
Workflows Manual
Amsterdam Modeling Suite 2025.1

www.scm.com

Mar 25, 2025

CONTENTS

1 ChemTraYzer2 1
1.1 New in ChemTraYzer2-2023 . 1
1.2 Important information for using ChemTraYzer2 . 1
1.3 The ChemTraYzer2 algorithm . 2
1.4 Distinguishing reactions with ChemTraYzer2 . 3
1.5 Using ChemTraYzer2 from the GUI . 4
1.6 Tips for getting the most out of ChemTraYzer2 . 4

1.6.1 The MD simulation . 4
1.6.2 ChemTraYzer2 Settings . 4

1.7 Minimal input . 4
1.8 Input options . 5
1.9 Output . 9

1.9.1 Summarizing reactions . 9
reaction_events.csv . 9
reactions.csv . 9

1.9.2 Reaction frequency . 10
reaction_events_per_time.csv . 10
bond_change_events_per_time.csv . 10

1.9.3 Molecular population analysis . 10
mol_statistics.csv . 10
mol_population.csv . 10

1.9.4 Geometry output . 11
1.9.5 Additional output files . 11

1.10 References . 11

2 OLED Deposition and Properties 13
2.1 General . 13

2.1.1 New in AMS2025.1 . 14
2.1.2 New in AMS2023.1 . 15

2.2 Deposition . 15
2.2.1 Basic input . 16
2.2.2 Output . 20
2.2.3 Deposition of host-guest materials . 21
2.2.4 Deposition of interfaces . 22
2.2.5 Restarting . 24
2.2.6 LAMMPS offload . 25

2.3 Properties . 26
2.3.1 Basic input . 27
2.3.2 Output . 28

Results directory . 28

i

Data on the HDF5 file . 29
Accessing the HDF5 file . 31
Summarizing the results . 31

2.3.3 Additional settings . 32
2.3.4 Parallelization . 37
2.3.5 Restarting . 37

2.4 Material database . 38
2.4.1 Pure materials . 39
2.4.2 Host-guest systems . 40

3 Reactions Discovery 41
3.1 General . 41

3.1.1 What’s new in AMS2024? . 41
3.2 Overview of workflow . 42
3.3 Quickstart guide with example input file . 45
3.4 Command to execute, parallelization . 47
3.5 Engine settings . 47
3.6 Molecular dynamics . 48

3.6.1 Nanoreactor . 50
3.6.2 Lattice deformation . 52
3.6.3 Build the initial system . 54
3.6.4 Fixed MD settings . 56
3.6.5 Molecular dynamics restart . 56

Example: restart MD simulations after they exceeded walltime limit 57
Example: Continue MD simulations for more steps . 58

3.7 Network Extraction . 58
3.7.1 Initial Network from ChemTrayzer2 . 58
3.7.2 Geometry Optimization . 59
3.7.3 Molecular Charge Assignment . 59
3.7.4 Manual specification of MD trajectories . 59

3.8 Product Ranking . 61
3.8.1 Reaction Energies . 62
3.8.2 Product Cost . 62
3.8.3 Product Stability . 62
3.8.4 Reaction Balance . 62
3.8.5 Example: ProductRanking from finished NetworkExtraction 62

3.9 Output . 64
3.9.1 Reactants, products, unstable . 64
3.9.2 KF output files . 65

3.10 Reactions Discovery in Python (PLAMS) . 75
3.11 Frequently Asked Questions . 79

3.11.1 There are no reactions . 79
3.11.2 There are too many reactions . 79
3.11.3 The MD simulations are too slow . 79
3.11.4 How should I set the density and compression factor? . 80
3.11.5 The simulation explodes . 80
3.11.6 How do I use computing resources efficiently? . 80

4 Simple Active Learning 81
4.1 General . 81

4.1.1 Licensing . 83
4.1.2 What’s new in Simple Active Learning? . 83

AMS2025 . 83
AMS2024 . 83

ii

4.2 Quickstart guide . 84
4.3 Input . 85

4.3.1 Overview . 86
4.3.2 Initial reference data . 87

Generate initial reference data . 88
Load initial reference data . 88
Initial reference data input . 88

4.3.3 When to run reference calculations (step sequence type) . 90
Step Type Geometric (default) . 91
Step Type Linear . 92
Step Type List . 92
Steps input . 93

4.3.4 Success criteria . 96
Energy: total and relative . 96
Forces (gradients) . 96
Success criteria input . 98

4.3.5 Reasonable simulation criteria (uncertainties, temperature, …) 101
4.3.6 From scratch training . 104
4.3.7 Output to save . 106
4.3.8 At workflow end: retrain model, rerun simulation . 107

Retrain model . 107
Rerun simulation (final production simulation) . 108
AtEnd input . 108

4.4 Output . 109
4.5 Python Examples . 109

4.5.1 Single molecule: setup and run . 109
Complete Python code . 110

4.5.2 Single molecule: access results . 111
Complete Python code . 111

4.5.3 Single molecule: Compare to M3GNet-UP-2022 . 114
Complete Python code . 114

4.5.4 Single molecule: Production simulation with retrained ML potential 116
Complete Python code . 116

4.5.5 Continue active learning with a new system or new simulation settings 118
Complete Python code . 119

4.5.6 Liquid water: diffusion coefficient, radial distribution function, density 120
Complete Python code . 122

4.5.7 Conformers: Active learning with CREST metadynamics and custom addition of data points . 131
Complete Python code . 133

4.5.8 Li-vacancy diffusion in a solid electrolyte . 143
Complete Python code . 144

4.5.9 Active Learning with uncertainties predicted from committee models 153
Complete Python code . 155

4.5.10 Ru/H introduction . 161
4.5.11 Ru/H Part 1: Initial reference data from lattice optimization, volume scan, bond scan 162

Complete Python code . 163
4.5.12 Ru/H Part 2: Initial reference data from cartesian coordinate scans and bond scans 165

Complete Python code . 165
4.5.13 Ru/H Part 3: Initial reference data MD simulation + single-point replays 169

Complete Python code . 169
4.5.14 Ru/H Part 4: Initial training . 171

Complete Python code . 171
4.5.15 Ru/H Part 5: Active learning for molecule gun MD . 173

Complete Python code . 173

iii

4.6 Python API . 176
4.6.1 SimpleActiveLearningJob . 177
4.6.2 SimpleActiveLearningResults . 179

4.7 Frequently Asked Questions . 180
4.7.1 What kind of properties can I fit? . 180
4.7.2 Can I run on the GPU? . 181
4.7.3 What kinds of MD simulations can I run? . 181
4.7.4 Can VASP be used with Simple Active Learning? . 182

Index 183

iv

CHAPTER

ONE

CHEMTRAYZER2

ChemTraYzer2 (CT2) is a tool for post-processing reactive molecular dynamics (MD) trajectories. The purpose of CT2
is to detect and distinguish the reactive events that occur, construct a database of unique reactions from these events,
and then calculate aggregate kinetic and population properties for the trajectory. Practically speaking, CT2 is capable of
greatly simplifying MD simulations into a set of useful values such as reaction rate constants1, net fluxes for all chemical
species, and occurrence counts for all reactions. ChemTraYzer2 is the successor of ChemTraYzer.
See also:
The GUI tutorial Detecting reactions with ChemTraYzer 2: Hydrogen combustion with ReaxFF will show you how to set
up and perform a ChemTraYzer2 analysis using the Graphical User Interface.

1.1 New in ChemTraYzer2-2023

• trajectory population analysis
• support for trajectories with a non-constant number of atoms
• an improved reaction rates calculator
• additional output files for population statistics

1.2 Important information for using ChemTraYzer2

Bond orders are necessary for post-processing MD trajectories with ChemTraYzer2. CT2 does not estimate bond orders
but instead uses those computed by the MD engine used to run the simulation. Though most AMS engines can compute
bond orders, there are some that cannot (see Summary of engine capabilities). CT2 can still be used with these engines,
but a bond guessing algorithm must be used to estimate the bond orders. This can be done by specifying the following
settings in the MD input.

Important: When preparing MD simulations for use with CT2, it is recommended to set the BondOrders variable in
the Properties block to Yes. This will ensure that bond orders are calculated and stored. Depending on the chosen
engine’s capabilities, either it will supply bond orders or a bond guessing algorithm will be used. More information on
this setting can be found in here

The quality of the ChemTraYzer2’s analysis depends partially on the quality of the bond orders provided, but it is more
dependent on the connectivity information (i.e., whether or not there is a bond between two atoms).

1 L.C. Kroeger et al., Assessing Statistical Uncertainties of Rare Events in Reactive Molecular Dynamics Simulations, Journal of Chemical Theory and
Computation 13, 3955-3960 (2017) (http://dx.doi.org/10.1021/acs.jctc.7b00524)

1

../../AMS/Tasks/Molecular_Dynamics.html#moleculardynamics
../../Tutorials/MolecularDynamicsAndMonteCarlo/ChemTrayzer2.html
../../AMS/Engines.html#available-engines
../../AMS/Engines.html#engines-capabilities
../../AMS/Properties.html#pespointextraproperties
http://dx.doi.org/10.1021/acs.jctc.7b00524
http://dx.doi.org/10.1021/acs.jctc.7b00524

Workflows Manual, Amsterdam Modeling Suite 2025.1

1.3 The ChemTraYzer2 algorithm

The following is a summary of the steps taken by ChemTraYzer2 while post-processing a MD trajectory. All of these
steps are automatically conducted by ChemTraYzer2, so it is not necessary to understand them in detail in order to use
ChemTraYzer2. This section is simply intended to provide the interested user with more technical information about the
algorithm.
(1) Identifying all bond breaking and bond forming events in the the MD trajectory
Bond changes are fundamental to chemical reactions, and the first step of ChemTraYzer2 is to analyze the MD trajectory
and detect all bond change events that occur. ChemTrayzer2 defines a bond change event as either of the following:

• Bond formation – this occurs when the bond order between 2 atoms crosses the BondFormationThreshold
parameter between 2 MD frames. More specifically, this means the bond order between 2 atoms must be below
the BondFormationThreshold in one frame and then above it in the subsequent frame.

• Bond breakage – this occurs when the bond order between 2 atoms decreases to below the BondBreakingTh-
reshold. It is defined analogously to bond formation.

(2) Filtering and combining all bond change events into stable reactions using the TStable criterion
Many bond change events in a MD trajectory might represent the formation of short-lived intermediates that do not need
to be explicitly included in the complete reaction. These intermediates, though perhaps important to the mechanism, do
not affect the overall reactants and products of a reaction and may introduce unwanted complexity to ChemTraYzer2
output. For this reason, the adjustable parameter TStable is used to filter out reactive intermediates which exist for an
amount of time less than TStable. An example of using TStable to filter reactions is provided below.

Fig. 1.1: An example of how ChemTraYzer2 filters reaction events based on the TStable criterion. In this reaction
network, all species in red are determined to be short-lived intermediates and do not appear in the final reactions.

(3) Removing all reactions that have the same reactants and products
It is not uncommon for chemical equilibria to be observed in certain MD trajectories. Certain equilibria occur on a very
short time-scale, meaning a series of bond change events may be filtered out using the TStable criterion. In these cases,
the remaining reaction can have identical molecules on both sides of the reaction, as shown below.

A (+B + ...) −→ A (+B + ...)

These reactions are removed from the final reaction list as they have no effect on net species fluxes, rate constants, etc.

2 Chapter 1. ChemTraYzer2

Workflows Manual, Amsterdam Modeling Suite 2025.1

Note: Reactions that involve bond changes but result in the same molecules will also be filtered. For example, the
following proton transfer will not be included in the final reaction list: H3O+ + H2O → H2O + H3O+. Options for
including these reactions will be present in the next version of CT2.

(4) Aggregating equivalent reactions
After the filtering steps are complete, all equivalent reaction events are combined into a set of unique reactions that have
occurred in the MD trajectory. More specifically, the reaction event A → B may have happened multiple times in the
trajectory, and each of these will count toward one occurrence of the A → B reaction. More detail about determining
when two reactions (or molecules) are equivalent is provided in the following section.

1.4 Distinguishing reactions with ChemTraYzer2

In ChemTraYzer2, reactions are determined to be equivalent using a very straightforward condition: two reactions (R1
and R2) are equivalent if the sets of reactant/product molecules of R1 and the sets of reactant/product molecules of
R2 are equivalent. Comparing reactions in this way requires defining the equivalence of two individual molecules, and
this is more challenging to assess. In the original ChemTraYzer, molecule equivalence is determined via a comparison
of canonical SMILES strings. Though SMILES can represent a large number of chemical structures, they fall short in
representing the complete space of chemical reactions. For this reason, ChemTraYzer2 evaluates each molecule using a
subgraph-based descriptor, which is generalizable to the complete reactive chemical space. ChemTraYzer2’s subgraph
descriptor builds local atomic environments using a breath-first search of each atom in a molecule, evaluates a unique
hash value for each atom, and finally sums these hash values to produce a unique hash value for each unique molecule.
This is summarized in the figure below.

Fig. 1.2: The subgraph-based descriptors used to distinguish molecules in ChemTraYzer2

Note: The current version of the subgraph descriptors do not distinguish stereoisomers

1.4. Distinguishing reactions with ChemTraYzer2 3

Workflows Manual, Amsterdam Modeling Suite 2025.1

1.5 Using ChemTraYzer2 from the GUI

ChemTraYzer2 is fully supported in the AMS GUI. A thorough description of using the GUI can be found in the Chem-
TraYzer2 GUI tutorial.

1.6 Tips for getting the most out of ChemTraYzer2

1.6.1 The MD simulation

• It is important to ensure the simulation is on a time scale that is long enough to observemultiple reaction events.
Multiple occurrences of reactions improve the accuracy of calculations of kinetic parameters such as reaction rate
constants.

• The sampling frequency of MD trajectories should be sufficiently small to observe all important reactions. In
AMS MD simulations, this is controlled by the SamplingFreq keyword in the Trajectory block (see the
Molecular dynamics page for more details). If the sampling frequency is too large, important reaction events may
not be detected by ChemTraYzer2, which will have an effect on the quality of the reported properties. A rough
recommendation would be to set the sampling frequency to at most 10 for a time step of 0.25 fs, but the best value
for this parameter depends on the temperature of the simulation.

1.6.2 ChemTraYzer2 Settings

• Set the TStable parameter to an appropriate value. Typically, the default value will work for many appli-
cations. However, the user can adjust this parameter to generate output on the spectrum between many reactive
intermediates (low TStable) and a summary of only the main reactions (high TStable). Generally, it is best to
adjust TStable to a level where all important intermediates are long-lived enough to appear in the final output.
You may want to perform a few CT2 analysis using different values for TStable to see how this affects the
results.

• Set the BondBreakingThreshold and BondFormationThreshold parameters to appropriate val-
ues for the chemical system. The default values are suitable for most types of systems, but these threshold values
may need to be changed in certain cases (e.g., the MD engine calculates bond orders with a systematic error, bonds
in the system have partial ionic character, etc.).

• Set the rate confidence interval RateConfidence to adjust bounds for the reaction rate constants. CT2
assumes the number of observed reactive events are distributed according to a Poisson distribution, where the
expected value is used to calculate the reaction rate constant. The confidence interval specifies what ratio of the
event counts will fall between the lower and upper bounds, with the condition that both bounds represent an equal
number of events. Usually, a confidence interval of 95% is used, which corresponds roughly to 2σ in a normal
distribution. For more details about this approach, seePage 1, 1.

1.7 Minimal input

This is the minimal input script for performing a chemtrayzer2 analysis of your MD trajectory:

#!/bin/sh

$AMSBIN/chemtrayzer2 << EOF
Trajectory

Path path/to/the/ams/results/folder

(continues on next page)

4 Chapter 1. ChemTraYzer2

../../Tutorials/MolecularDynamicsAndMonteCarlo/ChemTrayzer2.html
../../Tutorials/MolecularDynamicsAndMonteCarlo/ChemTrayzer2.html
../../AMS/Tasks/Molecular_Dynamics.html#moleculardynamics

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
End

EOF

1.8 Input options

Several input options can be specified in the chemtrayzer2 input.
The trajectory the user wants to analyze can be specified in the Trajectory block:

Trajectory
FinalFrame integer
FirstFrame integer
Path string

End

Trajectory

Type
Block

Description
Info regarding the trajectory to analyze.

FinalFrame

Type
Integer

Default value
-1

Description
Last frame of the trajectory to analyze.

FirstFrame

Type
Integer

Default value
1

Description
First frame of the trajectory to analyze.

Path

Type
String

Description
The path to ams results dir of an AMS calculation. This folder must contain a ams.rkf file.

Reaction detection options can be specified in the ReactionDetection block:

ReactionDetection
BondBreakingThreshold float
BondFormationThreshold float

(continues on next page)

1.8. Input options 5

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
InitialBondThreshold float
TStable float

End

ReactionDetection

Type
Block

Description
Parameters for the the reaction detection algorithm.

BondBreakingThreshold

Type
Float

Default value
0.3

Description
The bond-order threshold for bond breaking. If the bond order of a bond goes below this value,
the bond is considered broken.

BondFormationThreshold

Type
Float

Default value
0.8

Description
The bond-order threshold for bond formation. If the bond order between two atoms goes above
this value, then this will be considered to be a new bond.

InitialBondThreshold

Type
Float

Description
The bond-order threshold for determining the connectivity for the first frame of the simulation.
If not specified, the value in BondFormationThreshold will be used instead.

TStable

Type
Float

Default value
10.0

Unit
fs

GUI name
T stable

Description
The minimum time for a molecule to be considered stable.

Options for the analysis of the reactions:

6 Chapter 1. ChemTraYzer2

Workflows Manual, Amsterdam Modeling Suite 2025.1

Analysis
PerformAnalysis Yes/No
RateConfidence float

End

Analysis

Type
Block

Description
Statistical post-detection analysis, includes reaction coefficients calculation.

PerformAnalysis

Type
Bool

Default value
Yes

Description
Determine the reaction rate coefficients and statistical errors for the detected reactions.

RateConfidence

Type
Float

Default value
0.9

Description
Upper and lower bounds to the rate coefficients will be calculated for this confidence (0 <
confidence < 1), assuming a Poisson distribution of the number of reactive events. A value of
0.9 means that the kinetics of 90% of events of one reaction can be described by a coefficient
between the bounds.

Options for Output file writing:

Output
CreateLegacyOutput Yes/No
ShowReactionGraph Yes/No
WriteEventsPerTime Yes/No
WriteKF Yes/No
WriteMolPopulation Yes/No
WriteReactions Yes/No
WriteXYZFiles Yes/No

End

Output

Type
Block

Description
Settings for program output and output file generation.

CreateLegacyOutput

Type
Bool

1.8. Input options 7

Workflows Manual, Amsterdam Modeling Suite 2025.1

Default value
No

Description
Whether to save the reactions, species, and rates as ‘reac.reac.tab’, ‘reac.spec.tab’, and
‘reac.rate.tab’ in the same format as ChemTraYzer 1.

ShowReactionGraph

Type
Bool

Default value
No

Description
Whether or not to show the reaction graph at the end of the calculation. Requires the python
library matplotlib to be installed.

WriteEventsPerTime

Type
Bool

Default value
No

Description
Write two .csv files that contain the number of reactions in every frame
(reaction_events_per_time.csv) and the number of bond changes in every
frame(bond_change_events_per_time.csv)

WriteKF

Type
Bool

Default value
No

Description
Whether to write output to KF

WriteMolPopulation

Type
Bool

Default value
No

Description
Write two .csv files: (1) mol_statistics.csv, which contains basic population statistics (counts,
averages) for each unique species over the entire trajectory; and (2) mol_population.csv, which
provides the count of each unique species in every frame.

WriteReactions

Type
Bool

Default value
Yes

8 Chapter 1. ChemTraYzer2

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
Write two .csv files that contain information about (1) all unique reactions (reactions.csv); and
(2) all individual reaction events (reaction_events.csv).

WriteXYZFiles

Type
Bool

Default value
No

Description
Write XYZ files (geometries) for detected species and XYZ movies for detected reactions into
a subfolder named ‘xyz’.

1.9 Output

1.9.1 Summarizing reactions

ChemTraYzer2 produces 2main output files for summarizing reactions, reaction_events.csv and reactions.
csv. These 2 files are produced with the option WriteReactions in the Output block.

reaction_events.csv

This file contains a list of all bond breaking or bond forming events. These events are complete reactions that occur for
some specific set of molecules at some specific point in the trajectory. Various important properties are included in this
file, a few of which are listed below.

• Initial frame – the MD frame at which the bond change event began
• Final frame – the MD frame at which the bond change event ended
• Reactants/Products – a SMILES-like representation of molecules involved in the reaction
• Reactants atoms indices/Products atoms indices – the atom indices of the molecules involved
in the reaction

reactions.csv

This file contains aggregate information about all unique reactions that occurred in the trajectory. A few important
properties contained in this file are listed below.

• Rate constant – the calculated value of the reaction rate constants. Note that the units for the reaction rate
depend on the reaction order.

• Number of events – the number of times this reaction occurred in the trajectory
• Reaction event indices – the indices of all reactive events that are equivalent to this reaction. The indices
correspond to indices in the reaction_events.csv file.

1.9. Output 9

Workflows Manual, Amsterdam Modeling Suite 2025.1

1.9.2 Reaction frequency

The option WriteEventsPerTime in the Output block will produce two files that detail the accumulated number
of reactions and reaction events per frame over the entire trajectory.

reaction_events_per_time.csv

• Frame – the MD frame
• Time – the simulation time for the frame
• Events the number of reactions that begin in the specified frame

bond_change_events_per_time.csv

• Frame – the MD frame
• Time – the simulation time for the frame
• Events the number of bond change events that occur in the specified frame

1.9.3 Molecular population analysis

The option WriteMolPopulation in the Output block will produce two files that provide summary statistics for
each unique molecule in the trajectory as well as population counts for all frames.

mol_statistics.csv

• Molecule hash – the hash value used to identify a molecule
• SMILES – the SMILES representation of a molecule, should one be available
• Average count – the average number of molecule over the entire trajectory
• Average conc. – the average concentration (in mol/L) of molecule over the entire trajectory
• Mann-Kendall value" – a value in the range [-1,1] that indicates whether a molecule behaves more like a
reactant (with a maximum value of -1) or a product (with a maximum value of +1). Intermediates are expected to
have values around 0.

mol_population.csv

• Frame – the MD frame
• Time – the simulation time for the frame
• Count the number of a particular molecule in a particular frame

10 Chapter 1. ChemTraYzer2

Workflows Manual, Amsterdam Modeling Suite 2025.1

1.9.4 Geometry output

The option WriteXYZFiles will produce xyz files for each unique molecule and a series of xyz frames for each unique
reaction. These files are named according to the molecule and reaction indices and will be placed into a directory called
xyz.

1.9.5 Additional output files

In addition to the main csv output files, ChemTraYzer2 generates a gml
(https://en.wikipedia.org/wiki/Graph_Modelling_Language) file (reaction_network.gml) containing the
full reaction network. At the moment, we don’t offer any built-in tool for visualizing or manipulating this file. The
savvy user might want to import and analyze the .gml file using the networkx (https://networkx.org/) python library or
visualize it with third party graph visualization tools.

1.10 References

1.10. References 11

https://en.wikipedia.org/wiki/Graph_Modelling_Language
https://networkx.org/

Workflows Manual, Amsterdam Modeling Suite 2025.1

12 Chapter 1. ChemTraYzer2

CHAPTER

TWO

OLED DEPOSITION AND PROPERTIES

2.1 General

Starting with the 2022 release of the AmsterdamModeling Suite we include a set ofworkflow scripts for multiscale OLED
modeling. These workflows are developed and validated in close collaboration (https://research.tue.nl/en/impacts/oled)
with the Eindhoven University of Technology to bridge the gap between ab-initio atomistic modeling of OLEDmolecules
with AMS, and device level kinetic Monte Carlo simulations using our Bumblebee code. We aim to provide a fully inte-
grated multiscale simulation platform for the digital screening and prediction of successful OLED materials and devices.

The Amsterdam Modeling Suite implements the atomistic simulation part of this multiscale toolchain in the form of two
workflow scripts:

• Deposition (page 15)
The first step simulates the growth of
a thin film in a molecular dynamics
and force-bias Monte Carlo calculation
mimicking physical vapor deposition.

• Properties (page 26)
In the second step the morphology re-
sulting from the deposition is used to
obtain the distributions (and possibly
spatial correlations) of molecular prop-
erties such as ionization potential, elec-
tron affinity and exciton energies at the
DFT level. Each molecule’s environ-
ment is taken into account in a polar-
izable QM/MM scheme using the DRF
model.

13

https://research.tue.nl/en/impacts/oled
../../Bumblebee/index.html
../../AMS/Tasks/Molecular_Dynamics.html#moleculardynamics
../../AMS/Tasks/Molecular_Dynamics.html#fbmc
../../ADF/Input/DIM-QM.html#DRF
../../ADF/Input/DIM-QM.html#DRF

Workflows Manual, Amsterdam Modeling Suite 2025.1

The output of the Properties (page 26) workflow is
an HDF5 file (page 28) containing a summary of
the calculated material parameters. This file can be
opened in AMSview for a visualization of the re-
sults. The data can be imported into Bumblebee to
perform simulations at the device level.
This manual page describes the technical details and
options of the OLED workflow scripts. For a more
hands-on introduction, you may want to start with
the GUI tutorial, which will guide you through the
entire workflow using the host-guest mixture of 95%
CBP + 5% Ir(ppy)3 as an example.
See also:
Tutorial on multiscale modeling of OLED devices

Note: The OLED workflow scripts use ADF and DFTB. In addition to the Advanced Workflows and Tools license, you
will therefore also need a license for ADF and DFTB in order to use the OLED workflows.

2.1.1 New in AMS2025.1

• Improvements in the deposition workflow:
– The option of offloading the calculation of forces to LAMMPS (page 25) has been further tested and
optimized. It is no longer considered experimental and about ~4x faster than in AMS<2025. On systems
with a GPU, this should allow for depositions with standard settings to finish in less than half a day.

– Error handling and error messages have been improved.
• Improvements and fixes in the properties workflow:

– The NumSelectedMoleculesPerSpecies keyword allows calculating properties only for a ran-
dom subset of molecules per species. This can be used to quickly do “enough” molecules to get suffi-
ciently good statistics as input for our Bumblebee kinetic Monte Carlo code.

– A summary with the results of the calculation is written to a YAML file that can be imported directly
into Bumblebee.

– Startup time for the properties workflow script has been reduced.
– The properties workflow is now more reliable in determining the SMILES strings of the different
molecules.

– An issue in the properties workflow has been resolved that would lead to wrongly extracted, broken-up
molecules for small boxes. This did not affect morphologies from depositions with the default settings,
but could happen if the box was smaller than about twice the extent of a molecule.

14 Chapter 2. OLED Deposition and Properties

../../GUI/AMSview.html
../../Bumblebee/index.html
../../Tutorials/WorkflowsAndAutomation/OLEDMaterials.html
../../ADF/index.html
../../DFTB/index.html
../../Bumblebee/index.html
../../Bumblebee/index.html

Workflows Manual, Amsterdam Modeling Suite 2025.1

2.1.2 New in AMS2023.1

• The exciton energies are now calculated using the PBE0 functional, and should be more accurate.
• The transfer integrals are now calculated with DFT and should be much more accurate than the GFN1-xTB calcu-
lated transfer integrals in AMS2022. (The GFN1-xTB transfer integrals were much too small.)

• The OLED material database has been updated and now contains the PBE0 exciton energies as well as the DFT
transfer integrals. (The morphologies did not change with respect to the 2022 version.)

• Experimental: The deposition workflow can now offload the calculation of forces to LAMMPS (page 25), allowing
much faster depositions if a GPU accelerated LAMMPS installation is available.

• Various technical improvements to the properties workflow script:
– The HDF5 file is now created and populated with NaN values in the beginning of the workflow script.
The NaN values are overwritten with the results as they come in, allowing the file to still be used in case
the workflow is interrupted.

– An interrupted workflow can now be restarted by specifying the output HDF5 file from the interrupted
run with the Restart keyword. Any results on the HDF5 file will then not be recalculated.

– The SelectedMolecules keyword allows you to calculate properties for just a subset of the
molecules.

– Result files of finished jobs will now be removed from disk after extracting the relevant properties. This
massively reduces the disk space required to run the properties workflow script.

– Should now consume less memory on the node executing the workflow script, and be more reliable.
– Thanks to improvements in PLAMS, it is now much easier to run the workflow on multi-node allocations
under SLURM.

• An issue with the automatic atom-typing in the deposition workflow has been fixed. (In AMS2022 nitrogen atoms
would often get the N_3 type, when they should have been N_R.)

2.2 Deposition

The deposition workflow implements a series of mixed molecular dynamics and force-bias Monte Carlo calculations to
simulate the growth of a thin film with physical vapor deposition.
The molecule gun is used to shoot molecules at the substrate. Upon reaching the surface, the force-bias Monte Carlo
method is used to accelerate the search for favorable adsorption sites. This process is repeated until a thin film of a
user-defined thickness has grown on the substrate.
To make this process computationally more efficient, the deposition happens in so-called “cycles”. At the end of each
deposition cycle, the bulk material at the bottom of the growing film is “trimmed off” and stored. Only the two top layers
(each about 10 Å thick) are transferred to the next deposition cycle, where the lower of the two layers is frozen. This
ensures that the trimmed off parts of the system fit perfectly together when the system is reassembled in the end of the
simulation. By depositing in cycles we avoid simulating a lot of bulk material and are able to make the total computational
cost linear in the thickness of the deposited film.
At the end of the simulation the layer deposited by the individual cycles are stacked and a short molecular dynamics
calculation on the entire film is used to anneal it from the deposition temperature down to 300K at ambient pressure.
An entire deposition with 6 deposition cycles (and the final equilibration to room temperature) is shown in the video on
the right.

2.2. Deposition 15

../../AMS/Tasks/Molecular_Dynamics.html#moleculardynamics
../../AMS/Tasks/Molecular_Dynamics.html#fbmc
../../AMS/Tasks/Molecular_Dynamics.html#mdaddmolecules
../../AMS/Tasks/Molecular_Dynamics.html#fbmc
../../AMS/Tasks/Molecular_Dynamics.html#moleculardynamics

Workflows Manual, Amsterdam Modeling Suite 2025.1

2.2.1 Basic input

The minimal input to the deposition workflow just specifies what to deposit:

#!/bin/sh

DEPOSITION_JOBNAME=myDeposition $AMSBIN/oled-deposition << EOF

Molecule
SystemName myMol

End

System myMol
...

End

EOF

The Molecule block is only really used when depositing mixed molecule materials, e.g. host-guest systems. This will
be explained in a separate section (page 21) below. For a single molecule deposition there should just be one Molecule
block that references the only System block by name via the SystemName keyword, as shown in the example above.
The System block used by the OLED deposition script closely follows the System block in the input for the AMS
driver, but supports only a subset of the keywords:
System

Type
Block

Recurring
True

Description
Specification of the chemical system. For some applications more than one system may be present
in the input. In this case, all systems except one must have a non-empty string ID specified after
the System keyword. The system without an ID is considered the main one.

Atoms

Type
Non-standard block

Description
The atom types and coordinates. Unit can be specified in the header. Default unit is Angstrom.

GeometryFile

Type
String

Description
Read the geometry from a file (instead of from Atoms and Lattice blocks). Supported formats:
.xyz

BondOrders

Type
Non-standard block

Description
Defined bond orders. Each line should contain two atom indices, followed by the bond order

16 Chapter 2. OLED Deposition and Properties

Workflows Manual, Amsterdam Modeling Suite 2025.1

(1, 1.5, 2, 3 for single, aromatic, double and triple bonds) and (optionally) the cell shifts for
periodic systems. May be used by MM engines and for defining constraints. If the system is
periodic and none of the bonds have the cell shift defined then AMS will attempt to determine
them following the minimum image convention.

Just like in the AMS driver, as an alternative to the System block, you can also use the LoadSystem block to load a
system directly from a .rkf file of a previous calculation.
The deposition workflow uses the ForceField engine for the molecular dynamics simulation of the physical vapor de-
position. In order to also support the deposition of metal-containing compounds, we use the UFF force field with the
UFF4MOF-II (https://doi.org/10.1021/acs.jctc.6b00664) parametrization for the deposition. As with any calculation
with the ForceField engine you may manually provide (UFF4MOF-II) atom-types, atomic charges and bond orders in the
input file:

System
Atoms

C [...] ForceField.Type=C_R ForceField.Charge=-0.1186
N [...] ForceField.Type=N_R ForceField.Charge=-0.2563
H [...] ForceField.Type=H_ ForceField.Charge=+0.1021
[...]

End
BondOrders

1 2 1.0
1 5 1.5
1 6 1.5
[...]

End
End

Whatever is not specified in the input will automatically be determined: the input system is optimized with ADF using
the S12g exchange-correlation functional with a TZP basis set. At the optimized geometry, the Charge Model 5 is used
to calculate the atomic charges, while the rounded Nalewajski-Mrozek bond orders determine the topology. See the ADF
manual for details on the calculation of charges and bond orders. Finally, using the topology determined by the calculated
bond orders, the automatic UFF atom-typing that is built into the ForceField engine is used to determine the atom-types.
If you want to make sure the correct atom-types and bonds are used in your calculation, we recommend building the
system in AMSinput, where you can visually check the bond orders and atom-types to make sure they are correct. The
result can then be exported into a file as a System block via File → Export coordinates → .in. For the atomic charges
we recommend relying on the automatic calculation with ADF. (Just make sure the ForceField.Charge suffixes are
not included in the atom block. Their absence will trigger the automatic charge calculation with ADF.)
By default a box of 60 x 60 x 120 Å is deposited. The first two dimensions give the surface area of the deposited layer,
while the third dimension is the thickness of the layer. The size of the deposited box can be changed using the Size
keyword in the Box block:

Box
Size 60 60 120

End

Box

Type
Block

Description
Specifications of the box into which the material is deposited.

Size

2.2. Deposition 17

../../AMS/System.html#loadsystem
../../AMS/System.html#loadsystem
../../ForceField/index.html
../../AMS/Tasks/Molecular_Dynamics.html#moleculardynamics
https://doi.org/10.1021/acs.jctc.6b00664
../../ForceField/index.html
../../ADF/Input/Results_Output.html#charge-model-5
../../ADF/Input/Results_Output.html#bond-order-analysis
../../ADF/Input/Advanced_analysis.html#advanced-charge-density-and-bond-order-analysis
../../ADF/Input/Advanced_analysis.html#advanced-charge-density-and-bond-order-analysis
../../ForceField/Atom_typing_behaviour.html#uff
../../ForceField/index.html

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Float List

Default value
[60.0, 60.0, 120.0]

Unit
Angstrom

GUI name
Box size

Description
Specify the desired size of the box. The final deposited box may have a different size. The
x- and y-axis are perpendicular to the direction of deposition, so these may be regarded as the
width of the growing layer. The z-axis is the direction along which the deposition happens, so
this determines the thickness of the deposited layer. Note that the x- and y-axis will be ignored
if a custom substrate is used: the are of the box is then determined by the lattice of the substrate.
The z-axis can still be freely chosen, but should be large enough that there is enough space for
the substrate itself and to deposit more molecules on top of it.

With sizes typical for molecules used in OLED devices, the default box size results in a deposition of ~500 molecules.
Note that the computational time of a deposition scales linearly with the thickness of the layer, but quadratically with the
surface area. This is because a larger area requires both the deposition of more molecules to fill the box, but also makes
each MD step more expensive as more molecules have to be simulated at the same time. When increasing the thickness
of the layer, molecules at the bottom are first frozen, and later removed from the simulation altogether, giving an overall
linear scaling.
The temperature at which the deposition is performed can be configured in the Deposition section.

Deposition
Temperature float

End

Deposition

Type
Block

Description
Specifies the details of how molecules are deposited.

Temperature

Type
Float

Default value
600.0

Description
The temperature at which the deposition happens.

Finally, there are a couple more technical options in the Deposition section, that we suggest to leave at their default
values.

Deposition
Frequency integer
TimeStep float
ConstrainHXBonds Yes/No

(continues on next page)

18 Chapter 2. OLED Deposition and Properties

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
NumMolecules integer

End

Deposition

Type
Block

Description
Specifies the details of how molecules are deposited.

Frequency

Type
Integer

Default value
10000

Description
The frequency in MD steps at which new molecules will be added to the system.

TimeStep

Type
Float

Default value
1.0

Unit
Femtoseconds

Description
The time difference per step.

ConstrainHXBonds

Type
Bool

Default value
Yes

GUI name
Constrain H-* bonds

Description
Constrain the bond length for all H-* bonds (i.e. any bond to a hydrogen atom). Doing this
allows choosing a larger time step. If this option is disabled, the TimeStep needs to be reduced
manually.

NumMolecules

Type
Integer

Description
The number of molecules that we will try to deposit. If not specified the number will be deter-
mined automatically such that the box becomes approximately full.

2.2. Deposition 19

Workflows Manual, Amsterdam Modeling Suite 2025.1

2.2.2 Output

Running the oled-deposition workflow script creates a single directory in which you can find all results of a de-
position. By default this directory is named oled-deposition.results, but in order to avoid name clashes, that
location can be changed with the AMS_JOBNAME environment variable. The example below will collect all results in the
directory myLayer.results:

#!/bin/sh

AMS_JOBNAME=myLayer $AMSBIN/oled-deposition << EOF
...
EOF

Let us go through all files and folders in the working directory in the order in which they are created.
Firstly, the working directory contains the oled-deposition.log logfile. The contents of the logfile are identical
to what you see on standard output when running the oled-deposition workflow.
The deposition workflow starts with a couple of calculations on single molecules in vacuum. Each of them runs in a
separate folder, in which you can find the usual AMS output files (such as ams.rkf):

myMol.dft_opt/
myMol.ff_opt/
myMol.equilibrate_ff_input_molecule/

Here myMol corresponds to the name of the molecule that was used in the input file. The myMol.dft_opt direc-
tory contains the results of the initial geometry optimization with ADF, which is used to determine the atomic charges
and bond orders if these were not specified in the input. The myMol.ff_opt directory contains the results of a sub-
sequent geometry optimization using the ForceField engine with the UFF4MOF-II forcefield. Finally in the myMol.
equilibrate_ff_input_molecule directory a short MD simulation at the deposition temperature is performed
to equilibrate the molecule to the desired temperature. We suggest visualizing the trajectory of this equilibration in
AMSmovie to make sure the molecule does not undergo unexpected conformational changes that could be caused by
wrong atom-types or bonds. If the molecule behaves strangely (or falls apart) at this point, one may need to go back and
assign atom-types and bonds manually (page 17) in the input.
When depositing mixtures (page 21) you will see multiple instances of the three directories above: one for each deposited
species.
Once all the preparatory work is done, the actual deposition cycles (page 15) each write a folder and (upon completion of
the cycle) two files:

depo_cycle_1/
depo_box.1.in
depo_box.1.xyz

You can follow the progress of your deposition by opening the ams.rkf in the last depo_cycle_*/ directory. The
depo_box.*.in and depo_box.*.xyz files contain the entire morphology deposited so far: by visualizing them
in order you can watch your material grow!

Important: The files with the .in extension contain the System geometry in the form of a System block. This format
contains bond orders, force field atom types as well as atomic charges. It can be opened in AMSinput and PLAMS and
should be the preferred format when working with the OLED workflow scripts in AMS. The .xyz file is in extended
XYZ format and does not contain that extra information. Always use a .in file when transferring a system from one
script to the next, e.g. when going from the OLED deposition to the OLED properties workflow (page 26).

Once all molecules have been deposited the entire box is annealed from the deposition temperature down to room tem-
perature. This creates one directory and (upon completion) .in and .xyz files containing the annealed morphologies:

20 Chapter 2. OLED Deposition and Properties

../../AMS/Input_Output.html#ams-output
../../ForceField/index.html
../../AMS/System.html#systemdefinition
../../AMS/Appendices.html#extendedxyz
../../AMS/Appendices.html#extendedxyz

Workflows Manual, Amsterdam Modeling Suite 2025.1

equilibrate_box/
equil_box.in
equil_box.xyz

The last step is to take the room temperature morphology and perform a geometry optimization on it. This essentially
removes all thermal vibrations and results in a geometry that is relaxed at the force field level. As you might expect, the
last step also produces a folder and (upon completion) .in and .xyz files:

optimize_box/
morphology.in
morphology.xyz

It is up to the user to decide whether to continue to the OLED properties workflow (page 26) with the morphology from
equil_box.in (equilibrated to 300K) or morphology.in file (fully relaxed). We recommend using the fully
relaxed morphology though. We also used fully relaxed morphologies for the generation of the OLED material database
(page 38).

2.2.3 Deposition of host-guest materials

A deposition of host-guest materials can easily be done by specifying multiple Molecule and System blocks in the
input. The following runscript generates a 95 to 5 mixture (by number of molecules) of two compounds:

#!/bin/sh

AMS_JOBNAME=host_guest $AMSBIN/oled-deposition << EOF

Molecule
SystemName myHost
MoleFraction 0.95

End
Molecule

SystemName myGuest
MoleFraction 0.05

End

System myHost
...

End
System myGuest

...
End

EOF

Molecule
MoleFraction float
SystemName string

End

Molecule

Type
Block

Recurring
True

2.2. Deposition 21

Workflows Manual, Amsterdam Modeling Suite 2025.1

GUI name
Molecules

Description
Specification of the molecule to be deposited.

MoleFraction

Type
Float

Default value
1.0

GUI name
Molar fraction

Description
The relative occurrence of the molecule with regard to other deposited species. Only relevant
for mixed molecule depositions.

SystemName

Type
String

GUI name
Molecule

Description
String ID of a named [System] to be inserted. The lattice specified with this System, if any, is
ignored and the main system’s lattice is used instead.

You can have an arbitrary number of Molecule blocks in your input to deposit multi-component mixtures. Obviously,
the box your are depositing must be large enough that it still contains at least a few molecules of the rarest component.
Note that multiple Molecule and System blocks can also be used to deposit different conformers of the same com-
pound. While conformational changes can in principle happen over the course of the MD simulation, it may be a good
idea to deposit a mixture of conformers directly if their geometries are very different.

2.2.4 Deposition of interfaces

By default the deposition will use a single graphene layer as a substrate. The graphene layer is removed after the first
deposition cycle (page 15) and will not be included in the output morphologies, i.e. the .in files in the working directory
(page 20). Note that the graphene layer is not present in the annealing of the entire morphology from deposition temper-
ature to 300K, which is performed at the end of the workflow. The result of this is that both the bottom and top of the
deposited thin-film by default represents an interface between the material and a vacuum.
Instead of depositing on a clean graphene sheet, the deposition workflow also supports custom substrates. This is intended
to be used for depositing a thin film of one material on top of another material and allows users to study the interface
between the two. A custom substrate is set up using the Substrate and SubstrateSystem keys in the Box block.

Box
Substrate [Graphene | Custom]
SubstrateSystem string

End

Box

Type
Block

22 Chapter 2. OLED Deposition and Properties

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
Specifications of the box into which the material is deposited.

Substrate

Type
Multiple Choice

Default value
Graphene

Options
[Graphene, Custom]

Description
The substrate on which to grow the layer.

SubstrateSystem

Type
String

GUI name
Custom substrate

Description
String ID of a named [System] to be used as a substrate. (This is only used when the Substrate
key is set to Custom.)

Here the value of the SubstrateSystem refers to a named System block in the input, representing the geometry of
the substrate. The following example shows how to deposit a molecule B on top of a substrate of molecule A:

#!/bin/sh

AMS_JOBNAME=molB_on_molA $AMSBIN/oled-deposition << EOF

Molecule
SystemName molB

End
System molB

...
End

Box
Size 0 0 240
Substrate Custom
SubstrateSystem molA_substrate

End

System molA_substrate
Atoms

...
End
BondOrders

...
End
Lattice

...
End

End

(continues on next page)

2.2. Deposition 23

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)

EOF

The contents of the block System molA_substrate should be obtained by first running a deposition of molecule
A: just use the System block found in e.g. the equil_box.in file of that deposition as the custom substrate for the
next job. (Note that no attempt will be made to automatically determine atomic charges, bond orders, or force-field atom
types for the molecules in the substrate. Taking the System block from the results of an earlier deposition is the easiest
way to ensure that you are using exactly the same bonds, atom types and charges for the substrate molecules in the new
calculation.)

Warning: The custom substrate option can currently not be used to deposit thin films on top of crystalline materials.
The substrate must consist of individual molecules and be >20 Å thick, so that it can be split into a frozen (lower) and
a thermostatted (upper) layer.

Note that the Box%Size in the x- and y-direction is ignored when using a custom substrate: the size of the custom
substrate is used instead. The thickness of the layer can be set manually when using a custom substrate, but it needs to
accommodate both the already existing substrate as well as the newly grown film on top. Assume that the thickness of the
substrate film is 120 Å in the example above. By setting the the z-value of the Box%Size to 240 Å, we will have space
to accommodate the substrate and then grow another layer of 120 Å thickness on top of it. Note that while the default
graphene layer is removed from the morphology, a custom substrate will be included in the morphology.

2.2.5 Restarting

The OLED workflow scripts are based on the PLAMS scripting framework. As such it can rely on the PLAMS rerun
prevention to implement restarting of interrupted depositions.
The easiest way to restart a deposition is to include the --restart (or short: -r) command line flag:

#!/bin/sh

AMS_JOBNAME=myDeposition $AMSBIN/oled-deposition --restart << EOF
...
EOF

This first (interrupted) run will have created the myDeposition.results directory. Running the above script again
will move that directory to myDeposition.results.bak and reuse all successful jobs from the first run. (People
already familiar with PLAMS will recognize that this works just like the -r flag on the PLAMS launch script.) Note that
this does not restart the previous deposition precisely at the point where it was interrupted. Instead it restarts from the
beginning of the last deposition cycle (page 15).
When running a deposition workflow on a batch system such as SLURM, you may want to consider always including the
--restart flag in your runscript. It is not a problem if there are no previous results to restart from, but in case your job
gets interrupted and automatically rescheduled, the --restart flag will make sure that it continues (approximately)
from where it stopped.
There is also the --load (or short: -l) command line flag:

#!/bin/sh

AMS_JOBNAME=newDepo $AMSBIN/oled-deposition -l oldDepo.results << EOF
...
EOF

24 Chapter 2. OLED Deposition and Properties

../../plams/index.html
../../plams/components/jobmanager.html#rerun-prevention
../../plams/components/jobmanager.html#rerun-prevention
../../plams/general.html#restarting-failed-script

Workflows Manual, Amsterdam Modeling Suite 2025.1

While this can be used to accomplish the same thing the --restart flag would do, its best use is to specify a directory
of a previous deposition of the same molecules. This can save you the initial step of doing the DFT calculations in order
to determine the atomic charges and bonds. A perfect use for this is when you have already deposited a mixture (page 21),
and later decide to change the ratio between the compounds: by specifying the results directory of the first deposition,
the initial DFT calculations can be skipped entirely. (Again, people already familiar with PLAMS will recognize that this
works just like the -l flag on the PLAMS launch script.)

2.2.6 LAMMPS offload

The OLED deposition workflow supports offloading the calculation of the forces to a local LAMMPS installation. This
can easily speed up the deposition by a factor of 10 and more. If a GPU is available then another factor of 2 can be
achieved.

Note: Before enabling offloading, you will need to install LAMMPS and set up the environment as described in Setting
up LAMMPS.

If a local LAMMPS installation is available, it can easily be used through the following keywords in the OLED deposition
input file.

LAMMPSOffload
Enabled Yes/No
UseGPU Yes/No
UseGPUForKSpace Yes/No
UseGPUForNeighbor Yes/No
UseOpenMP Yes/No

End

LAMMPSOffload

Type
Block

Description
Offload the calculation to LAMMPS via AMSPipe.

Enabled

Type
Bool

Default value
No

Description
Enable offloading the force field evaluation to LAMMPS instead of handling it internally in
AMS.

UseGPU

Type
Bool

Default value
No

GUI name
Use GPU

2.2. Deposition 25

../../plams/general.html#restarting-failed-script
../../ForceField/EngineOptions.html#offloading-calculations-to-lammps
../../ForceField/EngineOptions.html#offloading-calculations-to-lammps

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
Accelerate LAMMPS calculations using a GPU. Requires a LAMMPS library built with the
GPU package.

UseGPUForKSpace

Type
Bool

Default value
Yes

Description
When UseGPU is enabled, also use the GPU to accelerate reciprocal space electrostatic inter-
actions. Disabling this can improve performance on less powerful GPUs.

UseGPUForNeighbor

Type
Bool

Default value
Yes

Description
When UseGPU is enabled, also use the GPU to accelerate neighbor searches. Disabling this
can improve performance on less powerful GPUs.

UseOpenMP

Type
Bool

Default value
No

GUI name
Use OpenMP

Description
Parallelize LAMMPS calculations usingOpenMP threading. Requires a LAMMPS library built
with the OMP package.

2.3 Properties

The properties workflow is used to obtain distributions (and possibly spatial correlations) of molecular properties such as
the ionization potential and electron affinity from the morphology. To accomplish this, it will perform DFT calculations
on all the individual molecules from the morphology, taking their environment into account in a QM/MM calculation.
The exact workflow (with all default settings) is as follows:

1. For each molecule in the box, do a quick DFT calculation with LDA and a DZP basis and use the MDC-D charge
model to determine atomic charges. These charges will be used for the electrostatic part of the embedding potential
in the next step.

2. For each molecule in the box:
• Determine which other molecules to consider as the environment. By default all molecules within 15 Å
(atom-atom distance) are considered.

• Individually, for neutral molecule, cation, and anion:

26 Chapter 2. OLED Deposition and Properties

../../ADF/Input/Density_Functional.html#lda
../../ADF/Input/Basis_sets_and_atomic_fragments.html
../../ADF/Input/Results_Output.html#multipole-derived-charges
../../ADF/Input/Results_Output.html#multipole-derived-charges

Workflows Manual, Amsterdam Modeling Suite 2025.1

– Optimize geometry of central QM molecule in frozen MM environment using GFN1-xTB and
UFF4MOF-II with electrostatic embedding in the Hybrid engine.

– Do a DFT single point on the optimized geometry using PBE and an all-electron TZ2P basis. The
environment is taken into account using a polarizable DRF embedding.

• Calculate the (approximately) adiabatic ionization potential and electron affinity from the differences in total
energy with respect to the neutral system.

• Calculate exciton energies and transition dipole moments of the molecule with TD-DFT using the PBE0
functional. This calculation is performed on the optimized geometry of the neutral molecule obtained earlier,
and the environment is again taken into account using a polarizable DRF embedding.

3. For all pairs of neighboring molecules (within 4 Å atom-atom distance of each other) calculate the electron and
hole charge transfer integrals with DFT.

What is described above is the workflow with all default settings. Various aspects of this (such as the ranges) can be
tweaked from the input, as shown in the Settings section (page 32) below.

2.3.1 Basic input

The simplest possible input for the oled-properties workflow script is just a single System block.

#!/bin/sh

$AMSBIN/oled-properties << EOF

System
Atoms

...
End
Lattice

...
End
[BondOrders

...
End]

End

EOF

Obviously, the Atoms and Lattice blocks are required, while the BondOrders block is optional. If the bond orders
are present, they will be used to determine which parts of the system are connected, which ultimately determines which
sets of atoms are considered distinct molecules. If the BondOrders block is not present, the bonds will be guessed.
Since we only care about which atoms are bonded at all, and not on details such as the bond order, this should work quite
reliably.
Nevertheless, if the morphology was obtained with the AMS deposition workflow (page 15), we can use the fact that
it writes out the morphology as a .in file containing exactly the System block we need. Basically, we use the
morphology.in output file of the deposition as the input for the properties script.

#!/bin/sh

$AMSBIN/oled-deposition << EOF
... see oled-deposition manual page ...

EOF

$AMSBIN/oled-properties < oled-deposition.results/morphology.in

2.3. Properties 27

../../DFTB/DFTB_Model_Hamiltonian.html#extended-tight-binding-xtb
../../Hybrid/EngineOptions.html#qm-mm
../../Hybrid/index.html
../../ADF/Input/Density_Functional.html#gga
../../ADF/Input/Basis_sets_and_atomic_fragments.html
../../ADF/Input/DIM-QM.html
../../ADF/Input/Excitation_energies.html
../../ADF/Input/Time-dependent_DFT.html
../../ADF/Input/Density_Functional.html#hybrid
../../ADF/Input/DIM-QM.html
../../ADF/Input/Charge_transfer_integrals.html#charge-transfer-integrals-with-the-transferintegrals-key

Workflows Manual, Amsterdam Modeling Suite 2025.1

This has the advantage that the bonds are guaranteed to be transferred without change between the two workflows.
By default the properties are calculated for all molecules in the morphology, but this can be limited with the following
keywords:
NumSelectedMoleculesPerSpecies

Type
Integer

Description
Number of molecules per species to calculate properties for. Around 50 molecules per species
should be enough to estimate distribution means and standard deviations as input for the Bumblebee
KMC code. Mutually exclusive with the SelectedMolecules keyword. If neither this key nor
SelectedMolecules is present, all molecules will be selected.

SelectedMolecules

Type
Integer List

Description
Indices of the molecules to calculate properties for. Note that indexing starts at 0. Mutually ex-
clusive with the NumSelectedMoleculesPerSpecies keyword. If neither this key nor
NumSelectedMoleculesPerSpecies is present, all molecules will be selected.

2.3.2 Output

Results directory

Running the oled-properties workflow script creates a single directory in which you can find all results of the
calculation. By default this directory is named oled-properties.results, but in order to avoid name clashes,
that location can be changed with the AMS_JOBNAME environment variable. The example below will collect all results
in the directory myMaterial.results:

#!/bin/sh

AMS_JOBNAME=myMaterial $AMSBIN/oled-properties << EOF
...
EOF

This will create the myMaterial.results directory with the following files:

myMaterial.results/
├── oled-properties.log
├── oled-properties.rkf
├── properties.hdf5
└── properties.yml

The primary output file is the properties.hdf5 file, which we will discuss in the next section. The properties.
yml file contains a summary of the results that can be directly used as input for the Bumblebee kinetic Monte Carlo
code.
While the workflow is still running, you will also find subdirectories with the output of the individual DFT calculations
in the results directory. By default these subdirectories are deleted as soon as the relevant properties have been extracted.
Only the output of failed calculations is kept to aid in debugging any issues. What is kept or deleted can be configured
with the following keyword:
StoreResultFiles

28 Chapter 2. OLED Deposition and Properties

../../Bumblebee/index.html

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Multiple Choice

Default value
Failed

Options
[None, Failed, All]

Description
Whether to keep the full result files from all the individual jobs. By default the result files from all
jobs for a particular molecule will be deleted after all relevant results have been extracted and stored
on the HDF5 file. Note that keeping the full results for all molecules can easily require hundreds
of gigabytes of storage space.

Data on the HDF5 file

The main output file of an OLED properties calculation is a small HDF5 file
(https://en.wikipedia.org/wiki/Hierarchical_Data_Format) called properties.hdf5. It contains the results
that are of interest for the design of OLED materials, such as site energies, exciton energies, (transition) dipole moments,
etc.
The following groups and datasets can be found on the HDF5 file. (Note that all arrays on the HDF5 file are indexed
starting from zero.)
The species group contains information about the different molecular species making up the morphology. There are
two arrays in the species group whose size is equal to the number of different species (numSpecies):
species.name

An array of human readable names identifying the molecular species making up the morphology. Currently this is
just the molecular formula in Hill notation (https://en.wikipedia.org/wiki/Chemical_formula#Hill_system).

species.smiles
An array of SMILES (https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system) strings for the
different molecular species. May contain a dummy value in case the determination of the SMILES string from the
3D structure fails for a species.

Themolecules group contains the complete geometrical description of themorphology. It contains a number of arrays,
(almost) all of which have the total number of molecules (numMolecules) as their size:
molecules.species

An array of integers denoting the species of each molecule. Used to index into the arrays in the species group.
molecules.lattice

(3 x 3) array containing the lattice vectors in Ångstrom.
molecules.position

(numMolecules x 3) array containing the center of mass positions of all molecules in Ångstrom. Note that all
center of mass positions are within the parallelepiped spanned by the lattice vectors, i.e. all fractional coordinates
are in the [0,1] range.

molecules.atoms
This is a numMolecules sized 1D array, where each element itself is an array of string,float,float,
float tuples representing symbol,x,y,z. The x, y and z coordinates are given in Ångstrom.

molecules.bonds
This is a numMolecules sized 1D array, where each element itself is an array of int,int,float tuples
representing atom1,atom2,bondOrder. Here atom1 and atom2 are indices into the corresponding element

2.3. Properties 29

https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://en.wikipedia.org/wiki/Chemical_formula#Hill_system
https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system

Workflows Manual, Amsterdam Modeling Suite 2025.1

of the molecules.atoms array. The bondOrder is a floating point number, where the value of 1.5 is used
to represent an aromatic bond.

The site energies are contained in the energies group on the HDF5 file:
energies.IP

A numMolecules sized array containing the first ionization potential for each molecule in eV.
energies.EA

A numMolecules sized array containing the first electron affinity for each molecule in eV.
energies.HOMO

A numMolecules sized array containing the Kohn-Sham orbital energy of the highest occupied orbital in eV.
If requested via the NumAdditionalOrbitalEnergies keyword in the input (page 32) of the properties
workflow, more arrays of this type (HOMO-1, HOMO-2, …) may exist and contain the orbital energies of lower
lying occupied orbitals.

energies.LUMO
A numMolecules sized array containing the Kohn-Sham orbital energy of the lowest unoccupied orbital in eV.
If requested via the NumAdditionalOrbitalEnergies keyword in the input (page 32) of the properties
workflow, more arrays of this type (LUMO+1, LUMO+2, …) may exist and contain the orbital energies of higher
lying virtual orbitals.

Similarly the exciton energies (in eV) can be found in the exciton_energies group. If the calculation of exciton
energies was disabled by setting NumExcitations to 0 in the input (page 32), this information is not present.
exciton_energies.S1

Energies of the first excited singlet state (S1) with respect to the ground state. Higher singlet excitation energies may
be found in more arrays of this type (S2, S3, …) if their calculation was requested by setting NumExcitations
to a value larger 1.

exciton_energies.T1
Energies of the first excited triplet state (T1) with respect to the ground state. Higher triplet excitation energies may
be found in more arrays of this type (T2, T3, …) if their calculation was requested by setting NumExcitations
to a value larger 1.

Static dipole moments and transition dipole moments (in Debye) can be found in their respective groups:
static_multipole_moments.dipole_moment

(numMolecules x 3) array containing the dipole moment vectors for each molecule.
transition_dipole_moments.S1_S0

(numMolecules x 3) array containing the transition dipole moment vectors for the S0 → S1 transition for
each molecule. Transition dipole moments for higher singlet excitations may be found in more arrays of this type
(S2_S0, S3_S0, …) if their calculation was requested by setting NumExcitations to a value larger 1.

If the calculation of transfer integrals is requested with the TransferIntegrals%Type key in the input (page 32),
the pairs and transfer_integrals groups will also be available on the HDF5 file, containing the following
datasets:
pairs.indices

A (numPairs x 2) array of integers containing the molecule indices for all pairs of molecules that were considered
close enough to trigger the calculation of transfer integrals between them.

transfer_integrals.electron
A numPairs sized array containing the transfer integral (in eV) for electrons between each pair.

transfer_integrals.hole
A numPairs sized array containing the transfer integral (in eV) for holes between each pair.

30 Chapter 2. OLED Deposition and Properties

Workflows Manual, Amsterdam Modeling Suite 2025.1

Accessing the HDF5 file

The easiest way to view the data from the HDF5 file is to open it in the GUI using the AMSview module. There you can
easily plot histograms of all the calculated properties, but also visualize the spatial distribution of the properties.
For more custom-built analysis, the HDF5 file can easily be opened from Python using the h5py (https://www.h5py.org/)
library, which is included in the AMS Python Stack. The following code snippet shows how to calculate the mean and
standard deviation of the ionization potential:

import h5py

with h5py.File("properties.hdf5", "r") as f:
IPs = f['energies']['IP'][:]
print("IP = ", IPs.mean(), "±" , IPs.std())

The above snippet is only suitable for calculations of pure compounds, as we are calculating the mean and standard
deviation over all molecules, not taking their species into account. For mixtures (page 21), calculating these properties
per species would be much more useful. This can easily be accomplished by using an appropriate mask on the IPs array
for the calculation of the mean and standard deviation:

import h5py
import numpy as np

with h5py.File("properties.hdf5", "r") as f:
IPs = f['energies']['IP'][:]
speciesIDs = f['molecules']['species'][:]

for specID, specName in enumerate(f['species']['name']):
mask = (speciesIDs==specID) & (~np.isnan(IPs))
print(specName)
print("IP = ", IPs[mask].mean(), "±" , IPs[mask].std())

Note how we also use the mask to exclude all NaN elements in the array from the calculation of the mean and standard
deviation. Occasional NaN values in the arrays on the HDF5 file indicate that a property could not be calculated for a
molecule because the job for it crashed or failed in some other way. This is not a problem as long as it happens only
rarely, but the NaN values need to be excluded from the analysis.

Summarizing the results

Often one is not interested in all the values for the individual molecules, but just the centers and widths of the distri-
butions. Such a summary is already printed at the end of the oled-properties workflow script. Using the Python
OLEDPropertiesSummary (page 31) class, such a summary can easily be produced from an HDF5 file.
class OLEDPropertiesSummary(f, outlier_Zmax=16)

A summary of the results of the OLEDProperties workflow.
__init__(f, outlier_Zmax=16)

Calculates a summary of the results on an HDF5 file.
Parameters

• f (h5py.File) – The HDF5 file to summarize.
• outlier_Zmax (float, optional) – The modified Z score above which a datapoint
is excluded as an outlier. Defaults to 16.

2.3. Properties 31

../../GUI/AMSview.html
https://www.h5py.org/
../../Scripting/Python_Stack/Python_Stack.html

Workflows Manual, Amsterdam Modeling Suite 2025.1

__str__()

Produces a human readable summary of the results.
The same summary is also printed at the end of an oled-properties workflow run.

as_yaml()

Returns a a summary of the calculation in a YAML format that can be imported into Bumblebee Web.
This is for example useful to produce the Bumblebee compatible YAML files from already existing HDF5 files.

import h5py
from scm.oledtools import OLEDPropertiesSummary

summary = OLEDPropertiesSummary(h5py.File("oled-properties/properties.hdf5"))
print(summary.as_yaml())

Note that starting with AMS2025, the properties.yml file is automatically produced at the end of the
oled-properties workflow script.

2.3.3 Additional settings

The OLED properties workflow script has a few options that determine what properties will be calculated and/or written
to the HDF5 file (page 29):

NumAdditionalOrbitalEnergies integer
NumExcitations integer
TransferIntegrals

Include
Cutoff float
Metric [CoM | Atoms | Atoms_noH]

End
Exclude

Cutoff float
Metric [CoM | Atoms | Atoms_noH]

End
Type [None | Fast | Full]

End

NumAdditionalOrbitalEnergies

Type
Integer

Default value
1

Description
The number of additional orbital energies to write to the HDF5 file. A value of N means to write
everything up to HOMO-N and LUMO+N.

NumExcitations

Type
Integer

Default value
1

32 Chapter 2. OLED Deposition and Properties

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
The number of exited states to calculate. By default the S_1 and T_1 states will be calculated. The
calculation of excited states is currently only supported for systems with a closed-shell ground state.

TransferIntegrals

Type
Block

Description
Configures the details of the calculation of electron and hole transfer integrals.

Exclude

Type
Block

Description
Configures which dimers NOT to calculate transfer integrals for.

Cutoff

Type
Float

Default value
4.0

Unit
Angstrom

GUI name
Exclude beyond

Description
Exclude dimers for which the distance is larger than this threshold. Acts as a quick pre-
screening to reduce the number of dimers to calculate transfer integrals for.

Metric

Type
Multiple Choice

Default value
Atoms

Options
[CoM, Atoms, Atoms_noH]

Description
The metric used to calculate the distance between two molecules.
• CoM: use the distance between the centers of mass of the two molecules.
• Atoms: Use the distance between the two closest atoms of two molecules.
• Atoms_noH:Use the distance between the closest non-hydrogen atoms of the twomolecules.

Include

Type
Block

Description
Configures which dimers transfer integrals are calculated for.

2.3. Properties 33

Workflows Manual, Amsterdam Modeling Suite 2025.1

Cutoff

Type
Float

Default value
4.0

Unit
Angstrom

GUI name
Include within

Description
Transfer integrals will be calculated for all molecule pairs within a cutoff distance from each
other. This distance can be measured using different metrics, see the corresponding Metric
keyword.

Metric

Type
Multiple Choice

Default value
Atoms

Options
[CoM, Atoms, Atoms_noH]

Description
The metric used to calculate the distance between two molecules.
• CoM: use the distance between the centers of mass of the two molecules.
• Atoms: Use the distance between the two closest atoms of two molecules.
• Atoms_noH:Use the distance between the closest non-hydrogen atoms of the twomolecules.

Type

Type
Multiple Choice

Default value
Fast

Options
[None, Fast, Full]

Description
The method used for the calculation of the transfer integrals.

There are also a few options to tweak some aspects of the workflow. For typical OLED molecules, it is recommended to
keep the default settings. When changing these options, verify your results against benchmark calculations for the single
molecules.

Embedding
Charges [DFTB | DFT]
Cutoff float
Metric [CoM | Atoms | Atoms_noH]
Type [None | DRF]

End

(continues on next page)

34 Chapter 2. OLED Deposition and Properties

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
Relax [None | Neutral | All]
OccupationSmearing [None | Ions | All]

Embedding

Type
Block

Description
Configures details of how the environment is taken into account.

Charges

Type
Multiple Choice

Default value
DFT

Options
[DFTB, DFT]

Description
Which atomic charges to use for the DRF embedding.
• DFTB: Use the self-consistent Mulliken charges from a quick DFTB calculation with the
GFN1-xTB model.
• DFT: Use the MDC-D charges from a relatively quick DFT calculation using LDA and a DZP
basis set.

Cutoff

Type
Float

Default value
15.0

Unit
Angstrom

Description
The cutoff distance determining which molecules will be considered the environment of the
central molecule. The maximum possible cutoff distance is half the length of the smallest lattice
vector. The distance can be measured using different metrics, see the Metric keyword.

Metric

Type
Multiple Choice

Default value
Atoms

Options
[CoM, Atoms, Atoms_noH]

Description
The metric used to calculate the distance between two molecules.
• CoM: use the distance between the centers of mass of the two molecules.

2.3. Properties 35

Workflows Manual, Amsterdam Modeling Suite 2025.1

• Atoms: Use the distance between the two closest atoms of two molecules.
• Atoms_noH: Use the distance between the closest non-hydrogen atoms of the two molecules.

Type

Type
Multiple Choice

Default value
DRF

Options
[None, DRF]

Description
The type of embedding used to simulate the molecular environment.

Relax

Type
Multiple Choice

Default value
All

Options
[None, Neutral, All]

Description
Which geometries to relax prior to taking the energy differences for the calculation of ionization
potential and electron affinity. The relaxation is done at the DFTB level using the GFN1-xTBmodel
Hamiltonian with electrostatic embedding in a UFF environment.
• None: Use the geometries directly from the input.
• Neutral: Relax the uncharged molecule and use its optimized geometry for the neutral as well as
the ionic systems. This gives (approximately) the vertical ionization potential and electron affinity.
• All: Individually relax the neutral systems and the ions before calculating the total energies. This
gives (approximately) the adiabatic ionization potential and electron affinity.

OccupationSmearing

Type
Multiple Choice

Default value
Ions

Options
[None, Ions, All]

Description
Determines for which systems the electron smearing feature in ADF will be used. If enabled, the
molecular orbital occupations will be smeared out with a 300K Fermi-Dirac distribution. This
makes SCF convergence easier, as the occupation of energetically close orbitals does not jump
when their energetic order flips. See the ADF manual for details. It is recommended to keep this
option enabled for the ionic systems, which aremore likely to suffer from difficult SCF convergence.

36 Chapter 2. OLED Deposition and Properties

Workflows Manual, Amsterdam Modeling Suite 2025.1

2.3.4 Parallelization

The OLED properties workflow consists of independent chains of calculations for the individual molecules, and therefore
scales very well when running on parallel machines. The OLED properties workflow is computationally very expensive.
While you could theoretically run it on your local machine, you will need HPC facilities to do these calculations within
any reasonable time frame.
Luckily, running the OLED workflow via a batch system has become much easier in the 2023 version, thanks to improve-
ments in the underlying PLAMS library. The .run script for the oled-properties workflow script can now be
submitted to the batch system like any other AMS job.

Note: Multi-node OLED properties jobs are currently only supported for SLURM-based clusters. For other batch
systems, you will be limited to running the jobs on a single node.

The workflow script will internally take care of scheduling the individual jobs within the allocation that was made for it.
All available CPUs are divided into groups, and each group of codes works together on one molecule before moving on to
the next. By default 8 CPUs work together, so the oled-properties script submitted to a 128 core cluster allocation
would internally do calculations for 16 molecules at the same time, each one using 8 cores. The size of the groups can be
configured with the CoresPerJob keyword:

CoresPerJob integer

CoresPerJob

Type
Integer

Default value
8

Description
The number of CPU cores used for each job in the workflow. Combined with the total number
of cores used (set by the NSCM environment variable or the -n command line argument), this
indirectly determines the number of simultaneously running jobs. The default value should usually
be a good choice. When changing this value, make sure you are using all allocated cores by setting
a value that divides the total number of cores, as well as the number of cores on each node.

2.3.5 Restarting

Results are continuously written to the HDF5 file as they are calculated. If a job is interrupted, it will therefore leave an
incomplete HDF5 file on disk, which can be use to restart the workflow by passing it to the Restart keyword:

Restart string

Restart

Type
String

Description
The HDF5 file from a previous calculation on the same morphology. Data already calculated on
the restart file will just be copied over and not be recalculated.

Calculations are then only done for molecules (and dimers) for which not all results have been found on the restart HDF5
file.

2.3. Properties 37

Workflows Manual, Amsterdam Modeling Suite 2025.1

This can be combined with the --load (or short: -l) flag, which uses the PLAMS rerun prevention and may prevent
rerunning jobs for which the full result files are still available in the results directory of the failed job.

$AMSBIN/oled-properties -l "failed.results" << EOF

Restart failed.results/properties.hdf5

System
...

End

EOF

2.4 Material database

The OLED workflows come with a set of precalculated results for standard materials. These are just the results you would
get if you ran both the deposition and properties workflow with all default settings on these materials. This data can be
used as a reference to judge the performance of the workflows before running them on your own compounds.
Due to its size, the OLEDmaterial database is not included with AMS, but can easily be installed via AMSpackages. Once
the material database is installed, you can click either the folder icon next to it in AMSpackages, or the Open button on
the input panel for the deposition workflow in AMSinput to open it in your file browser. Data for each material is stored
in a separate directory, e.g.:

beta-NPB/
├── beta-NPB.in
├── morphology.in
├── properties.hdf5
└── properties.pdf

Here beta-NPB.in contains the 3D structure of the deposited molecule. (It is basically the input to the deposition
workflow, as all other settings were left at their default values.) Note that all molecules from the OLED material database
can also be found in AMSinput through the search box at the top right. The result of the deposition is stored as the
morphology.in file, which can be opened in AMSinput and directly be used as input for the properties workflow.
The resulting properties are stored in the properties.hdf5 file, see HDF5 file (page 29) above for details. A quick
overview of the properties (e.g. the histograms) can be viewed by opening the properties.pdf file in a document
viewer.
As of the 2023.1 release, the OLED material database contains data for the following pure materials, as well as a number
of host-guest systems:

38 Chapter 2. OLED Deposition and Properties

../../plams/components/jobmanager.html#rerun-prevention
../../GUI/AMSpackages.html
../../GUI/New_Input.html

Workflows Manual, Amsterdam Modeling Suite 2025.1

2.4.1 Pure materials

Com-
pound

PubChem CID calc. IP ± σ
[eV]Page 39, 1

calc. EA ± σ
[eV]

BCP 65149 (https://pubchem.ncbi.nlm.nih.gov/compound/65149) 6.63 ± 0.20 1.37 ± 0.18
CBP 11248716 (https://pubchem.ncbi.nlm.nih.gov/compound/11248716)6.06 ± 0.11 1.43 ± 0.12
mCBP 23386664 (https://pubchem.ncbi.nlm.nih.gov/compound/23386664)6.16 ± 0.099 1.34 ± 0.13
mCP 22020377 (https://pubchem.ncbi.nlm.nih.gov/compound/22020377)6.24 ± 0.089 1.14 ± 0.090
mer-Alq3 16683111 (https://pubchem.ncbi.nlm.nih.gov/compound/16683111)5.82 ± 0.29 1.86 ± 0.29
fac-Alq3 16683111 (https://pubchem.ncbi.nlm.nih.gov/compound/16683111)5.88 ± 0.33 1.85 ± 0.32
fac-
Ir(ppy)3

59117881 (https://pubchem.ncbi.nlm.nih.gov/compound/59117881)5.78 ± 0.25 1.54 ± 0.25

mer-
Ir(ppy)3

59117881 (https://pubchem.ncbi.nlm.nih.gov/compound/59117881)5.48 ± 0.17 1.56 ± 0.18

α-MADN 53403806 (https://pubchem.ncbi.nlm.nih.gov/compound/53403806)6.06 ± 0.081 1.66 ± 0.082
β-MADN 53403806 (https://pubchem.ncbi.nlm.nih.gov/compound/53403806)

(isomer)
5.99 ± 0.082 1.70 ± 0.083

α-NPB 5069127 (https://pubchem.ncbi.nlm.nih.gov/compound/5069127) 5.43 ± 0.090 1.55 ± 0.083
α-NPB-
2Me

5069127 (https://pubchem.ncbi.nlm.nih.gov/compound/5069127)
(+ 2 methyl groups)

5.53 ± 0.081 1.54 ± 0.084

β-NPB 21881245 (https://pubchem.ncbi.nlm.nih.gov/compound/21881245)5.42 ± 0.073 1.51 ± 0.072
β-NPB-
2Me

21881245 (https://pubchem.ncbi.nlm.nih.gov/compound/21881245)
(+ 2 methyl groups)

5.50 ± 0.078 1.47 ± 0.074

2-
TNATA

16184079 (https://pubchem.ncbi.nlm.nih.gov/compound/16184079)5.02 ± 0.088 1.63 ± 0.068

MT-
DATA

11061735 (https://pubchem.ncbi.nlm.nih.gov/compound/11061735)4.98 ± 0.089 1.11 ± 0.078

NBPhen 53403424 (https://pubchem.ncbi.nlm.nih.gov/compound/53403424)6.07 ± 0.17 1.84 ± 0.16
Spiro-
TAD

16134428 (https://pubchem.ncbi.nlm.nih.gov/compound/16134428)5.23 ± 0.060 1.38 ± 0.081

T2T /
TMBT2

59336459 (https://pubchem.ncbi.nlm.nih.gov/compound/59336459)6.63 ± 0.079 1.80 ± 0.076

T2T /
TMBT

59336459 (https://pubchem.ncbi.nlm.nih.gov/compound/59336459)6.63 ± 0.082 1.80 ± 0.074

TAPC 94071 (https://pubchem.ncbi.nlm.nih.gov/compound/94071) 5.25 ± 0.058 0.784 ±
0.069

TBRb 23576810 (https://pubchem.ncbi.nlm.nih.gov/compound/23576810)5.33 ± 0.060 1.98 ± 0.062
TCTA 9962045 (https://pubchem.ncbi.nlm.nih.gov/compound/9962045) 5.66 ± 0.098 1.49 ± 0.090
TPBi 21932919 (https://pubchem.ncbi.nlm.nih.gov/compound/21932919)6.41 ± 0.19 1.58 ± 0.20

1 For the calculation of the mean and standard deviation of IP and EA, data points with a modified Z score > 16 were discarded as outliers. This
only affects a few systems that had isolated outliers, e.g. due to SCF convergence problems.

2 T2T and TMBT are two different names for the same compound. Both are included in the database.

2.4. Material database 39

https://pubchem.ncbi.nlm.nih.gov/compound/65149
https://pubchem.ncbi.nlm.nih.gov/compound/11248716
https://pubchem.ncbi.nlm.nih.gov/compound/23386664
https://pubchem.ncbi.nlm.nih.gov/compound/22020377
https://pubchem.ncbi.nlm.nih.gov/compound/16683111
https://pubchem.ncbi.nlm.nih.gov/compound/16683111
https://pubchem.ncbi.nlm.nih.gov/compound/59117881
https://pubchem.ncbi.nlm.nih.gov/compound/59117881
https://pubchem.ncbi.nlm.nih.gov/compound/53403806
https://pubchem.ncbi.nlm.nih.gov/compound/53403806
https://pubchem.ncbi.nlm.nih.gov/compound/5069127
https://pubchem.ncbi.nlm.nih.gov/compound/5069127
https://pubchem.ncbi.nlm.nih.gov/compound/21881245
https://pubchem.ncbi.nlm.nih.gov/compound/21881245
https://pubchem.ncbi.nlm.nih.gov/compound/16184079
https://pubchem.ncbi.nlm.nih.gov/compound/11061735
https://pubchem.ncbi.nlm.nih.gov/compound/53403424
https://pubchem.ncbi.nlm.nih.gov/compound/16134428
https://pubchem.ncbi.nlm.nih.gov/compound/59336459
https://pubchem.ncbi.nlm.nih.gov/compound/59336459
https://pubchem.ncbi.nlm.nih.gov/compound/94071
https://pubchem.ncbi.nlm.nih.gov/compound/23576810
https://pubchem.ncbi.nlm.nih.gov/compound/9962045
https://pubchem.ncbi.nlm.nih.gov/compound/21932919

Workflows Manual, Amsterdam Modeling Suite 2025.1

2.4.2 Host-guest systems

Component PubChem CID calc. IP ± σ
[eV]

calc. EA ± σ
[eV]

95% CBP 11248716 (https://pubchem.ncbi.nlm.nih.gov/compound/11248716)6.06 ± 0.12 1.44 ± 0.13
5% fac-
Ir(ppy)3

59117881 (https://pubchem.ncbi.nlm.nih.gov/compound/59117881)5.91 ± 0.12 1.59 ± 0.12

Compo-
nent

PubChem CID calc. IP ± σ
[eV]

calc. EA ± σ
[eV]

95% CBP 11248716 (https://pubchem.ncbi.nlm.nih.gov/compound/11248716)6.05 ± 0.095 1.43 ± 0.11
5% PtOEP 636283 (https://pubchem.ncbi.nlm.nih.gov/compound/636283) 6.06 ± 0.095 1.86 ± 0.12

Component PubChem CID calc. IP ± σ
[eV]

calc. EA ± σ
[eV]

93.05%
mCBP

23386664 (https://pubchem.ncbi.nlm.nih.gov/compound/23386664) 6.14 ± 0.11 1.34 ± 0.13

6.3%
4CzIPN-
Me

102198498 (https://pubchem.ncbi.nlm.nih.gov/compound/102198498)
(+ 8 methyl groups)

5.95 ± 0.13 2.46 ± 0.13

0.65% TBRb 23576810 (https://pubchem.ncbi.nlm.nih.gov/compound/23576810) 5.39 ± 0.098 2.04 ± 0.090

40 Chapter 2. OLED Deposition and Properties

https://pubchem.ncbi.nlm.nih.gov/compound/11248716
https://pubchem.ncbi.nlm.nih.gov/compound/59117881
https://pubchem.ncbi.nlm.nih.gov/compound/11248716
https://pubchem.ncbi.nlm.nih.gov/compound/636283
https://pubchem.ncbi.nlm.nih.gov/compound/23386664
https://pubchem.ncbi.nlm.nih.gov/compound/102198498
https://pubchem.ncbi.nlm.nih.gov/compound/23576810

CHAPTER

THREE

REACTIONS DISCOVERY

3.1 General

Reactions Discovery is a three-step workflow to find possible (side) reactions from constituent molecules:
1. Reactive molecular dynamics (page 48) based on the NanoReactor (page 50) or Lattice Deformation (page 52)
2. Network Extraction (page 58) using ChemTraYzer2 (page 1) and geometry optimizations
3. Product Ranking (page 61)

To run Reactions Discovery in AMS2024, you need a license for Advanced Workflows and Tools.
See also:

• Quickstart guide with example input file (page 45)
• Reactions Discovery graphical user interface tutorial
• Reactions Discovery in Python (PLAMS) (page 75)
• Frequently Asked Questions (page 79)

3.1.1 What’s new in AMS2024?

The Reactions Discovery workflow is new in AMS2024.

41

../../Tutorials/WorkflowsAndAutomation/ReactionsDiscovery.html

Workflows Manual, Amsterdam Modeling Suite 2025.1

3.2 Overview of workflow

42 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

3.2. Overview of workflow 43

Workflows Manual, Amsterdam Modeling Suite 2025.1

44 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

3.3 Quickstart guide with example input file

A short example illustrating how to run the complete workflow, and how to restart from previous calculations.

#!/bin/sh

Reactions discovery example for a mixutre of CH3CH2 and OH radicals
The mixture should form ethanol CH3CH2OH and hydrogen peroxide HOOH
and possibly more products.

rm -rf complete_nanoreactor.results

AMS_JOBNAME=complete_nanoreactor $AMSBIN/reactions_discovery << eor
MolecularDynamics

Enabled Yes
NumSimulations 4
BuildSystem

NumAtoms 50
Density 0.9
Molecule

SMILES C[CH2] # a CH3CH2 radical
MoleFraction 1

End
Molecule

SMILES [OH] # an OH radical
MoleFraction 3

End
End
Type NanoReactor
NanoReactor

NumCycles 5
Temperature 500
MinVolumeFraction 0.6

End
BondOrders Method=Guess

End

NetworkExtraction Enabled=Yes UseCharges=Yes
ProductRanking Enabled=Yes

Engine ReaxFF
ForceField CHON-2019.ff
TaperBO Yes

EndEngine
eor

#Test if ethanol is found:
echo ETHANOL: `grep -c " CCO " complete_nanoreactor.results/reactions_discovery.log`
#Test if hydrogen peroxide is found:
echo HYDROGEN PEROXIDE: `grep -c " OO " complete_nanoreactor.results/reactions_
↪→discovery.log`

Use the MD trajectories from the previous job
rm -rf restart_extraction.results
AMS_JOBNAME=restart_extraction $AMSBIN/reactions_discovery << eor

MolecularDynamics Enabled=No
NetworkExtraction Enabled=Yes MDTrajectories=complete_nanoreactor.results

(continues on next page)

3.3. Quickstart guide with example input file 45

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
ProductRanking Enabled=Yes
Engine ReaxFF

ForceField CHON-2019.ff
TaperBO Yes

EndEngine
eor

#Test if ethanol is found:
echo ETHANOL: `grep -c " CCO " restart_extraction.results/reactions_discovery.log`
#Test if hydrogen peroxide is found:
echo HYDROGEN PEROXIDE: `grep -c " OO " restart_extraction.results/reactions_
↪→discovery.log`

Use the previous NetworkExtraction results to restart the ranking
rm -rf restart_ranking.results
AMS_JOBNAME=restart_ranking $AMSBIN/reactions_discovery << eor

MolecularDynamics Enabled=No
NetworkExtraction Enabled=No
ProductRanking Enabled=Yes ReactionNetwork=restart_extraction.results

eor

#Test if ethanol is found:
echo ETHANOL: `grep -c " CCO " restart_ranking.results/reactions_discovery.log`
#Test if hydrogen peroxide is found:
echo HYDROGEN PEROXIDE: `grep -c " OO " restart_ranking.results/reactions_discovery.
↪→log`

Demonstrate LatticeDeformation
rm -rf complete_lattice_deformation.results

AMS_JOBNAME=complete_lattice_deformation $AMSBIN/reactions_discovery << eor
MolecularDynamics

Enabled Yes
NumSimulations 2
BuildSystem

NumAtoms 50
Density 0.4
Molecule

SMILES C[CH2] # a CH3CH2 radical
MoleFraction 1

End
Molecule

SMILES [OH] # an OH radical
MoleFraction 3

End
End
Type LatticeDeformation
LatticeDeformation

NumCycles 3
Temperature 500
MinVolumeFraction 0.2
Period 200

End
BondOrders Method=Guess

End

NetworkExtraction Enabled=Yes UseCharges=No
(continues on next page)

46 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
ProductRanking Enabled=Yes

Engine ReaxFF
ForceField CHON-2019.ff
TaperBO Yes

EndEngine
eor

#Test if ethanol is found:
echo ETHANOL: `grep -c " CCO " complete_lattice_deformation.results/reactions_
↪→discovery.log`
#Test if hydrogen peroxide is found:
echo HYDROGEN PEROXIDE: `grep -c " OO " complete_lattice_deformation.results/
↪→reactions_discovery.log`

3.4 Command to execute, parallelization

Normally you would run:

"$AMSBIN/reactions_discovery" < input_file.in > output_file.out

This will run in parallel and use as many cores as are available on the system or allocation.
You can also explicitly set the number of cores with the -n flag. For example, to run the reactions_discovery
program in serial, you would run:

"$AMSBIN/reactions_discovery" -n 1 < input_file.in > output_file.out

Or you could also run Reactions Discovery in Python (PLAMS) (page 75).

3.5 Engine settings

For Molecular dynamics (page 48) and Network Extraction (page 58) specify the AMS engine:

Tip: Reactions Discovery requires a computationally efficient engine. We recommend to use
• ReaxFF,
• DFTB, or
• ML Potential

Engine

Type
Block

Description
The input for the computational engine for the MolecularDynamics and NetworkExtraction tasks.
The header of the block determines the type of the engine.

3.4. Command to execute, parallelization 47

../../AMS/Engines.html#engines
../../ReaxFF/index.html
../../DFTB/index.html
../../MLPotential/general.html

Workflows Manual, Amsterdam Modeling Suite 2025.1

3.6 Molecular dynamics

To enable the molecular dynamics, set MolecularDynamics%Enabled to Yes. If it is set to No, you can still load
previously run MD simulations and continue with the Network Extraction (page 58) and Product Ranking (page 61) parts.
The reactions discovery tool implements special non-equilibriumMDmethods to promote chemical reactions, namely the
Nanoreactor (page 50) and Lattice deformation (page 52). The type is controlled by MolecularDynamics%Type.
The number of simulations to run is controlled by MolecularDynamics%NumSimulations. To get enough statis-
tics, it is recommended to run several MD simulations. The results will be gathered into a single summary in the Network
Extraction (page 58) and Product Ranking (page 61) parts.
To replace all hydrogens with deuterium set MolecularDynamics%UseDeuterium Yes. If you prefer,
you can use a bond guessing algorithm instead of the engine-calculated bonds by setting MolecularDynam-
ics%BondOrders%Method to Guess.
See also:
Bond orders & Molecule detection

MolecularDynamics
Enabled Yes/No
Type [NanoReactor | LatticeDeformation | Restart]
NumSimulations integer
UseDeuterium Yes/No
TimeStep float
BondOrders

Method [Guess | EngineWithGuessFallback]
End

End

MolecularDynamics

Type
Block

Description
Settings for reactive molecular dynamics.

Enabled

Type
Bool

Default value
Yes

GUI name
Reactive Molecular Dynamics

Description
Whether to run molecular dynamics.

Type

Type
Multiple Choice

Default value
NanoReactor

48 Chapter 3. Reactions Discovery

../../AMS/Properties.html#bondorders

Workflows Manual, Amsterdam Modeling Suite 2025.1

Options
[NanoReactor, LatticeDeformation, Restart]

Description
The type of molecular dynamics.

NumSimulations

Type
Integer

Default value
4

GUI name
Number of simulations

Description
Total number of MD simulations to run.

UseDeuterium

Type
Bool

Default value
No

Description
If true, all hydrogen atoms will be replaced by deuterium during the MD. This helps to slow
down the motion of the hydrogen atoms. This options does *not* affect the density you should
insert in BuildSystem%Density. However, it *does* affect the density on the resulting MD
trajectory file.

TimeStep

Type
Float

Default value
0.5

Unit
fs

Description
Molecular dynamics time step.

BondOrders

Type
Block

Description
Details regarding the calculation/guessing of bond orders during Molecular Dynamics. The
bond changes during the MD are later analyzed in the Network Extraction step.

Method

Type
Multiple Choice

Default value
EngineWithGuessFallback

3.6. Molecular dynamics 49

Workflows Manual, Amsterdam Modeling Suite 2025.1

Options
[Guess, EngineWithGuessFallback]

Description
How to compute the bond orders.
‘Guess’: Use a bond guessing algorithm based on the system’s geometry. This is the same
algorithm that is used by the Graphical User Interface to guess bonds.
‘EngineWithGuessFallback’: let the engine compute the bond orders but if the engine did not
produce any bond orders, use the bond guessing algorithm as a fallback option.

3.6.1 Nanoreactor

To enable the nanoreactor mode, set MolecularDynamics%Type to NanoReactor.
The nanoreactor is run without periodic boundary conditions. Details can be found in the Nanoreactor AMS Driver
documentation.
The following 4 phases are looped throughout the simulation:

phase volume fraction time (fs) thermostat T
(K)

force constant
(Ha/bohr^2)

pre_compression 1.05 25 250 0.0005
compression MinVolumeFrac-

tion
25 250 0.01

post_compression 1.05 100 250 0.0005
diffusion 1.05 Diffusion-

Time
Temperature 0.0004

The radius of the nanoreactor for each individual phase is calculated as:
• rnanoreactor (per phase) = volume fraction1/3 * InitialRadius

InitialRadius is automatically determined, but can also be explicitly specified in the input.
If you want to customize any numbers other than MinVolumeFraction, DiffusionTime, and Temperature,
or if you want to change the number of phases, you can

• set up your own NanoReactor simulations outside the Reactions Discovery tool, and then
• specify the path to the results using NetworkExtraction (page 59).

All nanoreactor-specific input options:

MolecularDynamics
NanoReactor

DiffusionTime float
InitialRadius float
MinVolumeFraction float
NumCycles integer
Temperature float

End
End

MolecularDynamics

Type
Block

50 Chapter 3. Reactions Discovery

../../AMS/Tasks/Molecular_Dynamics.html#nanoreactor
../../AMS/Tasks/Molecular_Dynamics.html#nanoreactor
../../AMS/Tasks/Molecular_Dynamics.html#nanoreactor

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
Settings for reactive molecular dynamics.

NanoReactor

Type
Block

Description
Option for the reactive molecular dynamics.

DiffusionTime

Type
Float

Default value
250.0

Unit
fs

Description
The length of the diffusion phase in femtoseconds.

InitialRadius

Type
Float

Unit
angstrom

Description
The radius of the initial (spherical) system. If BuildSystem is used, the value is ignored
(then the value is automatically determined). If BuildSystem is not used, then a guess for
the InitialRadius will be made if it is not specified.

MinVolumeFraction

Type
Float

Default value
0.6

GUI name
Minimum volume fraction

Description
The minimum (compressed) volume of the system, as a fraction of the initial (maximum)
system volume.

NumCycles

Type
Integer

Default value
10

GUI name
Number of cycles

3.6. Molecular dynamics 51

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
How many compression-expansion cycles to perform.

Temperature

Type
Float

Default value
500.0

Unit
K

Description
Temperature during the diffusion phase. The temperature during the compression phase will
be much higher as a result of the inward acceleration.

3.6.2 Lattice deformation

To enable the lattice deformation mode, set MolecularDynamics%Type to LatticeDeformation.
Lattice deformation requires that the system is 3D-periodic. For more details, see the Lattice deformations (volume
regimes) AMS Driver documentation.
The volume oscillates for NumCycles cycles with a period of Period fs between

• Vinitial, and
• Vcompressed = Vinitial* MinVolumeFraction.

All lattice deformation input options:

MolecularDynamics
LatticeDeformation

MinVolumeFraction float
NumCycles integer
Period float
Temperature float

End
End

MolecularDynamics

Type
Block

Description
Settings for reactive molecular dynamics.

LatticeDeformation

Type
Block

Description
Option for the reactive molecular dynamics.

MinVolumeFraction

Type
Float

52 Chapter 3. Reactions Discovery

../../AMS/Tasks/Molecular_Dynamics.html#mddeformation
../../AMS/Tasks/Molecular_Dynamics.html#mddeformation

Workflows Manual, Amsterdam Modeling Suite 2025.1

Default value
0.3

GUI name
Minimum volume fraction

Description
The minimum (compressed) volume of the system, as a fraction of the initial (maximum)
system volume.

NumCycles

Type
Integer

Default value
10

GUI name
Number of cycles

Description
How many compression-expansion cycles to perform.

Period

Type
Float

Default value
100.0

Unit
fs

Description
The period with which the lattice will oscillate in femtoseconds.

Temperature

Type
Float

Default value
500.0

Unit
K

Description
Thermostat temperature during the MD simulation.

3.6. Molecular dynamics 53

Workflows Manual, Amsterdam Modeling Suite 2025.1

3.6.3 Build the initial system

Note: This section describes a convenient way to build the system directly from the input.
You can also build the initial system in any way you like. Then set MolecularDynam-
ics%BuildSystem%Enabled to False and give the coordinates/lattice or coordinate file in the System
block.

BuildSystem will build a
• sphere centered at the origin if MolecularDynamics%Type is NanoReactor - the radius of the sphere
will automatically be passed on to the NanoReactor settings.

• cubic box if MolecularDynamics%Type is LatticeDeformation.
The initial system is specified through a series of Molecule blocks. Each Molecule block contains either a SMILES
string or a reference to a System block, as well as the mole fraction of that particular molecule.
The initial density and the system size are specified with the Density and NumAtoms keywords:
You can choose to run a short equilibration simulation by settingEquilibration. This can be useful if the packmol-
generated structure is unrealistic.

MolecularDynamics
BuildSystem

Density float
Enabled Yes/No
Equilibration Yes/No
Molecule

MoleFraction float
SMILES string
SystemID string

End
NumAtoms integer

End
End

MolecularDynamics

Type
Block

Description
Settings for reactive molecular dynamics.

BuildSystem

Type
Block

Description
Build the initial system for molecular dynamics with packmol. If MolecularDynam-
ics%Type is set to Restart, then BuildSystem is ignored.

Density

Type
Float

Default value
1.0

54 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

Unit
g/cm^3

Description
The initial density of the system. This should be the lowest density (corresponding to the
largest volume) that you want the system to have. The standard atomic masses are used when
building the system.

Enabled

Type
Bool

Default value
Yes

GUI name
Build System

Description
If True, build the initial system using packmol. If False, a System block must be provided
with the initial system.

Equilibration

Type
Bool

Default value
No

Description
Whether to run a short 250 fs equilibration simulation on the packmol-built structure.

Molecule

Type
Block

Recurring
True

Description
A molecule to put in the MD simulation.

MoleFraction

Type
Float

Default value
1.0

GUI name
Relative mole fraction

Description
Mole fraction of the molecule (the mole fractions of the various molecules will be normal-
ized, so only the relative MoleFraction values matter)

SMILES

Type
String

3.6. Molecular dynamics 55

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
The SMILES string of the molecules.

SystemID

Type
String

Description
The ID of the corresponding System (i.e. the header of the corresponding System block).

NumAtoms

Type
Integer

Default value
200

GUI name
Number of atoms

Description
Approximate total number of atoms in each MD simulation.

3.6.4 Fixed MD settings

The reactions discovery tool automatically sets the following for all MD simulations:
• Short-range repulsive potential,
• Frames are saved every 10 fs. To save disk space, velocities are not saved.
• MD checkpoints are saved every 1000 MD steps (allowing to Restart)
• A Berendsen thermostat with a very short time constant and BerendsenApply = Local.

For a complete view of all the MD input, open the mdsim_0/mdsim_0.in file created by the Reactions Discovery
tool.
See also:
Molecular dynamics in the AMS Driver documentation

3.6.5 Molecular dynamics restart

Set MolecularDynamics Type=Restart in order to
• continue interrupted MD simulations (for example if they exceeded the walltime limit), or
• add extra steps to already finished MD simulations

MolecularDynamics
Restart

Directory string
NSteps integer

End
End

MolecularDynamics

56 Chapter 3. Reactions Discovery

../../AMS/Engines.html#wca-potential-addon
../../AMS/Tasks/Molecular_Dynamics.html#moleculardynamics

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Block

Description
Settings for reactive molecular dynamics.

Restart

Type
Block

Description
Settings for restarting MD simulations.

Directory

Type
String

GUI name
Restart directory

Description
Directory containing a previous Reactions Discovery calculation with MD simulations that
were not finished. Note: This directory will be scanned recursively for ams.rkf files!

NSteps

Type
Integer

GUI name
Number of steps

Description
Number of MD steps. If left empty, the number of MD steps from the original MD trajectory
will be used. Note that you need to manually increase this number if you want to continue
finished simulations.

Example: restart MD simulations after they exceeded walltime limit

Input:

MolecularDynamics
Enabled Yes
Type Restart
Restart

Directory /some/path
End

End
Engine ...

...
EndEngine

If /some/path contains the following files:

/some/path/dir1/ams.rkf
/some/path/dir2/subdir/ams.rkf

where those ams.rkf files come from MD simulations, then if

3.6. Molecular dynamics 57

Workflows Manual, Amsterdam Modeling Suite 2025.1

• ams.rkf contains an unfinished simulation (e.g. because the job exceeded the walltime limit), it will be restarted
from where it finished, but if

• ams.rkf contains a finished simulation, then the trajectory will simply be copied

Note:
• The rest of the MolecularDynamics reactions discovery input block is ignored, meaning that it doesn’t matter
if you specify LatticeDeformation or NanoReactor or their respective settings. The MD settings from
the ams.rkf file will be used.

• The Engine block from the reactions discovery input block is used.
• If you restart from a previous reactions discovery results directory (which you likely do), then it may contain
several directories mdsim_0, mdsim_1, etc., or you may have called them something else if you set up the MD
simulations manually. The numberingmay change in the restart run, so that the new mdsim_1 actually continues
the trajectory from the original mdsim_0.

Example: Continue MD simulations for more steps

MolecularDynamics
Enabled Yes
Type Restart
Restart

Directory /some/path
NSteps 20000

End
End
Engine ...

...
EndEngine

The above will continue all MD simulations until 20000 steps. If the original simulation ran for 5000 steps, then the new
simulation will continue for another 15000 steps.

3.7 Network Extraction

In this second step of the workflow a reaction network is extracted, and the individual molecules are optimized.

3.7.1 Initial Network from ChemTrayzer2

To extract the reaction network, ChemTraYzer2 (page 1) is used. By default, only the trajectories from simulations that
terminated normally are used for network extraction. The reaction network is fully stored in the ams.rkf file, as well
is in the file reaction_network.gml, which can be directly read into the networkx (https://www.networkx.org)
python module. Reaction network information is also printed to output, and the details of the latter can be set in the input
block NetworkExtraction%Print. In the output, the molecules are listed in order of their net flux; The difference
between the number of instances at the end of the simulation and the number of instances at the start of the simulations.
At this first approximation, products with the highest positive net flux are considered to be the most stable.

58 Chapter 3. Reactions Discovery

https://www.networkx.org

Workflows Manual, Amsterdam Modeling Suite 2025.1

3.7.2 Geometry Optimization

For all unique molecules, an attempt is made to find the optimized geometry for that molecule. For each molecule the
coordinates are extracted either from the molecular dynamics runs (reported with source file, frame and atom ids) or
constructed from the SMILES string using from_smiles. Finally, a geometry optimization is performed and each
molecule is assigned the total energy corresponding to the optimized geometry. If the geometry optimization fails, or if
our bond guessing algorithm predicts a different connectivity after optimization, the energy of the unoptimized coordinates
is used instead. If desired, the geometry optimizations can be performed with a different engine, e.g. using an implicit
solvent, if this better approximates the target experimental reaction conditions. To do this, first perform a run with
molecular dynamics only and then perform a restart with molecular dynamics disabled and the engine of choice defined
in the input.

3.7.3 Molecular Charge Assignment

In order to correctly perform geometry optimizations, the charge of each molecule needs to be determined beforehand.
The charges are obtained by collecting the atomic charges from the output of the molecular dynamics simulations, aver-
aging the resulting molecular charges over the relevant frames, and rounding to integer values. Every molecule will be
connected to at most 2 reactions; The reaction that creates it, and the reaction that destroys it. A check is performed, to
see if all the reaction charges are balanced. If this is not the case, then the corresponding molecular charges are adjusted
to ensure charge balance through-out. The charge adjustments are restricted in that the change ∆q per molecule may
not exceed 1.0e. If unbalanced reactions still remain after the charge adjustments, then an ionization reaction is added,
connecting two versions of the molecule, each with a different charge.

3.7.4 Manual specification of MD trajectories

You can run the network extraction on any MD trajectories, even if they were not calculated by the Reactions Discovery
tool.
If

• MolecularDynamics%Enabled is True, then those MD trajectories will be used for the network extraction,
• MolecularDynamics%Enabled is False, then you can specify a directory with ams.rkf files to analyze with
NetworkExtraction%MDTrajectories

Example:

MolecularDynamics Enabled=No
NetworkExtraction Enabled=Yes MDTrajectories=/some/path

Unfinished simulations are only used if NetworkExtraction%ExtractFromFailedMDJobs is enabled.

NetworkExtraction
Enabled Yes/No
ExtractFromFailedMDJobs Yes/No
MDTrajectories string
Print

FilterFluctuations Yes/No
MaxReactionOrder integer
MinReactionsThreshold integer
SkipRareReactions Yes/No

End
UseCharges Yes/No

End

NetworkExtraction

3.7. Network Extraction 59

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Block

Description
Options for extracting the reactive network from MD trajectories

Enabled

Type
Bool

Default value
Yes

GUI name
NetworkExtraction

Description
Whether to perform network extraction.

ExtractFromFailedMDJobs

Type
Bool

Default value
No

GUI name
Extract from failed MD jobs

Description
Whether to extract from failed/crashed MD jobs (by default, only successful jobs are used)

MDTrajectories

Type
String

GUI name
MD Trajectories

Description
If MolecularDynamics%Enabled is False, this directory will be recursively scanned for ams.rkf
files containing MD trajectories. All found trajectories will be used for the analysis. It should
typically be a Reactions Discovery results directory containing finished MD simulations.

Print

Type
Block

Description
Printing details

FilterFluctuations

Type
Bool

Default value
Yes

Description
If true, do not print molecules that are only part of recrossing reactions.

60 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

MaxReactionOrder

Type
Integer

Default value
4

Description
If the reaction order is larger than this value, the reaction will not be printed.

MinReactionsThreshold

Type
Integer

Default value
3

Description
If a molecule is involved in fewer reaction than this value, skip printing the results corre-
sponding to it. To print all molecules, set this value to 0.

SkipRareReactions

Type
Bool

Default value
Yes

Description
If true,reduce the output by filtering out rare reactions. If false, always print all reactions.

UseCharges

Type
Bool

Default value
Yes

Description
Use engine-calculated charges if they exist on theMD trajectory files for the NetworkExtraction

3.8 Product Ranking

Ranking the molecules based on the net flux over the molecular dynamics simulations is only as reliable as the simulations
themselves. All reactive simulations use some kind of scheme to induce reactivity, and this means that reaction conditions
like temperature and pressure will most likely be higher than the conditions in the target system. Letting a reaction under
our extreme simulation conditions continue too long will most likely result in the degradation of viable products, combined
with the formation of final products that would never be formed at the milder experimental conditions. To correct for
the extreme conditions of the molecular dynamics simulations we assign stabilities to the molecules based on the reaction
network.
Both a value for kinetic stability (cost) and thermodynamic stability are assigned, and ultimately the molecules are ordered
based in the first place on cost, and in the second place on (thermodynamic) stability. The ranked stable products are
saved in the files products.sdf and products.rkf.

3.8. Product Ranking 61

Workflows Manual, Amsterdam Modeling Suite 2025.1

3.8.1 Reaction Energies

As the first step in this procedure, we assign reaction energies to all reaction nodes in the network, based on the energies
of the optimized molecules. These reaction energy values have the advantage that they are independent of the simulation
conditions.

3.8.2 Product Cost

We perform a network search to assign a relative cost value to each molecule in the network. The cost c of the reactants
is set to one. The cost cp of any product/intermediate molecule p is then assigned in a breadth first search through the
network.
cp =

∑
r cr +

(
1 + eER/kbT

)
Here R is the reaction that has molecule p as product, and results in the lowest possible cost cp. The molecules r are the
reactants involved in reaction R. The value ER is the reaction energy of reaction R. T is the ranking temperature, which
is set to 300K by default. Selecting a higher temperature brings the contributions of different reactions closer together,
resulting in relatively lower costs for molecules that are formed via reactions with high reaction energies.

3.8.3 Product Stability

In a similar manner, a thermodynamic relative product stability is assigned, with the stability of the initial reactants set to
zero.
sp =

∑
r sr + ER

Again, R is the reaction that has p as product and results in the lowest value of the cost cp.

3.8.4 Reaction Balance

Separate from the reaction network procedures, a set of stable products is extracted based on two different metrics. First,
molecules with connectivities deviating vastly from the valences of the corresponding elements are discarded. Secondly,
the molecular charges determined in the NetworkExtraction run are compared to the ‘formal’ molecular charges based on
bond orders, and if the two values differ, the molecule is considered a radical, and discarded as a stable product.
For all stable products, an estimated balanced overall formation reaction is then determined by balancing the reaction of
the initial reactants to this product. If it is not possible to balance the reaction, one of the other stable products is included
as a co-product.

3.8.5 Example: ProductRanking from finished NetworkExtraction

Input:

MolecularDynamics Enabled=No
NetworkExtraction Enabled=No
ProductRanking Enabled=Yes ReactionNetwork=/some/path

ProductRanking%ReactionNetwork must be a previous Reactions Discovery result directory that has at least
finished the network extraction.

62 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

ProductRanking
BalanceFromNetwork Yes/No
DiscardIons Yes/No
Enabled Yes/No
MaxBalancedReactions integer
ReactionNetwork string
Temperature float
WritePaths Yes/No

End

ProductRanking

Type
Block

Description
Options for ranking of the intermediates by stability

BalanceFromNetwork

Type
Bool

Default value
No

Description
Use the network to determine the balanced reaction from the initial reactants to each stable
product. This is not the default. By default, a balanced equation is determined directly by using
the other stable products as possible side products.

DiscardIons

Type
Bool

Default value
Yes

Description
Remove all ions from the final product list

Enabled

Type
Bool

Default value
Yes

GUI name
ProductRanking

Description
Whether to perform ranking of the reaction network.

MaxBalancedReactions

Type
Integer

Default value
1000

3.8. Product Ranking 63

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
The maximum number of stable products used to find a balanced reaction equation for each
one.

ReactionNetwork

Type
String

Description
Directory containing a previous Reactions Discovery calculation with ‘NetworkExtrac-
tion%Enabled Yes’

Temperature

Type
Float

Default value
298.0

Description
Temperature used to compute reaction rates from reaction energies of reactions in the reaction
network.

WritePaths

Type
Bool

Default value
Yes

Description
Write full paths to the reaction network for each molecule.

3.9 Output

3.9.1 Reactants, products, unstable

The results directory contains a file reactions_discovery.rkf. This file contains all the reaction network in-
formation. It can be read by the reactions_discovery workflow, which can use it to perform/redo the ranking process.
Additionally, AMSmovie can be used to view the molecules in the reaction network.
All molecules in the reaction network are categorized either as “product”, “unstable”, or “reactant”.

• Reactants are the molecules that exist at the beginning of the MD runs.
• Products are the suggested stable side products in the reaction network.
• Unstable are the molecules that are not considered stable.

There are three reasons a molecule is considered unstable.
1. The number of bonds to the atoms deviates from the atom valence by more than a maximum amount. This maxi-

mum is hardcoded per element.
2. The assigned molecular charge deviates from the formal molecular charge of the molecule. This is a strong indi-

cation that the molecule is a radical.
3. By default all ions are considered unstable, but this can be changed in the input.

64 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

The suggested side products can be found in the file products.sdf in the results directory. This file contains all
network intermediates that are considered stable.
The text output contains a list of ranked products, with an estimate of cost of formation (labeled ‘Barrier’) and reaction
energy. This list of products is followed by a list containing for each stable product the shortest path from the initial
reactants. The cost of formation is a soft maximum of all reaction energies in the shortest path to the product.

3.9.2 KF output files

Note: This section documents the sections and variables in the reactions_discovery.rkf file.

General
Section content: General information about the amsbatch calculation.
General%account

Type
string

Description
Name of the account from the license

General%ElapsedTime

Type
float

Description
Elapsed time of the AMS workflow.

Unit
second

General%engine messages

Type
string

Description
Message from the engine. In case the engine fails to solves, this may contains extra information
on why.

General%file-ident

Type
string

Description
The file type identifier, e.g. RKF, RUNKF, TAPE21…

General%jobid

Type
int

Description
Unique identifier for the job.

General%ProcessTime

3.9. Output 65

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
float

Description
Time the AMS workflow spent in Python.

Unit
second

General%program

Type
string

Description
The name of the program/engine that generated this kf file.

General%release

Type
string

Description
The version of the program that generated this kf file (including svn revision number and date).

General%termination status

Type
string

Description
The termination status. Possible values: ‘NORMAL TERMINATION’, ‘NORMAL TER-
MINATION with warnings’, ‘NORMAL TERMINATION with errors’, ‘ERROR’, ‘IN
PROGRESS’.

General%title

Type
string

Description
Title of the calculation.

General%uid

Type
string

Description
SCM User ID

General%user input

Type
string

Description
The text input of the AMS workflow.

General%version

Type
int

66 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
Version number?

MolecularDynamicsResults
Section content: Generic results.
MolecularDynamicsResults%NumSimulations

Type
int

Description
Number of molecular dynamics simulations that were performed.

ChemicalSystem(#)
Section content: Molecules
ChemicalSystem(#)%nAtoms

Type
int

Description
The number of atoms in the system

ChemicalSystem(#)%nAtomsTypes

Type
int

Description
The number different of atoms types

ChemicalSystem(#)%AtomicNumbers

Type
int_array

Description
Atomic number ‘Z’ of the atoms in the system

Shape
[nAtoms]

ChemicalSystem(#)%AtomMasses

Type
float_array

Description
Masses of the atoms

Unit
a.u.

Values range
[0, ‘\infinity’]

Shape
[nAtoms]

ChemicalSystem(#)%AtomSymbols

Type
string

3.9. Output 67

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
The atom’s symbols (e.g. ‘C’ for carbon)

Shape
[nAtoms]

ChemicalSystem(#)%EngineAtomicInfo

Type
string_fixed_length

Description
Atom-wise info possibly used by the engine.

ChemicalSystem(#)%Coords

Type
float_array

Description
Coordinates of the nuclei (x,y,z)

Unit
bohr

Shape
[3, nAtoms]

ChemicalSystem(#)%bondOrders

Type
float_array

Description
The bond orders for the bonds in the system. The indices of the two atoms participating in
the bond are defined in the arrays ‘fromAtoms’ and ‘toAtoms’. e.g. bondOrders[1]=2, fro-
mAtoms[1]=4 and toAtoms[1]=7 means that there is a double bond between atom number 4
and atom number 7

ChemicalSystem(#)%toAtoms

Type
int_array

Description
Index of the second atom in a bond. See the bondOrders array

ChemicalSystem(#)%fromAtoms

Type
int_array

Description
Index of the first atom in a bond. See the bondOrders array

Categories
Section content: Different categories of molecules.
Categories%NumProducts

Type
int

Description
Number of products.

68 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

Categories%NumReactants

Type
int

Description
Number of reactants.

Categories%NumUnstable

Type
int

Description
Number of unstable systems.

Categories%Products

Type
int_array

Description
Indices of (RD)History entries that are products.

Shape
[NumProducts]

Categories%Reactants

Type
int_array

Description
Indices of (RD)History entries that are reactants.

Shape
[NumReactants]

Categories%Unstable

Type
int_array

Description
Indices of (RD)History entries that are unstable.

Shape
[NumUnstable]

Reaction(#)
Section content: A reaction.
Reaction(#)%Composition

Type
string

Description
The description of the reaction (for example, A => B + C) where the molecules are described
by their empirical formula.

Reaction(#)%Count

Type
int

3.9. Output 69

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
Total number of this this reaction was observed.

Reaction(#)%Hash

Type
string

Description
Unique identifier for this reaction.

Reaction(#)%ProductHashes

Type
lchar_string_array

Description
Hashes (i.e. the unique identifiers) of the product molecules.

Reaction(#)%ProductIndices

Type
int_array

Description
Indices of the product molecules in the RDHistory section.

Reaction(#)%ReactantHashes

Type
lchar_string_array

Description
Hashes (i.e. the unique identifiers) of the reactant molecules.

Reaction(#)%ReactantIndices

Type
int_array

Description
Indices of the reactant molecules in the RDHistory section.

Reaction(#)%ReactionEnergy

Type
float

Description
The reaction energy for this reaction.

Unit
hartree

Reaction(#)%SMILESDescription

Type
string

Description
The description of the reaction (for example, A => B + C) where the molecules are described
by their SMILES strings.

History
Section content: History of the system during the AMS calculation. What is stored here depends on the task of

70 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

the AMS calculation. For example, for a GeometryOptimization this will contain the intermediate steps of the GO,
while for a MoleculeDynamics calculation it will contain the MD frames.
History%Bonds

Type
subsection

Description
?

History%Coords(#)

Type
float_array

Description
Coordinates of the systems of a given entry.

Shape
[3, :]

History%Energy(#)

Type
float

Description
Energy of the system of a given entry.

Unit
hartree

History%LatticeVectors(#)

Type
float_array

Description
The lattice vectors of a given entry.

Unit
bohr

Shape
[3, :]

History%nEntries

Type
int

Description
Number of history entries.

History%nLatticeVectors(#)

Type
int

Description
The number of lattice vectors (i.e. the number of periodic boundary conditions) of a given
entry.

History%Step(#)

3.9. Output 71

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
int

Description
The step number in a Molecular Dynamics calculation.

History%SystemVersion(#)

Type
int

Description
Index of the versioned-chemical system of a given frame.

RDHistory
Section content: History of a Molecular dynamics simulation.
RDHistory%Balance(#)

Type
string

Description
The overall balanced reaction for this product

RDHistory%BalancedReaction(#)

Type
int_array

Description
Index of the estimated most efficient balanced reaction resulting in this molecule (estimated
from the pool of all reactants and all stable products).

RDHistory%blockSize

Type
int

Description
Explain the block-system… ?

RDHistory%Cost(#)

Type
float_array

Description
The sum of the exponentials (exp(E/RT)+1) of the reaction energy of each reaction involved in
formation of this product. Taking the logarithm of this effectively results in the highest ‘barrier’
along the path.

RDHistory%CreatedBy(#)

Type
string

Description
This command was used to obtain the coordinates for stability analysis for this molecule

RDHistory%currentEntryOpen

Type
bool

72 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
?

RDHistory%Depth(#)

Type
int_array

Description
The depth of the molecule in the network (number of elementary reactions separating it from
the reactants)

RDHistory%FinalCount(#)

Type
int_array

Description
Number of molecules of this kind at the end of the simulation.

RDHistory%GuessedCharge(#)

Type
float_array

Description
The formal charge of the molecule as estimated by PLAMS

RDHistory%Hash(#)

Type
string

Description
Unique identifier of the molecule.

RDHistory%Id(#)

Type
string

Description
The indexed formula of this molecule.

RDHistory%InitialCount(#)

Type
int_array

Description
Number of molecules of this kind at the beginning of the simulation.

RDHistory%ItemName(#)

Type
string

Description
?

RDHistory%MolecularFormula(#)

Type
string

3.9. Output 73

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
Molecular formula.

RDHistory%Name(#)

Type
string

Description
SMILES string

RDHistory%nBlocks

Type
int

Description
Explain the block-system… ?

RDHistory%nEntries

Type
int

Description
Number of MD history entries.

RDHistory%ParentReaction(#)

Type
int_array

Description
The index of the parent reaction in the shortest path from reactants to this compound

RDHistory%PathEnergy(#)

Type
float_array

Description
The overall energy balance of the full path to this product

RDHistory%PathTree(#)

Type
string

Description
The full path through the network to this product, as a string.

RDHistory%PotentialEnergy(#)

Type
float_array

Description
The potential energy, i.e. the energy as computed by the engine. This is a ‘blocked’ property.
See the ‘blockSize’ and ‘nBlocks’ variables for more details.

Unit
hartree

RDHistory%Radical(#)

74 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
bool_array

Description
Is this molecule a radical or not.

RDHistory%ReactionsAsProduct(#)

Type
int_array

Description
Indices of the reactions in which this molecule was part of the products.

RDHistory%ReactionsAsReactant(#)

Type
int_array

Description
Indices of the reactions in which this molecule was part of the reactants.

RDHistory%Representative(#)

Type
bool_array

Description
Signifies if the coordinates are representative of the molecule (as defined by the connectivity)

RDHistory%SMILES(#)

Type
string

Description
SMILES string

3.10 Reactions Discovery in Python (PLAMS)

An example of how to use Reactions Discovery with Python (PLAMS) can be found in the examples section of the
PLAMS documentation.
The scm.reactions_discovery.plams_job Python module contains the below classes.
class ReactionsDiscoveryResults(job)

Results class for ReactionsDiscoveryJob
get_errormsg()

Returns the error message of this calculation if any were raised.
Returns

String containing the error message.
Return type

str
get_md_jobs()

Returns the AMSJobs used during the calculation.
Returns

List of AMSJobs used during the calculation.

3.10. Reactions Discovery in Python (PLAMS) 75

../../plams/examples/ReactionsDiscovery/ReactionsDiscovery.html

Workflows Manual, Amsterdam Modeling Suite 2025.1

Return type
List[AMSJob]

rkfpath()

Returns path to reactions_discovery.rkf
Returns

Path to reactions_discovery.rkf
Return type

str
get_network_rd()

Returns the reaction network represented by Reactions Discovery CombinedMol and CombinedReaction
classes.

Raises
KFError – If the KF file associated with this result does not contain the required information.

Returns
Graph representing the reaction network, a dictionairy of categories and lists of CombinedMol,
a dictionairy of categories and CombinedReaction and a list of categories.

Return type
Tuple[DiGraph, Dict[str, List[CombinedMol]], Dict[int, CombinedReaction], List[str]]

get_network()

Returns the reaction network represented by a DiGraph and a dictionairy of lists of PLAMS
molecules.

Each key in the dictionary is a category.

Returns
graph of the reaction network, dictionary of categories and lists of Molecules, and a list of
categories.

Return type
Tuple[DiGraph, Dict[str, List[Molecule]], List[str]]

get_num_md_simulations()

Returns the number of MD simulations used during the Molecular Dynamics stage.
Raises

KFError – If the KF file associated with this result does not contain the right information.
Returns

The number of MD simulations used during the Molecular Dynamics stage.
Return type

int
class ReactionsDiscoveryJob(name='reactions_discovery_job', driver=None, settings=None,

molecule=None, **kwargs)
PLAMS Job class for running Reactions Discovery.
This class inherits from the PLAMS SingleJob class. For usage, see the SingleJob documentation.
If you supply a Settings object to the constructor, it will be converted to a PISA (Python Input System for AMS)
object.
Attributes:

76 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

• input: an alias for self.settings.input
• builder: an alias for self.settings.input.MolecularDynamics.BuildSystem

__init__(name='reactions_discovery_job', driver=None, settings=None, molecule=None, **kwargs)
Initialize the ReactionsDiscoveryJob.
name

[str] The name of the job
driver

[scm.input_classes.drivers.ReactionsDiscovery] PISA object describing the input to the ReactionsDis-
covery program

settings: scm.plams.Settings
All settings for the job. Input settings in the PLAMS settings format under settings.input are
automatically converted to the PISA format. You can specify settings.runscript.nproc to
set the total number of cores to run on.

molecule: scm.plams.Molecule or Dict[str, scm.plams.Molecule]
Two possibilities:
• molecule is of type Molecule - it should then be the complete system as a PLAMS Molecule
. Cannot be combined with the driver.input.MolecularDynamics.BuildSystem or
settings.input.ams.MolecularDynamics.BuildSystem. It will be written to the
main System block in the input.

• molecule is a dictionary with string keys and Molecule values - the keys should then be
given in the driver.input.MolecularDynamics.BuildSystem.Molecule[i].
SystemID input option. The molecules will then be used to build the system before the MD.

classmethod from_rkf(path)
Initialize a job from a reactions_discovery.rkf file.

Parameters
path (str) – Path to a reactions_discovery.rkf file

Returns
A new ReactionsDiscoveryJob instance based on the information found in path.

Return type
ReactionsDiscoveryJob (page 76)

classmethod from_input(text_input)

Initialize a job from text input.
Parameters

text_input (str) – A multiline text input
Returns

A ReactionsDiscoveryJob
Return type

ReactionsDiscoveryJob (page 76)
static _extract_mol_from_pisa(pisa)

Remove a molecule from a System block in the ReactionsDiscovery PISA object and return it as molecule(s)
get_errormsg()

Returns the contents of the jobname.err file if it exists. If the file does not exist an empty string is returned.

3.10. Reactions Discovery in Python (PLAMS) 77

Workflows Manual, Amsterdam Modeling Suite 2025.1

Returns
The error message

Return type
str

get_runscript()

Generates the runscript. Use self.settings.runscript.preamble_lines = ['line1',
'line2'] or similarly for self.settings.runscript.postamble_lines to set custom set-
tings.
self.settings.runscript.nproc controls the total number of cores to run on.

check()

Returns True if “NORMAL TERMINATION” is given in the General section of reactions_discovery.rkf,
AND all molecular dynamics jobs also have finished successfully.

ok()

Synonym for check()
get_md_jobs()

Returns: List of AMSJob
property input

PISA format input
classmethod load_external(path, finalize=False)

Load a previous ReactionsDiscovery job from disk.
Parameters

• path (Union[str, Path]) – A reactions discovery results folder.
• finalize (bool, optional) – See SingleJob, defaults to False

Raises
FileError – When the path does not exist.

Returns
An initialized ReactionsDiscoveryJob

Return type
ReactionsDiscoveryJob (page 76)

get_input()

Obtain the input string used to run the Reactions Discovery workflow script.
Returns

An input string.
Return type

str

78 Chapter 3. Reactions Discovery

Workflows Manual, Amsterdam Modeling Suite 2025.1

3.11 Frequently Asked Questions

3.11.1 There are no reactions

• Increase the temperature
• NanoReactor: Increase DiffusionTime, set MinVolumeFraction to a smaller value, set InitialRa-
dius to a smaller value

• LatticeDeformation: Set MinVolumeFraction to a smaller value, decrease Period
• Set MolecularDynamics UseDeuterium=No

• Ensure that you use a reactive potential (e.g. ReaxFF, DFTB, MLPotential)
Note: The best value for MinVolumeFraction depends on the initial density
(MolecularDynamis%BuildSystem%Density). If you decrease the initial density, you may need to also
decrease the MinVolumeFraction.

Tip: Run the simulation with the fast UFF force field to get a feeling for if the initial settings are reasonable. With UFF
no reactions will happen but you can still see how the density fluctuates in the MD simulation.

3.11.2 There are too many reactions

• Decrease the temperature
• NanoReactor: Decrease DiffusionTime, set MinVolumeFraction to a larger value, set InitialRa-
dius to a larger value

• LatticeDeformation: Set MinVolumeFraction to a larger value, increase Period
• Set MolecularDynamics UseDeuterium=Yes

Note: The best value for MinVolumeFraction depends on the initial density
(MolecularDynamis%BuildSystem%Density). If you decrease the initial density, you may need to also
decrease the MinVolumeFraction.

3.11.3 The MD simulations are too slow

• Decrease the number of atoms
• Decrease the number of NanoReactor or LatticeDeformation cycles
• Increase the MD time step

3.11. Frequently Asked Questions 79

Workflows Manual, Amsterdam Modeling Suite 2025.1

3.11.4 How should I set the density and compression factor?

• Nanoreactor: The density should be approximately the normal liquid density of your system, with a compression
factor of about 0.5-0.7

• Lattice deformation: The density should be about half the normal liquid density of your system, with a compres-
sion factor of about 0.15-0.30

3.11.5 The simulation explodes

• Follow the steps for There are too many reactions.
• Decrease the MD time step

3.11.6 How do I use computing resources efficiently?

The steps are parallelized as follows:
• MolecularDynamics runs as many jobs in parallel as possible, respecting the allocation (NSCM)
• NetworkExtraction runs NumSimulations ChemTraYzer2 jobs sequentially in serial; then NSCM geometry
optimizations and single points are run in parallel.

• ProductRanking runs in serial
Thus, most of the computational steps except ProductRanking are run efficiently in parallel. You may thus choose to set
ProductRanking Enabled=False if you have a large node allocated, and then restart from the previous results
using ProductRanking Enabled=True on a smaller allocation.

80 Chapter 3. Reactions Discovery

CHAPTER

FOUR

SIMPLE ACTIVE LEARNING

Simple Active Learning (SAL) is a workflow for on-the-fly training (active learning) of machine learning (ML) potentials
during molecular dynamics (MD).

4.1 General

Simple Active Learning (SAL) is a workflow for on-the-fly training (active learning) of machine learning (ML) potentials
during molecular dynamics (MD). It is “simple” because it only applies to a single MD simulation. In the AMSinput GUI
it can be found under MD Active Learning.

The workflow

81

Workflows Manual, Amsterdam Modeling Suite 2025.1

• Trains an initial ML potential
• Runs the MD simulation
• Pauses the MD simulation and launches new reference (typically DFT) calculations at set intervals or if the ML
potential is not accurate enough

• Retrains the ML potential to the new reference data
• Rewinds the MD simulation to the last point where it was known to be accurate
• Continues the MD simulation, pauses, retrains, rewinds, continues, …

Optionally, the workflow can be restarted from a previous workflow (skipping the initial training).

Fig. 4.1: Example: You run 10 ps MD, dividing the simulation into 4 segments (“active learning steps”) indicated by the
blue bars. At the blue bars, the accuracy of the model is checked and a decision is made whether to continue the MD
simulation or to retrain the model and rewind to a previous point.

Fig. 4.2: Example: You train a committee model that estimates the model’s uncertainty. As soon as the uncertainty
increases above a given threshold, the MD simulation stops. The model is retrained and the simulation rewinds to the
previous active learning step.

There are five main pieces of input:
• Input system. This is the initial system for the MD simulation. The input is exactly the same as for any other AMS
simulation.

82 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

• Molecular dynamics settings. It can be equilibrium or non-equilibrium MD. The settings/input are exactly the
same as for any other AMS simulation.

• Reference engine settings. This can be any engine, but would typically be one of the DFT engines ADF, BAND,
or Quantum ESPRESSO. The settings/input are exactly the same as for any other AMS simulation. This engine
determines the level of theory to which the ML potential is trained.

• ParAMS ML training settings. You can train any ML potential that is supported by ParAMS, for example,
M3GNet. The settings/input are exactly the same as for running standalone ParAMS with Task MachineLearning.

• Active learning settings. These settings determine, for example, how frequently to launch new reference calcula-
tion, and how to judge if the ML potential is accurate enough.

The three main pieces of output are:
• The requestedMD trajectory, that can be analyzed for results
• The trained ML model parameters, that can potentially also be used for other (production) simulations
• All training and validation data, containing the results from the reference calculations

4.1.1 Licensing

To run Simple Active Learning, you need licenses for
• Advanced workflows and tools (includes the workflow and ParAMS),
• Classical force fields and machine learning potentials (to run the ML potential simulations)
• The reference engine (e.g., ADF, BAND, or Quantum ESPRESSO)

4.1.2 What’s new in Simple Active Learning?

AMS2025

• Added a Python SimpleActiveLearningJob.restart_from() function for easier scripting/workflows
• Added the ActiveLearning%JobPrefix input option, to easier see the origin of training data in large training sets
from multiple combined jobs

• Added the RNGSeed input option to control the random number seed for molecular dynamics (does not affect ML
training).

• Added the FromScratchTraining input block

AMS2024

The Simple Active Learning workflow is new in AMS2024.

4.1. General 83

Workflows Manual, Amsterdam Modeling Suite 2025.1

4.2 Quickstart guide

A short example illustrating how to run the workflow directly from the command-line.
See also:

• Python Examples (page 109)
• Input (page 85)
• Tutorial using the graphical user interface

Important: You must first install M3GNet before running this example!

Example to train an M3GNet potential to reproduce the potential energy surface
of the UFF force field for a small organic molecule

In real applications, use a different reference engine!

Before running this example you must install m3gnet:
"$AMSBIN/amspackages" install m3gnet

For details or off-line installation, see the package manager documentation.

"$AMSBIN/simple_active_learning" <<EOF
ActiveLearning

Steps
Geometric
NumSteps 5
Start 10

End
Type Geometric

End
End

MachineLearning
Backend M3GNet
CommitteeSize 1
M3GNet

Model UniversalPotential
End
MaxEpochs 200

End

MolecularDynamics
InitialVelocities

Temperature 300.0
Type Random

End
NSteps 10000
Thermostat

Tau 200.0
Temperature 300.0
Type NHC

End
TimeStep 0.5

(continues on next page)

84 Chapter 4. Simple Active Learning

../../Tutorials/WorkflowsAndAutomation/SimpleActiveLearning.html#saltutorial
../../Tutorials/StructureAndReactivity/M3GNetCohesiveEnergy.html#m3gnettutorial

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
Trajectory

SamplingFreq 100
End

End

Task MolecularDynamics

Engine ForceField
Type UFF

EndEngine

System
Atoms

O 1.5185424677 1.2528427606 -0.3382346351
C 1.0167107700 0.2231953999 0.1069866215
C -0.3341736669 -0.1931701775 -0.3199821682
O -1.3067693409 0.4447398660 0.4319048572
H 1.6797677292 -0.4284512471 0.6676972986
H -0.4715138766 0.0855120883 -1.3968084763
H -0.4208687404 -1.2969328351 -0.3134514232
H -1.6816953421 -0.0877358551 1.1618879254

End
End

EOF

4.3 Input

Simple Active Learning reads all options from an input file, described here. You can also set up this input file in Python
(page 109).

Table 4.1: AMS-like Molecular Dynamics input options
Block Required? Comment
System/LoadSystem Yes identical to AMS Driver System/LoadSystem
Task No must be set to MolecularDynamics
MolecularDynamics Yes identical to AMS Driver MolecularDynamics
Constraints No identical to AMS Driver Constraints
RNGSeed No Random number seed(s) for MD simulations
Engine Yes reference engine settings, identical to normal AMS calculations
MachineLearning Yes identical to ParAMS MachineLearning settings
ParallelLevels No identical to ParAMS ParallelLevels settings
ActiveLearning Yes described on this page

The engine settings for the MD simulations are determined from the MachineLearning input. For example, if you train
an M3GNet model, this means that you will automatically run M3GNet also during the MD simulation.
This section only describes the ActiveLearning input block, which controls

• How to generate/load initial reference data
• When to perform reference calculations
• Criteria for deciding whether to retrain the model or continue the MD simulation

4.3. Input 85

../../AMS/System.html#systemdefinition
../../AMS/System.html#loadsystem
../../AMS/Tasks/Molecular_Dynamics.html#moleculardynamics
../../AMS/Tasks/Geometry_Optimization.html#constraints
../../AMS/Engines.html#engines
../../params/mainscript/machinelearning.html#machinelearningblock
../../params/mainscript/machinelearning.html#mlparallelization

Workflows Manual, Amsterdam Modeling Suite 2025.1

• How much output to save
• Whether to retrain the model and/or rerun the simulation after the active learning loop has finished

See also:
• Quickstart guide (page 84)
• Python Examples (page 109)

4.3.1 Overview

ActiveLearning
AtEnd

RerunSimulation Yes/No
RetrainModel Yes/No

End
FromScratchTraining

Enabled Yes/No
EpochMultiplier float
Probability float

End
InitialReferenceData

Generate
M3GNetShortMD

Enabled Yes/No
End
ReferenceMD

Enabled Yes/No
End

End
Load

Directory string
FromPreviousModel Yes/No

End
End
JobPrefix string
MaxAttemptsPerStep integer
MaxReferenceCalculationsPerAttempt integer
ReasonableSimulationCriteria

Distance
Enabled Yes/No
MinValue float

End
EnergyUncertainty

Enabled Yes/No
MaxValue float
Normalization float

End
GradientsUncertainty

Enabled Yes/No
MaxValue float

End
Temperature

Enabled Yes/No
MaxValue float

End
End

(continues on next page)

86 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
Save

ReferenceCalculations [None | All]
ReferenceData [Latest | All]
TrainingDirectories [Latest | All]
Trajectories [Latest | All]

End
Steps

Geometric
NumSteps integer
Start integer

End
Linear

Start integer
StepSize integer

End
List integer_list
Type [Geometric | List | Linear]

End
SuccessCriteria

Energy
Enabled Yes/No
Normalization float
Relative float
Total float

End
Forces

Enabled Yes/No
MaxDeviationForZeroForce float
MaxMAE float
MinR2 float

End
End

End

4.3.2 Initial reference data

Before the main active learning loop starts, there must be some training data.
The initial training data can be loaded from disk and/or automatically generated. If no data is loaded and no generation
option is explicitly enabled, then the ReferenceMD option described below will be automatically enabled to ensure that
there is some data for the initial model training.

ActiveLearning
InitialReferenceData

Generate
M3GNetShortMD

Enabled Yes/No
End
ReferenceMD

Enabled Yes/No
End

End
Load

Directory string
FromPreviousModel Yes/No

(continues on next page)

4.3. Input 87

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
End

End
End

Generate initial reference data

The M3GNetShortMD option (recommended) follows a short pre-programmed MD simulation using the universal
M3GNet-UP-2022 potential. This gives some structural variation in the initial training data. It generates structures as
follows:

• 300 MD steps with timestep 0.5 fs, temperature = 500 K
• If the system is 3d-periodic then linearly scale the density from 92% to 108% of the original density
• 5 frames are recalculated with the reference engine and added to the training/validation sets

The ReferenceMD option (default if nothing else is specified)
• Runs 3 MD steps (saving every frame) using the exact MolecularDynamics settings specified in the input
• Adds those frames to the training/validation sets

Load initial reference data

If you already have some reference data, for example if you have
• previously run Simple Active Learning, or
• manually created the data by importing into ParAMS and saving,

then you can load it in Simple Active Learning, so that the old data is combined with the new data generated during the
workflow.
If you specify the ActiveLearning%InitialReferenceData%Load%Directory option, then the initial
reference data will be taken from that directory.
Otherwise, if you’re loading a previously trained model using MachineLearning%LoadModel, and if you enable Ac-
tiveLearning%InitialReferenceData%Load%FromPreviousModel, then both the parameters and the
training and validation data will be loaded.

Initial reference data input

ActiveLearning

Type
Block

Description
Settings for Active Learning

InitialReferenceData

Type
Block

Description
Options for loading reference data.

Generate

88 Chapter 4. Simple Active Learning

../../params/mainscript/machinelearning.html#machinelearningblock

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Block

Description
How to generate initial reference data from the initial structure. Can also be combined with
the Load block.
The purpose of these options is to get some initial reference structures/data around the current
structure that can be used for Step 1 of the active learning loop.
The ReferenceMD option will be automatically enabled if no data is otherwise loaded or
generated.

M3GNetShortMD

Type
Block

Description
Structure sampler using M3GNet-UP-2022

Enabled

Type
Bool

Default value
No

GUI name
M3GNet-UP short MD:

Description
Run 300 steps with M3GNet-UP-2022 at T=600 K. If the system is 3D-periodic the
density will be scanned around the initial value. Extract 5 frames and run reference cal-
culations on those.

ReferenceMD

Type
Block

Description
Run NSteps of the MD simulation using the reference engine.

Enabled

Type
Bool

Default value
No

GUI name
Reference MD:

Description
Run 3 steps with the reference engine and add those 3 frames to the training and validation
sets. If no other reference data is loaded or generated, this option will automatically be
enabled.

Load

4.3. Input 89

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Block

Description
How to load initial reference data from other sources. Can also be combined with the Gen-
erate block

Directory

Type
String

Default value
Description
Directory containing initial reference data. It can be
* a ParAMS input directory or a stepX_attemptY_reference_data directory con-
taining the files job_collection.yaml, training_set.yaml, and validation_set.yaml.
* a ParAMS results directory.
If a directory is specified here it will be used instead of the data from a previously loaded
model.

FromPreviousModel

Type
Bool

Default value
Yes

Description
If MachineLearning%LoadModel is set, reuse reference data from that ParAMS run.
If MachineLearning%LoadModel is not set, or if Directory is specified, then this
input option is ignored.

4.3.3 When to run reference calculations (step sequence type)

In the Simple Active Learning workflow, the MD simulation is divided into a sequence of active learning (AL) steps.

ActiveLearning
Steps

Geometric
NumSteps integer
Start integer

End
Linear

Start integer
StepSize integer

End
List integer_list
Type [Geometric | List | Linear]

End
MaxAttemptsPerStep integer
MaxReferenceCalculationsPerAttempt integer
JobPrefix string

End

90 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

Step Type Geometric (default)

Example:
• You set up the MD simulation with NMD = 10000 steps with a time step of 0.5 fs, giving a total simulation length
of 10000*0.5 = 5000 fs = 5 ps.

• You set up the ActiveLearning with Steps%Type = Geometric with Start set to 10 (MD frames) and
NumSteps set to 5, and MaxAttemptsPerStep set to 8

For example using the following input:

MolecularDynamics
NSteps 10000
TimeStep 0.5
... other MD options

End

ActiveLearning
Steps

Type Geometric # default
Geometric

Start 10 # default
NumSteps 5

End
End
MaxAttemptsPerStep 8
MaxReferenceCalculationsPerAttempt 4
... other ActiveLearning options

End

This will divide the 10000MD steps into 5AL steps, where the first AL step contains 10MD steps, and each subsequent
AL step contains progressively more MD steps (following a Geometric progression):

The ACTIVE LEARNING loop will contain 5 steps, using the following scheme:
Active Learning Step 1: 10 MD Steps (cumulative: 10)
Active Learning Step 2: 46 MD Steps (cumulative: 56)
Active Learning Step 3: 260 MD Steps (cumulative: 316)
Active Learning Step 4: 1462 MD Steps (cumulative: 1778)
Active Learning Step 5: 8222 MD Steps (cumulative: 10000)

Total number of MD Steps: 10000
Max attempts per active learning step: 8

The progression is geometric because 56/10 ≈ 316/56 ≈ 1778/316 ≈ 10000/1778 ≈ 5.6.
The above scheme means that the active learning loop will be executed as follows:

1. step1_attempt1_simulation: Run 10 MD steps using the initially trained model
2. step1_attempt1_ref_calc1: Run reference calculation on final frame
3. Evaluate the Success criteria (page 96):
• If no success: run up to 3 more reference calculations, retrain the model, and loop back to the beginning of the
step ↰: rerun AL step 1 (the first 10 MD steps) as step1_attempt2_simulation using the new parameters,
run reference calculation on final frame, evaluate the success criteria, …

• If success or if the number of attempts > 8: continue to AL step 2
1. step2_attempt1_simulation: Run 46 MD steps starting from the final frame of AL step 1, for a total

(cumulative) length of 56 MD steps

4.3. Input 91

Workflows Manual, Amsterdam Modeling Suite 2025.1

2. step2_attempt1_ref_calc1: Run reference calculation on final frame
3. Evaluate the Success criteria (page 96):
• If no success: run up to 3 more reference calculations, retrain the model, and loop back to the beginning of
the step ↰: rerun AL step 2 (the 46 MD steps) as step2_attempt2_simulation using the new parameters,
run reference calculation on final frame, evaluate the success criteria, …

• If success or if the number of attempts > 8: continue to AL step 3
1. step3_attempt1_simulation: Run 260 MD steps starting from the final frame of AL step 2, for a total

(cumulative) length of 315 MD steps
2. Etcetera….

Step Type Linear

The steps can also follow a linear progression.
This is especially useful if you run non-equilibrium MD where you linearly apply some restraint, for example if you use
a ReactionBoost RMSDRestraint following the TargetCoordinate, or apply a linear lattice deformation.
Instead of providing the number of steps, you provide the start step and the step size:

MolecularDynamics
NSteps 10000
other MD options...

End

ActiveLearning
Steps

Type Linear
Linear

Start 100
StepSize 2000

End
End

End

Active Learning Step 1: 100 MD Steps (cumulative: 100)
Active Learning Step 2: 2000 MD Steps (cumulative: 2100)
Active Learning Step 3: 2000 MD Steps (cumulative: 4100)
Active Learning Step 4: 2000 MD Steps (cumulative: 6100)
Active Learning Step 5: 2000 MD Steps (cumulative: 8100)
Active Learning Step 6: 1900 MD Steps (cumulative: 10000)

Step Type List

You can also list the (cumulative) number of MD steps per active learning step explicitly. The final MD step is always
considered to be the end of an active learning step and does not need to be specified.

MolecularDynamics
NSteps 10000
other MD options...

End

ActiveLearning

(continues on next page)

92 Chapter 4. Simple Active Learning

../../AMS/Tasks/Molecular_Dynamics.html#mdreactionboost
../../AMS/Tasks/Molecular_Dynamics.html#mddeformation

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
Steps

Type List
List 100 3333 4567 7777

End
End

Active Learning Step 1: 100 MD Steps (cumulative: 100)
Active Learning Step 2: 3233 MD Steps (cumulative: 3333)
Active Learning Step 3: 1234 MD Steps (cumulative: 4567)
Active Learning Step 4: 3210 MD Steps (cumulative: 7777)
Active Learning Step 5: 2223 MD Steps (cumulative: 10000)

Steps input

ActiveLearning
Steps

Geometric
NumSteps integer
Start integer

End
Linear

Start integer
StepSize integer

End
List integer_list
Type [Geometric | List | Linear]

End
MaxAttemptsPerStep integer
MaxReferenceCalculationsPerAttempt integer
JobPrefix string

End

ActiveLearning

Type
Block

Description
Settings for Active Learning

Steps

Type
Block

Description
Settings to determine the number of MD steps per active learning step.

Geometric

Type
Block

Description
Options for geometric.

NumSteps

4.3. Input 93

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Integer

Default value
10

Description
The number of active learning steps to perform. The MD simulation will be split into this
number of active learning steps. The active learning steps will progressively contain more
and more MD steps.

Start

Type
Integer

Default value
10

Description
The length of the first step (in MD time steps).

Linear

Type
Block

Description
Options for linear.

Start

Type
Integer

Default value
10

Description
The length of the first step (in MD time steps).

StepSize

Type
Integer

Default value
1000

Description
The length of every subsequent active learning step (in MD time steps).

List

Type
Integer List

Description
List of MD frame indices, for example 10 50 200 1000 10000 100000. Only indices
smaller than MolecularDynamics%NSteps are considered. Note: the final frame of
the MD simulation is always considered to be the end of a step and does not need to be
specified here.

Type

94 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Multiple Choice

Default value
Geometric

Options
[Geometric, List, Linear]

GUI name
Step sequence type:

Description
How to determine the number of MD steps per active learning step.

MaxAttemptsPerStep

Type
Integer

Default value
15

Description
Maximum number of attempts per active learning step. If this number is exceeded, the active
learning will continue to the next step even if the potential is not accurate enough according to
the criteria. If the default value is exceeded, it probably means that the criteria are too strict.

MaxReferenceCalculationsPerAttempt

Type
Integer

Default value
4

GUI name
Max ref calcs per attempt:

Description
Maximum number of reference calculations per attempt. For successful attempts, only a single
reference calculation is performed. For very short active learning steps, fewer calculations are
done than the number specified.

JobPrefix

Type
String

Default value
Description

Jobs added to the job collection will receive this prefix. Example: set to water_ to get jobs
like water_step1_attempt1_frame001. If the prefix does not end with an underscore
_, one will be automatically added.

4.3. Input 95

Workflows Manual, Amsterdam Modeling Suite 2025.1

4.3.4 Success criteria

At the end of an active learning step, a reference calculation (stepX_attemptY_ref_calc1) is performed on the
last frame of the MD simulation.
The results (energy and forces) from this reference calculation are compared to the results of the trained ML potential.
Only if the agreement is accurate enough, such that all success criteria are fulfilled, will the Active Learning workflow
continue to the next Active Learning Step.

Energy: total and relative

Enable the energy success checker with ActiveLearning%SuccessCriteria%Energy%Enabled.
Energies can optionally be normalized by some number before making the comparison, by specifying the Active-
Learning%SuccessCriteria%Energy%Normalization input option.
By default energies are normalized by the number of atoms. This is suitable for reasonably homogeneous systems
and means that the same criteria can be used for any number of atoms.
You may consider changing the Normalization if your system is very inhomogeneous, for example if you’re looking
at single atom diffusing in a large bulk crystal.

Total energy

The ActiveLearning%SuccessCriteria%Energy%Total compares the ML-predicted energy Epred directly
to the reference energy Eref:

• ΔE = Epred - Eref
• Success if |ΔE|/Normalization < ActiveLearning%SuccessCriteria%Energy%Total

Relative energy

Compare the difference between calculated relative reference energies and relative predicted energies.
This success criterion is not invoked for step1_attempt1 but for all subsequent steps and attempts.

• ΔEref = Erefcurrent - Erefprevious

• ΔEpred = Epredcurrent - Epredprevious

• ΔΔE = ΔEpred - ΔEref
• Success if |ΔΔE|/Normalization < ActiveLearning%SuccessCriteria%Energy%Relative

Forces (gradients)

Enable the forces success criterion with ActiveLearning%SuccessCriteria%Forces%Enabled.
The predicted forces are compared to the reference forces in three ways:

• Mean absolute error (MAE) in eV/angstrom, MaxMAE
• R² in the correlation plot between reference and predicted values, MinR2
• Maximum deviation, MaxDeviationForZeroForce

96 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

For structures with large components, it is usually not so important the the forces are predicted very accurately, as they
represent unstable structures that are unlikely to appear in an MD simulation. For large force components, one can accept
a larger error (deviation) between the reference and predicted values.
For this reason, the maximum deviation criterion depends on the magnitude of the reference force. Themaximum allowed
deviation between predicted and reference force components is determined by the following equation:

y(x) = y0 +
L

1 + exp(−k(|x| − x0))
− L

1 + exp(−k(−x0))

where y is the threshold, x is the reference force, y0 is MaxDeviationForZeroForce, L = 3, x0 = 7, and k = 0.5.
There is no theoretical basis for this equation other than that it in practice seems to give reasonable thresholds.
This gives the following calculated threshold vs. reference force for a few different values of MaxDeviationForZe-
roForce:

4.3. Input 97

Workflows Manual, Amsterdam Modeling Suite 2025.1

Success criteria input

ActiveLearning
SuccessCriteria

Energy
Enabled Yes/No
Normalization float
Relative float
Total float

End
Forces

Enabled Yes/No
MaxDeviationForZeroForce float
MaxMAE float
MinR2 float

End
End

End

ActiveLearning

Type
Block

Description
Settings for Active Learning

SuccessCriteria

Type
Block

Description
Criteria for determining whether an active learning step was successful. These criteria compare
one or more reference calculations to the predictions. If any of the criteria are exceeded, the
active learning loop will reparametrize the model and repeat the step.

Energy

Type
Block

Description
Conditions to decide whether the calculated energy is are accurate enough with respect to
reference energies.

Enabled

Type
Bool

Default value
Yes

Description
Enable energy checking during the active learning.

Normalization

Type
Float

98 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
Normalize (divide) energies by this number before comparing to the specified thresholds. If
not specified, it will become the number of atoms.

Relative

Type
Float

Default value
0.005

Unit
eV

GUI name
Relative energy:

Description
|ΔΔE|/Normalization: Maximum allowed difference between the calculated relative
reference energies and relative predicted energies. The relative energies are calculated for
the current structure with respect to the structure in the previous reference calculation.
ΔE_ref = E_ref(current) - E_ref(previous).
ΔE_pred = E_pred(current) - E_pred(previous).
|ΔΔE| = |ΔE_pred - ΔE_ref|

Total

Type
Float

Default value
0.2

Unit
eV

GUI name
Total energy:

Description
|ΔE|/Normalization: Maximum allowed total energy difference between the refer-
ence and predicted energy. This criterion is mostly useful when restarting a workflow from
a previously trained model but on a new stoichiometry / system, for which the total energy
prediction may be very far from the target. The default value is quite large so it is normally
not exceeded.
|∆E| = |E_pred - E_ref|

Forces

Type
Block

Description
Conditions to decide whether calculated forces are accurate enough with respect to reference
forces.

Enabled

4.3. Input 99

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Bool

Default value
Yes

Description
Enable checking the forces during the active learning.

MaxDeviationForZeroForce

Type
Float

Default value
0.5

Unit
eV/angstrom

Description
The maximum allowed deviation between a calculated force component and the correspond-
ing reference force component. For larger reference forces, the allowed deviation will also
be larger (see the documentation). If any deviation is larger than the (magnitude-dependent)
threshold, the active learning step will be repeated after a reparametrization.

MaxMAE

Type
Float

Default value
0.3

Unit
eV/angstrom

GUI name
Max MAE:

Description
Maximum allowed mean absolute error when comparing reference and predicted forces for
a single frame at the end of an active learning step. If the obtained MAE is larger than this
threshold, the active learning step will be repeated after a reparametrization.

MinR2

Type
Float

Default value
0.2

GUI name
Min R²:

Description
Minimum allowed value for R^2 when comparing reference and predicted forces for a single
frame at the end of an active learning step. If the obtained R^2 is smaller than this threshold,
the active learning step will be repeated after a reparametrization. Note that if you have
very small forces (for example by running the active learning at a very low temperature or
starting from a geometry-optimized structure), then you should decrease the MinR2 since it
is difficult for the ML model predict very small forces accurately.

100 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

4.3.5 Reasonable simulation criteria (uncertainties, temperature, …)

When runningMD simulations withML potentials, it may happen that the simulation explores configurational space where
the ML potential was not trained.
This can lead to strange behavior like

• atoms crashing into each other
• extremely high temperatures

The active learning workflow will try to detect these events and discard any subsequent structures.
If you train a ParAMS ML Committee (MachineLearning%CommitteeSize > 1), the ML model will also
return an estimated uncertainty of predicted energies and forces.
You can also set a threshold for these uncertainties, such that if they are exceeded the MD simulation immediately
stops, even before the end of the active learning step. You can thus choose to use the predicted uncertainties to decide
when to stop the simulation, and use structures with high uncertainty for the training set. This method can be used in
addition to active learning step division (page 90).

Criterion Implementation
Temperature inside active learning workflow
Distance AMS Exit Condition
Energy uncertainty AMS Exit Condition
Forces uncertainty AMS Exit Condition

Note: If a “reasonable simulation criterion” is exceeded, this will never count as a successful step/attempt.
It will always lead to a retraining of the model and an increase of the attempt number, even if MaxAttemptsPerStep is
exceeded.

ActiveLearning
ReasonableSimulationCriteria

Distance
Enabled Yes/No
MinValue float

End
EnergyUncertainty

Enabled Yes/No
MaxValue float
Normalization float

End
GradientsUncertainty

Enabled Yes/No
MaxValue float

End
Temperature

Enabled Yes/No
MaxValue float

End
End

End

ActiveLearning

4.3. Input 101

../../AMS/Tasks/Molecular_Dynamics.html#amsexitconditions
../../AMS/Tasks/Molecular_Dynamics.html#amsexitconditions
../../AMS/Tasks/Molecular_Dynamics.html#amsexitconditions

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Block

Description
Settings for Active Learning

ReasonableSimulationCriteria

Type
Block

Description
Criteria for determining whether a simulation is reasonable. If any of the criteria are exceeded,
this will be reported as ‘ENERGY_UNCERTAINTY’, ‘TEMPERATURE’, etc., with capital
letters in the output. If a simulation is unreasonable, it will never lead to an increase of the Step,
even if the number of attempts exceeds MaxAttemptsPerStep.

Distance

Type
Block

Description
Stop the simulation if any interatomic distance is smaller than the specified value.

Enabled

Type
Bool

Default value
Yes

Description
Stop the simulation if any interatomic distance is smaller than the specified value.

MinValue

Type
Float

Default value
0.6

Unit
angstrom

GUI name
Minimum

Description
Minimum allowed interatomic distance.

EnergyUncertainty

Type
Block

Description
Stop the simulation if the uncertainty in the energy is too high. Currently only applicable
when training committees.

Enabled

102 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Bool

Default value
No

Description
Stop the simulation if the uncertainty in the energy is too high. Currently only applicable
when training committees. If CommitteeSize = 1 then this keyword has no effect.

MaxValue

Type
Float

Default value
0.015

Unit
eV

GUI name
Maximum

Description
Threshold for allowed [energy uncertainty divided by Normalization].

Normalization

Type
Float

Description
Normalize (divide) the energy uncertainty by this number before comparing to the specified
threshold. If not specified, it will become the number of atoms.

GradientsUncertainty

Type
Block

Description
Stop the simulation if the uncertainty in the gradients (forces) is too high. Currently only
applicable when training committees.

Enabled

Type
Bool

Default value
No

Description
Stop the simulation if the uncertainty in the gradients (forces) is too high. Currently only
applicable when training committees. If CommitteeSize = 1 then this keyword has no effect.

MaxValue

Type
Float

Default value
0.5

4.3. Input 103

Workflows Manual, Amsterdam Modeling Suite 2025.1

Unit
eV/angstrom

GUI name
Maximum

Description
Maximum allowed gradients (forces) uncertainty.

Temperature

Type
Block

Description
Discard all frames after the temperature has reached the specified value.

Enabled

Type
Bool

Default value
Yes

Description
Discard all frames after the temperature has reached the specified value.

MaxValue

Type
Float

Default value
5000.0

Unit
K

GUI name
Maximum

Description
Maximum allowed temperature

4.3.6 From scratch training

By default, ParAMS will reuse the parameters from the previous step/attempt as a starting point for the parametrization.
Sometimes, this means that the optimizer gets stuck in a local minimum that is good for the structures encountered early
in the simulation, but not for later ones.
By enabling FromScratchTraining, the optimization can be made to start from the original parameters with a given prob-
ability. Here the “original parameters” refers to what you would get if there was no LoadModel provided in the Ma-
chineLearning input block.

ActiveLearning
FromScratchTraining

Enabled Yes/No
EpochMultiplier float
Probability float

(continues on next page)

104 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
End

End

ActiveLearning

Type
Block

Description
Settings for Active Learning

FromScratchTraining

Type
Block

Description
Custom options when training ‘from scratch’ (not restarting).

Enabled

Type
Bool

Default value
No

Description
With the given probability, start parameter training from the original starting point (from
‘scratch’) instead of restarting from the previous step/attempt.

EpochMultiplier

Type
Float

Default value
5.0

Description
The maximum number of epochs is multiplier by this number when training from scratch.
When not restarting from the previous parameters, it is usually a good idea to train for more
epochs.

Probability

Type
Float

Default value
0.1

Description
With the given probability, start parameter training from the original starting point (from
‘scratch’) instead of restarting from the previous step/attempt.

4.3. Input 105

Workflows Manual, Amsterdam Modeling Suite 2025.1

4.3.7 Output to save

The active learning workflow produces many directories containing reference calculations, MD simulations, and ParAMS
training. You can choose how much output to save.
By default, the workflow only keeps the directories it needs to keep going. This always includes

• the entire training and validation sets, and
• the MD trajectory from the beginning of the workflow.

By default, the reference calculation directories are not saved unless the reference calculation fails.

ActiveLearning
Save

ReferenceCalculations [None | All]
ReferenceData [Latest | All]
TrainingDirectories [Latest | All]
Trajectories [Latest | All]

End
End

ActiveLearning

Type
Block

Description
Settings for Active Learning

Save

Type
Block

Description
The files/directories on disk to keep. If you set these options to All, a lot of output will be
created. This output is usually not necessary but can be used for debugging purposes, or to
better understand what the workflow is doing.

ReferenceCalculations

Type
Multiple Choice

Default value
None

Options
[None, All]

Description
The reference calculation directories (initial_reference_calculations or
stepX_attemptY_ref_calcZ) including the original input and output.
These directoriesmay take up a lot of disk space and are not kept by default. Enable this option
if you need to investigate why reference calculations fail (incorrect input, SCF convergence
problems, …), or if you want to keep them for some other reason.
Note: The output used for parametrization (energy, forces) is always stored in the Reference-
Data (training and validation sets).

ReferenceData

106 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

Type
Multiple Choice

Default value
Latest

Options
[Latest, All]

Description
The reference data directories (stepX_attemptY_reference_data) containing the
training and validation sets in ParAMS .yaml format (and ASE .xyz format). These can be
opened in the ParAMS GUI or used as input for ParAMS.

TrainingDirectories

Type
Multiple Choice

Default value
Latest

Options
[Latest, All]

Description
The ParAMS training directories (stepX_attemptY_training).

Trajectories

Type
Multiple Choice

Default value
Latest

Options
[Latest, All]

Description
The MD trajectory calculation directories (stepX_attemptY_simulation) using the
trained ML potential. Note: the trajectories in these directories are the entire trajectories
from the beginning of the simulation.

4.3.8 At workflow end: retrain model, rerun simulation

Retrain model

After the final active learning step, you have the option to retrain the model using all reference data.
This may be useful to not “waste” reference calculations that have been performed but not used for training.
Example: if the the last 3 active learning steps (page 90) are successful at the first attempt, then the workflow will have
run 3 reference calculations (for the evaluation of the success criteria) that have not been used for training or validation.
The downside of retraining the model is that you may end up with a model that would have failed the success criteria!
By default, the model is not automatically retrained.

4.3. Input 107

Workflows Manual, Amsterdam Modeling Suite 2025.1

Rerun simulation (final production simulation)

After the final active learning step is successful, you can rerun the entire MD simulation from scratch using the final model
parameters.
This will give you an MD trajectory with consistent sampling frequency and calculated using a single potential energy
surface.
It is run in a directory called final_production_simulation, and replaces the ams.rkf file in the main results
directory.
The reasonable simulation criteria (page 101) are not applied to the final production simulation.

AtEnd input

ActiveLearning
AtEnd

RerunSimulation Yes/No
RetrainModel Yes/No

End
End

ActiveLearning

Type
Block

Description
Settings for Active Learning

AtEnd

Type
Block

Description
What to do at the end of the active learning loop.

RerunSimulation

Type
Bool

Default value
Yes

Description
Rerun the MD simulation (folder: final_production_simulation) using the last
set of parameters. This guarantees that the entire trajectory is calculated using the same
model / potential energy surface, and that the trajectory has a consistent sampling frequency.
This means that it can be used with all MD postanalysis tools.

RetrainModel

Type
Bool

Default value
No

108 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

Description
Train a final model (folder: final_training) using all reference (training and validation)
data, including any reference calculations that have not yet been trained to.

4.4 Output

See also:
• SALPythonAPI (page 176)
• How to specify which output to save (page 106)

Simple Active Learning produces the following output directories:
• simple_active_learning.results : The main results folder
• loaded_training : copy of the previous ParAMS training directory if MachineLearning%LoadModel
(page 85) is specified.

• initial_training : ParAMS training directory to the initial reference data (page 87)
• stepX_attemptY_simulation : MD simulation with (re-)trained ML model parameters
• stepX_attemptY_ref_calc1 : Reference calculation for the success criterion (page 96)
• stepX_attemptY_ref_calcN : (N>1) Additional reference calculations if the step was unsuccessful
• stepX_attemptY_reference_data : Directory containing reference data in the ParAMS .yaml format,
including the reference calculations for the same X and Y

• stepX_attemptY_training : ParAMS training directory for unsuccessful steps
• final_training : ParAMS training directory if retraining the model after the last step (page 107)
• final_production_simulation : MD simulation run from scratch (page 108) using the final model pa-
rameters

4.5 Python Examples

These examples show how to run Simple Active Learning with Python.
Getting Started

4.5.1 Single molecule: setup and run

Note: This example requires AMS2024 or later.
To follow along, either

• Download sal_single_molecule_setup_run.py (run as $AMSBIN/amspython
sal_single_molecule_setup_run.py).

• Download sal_single_molecule_setup_run.ipynb (see also: how to install Jupyterlab in AMS)

4.4. Output 109

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Initial imports

from scm.simple_active_learning import SimpleActiveLearningJob
import scm.plams as plams
from scm.external_engines.core import interface_is_installed

assert interface_is_installed("m3gnet"), "You must first install m3gnet with the AMS␣
↪→package manager"

Initialize PLAMS

plams.init()

Input system

mol = plams.from_smiles("OCC=O")
for at in mol:

at.properties = {}
plams.plot_molecule(mol)

Reference engine settings
For time reasons we use the UFF force field as the reference method. Typically you␣
↪→would instead train to DFT using ADF, BAND, or Quantum ESPRESSO.

ref_s = plams.Settings()
ref_s.input.ForceField.Type = "UFF"
ref_s.runscript.nproc = 1

print(plams.AMSJob(settings=ref_s).get_input())

Molecular dynamics settings
Here, we use the convenient ``AMSNVTJob`` recipe to easily initialize sone MD␣
↪→settings.

md_s = plams.AMSNVTJob(temperature=300, timestep=0.5, nsteps=10000).settings

print(plams.AMSJob(settings=md_s).get_input())

ParAMS ML Training settings
#
(Technical note: When using ``SimpleActiveLearningJob`` the ParAMS settings go␣
↪→under ``input.ams``. When using ``ParAMSJob`` the settings instead simply go under␣
↪→``input``. See the ParAMS Python tutorials.)

ml_s = plams.Settings()

(continues on next page)

110 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
ml_s.input.ams.MachineLearning.Backend = "M3GNet"
ml_s.input.ams.MachineLearning.CommitteeSize = 1
ml_s.input.ams.MachineLearning.M3GNet.Model = "UniversalPotential"
ml_s.input.ams.MachineLearning.MaxEpochs = 200
print(SimpleActiveLearningJob(settings=ml_s).get_input())

Active learning settings

al_s = plams.Settings()
al_s.input.ams.ActiveLearning.Steps.Type = "Geometric"
al_s.input.ams.ActiveLearning.Steps.Geometric.Start = 10 # 10 MD frames
al_s.input.ams.ActiveLearning.Steps.Geometric.NumSteps = 5 # 10 AL steps
print(SimpleActiveLearningJob(settings=al_s).get_input())

Simple Active Learning Job

settings = ref_s + md_s + ml_s + al_s
job = SimpleActiveLearningJob(settings=settings, molecule=mol, name="sal")
print(job.get_input())

Run the job

job.run(watch=True)

4.5.2 Single molecule: access results

Note: This example requires AMS2024 or later.
This example shows how to get results from Single molecule: setup and run (page 109), so run through that example first!
To follow along, either

• Download sal_single_molecule_results.py (run as $AMSBIN/amsipython
sal_single_molecule_results.py).

• Download sal_single_molecule_results.ipynb (see also: how to install Jupyterlab in AMS)

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Load a SimpleActiveLearningJob from disk
#
Use ``load_external`` to load the job from the previous Jupyter Notebook tutorial.␣
↪→Make sure to provide the correct path!

from scm.simple_active_learning import SimpleActiveLearningJob
import scm.plams as plams
import matplotlib.pyplot as plt
import os

(continues on next page)

4.5. Python Examples 111

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)

replace the path with your own path !
previous_sal_job_path = os.path.expandvars("$AMSHOME/examples/SAL/Output/
↪→SingleMolecule/plams_workdir/sal")
job = SimpleActiveLearningJob.load_external(previous_sal_job_path)

Access the log file
#
The results of the active learning are printed in a human-friendly format in the␣
↪→log file. For example, let's print the last few lines:

n_lines = 40
end_of_logfile = "\n".join(job.results.read_file("simple_active_learning.log").split(
↪→"\n")[-n_lines:])
print(end_of_logfile)

Above we can easily see that there were 5 active learning steps, and the engine␣
↪→settings for the final trained ML potential.
#
Tip: You can copy-paste the lines from ``Engine MLPotential`` to ``EndEngine`` into␣
↪→AMSinput to use those engine settings for other production simulations in the GUI.

Access the MD trajectories
#
By default, the ``ActiveLearning%AtEnd%RerunSimulation`` option is enabled. This␣
↪→means that after the active learning loop has finished, the entire simulation is␣
↪→rerun from scratch with the final set of parameters.
#
There are thus two trajectories:
#
* A trajectory run only with the final parameters, and that is just a normal AMS␣
↪→job. This trajectory is located in the directory ``final_production_simulation`` if␣
↪→it exists.
#
* A trajectory where the parameters have been updated on-the-fly, and which may␣
↪→also have an inconsistent MD sampling frequency. This trajectory is located in one␣
↪→of the ``stepX_attemptY_simulation`` directories.
#
Use the ``get_simulation_directory`` method to get the corresponding directories.
#
Let's start with the **final production simulation**:

final_production_simulation_dir = job.results.get_simulation_directory(allow_
↪→final=True)
print(final_production_simulation_dir)

View the trajectory in AMSmovie:

final_job = plams.AMSJob.load_external(final_production_simulation_dir)
final_rkf = final_job.results.rkfpath()

Let's then get the **other (with on-the-fly-updated-engine) trajectory**:

(continues on next page)

112 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
onthefly_simulation_dir = job.results.get_simulation_directory(allow_final=False)
print(onthefly_simulation_dir)

onthefly_job = plams.AMSJob.load_external(onthefly_simulation_dir)
onthefly_rkf = onthefly_job.results.rkfpath()

Let's compare energy-vs-frame for the two trajectories:

plt.plot(
final_job.results.get_history_property("Time", "MDHistory"),
final_job.results.get_history_property("EngineEnergy"),

)
plt.plot(

onthefly_job.results.get_history_property("Time", "MDHistory"),
onthefly_job.results.get_history_property("EngineEnergy"),

)
plt.legend(["Final", "On-the-fly"])
plt.xlabel("Time (fs)")
plt.ylabel("Engine energy (hartree)")

The energy profiles look quite similar. For the on-the-fly trajectory, there are␣
↪→more datapoints for short times since the Simple Active Learning tool samples more␣
↪→frequently in the beginning of the simulation when there are only a few MD steps␣
↪→per active learning step.

Access the ParAMS training results
#
Similarly to the final production trajectory, there is an input option␣
↪→``ActiveLearning%AtEnd%RetrainModel`` which will retrain the model at the end,␣
↪→guaranteeing that all the generated reference data is used during the training or␣
↪→validation. However, this option is off by default.
#
The method ``get_params_results_directory()`` returns the ParAMS results directory,␣
↪→which can be
* used as the value for ``MachineLearning%LoadModel`` to continue with another␣
↪→active learning run, or
* opened in the ParAMS GUI to view all results, including loss function␣
↪→minimization and predicted-vs-reference scatter plots
#
The method ``get_params_job()`` returns a ``ParAMSJob`` whose results can directly␣
↪→be accessed using the normal ``ParAMSJob`` and ``ParAMSResults`` python APIs.

params_results_dir = job.results.get_params_results_directory(allow_final=True)
print(params_results_dir)

Open it in the ParAMS GUI:

The ParAMS GUI is the best way to quickly get an overview of the data sets and␣
↪→results.
#
However, it can also be useful to **access results from Python**.
#

(continues on next page)

4.5. Python Examples 113

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
The details of the ParAMSJob and ParAMSResults classes are shown in the ParAMS␣
↪→Python examples, here we just provide a quick example:

params_job = job.results.get_params_job()
params_job.results.plot_simple_correlation("forces", source="best")

If you want to access individual data entries or the MAE in Python, you can use the␣
↪→``params_job.results.get_data_set_evaluator()`` method. See the ParAMS␣
↪→DataSetEvaluator documentation for details.

Access the production engine settings
#
The engine settings used for production simulation can be accessed from the ParAMS␣
↪→job:

engine_settings = params_job.results.get_production_engine_settings()
print(plams.AMSJob(settings=engine_settings).get_input())

Access the reference data

The ``stepX_attemptY_reference_data`` directories can be accessed using ``get_
↪→reference_data_directory()``:

ref_dir = job.results.get_reference_data_directory()
print(ref_dir)

4.5.3 Single molecule: Compare to M3GNet-UP-2022

Note: This example requires AMS2024 or later.
This example uses results from Single molecule: setup and run (page 109), so run through that example first!
To follow along, either

• Download sal_single_molecule_compare_to_m3gnet_up_2022.py (run as $AMSBIN/
amsipython sal_single_molecule_compare_to_m3gnet_up_2022.py).

• Download sal_single_molecule_compare_to_m3gnet_up_2022.ipynb (see also: how to install
Jupyterlab in AMS)

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Load the Simple Active Learning job from disk.
#
``retrained_params_job`` is the best ParAMS training job that was done during the␣
↪→Active Learning.

from scm.simple_active_learning import SimpleActiveLearningJob
from scm.params.plams.paramsjob import ParAMSJob
from scm.params import ResultsImporter, NoParameters

(continues on next page)

114 Chapter 4. Simple Active Learning

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
import scm.plams as plams
import os

replace the path with your own path !
previous_sal_job_path = os.path.expandvars("$AMSHOME/examples/SAL/Output/
↪→SingleMolecule/plams_workdir/sal")
sal_job = SimpleActiveLearningJob.load_external(previous_sal_job_path)
retrained_params_job = sal_job.results.get_params_job()

Get results for M3GNet-UP-2022 universal potential
#
Are the retrained results any better than those from the M3GNet-UP-2022 universal␣
↪→potential?
#
To find out, we need to evaluate the training and validation sets also with M3GNet-
↪→UP-2022. This can be done with the ParAMS "SinglePoint" task, which does not␣
↪→perform any parameter optimization but instead evaluates the training and␣
↪→validation sets with a given engine.
#
To set the engine settings, we need to call the ``set_extra_engine()`` method on␣
↪→the job collection and then store the results in a new folder that can be read by␣
↪→the new ParAMSJob. The easiest way to achieve this is to use the␣
↪→``ResultsImporter`` class, even though we do not import any new results. When␣
↪→running the SinglePoint, we also have to explicitly specify that there are no␣
↪→parameters and store the ``NoParameters`` parameter interface:

m3gnet_up_s = plams.Settings()
m3gnet_up_s.input.MLPotential.Model = "M3GNet-UP-2022"
ri = ResultsImporter.from_params_results(retrained_params_job.results)
ri.job_collection.set_extra_engine(m3gnet_up_s)
print(ri.job_collection.engines)

pi = NoParameters()
folder = "m3gnet-up-data"
ri.store(folder, backup=False) # will create the directory
pi.yaml_store(f"{folder}/parameter_interface.yaml")
os.listdir(folder)

We can now **initialize the new ParAMS SinglePoint job and run it**:

new_params_job = ParAMSJob.from_yaml(folder)
new_params_job.settings.input.Task = "SinglePoint"
new_params_job.name = "m3gnet-up"

plams.init(folder="plams_workdir_singlepoint_validation")
new_params_job.run()

M3GNet-UP-2022 (predicted) forces vs. the reference (here UFF) forces

new_params_job.results.plot_simple_correlation("forces", source="best", title="M3GNet-
↪→UP-2022")

(continues on next page)

4.5. Python Examples 115

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
Here we can see that M3GNet-UP-2022 gives quite different force prediction compared␣
↪→to our chosen reference method (UFF force field).
#
Note that M3GNet-UP-2022 was trained to PBE DFT data, and the plot above shows the␣
↪→agreement to the UFF force field. The plot does not show the agreement to the PBE␣
↪→level of theory to which M3GNet-UP-2022 was originally trained!

Retrained M3GNet (predicted) forces vs. the reference (here UFF) forces

retrained_params_job.results.plot_simple_correlation("forces", source="best", title=
↪→"Retrained M3GNet")

This is the same plot as shown in the previous tutorial. We can see that the active␣
↪→learning retraining has led to significant improvements in reproducing the␣
↪→reference data!

4.5.4 Single molecule: Production simulation with retrained ML potential

Note: This example requires AMS2024 or later.
This example uses results from Single molecule: setup and run (page 109), so run through that example first!
To follow along, either

• Download sal_single_molecule_production_simulation.py (run as $AMSBIN/amsipython
sal_single_molecule_production_simulation.py).

• Download sal_single_molecule_production_simulation.ipynb (see also: how to install
Jupyterlab in AMS)

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Initial imports and load active learning job from disk

from scm.simple_active_learning import SimpleActiveLearningJob
import scm.plams as plams
import os
import matplotlib.pyplot as plt

plams.init()

replace the path with your own path !
previous_sal_job_path = os.path.expandvars("$AMSHOME/examples/SAL/Output/
↪→SingleMolecule/plams_workdir/sal")
sal_job = SimpleActiveLearningJob.load_external(previous_sal_job_path)
params_job = sal_job.results.get_params_job()

Structure for production job
(continues on next page)

116 Chapter 4. Simple Active Learning

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
#
We could initialize a PLAMS molecule in many different ways. Here, we get the final␣
↪→frame from the final production simulation in the SAL job, and preoptimize it with␣
↪→UFF.

molecule = sal_job.results.get_main_molecule()
molecule = plams.preoptimize(molecule, model="UFF")
plams.plot_molecule(molecule)

Settings for production job
#
Let's run a geometry optimization + frequencies. But you could run any AMS job!
#
The ``MaxRestarts`` option is useful when calculating normal modes. If the geometry␣
↪→optimizer converges to a transition state, it will continue until it finds a local␣
↪→minimum!

s = plams.Settings()
s.input.ams.Task = "GeometryOptimization"
s.input.ams.Properties.NormalModes = "Yes"
s.input.ams.GeometryOptimization.MaxRestarts = 5
s.runscript.nproc = 1

retrained_engine_settings = params_job.results.get_production_engine_settings()

new_job = plams.AMSJob(settings=s + retrained_engine_settings, name="retrained_m3gnet
↪→", molecule=molecule)
print(new_job.get_input())

new_job.run()

Optimized structure

plams.plot_molecule(new_job.results.get_main_molecule())

Frequencies

width = 50 # cm^-1
x, y = new_job.results.get_ir_spectrum(broadening_width=width, post_process="all_
↪→intensities_to_1")
plt.plot(x, y, label="Retrained M3GNet")
plt.xlabel("Frequency (cm^-1)")
plt.ylabel("Normal mode count")
plt.legend()

Compare to reference UFF
In this case, we can also calculate the normal modes with the reference method␣
↪→(UFF) and compare:

ref_engine_settings = plams.Settings()
ref_engine_settings.input.ForceField.Type = "UFF"
ref_job = plams.AMSJob(settings=s + ref_engine_settings, name="uff_ref",␣

(continues on next page)

4.5. Python Examples 117

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
↪→molecule=molecule)
ref_job.run()

retrained_structure_rmsd = plams.Molecule.rmsd(
ref_job.results.get_main_molecule(),
new_job.results.get_main_molecule(),
ignore_hydrogen=True,

)
print(f"Structural RMSD: {retrained_structure_rmsd:.2f} angstrom")

x_ref, y_ref = ref_job.results.get_ir_spectrum(broadening_width=width, post_process=
↪→"all_intensities_to_1")
plt.plot(x, y, label="Retrained M3GNet")
plt.plot(x_ref, y_ref, label="UFF (reference method)")
plt.xlabel("Frequency (cm^-1)")
plt.ylabel("Normal mode count")
plt.legend()

The agreement looks very good! The only significant difference is the highest-
↪→frequency vibration (the O-H streching vibration). This frequency is very sensitive␣
↪→to the calculated forces near the equilibrium (minimum) structure. The agreement␣
↪→could have been improved by
#
* having more training data, for example by setting a tighter success criterion for␣
↪→the forces and energy in the active learning
* running the active learning MD at a lower temperature (closer to the equilibrium␣
↪→structure, but this would mean less conformational sampling)
* training for more epochs
#
Tip: check if the vibrational frequencies with retrained M3GNet or M3GNet-UP-2022␣
↪→agree better or worse with the reference UFF calculation.

4.5.5 Continue active learning with a new system or new simulation settings

Note: This example requires AMS2024 or later.
This example uses results from Single molecule: setup and run (page 109), so run through that example first!
To follow along, either

• Download sal_continue_with_new_system.py (run as $AMSBIN/amsipython
sal_continue_with_new_system.py).

• Download sal_continue_with_new_system.ipynb (see also: how to install Jupyterlab in AMS)

118 Chapter 4. Simple Active Learning

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Initialization

from scm.simple_active_learning import SimpleActiveLearningJob
import scm.plams as plams
import matplotlib.pyplot as plt
import os

plams.init(folder="plams_workdir_continuation")

Set the correct path to the previous Simple Active Learning job. The path should be␣
↪→a directory containing the file "simple_active_learning.rkf"

replace the path with your own path !
previous_sal_job_path = os.path.expandvars("$AMSHOME/examples/SAL/Output/
↪→SingleMolecule/plams_workdir/sal")
previous_sal_job = SimpleActiveLearningJob.load_external(previous_sal_job_path)
previous_params_path = previous_sal_job.results.get_params_results_directory()

Initial system, reference engine settings, MD settings
#
These settings were explained in the first tutorial.
#
Here we use a new molecule (acetic acid), but we could also have changed the␣
↪→temperature of the MD simulation, or any other setting.

mol = plams.from_smiles("CC(O)=O")
for at in mol:

at.properties = {}
mol = plams.preoptimize(mol)
plams.plot_molecule(mol)

ref_s = plams.Settings()
ref_s.input.ForceField.Type = "UFF"
ref_s.runscript.nproc = 1

md_s = plams.AMSNVTJob(temperature=300, timestep=0.5, nsteps=10000).settings

ParAMS ML training settings
Here we set ``LoadModel = previous_params_path`` to load the model from the␣
↪→previous job.
#
This will also automatically load the previous training and validation data, unless␣
↪→it's disabled in the Active Learning settings.

ml_s = plams.Settings()
ml_s.input.ams.MachineLearning.Backend = "M3GNet"
ml_s.input.ams.MachineLearning.CommitteeSize = 1

(continues on next page)

4.5. Python Examples 119

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
ml_s.input.ams.MachineLearning.LoadModel = os.path.abspath(previous_params_path)
ml_s.input.ams.MachineLearning.MaxEpochs = 200

Active Learning settings
#
Here we use the same settings as before, but if the system is similar (or even the␣
↪→same!) as before, you may consider increasing the ``Start`` to let the system␣
↪→evolve a bit more before the first reference calculation.
#
You can also set the``ActiveLearning.InitialReferenceData.Load.Directory`` option␣
↪→instead of the ``MachineLearning.LoadModel`` option to load the data from the␣
↪→previous run. See the documentation for details about the difference between the␣
↪→two options.

al_s = plams.Settings()
al_s.input.ams.ActiveLearning.Steps.Type = "Geometric"
al_s.input.ams.ActiveLearning.Steps.Geometric.Start = 10 # 10 MD frames
al_s.input.ams.ActiveLearning.Steps.Geometric.NumSteps = 5 # 5 AL steps
alternative to ml_s.input.ams.MacineLearning.LoadModel:
al_s.input.ams.ActiveLearning.InitialReferenceData.Load.Directory = os.path.
↪→abspath(previous_params_path)
al_s.input.ams.ActiveLearning.InitialReferenceData.Generate.ReferenceMD.Enabled = "Yes
↪→"

Simple Active Learning job
#
We can run the active learning as before.
#
Note that the training jobs now take longer than before since the training and␣
↪→validation sets are bigger.

settings = ref_s + md_s + ml_s + al_s
job = SimpleActiveLearningJob(settings=settings, molecule=mol, name="sal")
job.run(watch=True)

Case studies

4.5.6 Liquid water: diffusion coefficient, radial distribution function, density

Trained model: M3GNet, starting from the Universal Potential (UP)
Reference method: ReaxFF Water2017.ff; J. Phys. Chem. B, 2017, 121 (24), pp 6021–6032
(http://dx.doi.org/10.1021/acs.jpcb.7b02548)
System: Liquid water at T = 300 K

Property Reference Retrained M3GNet M3GNet-UP Experiment
Self-diffusion (10⁻⁹ m² s⁻¹) 2.6 2.5 0.23 2.3
Density (g cm⁻³) 1.01 1.02 0.95 1.00

Water self-diffusion coefficient calculated for a small box size and not corrected for finite-size effects. The values may not
be fully converged. When following this tutorial you may get different values.

120 Chapter 4. Simple Active Learning

../../../../ReaxFF/Included_Forcefields.html
http://dx.doi.org/10.1021/acs.jpcb.7b02548

Workflows Manual, Amsterdam Modeling Suite 2025.1

Radial distribution functions (RDFs)

Expected duration: This notebook takes about 24 hours to run on the CPU. This includes both the active learning and
the production simulations to get the diffusion coefficient, radial distribution functions, and density.
To follow along, either

• Download liquid_water_training.py (run as $AMSBIN/amsipython
liquid_water_training.py).

• Download liquid_water_training.ipynb (see also: how to install Jupyterlab in AMS)

4.5. Python Examples 121

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

When running active learning it's usually a good idea to start off "simple" and␣
↪→make the system/structures gradually more complicated.
#
To train liquid water, we here
#
* first train a potential at slightly above room temperature and 1.0 g/cm^3
#
* continue with a second active learning loop where the density is explicitly␣
↪→scanned from a low to a high value
#
Initial imports

import scm.plams as plams
from scm.simple_active_learning import SimpleActiveLearningJob
import matplotlib.pyplot as plt
from scm.external_engines.core import interface_is_installed

assert interface_is_installed("m3gnet"), "You must install the m3gnet backend before␣
↪→following this tutorial!"

plams.init()

Create an initial water box

water = plams.from_smiles("O")
for at in water:

at.properties = plams.Settings()
plams.plot_molecule(water)

box = plams.packmol(water, n_molecules=48, density=1.0)
plams.plot_molecule(box, rotation="-5x,5y,0z")

Let's run a short MD simulation with M3GNet-UP-2022 to make the structure more␣
↪→realistic:

up_s = plams.Settings()
up_s.input.MLPotential.Model = "M3GNet-UP-2022"
up_s.runscript.nproc = 1 # always run AMS Driver in serial for MLPotential
up_md = plams.AMSNVTJob(

molecule=box,
settings=up_s,
name="up_md",
nsteps=1000,
timestep=0.5,
temperature=350,

)
up_md.run()

(continues on next page)

122 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)

New structure:

starting_structure = up_md.results.get_main_molecule()
plams.plot_molecule(starting_structure, rotation="-5x,5y,0z")

Simple Active Learning setup
#
Reference engine settings
#
Here, we choose to train against ReaxFF Water-2017.ff, which gives a good water␣
↪→structure.

fast_ref_s = plams.Settings()
fast_ref_s.input.ReaxFF.ForceField = "Water2017.ff"
fast_ref_s.runscript.nproc = 1

slow_ref_s = plams.Settings()
slow_ref_s.input.QuantumESPRESSO.Pseudopotentials.Family = "SSSP-Efficiency"
slow_ref_s.input.QuantumESPRESSO.Pseudopotentials.Functional = "PBE"
slow_ref_s.input.QuantumESPRESSO.K_Points._h = "gamma"
slow_ref_s.input.QuantumESPRESSO.System = plams.Settings(

input_dft="revpbe", ecutwfc=40, vdw_corr="Grimme-D3", dftd3_version=4
)

Change to slow_ref_s to train to revPBE-D3(BJ) instead:

ref_s = fast_ref_s.copy()

NVT molecular dynamics settings

nvt_md_s = plams.AMSNVTJob(
nsteps=20000,
timestep=0.5,
temperature=(270, 350, 350),
tau=100,
thermostat="Berendsen",

).settings

ParAMS machine learning settings

ml_s = plams.Settings()
ml_s.input.ams.MachineLearning.Backend = "M3GNet"
ml_s.input.ams.MachineLearning.CommitteeSize = 1
ml_s.input.ams.MachineLearning.M3GNet.Model = "UniversalPotential"
ml_s.input.ams.MachineLearning.MaxEpochs = 200

Active learning settings
#
Liquid water is a "simple" homogeneous system, so we can expect the ML method to␣
↪→perform quite well. We therefore decrease the success criteria thresholds a bit␣
↪→compared to the default vvalues, to ensure that we get accurate results.

(continues on next page)

4.5. Python Examples 123

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
#
Since we will immediately continue with another active learning loop, we disable␣
↪→the "RerunSimulation" as we are not interested in the MD simulation per se.

al_s = plams.Settings()
al_s.input.ams.ActiveLearning.Steps.Type = "Geometric"
al_s.input.ams.ActiveLearning.Steps.Geometric.Start = 10
al_s.input.ams.ActiveLearning.Steps.Geometric.NumSteps = 8
al_s.input.ams.ActiveLearning.InitialReferenceData.Generate.M3GNetShortMD.Enabled =
↪→"Yes"
al_s.input.ams.ActiveLearning.SuccessCriteria.Energy.Relative = 0.003
al_s.input.ams.ActiveLearning.SuccessCriteria.Forces.MaxDeviationForZeroForce = 0.35
al_s.input.ams.ActiveLearning.AtEnd.RerunSimulation = "No"

Complete job

settings = ref_s + nvt_md_s + ml_s + al_s
job = SimpleActiveLearningJob(settings=settings, molecule=starting_structure, name=
↪→"sal")
print(job.get_input())

Run the simple active learning job

job.run(watch=True)

Validate trained model by RDF and MSD
#
Note: You should skip this part if you trained to DFT since the reference MD␣
↪→calculation will take a very long time!

mol = job.results.get_main_molecule()
plams.plot_molecule(mol, rotation="-5x,5y,0z")

retrained_model_settings = job.results.get_params_job().results.get_production_engine_
↪→settings()
retrained_model_settings.runscript.nproc = 1

Equilibration and production MD settings

eq_md_settings = plams.AMSNVTJob(
nsteps=8000,
timestep=0.5,
thermostat="Berendsen",
tau=100,
temperature=300,
samplingfreq=100,

).settings

prod_md_settings = plams.AMSNVTJob(
nsteps=50000,
timestep=0.5,
thermostat="NHC",

(continues on next page)

124 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
tau=200,
temperature=300,
samplingfreq=100,

).settings

Retrained model equilibration

retrained_model_eq_md_job = plams.AMSJob(
settings=eq_md_settings + retrained_model_settings,
molecule=mol,
name="retrained_model_eq_md_dens_1",

)
retrained_model_eq_md_job.run()

Retrained model production simulation

Let's then run a production simulation from the final structure of the above␣
↪→equilibration MD using both the retrained model and the reference engine:

retrained_model_prod_md_job = plams.AMSJob(
settings=prod_md_settings + retrained_model_settings,
name="retrained_model_prod_md_dens_1",
molecule=retrained_model_eq_md_job.results.get_main_molecule(),

)
retrained_model_prod_md_job.run()

Reference equilibration MD

reference_eq_md_job = plams.AMSJob(
settings=eq_md_settings + ref_s,
molecule=mol,
name="reference_eq_md_dens_1",

)
reference_eq_md_job.run()

Reference production MD

reference_prod_md_job = plams.AMSJob(
settings=prod_md_settings + ref_s,
name="reference_prod_md_dens_1",
molecule=reference_eq_md_job.results.get_main_molecule(),

)
reference_prod_md_job.run()

Mean squared displacement (MSD) helper functions

For a detailed explanation of the MSD and RDF jobs, see the "Molecular dynamics␣
↪→with Python" tutorial

def get_msd_job(job: plams.AMSJob, symbol: str = "O"):
atom_indices = [i for i, at in enumerate(job.results.get_main_molecule(), 1) if␣

(continues on next page)

4.5. Python Examples 125

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
↪→at.symbol == symbol]

msd_job = plams.AMSMSDJob(
job,
name="msd-" + job.name,
atom_indices=atom_indices, # indices start with 1 for the first atom
max_correlation_time_fs=4000, # max correlation time must be set before␣

↪→running the job
start_time_fit_fs=2000, # start_time_fit can also be changed later in the␣

↪→postanalysis
)
msd_job.run()

return msd_job

def plot_msd(job, start_time_fit_fs=None):
"""job: an AMSMSDJob"""
time, msd = job.results.get_msd()
fit_result, fit_x, fit_y = job.results.get_linear_fit(start_time_fit_fs=start_

↪→time_fit_fs)
the diffusion coefficient can also be calculated as fit_result.slope/6 (ang^2/

↪→fs)
diffusion_coefficient = job.results.get_diffusion_coefficient(start_time_fit_

↪→fs=start_time_fit_fs) # m^2/s
plt.figure(figsize=(5, 3))
plt.plot(time, msd, label="MSD")
plt.plot(fit_x, fit_y, label="Linear fit slope={:.5f} ang^2/fs".format(fit_result.

↪→slope))
plt.legend()
plt.xlabel("Correlation time (fs)")
plt.ylabel("Mean square displacement (ang^2)")
plt.title("MSD: Diffusion coefficient = {:.2e} m^2/s".format(diffusion_

↪→coefficient))

Temporarily turn off PLAMS logging
#
Technically, the MSD and RDF jobs are normal PLAMS jobs. However, they are very␣
↪→fast to run. We can turn off the PLAMS logging to keep the Jupyter notebook a bit␣
↪→more tidy:

plams.config.log.stdout = 0

Retrained model MSD, diffusion coefficient

retrained_model_msd_job = get_msd_job(retrained_model_prod_md_job, "O")
retrained_model_D = retrained_model_msd_job.results.get_diffusion_coefficient() #␣
↪→diffusion coefficient, m^2/s
plot_msd(retrained_model_msd_job)

Reference MSD, diffusion coefficient

reference_msd_job = get_msd_job(reference_prod_md_job, "O")
reference_D = reference_msd_job.results.get_diffusion_coefficient() # diffusion␣

(continues on next page)

126 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
↪→coefficient, m^2/s
plot_msd(reference_msd_job)

Conclusion for diffusion coefficient: In this case, the retrained model gives 2.
↪→53e-9 m^2/s and the reference method 2.62e-9 m^2/s. That is very good agreement!␣
↪→Note: your results may be somewhat different.

Retrained model and reference RDF
#
Let's compare the calculated O-O, O-H, and H-H radial distribution functions (rdf):

def get_rdf(job, atom_indices, atom_indices_to, rmin, rmax, rstep):
rdf = plams.AMSRDFJob(

job,
atom_indices=atom_indices,
atom_indices_to=atom_indices_to,
rmin=rmin,
rmax=rmax,
rstep=rstep,

)
rdf.run()

return rdf.results.get_rdf()

final_frame = retrained_model_prod_md_job.results.get_main_molecule() # doesn't␣
↪→matter if retrained model or reference
O_ind = [i for i, at in enumerate(final_frame, 1) if at.symbol == "O"]
H_ind = [i for i, at in enumerate(final_frame, 1) if at.symbol == "H"]
rmax = final_frame.lattice[0][0] / 2
rstep = 0.05

O-O rdf

atom_indices, atom_indices_to = O_ind, O_ind
rmin = 2.0
pred_x, pred_y = get_rdf(retrained_model_prod_md_job, atom_indices, atom_indices_to,␣
↪→rmin, rmax, rstep)
ref_x, ref_y = get_rdf(reference_prod_md_job, atom_indices, atom_indices_to, rmin,␣
↪→rmax, rstep)
plt.plot(pred_x, pred_y, label="Retrained model")
plt.plot(ref_x, ref_y, label="Reference")
plt.xlabel("r (angstrom)")
plt.legend()
plt.title("O-O rdf")

O-H rdf

atom_indices, atom_indices_to = O_ind, H_ind
rmin = 1.3
pred_x, pred_y = get_rdf(retrained_model_prod_md_job, atom_indices, atom_indices_to,␣
↪→rmin, rmax, rstep)
ref_x, ref_y = get_rdf(reference_prod_md_job, atom_indices, atom_indices_to, rmin,␣

(continues on next page)

4.5. Python Examples 127

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
↪→rmax, rstep)
plt.plot(pred_x, pred_y, label="Retrained model")
plt.plot(ref_x, ref_y, label="Reference")
plt.xlabel("r (angstrom)")
plt.legend()
plt.title("O-H rdf")

H-H rdf

atom_indices, atom_indices_to = H_ind, H_ind
rmin = 1.3
pred_x, pred_y = get_rdf(retrained_model_prod_md_job, atom_indices, atom_indices_to,␣
↪→rmin, rmax, rstep)
ref_x, ref_y = get_rdf(reference_prod_md_job, atom_indices, atom_indices_to, rmin,␣
↪→rmax, rstep)
plt.plot(pred_x, pred_y, label="Retrained model")
plt.plot(ref_x, ref_y, label="Reference")
plt.xlabel("r (angstrom)")
plt.legend()
plt.title("H-H rdf")

Turn PLAMS logging back on

plams.config.log.stdout = 3 # default value

Density and NPT
#
Check the predicted vs. reference density

npt_md_s = plams.AMSNPTJob(
nsteps=100000,
timestep=0.5,
thermostat="NHC",
tau=100,
temperature=300,
barostat="MTK",
barostat_tau=1000,
equal="XYZ",
pressure=1e5,

).settings

retrained_model_npt_job = plams.AMSJob(
settings=npt_md_s + retrained_model_settings,
name="retrained_model_npt",
molecule=retrained_model_prod_md_job.results.get_main_molecule(),

)

retrained_model_npt_job.run()

retrained_model_density = (
plams.AMSNPTJob.load_external(retrained_model_npt_job.results.rkfpath())
.results.get_equilibrated_molecule()

(continues on next page)

128 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
.get_density()

)
print(f"Retrained model water density at 300 K: {retrained_model_density*1e-3:.2f} g/
↪→cm^3")

plams.config.jobmanager.hashing = None
reference_npt_job = plams.AMSJob(

settings=npt_md_s + ref_s,
name="reference_npt",
molecule=reference_prod_md_job.results.get_main_molecule(),

)

reference_npt_job.run()

reference_density = (
plams.AMSNPTJob.load_external(reference_npt_job.results.rkfpath()).results.get_

↪→equilibrated_molecule().get_density()
)
print(f"Reference model water density at 300 K: {reference_density*1e-3:.2f} g/cm^3")

The above reference value for ReaxFF Water-2017.ff agrees exactly with the␣
↪→published reference value of 1.01 g/cm^3.
#
However, the retrained M3GNet model predicts a density of 0.95 g/cm^3. The␣
↪→agreement is reasonable but not excellent. This can be explained by the fact that␣
↪→almost all training data points were at 1.00 g/cm^3. Only a few points (from the
↪→"M3GNetShortMD" initial reference data generator) were taken at other densities.
#
Let's continue the active learning while sampling more densities. There are two␣
↪→strategies:
#
* Use an NPT simulation during the active learning
* Scan the density during the active learning
#
Here, we choose the second approach in order to ensure that multiple different␣
↪→densities are sampled.

Initial structure for scanning density
#
Get the final frame from one of the previous MD simulations, and linearly scale the␣
↪→density to 800 kg/m^3 = 0.8 g/cm^3. This will stretch out the O-H bonds so follow␣
↪→up with a short UFF preoptimization.

new_structure = final_frame.copy()
new_structure.set_density(850)
new_structure = plams.preoptimize(new_structure, model="uff", maxiterations=20)

plams.plot_molecule(new_structure)

Second active learning job: scanning density
#
Here we set Steps.Type = "Linear" to run reference calculations every 5000 MD steps.

(continues on next page)

4.5. Python Examples 129

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
#
To get an accurate density it's very important that the predicted energy is␣
↪→accurate. It is not enough to just get a good fit for the forces.
#
Here, we decrease the success criteria for both the energy and forces compared to␣
↪→default values.

nsteps = 80000
scan_density_md_s = plams.AMSMDScanDensityJob(

molecule=new_structure,
scan_density_upper=1.15,
nsteps=nsteps,
tau=100,
thermostat="Berendsen",
temperature=300,

).settings
we must explicitly set the StopStep, since the AL divides the simulation into␣
↪→multiple segments
scan_density_md_s.input.ams.MolecularDynamics.Deformation.StopStep = nsteps

job = SimpleActiveLearningJob.load_external(plams.config.default_jobmanager.workdir␣
↪→+ "/sal.002")
scan_density_ml_s = ml_s.copy()
scan_density_ml_s.input.ams.MachineLearning.LoadModel = job.results.get_params_
↪→results_directory()
scan_density_ml_s.input.ams.MachineLearning.Target.Forces.MAE = 0.02
scan_density_ml_s.input.ams.MachineLearning.MaxEpochs = 200

scan_density_al_s = plams.Settings()

scan_density_al_s.input.ams.ActiveLearning.Steps.Type = "Linear"
scan_density_al_s.input.ams.ActiveLearning.Steps.Linear.Start = 500
scan_density_al_s.input.ams.ActiveLearning.Steps.Linear.StepSize = 5000
scan_density_al_s.input.ams.ActiveLearning.InitialReferenceData.Load.
↪→FromPreviousModel = "Yes"

scan_density_al_s.input.ams.ActiveLearning.SuccessCriteria.Energy.Relative = 0.001
scan_density_al_s.input.ams.ActiveLearning.SuccessCriteria.Energy.Total = 0.002
because we do not set Normalization, the above Energy criteria are energies per atom
scan_density_al_s.input.ams.ActiveLearning.SuccessCriteria.Energy.Normalization =

scan_density_al_s.input.ams.ActiveLearning.SuccessCriteria.Forces.
↪→MaxDeviationForZeroForce = 0.30

scan_density_al_s.input.ams.ActiveLearning.AtEnd.RerunSimulation = "No"
scan_density_al_s.input.ams.ActiveLearning.MaxReferenceCalculationsPerAttempt = 2

scan_density_al_job = SimpleActiveLearningJob(
name="scan_density_al",
settings=ref_s + scan_density_md_s + scan_density_ml_s + scan_density_al_s,
molecule=new_structure,

)
scan_density_al_job.run(watch=True)

(continues on next page)

130 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)

Let's recalculate the density again:

new_retrained_model_settings = scan_density_al_job.results.get_params_job().results.
↪→get_production_engine_settings()

new_retrained_model_npt_job = plams.AMSJob(
settings=npt_md_s + new_retrained_model_settings,
name="new_retrained_model_npt",
molecule=retrained_model_prod_md_job.results.get_main_molecule(),

)

new_retrained_model_npt_job.run()

new_retrained_model_density = (
plams.AMSNPTJob.load_external(new_retrained_model_npt_job.results.rkfpath())
.results.get_equilibrated_molecule()
.get_density()

)
print(f"New retrained model water density at 300 K: {new_retrained_model_density*1e-
↪→3:.2f} g/cm^3")

Conclusion for the density: Using active learning when scanning the densities␣
↪→makes sure that the predicitons are accurate for all densities. Consequently the␣
↪→equilibrium density is also in better agreement with the reference value of 1.01 g/
↪→cm^3.
#
Note that the density in general is quite difficult to fit accurately.

4.5.7 Conformers: Active learning with CRESTmetadynamics and custom addition
of data points

Trained model: M3GNet, starting from the Universal Potential (UP)
Reference method: GFN-1xTB (DFTB engine)
System: Organic molecule with SMILES code OC(CC1c2ccccc2Sc2ccccc21)CN1CCCC1

Problem: M3GNet-UP-2022 is not reliable for conformer stability prediction:

4.5. Python Examples 131

Workflows Manual, Amsterdam Modeling Suite 2025.1

Solution: Retraining the model gives better agreement:

Expected duration: This notebook takes about 24 hours to run on the CPU. This includes both the active learning and
the production simulations to generate new conformers.
To follow along, either

• Download conformers_training.py (run as $AMSBIN/amsipython conformers_training.
py).

132 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

• Download conformers_training.ipynb (see also: how to install Jupyterlab in AMS)

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

When running active learning it's usually a good idea to start off "simple" and␣
↪→make the system/structures gradually more complicated.
#
For getting a model which predicts conformers accurately, we may take the following␣
↪→approach:
#
* first train a potential at slightly above room temperature with NVT MD
#
* continue training a second potential using CREST metadynamics
#
* generate conformers with the previous model and also train to those
#
Initial imports

import scm.plams as plams
import scm.params as params
from scm.simple_active_learning import SimpleActiveLearningJob
import matplotlib.pyplot as plt
from scm.external_engines.core import interface_is_installed
import os
import numpy as np
from typing import List
from scm.conformers import ConformersJob
from scm.conformers.plams.plot import plot_conformers

assert interface_is_installed("m3gnet"), "You must install the m3gnet backend before␣
↪→following this tutorial!"

plams.init()

Create the initial structure

molecule = plams.from_smiles("OC(CC1c2ccccc2Sc2ccccc21)CN1CCCC1", forcefield="uff")
molecule.delete_all_bonds()
for at in molecule:

at.properties = plams.Settings()
plams.plot_molecule(molecule)
starting_structure = molecule

Reference engine settings

fast_ref_s = plams.Settings()
fast_ref_s.input.DFTB.Model = "GFN1-xTB"

slow_ref_s = plams.Settings()
slow_ref_s.input.ADF.Basis.Type = "TZP"
slow_ref_s.input.ADF.Basis.Core = "None"

(continues on next page)

4.5. Python Examples 133

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
slow_ref_s.input.ADF.XC.Hybrid = "B3LYP"
slow_ref_s.input.ADF.XC.DISPERSION = "GRIMME3 BJDAMP"

Change to slow_ref_s to train to B3LYP-D3(BJ) instead:

ref_s = fast_ref_s.copy()
ref_s = slow_ref_s.copy()
perform_expensive_tests = ref_s == fast_ref_s

Problem statement: Generate a few conformers with M3GNet-UP-2022 and Score with␣
↪→reference method

m3gnet_up_s = plams.Settings()
m3gnet_up_s.input.MLPotential.Model = "M3GNet-UP-2022"

generate_conformers_m3gnet_up_job = ConformersJob(name="generate_conformers_m3gnet_up
↪→", molecule=starting_structure)
generate_conformers_m3gnet_up_job.settings.input.ams.Task = "Generate"
generate_conformers_m3gnet_up_job.settings.input.ams.Generator.Method = "RDKit"
generate_conformers_m3gnet_up_job.settings.input.ams.Generator.RDKit.
↪→InitialNConformers = 40
generate_conformers_m3gnet_up_job.settings += crest_al_job.results.get_production_
↪→engine_settings()
generate_conformers_m3gnet_up_job.settings += m3gnet_up_s
generate_conformers_m3gnet_up_job.settings.runscript.nproc = 1 # run in serial,␣
↪→useful if you run out of memory when running M3GNet on the GPU

generate_conformers_m3gnet_up_job.run()

Show the 4 most stable conformers with M3GNet-UP-2022:

plot_conformers(generate_conformers_m3gnet_up_job, 4, unit="eV")

Score the generated conformers with the reference method:

score_conformers_ref_job = ConformersJob(name="score_conformers_ref")
score_conformers_ref_job.settings.input.ams.Task = "Score"
score_conformers_ref_job.settings.input.ams.InputConformersSet = generate_conformers_
↪→m3gnet_up_job.results.rkfpath()
score_conformers_ref_job.settings.input += ref_s.input
score_conformers_ref_job.run()

plot_conformers(score_conformers_ref_job, 4, unit="eV")

Here we can see that the ordering of conformers at the reference level is␣
↪→completely different compared to M3GNet-UP-2022.
#
The Score job reorders the conformers. To compare the energies more precisely, we␣
↪→can use the minimum pairwise RMSD (which should be 0) to identify how the order of␣
↪→conformers change:

(continues on next page)

134 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)

def get_pairwise_rmsds(molecules_ref: List[plams.Molecule], molecules_pred:␣
↪→List[plams.Molecule]) -> np.ndarray:

"""Returns a len(molecules_ref)*len(molecules_pred) numpy array with pairwise␣
↪→rmsds (in angstrom) between the structures"""

rmsds = np.zeros((len(molecules_ref), len(molecules_pred)))

for i, ref_mol in enumerate(molecules_ref):
for j, pred_mol in enumerate(molecules_pred):

rmsds[i, j] = plams.Molecule.rmsd(ref_mol, pred_mol)

return rmsds

def get_reordering(rmsds: np.ndarray) -> np.ndarray:
"""
rmsds: numpy array with shape len(molecules_ref)*len(molecules_pred)

Returns a len(molecules_ref) integer numpy array.
The first element is the index (0-based) in molecules_pred corresponding to the␣

↪→first reference molecule, etc.
"""
rmsds = get_pairwise_rmsds(molecules_ref, molecules_pred)
reordering = np.argmin(rmsds, axis=1)
return reordering

def print_reordering_table(molecules_ref, molecules_pred, energies_ref, energies_pred,
↪→ ax=None):

"""This functions prints the reordering table including relative energies. It␣
↪→also plots the predicted relative energies versus the reference relative energies"""

print(f"Ref_i Pred_i RMSD Ref_dE Pred_dE")
x, y = [], []
rmsds = get_pairwise_rmsds(molecules_ref, molecules_pred)
reordering = get_reordering(rmsds)
rmsd_threshold = 0.7 # angstrom, for printing/plotting points
for ref_i, pred_i in enumerate(reordering):

rmsd = rmsds[ref_i, pred_i]
ref_relative_e = energies_ref[ref_i]
pred_relative_e = energies_pred[pred_i] - energies_pred[reordering[0]]
if rmsd <= rmsd_threshold:

print(f"{ref_i:6d} {pred_i:6d} {rmsd:4.1f} {ref_relative_e:7.2f} {pred_
↪→relative_e:7.2f}")

x.append(ref_relative_e)
y.append(pred_relative_e)

else:
print(f"{ref_i:6d} {pred_i:6d} rmsd > {rmsd_threshold:.1f} ang.")

if ax is None:
_, ax = plt.subplots()

m, M = np.min([np.min(x), np.min(y)]), np.max([np.max(x), np.max(y)])
ax.plot(x, y, ".")
ax.plot([m, M], [m, M], "-")
ax.set_xlabel("ref. deltaE (eV)")
ax.set_ylabel("pred. deltaE (eV)")

(continues on next page)

4.5. Python Examples 135

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)

return ax

In the below table the energies are given with respect to the structure that had␣
↪→the lowest reference energy. This is thus different compared to the first image␣
↪→above, where the predicted (m3gnet-up-2022) relative energies were given to␣
↪→predicted lowest energy conformer.

molecules_ref = score_conformers_ref_job.results.get_conformers()
energies_ref = score_conformers_ref_job.results.get_relative_energies(unit="eV")
molecules_pred = generate_conformers_m3gnet_up_job.results.get_conformers()
energies_pred = generate_conformers_m3gnet_up_job.results.get_relative_energies(unit=
↪→"ev")
ax = print_reordering_table(molecules_ref, molecules_pred, energies_ref, energies_
↪→pred)
ax.set_title("M3GNet-UP-2022 relative to reference method")

Here we see that there is no correlation between the relative stabilities␣
↪→calculated with M3GNet-UP-2022 and the reference method.
#
Example: The most stable conformer with the reference method (Ref_i=0) corresponds␣
↪→to the tenth most stable conformer with M3GNet-UP-2022 (Pred_i=10)
#
Example 2: The second most stable conformer with the reference method (Ref_i=1)␣
↪→should be 0.08 eV *less* stable than the ref_i=0 conformer, but with M3GNet-UP-2022␣
↪→method it is actually 0.01 eV *more* stable!

Optimize a few conformers for initial reference data
#
Conformers are local minima on the potential energy surface. The Active Learning MD␣
↪→will sample off-equilibrium structures. So let's make sure that there are at least␣
↪→some local minima in the training set by optimizing some of the generated␣
↪→conformers.
#
Here, we loop over the conformers and run GeometryOptimization jobs. This produces␣
↪→output files in the normal AMS format that can easily be imported into ParAMS

max_N = min(6, len(molecules_pred)) # at most 6 optimizations
opt_s = plams.Settings()
opt_s.input.ams.Task = "GeometryOptimization"
opt_s.input.ams.GeometryOptimization.Convergence.Quality = "Basic"
opt_jobs = [

plams.AMSJob(settings=opt_s + ref_s, name=f"opt_{i}", molecule=mol) for i, mol in␣
↪→enumerate(molecules_pred[:max_N])
]
for opt_job in opt_jobs:

opt_job.run()

Now import the data into a ParAMS results importer and store in the directory ``my_
↪→initial_reference_data``:

yaml_dir = os.path.abspath("my_initial_reference_data")
ri = params.ResultsImporter(settings={"units": {"energy": "eV", "forces": "eV/angstrom
↪→"}})

(continues on next page)

136 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)

for opt_job in opt_jobs:
ri.add_singlejob(opt_job, properties=["energy", "forces"], task="SinglePoint")

ri.store(yaml_dir, backup=False)

Simple Active Learning setup
#

Molecular dynamics settings (temperature ramp)

nvt_md_s = plams.AMSNVTJob(
nsteps=20000,
timestep=0.5,
temperature=(270, 350, 350),
tau=100,
thermostat="Berendsen",

).settings

ParAMS machine learning settings

ml_s = plams.Settings()
ml_s.input.ams.MachineLearning.Backend = "M3GNet"
ml_s.input.ams.MachineLearning.CommitteeSize = 1
ml_s.input.ams.MachineLearning.M3GNet.Model = "UniversalPotential"
ml_s.input.ams.MachineLearning.MaxEpochs = 200

Active learning settings
#
Conformer search of a single molecule is quite simple, so we can expect the ML␣
↪→method to perform quite well. We therefore decrease the success criteria thresholds␣
↪→a bit compared to the default values, to ensure that we get accurate results.
#
Since we will immediately continue with another active learning loop, we disable␣
↪→the "RerunSimulation" as we are not interested in the MD simulation per se.

al_s = plams.Settings()
al_s.input.ams.ActiveLearning.Steps.Type = "Geometric"
al_s.input.ams.ActiveLearning.Steps.Geometric.Start = 10
al_s.input.ams.ActiveLearning.Steps.Geometric.NumSteps = 8
al_s.input.ams.ActiveLearning.InitialReferenceData.Load.Directory = yaml_dir
al_s.input.ams.ActiveLearning.InitialReferenceData.Generate.M3GNetShortMD.Enabled =
↪→"Yes"
al_s.input.ams.ActiveLearning.SuccessCriteria.Energy.Relative = 0.002
al_s.input.ams.ActiveLearning.SuccessCriteria.Forces.MaxDeviationForZeroForce = 0.30
al_s.input.ams.ActiveLearning.AtEnd.RerunSimulation = "No"

Initial structure
#
Let's start with the lowest-energy conformer according to the reference method:

starting_structure_al = molecules_ref[0]

(continues on next page)

4.5. Python Examples 137

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
The bonds are not used, so delete them to make the input file less confusing:
starting_structure_al.delete_all_bonds()

Complete job

settings = ref_s + nvt_md_s + ml_s + al_s
job = SimpleActiveLearningJob(settings=settings, molecule=starting_structure_al, name=
↪→"sal")
print(job.get_input())

Run the simple active learning job

job.run(watch=True)

Final structure from MD simulation
#

new_structure = job.results.get_main_molecule()
plams.plot_molecule(new_structure, rotation="-5x,5y,0z")

Second active learning job: CREST metadynamics
#
Here we set Steps.Type = "Linear" to run reference calculations every 2000 MD steps.

nsteps = 20000

crest_md_s = plams.Settings()
crest_md_s.input.ams.MolecularDynamics.CRESTMTD.Height = 0.138
crest_md_s.input.ams.MolecularDynamics.CRESTMTD.NGaussiansMax = 50
crest_md_s.input.ams.MolecularDynamics.CRESTMTD.NSteps = 200
crest_md_s.input.ams.MolecularDynamics.CRESTMTD.Width = 0.62

crest_complete_md_s = plams.AMSMDJob(
molecule=new_structure,
nsteps=nsteps,
settings=crest_md_s,
tau=10, # small time constant
thermostat="NHC",
temperature=300,
timestep=0.5,
samplingfreq=20,

).settings

job = SimpleActiveLearningJob.load_external(plams.config.default_jobmanager.workdir␣
↪→+ "/sal.002")
crest_ml_s = ml_s.copy()
crest_ml_s.input.ams.MachineLearning.LoadModel = job.results.get_params_results_
↪→directory()
crest_ml_s.input.ams.MachineLearning.Target.Forces.MAE = 0.04
crest_ml_s.input.ams.MachineLearning.MaxEpochs = 200

(continues on next page)

138 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
crest_al_s = plams.Settings()

crest_al_s.input.ams.ActiveLearning.Steps.Type = "Linear"
crest_al_s.input.ams.ActiveLearning.Steps.Linear.Start = 500
crest_al_s.input.ams.ActiveLearning.Steps.Linear.StepSize = 2000
crest_al_s.input.ams.ActiveLearning.InitialReferenceData.Load.FromPreviousModel = "Yes
↪→"

crest_al_s.input.ams.ActiveLearning.SuccessCriteria.Energy.Relative = 0.002
crest_al_s.input.ams.ActiveLearning.SuccessCriteria.Energy.Total = 0.010
because we do not set Normalization, the above Energy criteria are energies per atom
crest_al_s.input.ams.ActiveLearning.SuccessCriteria.Energy.Normalization =

crest_al_s.input.ams.ActiveLearning.SuccessCriteria.Forces.MaxDeviationForZeroForce =␣
↪→0.30

crest_al_s.input.ams.ActiveLearning.AtEnd.RerunSimulation = "No"
crest_al_s.input.ams.ActiveLearning.MaxReferenceCalculationsPerAttempt = 3

crest_al_job = SimpleActiveLearningJob(
name="crest_al",
settings=ref_s + crest_complete_md_s + crest_ml_s + crest_al_s,
molecule=new_structure,

)
crest_al_job.run(watch=True)

crest_al_job = SimpleActiveLearningJob.load_external("plams_workdir.003/crest_al")

new_retrained_model_settings = crest_al_job.results.get_params_job().results.get_
↪→production_engine_settings()

Generate conformers with the retrained M3GNet model and score with reference␣
↪→method

def generate_and_score(
molecule: plams.Molecule,
gen_name: str,
gen_settings: plams.Settings,
score_name: str,
score_settings: plams.Settings,

):
generate_job = ConformersJob(name=gen_name, molecule=molecule)
generate_job.settings.input.ams.Task = "Generate"
generate_job.settings.input.ams.Generator.Method = "RDKit"
generate_job.settings.input.ams.Generator.RDKit.InitialNConformers = 40
generate_job.settings.input += gen_settings.input
generate_job.run()

score_job = ConformersJob(name=score_name)
score_job.settings.input.ams.Task = "Score"
score_job.settings.input.ams.InputConformersSet = generate_job.results.rkfpath()
score_job.settings.input += score_settings.input
score_job.run()

(continues on next page)

4.5. Python Examples 139

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)

molecules_gen = generate_job.results.get_conformers()
energies_gen = generate_job.results.get_relative_energies(unit="eV")
molecules_score = score_job.results.get_conformers()
energies_score = score_job.results.get_relative_energies(unit="ev")

return generate_job, molecules_gen, energies_gen, score_job, molecules_score,␣
↪→energies_score

(
generate_conformers_m3gnet_retrained_job,
molecules_pred,
energies_pred,
_,
molecules_ref,
energies_ref,

) = generate_and_score(
starting_structure,
gen_name="generate_conformers_m3gnet_retrained",
gen_settings=crest_al_job.results.get_production_engine_settings(),
score_name="score_conformers_ref2",
score_settings=ref_s,

)

print_reordering_table(molecules_ref, molecules_pred, energies_ref, energies_pred)

We can see a significant improvement compared to the M3GNet-UP-2022 results!␣
↪→However, the results are not perfect.

Generate conformers with the reference method and score with the retrained␣
↪→M3GNet model
#
As a second test, we can instead generate the conformers with the reference method␣
↪→and score them with the retrained m3gnet model.
#
This is quite expensive if the reference method is DFT!

if perform_expensive_tests:
generate_ref_job, molecules_ref, energies_ref, _, molecules_pred, energies_pred =␣

↪→generate_and_score(
starting_structure,
gen_name="generate_conformers_ref",
gen_settings=ref_s,
score_name="score_conformers_m3gnet_retrained",
score_settings=crest_al_job.results.get_production_engine_settings(),

)
print_reordering_table(molecules_ref, molecules_pred, energies_ref, energies_pred)
plot_conformers(generate_ref_job, 3)

Compare the RMSD between the different conformer sets
#
The Conformer "Score" task performs single-point calculations.
#

(continues on next page)

140 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
If we instead change the task to "Optimize" we can see how similar the reference-
↪→method-optimized conformers are to the retrained-M3GNet-optimized conformers by␣
↪→comparing the RMSD.
#
The below is quite computationally expensive for a DFT reference engine.

if perform_expensive_tests:
opt_conformers_ref_job2 = ConformersJob(name="opt_conformers_ref2")
opt_conformers_ref_job2.settings.input.ams.Task = "Optimize"
opt_conformers_ref_job2.settings.input.ams.InputConformersSet = (

generate_conformers_m3gnet_retrained_job.results.rkfpath()
)
opt_conformers_ref_job2.settings.input.ams.InputMaxEnergy = (

5.0 # only conformers in the lowest 5.0 kcal/mol = 0.2 eV
)
opt_conformers_ref_job2.settings.input += ref_s.input
opt_conformers_ref_job2.run()

molecules_ref = opt_conformers_ref_job2.results.get_conformers()
energies_ref = opt_conformers_ref_job2.results.get_relative_energies(unit="eV")
molecules_pred = generate_conformers_m3gnet_retrained_job.results.get_conformers()
energies_pred = generate_conformers_m3gnet_retrained_job.results.get_relative_

↪→energies(unit="eV")
print_reordering_table(molecules_ref, molecules_pred, energies_ref, energies_pred)

In the above table a few entries have "rmsd > 0.7 ang.". This means that the␣
↪→reference geometry optimization causes the structure to change significantly␣
↪→compared to the retrained-m3gnet-optimized geometry.
#
In such cases it is not so meaningful to compare the relative energies between the␣
↪→reference and prediction, so those points are excluded from the table and from the␣
↪→plot.

Custom active learning loop: add newly generated conformers to training set
#
The Simple Active Learning module in AMS only works for MD simulations, so it␣
↪→cannot automatically add optimized conformers to the training or validation sets.
#
However, you can do it yourself!
#
The Conformers "Score" function does not store or calculate the forces. So let's␣
↪→set up an AMS "Replay" job to recalculate the energies and forces to add to the␣
↪→training set:

replay_s = plams.Settings()
replay_s.input.ams.Task = "Replay"
replay_s.input.ams.Replay.File = generate_conformers_m3gnet_retrained_job.results.
↪→rkfpath()
replay_s.input.ams.Properties.Gradients = "Yes"
replay_s += ref_s
replay_job = plams.AMSJob(settings=replay_s, name="replay_new_conformers")
replay_job.run()

Now import the data into a results importer:

(continues on next page)

4.5. Python Examples 141

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
ri = params.ResultsImporter.from_yaml(crest_al_job.results.get_reference_data_
↪→directory())
ri.add_trajectory_singlepoints(replay_job, properties=["energy", "forces"])
yaml_dir = "data_with_conformer_singlepoints_yaml"
ri.store(yaml_dir, backup=False)

Then launch ParAMS:

params_job = params.ParAMSJob.from_yaml(yaml_dir, name="params_with_conformer_
↪→singlepoints")
params_job.settings.input += ml_s.input.ams
params_job.settings.input.MachineLearning.LoadModel = crest_al_job.results.get_params_
↪→results_directory()
params_job.settings.input.Task = "MachineLearning"
params_job.settings.input.MachineLearning.LossCoeffs.Energy = 50
params_job.settings.input.MachineLearning.Target.Forces.Enabled = "No"
params_job.settings.input.MachineLearning.MaxEpochs = 100
params_job.run()

If the job failed print the error message:

if not params_job.check():
print(params_job.get_errormsg())

Generate conformers with the new model and score with the reference method:

_, molecules_pred, energies_pred, _, molecules_ref, energies_ref = generate_and_score(
starting_structure,
gen_name="generate_conformers_m3gnet_retrained_again",
gen_settings=params_job.results.get_production_engine_settings(),
score_name="score_conformers_ref2",
score_settings=ref_s,

)

And print/plot the results:

print_reordering_table(molecules_ref, molecules_pred, energies_ref, energies_pred)

Here we see even better agreement than before.
#
Conclusion: By manually adding retrained-ml-optimized conformers to the␣
↪→training set, you can improve the conformer prediction even more. This means to do␣
↪→your own "active learning" outside of the Simple Active Learning module in AMS.

142 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

4.5.8 Li-vacancy diffusion in a solid electrolyte

Trained model: M3GNet, starting from the Universal Potential (UP)
Reference method: DFT (PBE, engine Quantum ESPRESSO)
System: LiTiS₂ and Li₂₃Ti₂₄S₄₈ (crystal with one Li vacancy)

Problem: M3GNet-UP-2022 is underestimates the Li diffusion barrier

Solution: Retraining the model gives better agreement:

4.5. Python Examples 143

Workflows Manual, Amsterdam Modeling Suite 2025.1

Expected duration: This notebook takes about 24 hours to run on the CPU. This includes both the active learning and
the various NEB calculations.
To follow along, either

• Download litis2_diffusion_neb.py (run as $AMSBIN/amsipython
litis2_diffusion_neb.py).

• Download litis2_diffusion_neb.ipynb (see also: how to install Jupyterlab in AMS)

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Initialization

import scm.plams as plams
import os
import numpy as np
import matplotlib.pyplot as plt
import scm.params as params
from scm.simple_active_learning import SimpleActiveLearningJob

plams.init()

Create structures
#
Create primitive cell from coordinates

for plotting in Jupyter notebooks
(continues on next page)

144 Chapter 4. Simple Active Learning

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
rotation = "-85x,-5y,0z"

create structure
primitive = plams.AMSJob.from_input(

"""
System

Atoms
Li 0. 0. 0.
Ti 0. 0. 3.087452499999999
S 0. 1.985103430533333 4.551328274799999
S 1.71915 0.9925517153000001 1.6235767252

End
Lattice

3.4383 0.0 0.0
-1.71915 2.977655145833333 0.0
0.0 0.0 6.174905

End
End

"""
).molecule[""]
plams.plot_molecule(primitive, rotation=rotation)

Create a supercell.
#
Here we a reasonably-sized supercell. If the cell is very small, it is actually␣
↪→quite inefficient for training the machine learning potential. If every atom sees␣
↪→its own periodic image then there will not be sufficient variety in the atomic␣
↪→environments for the ML potential to be able to extrapolate to unseen environments.␣
↪→**It is recommended to use a larger supercell**.

supercell = primitive.supercell([[3, 0, 0], [2, 4, 0], [0, 0, 2]])
for at in supercell:

at.properties = plams.Settings()
plams.plot_molecule(supercell, rotation=rotation)

print("Lattice vectors")
print(supercell.lattice)
print(f"Number of atoms: {len(supercell)}")

Create Li vacancy in two different places

li_indices = [i for i, at in enumerate(supercell, 1) if at.symbol == "Li"]
print(f"Li indices (starting with 1): {li_indices}")

Pick the first Li atom, and get its nearest Li neighbor.
#
Note that the PLAMS distance_to function ignores periodic boundary conditions,␣
↪→which in this case is quite convenient as it will make the visualization easier if␣
↪→the Li atom diffuses inside the unit cell and doesn't cross the periodic boundary.

first_index = li_indices[0]
li1 = supercell[first_index]
li1.properties.region = "DiffusingLi"

(continues on next page)

4.5. Python Examples 145

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
distances = [li1.distance_to(supercell[x]) for x in li_indices[1:]]
nearest_neighbor_index = li_indices[np.argmin(distances) + 1]
li2 = supercell[nearest_neighbor_index]
target_coords = li2.coords
print(f"First Li atom: {li1}")
print(f"Second Li atom: {li2}")

The goal is to make a Li atom diffuse between these two positions.
#
For this, we will first delete the second Li atom, and then create a new structure␣
↪→in which the first Li atom is translated to the second Li atom coordinates.

defective_1 = supercell.copy()
defective_1.delete_atom(defective_1[nearest_neighbor_index])
defective_2 = supercell.copy()
defective_2.delete_atom(defective_2[nearest_neighbor_index])
defective_2[first_index].coords = li2.coords

plams.plot_molecule(defective_1, rotation=rotation)
plt.title("Initial structure")

The Li atom in the bottom left corner will diffuse to the right (the vacancy will␣
↪→diffuse to the left):

plams.plot_molecule(defective_2, rotation=rotation)
plt.title("Final structure")

Initial validation of diffusion barrier with NEB and M3GNet-UP-2022
#
M3GNet-UP-2022 NEB job

m3gnet_up_s = plams.Settings()
m3gnet_up_s.input.MLPotential.Model = "M3GNet-UP-2022"

neb_s = plams.Settings()
neb_s.input.ams.Task = "NEB"
neb_s.input.ams.NEB.PreoptimizeWithIDPP = "Yes"
neb_s.input.ams.NEB.Images = 7

m3gnet_up_neb_job = plams.AMSJob(
settings=m3gnet_up_s + neb_s,
molecule={"": defective_1, "final": defective_2},
name="m3gnet_up_neb",

)
m3gnet_up_neb_job.run()

M3GNet-UP-2022 NEB results

m3gnet_up_res = m3gnet_up_neb_job.results.get_neb_results(unit="eV")
print(f"Left barrier: {m3gnet_up_res['LeftBarrier']:.3f} eV")
print(f"Right barrier: {m3gnet_up_res['RightBarrier']:.3f} eV")

(continues on next page)

146 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)

ref_results = [0.0, 0.144, 0.482, 0.816, 0.963, 0.816, 0.482, 0.144, 0.0] # from␣
↪→Quantum ESPRESSO DFT calculation
nImages = m3gnet_up_res["nImages"]
relative_energies = np.array(m3gnet_up_res["Energies"]) - m3gnet_up_res["Energies"][0]
plt.plot(relative_energies)
plt.xlabel("Image")
plt.ylabel("Relative energy (eV)")
plt.title("M3GNet-UP-2022 NEB Li diffusion")

fig, axes = plt.subplots(1, len(m3gnet_up_res["Molecules"]), figsize=(15, 5))

for i, mol in enumerate(m3gnet_up_res["Molecules"]):
plams.plot_molecule(mol, ax=axes[i], rotation=rotation)
axes[i].set_title(f"Image {i}")

DFT reference engine settings
#
Are the above M3GNet-UP-2022 results any good? Let's compare to DFT calculations␣
↪→using the AMS "Replay" task.
#
"Replay" is just a series of singlepoints on the previous NEB structures. It is not␣
↪→a NEB calculation.
#
Here we use the Quantum ESPRESSO engine available in AMS2024.

dft_s = plams.Settings()
dft_s.input.QuantumESPRESSO.System.occupations = "Smearing"
dft_s.input.QuantumESPRESSO.System.degauss = 0.005
for production purposes always manually check that ecutwfc and ecutrho are high␣
↪→enough
here we set a fairly low ecutwfc to speed up the calculation
dft_s.input.QuantumESPRESSO.System.ecutwfc = 30.0
dft_s.input.QuantumESPRESSO.System.ecutrho = 240.0
decrease mixing_beta for more robust SCF convergence
dft_s.input.QuantumESPRESSO.Electrons.mixing_beta = 0.3
dft_s.input.QuantumESPRESSO.Electrons.conv_thr = 1.0e-5 * len(supercell)
for a small cell one should ideally use more k-points than just the gamma point
by settings K_Points._h = "gamma" we use the faster gamma-point-only
implementation in Quantum ESPRESSO
dft_s.input.QuantumESPRESSO.K_Points._h = "gamma"
SCM_DISABLE_MPI launches ams in serial, but will still run Quantum ESPRESSO in␣
↪→parallel
dft_s.runscript.preamble_lines = ["export SCM_DISABLE_MPI=1"]

Run DFT calculations on the NEB points from M3GNet-UP-2022
#
Note: The DFT calculations may take a few minutes to complete.

replay_s = plams.Settings()
replay_s.input.ams.Task = "Replay"
replay_s.input.ams.Replay.File = os.path.abspath(m3gnet_up_neb_job.results.rkfpath())
replay_s.input.ams.Properties.Gradients = "Yes"

(continues on next page)

4.5. Python Examples 147

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)

replay_dft_job = plams.AMSJob(settings=replay_s + dft_s, name="replay_m3gnet_up_neb_
↪→with_dft")
replay_dft_job.run(watch=True)

When using "Replay" on a NEB job, the results are stored in the normal NEB format.␣
↪→Thus we can use the ``.get_neb_results()`` method also on this job:

dft_energies = replay_dft_job.results.get_neb_results(unit="eV")["Energies"]
dft_relative_energies = np.array(dft_energies) - dft_energies[0]

plt.plot(relative_energies)
plt.plot(dft_relative_energies)
plt.legend(["M3GNet-UP-2022", "DFT singlepoints"])
plt.title("Compare M3GNet-UP-2022 NEB to DFT singlepoints")

Conclusion: M3GNet-UP-2022 significantly underestimates the diffusion barrier␣
↪→compared to DFT calculations. **This motivates the reparametrization**

Store DFT results for later
#
Since we already performed some DFT calculations, we may as well add them to the␣
↪→training set.

ri = params.ResultsImporter(settings={"units": {"energy": "eV", "forces": "eV/angstrom
↪→"}})
ri.add_trajectory_singlepoints(

replay_dft_job,
properties=["energy", "forces"],
indices=[0, 1, 2, 3, 4],
data_set="training_set",

)
ri.add_trajectory_singlepoints(replay_dft_job, properties=["energy", "forces"],␣
↪→indices=[5], data_set="validation_set")
yaml_dir = "lidiffusion_initial_reference_data"
ri.store(yaml_dir, backup=False)

Preliminary active learning jobs with equilibrium MD
#
Let's first run some simple NVT MD with active learning for both the
* stochiometric system (``supercell``), and
* defective system (``defective_1``)
#
This is just to get a good general sampling before setting up the reaction boost to␣
↪→explicitly sample the diffusion process.

Active Learning for stoichiometric system
#
The stoichiometric system is a perfect crystal with not so many atoms. The forces␣
↪→will be very close to 0 also after a few MD frames. However, even if the ML model␣
↪→predicts forces close to 0, the R^2 between predicted and reference forces may be␣
↪→quite low.
#
In a case like this, it is reasonable to either

(continues on next page)

148 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
#
* decrease the MinR2 success criterion, and/or
* perturb the atomic coordinates of the initial structure a bit, so that the forces␣
↪→aren't extremely small
#
Here, we do both of these:

nvt_md_s = plams.AMSNVTJob(nsteps=5000, timestep=0.5, temperature=400, tau=50,␣
↪→thermostat="Berendsen").settings

prelim_al_s = plams.Settings()
prelim_al_s.input.ams.ActiveLearning.InitialReferenceData.Load.Directory = os.path.
↪→abspath(yaml_dir)
prelim_al_s.input.ams.ActiveLearning.Steps.Type = "Geometric"
prelim_al_s.input.ams.ActiveLearning.Steps.Geometric.NumSteps = 7
prelim_al_s.input.ams.ActiveLearning.SuccessCriteria.Forces.MinR2 = 0.5
prelim_al_s.input.ams.ActiveLearning.AtEnd.RerunSimulation = "No"

ml_s = plams.Settings()
ml_s.input.ams.MachineLearning.Backend = "M3GNet"
ml_s.input.ams.MachineLearning.M3GNet.Model = "UniversalPotential"
ml_s.input.ams.MachineLearning.MaxEpochs = 100
ml_s.input.ams.MachineLearning.Target.Forces.MAE = 0.04

perturbed_supercell = supercell.copy()
perturbed_supercell.perturb_atoms(0.1)

prelim_al_job = SimpleActiveLearningJob(
name="al_supercell",
molecule=perturbed_supercell,
settings=prelim_al_s + ml_s + nvt_md_s + dft_s,

)
prelim_al_job.run(watch=True)

Active learning for defective system

prelim_al_s2 = prelim_al_s.copy()
prelim_al_s2.input.ams.ActiveLearning.InitialReferenceData.Load.Directory = (

prelim_al_job.results.get_reference_data_directory()
)
prelim_al_s2.input.ams.ActiveLearning.InitialReferenceData.Load.FromPreviousModel =
↪→"No"
prelim_al_s2.input.ams.ActiveLearning.SuccessCriteria.Forces.MaxDeviationForZeroForce␣
↪→= 0.35

ml_s2 = plams.Settings()
ml_s2.input.ams.MachineLearning.Backend = "M3GNet"
ml_s2.input.ams.MachineLearning.LoadModel = prelim_al_job.results.get_params_results_
↪→directory()
ml_s2.input.ams.MachineLearning.MaxEpochs = 200
ml_s2.input.ams.MachineLearning.Target.Forces.MAE = 0.03

prelim_al_job2 = SimpleActiveLearningJob(
name="al_defective", molecule=defective_1, settings=prelim_al_s2 + ml_s2 + nvt_md_

↪→s + dft_s
)

(continues on next page)

4.5. Python Examples 149

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
prelim_al_job2.run(watch=True)

Set up ReactionBoost MD simulation with M3GNet-UP-2022
#
ReactionBoost simulations can be a bit tricky to set up.
#
Before using ReactionBoost inside the Active Learning, it is best to verify that␣
↪→the simulation behaves reasonably when using M3GNet-UP-2022.
#
So let's just run a normal ReactionBoost simulation with M3GNet-UP-2022:

md_s = plams.Settings()
md_s.Thermostat.Temperature = 300
md_s.Thermostat.Type = "Berendsen"
md_s.Thermostat.Tau = 5
md_s.InitialVelocities.Type = "Random"
md_s.InitialVelocities.Temperature = 300
md_s.ReactionBoost.Type = "RMSD"
md_s.ReactionBoost.NSteps = 480
md_s.ReactionBoost.Region = "DiffusingLi"
md_s.ReactionBoost.TargetSystem = "final"
md_s.ReactionBoost.RMSDRestraint.Type = "Harmonic"
md_s.ReactionBoost.RMSDRestraint.Harmonic.ForceConstant = 0.1
md_s.NSteps = 500
md_s.TimeStep = 0.5
md_s.Trajectory.SamplingFreq = 20
rb_s = plams.Settings()
rb_s.input.ams.Task = "MolecularDynamics"
rb_s.input.ams.MolecularDynamics = md_s

m3gnet_rb_job = plams.AMSJob(
settings=m3gnet_up_s + rb_s,
name="m3gnet_up_rb",
molecule={"": defective_1, "final": defective_2},

)
m3gnet_rb_job.run()

N = 5 # show 5 structures
fig, axes = plt.subplots(1, N, figsize=(12, 5))
nEntries = m3gnet_rb_job.results.readrkf("History", "nEntries")
print(f"There are {nEntries} frames in the trajectory")
ind = np.linspace(1, nEntries, N, endpoint=True, dtype=np.int64)
for ax, i_frame in zip(axes, ind):

plams.plot_molecule(m3gnet_rb_job.results.get_history_molecule(i_frame), ax=ax,␣
↪→rotation="-85x,5y,0z")

ax.set_title(f"Frame {i_frame}")

It looks like the Li atom is diffusing to the correct place, but it is easiest to␣
↪→visualize in AMSmovie:

Conclusion: We have reasonable reaction boost settings for M3GNet-UP-2022. This␣
↪→does not guarantee that the settings will be appropriate with the retrained model␣

(continues on next page)

150 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
↪→(for example because we expect the barrier to be higher), but it is likely to work.

Run simple active learning using ReactionBoost MD

al_s = plams.Settings()
al_s.input.ams.ActiveLearning.SuccessCriteria.Energy.Relative = 0.0012
al_s.input.ams.ActiveLearning.SuccessCriteria.Forces.MaxDeviationForZeroForce = 0.25
al_s.input.ams.ActiveLearning.Steps.Type = "Linear"
al_s.input.ams.ActiveLearning.Steps.Linear.Start = 15
al_s.input.ams.ActiveLearning.Steps.Linear.StepSize = 50
al_s.input.ams.ActiveLearning.InitialReferenceData.Load.Directory = (

prelim_al_job2.results.get_reference_data_directory()
)
al_s.input.ams.ActiveLearning.InitialReferenceData.Load.FromPreviousModel = "No"

ml_s = plams.Settings()
ml_s.input.ams.MachineLearning.Backend = "M3GNet"
ml_s.input.ams.MachineLearning.LoadModel = prelim_al_job2.results.get_params_results_
↪→directory()
ml_s.input.ams.MachineLearning.MaxEpochs = 200
ml_s.input.ams.MachineLearning.Target.Forces.MAE = 0.03

sal_job = SimpleActiveLearningJob(
name="sal_lidiffusion_rb",
settings=al_s + dft_s + ml_s + rb_s,
molecule={"": defective_1, "final": defective_2},

)
print(sal_job.get_input())

plams.config.jobmanager.hashing = None
sal_job.run(watch=True)

m3gnet_new_s = sal_job.results.get_production_engine_settings()
m3gnet_new_s = prelim_al_job2.results.get_production_engine_settings()

Run NEB with retrained M3GNet

constraint_s = plams.Settings()
constraint_s.input.ams.Constraints.Atom = 8
defective_1_perturbed = defective_1.copy()
defective_1_perturbed.perturb_atoms()
defective_2_perturbed = defective_2.copy()
defective_2_perturbed.perturb_atoms()
m3gnet_new_neb_job = plams.AMSJob(

settings=m3gnet_new_s + neb_s, # + constraint_s,
molecule={"": defective_1, "final": defective_2},
name="m3gnet_new_neb",

)
m3gnet_new_neb_job.run()

m3gnet_new_res = m3gnet_new_neb_job.results.get_neb_results(unit="eV")
(continues on next page)

4.5. Python Examples 151

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
print(f"Left barrier: {m3gnet_new_res['LeftBarrier']:.3f} eV")
print(f"Right barrier: {m3gnet_new_res['RightBarrier']:.3f} eV")

ref_results = [0.0, 0.144, 0.482, 0.816, 0.963, 0.816, 0.482, 0.144, 0.0] # from␣
↪→Quantum ESPRESSO DFT calculation
nImages = m3gnet_new_res["nImages"]
relative_energies = np.array(m3gnet_new_res["Energies"]) - m3gnet_new_res["Energies
↪→"][0]
plt.plot(relative_energies)
plt.xlabel("Image")
plt.ylabel("Relative energy (eV)")
plt.title("M3GNet retrained NEB Li diffusion")

fig, axes = plt.subplots(1, len(m3gnet_new_res["Molecules"]), figsize=(15, 5))

for i, mol in enumerate(m3gnet_new_res["Molecules"]):
plams.plot_molecule(mol, ax=axes[i], rotation="-85x,-5y,0z")
axes[i].set_title(f"Image {i}")

Let's run DFT calculations on these frames to compare. We can do this using the
↪→"Replay" task.
#
Note: The DFT calculations may take a few minutes to complete.

replay_s = plams.Settings()
replay_s.input.ams.Task = "Replay"
replay_s.input.ams.Replay.File = os.path.abspath(m3gnet_new_neb_job.results.rkfpath())
replay_s.input.ams.Properties.Gradients = "Yes"

replay_dft_job = plams.AMSJob(settings=replay_s + dft_s, name="replay_m3gnet_new_neb_
↪→with_dft")
replay_dft_job.run(watch=True)

When using "Replay" on a NEB job, the results are stored in the normal NEB format.␣
↪→Thus we can use the ``.get_neb_results()`` method also on this job:

dft_energies = replay_dft_job.results.get_neb_results(unit="eV")["Energies"]
dft_relative_energies = np.array(dft_energies) - dft_energies[0]

plt.plot(relative_energies)
plt.plot(dft_relative_energies)
plt.legend(["M3GNet retrained", "DFT singlepoints"])
plt.title("Compare retrained M3GNet NEB to DFT singlepoints")

152 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

4.5.9 Active Learning with uncertainties predicted from committee models

Trained model: A committee model consisting of 2 custom M3GNet models, starting from random weight initialization
Reference method: DFT, PBE-D3(BJ), engine ADF
System: H₂O + propene → 1-propanol

Problem: M3GNet-UP-2022 underestimates the reaction barrier

Solution: Retraining the model gives better agreement:

4.5. Python Examples 153

Workflows Manual, Amsterdam Modeling Suite 2025.1

Expected duration: This notebook takes about 48 hours to run on the CPU. This includes both the active learning and
the various NEB calculations.
Approach: In addition to dividing an MD simulation into several active learning steps, we will also exploit the uncertainty
that ML models can give when trained as committee models. By setting up a ReactionBoost MD simulation to force the
desired reaction and applying uncertainty-based exit conditions, we effectively choose training points where the model is
“uncertain”.
Key takeaways:

1. Training M3GNet models from scratch typically requires more training data than starting from the Universal Po-
tential

2. ReactionBoost can be effectively used to sample structures during a chemical reaction but may not sample the
minimum energy path.

3. In particular for models trained from scratch like this, to get a good result for the reaction barrier we also need to
create a separate “mini-active-learning-loop” in Python that runs NEB, recalculates with DFT, retrains the model,
runs NEB, etc., a few times before we get a good result also for NEB calculations.

Technical note: This example uses the new “Python Input System for AMS” input classes instead of the normal PLAMS
settings object. Both methods work.
To follow along, either

• Download sal_uncertainty.py (run as $AMSBIN/amsipython sal_uncertainty.py).
• Download sal_uncertainty.ipynb (see also: how to install Jupyterlab in AMS)

154 Chapter 4. Simple Active Learning

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Initial imports

import scm.plams as plams
from scm.simple_active_learning import SimpleActiveLearningJob
from scm.reactmap.tools import reorder_plams_mol
import matplotlib.pyplot as plt
from scm.input_classes import drivers, engines
from scm.libbase import Units
import scm.params as params
import os
import numpy as np

plams.init()

system1 = plams.from_smiles("CC=C", forcefield="uff") # propene

add a water molecule *at least* 1 angstrom away from all propene atoms
system1.add_molecule(plams.from_smiles("O"), margin=1)

for at in system1:
at.properties = plams.Settings()

system1.delete_all_bonds()

plams.plot_molecule(system1)
plt.title("System 1: propene + H2O")

system2 = plams.from_smiles("CCCO") # 1-propanol
for at in system2:

at.properties = plams.Settings()
system2.delete_all_bonds()

reorder atoms in system2 to match the order in system1
this only takes bond breaking and forming into account, the order is not guaranteed␣
↪→to match exactly for all atoms
system2 = reorder_plams_mol(system1, system2)

Rotate system2 so that the RMSD with respect to system1 is minimized
system2.align2mol(system1)

plams.plot_molecule(system2)
plt.title("System 2: 1-propanol")

sanity-check that at least the order of elements is identical
assert list(system1.symbols) == list(system2.symbols), f"Something went wrong!"

Note that this does not guarantee that the atom order is completely the same.
For example the order of the hydrogen atoms in the CH3 group might be different.

(continues on next page)

4.5. Python Examples 155

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
This means that we cannot just run NEB directly. So let's first run MD␣
↪→ReactionBoost.

Initial Reaction Boost to get reactant and product

Engine settings
#
Here we use ``e_up`` to refer to the M3GNet Universal Potential.
#
For the ADF DFT engine we set an electronic temperature and the OptimizeSpinRound␣
↪→option. This helps with SCF convergence, and can converge the SCF to a different␣
↪→spin state when applicable.

e_up = engines.MLPotential()
e_up.Model = "M3GNet-UP-2022"

e_dft = engines.ADF()
e_dft.XC.GGA = "PBE"
e_dft.XC.Dispersion = "GRIMME3 BJDAMP"
e_dft.Basis.Type = "TZP"
e_dft.Unrestricted = True
e_dft.Occupations = "ElectronicTemperature=300 OptimizeSpinRound=0.05"

def set_reaction_boost(driver, nsteps=3000):
driver.Task = "MolecularDynamics"
md = driver.MolecularDynamics
md.InitialVelocities.Temperature = 100
md.NSteps = nsteps
md.ReactionBoost.Type = "Pair"
md.ReactionBoost.BondBreakingRestraints.Type = "Erf"
md.ReactionBoost.BondBreakingRestraints.Erf.MaxForce = 0.05
md.ReactionBoost.BondMakingRestraints.Type = "Erf"
md.ReactionBoost.BondMakingRestraints.Erf.MaxForce = 0.12
md.ReactionBoost.InitialFraction = 0.05
md.ReactionBoost.Change = "LogForce"
md.ReactionBoost.NSteps = nsteps
md.ReactionBoost.TargetSystem[0] = "final"
md.Trajectory.SamplingFreq = 10
md.Trajectory.WriteBonds = False
md.Trajectory.WriteMolecules = False
md.TimeStep = 0.25
md.Thermostat[0].Tau = 5
md.Thermostat[0].Temperature = [100.0]
md.Thermostat[0].Type = "Berendsen"

def get_reaction_boost_job(engine, molecule, name: str = "reaction_boost") -> plams.
↪→AMSJob:

d = drivers.AMS()
set_reaction_boost(d)
d.Engine = engine
job = plams.AMSJob(settings=d, name=name, molecule=molecule)
job.settings.runscript.nproc = 1
return job

(continues on next page)

156 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
molecule_dict = {"": system1, "final": system2}
prelim_job = get_reaction_boost_job(e_up, molecule_dict, "prelim_md")

prelim_job.run()

Let's check that the final molecule corresponds to the target system (1-propanol):

#

engine_energies = prelim_job.results.get_history_property("EngineEnergy")
N_frames = len(engine_energies)
max_index = np.argmax(engine_energies)
reactant_index = max(0, max_index - 50) # zero-based
system1_correct_order = prelim_job.results.get_history_molecule(reactant_index + 1)
system1_correct_order.delete_all_bonds()
plams.plot_molecule(system1_correct_order)

product_index = min(max_index + 50, N_frames - 1) # zero-based
system2_correct_order = prelim_job.results.get_history_molecule(product_index + 1)
system1_correct_order.delete_all_bonds()
plams.plot_molecule(system2_correct_order)

We now have the product molecule with the correct atom order, which means we can␣
↪→run an initial NEB with M3GNet and compare to the DFT reference:

Initial NEB calculation

molecule_dict = {"": system1_correct_order, "final": system2_correct_order}

def get_neb_job(engine, name: str = "neb") -> plams.AMSJob:
d = drivers.AMS()
d.Task = "NEB"
d.GeometryOptimization.Convergence.Quality = "Basic"
d.NEB.Images = 12
d.Engine = engine

neb_job = plams.AMSJob(name=name, settings=d, molecule=molecule_dict)
return neb_job

neb_job = get_neb_job(e_up, name="neb_up")
neb_job.run()

Let's then replay with the ADF DFT engine.

def get_replay_job(rkf, name="replay"):
d_replay = drivers.AMS()
d_replay.Task = "Replay"
d_replay.Replay.File = os.path.abspath(rkf)
d_replay.Properties.Gradients = True

(continues on next page)

4.5. Python Examples 157

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
d_replay.Engine = e_dft

replay_job = plams.AMSJob(name=name, settings=d_replay)
return replay_job

replay_job = get_replay_job(neb_job.results.rkfpath(), "replay_neb")
replay_job.run()

def get_relative_energies(neb_job):
e = neb_job.results.get_neb_results()["Energies"]
e = np.array(e) - np.min(e)
e *= Units.get_factor("hartree", "eV")
return e

def plot_neb_comparison(neb_job, replay_job, legend=None, title=None):
energies_up = get_relative_energies(neb_job)
energies_dft = get_relative_energies(replay_job)
fig, ax = plt.subplots()
ax.plot(energies_up)
ax.plot(energies_dft)
ax.legend(legend or ["M3GNet-UP-2022", "DFT singlepoints"])
ax.set_ylabel("Relative energy (eV)")
ax.set_title(title or "Reaction path water+propene -> 1-propanol")
return ax

plot_neb_comparison(neb_job, replay_job)

So we can see that either M3GNet-UP-2022 underestimates the barrier or it NEB path␣
↪→is different from the DFT one. Let's use these datapoints as a starting point for␣
↪→the active learning.
#
Let's also run replay on some of the frames from the prelim_md reaction boost job:

replay_md = get_replay_job(prelim_job.results.rkfpath(), "replay_md")
N_frames_to_replay = 10
replay_md.settings.input.Replay.Frames = list(

np.linspace(reactant_index, product_index, N_frames_to_replay, dtype=np.int64)
)
replay_md.run()

Simple Active Learning using Uncertainties

Create the initial reference data

yaml_dir = "my_neb_data"
ri = params.ResultsImporter.from_ase() # use ASE units
ri.add_trajectory_singlepoints(replay_job.results.rkfpath(), properties=["energy",
↪→"forces"], data_set="training_set")
ri.add_trajectory_singlepoints(

replay_md.results.rkfpath(),
properties=["energy", "forces"],

(continues on next page)

158 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
data_set="training_set",
indices=list(range(1, N_frames_to_replay - 1)),

)
ri.add_trajectory_singlepoints(

replay_md.results.rkfpath(),
properties=["energy", "forces"],
indices=[0, N_frames_to_replay - 1],
data_set="validation_set",

)
ri.store(yaml_dir, backup=False)

When we have initial reference data like this, it's often most convenient to run a␣
↪→separate ParAMS training before starting the active learning.
#
This lets us sanity-check the training parameters, and more easily try different␣
↪→Active Learning settings without having to retrain the initial model every time.

def get_params_job(yaml_dir, load_model=None, name="paramsjob"):
committee_size = 2
paramsjob = params.ParAMSJob.from_yaml(yaml_dir, use_relative_paths=True,␣

↪→name=name)
paramsjob.settings.input.Task = "MachineLearning"
ml = paramsjob.settings.input.MachineLearning
ml.Backend = "M3GNet"
if load_model:

ml.LoadModel = load_model
ml.MaxEpochs = 200
ml.M3GNet.LearningRate = 5e-4

else:
ml.M3GNet.Model = "Custom"
ml.M3GNet.Custom.NumNeurons = 32
ml.MaxEpochs = 300
ml.M3GNet.LearningRate = 1e-3

ml.CommitteeSize = committee_size
paramsjob.settings.input.ParallelLevels.CommitteeMembers = committee_size

return paramsjob

paramsjob = get_params_job(yaml_dir, name="custom_initial_training")
paramsjob.run()

Set up the active learning job
#
Here the key new setting is the ``ReasonableSimulationCriteria.
↪→GradientsUncertainty``. This setting will cause the MD simulation to instantly stop␣
↪→if the uncertainty is greater than 1.0 eV/angstrom.
#
This is useful since the ML model is unlikely to give good predictions for the new␣
↪→types of structures encountered during the reactive MD.
#
In the summary log, such an event will be marked as "FAILED" with the reason
↪→"GRADIENTS_UNCERTAINTY".

(continues on next page)

4.5. Python Examples 159

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
#
In order to use ML uncertainties, you need to train a committee model with at least␣
↪→2 members. Here we set the commmittee size to 2. We also choose to train the 2␣
↪→committee members in parallel. By default, they would be trained in sequence.
#
It is a good idea to train them in parallel if you have the computational resources␣
↪→to do so (for example, enough GPU memory).
#
When using uncertainty-based critiera, you may consider increasing the␣
↪→MaxAttemptsPerStep. Here, we stick with the default value of 15.

d_al = drivers.SimpleActiveLearning()
d_al.ActiveLearning.InitialReferenceData.Load.FromPreviousModel = True
d_al.ActiveLearning.Steps.Type = "Geometric"
d_al.ActiveLearning.Steps.Geometric.NumSteps = 5
d_al.ActiveLearning.Steps.Geometric.Start = 10
d_al.ActiveLearning.ReasonableSimulationCriteria.GradientsUncertainty.Enabled = True
d_al.ActiveLearning.ReasonableSimulationCriteria.GradientsUncertainty.MaxValue = 1.0
↪→# eV/ang
d_al.ActiveLearning.SuccessCriteria.Forces.MinR2 = 0.4
d_al.ActiveLearning.MaxReferenceCalculationsPerAttempt = 3
d_al.ActiveLearning.MaxAttemptsPerStep = 15
d_al.MachineLearning.Backend = "M3GNet"
d_al.MachineLearning.LoadModel = os.path.abspath(paramsjob.results.path)
d_al.MachineLearning.CommitteeSize = 2
d_al.MachineLearning.MaxEpochs = 120
d_al.MachineLearning.M3GNet.LearningRate = 5e-4
d_al.MachineLearning.RunAMSAtEnd = False
d_al.ParallelLevels.CommitteeMembers = 2
set_reaction_boost(d_al)
d_al.Engine = e_dft

sal_job = SimpleActiveLearningJob(name="sal", driver=d_al, molecule=molecule_dict)
print(sal_job.get_input())

sal_job.run(watch=True)

Above we see that during step 5, several attempts failed with the message GRADIENTS_
↪→UNCERTAINTY. It is during step 5 that the actual reaction happens. We do not know␣
↪→exactly at what time the reaction will happen (since the ReactionBoost gradually␣
↪→increases the applied force).
#
In such a case it is useful to have the GradientsUncertainty reasonable simulation␣
↪→criterion. This will immediately stop the simulation when the uncertainty is too␣
↪→high and follow it with a retraining of the model.

New NEB validation

Let's now evalulate with a second-round NEB and replay. ``sal_job.results.get_
↪→production_engine_settings()`` returns the engine settings in the PLAMS Settings␣
↪→format. Let's first convert it to a PISA Engine:

def settings2engine(settings):
(continues on next page)

160 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
temporary_d = drivers.AMS.from_settings(settings)
return temporary_d.Engine

e_new = settings2engine(sal_job.results.get_production_engine_settings())

Let's now create our own active learning loop for NEB where we run the NEB␣
↪→calculation with our trained potential, replay, add points to training set, retrain,
↪→ rerun NEB etc.
#
We need to do this since MD SAL may not exactly sample the minimum energy path.

n_loop = 3
ri = params.ResultsImporter.from_yaml(sal_job.results.get_reference_data_directory())
params_results_dir = sal_job.results.get_params_results_directory()
for i in range(n_loop):

neb = get_neb_job(e_new, f"new_neb{i}")
neb.run()
replay = get_replay_job(neb.results.rkfpath(), name=f"new_replay{i}")
replay.run()
plot_neb_comparison(neb, replay, legend=["retrained", "DFT"])
yaml_dir = f"new_yaml_dir{i}"
ri.add_trajectory_singlepoints(replay.results.rkfpath(), properties=["energy",

↪→"forces"])
ri.store(yaml_dir, backup=False)
paramsjob = get_params_job(yaml_dir, load_model=params_results_dir, name=f"new_

↪→params{i}")
paramsjob.run()
e_new = settings2engine(paramsjob.results.get_production_engine_settings())
params_results_dir = os.path.abspath(paramsjob.results.path)

Ru/H case study

4.5.10 Ru/H introduction

Trained model: M3GNet, starting from the Universal Potential (UP)
Reference method: PBE-D3(BJ) with engine Quantum ESPRESSO
System: H atoms depositing onto Ru surfaces
Problem: M3GNet-UP-2022 is not very reliable for high-temperature surface chemistry.
Solution: Retraining the model gives better agreement.
Expected duration: This example takes several days to run on a modern compute node.
This is a very thorough example which shows how to

• construct initial reference data using PES Scans like volume scans, cartesian coordinate scans, and bond scans as
well as MD simulations

• training an initial model to the reference data before the active learning loop
• running an active learning loop with the molecule gun

4.5. Python Examples 161

Workflows Manual, Amsterdam Modeling Suite 2025.1

Important: This tutorial is only compatible with AMS2024.102 or later. AMS2024.101 will not work.

To run this example, you may download common_ru_h.py, 01_Ru_volume_scan_H2_bond_scan.py,
02_surface_pes_scans.py, 03_Ru_H2_gas_snapshots.py, 04_Ru_H_initial_training.py,
05_active_learning_molecule_gun_md.py and run

#!/bin/sh

also make sure that common_ru_h.py is in the current directory

"$AMSBIN/amspython" 01_Ru_volume_scan_H2_bond_scan.py || exit 1
"$AMSBIN/amspython" 02_surface_pes_scans.py || exit 1
"$AMSBIN/amspython" 03_Ru_H2_gas_snapshots.py || exit 1
"$AMSBIN/amspython" 04_Ru_H_initial_training.py || exit 1
"$AMSBIN/amspython" 05_active_learning_molecule_gun_md.py || exit 1

Important: The common_ru_h.py file contains a variable TESTING_MODE.
Set TESTING_MODE = True to not use DFT reference calculations but instead a custom-trained M3GNet model
for the reference calculations. This will let you run through the workflow quickly without running any expensive DFT
reference calculations.

Alternatively, you can follow the individual Jupyter notebooks below:
• Ru/H Part 1: Initial reference data from lattice optimization, volume scan, bond scan (page 162)
• Ru/H Part 2: Initial reference data from cartesian coordinate scans and bond scans (page 165)
• Ru/H Part 3: Initial reference data MD simulation + single-point replays (page 169)
• Ru/H Part 4: Initial training (page 171)
• Ru/H Part 5: Active learning for molecule gun MD (page 173)

4.5.11 Ru/H Part 1: Initial reference data from lattice optimization, volume scan,
bond scan

Important: First read Ru/H introduction (page 161) and follow all parts in order.

To follow along,
• Download 01_Ru_volume_scan_H2_bond_scan.ipynb (see also: how to install Jupyterlab in AMS)

162 Chapter 4. Simple Active Learning

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Initial imports

import scm.plams as plams
from scm.params import ResultsImporter
from scm.plams import Settings, AMSJob, log, Molecule

common_ru_h.py must exist in the current working directory
from common_ru_h import (

rotation,
dft_settings,
QEKPointsConfig,
lattice_optimization_settings,
plot_pesscan,
check_installation,

)

check_installation()

Initialize PLAMS working directory

plams.init()

Bulk structure: hcp Ru

initial_bulk = plams.Molecule()
a = 2.7 # hexagonal lattice parameter, angstrom
c = 4.2768 # hexagonal lattice parameter, angstrom
initial_bulk.add_atom(plams.Atom(symbol="Ru", coords=(0.0, 0.0, 0.0)))
initial_bulk.add_atom(plams.Atom(symbol="Ru", coords=(0.0, a / 3**0.5, c / 2)))
initial_bulk.lattice = [[a, 0, 0], [-a / 2, a * 3**0.5 / 2, 0], [0, 0, c]]
log("Initial structure")
log(initial_bulk)

plams.plot_molecule(initial_bulk, rotation=rotation)

Lattice optimization of bulk Ru with DFT

lattopt_job = plams.AMSJob(
settings=dft_settings(QEKPointsConfig(11, 11, 11)) + lattice_optimization_

↪→settings(),
name="hcp_lattopt_Ru_dft",
molecule=initial_bulk,

)
lattopt_job.run()

optimized_bulk: Molecule = lattopt_job.results.get_main_molecule() # type: ignore
log(optimized_bulk)

(continues on next page)

4.5. Python Examples 163

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
log(f"Density: {optimized_bulk.get_density():.2f} kg/m^3")

Volume scan of bulk Ru with DFT

from common_ru_h import (
dft_settings,
QEKPointsConfig,
pesscan_settings,
CellVolumeScalingRangeScanCoordinate,

)

s = dft_settings(QEKPointsConfig(11, 11, 11))
s += pesscan_settings([CellVolumeScalingRangeScanCoordinate(0.85, 1.15)], n_points=7)
volume_scan_job = AMSJob(

settings=s,
molecule=optimized_bulk,
name="bulk_hcp_Ru_volume_scan_dft",

)
volume_scan_job.run()

plot_pesscan(volume_scan_job)

Bond scan of H2 with DFT

h2_mol = plams.from_smiles("[HH]")
h2_mol.lattice = [[5, 0, 0], [0, 5, 0], [0, 0, 5]]
plams.plot_molecule(h2_mol, rotation=rotation)

from common_ru_h import (
dft_settings,
QEKPointsConfig,
pesscan_settings,
DistanceScanCoordinate,

)

scan_coordinate = DistanceScanCoordinate(atom1=1, atom2=2, start=0.55, end=1.0)
s = dft_settings(QEKPointsConfig(1, 1, 1))
s += pesscan_settings([scan_coordinate], n_points=7)

h2_bond_scan_job = AMSJob(settings=s, molecule=h2_mol, name="h2_bond_scan_dft")

h2_bond_scan_job.run()

plot_pesscan(h2_bond_scan_job)

Store results

ri = ResultsImporter.from_ase()
properties = ["energy", "forces"]
ri.add_pesscan_singlepoints(volume_scan_job, properties=properties)
ri.add_pesscan_singlepoints(h2_bond_scan_job, properties=properties)

(continues on next page)

164 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
ri.add_singlejob(lattopt_job, task="SinglePoint", properties=properties)

Also add as PES Scans - these will not be used during training but
will plot the energy-volume curve and bond-scan curve at the end
of the training
ri.add_singlejob(volume_scan_job, task="PESScan", properties=["pes"])
ri.add_singlejob(h2_bond_scan_job, task="PESScan", properties=["pes"])

ri.store("reference_data_1")

4.5.12 Ru/H Part 2: Initial reference data from cartesian coordinate scans and bond
scans

Important: First read Ru/H introduction (page 161) and follow all parts in order.

To follow along,
• Download 02_surface_pes_scans.ipynb (see also: how to install Jupyterlab in AMS)

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Initial imports

import scm.plams as plams
from scm.params import ResultsImporter
from scm.plams import Settings, AMSJob, log, Molecule
from pathlib import Path
import matplotlib.pyplot as plt

common_ru_h.py must exist in the current working directory
from common_ru_h import rotation, check_installation

Initialize PLAMS working directory

old_ref_dir = "reference_data_1"
check_installation(old_ref_dir)
new_ref_dir = "reference_data_2"
ri = ResultsImporter.from_yaml(old_ref_dir)
plams.init()

Load the optimized bulk Ru structure from the job collection
#
The lattice was optimized in the previous notebook, and the structure was stored in␣
↪→the job collection.
#
Let's retrieve it from the job collection and use it to construct Ru surface slabs.

(continues on next page)

4.5. Python Examples 165

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
optimized_bulk = ri.job_collection["hcp_lattopt_Ru_dft"].molecule
plams.plot_molecule(optimized_bulk, rotation=rotation)
plt.title("Bulk hcp Ru")

Cut out Ru(0001) and Ru(10-10) slabs
#
The PLAMS Molecule class does not have any methods for creating slabs. However, we␣
↪→can use the UnifiedChemicalSystem in AMS2024+. The details can be found in the␣
↪→``slice_slab()`` function in common_ru_h.py.

from common_ru_h import slice_slab

slab_100 = slice_slab(
optimized_bulk,
miller=(1, 0, 0),
thickness=7.0,
cell_z=15,
ref_atom=0,

)
slab_100 = slab_100.supercell(3, 2, 1)
for at in slab_100:

at.properties = Settings() # remove details about supercell generation
plams.plot_molecule(slab_100, rotation=rotation)
plt.title("Ru(10-10)")

from common_ru_h import slice_slab

slab_001 = slice_slab(
optimized_bulk,
miller=(0, 0, 1),
thickness=7.0,
cell_z=15,
ref_atom=0,

)
slab_001 = slab_001.supercell([[3, 0, 0], [2, 4, 0], [0, 0, 1]])
for at in slab_001:

at.properties = Settings() # remove details about supercell generation
plams.plot_molecule(slab_001, rotation=rotation)
plt.title("Ru(0001)")

This slab is perhaps too thick, so let's remove the top atomic layer:

for at in slab_001:
if at.coords[2] > 10:

slab_001.delete_atom(at)

plams.plot_molecule(slab_001, rotation=rotation)
plt.title("Ru(0001)")

Add hydrogens

from common_ru_h import add_adsorbate

(continues on next page)

166 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
slab_100_H = add_adsorbate(slab_100, "H", frac_x=0, frac_y=0, delta_z=2.0)
add second adsorbate, now delta_z=2.0 means 2 angstrom above the previous H
slab_100_H2 = add_adsorbate(slab_100_H, "H", frac_x=0.5, frac_y=0.5, delta_z=2.0)
plams.plot_molecule(slab_100_H2, rotation=rotation, radii=0.6)
plt.title("Ru(10-10) with H")

from common_ru_h import add_adsorbate

slab_001_H = add_adsorbate(slab_001, "H", frac_x=0, frac_y=0, delta_z=2.0)
slab_001_H2 = add_adsorbate(slab_001_H, "H", frac_x=0.5, frac_y=0.5, delta_z=2.0)
plams.plot_molecule(slab_001_H2, rotation=rotation, radii=0.6)
plt.title("Ru(0001) with H")

Set up and run the jobs

Ru-H distance bond scan on Ru(10-10)

from common_ru_h import get_surface_bond_scan_coordinates
from common_ru_h import (

get_bottom_atom_index,
pesscan_settings,
m3gnet_up_settings,
constraints_settings,
plot_pesscan,

)

system = slab_100_H

scan_coordinates = get_surface_bond_scan_coordinates(system, atom_index=len(system),␣
↪→start=1.2, end=2.5)
pesscan_Ru_H_distance = plams.AMSJob(

settings=(
pesscan_settings(scan_coordinates, n_points=6)
+ m3gnet_up_settings()
+ constraints_settings(get_bottom_atom_index(system))

),
name="PESScan_Ru_H_distance_m3gnet",
molecule=system,

)
pesscan_Ru_H_distance.run()
!amsmovie {pesscan_Ru_H_distance.results.rkfpath()} # open in AMSmovie
plot_pesscan(pesscan_Ru_H_distance)

Surface and bulk diffusion H on/in Ru(10-10)
#
Note: These PES scans are just meant to sample H atoms diffusing through the slab␣
↪→and on the surface.
#
You can also set up more intelligent PES scans (for example, to sample diffusion␣
↪→along specific pathways like hcp-bridge-fcc etc.). In these examples, the H atom␣
↪→simply diffuses from one corner of the cell to the opposite corner.

from common_ru_h import (
get_surface_diffusion_scan_coordinates,

(continues on next page)

4.5. Python Examples 167

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
get_bulk_diffusion_scan_coordinates,

)
from common_ru_h import (

get_bottom_atom_index,
pesscan_settings,
m3gnet_up_settings,
constraints_settings,
plot_pesscan,

)

system = slab_100_H2

scan_coordinates = get_surface_diffusion_scan_coordinates(system, atom_
↪→index=len(system) - 1)
scan_coordinates += get_bulk_diffusion_scan_coordinates(system, atom_
↪→index=len(system), delta_z=2.0)

pesscan_100_H2 = plams.AMSJob(
settings=(

pesscan_settings(scan_coordinates, n_points=20)
+ m3gnet_up_settings()
+ constraints_settings(get_bottom_atom_index(system))

),
name="PESScan_100_H2_m3gnet",
molecule=system,

)
pesscan_100_H2.run()
!amsmovie {pesscan_100_H2.results.rkfpath()} # open in AMSmovie
plot_pesscan(pesscan_100_H2)

Surface and bulk diffusion H on/in Ru(0001)

from common_ru_h import (
get_surface_diffusion_scan_coordinates,
get_bulk_diffusion_scan_coordinates,

)
from common_ru_h import (

get_bottom_atom_index,
pesscan_settings,
m3gnet_up_settings,
constraints_settings,
plot_pesscan,

)

system = slab_001_H2

scan_coordinates = get_surface_diffusion_scan_coordinates(system, atom_
↪→index=len(system) - 1)
scan_coordinates += get_bulk_diffusion_scan_coordinates(system, atom_
↪→index=len(system), delta_z=2.0)

pesscan_001_H2 = plams.AMSJob(
settings=(

pesscan_settings(scan_coordinates, n_points=20)
+ m3gnet_up_settings()
+ constraints_settings(get_bottom_atom_index(system))

(continues on next page)

168 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
),
name="PESScan_001_H2_m3gnet",
molecule=system,

)
pesscan_001_H2.run()
!amsmovie {pesscan_001_H2.results.rkfpath()} # open in AMSmovie
plot_pesscan(pesscan_001_H2)

Run DFT singlepoints on PES Scan structures and store on disk

from common_ru_h import dft_settings, replay_settings, QEKPointsConfig

replay_jobs = dict()
for pesscan_job in [pesscan_Ru_H_distance, pesscan_100_H2, pesscan_001_H2]:

name = f"dft_replay_{pesscan_job.name}"
settings = dft_settings(QEKPointsConfig(3, 3, 1)) + replay_settings(pesscan_job.

↪→results.rkfpath())
replay_jobs[name] = plams.AMSJob(

settings=settings,
name=name,

)

ri = ResultsImporter.from_yaml(old_ref_dir)
for name, job in replay_jobs.items():

job.run()
ri.add_trajectory_singlepoints(job, properties=["energy", "forces"])
ri.store(new_ref_dir)
plot_pesscan(job)

4.5.13 Ru/H Part 3: Initial reference data MD simulation + single-point replays

Important: First read Ru/H introduction (page 161) and follow all parts in order.

To follow along,
• Download 03_Ru_H2_gas_snapshots.ipynb (see also: how to install Jupyterlab in AMS)

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Initial imports

import scm.plams as plams
from scm.params import ResultsImporter
from scm.plams import Settings, AMSJob, log, Molecule, packmol_on_slab
from pathlib import Path
import matplotlib.pyplot as plt

(continues on next page)

4.5. Python Examples 169

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
common_ru_h.py must exist in the current working directory
from common_ru_h import (

rotation,
dft_settings,
QEKPointsConfig,
m3gnet_up_settings,
replay_settings,
slice_slab,
check_installation,

)

Initialize PLAMS working directory

old_ref_dir = "reference_data_2"
check_installation(old_ref_dir)
new_ref_dir = "reference_data_3"
ri = ResultsImporter.from_yaml(old_ref_dir)
plams.init()

Construct the Ru(10-10)/H2(gas) interface
#
For details about the construction of the slab, see the previous notebook.

optimized_bulk = ri.job_collection["hcp_lattopt_Ru_dft"].molecule
slab_100 = slice_slab(optimized_bulk, miller=(1, 0, 0), thickness=7.0, cell_z=15, ref_
↪→atom=0)
slab_100 = slab_100.supercell(3, 2, 1)
for at in slab_100:

at.properties = Settings() # remove details about supercell generation
plams.plot_molecule(slab_100, rotation=rotation)
plt.title("Ru(10-10)")

Now use the ``packmol_slab`` function to add hydrogen molecules:

from scm.plams import packmol_on_slab

h2_mol = plams.from_smiles("[HH]")
density = 0.3 # approximate density of the gas phase in g/cm^3
slab_100_H2_gas_raw = packmol_on_slab(slab_100, h2_mol, density=density)
slab_100_H2_gas = plams.preoptimize(slab_100_H2_gas_raw, settings=m3gnet_up_
↪→settings(), maxiterations=100)

plams.plot_molecule(slab_100_H2_gas, rotation=rotation, radii=0.8)

Now let's run some MD:

mdjob = plams.AMSNVTJob(
settings=m3gnet_up_settings(),
name="md_ru10-10_h2_m3gnet",
temperature=501,
nsteps=10000,
molecule=slab_100_H2_gas,

(continues on next page)

170 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
samplingfreq=100,

)
mdjob.run()

from scm.params import ResultsImporter

ri = ResultsImporter.from_yaml(old_ref_dir)

settings = dft_settings(QEKPointsConfig(3, 3, 1))
settings += replay_settings(mdjob.results.rkfpath(), frames=[10, 30, 50, 70, 90])

dft_replay_job = plams.AMSJob(
settings=settings,
name="snapshots_from_md_ru10-10_h2_dft",

)
dft_replay_job.run(watch=True)

ri.add_trajectory_singlepoints(dft_replay_job, properties=["energy", "forces"])
ri.store(new_ref_dir)

4.5.14 Ru/H Part 4: Initial training

Important: First read Ru/H introduction (page 161) and follow all parts in order.

To follow along,
• Download 04_Ru_H_initial_training.ipynb (see also: how to install Jupyterlab in AMS)

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Initial imports

import scm.plams as plams
from scm.params import ResultsImporter, ParAMSJob
from scm.plams import Settings, AMSJob, log, Molecule, packmol_on_slab
from pathlib import Path
import matplotlib.pyplot as plt

common_ru_h.py must exist in the current working directory
from common_ru_h import rotation, check_installation

Initialize PLAMS working directory

old_ref_dir = "reference_data_3"
check_installation(old_ref_dir)

(continues on next page)

4.5. Python Examples 171

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
new_ref_dir = "reference_data_4"
plams.init()

Perform training/validation split

Create a training/validation split
ri = ResultsImporter.from_yaml(old_ref_dir)
log("Performing training/validation split")
training_set, validation_set = ri.get_data_set("training_set").split_by_jobids(0.95,␣
↪→0.05, seed=314)
ri.data_sets = {"training_set": training_set, "validation_set": validation_set}
log(f"{len(training_set)} training set entries; {len(validation_set)} validation set␣
↪→entries.")
log(f"Storing in {new_ref_dir}")
ri.store(new_ref_dir)

Create a ParAMS Job for transfer learning on the M3GNet universal potential

job = ParAMSJob.from_yaml(new_ref_dir)
job.name = "initial_training"
inp = job.settings.input
inp.Task = "MachineLearning"
inp.MachineLearning.CommitteeSize = 1 # train only a single model
inp.MachineLearning.MaxEpochs = 250
inp.MachineLearning.LossCoeffs.Energy = 10.0
inp.MachineLearning.LossCoeffs.Forces = 1.0
inp.MachineLearning.Backend = "M3GNet"
inp.MachineLearning.M3GNet.LearningRate = 1e-3
inp.MachineLearning.M3GNet.Model = "UniversalPotential"
inp.MachineLearning.M3GNet.UniversalPotential = Settings(

Featurizer="No", # must use strings here, not Python booleans
ThreeDInteractions1="No",
GraphLayer1="No",
ThreeDInteractions2="No",
GraphLayer2="No",
ThreeDInteractions3="Yes",
GraphLayer3="Yes",
Final="Yes",

)
inp.MachineLearning.Target.Forces.Enabled = "Yes"
inp.MachineLearning.Target.Forces.MAE = 0.05
inp.MachineLearning.RunAMSAtEnd = "Yes"
Larger batch sizes require more (GPU) memory but will also typically train faster
The amount of memory also depends on the number of atoms in the structures
So set the batch size to some appropriate number
inp.DataSet[0].BatchSize = 10 # training set batch size
inp.DataSet[1].BatchSize = 10 # validation set batch size
print(job.get_input())

job.run()

Plot some results of the training

(continues on next page)

172 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
job.results.plot_simple_correlation("forces")

job.results.plot_all_pes()
plt.subplots_adjust(top=2, hspace=0.5)

Copy the results directory to a known place

import shutil

orig_training_results_dir = str(job.results.path)
new_training_results_dir = Path("initial_training_results").resolve()
log(f"Copying {orig_training_results_dir} to {new_training_results_dir}")
shutil.copytree(orig_training_results_dir, new_training_results_dir, dirs_exist_
↪→ok=True)
log(f"Use {new_training_results_dir} as the LoadModel in upcoming active learning.")

4.5.15 Ru/H Part 5: Active learning for molecule gun MD

Important: First read Ru/H introduction (page 161) and follow all parts in order.

To follow along,
• Download 05_active_learning_molecule_gun_md.ipynb (see also: how to install Jupyterlab in
AMS)

Complete Python code

#!/usr/bin/env amspython
coding: utf-8

Initial imports

import scm.plams as plams
from scm.params import ResultsImporter, ParAMSJob
from scm.plams import Settings, AMSJob, log, Molecule
from scm.simple_active_learning import SimpleActiveLearningJob
from pathlib import Path
import matplotlib.pyplot as plt

common_ru_h.py must exist in the current working directory
from common_ru_h import (

rotation,
dft_settings,
QEKPointsConfig,
slice_slab,
check_installation,

)

Initialize PLAMS working directory

(continues on next page)

4.5. Python Examples 173

../../../../Scripting/Python_Stack/Python_Stack.html#install-and-run-jupyter-lab-jupyter-notebooks

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)

load_model_dir = "initial_training_results"
check_installation(load_model_dir)
plams.init()

Load the optimized bulk Ru structure from the job collection
#
The lattice was optimized in the previous notebook, and the structure was stored in␣
↪→the job collection.
#
Let's retrieve it from the job collection and use it to construct Ru surface slabs.

job_collection = ParAMSJob.load_external(load_model_dir).results.get_job_collection()
optimized_bulk = job_collection["hcp_lattopt_Ru_dft"].molecule
slab = slice_slab(optimized_bulk, miller=(1, 0, 0), thickness=7.0, cell_z=15, ref_
↪→atom=0)
min_z = min(at.coords[2] for at in slab)
slab.translate((0, 0, -min_z + 2.0))
slab = slab.supercell(3, 2, 1)
plams.plot_molecule(slab, rotation=rotation)
plt.title("Ru(10-10)")

min_z = min(at.coords[2] for at in slab)
for i, at in enumerate(slab, 1):

at.properties = Settings() # remove details about supercell generation
if at.coords[2] == min_z:

at.properties.region = "very_cold"
else:

at.properties.region = "thermostatted"

h_atom = plams.Molecule()
h_atom.add_atom(plams.Atom(symbol="H", coords=(0.0, 0.0, 0.0)))
h_atom.atoms[0].properties.region = "hydrogen"

main_system_name = "" # must be empty string
projectile_name = "projectile"
molecules_dict = {main_system_name: slab, projectile_name: h_atom}

Set up the MD settings
#
Before starting the active learning, let's set up a molecule gun simulation using␣
↪→the initially trained potential.
#
This is just to see that that simulation settings are somewhat reasonable.

s = Settings()
s.input.ams.Task = "MolecularDynamics"
md_s = s.input.ams.MolecularDynamics
md_s.NSteps = 5000 # will be increased later for active learning
md_s.Trajectory.SamplingFreq = 10 # for testing purposes to check the trajectory
md_s.InitialVelocities.Temperature = 100
md_s.Thermostat = [

(continues on next page)

174 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
Settings(

Region="thermostatted",
Type="NHC",
Temperature=[300],
Tau=100.0,

),
Settings(

Region="very_cold",
Type="NHC",
Temperature=[2.0],
Tau=10.0,

),
]
md_s.RemoveMolecules.Frequency = 1
md_s.RemoveMolecules.Formula = "*"
md_s.RemoveMolecules.SinkBox.FractionalCoordsBox = "0 1 0 1 0.90 0.99"
md_s.AddMolecules.System = projectile_name
md_s.AddMolecules.Frequency = 1000
md_s.AddMolecules.StartStep = 100
insert H atoms 4.5 angstrom above the surface
max_z = max(at.coords[2] for at in slab)
projectile_insertion_z = (4.5 + max_z) / slab.lattice[2][2]
md_s.AddMolecules.FractionalCoordsBox = f"0 1 0 1 {projectile_insertion_z}
↪→{projectile_insertion_z+0.01}"
md_s.AddMolecules.VelocityDirection = "0 0 -1" # shoot down towards slab (decrease z␣
↪→coordinate)
md_s.AddMolecules.DeviationAngle = 0.0
md_s.AddMolecules.Velocity = 0.03

test_md_job = AMSJob(
settings=s + ParAMSJob.load_external(load_model_dir).results.get_production_

↪→engine_settings(),
molecule=molecules_dict,
name="test_molecule_gun",

)

test_md_job.run()

Open the trajectory in AMSmovie to check if it is reasonable. We'd expect some␣
↪→combination of the following events:
#
* H atoms adsorbing on the Ru surface
* H atoms diffusing into the subsurface
* H atoms desorbing from the Ru surface
* H atoms combining into H2 molecules and desorbing from the surface
#
The simulation seems reasonable, so let's couple it to the active learning with on-
↪→the-fly retraining.
#
Active Learning for Ru/H molecule gun simulation

plams.config.jobmanager.hashing = None
al_s = plams.Settings()
al_s.input.ams.ActiveLearning.Steps.Type = "Linear"

(continues on next page)

4.5. Python Examples 175

Workflows Manual, Amsterdam Modeling Suite 2025.1

(continued from previous page)
al_s.input.ams.ActiveLearning.Steps.Linear.Start = 1000
al_s.input.ams.ActiveLearning.Steps.Linear.StepSize = 5000
H atoms at high temperature, so let's decrease the minimum allowed distance a bit
al_s.input.ams.ActiveLearning.ReasonableSimulationCriteria.Distance.MinValue = 0.50
al_s.input.ams.ActiveLearning.MaxReferenceCalculationsPerAttempt = 1
al_s.input.ams.ActiveLearning.SuccessCriteria.Forces.MaxDeviationForZeroForce = 0.65

ml_s = plams.Settings()
ml_s.input.ams.MachineLearning.Backend = "M3GNet"
ml_s.input.ams.MachineLearning.LoadModel = Path(load_model_dir).resolve()
ml_s.input.ams.MachineLearning.MaxEpochs = 50
ml_s.input.ams.MachineLearning.RunAMSAtEnd = "No"

ref_s = dft_settings(QEKPointsConfig(3, 3, 1), conv_thr=1e-4)

new_md_s = s.copy()
new_md_s.input.ams.MolecularDynamics.NSteps = 100000
new_md_s.input.ams.MolecularDynamics.Trajectory.SamplingFreq = 100

al_job = SimpleActiveLearningJob(name="sal", settings=al_s + ml_s + ref_s + new_md_s,␣
↪→molecule=molecules_dict)

al_job.run()

See also:
• Getting Started with PLAMS
• PLAMS Examples
• ParAMS Python tutorial
• Simple Active Learning Python API (page 176)
• Simple Active Learning tutorial using the Graphical User Interface

4.6 Python API

Python APIs for the SimpleActiveLearningJob (a type of PLAMS Job) and SimpleActiveLearningResults classes.
Import it like this:

#!/usr/bin/env amspython

from scm.simple_active_learning import SimpleActiveLearningJob

See also:
• Getting Started with PLAMS
• Python Input System for AMS (PISA) (new in AMS2024)
• Simple Active Learning Python Examples (page 109)

176 Chapter 4. Simple Active Learning

../../../Tutorials/WorkflowsAndAutomation/PythonScriptingWithPLAMS.html
../../../plams/examples/examples.html
../../../params/examples/paramsjob/paramsjob.html
../../../Tutorials/WorkflowsAndAutomation/SimpleActiveLearning.html
../../../Tutorials/WorkflowsAndAutomation/PythonScriptingWithPLAMS.html
../../../pisa/index.html

Workflows Manual, Amsterdam Modeling Suite 2025.1

4.6.1 SimpleActiveLearningJob

class SimpleActiveLearningJob(name='simple_active_learning_job', driver=None, settings=None,
molecule=None, **kwargs)

PLAMS Job class for running Simple Active Learning.
This class inherits from the PLAMS SingleJob class. For usage, see the SingleJob documentation.
If you supply a Settings object to the constructor, it will be converted to a PISA (Python Input System for AMS)
object.
Attributes:

• input: an alias for self.settings.input
__init__(name='simple_active_learning_job', driver=None, settings=None, molecule=None, **kwargs)

Initialize the SimpleActiveLearningJob.
name

[str] The name of the job
driver

[scm.input_classes.drivers.SimpleActiveLearning] PISA object describing the input to the SimpleAc-
tiveLearning program

settings: scm.plams.Settings
All settings for the job. Input settings in the PLAMS settings format under settings.input are
automatically converted to the PISA format. You can specify settings.runscript.nproc to
set the total number of cores to run on.

molecule: scm.plams.Molecule or Dict[str, scm.plams.Molecule]
The initial system in PLAMSMolecule format, or if the simulation requires multiple input system, given
as a dictionary where the main system has an empty string "" as the key.

classmethod load_external(path, finalize=False)
Load a previous SimpleActiveLearning job from disk.

Parameters
• path (Union[str, Path]) – A reactions discovery results folder.
• finalize (bool, optional) – See SingleJob, defaults to False

Raises
FileError – When the path does not exist.

Returns
An initialized SimpleActiveLearningJob

Return type
SimpleActiveLearningJob (page 177)

classmethod from_rkf(path)

Initialize a job from a simple_active_learning.rkf file.
Parameters

path (str) – Path to a simple_active_learning.rkf file
Returns

A new SimpleActiveLearningJob instance based on the information found in path.
Return type

SimpleActiveLearningJob (page 177)

4.6. Python API 177

Workflows Manual, Amsterdam Modeling Suite 2025.1

classmethod from_input(text_input)
Initialize a job from text input.

Parameters
text_input (str) – A multiline text input

Returns
A SimpleActiveLearningJob

Return type
SimpleActiveLearningJob (page 177)

classmethod restart_from(job, name='simple_active_learning_job', molecule=None,
keep_initial_reference_data_settings=False, job_prefix=None)

Returns a SimpleActiveLearningJob with LoadModel set appropriately.
Parameters

• job (Union[SimpleActiveLearningJob (page 177), str, Path]) – A pre-
viously finished SimpleActiveLearningJob (or path to its results folder)

• molecule (Optional[Molecule], default None) – Input molecule for the new
job. If None, use the final molecule from job.

• keep_initial_reference_data_settings (bool, default False) –
Whether to keep the ActiveLearning%InitialReferenceData block from the original job.

Returns
Returns a new SimpleActiveLearningJob.

Return type
SimpleActiveLearningJob (page 177)

get_errormsg()

Returns the contents of the jobname.err file if it exists. If the file does not exist an empty string is returned.
Returns

The error message
Return type

str
get_input()

Obtain the input string.
Returns

An input string.
Return type

str
get_runscript()

Generates the runscript. Use self.settings.runscript.preamble_lines = ['line1',
'line2'] or similarly for self.settings.runscript.postamble_lines to set custom set-
tings.
self.settings.runscript.nproc controls the total number of cores to run on.

check()

Returns True if “NORMAL TERMINATION” is given in the General section of simple_active_learning.rkf.

178 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

ok()

Synonym for check()
run(jobrunner=None, jobmanager=None, watch=False, **kwargs)

Runs the job
property input

PISA format input

4.6.2 SimpleActiveLearningResults

Note: You should not initialize SimpleActiveLearningResults yourself. Instead always access it as job.results,
where job is of type SimpleActiveLearningJob.

class SimpleActiveLearningResults(job)
Results class for SimpleActiveLearningJob
get_errormsg()

Returns the error message of this calculation if any were raised.
Returns

String containing the error message.
Return type

str
rkfpath(file='simple_active_learning')

Returns path to simple_active_learning.rkf
Returns

Path to simple_active_learning.rkf
Return type

str
readrkf(section, variable)

Reads simple_active_learning.rkf
get_simulation_directory(step=None, attempt=None, allow_final=True)

Returns the absolute path to a simulation directory.
step: optional, int

The step number. If not specified will be autodetected to the last step.
attempt: optional, int

The attempt number. If not specified will be autodetected to the last attempt.
allow_final: bool

If True and step=None and attempt=None, then it will return final_production_simulation if it exists.
get_main_molecule(allow_final=True)

Returns AMSResults.get_main_molecule() on the main simulation job.
Parameters

allow_final (bool, optional) – _description_, defaults to True
Returns

description

4.6. Python API 179

Workflows Manual, Amsterdam Modeling Suite 2025.1

Return type
Union[Molecule, Dict[str, Molecule], None]

get_params_results_directory(step=None, attempt=None, allow_final=True)
Returns the absolute path to a ParAMS results directory that can be loaded with ParAMSJob.load_external
or used as LoadModel in ParAMS or SimpleActiveLearning input.
step: optional, int

The step number. If not specified will be autodetected to the last step.
attempt: optional, int

The attempt number. If not specified will be autodetected to the last attempt.
allow_final: bool

If True and step=None and attempt=None, then it will return final_training/results if it exists.
get_params_job(step=None, attempt=None, allow_final=True)

Returns the latest ParAMSJob. This can be used to analyze results from the parametrization.
Parameters

• step (Optional[int], optional) – _description_, defaults to None
• attempt (Optional[int], optional) – _description_, defaults to None
• allow_final (bool, optional) – _description_, defaults to True

Returns
description

Return type
ParAMSJob

get_production_engine_settings(step=None, attempt=None, allow_final=True)
Returns the production engine settings from the ParAMSJob

get_reference_data_directory(step=None, attempt=None)
Returns the absolute path to a reference data directory that can be opened in the ParAMS GUI or which lets
you initialize a ParAMSJob with ParAMSJob.from_yaml()
step: optional, int

The step number. If not specified will be autodetected to the last step.
attempt: optional, int

The attempt number. If not specified will be autodetected to the last attempt.
allow_final: bool

If True and step=None and attempt=None, then it will return final_training/results if it exists.

4.7 Frequently Asked Questions

4.7.1 What kind of properties can I fit?

In AMS2024 you can only train to
• energies
• forces

180 Chapter 4. Simple Active Learning

Workflows Manual, Amsterdam Modeling Suite 2025.1

4.7.2 Can I run on the GPU?

Yes, both the training and production simulations can be run on a compatible GPU when training/running M3GNet.
Running on the GPU results in significant speedup so it is recommended to do so.
To use the GPU you must install a GPU-compatible version of M3GNet or other machine learning backends.
See the MLPotential and ParAMS documentations.

Note: The engines typically used for DFT reference calculations, like ADF, BAND, and the AMS-bundled version of
Quantum ESPRESSO, cannot run on the GPU.
The Active Learning procedure repeatedly switches between ML training, ML production simulations, and reference
calculations.

4.7.3 What kinds of MD simulations can I run?

Simple Active Learning is compatible with (almost) all types of MD simulations supported by the AMS Driver.

Type Comment
✓✓✓ NVE
✓✓✓ NVT example (page 109) | tutorial
✓✓✓ NPT
✓✓✓ Temperature ramping example (page 120)
✓✓✓ Multiple thermostats (ther-

mal conductivity)
✓✓✓ Molecule gun or sink

(CVD, ALD)
✓✓✓ CREST metadynamics example (page 131)
✓✓✓ Constraints (e.g., fixed po-

sitions)
✓✓✓ Apply force or velocity

(friction and viscosity)
✓✓✓ Lattice deformation linear Use Steps%Type = Linear | example (page 120)
✓✓✓ Reaction boost force Use committee uncertainties | example (page 153)
✓✓✓ Reaction boost target coor-

dinate
Use Steps%Type = Linear | example (page 143)

✓✓✓ Force-bias Monte Carlo
(fbMC)

(✓✓✓) Lattice deformation peri-
odic

Difficult setup to get good training/validation sets

(✓✓✓) Nanoreactor Difficult setup to get good training/validation data
❌ Very high temperatures

(combustion)
The workflow automatically considers very high temperatures (> 5000 K) to be
unrealistic and assumes that they are artifacts of the model

4.7. Frequently Asked Questions 181

../../MLPotential/index.html#mlpotential
../../params/index.html#params
../../AMS/Tasks/Molecular_Dynamics.html#moleculardynamics
../../Tutorials/WorkflowsAndAutomation/SimpleActiveLearning.html#saltutorial

Workflows Manual, Amsterdam Modeling Suite 2025.1

4.7.4 Can VASP be used with Simple Active Learning?

Simple Active Learning does not support VASP as the engine. Instead, you may use ADF, BAND or Quantum
ESPRESSO. Alternatively you can try to set up any other reference method through engine ASE.

182 Chapter 4. Simple Active Learning

../../ASE/index.html

INDEX

Non-alphabetical
__init__() (OLEDPropertiesSummary method), 31
__init__() (ReactionsDiscoveryJob method), 77
__init__() (SimpleActiveLearningJob method), 177
__str__() (OLEDPropertiesSummary method), 31
_extract_mol_from_pisa() (ReactionsDiscov-

eryJob static method), 77

A
as_yaml() (OLEDPropertiesSummary method), 32

C
check() (ReactionsDiscoveryJob method), 78
check() (SimpleActiveLearningJob method), 178

F
from_input() (ReactionsDiscoveryJob class method),

77
from_input() (SimpleActiveLearningJob class

method), 178
from_rkf() (ReactionsDiscoveryJob class method), 77
from_rkf() (SimpleActiveLearningJob class method),

177

G
get_errormsg() (ReactionsDiscoveryJob method), 77
get_errormsg() (ReactionsDiscoveryResults method),

75
get_errormsg() (SimpleActiveLearningJob method),

178
get_errormsg() (SimpleActiveLearningResults

method), 179
get_input() (ReactionsDiscoveryJob method), 78
get_input() (SimpleActiveLearningJob method), 178
get_main_molecule() (SimpleActiveLearningResults

method), 179
get_md_jobs() (ReactionsDiscoveryJob method), 78
get_md_jobs() (ReactionsDiscoveryResults method),

75
get_network() (ReactionsDiscoveryResults method),

76

get_network_rd() (ReactionsDiscoveryResults
method), 76

get_num_md_simulations() (ReactionsDiscov-
eryResults method), 76

get_params_job() (SimpleActiveLearningResults
method), 180

get_params_results_directory() (SimpleAc-
tiveLearningResults method), 180

get_production_engine_settings() (Simple-
ActiveLearningResults method), 180

get_reference_data_directory() (SimpleAc-
tiveLearningResults method), 180

get_runscript() (ReactionsDiscoveryJob method),
78

get_runscript() (SimpleActiveLearningJob method),
178

get_simulation_directory() (SimpleActive-
LearningResults method), 179

I
input (ReactionsDiscoveryJob property), 78
input (SimpleActiveLearningJob property), 179

L
load_external() (ReactionsDiscoveryJob class

method), 78
load_external() (SimpleActiveLearningJob class

method), 177

O
ok() (ReactionsDiscoveryJob method), 78
ok() (SimpleActiveLearningJob method), 178
OLEDPropertiesSummary (class in scm.oledtools), 31

R
ReactionsDiscovery, 41
ReactionsDiscoveryJob (class in

scm.reactions_discovery.plams_job), 76
ReactionsDiscoveryResults (class in

scm.reactions_discovery.plams_job), 75
readrkf() (SimpleActiveLearningResults method), 179

183

Workflows Manual, Amsterdam Modeling Suite 2025.1

restart_from() (SimpleActiveLearningJob class
method), 178

rkfpath() (ReactionsDiscoveryResults method), 76
rkfpath() (SimpleActiveLearningResults method), 179
run() (SimpleActiveLearningJob method), 179

S
Simple Active Learning, 81
SimpleActiveLearningJob (class in

scm.simple_active_learning.plams.simple_active_learning_job),
177

SimpleActiveLearningResults (class in
scm.simple_active_learning.plams.simple_active_learning_job),
179

184 Index

	ChemTraYzer2
	New in ChemTraYzer2-2023
	Important information for using ChemTraYzer2
	The ChemTraYzer2 algorithm
	Distinguishing reactions with ChemTraYzer2
	Using ChemTraYzer2 from the GUI
	Tips for getting the most out of ChemTraYzer2
	The MD simulation
	ChemTraYzer2 Settings

	Minimal input
	Input options
	Output
	Summarizing reactions
	reaction_events.csv
	reactions.csv

	Reaction frequency
	reaction_events_per_time.csv
	bond_change_events_per_time.csv

	Molecular population analysis
	mol_statistics.csv
	mol_population.csv

	Geometry output
	Additional output files

	References

	OLED Deposition and Properties
	General
	New in AMS2025.1
	New in AMS2023.1

	Deposition
	Basic input
	Output
	Deposition of host-guest materials
	Deposition of interfaces
	Restarting
	LAMMPS offload

	Properties
	Basic input
	Output
	Results directory
	Data on the HDF5 file
	Accessing the HDF5 file
	Summarizing the results

	Additional settings
	Parallelization
	Restarting

	Material database
	Pure materials
	Host-guest systems

	Reactions Discovery
	General
	What’s new in AMS2024?

	Overview of workflow
	Quickstart guide with example input file
	Command to execute, parallelization
	Engine settings
	Molecular dynamics
	Nanoreactor
	Lattice deformation
	Build the initial system
	Fixed MD settings
	Molecular dynamics restart
	Example: restart MD simulations after they exceeded walltime limit
	Example: Continue MD simulations for more steps

	Network Extraction
	Initial Network from ChemTrayzer2
	Geometry Optimization
	Molecular Charge Assignment
	Manual specification of MD trajectories

	Product Ranking
	Reaction Energies
	Product Cost
	Product Stability
	Reaction Balance
	Example: ProductRanking from finished NetworkExtraction

	Output
	Reactants, products, unstable
	KF output files

	Reactions Discovery in Python (PLAMS)
	Frequently Asked Questions
	There are no reactions
	There are too many reactions
	The MD simulations are too slow
	How should I set the density and compression factor?
	The simulation explodes
	How do I use computing resources efficiently?

	Simple Active Learning
	General
	Licensing
	What’s new in Simple Active Learning?
	AMS2025
	AMS2024

	Quickstart guide
	Input
	Overview
	Initial reference data
	Generate initial reference data
	Load initial reference data
	Initial reference data input

	When to run reference calculations (step sequence type)
	Step Type Geometric (default)
	Step Type Linear
	Step Type List
	Steps input

	Success criteria
	Energy: total and relative
	Total energy
	Relative energy

	Forces (gradients)
	Success criteria input

	Reasonable simulation criteria (uncertainties, temperature, …)
	From scratch training
	Output to save
	At workflow end: retrain model, rerun simulation
	Retrain model
	Rerun simulation (final production simulation)
	AtEnd input

	Output
	Python Examples
	Single molecule: setup and run
	Complete Python code

	Single molecule: access results
	Complete Python code

	Single molecule: Compare to M3GNet-UP-2022
	Complete Python code

	Single molecule: Production simulation with retrained ML potential
	Complete Python code

	Continue active learning with a new system or new simulation settings
	Complete Python code

	Liquid water: diffusion coefficient, radial distribution function, density
	Complete Python code

	Conformers: Active learning with CREST metadynamics and custom addition of data points
	Complete Python code

	Li-vacancy diffusion in a solid electrolyte
	Complete Python code

	Active Learning with uncertainties predicted from committee models
	Complete Python code

	Ru/H introduction
	Ru/H Part 1: Initial reference data from lattice optimization, volume scan, bond scan
	Complete Python code

	Ru/H Part 2: Initial reference data from cartesian coordinate scans and bond scans
	Complete Python code

	Ru/H Part 3: Initial reference data MD simulation + single-point replays
	Complete Python code

	Ru/H Part 4: Initial training
	Complete Python code

	Ru/H Part 5: Active learning for molecule gun MD
	Complete Python code

	Python API
	SimpleActiveLearningJob
	SimpleActiveLearningResults

	Frequently Asked Questions
	What kind of properties can I fit?
	Can I run on the GPU?
	What kinds of MD simulations can I run?
	Can VASP be used with Simple Active Learning?

	Index

