described here: AKFReader (page 85).
For more information, refer to the help function of the akf tool:

akf --help

which we display below for convenience:

usage: -c [-h] [-c] [-cc] [-v] [-a] [-pa] [-ps] [-j] [-pv PRINT_VARIABLE [PRINT_
↪→VARIABLE ...]] [-n] file [file ...]

A utility tool for Annotated KF files (akf).

positional arguments:
file Path to a kf file of a folder (if a folder is specified, the␣

↪→tool will recursively loop over all files with the '.rkf' extension)

optional arguments:
-h, --help show this help message and exit
-c, --check Check (i.e. validate) a kf file
-cc, --check-conditional

Check (i.e. validate) a kf file, but only if the calculation␣
↪→ended with 'normal termination' status
-v, --verbose verbose printing to stdout
-a, --augment include the kf definitions to the file
-pa, --print-all Print all the values in the kf file

(continues on next page)

20 Chapter 2. Command Line Tools

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
-ps, --print-skeleton

print skeleton
-j, --check-json Check a JSON definition file for validity instead of checking␣

↪→a KF file against a JSON definition. This can be used to check for obvious errors␣
↪→when writing the JSON definition

files for KF contents.
-pv PRINT_VARIABLE [PRINT_VARIABLE ...], --print-variable PRINT_VARIABLE [PRINT_

↪→VARIABLE ...]
Print a variable. Note: you cannot have additional optional␣

↪→arguments after this. If you want to have multiple optional arguments, specify them␣
↪→before --print-variable
-n, --no-metadata Do not print metadata information, such as comments, shapes,␣

↪→etc... (only relevant for print commands)

Example usage:
akf path_to_file.rkf --check --augment
akf path_to_file.rkf --print-skeleton
akf path_to_file.rkf --no-metadata --print-variable Molecule%Coords

2.4. KF command line utilities 21

Scripting Manual, Amsterdam Modeling Suite 2024.1

22 Chapter 2. Command Line Tools

CHAPTER

THREE

PYTHON STACK IN AMSTERDAM MODELING SUITE

3.1 General

The Amsterdam Modeling Suite includes a python stack based on the Enthought Python Distribution
(https://www.enthought.com/products/epd/).

AMS version Python version
AMS2024 3.8.12
AMS2023 3.8.12
AMS2022 3.6.9
AMS2021 3.6.9
AMS2020 3.6.9

This python stack is completely separate from any other python installations on the system.
All programs within the Amsterdam Modeling Suite launch python via a special command, amspython.

3.2 Included modules

Some of the included modules are:
• numpy (1.21.2) and scipy (1.8.0): Big modules with a lot of functionality for math and science, more information
on the SciPy website (https://www.scipy.org/).

• IPython (7.22.0): An improved interactive python shell, more information can be found on the iPython website
(https://ipython.org/). Can be started with:

$AMSBIN/amsipython

• ase (3.22.1): ASE (Atomic Simulation Environment) is a python module for atomistic simulations, more informa-
tion in the ASE documentation (page 65).

• matplotlib (3.5.1): A library for plotting data in 2D, more information on the Matplotlib website
(https://matplotlib.org/). We do not ship an interactive backend for matplotlib, so make sure to set a non-interactive
backend (https://matplotlib.org/faq/howto_faq.html#generate-images-without-having-a-window-appear) when us-
ing it. For example the Agg backend for PNGs:

import matplotlib
matplotlib.use('Agg')

23

https://www.enthought.com/products/epd/
https://www.scipy.org/
https://ipython.org/
https://matplotlib.org/
https://matplotlib.org/faq/howto_faq.html#generate-images-without-having-a-window-appear
https://matplotlib.org/faq/howto_faq.html#generate-images-without-having-a-window-appear

Scripting Manual, Amsterdam Modeling Suite 2024.1

• pip (21.3.1): The recommended tool for installing packages from the Python Package Index (PyPI). The pip doc-
umentation (https://pip.pypa.io/en/stable/) explains in detail how to use this tool, but for the Python stack shipped
with the Amsterdam Modeling Suite all pip commands need to be prefixed with $AMSBIN/amspython -m:

$AMSBIN/amspython -m pip list
$AMSBIN/amspython -m pip show scipy
$AMSBIN/amspython -m pip search rotate-backups
$AMSBIN/amspython -m pip install rotate-backups

• flexmd: Amodule for runningMD simulations with adaptive QM/MM regions. Details can be found in the FlexMD
documentation (page 67).

• plams: PLAMS (Python Library for AutomatingMolecular Simulation) is a collection of tools that aim at providing
powerful, flexible and easily extendable Python interface to molecular modeling programs. It takes care of input
preparation, job execution, file management and output processing as well as helps with building more advanced
data workflows. See the PLAMS tutorials and PLAMS documentation for more information.

• autografs: AuToGraFS stands for Automatic Topological Generator for Framework Structures. Information and
examples can be found in the AuToGraFS documentation (page 79).

3.3 Using other modules with the AMS Python Stack

You can extend the the AMS Python Stack with other modules. You can use pip (see above) to install additional modules
if they are available on the Python Package Index (PyPI (https://pypi.python.org/pypi)). This is the recommended way
of installing packages:

$AMSBIN/amspython -m pip install name_of_package

You can also do this for your own packages that you develop, for example:

$AMSBIN/amspython -m pip install -e .

Alternatively, you can add the location of the source to the SCM_PYTHONPATH variable to make the module available in
the AMS Python Stack. To avoid collisions with other python installations on the system, we unload PYTHONPATH and
PYTHONHOME from the environment when launching the ADF Python Stack and put the content of SCM_PYTHONPATH
into PYTHONPATH.

Hint: If you for some reason have to use the PYTHONPATH variable and are unable to use SCM_PYTHONPATH,
you can modify $AMSBIN/amspython and $AMSBIN/amsipython to not have it cleared when starting python.

3.4 Install and run Jupyter Lab (Jupyter Notebooks)

3.4.1 Install Jupyter Lab

AMS2023 or later: Install Jupyter lab in the Package Manager (GUI: SCM → Packages, Command-line: $AMSBIN/
amspackages gui or $AMSBIN/amspackages -h).

24 Chapter 3. Python Stack in Amsterdam Modeling Suite

https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/
../../Tutorials/WorkflowsAndAutomation/PythonScriptingWithPLAMS.html
../../plams/index.html
https://pypi.python.org/pypi
../../Installation/Optional_Components.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

3.4.2 Run Jupyter Lab

In a command-line, run:

"$AMSBIN/amspython" -m jupyterlab

This will open up Jupyter Lab in your web browser.
To create a new notebook, click the blue plus (+) button at the top left and select Notebook → Python 3 (ipykernel).

3.4.3 Execute a notebook from the command-line

If you want to run a Jupyter notebook from the command-line, for example when submitting to a cluster, you can do
something like the following

cat > template.tpl <<EOF
{%- block body %}
{{ nb | json_dumps }}
{% endblock body %}
EOF

"$AMSBIN/amspython" \
-m nbconvert \
--to custom \
--template template.tpl \
--RegexRemovePreprocessor.patterns='^!' \
--execute \
--output output.ipynb \
notebook.ipynb

Above, the purpose oftemplate.tpl is to allow the use of theRegexRemovePreprocessor. It will exclude cells
starting with an exclamationmark!, for example commands used to launchGUImodules like AMSmovie or AMSspectra.

3.5 Python virtual environment

3.5.1 Default python virtual environment

Starting with AMS2020, the amspython command by default checks for a python virtual environment inside the user’s
home directory. If it does not find a virtual environment, it will create one in the following location (these are the default
values for the SCM_PYTHONDIR environment variable):

• Windows: $USERPROFILE/.scm/python
• Mac: $HOME/Library/Application Support/SCM/python

• Linux: $HOME/.scm/python
amspython then launches the python binary located inside the virtual environment.
If you install additional packages via pip (see above), they will be installed into the virtual environment’s site-
packages.

3.5. Python virtual environment 25

Scripting Manual, Amsterdam Modeling Suite 2024.1

3.5.2 Virtual environments for different AMS versions

The virtual environment is tied to the major release version of AMS, which is reflected in the name of the virtual envi-
ronment directory (e.g. AMS2020.1.venv).
Thus, upgrading from AMS2020.101 to AMS2020.102 will automatically let you use all python packages that you in-
stalled into the AMS2020.101 virtual environment.
To use previously installed python packages when upgrading from AMS2020.101 to e.g. AMS2020.301 or
AMS2021.101, simply copy or renameAMS2020.1.venv to AMS2020.3.venv or AMS2021.1.venv in the same directory.
If you have several installations of different major releases of the Amsterdam Modeling Suite on the same computer,
multiple virtual environments will also be created, one for each installation.

3.5.3 Changing the location of the python virtual environment

Set the SCM_PYTHONDIR environment variable to a directory in which the virtual environment will be installed. If you
use the graphical user interface (GUI), this environment variable can be changed in the GUI preferences. If you use the
command line, set it in your amsbashrc.sh. If you use both the GUI and the command line, you should change it in
both places.

3.5.4 Disabling the virtual environment

Follow the steps for changing the location of the python virtual environment, but set SCM_PYTHONDIR to be empty.

3.5.5 Uninstalling the virtual environment

Just delete the directory containing the virtual environment. This will also delete any packages that you have installed into
it.

3.5.6 Reinstalling the virtual environment

To force a reinstallation of the virtual environment, even if it already exists, run $AMSBIN/amspython --
install_venv. This will not remove any packages inside the virtual environment.

3.6 Useful commands

• Start a python shell:

$AMSBIN/amspython

• Install new packages via pip:

$AMSBIN/amspython -m pip install name_of_package

• Find out the location of an installed package (e.g. numpy):

$AMSBIN/amspython -c 'import numpy; print(numpy.__file__)'

• Find out which python binary is launched by amspython:

26 Chapter 3. Python Stack in Amsterdam Modeling Suite

Scripting Manual, Amsterdam Modeling Suite 2024.1

$AMSBIN/amspython -c 'import sys; print(sys.executable)'

• Disable the virtual environment (one-time):

SCM_PYTHONDIR='' $AMSBIN/amspython

3.6. Useful commands 27

Scripting Manual, Amsterdam Modeling Suite 2024.1

28 Chapter 3. Python Stack in Amsterdam Modeling Suite

CHAPTER

FOUR

SCM LIBBASE

The module scm.libbase

4.1 Chemical System

4.1.1 Overview

The ChemicalSystem class serves as a versatile representation of a chemical system. It’s designed to handle various types
of chemical structures, such as molecules, surfaces, or crystals.
Here’s how you can initialize a ChemicalSystem object using a System Block string:

from scm.libbase import UnifiedChemicalSystem as ChemicalSystem

Initialize a Chemical System from a 'System Block' string
mol = ChemicalSystem(
"""
System

Atoms
O 0.0 0.0 0.0
H 1.0 0.0 0.0
H 0.0 1.0 0.0

End
End
""")

Guess the bonds in the molecule based on the atomic coordinates
mol.guess_bonds()

Translate the molecule so that the origin coincide with it's center of mass
mol.translate(-mol.center_of_mass())

Print the molecule in 'System Block' format
print(mol)

29

../../AMS/System.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

4.1.2 Reading and writing

You can create or serialize a ChemicalSystem object using various file formats. Among these, System Block is one of
the most significant, offering a versatile text-based way to describe your chemical system. For more information on the
syntax and options for the System Block, see the AMS System Block documentation.
When you convert a ChemicalSystem object into a string (either by explicitly calling str(my_chemical_system)
or by using a print statement) the output will be in the System Block format

>>> from scm.libbase import UnifiedChemicalSystem as ChemicalSystem

>>> # Read it from a text file in the 'System Block' format:
>>> my_chemical_system = ChemicalSystem.from_in(filename="water.in")

>>> print(my_chemical_system)

System
Atoms

O 0.0000000000000000 0.0000000000000000 0.0000000000000000
H 1.0000000000000000 0.0000000000000000 0.0000000000000000
H 0.0000000000000000 1.0000000000000000 0.0000000000000000

End
End

>>> # Write it to a file in the 'System Block' format:
>>> my_chemical_system.write_in(filename="another_water.in")

Note on Serialization
When you read or write a ChemicalSystem using either the System Block format or a kf file (page 60), the object is
perfectly serialized. In other words, writing the object to a kf file and reading it back will result in an identical Chemi-
calSystem.
However, be cautious when using the xyz format as it doesn’t offer lossless serialization. Writing and reading back using
this format may result in the loss of certain information, such as bonds between atoms.
Available Methods for Serialization
Below are themethods you can use for reading and writing (also known as serializing and deserializing) a ChemicalSystem:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
classmethod from_in(filename: str, name: str = '')→ UnifiedChemicalSystem

Constructs and returns a new ChemicalSystem from a (possibly named) System block in an AMS input file.
classmethod from_kf(filename: str, section: str = 'Molecule')→ UnifiedChemicalSystem
classmethod from_kf(kf: libbase.KFFile (page 60), section: str = 'Molecule') → UnifiedChemical-

System
Constructs and returns a new ChemicalSystem from a section on a KF file.

classmethod from_xyz(filename: str)→ UnifiedChemicalSystem
Constructs and returns a new ChemicalSystem from an extended XYZ file.

classmethod from_input(input_file: libbase.InputFile (page 58), prefix: str) → UnifiedChemical-
System

Constructs and returns a new ChemicalSystem from an InputFile instance, given a prefix, e.g. ‘System[1]%’.
write_in(filename: str)→ None

Writes a ChemicalSystem to file as an AMS System block.

30 Chapter 4. SCM libbase

../../AMS/System.html
../../AMS/System.html
../../AMS/System.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

write_kf(filename: str, section: str = 'Molecule', omode: libbase.KFFile.OpenMode (page 60) = KF-
File.OpenMode.Any)→ None

write_kf(kf: libbase.KFFile (page 60), section: str = 'Molecule')→ None
Writes a ChemicalSystem to a section on a KF file.

write_xyz(filename: str, extended_xyz_format: bool = True)→ None
Writes a ChemicalSystem to an XYZ file.
By default the file is written in the AMS extended XYZ file format, which includes lattice vectors, atomic
properties, regions and some system properties such as the total charge. In order to write a plain standard
XYZ files without any of these extensions, set extended_xyz_format to False.

4.1.3 Atoms

The ChemicalSystem class maintains an array of instances of the Atom class (UnifiedAtom) to represent the atoms
in the system.
Adding and Modifying Atoms
The following code provides examples for adding atoms to a ChemicalSystem and modifying their properties.

from scm.libbase import UnifiedChemicalSystem as ChemicalSystem
from scm.libbase import UnifiedAtom as Atom

mol = ChemicalSystem()

Three different ways of adding atoms
mol.add_atom("O", coords=[0, 0, 0])
mol.add_atom(Atom("H"), coords=[2, 0, 0])
mol.add_atom(1, coords=[0, 2, 0], unit="Angstrom")

Change the coordinates of the Oxygen atom (units: Bohr)
mol.atoms[0].coords = [1, 2, 3]

This is equivalent to the line above:
mol.coords[:, 0] = [1, 2, 3]

Change the first hydrogen atom to deuterium by adjusting the mass (units: Dalton):
mol.atoms[1].mass = 2.014

Available Methods
Here are methods to interact with the atoms in your ChemicalSystem:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
property atoms

A list of all Atom instances that are part of this ChemicalSystem.
property coords

The coordinates of the atoms in bohr.
contains_atom(atom: libbase.UnifiedAtom)→ bool

Checks if an Atom instance is part of a ChemicalSystem.
atom_index(atom: libbase.UnifiedAtom)→ int

Given an Atom instance, returns its index in ChemicalSystem.atoms.

4.1. Chemical System 31

Scripting Manual, Amsterdam Modeling Suite 2024.1

add_atom(atom: libbase.UnifiedAtom)→ None
add_atom(atom: libbase.UnifiedAtom, coords: ArrayLike, unit: str = 'bohr')→ None
add_atom(Z: int, coords: ArrayLike, unit: str = 'bohr')→ None
add_atom(element: libbase.UnifiedElement, coords: ArrayLike, unit: str = 'bohr')→ None
add_atom(symbol: UnifiedAtom.T_AtomSymbol, coords: ArrayLike, unit: str = 'bohr')→ None

Add a new Atom to the ChemicalSystem.
remove_atom(atom_index: int)→ None

Removes a single atom from the system, given its index.
remove_atoms(atom_indices: ArrayLike)→ None

Removes multiple atoms from the system, given their atom indices.
set_atom(atom_index: int, atom: libbase.UnifiedAtom)→ None

Safe assignment of an Atom instance to atoms[atom_index].
Is essentially the same as self.atoms[atom_index] = atom, but makes sure that all the atomic
properties carried by the Atom instance are enabled on the target ChemicalSystem: the direct assignment will
throw a ChemicalSystemError if the needed atomic properties are not enabled, while calling this method will
enable them automatically and will not throw.
If Atom is part of a ChemicalSystem, its will overwrite whatever coordinates atoms[atom_index] had
before. If Atom is not part of a ChemicalSystem, the coordinates of atoms[atom_index] will remain
unchanged.

Methods for combining two ChemicalSystems into one:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
add_other(other: UnifiedChemicalSystem)→ None

Merges another ChemicalSystem into this one.
The number of atoms of self increases by the number of atoms of other. All atomic coordinates, prop-
erties and bonds between atoms will be kept. The total charge of other will be added to the total charge of
self.
The regions of each atom do not change in the process. Regions with the same name in self and other
are merged.
Systems with a lattice can only be merged with systems having the same lattice or no lattice at all. If only one
side has a lattice, that side determines the lattice of the result.
If both sides have a compatible lattice and bonds, merging them is only supported if either both or none of
the two have the lattice displacements of the bonds set. If one side has lattice displacements, and the other
does not, a ChemicalSystemError is raised.

__iadd__(arg0: UnifiedChemicalSystem)→ UnifiedChemicalSystem
Merges another ChemicalSystem into this one.
Note that lhs += rhs is just the operator version of lhs.add_other(rhs). See ChemicalSystem.add_other for
details about merging systems.

__add__(arg0: UnifiedChemicalSystem)→ UnifiedChemicalSystem
Creates a new ChemicalSystem by merging two others.
Note that C = A + B is equivalent to C = copy(A); C.add_other(B). See ChemicalSystem.add_other for details
about merging systems.

Splitting of ChemicalSystems into parts:
class UnifiedChemicalSystem

32 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

class UnifiedChemicalSystem(system_block: str)
A class representing a chemical system in the Amsterdam Modeling Suite.
extract_atoms(atom_indices: ArrayLike)→ UnifiedChemicalSystem

Returns a new system build from a subset of atoms.
Bonds within the subset will be preserved, but bonds to atoms not extracted will disappear. The returned
system will have the same lattice as the original and a total charge of zero. Atomic properties and regions of
the extracted atoms are preserved, but the returned system does not have any selected atoms.

split(part_indices: Sequence[numpy.int64])→ List[UnifiedChemicalSystem]
Splits the system into parts and returns a list of these parts as separate systems.
Accepts a num_atoms long sequence, assigning the atoms of the system to the parts. The length of the
returned list of parts is max(part_indices)+1.
Example: for a 6 atom system and a part_indices of [0, 0, 0, 1, 1, 1] a list of two systems
will be returned. The system will contain the first three atoms of the original, and the second system the other
three atoms.
The returned systems will have the same lattice as the original and a total charge of zero. Atomic properties
and regions are preserved, but the returned systems do not have any selected atoms.

The UnifiedAtom class
The UnifiedAtom class contains all the relevant data for an individual atom:
class UnifiedAtom
class UnifiedAtom(Z: int)
class UnifiedAtom(element: UnifiedElement)
class UnifiedAtom(symbol: T_AtomSymbol)

Class representing a single atom and its properties.
property Z

The atomic number of the atom.
property coords

The coordinates of the atom in bohr.
property symbol

The element symbol, e.g. ‘C’ or ‘Au’.
in_chemicalsystem()→ bool

Check if this Atom instance is part of a ChemicalSystem.

4.1.4 Molecular properties

These are properties of the Chemical System:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
property charge

The total charge of the system in atomic units (i.e. in units of elementary charge).
total_mass()→ float

Total mass in atomic mass units (dalton).
formula()→ str

Chemical formula in Hill notation (e.g. H2O, CH4):

4.1. Chemical System 33

Scripting Manual, Amsterdam Modeling Suite 2024.1

• If Carbon is present, the order is: C, H, alphabetical.
• If Carbon is not present all the elements (including Hydrogen) are listed alphabetically.
• Single-letter elements come before 2-letters elements (e.g. ‘K’ comes before ‘Kr’, ‘B’ before ‘Be’)

4.1.5 Geometry and manipulation

The Chemical System provides a range of methods for manipulating the geometry and retrieving geometrical properties
of your molecular system.
Here is a simple example showcasing some of the methods:

from scm.libbase import UnifiedChemicalSystem as ChemicalSystem

Initialize a Chemical System from an XYZ file
mol = ChemicalSystem.from_xyz("some_mol.xyz")
print("Original system:")
print(mol)

Translate the system to center its geometric center at the origin
mol.translate(-mol.geometric_center())

Define a rotation matrix for a 90-degree rotation around the z-axis
rot_mat = [[0,-1, 0],

[1, 0, 0],
[0, 0, 1]]

Apply the rotation
mol.rotate(rot_mat)
print("Roto-tranlsated system:")
print(mol)

This will output:

Original system:
System

Atoms
H 0.0000000000000000 0.0000000000000000 0.0000000000000000
F 1.0000000000000000 0.0000000000000000 0.0000000000000000

End
End

Roto-tranlsated system:
System

Atoms
H 0.0000000000000000 -0.5000000000000000 0.0000000000000000
F 0.0000000000000000 0.5000000000000000 0.0000000000000000

End
End

Available Methods
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
translate(shift: ArrayLike)→ None

Translates all atoms in the ChemicalSystem by a vector.

34 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

rotate(rot_mat: ArrayLike)→ None
Rotate the system according to the rotation matrix.

align_to(other: UnifiedChemicalSystem)→ None
Translate and rotate the system to maximally align it with ‘other’. It will first translate the system to the center
of mass of ‘other’, then it will use the Kabsch algorithm (https://en.wikipedia.org/wiki/Kabsch_algorithm) to
rotate the system in order to minimize the RMSD.
Notes:

• The two UnifiedChemicalSystems must have the same number of atoms.
• The atoms in the two chemical system must be in the same order.

classmethod rotation_matrix_minimizing_rmsd(a: UnifiedChemicalSys-
tem, b: UnifiedChemicalSys-
tem) → numpy.ndarray[Any,
numpy.dtype[numpy.float64]]

Given two chemical systems, returns the rotation matrix that minimizes the RMSD.
classmethod rmsd(a: UnifiedChemicalSystem, b: UnifiedChemicalSystem, align: bool)→ float

Computes the RMSD between two systems. ‘align’: whether or not the systems should be roto-translated as
to minimize the RMSD.
Notes:

• The two UnifiedChemicalSystems must have the same number of atoms.
• The atoms in the two chemical system must be in the same order.

geometric_center()→ numpy.ndarray[Any, numpy.dtype[numpy.float64]]
Position of the geometric center in bohr.

center_of_mass()→ numpy.ndarray[Any, numpy.dtype[numpy.float64]]
Position of the center of mass in bohr.

inertia_tensor()→ numpy.ndarray[Any, numpy.dtype[numpy.float64]]
Returns the system’s inertia tensor as a 3x3 matrix in atomic units (amu*bohr^2).
The inertia tensor is not defined for periodic systems. Calling this method on a periodic systems throws a
ChemicalSystemError.

moments_of_inertia() → Tuple[numpy.ndarray[Any, numpy.dtype[numpy.float64]],
numpy.ndarray[Any, numpy.dtype[numpy.float64]]]

Calculates the system’s moments of inertia and the corresponding principal axes.
Returns a tuple:

• a 3 component np.array of the inertial moments in atomic units (amu*bohr^2) sorted by magnitude
• a 3x3 np.array with with the corresponding axes as the column vectors

The moments of inertia and the principal axes are not defined for periodic systems. Calling this method on a
periodic systems throws a ChemicalSystemError.

is_linear()→ bool
Checks if a ChemicalSystem is linear.
A molecule is considered linear if all of its atoms are located on a line. A 1D periodic system is considered
linear if all atoms are located on a line parallel to the only lattice vector. Slab and bulk periodic systems can
never be linear.

perturb_coordinates(noise_level: float, unit: str = 'bohr')→ None
Perturb the atomic coordinates by adding random numbers between [-noise_level,noise_level] to each Carte-
sian component.

4.1. Chemical System 35

https://en.wikipedia.org/wiki/Kabsch_algorithm

Scripting Manual, Amsterdam Modeling Suite 2024.1

This can be useful if you want to break the symmetry of your system (e.g. for a geometry optimization).

4.1.6 Bonds

The Chemical System contains a bonds property, which is an instance of the UnifiedBonds class. This contains the
(possibly empty) bonding information on the system.
Creating and adding bonds
There are several ways of getting bonds into your chemical system. The following snippet will show some of the most
common approaches:

from scm.libbase import UnifiedChemicalSystem as ChemicalSystem
from scm.libbase import UnifiedBond as Bond

Here we initialize a Chemical System from an XYZ file.
The chemical system will not have any bonds at the moment, because
bonds are not defined in the .xyz file.
water = ChemicalSystem.from_xyz("water.xyz")

You can let the bond guessing algorithm simply guess the bonds:
water.guess_bonds()

Or you can add them manually.
First we clear the bonds we just guessed:
water.bonds.clear_bonds()

and add bonds manually:
water.bonds.add_bond(0, 1, Bond(1.0)) # From the oxygen to the first Hydrogen
water.bonds.add_bond(0, 2, Bond(1.0)) # From the oxygen to the second Hydrogen

You can also explicitely define the bonds in the System Block...
system_block = """
System

Atoms
O 0.0000000000000000 0.0000000000000000 0.3695041700000000
H 0.0000000000000000 0.7838367199999999 -0.1847520900000000
H 0.0000000000000000 -0.7838367199999999 -0.1847520900000000

End
BondOrders

1 2 1.00
1 3 1.00

End
End
"""

...and then load the system:
water = ChemicalSystem(system_block)

This is how you can iterate over the bonds and get the indices of the bonded atoms:
for i, j, bond in water.bonds:

print(f"Atoms: {i}-{j} Bond order: {bond.order}")

Note on atom indexing: as you can also see from the example above, atom indexing from within python and in the System
Block differ: In python the first atom has index 0, while in the System Block the first atom has index 1.

36 Chapter 4. SCM libbase

../../AMS/System.html
../../AMS/System.html
../../AMS/System.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

The Bond Class
This contains the properties of a single bond.
class UnifiedBond
class UnifiedBond(order: float)
class UnifiedBond(order: float, lattice_displacements: ArrayLike)

A class representing a bond between two atoms.
property lattice_displacements

Lattice displacements for the second atom that is part of the bond.
If atom A and B are bonded with lattice displacements [1, 0, 0], this means that atom A is bonded to the
image of atom B that is displaced along the first lattice vector. Note that A > B in terms of atom indices.

property order
The order of the bond: 1 = single bond, 1.5 = aromatic bond, 2 = double bond, 3 = triple bond.

The Bonds Class
This contains the information all the bonds, and methods to retrieve and manipulate bonds:
class UnifiedBonds

A class representing a set of bonds between atoms in a ChemicalSystem.
add_bond(from_atom: int, to_atom: int, bond: libbase.UnifiedBond (page 37))→ None

Adds a bond between two atoms, given their indices.
add_bonds(from_atoms: ArrayLike, to_atoms: ArrayLike, bonds: List[libbase.UnifiedBond (page 37)])

→ None
add_bonds(from_atoms: ArrayLike, to_atoms: ArrayLike, orders: ArrayLike)→ None

Adds bonds between multiple atom pairs at the same time. All arguments should have the same length.
num_bonds()→ int
num_bonds(atom: int)→ int

If called with an atom index, returns the number of bonds of that atom. If called without an atom index,
returns the total number of bonds between all atoms.

atoms_are_bonded(from_atom: int, to_atom: int)→ bool
Checks whether two atoms are bonded or not.

get_bonds_for_atom(from_atom: int)→ Iterator[Tuple[int, int, libbase.UnifiedBond (page 37)]]
Returns an iterator over all bonds from a particular atom given by its index.
Unpacking the iterator yields a 3-tuple of two atom indices A and B, and a Bond instance. Note that A <= B.

remove_bond(bidx: Union[int, libbase.UnifiedBond (page 37)])→ None
Removes a bond, given either its index in the .bonds attribute or an instance of a Bond.

remove_bonds_between_atoms(from_atom: int, to_atom: int)→ None
Removes the bonds between two atoms, gived their indices.

remove_bonds_to_atom(atom: int)→ None
Removes all bonds to a particular atom, given its index.

remove_bonds_to_atoms(remove_atoms: ArrayLike)→ None
Removes all bonds for a list of atoms given by their indices.

Methods in the Chemical System
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.

4.1. Chemical System 37

Scripting Manual, Amsterdam Modeling Suite 2024.1

property bonds
The bonds of the system.

guess_bonds()→ None
Guesses bonds based on the atomic elements and the geometry. Keeps existing bonds.

num_molecules()→ int
Counts the number of connected molecules that are part of this system.
What is considered a molecule is based on the bonds of the system: anything connected by any bonds is
considered to be a molecule. For a fully connected system, this method returns 1. If the system has no
bonding information, each atom is its own molecule and this method returns the total number of atoms in the
system.

molecule_indices()→ numpy.ndarray[Any, numpy.dtype[numpy.int64]]
Returns a num_atoms sized array mapping the atoms to connected molecules of the system.
What is considered a molecule is based on the bonds of the system: anything connected by any bonds is
considered to be a molecule. For a system consisting of two water molecules (where the first three atoms
make up one of the molecules), this method returns [0, 0, 0, 1, 1, 1]. If the system has no
bonding information, each atoms is considered its own molecule and this method returns [0, 1, 2,
..., num_atoms].

split_into_molecules()→ List[UnifiedChemicalSystem]
Splits the system into individual molecules based on the connectivity between atoms.
The length of the returned list is num_molecules. Which set of atoms ends up in which element of the
list is determined by the indices returned by the molecule_indices method.
The returned systems will have the same lattice as the original and a total charge of zero. Atomic properties
and regions are preserved, but the returned systems do not have any selected atoms.
This method is just a shortcut for: cs.split(cs.molecule_indices()).

bond_cuts_molecule(from_atom: int, to_atom: int)→ bool
bond_cuts_molecule(from_atom: libbase.UnifiedAtom, to_atom: libbase.UnifiedAtom)→ bool

Checks if removing the bonds between two atoms would cut the graph into two disjoint subgraphs.
atom_is_in_ring(atom: Union[int, libbase.UnifiedAtom])→ bool

Checks if an atom is part of any ring.
An atom is in a ring, if removing the bond to (at least) one of its neighbors does not cut the graph into two
disjoint subgraphs.

property molgraph_edgeweight_func_t
A method (Callable[[int, int, UnifiedBond], float]) taking two atom indices and a
Bond instance between the two atoms. It shall return the non-negative distance measurement between the
two atoms. This is an (often optional) input to methods that determine the shortest path between atoms in the
molecular graph.

molgraph_dijkstra(from_atidx: int, dist_func: molgraph_edgeweight_func_t (page 38), to_atidx: int
= - 1)→ Tuple[List[float], List[int], List[bool]]

General method implementing the Dijkstra algorithm on the molecular graph. The Dijktra algorithm solves
the single-source shortest path problem in weighted graphs with non-negative weights.
• from_atidx is the index of source atom, i.e. the atom from which we start searching for paths.
• dist_func is a method (of type molgraph_edgeweight_func_t = Callable[[int,
int, UnifiedBond], float]) taking two atomic indices and a Bond instance as input. It
returns the weight of the graph edge, aka the distance between the two atoms. The returned distance
may not be negative, but you can return float("inf") to ignore a particular edge in the search.

38 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

• to_atidxmarks an optional target atom and can be used to solve the single-pair shortest path problem
by prematurely terminating the Dijkstra algorithm as soon as the shortest path to the target atom has been
found.

Returns a 3-tuple consisting of:
1. path_lengths is a list of length num_atoms that upon return of the method will be populated with

the lengths of the shortest paths from the source atom. Unreachable atoms, aka atoms in other molecules,
will have an infinite path length.

2. path_through is a list of length num_atoms that upon return will for each atom contain the pre-
ceding atoms index in the shortest path from source atom. By stepping backwards through this array all
shortest paths from the source atom can be recovered. If no path has been found to a particular atom,
the corresponding list element will be set to -1.

3. visited is a list of length num_atoms marking which atoms have been visited by the Dijkstra algo-
rithm prior to its termination. An atom counts as visited if it has been popped of the top of the priority
queue to have its neighbors added to the queue. Note that in case of premature termination of the algo-
rithm due to using the to_atidx argument, shortest paths have only been determined for all visited
atoms. (Other atoms may still have a path length set, but it is not guaranteed to be the shortest path from
the source.)

shortest_path_lengths_from(from_atom: Union[int, libbase.UnifiedAtom])→ List[float]
shortest_path_lengths_from(from_atom: Union[int, libbase.UnifiedAtom], dist_func: mol-

graph_edgeweight_func_t (page 38))→ List[float]
Returns the lengths of all shortest paths from from_atom to all other atoms.

shortest_path_between(from_atom: int, to_atom: int, dist_func: molgraph_edgeweight_func_t
(page 38))→ Optional[List[int]]

shortest_path_between(from_atom: int, to_atom: int)→ Optional[List[int]]
shortest_path_between(from_atom: libbase.UnifiedAtom, to_atom: libbase.UnifiedAtom, dist_func:

molgraph_edgeweight_func_t (page 38))→ Optional[List[int]]
shortest_path_between(from_atom: libbase.UnifiedAtom, to_atom: libbase.UnifiedAtom) → Op-

tional[List[int]]
Returns the shortest path between two atoms as a list of atom indices.
Note that the list contains both from_atom and to_atom as the first and last element. The length of the
path (measured in number of hops) is therefore equal to the length of the returned list minus one.

shortest_path_length_between(from_atom: int, to_atom: int, dist_func: mol-
graph_edgeweight_func_t (page 38))→ float

shortest_path_length_between(from_atom: int, to_atom: int)→ float
shortest_path_length_between(from_atom: libbase.UnifiedAtom, to_atom: lib-

base.UnifiedAtom, dist_func: molgraph_edgeweight_func_t
(page 38))→ float

shortest_path_length_between(from_atom: libbase.UnifiedAtom, to_atom: lib-
base.UnifiedAtom)→ float

Returns the length of the shortest path between two atoms.

4.1. Chemical System 39

Scripting Manual, Amsterdam Modeling Suite 2024.1

4.1.7 Lattice and Periodic Systems

The Chemical System can handle periodic systemwith arbitrary numbers of Periodic Boundaries Conditions (i.e. 0,1,2,3).
The lattice property of the Chemical System contains the lattice vectors information.
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
property lattice

The lattice of the system.
has_lattice()→ bool

Checks if the system has a lattice.
Note that the lattice attribute of a ChemicalSystem is never None. A system is considered to not
have a lattice if the number of lattice vectors is 0. Using this method is the same a checking lattice.
num_vectors == 0.

Here are some examples:

from scm.libbase import UnifiedChemicalSystem as ChemicalSystem
from scm.libbase import UnifiedLattice as Lattice

Create an empty chemical system
chain = ChemicalSystem()

Add an Helium atom in the origin
chain.add_atom("He", [0, 0, 0])

Make it a 1D periodic chain by adding a lattice vector along X (units: Bohr)
chain.lattice = Lattice([[2],

[0],
[0]])

print(chain)

You can also initialize it from a System Block:
graphene = ChemicalSystem("""
System

Atoms
C 0.0000000000000000 0.0000000000000000 0.0000000000000000
C 1.2300000000000000 0.7101408311032394 0.0000000000000000

End
Lattice

2.4600000000000000 0.0000000000000000 0.0000000000000000
-1.2300000000000000 2.1304224933097191 0.0000000000000000

End
End
""")

print(graphene)

These are the methods in the UnifiedLattice class.
class UnifiedLattice
class UnifiedLattice(vectors: ArrayLike)

A class representing the lattice of a ChemicalSystem.

40 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

cartesian_to_fractional(cartesian_coord: numpy.ndarray[Any, numpy.dtype[numpy.float64]])
→ numpy.ndarray[Any, numpy.dtype[numpy.float64]]

Convert Cartesian coordinates to fractional coordinates for a single point.
cartesians_to_fractionals(cartesian_coords: numpy.ndarray[Any,

numpy.dtype[numpy.float64]]) → numpy.ndarray[Any,
numpy.dtype[numpy.float64]]

Convert Cartesian coordinates to fractional coordinates for a set of points.
fractional_to_cartesian(fractional_coord: numpy.ndarray[Any, numpy.dtype[numpy.float64]])

→ numpy.ndarray[Any, numpy.dtype[numpy.float64]]
Convert fractional coordinates to Cartesian coordinates for a single point.

fractionals_to_cartesians(fractional_coords: numpy.ndarray[Any,
numpy.dtype[numpy.float64]]) → numpy.ndarray[Any,
numpy.dtype[numpy.float64]]

Convert fractional coordinates to Cartesian coordinates for a set of points.
get_angles()→ numpy.ndarray[Any, numpy.dtype[numpy.float64]]

Get the angles between the lattice vectors (note: always returns 3 numbers).
get_lengths()→ numpy.ndarray[Any, numpy.dtype[numpy.float64]]

Get the length of the lattice vectors (note: always returns 3 numbers).
get_vector_with_index(i: int)→ numpy.ndarray[Any, numpy.dtype[numpy.float64]]

Get the lattice vector of a given index.
get_volume()→ float

Get the volume of the unit cell (for 2D: area, for 1D length)
is_orthogonal()→ bool

Is the lattice orthogonal?
property num_vectors

Returns the number of lattice vectors (i.e. the number of PBC).
property vectors

The lattice vectors in bohr.
Here are methods from the ChemicalSystem that relate to periodic systems:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
set_fractional_coordinates(frac_coords: ArrayLike)→ None

Sets the fractional coordinates of all atoms. In non-periodic directions the plain coordinates should be passed
in bohr.

get_fractional_coordinates()→ numpy.ndarray[Any, numpy.dtype[numpy.float64]]
Returns the fractional coordinates of all atoms with respect to the cell. In non-periodic directions the plain
coordinates are returned in bohr.

map_atoms(start_range: Union[float, ArrayLike]) → Tuple[bool, numpy.ndarray[Any,
numpy.dtype[numpy.int64]]]

Maps all atoms into a unit cell from [start_range:start_range+1] in fractional coordinates.
No mapping will take place in non-periodic directions. The returned tuple signifies if any mapping has taken
place and the shifts in units of the lattice vectors that was applied to map the atoms into the cell.

apply_strain(strain_matrix: ArrayLike)→ None
Apply a strain deformation to a periodic system.
The atoms in the unit cell will be strained accordingly, keeping the fractional atomic coordinates constant.

4.1. Chemical System 41

Scripting Manual, Amsterdam Modeling Suite 2024.1

The strain_matrix argument should be (or be convertable to) an NxN numpy array, where N is the number
of lattice vectors of the system.

apply_strain_voigt(strain_voigt: Sequence[float])→ None
Apply a strain deformation to a periodic system.
The atoms in the unit cell will be strained accordingly, keeping the fractional atomic coordinates constant.
The strain_voigt argument should be passed in Voigt form:

• for 3D periodic systems: [e_xx, e_yy, e_zz, gamma_yz, gamma_xz, gamma_xy]
• for 2D periodic systems: [e_xx, e_yy, gamma_xy]
• for 1D periodic systems: [e_xx]

with e.g. e_xy = gamma_xy/2.
perturb_lattice(noise_level: float)→ None

Perturb the lattice vectors by applying random strain with matrix elements between [-noise_level,noise_level].
This can be useful if you want to deviate from an ideal symmetric geometry, for example if you look for a
phase change due to high pressure.

supercell(supercell: ArrayLike)→ None
Create a supercell by scaling the lattice vectors.
Copies of atoms will have the same properties as in the initial unit cell. Bonds are replicated between copies
and across the new unit cell boundary.

supercell_trafo(supercell: ArrayLike)→ None
Create a supercell by creating the matrix product of the lattice vectors and the supercell matrix.
Copies of atoms will have the same properties as in the initial unit cell. Bonds are replicated between copies
and across the new unit cell boundary.

density(unit: str = 'dalton/bohr3')→ float
Returns the density of the system in the specified unit. Only valid for 3D periodic systems.

set_density(target_density: float, unit: str = 'dalton/bohr3')→ None
Applies a uniform strain to match the specified target density. Only valid for 3D periodic systems.

4.1.8 Regions

Regions are ‘groups’ of atoms within a ChemicalSystem. Regions are used for some of the AMS driver and its engines
features, but they can also be useful tools for bookkeeping and manipulations (see also the AMS documentation on
Regions).
Here is a simple example showing how to create and use regions:

from scm.libbase import UnifiedChemicalSystem as ChemicalSystem
import numpy as np

Create a ChemicalSystem and define two regions (one for each water molecule)
mol = ChemicalSystem(
"""
System

Atoms
O -2.676678 0.759085 0.370636 region=water_1
H -3.468900 0.415690 0.814339 region=water_1
H -3.005004 1.433129 -0.246320 region=water_1

(continues on next page)

42 Chapter 4. SCM libbase

../../AMS/System.html#regions
../../AMS/System.html#regions

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
O 0.039085 0.303872 1.265871 region=water_2
H -0.874303 0.483757 0.975166 region=water_2
H 0.293563 -0.534617 0.849654 region=water_2

End
End
"""
)

Translate all the atoms in the region "water_2"
for i_atom in mol.get_atoms_in_region("water_2"):

mol.atoms[i_atom].coords += np.array([1, 0, 0])

Region names are not case sensitive and may not include certain characters. If a string is a valid name for a region can be
checked with the is_valid_region_name method:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
classmethod is_valid_region_name(name: str)→ bool

Checks if a string is a valid region name.
Valid region names do not contain any of the following characters:

, + - * / \ | $ & ^ < > () [] { } " '

Valid region names do not have leading or trailing whitespace. Note that region names are case-insensitive,
so “A” and “a” correspond to the same region.

There are various methods for querying region information:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
property num_regions

Returns the number of regions used in the system.
Note that there is no such thing as an empty region. Every region contains at least one atom.

property region_names
Returns a list of the names of all regions in the system.
Note that there is no such thing as an empty region. Every region contains at least one atom.

has_region(region: str)→ bool
Checks if a region exists in the system, given its region name.
Note that region should be a valid region name, not a region expression. If you want to check if a region
expression contains any atoms, use num_atoms_in_region(...) > 0 instead.

do_regions_intersect(regionA: str, regionB: str)→ bool
Checks if two regions or region expressions intersect, i.e. have at least one atom in common.

num_atoms_in_region(region: str)→ int
Returns the number of atoms in a region or region expression.
Returns zero if the region does not exist at all, or if the region expression evaluates to an empty set.

num_atoms_outside_region(region: str)→ int
Returns the number of atoms outside of a region or region expression.

4.1. Chemical System 43

Scripting Manual, Amsterdam Modeling Suite 2024.1

Returns the total number of atoms in the system if the region does not exist at all, or if the region expression
evaluates to an empty set.

get_atoms_in_region(region: str)→ numpy.ndarray[Any, numpy.dtype[numpy.int64]]
Returns a sorted array of atom indices of all atoms in a region or region expression.

get_atoms_outside_region(region: str)→ numpy.ndarray[Any, numpy.dtype[numpy.int64]]
Returns a sorted array of atom indices of all atoms outside of a region or region expression.

is_atom_in_region(atom: Union[int, libbase.UnifiedAtom], region: str)→ bool
Checks if an atom is in a region or region expression.

is_atom_outside_region(atom: Union[int, libbase.UnifiedAtom], region: str)→ bool
Checks if an atom is outside of a region or region expression.

get_regions_of_atom(atom: Union[int, libbase.UnifiedAtom])→ List[str]
Returns an alphabetically sorted list of the names of all regions an atom is part of.

Almost all methods for querying region information also support so called region expressions in addition to plain region
names. Region expressions may include region names, the parentheses (), as well as the operators + for union, - for set
difference and & for set intersection. Additionally the wildcard * means all atoms, while $ stands for the set of selected
atoms.

number of atoms that are either in region A or B (or both)
num_at_AB = mol.num_atoms_in_region("A + B")

loop over all atoms that are not in the intersection of region A and B
for atidx in mol.get_atoms_in_region("* - (A & B)"):

...

The following methods can be used to change the assignment of atoms to regions:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
set_atoms_in_region(atom_indices: ArrayLike, region: str)→ None

Creates or sets an entire region given the indices of the atoms to be part of the region.
If atom_indices is empty and the region previously existed, it will effectively be deleted.

add_atoms_to_region(atom_indices: ArrayLike, region: str)→ None
Adds multiple atoms to a region, given their atom indices.

remove_atoms_from_region(atom_indices: ArrayLike, region: str)→ None
Removes multiple atoms from a region, given their atom indices.
No error is raised if any of the atoms is not part of the region.

remove_region(region: str)→ None
Removes a region. Atoms in that region will keep existing, but will not longer be part of that region.

add_atom_to_region(atom: Union[int, libbase.UnifiedAtom], region: str)→ None
Adds an atom to a region.

remove_atom_from_region(atom: Union[int, libbase.UnifiedAtom], region: str)→ None
Removes an atom from a region.
Throws a ChemicalSystemError if the atom was not part of the region it should be removed from.

remove_atom_from_all_regions(atom: Union[int, libbase.UnifiedAtom])→ None
Removes an atom from all regions.

44 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

4.1.9 Atom selection

The ChemicalSystem keeps track of a set of selected atoms. In the GUI an atom is selected by simply clicking on it, and
the current selection is highlighted by a cyan outline and shading.
The following methods allow inspecting the current selection:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
num_selected_atoms()→ int

The number of currently selected atoms.
is_atom_selected(atom: Union[int, libbase.UnifiedAtom])→ bool

Checks if an atom is currently selected.
get_selected_atoms()→ numpy.ndarray[Any, numpy.dtype[numpy.int64]]

Returns an array of indices of all selected atoms.
You can also use the $ symbol to refer to the set of currently selected atoms in region expressions. The following bit of
code loops over all selected atoms in the region named myregion:

for atidx in mol.get_atoms_in_region("$ & myregion"):
...

There are many methods to change the current selection. Almost all of them work by adding or removing atoms from
the current selection, e.g. the select_atom method adds an atom to the current selection and is equivalent to clicking
it in the GUI. The exception to this is the set_selected_atoms method, which completely replaces the current
selection.
Note that the order in which atoms are selected is tracked for small selections. Small selections of up to 4 atoms are used
in the GUI for interative manipulation in internal coordinates using the sliders at the bottom of the molecule view. The
selection order is relevant for manipulations of e.g. dihedral angles, as the dihedral angle between atoms (3,1,2,4) is
different than between atoms (1,2,3,4). For large selections >10 atoms there are no use cases in which the selection
order is relevant and for performance reasons get_selected_atoms always returns the indices of the selected atoms
in ascending order.
Basic methods to change the current selection:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
select_atom(atom: Union[int, libbase.UnifiedAtom])→ None

Selects an atom, i.e. adds it to the current selection.
deselect_atom(atom: Union[int, libbase.UnifiedAtom])→ None

Deselects an atom, i.e. removes it from the current selection.
select_atoms(atom_indices: ArrayLike)→ None

Selects multiple atoms at once, given their atom indices.
deselect_atoms(atom_indices: ArrayLike)→ None

Deselects multiple atoms at once, given their atom indices.
set_selected_atoms(atom_indices: ArrayLike)→ None

Sets the selection to the given atom indices. Any previous selection is cleared.
GUI style methods from AMSinput:
class UnifiedChemicalSystem

4.1. Chemical System 45

Scripting Manual, Amsterdam Modeling Suite 2024.1

class UnifiedChemicalSystem(system_block: str)
A class representing a chemical system in the Amsterdam Modeling Suite.
select_all()→ None

Selects all atoms.
deselect_all()→ None

Deselects all atoms, or in other words: clears the current selection.
invert_selection()→ None

Inverts the set of selected atoms.
All previously unselected atoms will become selected. All previously selected atoms will become unselected.

select_connected()→ None
Selects all atoms bonded to the currently selected atoms.

select_molecule()→ None
Using the bonds, selects entire molecules that include any currently selected atom.
This is equivalent to repeatedly calling select_connected until the selection stops growing.

select_region(region: str)→ None
Selects atoms in a region or region expression.

select_atom_close_to_origin()→ None
Selects the atom that is closest to the origin of the coordinate system.

select_within_radius(radius: float, unit: str = 'bohr')→ None
Selects all atoms within a given radius of any of the currently selected atoms.

make_selection_cappable()→ None
Extends the current selection but does not cross single bonds, unless they are to hydrogen atoms.
The intended use of this method is to select a suitable QM region for QM/MM calculations where one wants
the QM region to be separated by single bonds from the rest of the molecule.

select_atoms_of_same_type()→ None
Selects all atoms whose element is the same as of a currently selected atom.

Methods taking predicate functions:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
select_atoms_if(pred: Callable[[libbase.UnifiedAtom], bool])→ None

Selects atoms based on a predicate function.
deselect_atoms_if(pred: Callable[[libbase.UnifiedAtom], bool])→ None

Deselects atoms based on a predicate function.
select_connected_if(pred: Callable[[libbase.UnifiedAtom, libbase.UnifiedAtom, lib-

base.UnifiedBond (page 37)], bool])→ None
Selects atoms bonded to the currently selected atoms based on a predicate function.
The predicate function is called on a pair of atoms and their connecting bond. The unselected atom attached
to the bond only becomes selected of the predicate function returns True.

select_molecule_if(pred: Callable[[libbase.UnifiedAtom, libbase.UnifiedAtom, lib-
base.UnifiedBond (page 37)], bool])→ None

Using the bonds and a predicate function, selects all molecules that include a currently selected atom.
This is equivalent to repeatedly calling select_connected_if with the same predicate until the selec-
tion stops growing.

46 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

4.1.10 Atomic Properties

Atomic properties provide additional, customizable information for each atom. They are organized into categories, each
relevant to different computation engines or modules.

• Generic Properties: These are common to all atoms, like mass.
• Engine/Module-Specific Properties: Specific to certain computation engines or modules. For example, properties
relevant only to the ADF engine would be in the adfprops group and prefixed with ‘adf’ in the System Block.

You can toggle these property groups on or off. Here’s an example, where we initialize some atomic properties in the
System Block:

from scm.libbase import UnifiedChemicalSystem as ChemicalSystem

mol = ChemicalSystem(
"""
System

Atoms
O 0.0 0.0 0.0 forcefield.type=O_water
H 1.0 0.0 0.0 forcefield.type=H_water mass=2.014
H 0.0 1.0 0.0 forcefield.type=H_water

End
End
"""
)

The Generic Properties are always available (and have default values if not␣
↪→specified)
print(mol.atoms[1].mass) # Outputs 2.014
print(mol.atoms[2].mass) # Outputs 1.00798

The forcefield properties are enabled because there were defined in the system block
print(mol.atomic_properties_enabled('forcefield')) # Outputs True

Accessing the forcefield atomic properties
print(mol.atoms[0].forcefield.type) # Outputs O_water

The adf properties are not enabled
print(mol.atomic_properties_enabled('adf')) # Outputs False

Enable the 'adf' property group before using it:
mol.enable_atomic_properties("adf")
mol.atoms[0].adf.f = "fragment_1"

List of properties and utility methods in the ChemicalSystem:
class UnifiedChemicalSystem
class UnifiedChemicalSystem(system_block: str)

A class representing a chemical system in the Amsterdam Modeling Suite.
property adfprops

An optional list of all ADFProperties for all atoms.
property forcefieldprops

An optional list of all ForcefieldProperties for all atoms.
property guiprops

An optional list of all GUIProperties for all atoms.

4.1. Chemical System 47

../../AMS/System.html
../../AMS/System.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

enable_atomic_properties(group_prefix: Union[Literal[gui], Literal[adf], Literal[forcefield]])
→ None

Enables the use of a group of atomic properties.
disable_atomic_properties(group_prefix: Union[Literal[gui], Literal[adf], Literal[forcefield]])

→ None
Disables the use of a group of atomic properties. Any set properties within the group will be discarded.

atomic_properties_enabled(group_prefix: Union[Literal[gui], Literal[adf], Literal[forcefield]])
→ bool

Checks if a group of atomic properties is enabled or not.
has_ghost_atoms()→ bool

Checks whether the ChemicalSystem contains any Ghost atoms.
Properties with in the atom class:
class UnifiedAtom
class UnifiedAtom(Z: int)
class UnifiedAtom(element: UnifiedElement)
class UnifiedAtom(symbol: T_AtomSymbol)

Class representing a single atom and its properties.
property mass

The mass of the atom in dalton.
property is_ghost

Whether the atom is a Ghost atom.
property adf

Atomic properties used by the ADF engine.
property forcefield

Atomic properties used by the AMS Forcefield engine.
property gui

Atomic properties used for visualization in the GUI.
Classes for the Engine/Module-Specific Properties:
class UnifiedGUIProperties

Atomic properties used for visualization in the GUI.
clear()→ None

Unsets any GUI atomic properties.
property color

The color of an atom.
empty()→ bool

Returns whether any of the GUI atomic properties is set.
property radius

The radius of an atom for visualization purposes.
class UnifiedADFProperties

Atomic properties used by the ADF engine.
property ChgU

Optional atom centered point charge for ADF’s 3D-RISM method.
property EpsU

Lennard-Jones parameter for ADF’s 3D-RISM method.

48 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

property SigU
Lennard-Jones parameter for ADF’s 3D-RISM method.

clear()→ None
Unsets any ADF atomic properties.

empty()→ bool
Returns whether any of the ADF atomic properties is set.

property f
Specifies which fragment an atom belongs to; see the Fragments block in the ADF engine input.

class UnifiedForcefieldProperties
Atomic properties used by the AMS Forcefield engine.
property charge

The charge of an atom used for electrostatics by the Forcefield engine.
clear()→ None

Unsets any Forcefield atomic properties.
empty()→ bool

Returns whether any of the Forcefield atomic properties is set.
property type

The atom type to be used by the Forcefield engine.

4.1.11 Converting to and from PLAMS Molecules

ChemicalSystems can PLAMS’ molecules can be converted into each other using the following conversion func-
tions: scm.utils.conversions.plams_molecule_to_chemsys and scm.utils.conversions.
chemsys_to_plams_molecule.
Example:

from scm.libbase import UnifiedChemicalSystem as ChemicalSystem
from scm.plams import *
from scm.utils.conversions import plams_molecule_to_chemsys, chemsys_to_plams_molecule

Create a PLAMS molecule from a SMILES string:
plams_molecule = from_smiles('C-C')

Convert from a PLAMS molecule to a ChemicalSystem:
chemical_system = plams_molecule_to_chemsys(plams_molecule)

Convert back from ChemicalSystem to a PLAMS molecule:
plams_molecule = chemsys_to_plams_molecule(chemical_system)

4.1. Chemical System 49

Scripting Manual, Amsterdam Modeling Suite 2024.1

4.2 Units

class Units
A utility class containing methods for units conversions.
Simple example usage:

from scm.libbase import Units

energies_in_hartree = [1,2,3]
energies_in_ev = Units.convert("Hartree", "eV", energies_in_hartree)

pressure_in_atm = 1.0
pressure_in_kpascal = pressure_in_atm * Units.get_factor('atm', 'kPascal')

classmethod convert(from_unit: str, to_unit: str, value: int)→ float
classmethod convert(from_unit: str, to_unit: str, value: float)→ float
classmethod convert(from_unit: str, to_unit: str, value: numpy.number)→ numpy.number
classmethod convert(from_unit: str, to_unit: str, value: List[int])→ List[float]
classmethod convert(from_unit: str, to_unit: str, value: List[float])→ List[float]
classmethod convert(from_unit: str, to_unit: str, value: List[numpy.number]) →

List[numpy.number]
classmethod convert(from_unit: str, to_unit: str, value: List[Any])→ List[Any]
classmethod convert(from_unit: str, to_unit: str, value: Tuple[int, …])→ Tuple[float, …]
classmethod convert(from_unit: str, to_unit: str, value: Tuple[float, …])→ Tuple[float, …]
classmethod convert(from_unit: str, to_unit: str, value: Tuple[numpy.number, …]) → Tu-

ple[numpy.number, …]
classmethod convert(from_unit: str, to_unit: str, value: Tuple[Any, …])→ Tuple[Any, …]
classmethod convert(from_unit: str, to_unit: str, value: numpy.ndarray[Any,

numpy.dtype[ScalarType]]) → numpy.ndarray[Any,
numpy.dtype[ScalarType]]

Converts a value from one unit to another.
Parameters:

• from_unit (str): The unit of the input value. Must be a recognized unit.
• to_unit (str): The unit to convert the value to. Must be a recognized unit.
• value: The value to convert.

Returns:
• The value converted to the target unit. The type of the returned value will match the type of the
input value.

Raises:
• UnitsError: If either from_unit or to_unit are not supported or if you are trying to perform a con-
version between incompatible units.

Examples:

>>> from scm.libbase import Units

>>> Units.convert("m", "km", 1000)
1.0
>>> Units.convert("km", "m", [1,2,3])
[1000.0, 2000.0, 3000.0]

50 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

classmethod get_factor(from_unit: str, to_unit: str)→ float
Returns the conversion factor between two units.
Parameters:

• from_unit (str): The unit you want to convert from. Must be a recognized unit.
• to_unit (str): The unit you want to convert to. Must be a recognized unit.

Returns:
• float: The conversion factor for converting from_unit to to_unit.

Raises:
• UnitsError: If either from_unit or to_unit is not supported or if you are trying to perform a conversion
between incompatible units..

Examples:

>>> from scm.libbase import Units

>>> Units.get_factor("m", "km")
0.001

classmethod get_quantities()→ List[str]
Returns all defined quantities. Quantities are things like ‘LENGTH’, ‘ENERGY’ or ‘MASS’.

classmethod get_unit(alt: str)→ str
Returns the unit for the given alternative representation.
Will throw on ambiguous result if there is no exact match.

classmethod get_units(quantity: str)→ List[str]
Returns all units associated with a quantity. This will be in a nice unicode format.

classmethod units_summary_string()→ str
Returns a string containing a nicely formatted table of all the units available.

class UnitsError
Error thrown for unrecognized units or illegal conversions.

4.2.1 List of available units

To see the list available units, you can use the units_summary_string() (page 51). Here is the output of
print(Units.units_summary_string()):

======================
Quantity: ACCELERATION
======================

unit name label

angstrom/fs2 Å/fs²

===============
Quantity: ANGLE
===============

(continues on next page)

4.2. Units 51

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
unit name label

degree °
rad rad
grad grad
turn tr

=================
Quantity: CURRENT
=================

unit name label

ehartree/hbar �Ha/ℏ
ampere A
mampere mA
uampere μA

=================
Quantity: DENSITY
=================

unit name label

dalton/bohr3 Da/Bohr³
kg/m3 kg/m³
g/cm3 g/cm³
kgl kg/L

================
Quantity: DIPOLE
================

unit name label

ebohr �Bohr
coulombmeter Cm
debye D

=======================
Quantity: ELECTRICFIELD
=======================

unit name label

hartree/ebohr Ha/�Bohr
volt/angstrom V/Å
volt/meter V/m

(continues on next page)

52 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)

===========================
Quantity: ELECTRICPOTENTIAL
===========================

unit name label

volt V

================
Quantity: ENERGY
================

unit name label

hartree Ha
rydberg Ry
joule J
kjoule kJ
ev eV
kcalmol kcal/mol
kjmol kJ/mol
cm-1 cm⁻¹
mhz MHz
thz THz

================
Quantity: FORCES
================

unit name label

hartree/angstrom Ha/Å
hartree/meter Ha/m
hartree/bohr Ha/Bohr
rydberg/angstrom Ry/Å
rydberg/meter Ry/m
rydberg/bohr Ry/Bohr
joule/angstrom J/Å
joule/m N
joule/bohr J/Bohr
kjoule/angstrom kJ/Å
kjoule/meter kJ/m
kjoule/bohr kJ/Bohr
ev/angstrom eV/Å
ev/meter eV/m
ev/bohr eV/Bohr
kcalmol/angstrom kcal/mol/Å
kcalmol/meter kcal/mol/m
kcalmol/bohr kcal/mol/Bohr
kjmol/angstrom kJ/mol/Å

(continues on next page)

4.2. Units 53

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
kjmol/meter kJ/mol/m
kjmol/bohr kJ/mol/Bohr
cm-1/angstrom cm⁻¹/Å
cm-1/meter cm⁻¹/m
cm-1/bohr cm⁻¹/Bohr
mhz/angstrom MHz/Å
mhz/meter MHz/m
mhz/bohr MHz/Bohr
thz/angstrom THz/Å
thz/meter THz/m
thz/bohr THz/Bohr

================
Quantity: LENGTH
================

unit name label

bohr Bohr
pm pm
angstrom Å
nm nm
cm cm
dm dm
meter m

=======================
Quantity: MAGNETICFIELD
=======================

unit name label

gauss G
tesla T
aumagsi a.u. (mag SI)

==============
Quantity: MASS
==============

unit name label

dalton Da
erestmass mₑ
proton m�
g g
kg kg

=========================
Quantity: MOMENTOFINERTIA

(continues on next page)

54 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
=========================

unit name label

kgm2 kgm²

==================
Quantity: PRESSURE
==================

unit name label

kpascal kPa
mpascal MPa
gpascal GPa
bar bar
mbar mbar
kbar kbar
atm atm
torr Torr
hartree/angstrom3 Ha/Å³
hartree/meter3 Ha/m³
hartree/bohr3 Ha/Bohr³
rydberg/angstrom3 Ry/Å³
rydberg/meter3 Ry/m³
rydberg/bohr3 Ry/Bohr³
joule/angstrom3 J/Å³
pascal Pa
joule/bohr3 J/Bohr³
kjoule/angstrom3 kJ/Å³
kjoule/meter3 kJ/m³
kjoule/bohr3 kJ/Bohr³
ev/angstrom3 eV/Å³
ev/meter3 eV/m³
ev/bohr3 eV/Bohr³
kcalmol/angstrom3 kcal/mol/Å³
kcalmol/meter3 kcal/mol/m³
kcalmol/bohr3 kcal/mol/Bohr³
kjmol/angstrom3 kJ/mol/Å³
kjmol/meter3 kJ/mol/m³
kjmol/bohr3 kJ/mol/Bohr³
cm-1/angstrom3 cm⁻¹/Å³
cm-1/meter3 cm⁻¹/m³
cm-1/bohr3 cm⁻¹/Bohr³
mhz/angstrom3 MHz/Å³
mhz/meter3 MHz/m³
mhz/bohr3 MHz/Bohr³
thz/angstrom3 THz/Å³
thz/meter3 THz/m³
thz/bohr3 THz/Bohr³

==========================
Quantity: RECIPROCALLENGTH

(continues on next page)

4.2. Units 55

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
==========================

unit name label

bohr1 Bohr⁻¹
meter1 m⁻¹
angstrom1 Å⁻¹
nm1 nm⁻¹

===================
Quantity: SHIELDING
===================

unit name label

ppm ppm

===================
Quantity: STIFFNESS
===================

unit name label

hartree/angstrom2 Ha/Å²
hartree/meter2 Ha/m²
hartree/bohr2 Ha/Bohr²
rydberg/angstrom2 Ry/Å²
rydberg/meter2 Ry/m²
rydberg/bohr2 Ry/Bohr²
joule/angstrom2 J/Å²
joule/m2 J/m²
joule/bohr2 J/Bohr²
kjoule/angstrom2 kJ/Å²
kjoule/meter2 kJ/m²
kjoule/bohr2 kJ/Bohr²
ev/angstrom2 eV/Å²
ev/meter2 eV/m²
ev/bohr2 eV/Bohr²
kcalmol/angstrom2 kcal/mol/Å²
kcalmol/meter2 kcal/mol/m²
kcalmol/bohr2 kcal/mol/Bohr²
kjmol/angstrom2 kJ/mol/Å²
kjmol/meter2 kJ/mol/m²
kjmol/bohr2 kJ/mol/Bohr²
cm-1/angstrom2 cm⁻¹/Å²
cm-1/meter2 cm⁻¹/m²
cm-1/bohr2 cm⁻¹/Bohr²
mhz/angstrom2 MHz/Å²
mhz/meter2 MHz/m²
mhz/bohr2 MHz/Bohr²
thz/angstrom2 THz/Å²
thz/meter2 THz/m²

(continues on next page)

56 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
thz/bohr2 THz/Bohr²

=====================
Quantity: TEMPERATURE
=====================

unit name label

kelvin K
celsius °C
fahrenheit °F

==============
Quantity: TIME
==============

unit name label

s s
ms ms
us μs
ns ns
ps ps
fs fs
hartree_au_time ℏ/Ha
rydberg_au_time ℏ/Ry
hr hr
min min

==================
Quantity: VELOCITY
==================

unit name label

bohr/fs Bohr/fs

================
Quantity: VOLUME
================

unit name label

bohr3 Bohr³
angstrom3 Å³
m3 m³

4.2. Units 57

Scripting Manual, Amsterdam Modeling Suite 2024.1

4.3 Input File

class InputFile(program: str, text_input: str = '', string_leafs: bool = False)
Class representing a key and block based text input file as used in the Amsterdam Modeling Suite.
class EntryCategory(value)

Enum representing the category of an entry in an InputFile.
Values:

• Block: the entry is a block containing keys and other blocks
• Key: the entry is a key with a value

class EntryType(value)
Enum representing the type of an entry in an InputFile.
Values:

• FixedBlock: the entry is a block containing defined keys and other blocks
• FreeBlock: the entry is a free block that is read as a list of strings representing the lines
• EngineBlock: the entry is a free block that ends with “EndEngine”
• InputBlock: the entry is a free block that ends with “EndInput”
• StringKey: the entry is a key of type string
• MultipleChoiceKey: the entry is a multiple-choice key
• LogicalKey: the entry is a key of type logical
• IntegerKey: the entry is a key of type integer
• IntegerListKey: the entry is a key of type integer_list
• RealKey: the entry is a key of type float
• RealListKey: the entry is a key of type float_list

get(query: str)→ Union[int, float, bool, str, List[int], List[float], List[str]]
Returns the value of a key or free block. The return type depends on the type of the accessed key.

get_category(query: str)→ EntryCategory (page 58)
Returns the category of an entry as defined in the JSON definition for the program.

get_entries_in_order(query: str)→ List[str]
Returns the entries of an ordered fixed block in the order they occurred in the input.

get_freeblock(query: str)→ List[str]
Returns the contents of a free block as a list of lines.

get_header(query: str)→ str
Returns the header of a block as a string. If a block does not have a header, an empty string is returned.

get_int(query: str)→ int
Returns the value of an integer key.

get_int_list(query: str)→ List[int]
Returns the value of an integer_list key.

get_json()→ str
Returns the JSON representation of the input file as a string.

58 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

get_logical(query: str)→ bool
Returns the value of a logical key.

get_real(query: str)→ float
Returns the value of a float key.

get_real_list(query: str)→ List[float]
Returns the value of a float_list key.

get_string(query: str)→ str
Returns the value of a string or multiple choice key.

get_system_blocks_as_mols()→ Dict[str, scm.plams.mol.molecule.Molecule]
Returns a dictionary of mapping the System blocks in the input to plams.Molecule instances.
The keys in the dictionary are the names of the systems from the headers of the blocks, e.g.:

System initial
...

End

would be returned as dict[“initial”]. The main system without a name in the header will have the empty string
as key.

get_type(query: str)→ EntryType (page 58)
Returns the type of an entry as defined in the JSON definition for the program.

is_defined(query: str)→ bool
Checks if an entry is defined in the JSON definition for the program.

is_ordered(query: str)→ bool
Checks if a fixed block is declared order sensitive in the JSON definition for the program.

is_present(query: str)→ bool
Checks if an entry is present in the input.

is_unique(query: str)→ bool
Check whether an entry is declared unique or recurring in the keywords definition file.

number_of_entries(query: str)→ int
Returns the number of occurrances of a non-unique entry.

property program
The name of the program that this instance is reading input for.

read(text_input: str, string_leafs: bool = False)→ None
Read more text input for the program. This is faster than constructing a new InputFile from scratch, as it will
not reread the JSON definitions.

class InputError
Error thrown for issues with the input reading, e.g. reading non-existing keywords.

4.3. Input File 59

Scripting Manual, Amsterdam Modeling Suite 2024.1

4.4 KFFile

See also:
The AKFReader (page 85) Python class provides a convenient alternative for reading data from KF files.
class KFFile(filename: str, omode: OpenMode = <OpenMode.Any: 0>)

A class representing a file in KF format. Allows inspecting, reading and writing KF files.
class OpenMode(value)

Enum representing the mode in which a file should be opened.
Values:

• Any: Open an existing file or create a new file.
• New: Creates a new file. If the file already exists, a KFError exception may be thrown.
• Old: Open an existing file. If the file does not exist, a KFError exception may be thrown.

class StringSep(value)
Enum representing the separator used to delimit elements in arrays of strings:
Values:

• NullChar: The strings are separated with the C-style \0 character.
• NewLine: The strings are separated with the \n newline character.
• LCHARS: When writing each string is padded or truncated to a width of LCHARS=160 characters.
The total length of the variable is thus a multiple of 160. When reading, the variable is split into
sections of 160 characters again, representing the individual elements of the array.

class VarType(value)
Enum representing type of a variable on a KF file.
Values:

• Empty: indicates an empty index slot
• Int: a variable of integer type
• Real: a variable of real type
• Char: a variable of string type
• Logical: a variable of logical type

close()→ None
Closes the file. No further methods should be called on a file that has been closed.

close_var()→ None
Closes a variable.

copy_section(from_kf: KFFile (page 60), to_kf: KFFile (page 60), section: str)→ None
copy_section(from_kf: KFFile (page 60), to_kf: KFFile (page 60), from_section: str, to_section: str)

→ None
Helper for @overload to raise when called.

create_section(section: str)→ None
Creates a new section on the KF file.

create_var(section: str, variable: str, n: int, type: VarType (page 60))→ None
Creates a new variable on the file of a given length and type.

60 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

classmethod delete_file(filename: str)→ None
Deletes a KF file from disk after checking that no other KFFile instances reference that file.

delete_section(section: str)→ None
Deletes a section and all of the contained variables from the file.

delete_var(section: str, variable: str)→ None
Deletes a variable from the KF file.

property filename
The filename of the file managed by this KFFile instance.

get_skeleton()→ Dict[str, Set[str]]
Return a dictionary reflecting the structure of this KF file.
Each key in that dictionary corresponds to a section name of the KF file with the value being a set of variable
names.

classmethod is_kffile(filename: str)→ bool
Checks if a file has the KF format, aka it is a properly formatted KF file.

num_sections()→ int
Returns the number of sections existing on the file.

num_variables(section: str)→ int
Returns the number of variables in a section.

open_var(section: str, variable: str)→ None
Opens a variable for reading and writing. Mostly useful if you incrementally want to read/write data from/to
it.

property path
The absolute path to the file managed by this KFFile instance.

read(section: str = '', variable: str = '', return_as_list: bool = False, string_separator: Optional[StringSep
(page 60)] = None)→ Union[bool, int, float, str, List[bool], List[int], List[float], List[str]]

Extract and return data for a variable located in a section.
By default, for single-value numerical or boolean variables returned value is a single number or bool. For
longer variables this method returns a list of values. This behavior can be changed by setting return_as_list
parameter to True. In that case the returned value is always a list of numbers (possibly of length 1).
For string variables this works a bit differently: the return_as_list argument is ignored. Instead an optional
KFFile.StringSep can be given as a separator. If any separator is give, the return value will always be a list
of strings (possibly of length 1 if there is nothing to be separated). If no separator is given, the return value
is always a single string.
This method exists primarily for backwards compatibility with the plams.KFFile. For new code we recom-
mend using the strongly typed read_*() methods instead, e.g. read_int().

read_int(section: str, variable: str)→ int
Reads a single integer from a specific section and variable.

read_ints(section: str, variable: str)→ List[int]
Reads a list of integers from a specific section and variable.

read_ints_np(section: str, variable: str)→ numpy.ndarray[Any, numpy.dtype[numpy.int64]]
Reads integers from a specific section and variable into a numpy array.

read_logical(section: str, variable: str)→ bool
Reads a single logical value from a specific section and variable.

read_logicals(section: str, variable: str)→ List[bool]
Reads a list of logical values from a specific section and variable.

4.4. KFFile 61

Scripting Manual, Amsterdam Modeling Suite 2024.1

read_logicals_np(section: str, variable: str)→ numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
Reads logical values from a specific section and variable into a numpy array.

read_real(section: str, variable: str)→ float
Reads a single real number from a specific section and variable.

read_reals(section: str, variable: str)→ List[float]
Reads a list of real numbers from a specific section and variable.

read_reals_np(section: str, variable: str)→ numpy.ndarray[Any, numpy.dtype[numpy.float64]]
Reads real numbers from a specific section and variable into a numpy array.

read_section(section: str) → Dict[str, Union[bool, int, float, str, List[bool], List[int], List[float],
List[str]]]

Return a dictionary with all variables from a given section.
Note: Some sections can contain very large amount of data. Turning them into dictionaries can cause

memory shortage or performance issues. Use this method carefully …
read_string(section: str, variable: str)→ str

Reads a single string from a specific section and variable.
read_strings(section: str, variable: str, sep: StringSep = <StringSep.LCHARS: 2>)→ List[str]

Reads a list of strings from a specific section and variable.
rewind_var()→ None

Rewinds a variable. Incremental reading and writing will then start from the beginning of the variable again.
save()→ None

Write all internal buffers to disk (or at least the OS cache). It’s basically a flush …
section_exists(section: str)→ bool

Check if a section exists on the file.
sections()→ List[str]

Returns a list of all sections on the file.
skip_var(n: int)→ None

Skip forward over a number of elements in the variable.
var_exists(section: str, variable: str)→ bool

Check if a variable exists on the file.
var_length(section: str, variable: str)→ int

Returns the allocated length of variable on file. This is the maximum number of elements that can be written
to it without reallocation.

var_type(section: str, variable: str)→ VarType (page 60)
Returns the type of the elements of a variable.

var_used(section: str, variable: str)→ int
Returns the number of elements written to a variable.

variables(section: str)→ List[str]
Returns a list of all variables in a section.

write(value: bool)→ None
write(value: int)→ None
write(value: float)→ None
write(value: str)→ None
write(value: List[bool])→ None
write(value: List[int])→ None
write(value: List[float])→ None

62 Chapter 4. SCM libbase

Scripting Manual, Amsterdam Modeling Suite 2024.1

write(value: List[str])→ None
write(section: str, variable: str, value: bool)→ None
write(section: str, variable: str, value: int)→ None
write(section: str, variable: str, value: float)→ None
write(section: str, variable: str, value: str)→ None
write(section: str, variable: str, value: List[bool])→ None
write(section: str, variable: str, value: List[int])→ None
write(section: str, variable: str, value: List[float])→ None
write(section: str, variable: str, value: List[str], sep: StringSep (page 60) = StringSep.LCHARS)→ None

Helper for @overload to raise when called.
class KFError

Error thrown for all KF issues, e.g. reading of non-existing variables or reading as wrong datatypes.

4.4. KFFile 63

Scripting Manual, Amsterdam Modeling Suite 2024.1

64 Chapter 4. SCM libbase

CHAPTER

FIVE

ASE

The Atomic Simulation Environment (ASE) (https://wiki.fysik.dtu.dk/ase/) tool collection suite was designed as a flexible,
easy-to-use, and customizable approach for the manipulation of quantum chemical models as well as for setting up and
running the calculations required and for the analysis of the final results.
The development of ASE was originally started at the Technical University of Denmark but received also significant
contributions from a large, international community. While ASE is available (https://gitlab.com/ase/ase/tree/3.13.0/)
under a GNU LGPL license, a modified version of this library is shipped together with the Amsterdam Modeling Suite.
PLAMS provides an interface to use AMS as an ASE Calculator, while Engine ASE allows ASE Calculators
(https://wiki.fysik.dtu.dk/ase/ase/calculators/calculators.html#supported-calculators) to be used within the AMS driver.

65

https://wiki.fysik.dtu.dk/ase/
https://gitlab.com/ase/ase/tree/3.13.0/
../../plams/interfaces/amscalculator.html
../../ASE/general.html
https://wiki.fysik.dtu.dk/ase/ase/calculators/calculators.html#supported-calculators

Scripting Manual, Amsterdam Modeling Suite 2024.1

Note: On Windows machines the developers of the ASE library provide only a partial support, see the ASE website
(https://wiki.fysik.dtu.dk/ase/download.html#installation-on-windows) for further details.

66 Chapter 5. ASE

https://wiki.fysik.dtu.dk/ase/download.html#installation-on-windows

CHAPTER

SIX

FLEXMD

FlexMD is a python library for Flexiblemulti-scaleMolecular Dynamics simulation, developed byRosa E. Bulo, Christoph
Jacob, Stefano Borini, Tao Jiang, Jelle Boereboom, Stanislav Simko and Hans van Schoot.

6.1 Basic philosophy and intended usage

We present a flexible python library for molecular dynamics, specialized in multi-scale simulations in a broad sense. At
its core, the library interfaces the Atomistic Simulation Environment (ASE) (page 65) [1 (page 74)] molecular dynamics
modules with a wide range of molecular mechanics and electronic structure codes. As such, it allows simple dynamics
using forces computed with any energy/gradient evaluator provided by the ADF package.
Additionally, FlexMD allows the partitioning of a system into regions described at different resolution, with the aim of
running multi-scale (hybrid) force calculations. Besides the traditional, rigid, multi-scale partitioning, FlexMD includes
different schemes for Adaptive Multi-scale Molecular Dynamics. Such simulations allow the resolution of a particle to
change according to its distance from a predefined active site, which is a necessity for successful multi-scale description
of diffusive systems such as chemical reactions in solution.
Finally, the library couples the dynamics to rare events techniques, either implemented in FlexMD itself, or accessible
through an interface with the PLUMED library for free energy calculations [7 (page 75)], opening the possibility for
evaluation on time-scales beyond the reach of standard molecular dynamics simulations.
The FlexMD package is designed to make simulation options possible that are not available natively in the ADF package.
Its flexible nature makes it very versatile, but comes at a cost. This cost might be completely negligible in most simulations,
but it can be very high in some cases (usually when combining only cheap methods such as forcefields).
The intended users for the FlexMD package are those with some Unix/Linux experience and a basic understanding of
the Python Programming Language (http://python.org/). The user is also supposed to have a basic understanding of the
various methods he wishes to combine. For example, if metadynamics is supposed to be combined with ADF, FlexMD
expects the user to have knowledge about DFT calculations and the usage of Collective Variables. Finally, as with every
computational method, the user should monitor the FlexMD performance, both in accuracy and speed.

6.2 FlexMD functionality summary

Molecule
Input/output

• Reads and writes PDB and XYZ files
• Reads and writes topology data (in CHARMM format)
• Reads and writes force field data (on CHARMM format)

67

http://python.org/

Scripting Manual, Amsterdam Modeling Suite 2024.1

Analysis
• Extracts geometry data

Drawing functionality
• Adds atoms and bonds
• Changes bond-lengths, angles and torsions
• Cuts fragments
• Cuts solvent boxes and droplets
• Performs rotations and translations, to fit bonds to axes and planes

Periodic functionality
• Adds periodic images
• Wraps molecules into periodic box

Water specific
• Finds hydrogen bonds
• Finds shortest water bridge connecting H-donor and acceptor

Energy and force calculations
Standard

• ADF
• DFTB
• REAXFF
• UFF
• MOPAC
• NAMD
• Lennard-Jones force fields

Multi-scale
• QM/MM, mechanical embedding: Combines all the codes above
• Hybrid: More flexible than QM/MM. Combines different force calculations by summing or subtracting the energies
and forces. The standard calculations (above) can therefore be combined with:

– Metadynamics
– Plumed (external code that computes free energy data)
– Constraints

• Adaptive QM/MM (for chemistry in solution)
– Difference-based Adaptive Solvation (DAS)
– Sorted Adaptive Partitioning (SAP)
– Buffered-Core (BC)
– Flexible Inner Region Ensemble Separator (FIRES)

Molecular Dynamics

68 Chapter 6. FlexMD

Scripting Manual, Amsterdam Modeling Suite 2024.1

• Uses ASE as the molecular dynamics driver for all above methods
• Analyses trajectories

6.3 Introduction

FlexMD is a python package providing molecular dynamics (MD) simulations using the energy evaluation methods made
available by the ADF suite. A set of example scripts can be found in the examples/scmlib directory of a standard ADF
installation.
FlexMD can be accessed interactively by running amspython, followed by a standard python import command for the
package scm.flexmd. The python help function can be used to obtain detailed documentation about all FlexMD classes.
In the following example, an inquiry of one class (the MDMolecule class) can be performed.

$ amspython
from scm import flexmd
help(flexmd.MDMolecule)

To leave the interactive help, press q. The help function can also be used to list the contents of the FlexMD package:

$ amspython
from scm import flexmd
help(flexmd)

Python can also give the help documentation as plain text:

$ amspython
from scm import flexmd
import pydoc
print pydoc.render_doc(flexmd.ForceJob, "Help on %s")

6.4 Molecular Dynamics

FlexMD defines the molecular system under study through the MDMolecule class: an instantiation of this class holds
all information about the molecular system to be simulated, such as coordinates, topology, and force field parameters (if
needed). AnMDMolecule object can be initialized from a PDB or XYZ file, by specifying its path at object creation.
An interface to energy evaluators is provided by specialized ForceJob classes, acting as wrappers around the ADF suite
of programs. A ForceJob requires anMDMolecule object to be specified at creation. The resulting ForceJob object can
either be used directly by the Atomistic Simulation Environment (ASE) [1 (page 74)] library as a calculator object (see
examples/scmlib/ASE_emt_h2o) or with theASEMDPropagator class, which providesmethods for running anMD time
step using ASE classes. Internally, the propagator sets up the required ASE objects, passes the ForceJob object to them,
and retrieves the new positions and velocities. An additional protagonist, anMDManager class instance, coordinates the
MD simulation by running the MD steps with the ASEMDPropagator object and writing trajectory information to file.
During creation of an MDManager object, a directory ‘QMMD’ is created, which contains a file TRAJEC00.DCD
holding the geometries along the trajectory, a file FTRAJEC00.DCD holding the forces along the trajectory, and finally
a file ENERGY00.dat holding the potential and kinetic energy, as well as the temperature throughout the evaluation.
To extract the geometries from the trajectory file, the DCDFile class is available, providing methods to read and write
geometries to and from a trajectory file in DCD format. The MDManager is also responsible for handling restart of
a previous MD evaluation: if a ‘QMMD’ directory is already present at script invocation, the new output files will be
assigned the number subsequent to the highest numbered files in that directory. In addition, provided the previous run
terminated normally, the restart will continue from the final geometry and velocity of the previous run.

6.3. Introduction 69

Scripting Manual, Amsterdam Modeling Suite 2024.1

The ADF package contains different electronic structure methods of varying degrees of accuracy and speed. The best-
knownmethods are the ADFDensity Functional Theory (DFT) code itself, and the BANDDFT code for periodic systems.
FlexMD provides an interface toward both programs. For the interface with ADF, FlexMD makes use of classes from
PyADF [2 (page 74)], a scripting framework for efficient quantum chemistry calculations. In addition to ADF and BAND,
several semi-empirical methods are included in the ADF suite, such as DFTB and the NDDO type schemes available in
the MOPAC package [3 (page 74)]. The ADF suite also provides classical mechanics methods, such as the reactive force
field ReaxFF and the simple force field UFF. Interfaces to all of these methods are available in FlexMD. A simple example
of a python script for MD using the UFFForceJob class for UFF calculations can be found in the examples directory,
under examples/scmlib/flexmd_uff_h2o.
To increase the flexibility of FlexMD, an interface towards force calculations using the NAMD2.8 classical molecular
dynamics package is provided (examples/scmlib/namd_h2o). NAMD2.8 is not distributed with the ADF suite, but it is
available from a third party to be downloaded and installed (http://www.ks.uiuc.edu/Development/Download/download.
cgi).

6.5 Multi-scale Molecular Dynamics

The design of theForceJob class allows for flexible extension of its behavior, while at the same time keeping the client code
unaware of its nature: it can either act as a simple wrapper for ADF programs, or it can be a more complex orchestrating
class, combining simpler ForceJob classes to implement multi-scale strategies. One application of this extensible design
can be found in the QMMMForceJob object, which combines a QM and an MM method in an IMOMM-type scheme
(mechanical embedding). TheQMMMForceJob object is assigned two other ForceJob objects, the first representing the
high-resolution calculation (QM), while the other represents the low resolution (MM). Both ForceJob objects contain an
MDMolecule object for the full molecular system. The selection of the QM-region is handled by theQMMMForceJob,
which contains the information about the part of the molecule that constitutes the QM region. When forces are requested
from theQMMMForceJob, the following behavior is orchestrated: first, a MM force calculation is performed on the full
system; then, the QM-region is selected, a QM calculation is executed solely for that region, and energy and forces are
added to those from the full system MM calculation. Finally, an MM calculation is computed for the small QM-region,
and the energy and forces are subtracted, yielding the final result, returned to the invoker. In symbols:
EQM/MM(Full) = EMM(Full) + EQM(QMRegion) – EMM(QMRegion)
The QMMMForceJob handles periodic boundary conditions if the low-level (MM) method supports this feature (i.e.
NAMD). Whether the periodic interaction of the QM region with itself is handled at high or low resolution depends
on the method used for the QM calculation. An example of QM/MM MD calculations can be found in the exam-
ples directory examples/scmlib/qmmm_dftbUFF_2h2o. The QMMMForceJob allows the use of link atoms when
the QM boundary cuts through covalent bonds. However, this feature comes at the price of an increased script com-
plexity. An example of a QMMM link-atom MD simulation is provided in the examples directory, under exam-
ples/scmlib/qmmm_linkatom_dftbNAMD_glutamate.
For more complex multi-scale calculations the HybridForceJob class can be used. This class allows the combination
of a large set of different ForceJobs, each of them describing either the same, or different molecular systems. Each
ForceJob can either involve a calculation on the fullMDMolecule object it contains, or restricted to a specified region
of the corresponding molecule. The forces from each contributing ForceJob can either be added or subtracted from the
total force according to user preference, as specified at construction of the HybridForceJob object.
In order to perform QM/MM simulations on chemical reactivity in solution, it is important that the description of the
solvent molecules can change on the fly, as the molecules move towards or away from the reactive region. To facilitate
this, an AdaptiveQMMMForceJob class is available to provide adaptive QM/MM simulations using several available
schemes, as described by Bulo et al.[4 (page 74)] and P. Fleurat-Lessard et al.[8 (page 75)] In these schemes, the de-
scription of the diffusing molecules changes gradually from QM to MM and vice versa, based on the distance of those
molecules to a predefined reactive site. Various schemes are available for assigning the QM and MM character of the
molecules. The class contains aQMMMForceJob object, as well as a partitioning object that assigns the partial QM and
MM character to the molecules. An examples python script for such an adaptive QM/MM simulation, using the DAS [4
(page 74)] method, is provided in the examples directory, examples/scmlib/adqmmm_mopacscmUFF_h2o.

70 Chapter 6. FlexMD

http://www.ks.uiuc.edu/Development/Download/download.cgi
http://www.ks.uiuc.edu/Development/Download/download.cgi

Scripting Manual, Amsterdam Modeling Suite 2024.1

6.6 Biased Molecular Dynamics

Constraints can be added to a simulation using the derived ForceJob classWallJob. The constraint is in the form of a
large one-dimensional Gaussian on the potential energy surface, along a predefined Collective Variable (CV). Examples
of CV’s are the distance between two atoms, the coordination number of two atoms, but also more complex quantities
such as the minimum distance between two sets of atoms, or the distance of an atom to a hydroxide ion. The Collective
Variables can be specified through the CollectiveVariable class. Derived CollectiveVariable classes are available to
specify sums or multiples of other CollectiveVariable objects.
Regular MD calculations are limited in the time-scales achievable with current hardware. The order of such time-scales
is much smaller than what is required for chemical reactions. To overcome this problem, two rare-events methods have
been implemented directly into the library: metadynamics [5 (page 74)] and umbrella sampling [6 (page 75)]. Both these
methods involve biasing the simulations along a CV. An example of a metadynamics input can be found in the examples
directory in examples/scmlib/metadynamics_emt_h2o.
For a wider range of rare-events methods, FlexMD also offers an interface with the PLUMED library for free en-
ergy calculations [7 (page 75)].To use this, a PLUMED input file is required, and for this we refer to the PLUMED
manual. An example of a FlexMD input script using PLUMED can be found in the examples directory in exam-
ples/scmlib/plumed_emt_h2o.

6.7 Working with FlexMD

It is recommended to read the sections Introduction (page 69) and Molecular Dynamics (page 69) before working with
FlexMD. Basic understanding of the Python Programming Language (http://python.org/) is also required. The Python
website hosts documentation and a tutorial (http://docs.python.org/2/tutorial/) that can be used to learn Python.
The performance of the FlexMD package is difficult to predict because it depends on system size, the type of ForceJobs
used and how these ForceJobs are combined. It is advised to first test the overhead of the FlexMD package for your
system before running large simulations. When ab initio forces are involved, the overhead should not give a significant
performance penalty. However, it may become a bottleneck when your system only uses cheap forcefields.

6.7.1 Creating a molecule object

FlexMD can be run trough the interactive python interpreter in the ADF package. To start it, run: $AMSBIN/amspython
in a terminal, followed by:

from scm import flexmd

Note that it is also possible, and usually more convenient, to write your FlexMD code in a file and then to execute this
file. To do this, type all the commands you would use in the interactive interpreter in a file, and then enter $AMS-
BIN/amspython myFlexMDjob.py in a terminal (after changing to the directory where the file was stored of course).
Most FlexMD jobs will start with importing FlexMD and creating an MDMolecule object. This can be done by starting
from a geometry in xyz or pdb format, or by manually adding the atoms in the FlexMDjob.py file. Geometries can
be generated in the ADF GUI, and then be exported to xyz file. For more details on the MDMolecule object, run
$AMSBIN/amspython, import flexmd and call help(flexmd.mdmolecule).

from scm import flexmd
myMol = flexmd.MDMolecule('myGeometryFile.xyz')

Some ForceJobs require the system to be periodic. If we create an MDMolecule object from a pdb file that includes
periodic information, the periodic boundary conditions are automatically imported. If the information is not there, we
can add it to the MDMolecule object:

6.6. Biased Molecular Dynamics 71

http://python.org/
http://docs.python.org/2/tutorial/

Scripting Manual, Amsterdam Modeling Suite 2024.1

myMol = flexmd.pdb.set_box([50.0,25.0,100.0])

Info on set_box (and other functions, such as set_cellvectors, and write_pdb) can be found using
help(flexmd.pdbmolecule).
It is also possible to write the info in the MDMolecule object to a pdb file. to do so, call pdb.write_pdb(‘mypdbfile.pdb’)
on the myMol object:

myMol.pdb.write_pdb('mypdbfile.pdb', box=True)

6.7.2 Creating a ForceJob

To specify what type of forces we want to use in the MD simulation, a ForceJob must be created. FlexMD
has a number of ForceJobs (see PACKAGE CONTENTS in help(flexmd)), most of them with examples in
$AMSHOME/examples/scmlib. The ForceJobs can be combined into a single ForceJob using flexmd.hybrid_ForceJob.
As an example, we combine a reaxff_ForceJob with a metadynamicsjob and a walljob:

from scm import flexmd
myMol = flexmd.MDMolecule('myGeometryFile.xyz')
myMol = flexmd.pdb.set_box([50.0,25.0,100.0])

setup our reaxff ForceJob and attach the forcefield file
(place the ff file in the same dir as the script and the xyz!)

myReaxffForceJob = flexmd.ReaxffForceJob(molecule=myMol)
myReaxffForceJob.settings.set_ff_filename('reax_forcefield_file.ff')

next we define the collective variable: the distance between atom 1 and 2
myCvs = [flexmd.DistCV([1,2])]

create a set of metadynamics properties, using the CV
mtdSettings = flexmd.MetadynamicsSettings(cvs=myCvs, widths=[0.30], height=0.25)

create the metadynamics job by combining the molecule, settings (with CV)
and the number of md steps between depositing metadynamics hills.

myMetadynamicsjob = flexmd.MetadynamicsJob(myMol, settings=mtdSettings, nstep=150)

add a wall to prevent the two atoms from drifting more than 10 Angstrom away.
myWalljob = flexmd.WallJob(molecule=myMol, cvs=myCvs, cntrs=[10.0], widths=[1.0],␣
↪→heights=[500.0])

combine the forces into a hybrid job that will be used for the MD
myForceJob = flexmd.HybridForceJob([[myReaxffForceJob,'+'], [theMetadynamicsjob,'+'],
↪→ [theWalljob,'+']], myMol)

Note that all the ForceJobs require some special input and settings, and that these settings can be applied both before and
after defining the ForceJob. For the reaxffForceJob, we first define the ForceJob, and add the forcefield parameters file
afterwards. For the metadynamics job we reverse this, and first create a metadynamicsJobSettings object, which is then
used in the creation of the metadynamics job. For more detailed info on the different ForceJobs and their inputs, see the
help function by calling help on a ForceJob, for example: help(flexmd.ReaxffForceJob) or help(flexmd.WallJob). Also
remember that other examples of ForceJobs can be found in $AMSHOME/examples/scmlib.

72 Chapter 6. FlexMD

Scripting Manual, Amsterdam Modeling Suite 2024.1

6.7.3 Creating and running the MD job

Before the simulation can be set in motion, a propagator is needed. The propagatorJob controls simulation settings such
as temperature and timestep size. FlexMD uses the Atomistic Simulation Environment (ASE) [1 (page 74)] for this. The
MDPropagatorJob object is created just like the other objects in FlexMD:

do this after importing flexmd and creating a ForceJob.
it creates the MDPropagator job, with some settings

myMDJob = flexmd.ASEMDPropagatorJob(ForceJob=myForceJob)
myMDJob.settings.set_tempcontrol(True, nhfreq=2, maxdef=50.0)
myMDJob.settings.set_temperature(300.0)
myMDJob.settings.set_timestep(0.02)

For more details on the ASEMDPropagatorJob, view it’s help page: help(flexmd.ASEMDPropagatorJob), or take a look
at the MDSettings object: help(flexmd.MDSettings).
The propagatorJob can be used to create an MDManager object:

create an MD manager
myManager = flexmd.MDManager(mdjob=myMDJob)

The manager object is now in control of the MD simulation, and we can use it to run the simulation for a number of steps:

tell the MD manager to run the simulation
myManager.run(ncycles = 2500)

Note that the number of steps here should be increased a lot if metadynamics effects are to be observed, but it is always
wise to first run a small number of steps to check if everything works. Some information will be printed during the
simulation, depending on the settings of the components used. The manager will also create some folders in the working
directory, and store the data produced by the simulation in there.
The full flexmd jobfile should now look something like this:

from scm import flexmd
myMol = flexmd.MDMolecule('myGeometryFile.xyz')
myMol = flexmd.pdb.set_box([50.0,25.0,100.0])

setup our reaxff ForceJob and attach the forcefield file
(place the ff file in the same dir as the script and the xyz!)

myReaxffForceJob = flexmd.ReaxffForceJob(molecule=myMol)
myReaxffForceJob.settings.set_ff_filename('reax_forcefield_file.ff')

next we define the collective variable: the distance between atom 1 and 2
myCvs = [flexmd.DistCV([1,2])]

create a set of metadynamics properties, using the CV
mtdSettings = flexmd.MetadynamicsSettings(cvs=myCvs, widths=[0.30], height=0.25)

create the metadynamics job by combining the molecule, settings (with CV)
and the number of md steps between depositing metadynamics hills.

myMetadynamicsjob = flexmd.MetadynamicsJob(myMol, settings=mtdSettings, nstep=150)

add a wall to prevent the two atoms from drifting more than 10 Angstrom away.
myWalljob = flexmd.WallJob(molecule=myMol, cvs=myCvs, cntrs=[10.0], widths=[1.0],␣
↪→heights=[500.0])

combine the forces into a hybrid job that will be used for the MD
myForceJob = flexmd.HybridForceJob([[myReaxffForceJob,'+'], [theMetadynamicsjob,'+'],
↪→ [theWalljob,'+']], myMol)

do this after importing flexmd and creating a ForceJob.

(continues on next page)

6.7. Working with FlexMD 73

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
it creates the MDPropagator job, with some settings

myMDJob = flexmd.ASEMDPropagatorJob(ForceJob=myForceJob)
myMDJob.settings.set_tempcontrol(True, nhfreq=2, maxdef=50.0)
myMDJob.settings.set_temperature(300.0)
myMDJob.settings.set_timestep(0.02)

create an MD manager
myManager = flexmd.MDManager(mdjob=myMDJob)

tell the MD manager to run the simulation
myManager.run(ncycles = 2500)

This job can be resumed by just running the script again, FlexMD should pick up on the coordinates and velocities from
the QMMD folder. To do this, simply run the job again, and a new set of trajectory and energy files should appear in the
QMMD folder. If you wish to specify which files FlexMD restarts from, you can use the set_restartnum() function on
myMDJob.settings:

add this below the "myMDJob.settings.set_timestep(0.02)" line
FlexMD will restart from the files with index numbers 1 lower than you pass to␣

↪→set_restartnum
This will cause FlexMD to restart from QMMD/TRAJEC00.dcd and QMMD/TRAJEC00.dcd

myMDJob.settings.set_restartnum(1)

6.8 Required Citations

When you publish results in the scientific literature that were obtained with programs of the ADF package, you are
required to include references to the program package with the appropriate release number, and a few key publications.
For calculations with FlexMD: 1. FlexMD 2017, SCM, T. Jiang, H. van Schoot, S. Simko, C. R. Jacob, S. Borini, R.

E. Bulo, A python library for flexible multi-scale molecular dynamics simulations. http://www.scm.com

6.8.1 External programs and Libraries

Click here for the list of programs and/or libraries used in the ADF package. On some platforms optimized libraries have
been used and/or vendor specific MPI implementations.

6.9 References

1. S.R. Bahn, K.W. Jacobsen, An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci.
Engin. 4, 56-66 (2002) (https://doi.org/10.1109/5992.998641). The Atomistic Simulation Enviroment website
and documentation (https://wiki.fysik.dtu.dk/ase/)

2. C.R. Jacob, S.M. Beyhan, R.E. Bulo, A. Severo Pereira Gomes, A.W. Gotz, K. Kiewisch, J. Sikkema, L. Visscher,
PyADF - A scripting framework for multiscale quantum chemistry. J. Comput. Chem. 32, 2328-2338 (2011)
(https://doi.org/10.1002/jcc.21810)

3. J.J.P. Stewart, Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to
more main group elements., J. Mol. Model. 10, 155-164 (2004) (https://doi.org/10.1007/s00894-004-0183-z)

4. R.E. Bulo, B. Ensing, J. Sikkema, L. Visscher, Toward a Practical Method for Adaptive QM/MM Simulations. J.
Chem. Theory Comput. 5, 2212-2221 (2009) (https://doi.org/10.1021/ct900148e)

74 Chapter 6. FlexMD

http://www.scm.com
../../Ref_third_party/index.html
https://doi.org/10.1109/5992.998641
https://doi.org/10.1109/5992.998641
https://wiki.fysik.dtu.dk/ase/
https://wiki.fysik.dtu.dk/ase/
https://doi.org/10.1002/jcc.21810
https://doi.org/10.1007/s00894-004-0183-z
https://doi.org/10.1021/ct900148e
https://doi.org/10.1021/ct900148e

Scripting Manual, Amsterdam Modeling Suite 2024.1

5. A. Laio, M. Parrinello, Escaping free-energy minima. Proc. Natl. Acad. Sci. USA., 99, 12562-12566 (2002)
(https://doi.org/10.1073/pnas.202427399)

6. B. Roux, The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun. 91,
275-282 (1995) (https://doi.org/10.1016/0010-4655(95)00053-I)

7. M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci,
R.A. Broglia, M. Parrinello, PLUMED: A portable plugin for free-energy calculations with molecular dynamics.
Comp. Phys. Comm. 180, 1961-1972 (2009) (https://doi.org/10.1016/j.cpc.2009.05.011). PLUMED website
and documentation (http://www.plumed-code.org/)

8. P. Fleurat-Lessard, C. Michel, R. E. Bulo, Energy extrapolation schemes for adaptive multi-scale molecular dy-
namics simulations. J. Chem. Phys. 137, 174111 (2012) (https://doi.org/10.1063/1.4739743)

6.9. References 75

https://doi.org/10.1073/pnas.202427399
https://doi.org/10.1016/0010-4655(95)00053-I
https://doi.org/10.1016/0010-4655(95)00053-I
https://doi.org/10.1016/j.cpc.2009.05.011
http://www.plumed-code.org/
http://www.plumed-code.org/
https://doi.org/10.1063/1.4739743

Scripting Manual, Amsterdam Modeling Suite 2024.1

76 Chapter 6. FlexMD

CHAPTER

SEVEN

PLAMS

PLAMS (Python Library for Automating Molecular Simulation) is a collection of tools that aim at providing powerful,
flexible and easily extendable Python interface to molecular modeling programs. It takes care of input preparation, job
execution, file management and output processing as well as helps with building more advanced data workflows.

• PLAMS tutorials
• PLAMS documentation

7.1 Required Citations

When you publish results in the scientific literature that were obtained with programs of the ADF package, you are
required to include references to the program package with the appropriate release number, and a few key publications.
For calculations with PLAMS: PLAMS, written by Michał Handzlik, http://www.scm.com

7.1.1 External programs and Libraries

Click here for the list of programs and/or libraries used in the ADF package. On some platforms optimized libraries have
been used and/or vendor specific MPI implementations.

77

../../Tutorials/WorkflowsAndAutomation/PythonScriptingWithPLAMS.html
../../plams/index.html
http://www.scm.com
../../Ref_third_party/index.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

78 Chapter 7. PLAMS

CHAPTER

EIGHT

AUTOGRAFS

The Automatic Topological Generator for Framework Structures (http://pubs.acs.org/doi/abs/10.1021/jp507643v) is a
software for the design ang high throughput generation of framework structures such as Metal-Organic Frameworks
(MOFs), Zeolites, Covalent-Organic Frameworks (COFs), or any product of reticular chemistry. The underlying library
for chemical objects makes extensive use of the ASE (page 65) environment shipped with the AmsterdamModeling Suite.
AuToGraFS was developed in the group of Prof. Dr. Heine at Jacobs University Bremen by Dr. M. Addicoat and
D. Coupry. While a console application is available (https://github.com/maddicoat/AuToGraFS) under a GNU LGPL
license, the version shipped together with the Amsterdam Modeling Suite was heavily modified into a fully importable
python library for easy scripting capabilities. The software was also fully integrated into the GUI, and some native
functions were developed for added functionality in this particular environment. A database of building units often used
in existing MOFs is also provided, to cover basic needs.
The rest of this section is dedicated to a documentation and a demonstration of the usage of both the scripting capabilities
and GUI tools from the Automatic Topological Generator for Framework Structures.

8.1 General AuToGraFS Scripting concepts

AuToGraFS relies on the concept of underlying nets common tomany structures. These nets, or topologies can be found in
the RCSR (http://rcsr.anu.edu.au/) and EPINET (http://epinet.anu.edu.au/) databases. Once implemented, AuToGraFS
will follow these blueprints to generate a framework from building units of compatible geometries. Since these geometries
are ideal objects, and most chemical structures are distorted, an optimization step using UFF is necessary for the building
units to “snap into place”. Correct handling of bonding information and UFF atom types are crucial to the generation of
correct structures.

8.1.1 Components of AuToGraFS

The Fragment class

This is a slightly modified version of the native ASE Atoms object, designed to hold essential data for UFF postprocessing.
This englobes the uff atom types, and the bonding information.

from scm.autografs.fragment import Fragment
from ase import Atoms

line = Fragment(ase.Atoms("X2", positions=...),
mmtypes=["H_", "H_"],
bonds = [[0,0,1],[0,0,1],[1,1,0]],
shape="linear",
unit=None,
name="a_line_has_no_name")

79

http://pubs.acs.org/doi/abs/10.1021/jp507643v
https://github.com/maddicoat/AuToGraFS
http://rcsr.anu.edu.au/
http://epinet.anu.edu.au/
../../ForceField/index.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

Where mmtypes is a list of the UFF atom types symbols, ordered as the corresponding atoms in the structure, and bonds is
a symmetric numpy array (https://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.array.html) of size equal
to the number of atoms. The i,j elements in the bonds array are the bond order between atom i and atom j of the structure.
These bond orders should follow the UFF conventions (1.5 for aromatic, 0.5 for coordination bonds, 0.001 for hydrogen
bonds…). The shape holds information for AuToGraFS about the connectivity of the fragment. Each dummy atom, with
symbol “X” in ASE, represents a point of connection between two fragments. In the above example, the shape is clearly
“linear”. This is used to check compatibility between a fragment and a given topology. The unit of a fragment is set
internally by AuToGraFS and is of no interest here. The name of a fragment is used only for logging purposes. Individual
building blocks of a framework are manipulated through the Fragment class. It is possible to export a fragment from the
GUI using edit -> framework -> export fragment. If the UFF atom types are not specified, an automatic typing script will
take care of it.

The Model class

This is a container class that holds in one place the topology of a framework and the correctly positioned fragments. Most
of the postprocessing methods found in AuToGraFS are Model methods.

from scm.autografs import *

model = autografs.Model(...)

view the framework in adfinput. set clean to False to keep dummy atoms.
model.view(clean=True, verbose=True)

write the name.ams and name.run files
model.write(name="framework", clean=True, verbose=True)

returns a Fragment, with correct bonding information and mmtypes
if indices is True, it also returns the index of the corresponding fragment in the␣
↪→model for each atom
atoms = model.get_atoms(self, clean=False, indices=False)

returns a supercell of the framework as a Fragment
supercell = model * (2,2,2)

deletes a fragment in the framework. if no index is given, the fragment will be␣
↪→chosen at random.
the defects will cap with hydrogen the empty spaces. returns a Fragment
here, a linker at random will be deleted
model.insert_defect(indices=None, centers=0, linkers=1)

flip a linear object
model.flip_fragment(index=the_fragment_index)

rotates a linear object around its axis by angle in degrees
model.rotate_fragment(index=the_fragment_index, angle=85.0)

Will add a functional group to the selected fragment on a random hydrogen
if and only if the hydogen is connected to a carbon.
for more precise handling, use the GUI for now.
model.functionalize_fragment(functional_group="NH2", index=the_fragment_index)

80 Chapter 8. AuToGraFS

https://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.array.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

The Autografs class

This class is the builder in itself. Given a path to a database of building units in .inp format (exportable via the GUI),
it will generate any valid framework from a topology name, a center and linker name or objects, and optionally a pillar
name or object. The linkers, centers and pillars objects have to be passed as Fragment .

from scm.autografs import *
from random import choice

create the generator and update the database of building units
mofgen = autografs.Autografs(refresh_database=True, verbose=True, path="path/to/my/
↪→fragments/")

choose a topology from the available one given no center or linkers
topologies = mofgen.get_available_topologies(center=None, linker=None)
topology = choice(topologies)

choose a center in the list of available centers for the topology
centers = mofgen.get_available_centers(topology=topology, linker=None)
center = choice(centers)

choose a linker in the list of available linkers for the topology and center
linkers = mofgen.get_available_linkers(topology=topology, center=center)
linker = choice(linkers)

modify the linker by changing all hydrogens to fluorine
linker_structure = mofgen.database[linker]
linker_symbols = linker_structure.get_chemical_symbols()
linker_structure.set_chemical_symbols(["F" if l=="H" else l for l in linker_symbols])

generate the framework using multiprocessing tools and automatic scaling of unit␣
↪→cell
framework = mofgen.make(lable="my_framework", topology=topology, center=center,␣
↪→linker=linker, pillar=None, form_factor=None, parallel=True)

visualize in adfinput
framework.view()

do not forget to run a quick UFF optimization after generation to optimize lattice and fragment into an optimal configu-
ration.

8.1.2 About the databases of building units

AuToGraFS uses both a binary database format, and structures in the DemonNano file format from which the binary
is compiled. To ask AuToGraFS to use a custom directory containing .inp files, simply pass the directory to the path
argument when initializing the constructor. The “.inp” file format should be formatted like the following example.

Data: SBUtype = linker
Data: shape = linear
Data: name = benzene
GEOMETRY CARTESIAN
C 0.00000000 -1.39103633 0.00000000 MMTYPE=C_R QMMM=MM BOND=2/1.
↪→5:6/1.5:12/1.0
C -1.20606758 -0.69440959 0.00000000 MMTYPE=C_R QMMM=MM BOND=1/1.
↪→5:3/1.5:8/1.0
C -1.20606758 0.69440959 -0.00000000 MMTYPE=C_R QMMM=MM BOND=2/1.
↪→5:4/1.5:10/1.0 (continues on next page)

8.1. General AuToGraFS Scripting concepts 81

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
C -0.00000000 1.39103633 0.00000000 MMTYPE=C_R QMMM=MM BOND=3/1.
↪→5:5/1.5:11/1.0
C 1.20606758 0.69440959 0.00000000 MMTYPE=C_R QMMM=MM BOND=4/1.
↪→5:6/1.5:7/1.0
C 1.20606758 -0.69440959 -0.00000000 MMTYPE=C_R QMMM=MM BOND=1/1.
↪→5:5/1.5:9/1.0
H 2.02806392 1.16933783 0.00000000 MMTYPE=H_ QMMM=MM BOND=5/1.0
H -2.02806392 -1.16933783 0.00000000 MMTYPE=H_ QMMM=MM BOND=2/1.0
H 2.02806392 -1.16933783 0.00000000 MMTYPE=H_ QMMM=MM BOND=6/1.0
H -2.02806392 1.16933783 0.00000000 MMTYPE=H_ QMMM=MM BOND=3/1.0
X 0.00000000 2.09099413 0.00000000 MMTYPE=H_ QMMM=MM BOND=4/1.0
X 0.00000000 -2.09099413 0.00000000 MMTYPE=H_ QMMM=MM BOND=1/1.0
END

8.1.3 Using the overhauled Atom Typer

Both AuToGraFS and the GUI now use a new python library for the assignment of UFF types to atoms and generation
of the bonding matrix. The process goes as follows:

from scm.autografs import atomtyper

instantiate the typer on a readable molecule file (e.g: "mol.cif")
typer = atomtyper.MolTyper("path/of/fileToType")

choose the UFF library. options are uff and uff4mof
library = read_db("uff4mof")

actual typing is done here
typer.type_mol(library)

prints the bond matrix as a numpy array
item i, j of matrix is the bond order between atoms i and j
print typer.get_guibonds()

print a list of UFF types in order
print typer.get_mmtypes()

write a SCM-UFF input file with correct info
typer.structure.write(name="mytypedmol")

82 Chapter 8. AuToGraFS

Scripting Manual, Amsterdam Modeling Suite 2024.1

8.2 AuToGraFS Examples

the following examples work with all calculators of the AmsterdamModeling Suite. Any python script using these libraries
should be launched using the “$AMSBIN/amspython” binary.

8.2.1 Generation of all available pillared SURMOF

Required imports
from scm.autografs import *

from itertools import combinations_with_replacement

create the generator object
mofgen = autografs.Autografs(path="./my_database/")

the SURMOF family of frameworks is
topology = "pcu"

get all available linkers, center, pillars for the pcu topology
centers = mofgen.get_available_centers(topology=topology)
for center in centers:

the pcu topology accepts up to three different linkers.
here, we'll use two and a pillar

linkers = mofgen.get_available_linkers(topology=topology, center=center)
for linker in combination_with_replacement(linkers, 2):

pillars = mofgen.get_available_pillars(topology=topology, center=center)
for pillar in pillars:

label = "{0}-{1}-{2}".format(center, linker,pillar)
generate this particular framework
framework = mofgen.make(label=label,

topology=topology,
center=center,
linker=linker,
pillar=pillar)

write the UFF inpufile under "label.run" and "label.ams"
framework.write()

8.2.2 Generation of a defectuous UIO-66 MOF from custom files

Required imports
from scm.autografs import *
from random import gauss

get the building units as Fragment objects
center = utils.read_inp("UIO66_center.inp")
linker = utils.read_inp("UIO66_linker.inp")

instantiate the generator
mofgen = autografs.Autografs()

generate the MOF
mof = mofgen.make(label="UIO66", topology="bcu", center=center, linker=linker)

get the 3*3*3 supercell

(continues on next page)

8.2. AuToGraFS Examples 83

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
supercell = mof * (3,3,3)

introduce 10 defects in a gaussian distribution around the center of the␣
↪→supercell

the connections are capped with hydrogen.
indices = []
mu = len(supercell)/2
sigma = len(supercell)/4
number_of_defects = 10
while len(indices) < number_of defects:

index = int(abs(gauss(mu, sigma)))
if (index not in indices) and index < len(supercell):

indices.append(index)
supercell.insert_defect(indices = indices))

view resulting framework in adfinput
supercell.view()

8.2.3 Generation of conformers in the IRMOF-5

Required imports
from scm.autografs import *
from itertools import combinations_with_replacement

instantiate the generator
mofgen = autografs.Autografs()

generate the MOF
mof = mofgen.make(label="IRMOF-5", topology="pcu", center="mof5", linker="benzene")

get the indices of the benzenes in the mof
benzenes = mof.get_linkers()
choice_angles = [0.0,45.0,90.0]

generate all possible combinations
iteration = 0
for angles in combinations_with_replacement(choice_angles, 3):

conformer = mof.copy()
for benzene, angle in zip(benzenes, angles):

conformer.rotate_fragment(index=benzene, angle=angle)
conformer.write(name="conformer-{0}".format(iteration))
iteration += 1

84 Chapter 8. AuToGraFS

CHAPTER

NINE

AKFREADER

The AKFReader Python class provides a convenient way to read annotated data from the binary KF files generated by
AMS.
Below is an example demonstrating some of the AKFReader class’s functionality

from scm.akfreader import AKFReader

===== Load a kf file.
akf = AKFReader('test.results/dftb.rkf')

===== Print all content in the kf file:
akf.print_all_variables()

===== Read a specific variable from file.
coordinates = akf.read('Molecule%Coords')
print("Coordinates:")
print(coordinates)

Coordinates:
[[-1.65367945e+00 4.59827802e+00 -9.59515212e-09]
[5.88355572e-01 2.78581237e+00 1.09863437e-08]
...
[-3.26489723e+00 3.74833282e+00 9.66428930e-01]
[-2.21256221e+00 5.05007997e+00 -1.93285786e+00]]

====== Retrieve the description, units, and additional information for a variable:
description_dict = akf.description('Molecule%Coords')
print("'Molecule%Coords' description:")
print(description_dict)

'Molecule%Coords' description:
{'_type': 'float_array',
'_shape': [3, 'nAtoms'],
'_comment': 'Coordinates of the nuclei (x,y,z)',
'_unit': 'bohr'}

====== Read another variable, and do a unit conversion:
energy_in_eV = akf.read('AMSResults%Energy', units="eV")
print(f"Energy: {energy_in_eV} [eV]")

(continues on next page)

85

Scripting Manual, Amsterdam Modeling Suite 2024.1

(continued from previous page)
Energy: -203.21954672148195 [eV]

====== Read all variables matching the pattern:
history_energies = akf.read('History%Energy(#)')
print(history_energies)

[('History%Energy(1)', -5.758015498298242),
('History%Energy(2)', -5.765039556660788),
('History%Energy(3)', -5.766261662994689),
('History%Energy(4)', -5.766288141072665)]

Note: The KFFile (page 60) Python class can also be used to read KF files. Key differences between the AKFReader
and the KFFile:

• The AKFReader can provide ‘extra information’ on the content of the KF files: it can give descriptions of sections,
variables, units, and automatically reshapes matrices to the proper size/shape.

• The KFFile can also be used to write KF files (while the AKFReader can only read).

See also:
A command line utility $AMSBIN/akf (described here (page 20)) offers an alternative way of using the AKFReader
tool.
See also:
The list of possible variables for the various kf files can be found in the respective user manuals: ams.rkf, adf.rkf, band.rkf,
dftb.rkf
API documentation:
class AKFReader(path: str, kf_def_path=None, strict=False, verbose=False)

A class to read AMS binary output files in KF format.
description(name: str)→ Dict[str, Any]

Return the description of the key as a dictionary.
find(name: str)→ list

Given the name of a variable with patterns, return the list of actual variables that match the query.
E.g. if name=’History%Energy(#)’, this might return: [‘History%Energy(1)’,’History%Energy(2)’]

print_all_variables(include_hidden=False, print_metadata=True)
Print the whole content of the akf file

print_variable(name, print_metadata=True)
Print the content and description of a variable

read(name: str, units=None)
Read and return the value of a variable.
In case that the name is a pattern like ‘foo(#)’ the result is a list of tuples for all vars matching the pattern:

‘foo(#)’ -> [(‘foo(1)’, value1), (‘foo(3)’, value3)]
Partial patterns are not yet supported, but the idea would be the same: ‘bar(#,#)’ -> [(‘bar(1,1)’,

value11), (‘bar(1,2)’,value12), (‘bar(2,1)’,value21)] ‘bar(1,#)’ -> [(‘bar(1,1)’, value11),
(‘bar(1,2)’,value12)]

86 Chapter 9. AKFReader

../../AMS/kf_defs.html
../../ADF/kf_defs.html
../../BAND/kf_defs.html
../../DFTB/kf_defs.html

Scripting Manual, Amsterdam Modeling Suite 2024.1

variables(include_hidden=False)→ List[str]
Returns a list of all available variables on the file in the form “section%variable”.

87

Scripting Manual, Amsterdam Modeling Suite 2024.1

88 Chapter 9. AKFReader

INDEX

Non-alphabetical
__add__() (UnifiedChemicalSystem method), 32
__iadd__() (UnifiedChemicalSystem method), 32

A
add_atom() (UnifiedChemicalSystem method), 31
add_atom_to_region() (UnifiedChemicalSystem

method), 44
add_atoms_to_region() (UnifiedChemicalSystem

method), 44
add_bond() (UnifiedBonds method), 37
add_bonds() (UnifiedBonds method), 37
add_other() (UnifiedChemicalSystem method), 32
adf() (UnifiedAtom property), 48
adfprops() (UnifiedChemicalSystem property), 47
AKFReader (class in scm.akfreader), 86
align_to() (UnifiedChemicalSystem method), 35
amsprep module, 3
amsreport module, 11
apply_strain() (UnifiedChemicalSystem method), 41
apply_strain_voigt() (UnifiedChemicalSystem

method), 42
atom_index() (UnifiedChemicalSystem method), 31
atom_is_in_ring() (UnifiedChemicalSystem

method), 38
atomic_properties_enabled() (UnifiedChemi-

calSystem method), 48
atoms() (UnifiedChemicalSystem property), 31
atoms_are_bonded() (UnifiedBonds method), 37

B
bond_cuts_molecule() (UnifiedChemicalSystem

method), 38
bonds() (UnifiedChemicalSystem property), 37

C
cartesian_to_fractional() (UnifiedLattice

method), 40
cartesians_to_fractionals() (UnifiedLattice

method), 41
center_of_mass() (UnifiedChemicalSystem method),

35

charge() (UnifiedChemicalSystem property), 33
charge() (UnifiedForcefieldProperties property), 49
ChgU() (UnifiedADFProperties property), 48
clear() (UnifiedADFProperties method), 49
clear() (UnifiedForcefieldProperties method), 49
clear() (UnifiedGUIProperties method), 48
close() (KFFile method), 60
close_var() (KFFile method), 60
color() (UnifiedGUIProperties property), 48
contains_atom() (UnifiedChemicalSystem method),

31
convert() (Units class method), 50
coords() (UnifiedAtom property), 33
coords() (UnifiedChemicalSystem property), 31
copy_section() (KFFile method), 60
cpkf module, 18
create_section() (KFFile method), 60
create_var() (KFFile method), 60

D
delete_file() (KFFile class method), 60
delete_section() (KFFile method), 61
delete_var() (KFFile method), 61
density() (UnifiedChemicalSystem method), 42
description() (AKFReader method), 86
deselect_all() (UnifiedChemicalSystem method), 46
deselect_atom() (UnifiedChemicalSystem method),

45
deselect_atoms() (UnifiedChemicalSystem method),

45
deselect_atoms_if() (UnifiedChemicalSystem

method), 46
disable_atomic_properties() (UnifiedChemi-

calSystem method), 48
dmpkf module, 18
do_regions_intersect() (UnifiedChemicalSystem

method), 43

E
empty() (UnifiedADFProperties method), 49
empty() (UnifiedForcefieldProperties method), 49
empty() (UnifiedGUIProperties method), 48

89

Scripting Manual, Amsterdam Modeling Suite 2024.1

enable_atomic_properties() (UnifiedChemical-
System method), 47

EpsU() (UnifiedADFProperties property), 48
extract_atoms() (UnifiedChemicalSystem method),

33

F
f() (UnifiedADFProperties property), 49
filename() (KFFile property), 61
find() (AKFReader method), 86
forcefield() (UnifiedAtom property), 48
forcefieldprops() (UnifiedChemicalSystem prop-

erty), 47
formula() (UnifiedChemicalSystem method), 33
fractional_to_cartesian() (UnifiedLattice

method), 41
fractionals_to_cartesians() (UnifiedLattice

method), 41
from_in() (UnifiedChemicalSystem class method), 30
from_input() (UnifiedChemicalSystem class method),

30
from_kf() (UnifiedChemicalSystem class method), 30
from_xyz() (UnifiedChemicalSystem class method), 30

G
geometric_center() (UnifiedChemicalSystem

method), 35
get() (InputFile method), 58
get_angles() (UnifiedLattice method), 41
get_atoms_in_region() (UnifiedChemicalSystem

method), 44
get_atoms_outside_region() (UnifiedChemical-

System method), 44
get_bonds_for_atom() (UnifiedBonds method), 37
get_category() (InputFile method), 58
get_entries_in_order() (InputFile method), 58
get_factor() (Units class method), 50
get_fractional_coordinates() (UnifiedChem-

icalSystem method), 41
get_freeblock() (InputFile method), 58
get_header() (InputFile method), 58
get_int() (InputFile method), 58
get_int_list() (InputFile method), 58
get_json() (InputFile method), 58
get_lengths() (UnifiedLattice method), 41
get_logical() (InputFile method), 58
get_quantities() (Units class method), 51
get_real() (InputFile method), 59
get_real_list() (InputFile method), 59
get_regions_of_atom() (UnifiedChemicalSystem

method), 44
get_selected_atoms() (UnifiedChemicalSystem

method), 45
get_skeleton() (KFFile method), 61

get_string() (InputFile method), 59
get_system_blocks_as_mols() (InputFile

method), 59
get_type() (InputFile method), 59
get_unit() (Units class method), 51
get_units() (Units class method), 51
get_vector_with_index() (UnifiedLattice

method), 41
get_volume() (UnifiedLattice method), 41
guess_bonds() (UnifiedChemicalSystem method), 38
gui() (UnifiedAtom property), 48
guiprops() (UnifiedChemicalSystem property), 47

H
has_ghost_atoms() (UnifiedChemicalSystem

method), 48
has_lattice() (UnifiedChemicalSystem method), 40
has_region() (UnifiedChemicalSystem method), 43

I
in_chemicalsystem() (UnifiedAtom method), 33
inertia_tensor() (UnifiedChemicalSystem method),

35
InputError (class in libbase), 59
InputFile (class in libbase), 58
InputFile.EntryCategory (class in libbase), 58
InputFile.EntryType (class in libbase), 58
invert_selection() (UnifiedChemicalSystem

method), 46
is_atom_in_region() (UnifiedChemicalSystem

method), 44
is_atom_outside_region() (UnifiedChemical-

System method), 44
is_atom_selected() (UnifiedChemicalSystem

method), 45
is_defined() (InputFile method), 59
is_ghost() (UnifiedAtom property), 48
is_kffile() (KFFile class method), 61
is_linear() (UnifiedChemicalSystem method), 35
is_ordered() (InputFile method), 59
is_orthogonal() (UnifiedLattice method), 41
is_present() (InputFile method), 59
is_unique() (InputFile method), 59
is_valid_region_name() (UnifiedChemicalSystem

class method), 43

K
KF command line utilities, 18
KFError (class in libbase), 63
KFFile (class in libbase), 60
KFFile.OpenMode (class in libbase), 60
KFFile.StringSep (class in libbase), 60
KFFile.VarType (class in libbase), 60

90 Index

Scripting Manual, Amsterdam Modeling Suite 2024.1

L
lattice() (UnifiedChemicalSystem property), 40
lattice_displacements() (UnifiedBond prop-

erty), 37

M
make_selection_cappable() (UnifiedChemical-

System method), 46
map_atoms() (UnifiedChemicalSystem method), 41
mass() (UnifiedAtom property), 48
molecule_indices() (UnifiedChemicalSystem

method), 38
molgraph_dijkstra() (UnifiedChemicalSystem

method), 38
molgraph_edgeweight_func_t() (UnifiedChem-

icalSystem property), 38
moments_of_inertia() (UnifiedChemicalSystem

method), 35

N
num_atoms_in_region() (UnifiedChemicalSystem

method), 43
num_atoms_outside_region() (UnifiedChemical-

System method), 43
num_bonds() (UnifiedBonds method), 37
num_molecules() (UnifiedChemicalSystem method),

38
num_regions() (UnifiedChemicalSystem property), 43
num_sections() (KFFile method), 61
num_selected_atoms() (UnifiedChemicalSystem

method), 45
num_variables() (KFFile method), 61
num_vectors() (UnifiedLattice property), 41
number_of_entries() (InputFile method), 59

O
open_var() (KFFile method), 61
order() (UnifiedBond property), 37

P
path() (KFFile property), 61
perturb_coordinates() (UnifiedChemicalSystem

method), 35
perturb_lattice() (UnifiedChemicalSystem

method), 42
pkf module, 18
print_all_variables() (AKFReader method), 86
print_variable() (AKFReader method), 86
program() (InputFile property), 59

R
radius() (UnifiedGUIProperties property), 48
read() (AKFReader method), 86

read() (InputFile method), 59
read() (KFFile method), 61
read_int() (KFFile method), 61
read_ints() (KFFile method), 61
read_ints_np() (KFFile method), 61
read_logical() (KFFile method), 61
read_logicals() (KFFile method), 61
read_logicals_np() (KFFile method), 62
read_real() (KFFile method), 62
read_reals() (KFFile method), 62
read_reals_np() (KFFile method), 62
read_section() (KFFile method), 62
read_string() (KFFile method), 62
read_strings() (KFFile method), 62
region_names() (UnifiedChemicalSystem property),

43
remove_atom() (UnifiedChemicalSystem method), 32
remove_atom_from_all_regions() (Unified-

ChemicalSystem method), 44
remove_atom_from_region() (UnifiedChemical-

System method), 44
remove_atoms() (UnifiedChemicalSystem method), 32
remove_atoms_from_region() (UnifiedChemical-

System method), 44
remove_bond() (UnifiedBonds method), 37
remove_bonds_between_atoms() (UnifiedBonds

method), 37
remove_bonds_to_atom() (UnifiedBonds method),

37
remove_bonds_to_atoms() (UnifiedBonds

method), 37
remove_region() (UnifiedChemicalSystem method),

44
rewind_var() (KFFile method), 62
rmsd() (UnifiedChemicalSystem class method), 35
rotate() (UnifiedChemicalSystem method), 35
rotation_matrix_minimizing_rmsd() (Uni-

fiedChemicalSystem class method), 35

S
save() (KFFile method), 62
section_exists() (KFFile method), 62
sections() (KFFile method), 62
select_all() (UnifiedChemicalSystem method), 46
select_atom() (UnifiedChemicalSystem method), 45
select_atom_close_to_origin() (Unified-

ChemicalSystem method), 46
select_atoms() (UnifiedChemicalSystem method), 45
select_atoms_if() (UnifiedChemicalSystem

method), 46
select_atoms_of_same_type() (UnifiedChemi-

calSystem method), 46
select_connected() (UnifiedChemicalSystem

method), 46

Index 91

Scripting Manual, Amsterdam Modeling Suite 2024.1

select_connected_if() (UnifiedChemicalSystem
method), 46

select_molecule() (UnifiedChemicalSystem
method), 46

select_molecule_if() (UnifiedChemicalSystem
method), 46

select_region() (UnifiedChemicalSystem method),
46

select_within_radius() (UnifiedChemicalSystem
method), 46

set_atom() (UnifiedChemicalSystem method), 32
set_atoms_in_region() (UnifiedChemicalSystem

method), 44
set_density() (UnifiedChemicalSystem method), 42
set_fractional_coordinates() (UnifiedChem-

icalSystem method), 41
set_selected_atoms() (UnifiedChemicalSystem

method), 45
shortest_path_between() (UnifiedChemicalSys-

tem method), 39
shortest_path_length_between() (Unified-

ChemicalSystem method), 39
shortest_path_lengths_from() (UnifiedChem-

icalSystem method), 39
SigU() (UnifiedADFProperties property), 48
skip_var() (KFFile method), 62
split() (UnifiedChemicalSystem method), 33
split_into_molecules() (UnifiedChemicalSystem

method), 38
supercell() (UnifiedChemicalSystem method), 42
supercell_trafo() (UnifiedChemicalSystem

method), 42
symbol() (UnifiedAtom property), 33

T
total_mass() (UnifiedChemicalSystem method), 33
translate() (UnifiedChemicalSystem method), 34
type() (UnifiedForcefieldProperties property), 49

U
udmpkf module, 18
UnifiedADFProperties (class in libbase), 48
UnifiedBond (class in libbase), 37
UnifiedForcefieldProperties (class in libbase),

49
UnifiedGUIProperties (class in libbase), 48
UnifiedLattice (class in libbase), 40
Units (class in libbase), 50
units_summary_string() (Units class method), 51
UnitsError (class in libbase), 51

V
var_exists() (KFFile method), 62
var_length() (KFFile method), 62

var_type() (KFFile method), 62
var_used() (KFFile method), 62
variables() (AKFReader method), 86
variables() (KFFile method), 62
vectors() (UnifiedLattice property), 41

W
write() (KFFile method), 62
write_in() (UnifiedChemicalSystem method), 30
write_kf() (UnifiedChemicalSystem method), 30
write_xyz() (UnifiedChemicalSystem method), 31

Z
Z() (UnifiedAtom property), 33

92 Index

	Getting Started
	Linux
	MacOS
	Windows
	Notes on Python

	Command Line Tools
	AMSprep: generate (multiple) ADF jobs
	Additional Notes

	Tutorial: Generate structures for substituent effects screening
	AMSreport: generate reports
	Additional notes

	KF command line utilities

	Python Stack in Amsterdam Modeling Suite
	General
	Included modules
	Using other modules with the AMS Python Stack
	Install and run Jupyter Lab (Jupyter Notebooks)
	Install Jupyter Lab
	Run Jupyter Lab
	Execute a notebook from the command-line

	Python virtual environment
	Default python virtual environment
	Virtual environments for different AMS versions
	Changing the location of the python virtual environment
	Disabling the virtual environment
	Uninstalling the virtual environment
	Reinstalling the virtual environment

	Useful commands

	SCM libbase
	Chemical System
	Overview
	Reading and writing
	Atoms
	Molecular properties
	Geometry and manipulation
	Bonds
	Lattice and Periodic Systems
	Regions
	Atom selection
	Atomic Properties
	Converting to and from PLAMS Molecules

	Units
	List of available units

	Input File
	KFFile

	ASE
	FlexMD
	Basic philosophy and intended usage
	FlexMD functionality summary
	Introduction
	Molecular Dynamics
	Multi-scale Molecular Dynamics
	Biased Molecular Dynamics
	Working with FlexMD
	Creating a molecule object
	Creating a ForceJob
	Creating and running the MD job

	Required Citations
	External programs and Libraries

	References

	PLAMS
	Required Citations
	External programs and Libraries

	AuToGraFS
	General AuToGraFS Scripting concepts
	Components of AuToGraFS
	The Fragment class
	The Model class
	The Autografs class

	About the databases of building units
	Using the overhauled Atom Typer

	AuToGraFS Examples
	Generation of all available pillared SURMOF
	Generation of a defectuous UIO-66 MOF from custom files
	Generation of conformers in the IRMOF-5

	AKFReader
	Index

