ReaxFF

Contents

- 1 ReaxFF potential functions
- 1.1 0. Naming
- 1.2 1. Overall system energy
- 1.3 2. Bond Order and Bond Energy
- 1.3.1 2.1 Uncorrected BO
- 1.3.2 2.2 Corrected BO
- 1.3.3 2.3 Fe dimer correction
- 1.4 3. Lone pair energy
- 1.5 4. Overcoordination
- 1.6 5. Undercoordination
- 1.7 6. Valence Angle Terms
- 1.7.1 6.1 Angle energy.
- 1.7.2 6.2 Penalty energy.
- 1.7.3 6.3 Three-body conjugation term.
- 1.8 7. Torsion angle terms
- 1.8.1 7.1 Torsion rotation barriers.
- 1.8.2 7.2 Four body conjugation term.
- 1.9 8. Hydrogen bond interactions
- 1.10 9. Correction for
- 1.11 10. Triple bond energy correction.
- 1.12 11. Nonbonded interactions
- 1.12.1 11.1 Taper correction
- 1.12.2 11.2 van der Waals interactions
- 1.12.3 11.3 lg - dispersion correction
- 1.12.4 11.4 Energy due to charges (includes Coulomb)
- 1.12.4.1 11.4.1 EEM
- 1.12.4.2 11.4.2 ACKS2
- 1.12.4.3 11.4.3 Remark on the "Coulomb" and "Charge" energy
- 1.13 12. eReaxFF

ReaxFF potential functions

Based on the Supporting information for the manuscript "A ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation" by Kimberly Chenoweth, Adri C.T. van Duin and William A. Goddard, III

This document contains all the general ReaxFF-potential functions. In the current ReaxFF code all the energy contributions in this document are calculated regardless of system composition. All parameters that do not bear a direct physical meaning are named after the partial energy contribution that they appear in. For example, $p_{v a l 1}$ and $p_{v a l 2}$ are parameters in the valence angle potential function. Parameters with a more direct physical meaning, like the torsional rotational barriers $\left(V_{1}, V_{2}, V_{3}\right)$ bear their more recognizable names.

Modifications to the original document contain descriptions of the parameters, taken form the force fields and references to the files and subroutines of ADF implementation of ReaxFF. Several energy terms were added, based on the implementation.

See also Reaxff energy derivatives

0. Naming

Class	Number of params	Name in code
General	41	vpar
Atomic	32	ratomparam
Bond	16	rbondparam
Off-diagonal	6	roffdiagparam
Valence	7	rvalangparam
Torsion	7	rtorangparam
Hydrogen bond	4	rhbondparam

Recently ReaxFF model was extended to eReaxFF within the same framework. Concept of explicit electron was introduced:

- new energy functionals to compute pairwise electrostatic interactions for explicit electrons was added;
- over- and under-coordination energy terms were modified;

Remarks would be implicitly specified below for each energy term where needed.
Full list of force field parameters is described in the List of parameters.

1. Overall system energy

Equation (1) describes the ReaxFF overall system energy.

$$
\begin{align*}
E_{\text {system }}= & E_{\text {bond }}+E_{l p}+E_{\text {over }}+E_{\text {under }}+E_{\text {val }}+E_{\text {pen }} \\
& +E_{\text {coa }}+E_{C 2}+E_{\text {tors }}+E_{\text {con } j}+E_{H-\text { bond }}+E_{v d W a a l s} \\
& +\left\{\begin{array}{l}
E_{E E M} \\
E_{A C K S 2}
\end{array}+\right. \\
& +E_{\text {Fe-dim }}+E_{l g}+E_{t r i p} \tag{1}
\end{align*}
$$

Below follows a description of the partial energies introduced in equation (1).

2. Bond Order and Bond Energy

2.1 Uncorrected BO

A fundamental assumption of ReaxFF is that the bond order $B O_{i j}^{\prime}$ between a pair of atoms can be obtained directly from the interatomic distance $r_{i j}$ as given in Equation (2). In calculating the bond orders, ReaxFF distinguishes between contributions from σ-bonds, π-bonds and double π-bonds.

$$
\begin{aligned}
B O_{i j}^{\prime} & =B O_{i j}^{\prime \sigma}+B O_{i j}^{\prime \pi}+B O_{i j}^{\prime \pi \pi} \\
& =\exp \left[p_{b o 1} \cdot\left(\frac{r_{i j}}{r_{o}^{\sigma}}\right)^{p_{b o 2}}\right]+\exp \left[p_{b o 3} \cdot\left(\frac{r_{i j}}{r_{o}^{\pi}}\right)^{p b o 4}\right]+\exp \left[p_{b o 5} \cdot\left(\frac{r_{i j}}{r_{o}^{\pi \pi}}\right)^{p_{b o 6}}\right]
\end{aligned}
$$

Formula	Code	Definition	Condition	Comment
$\frac{1}{r_{o}^{\sigma}}$	rob1(i,j)	1/roffdiagparam(i,4)	if defined and roffdiagparam(i,4) >0	
		0.5 (rat (i) + rat (j))	if rob1 $\leq 1.0 \mathrm{e}-15$	rat(i) = ratomparam(i,1)
		$2 /(r a t(i)+r a t(j))$	otherwise	
$\frac{1}{r_{o}^{\pi}}$	rob2 (i,j)	roffdiagparam(i,5)	if defined and roffdiagparam(i,5) >0	
		0.5 (rapt (i) + rapt(j))	if rob2 $\leq 1.0 \mathrm{e}-15$	$\operatorname{rapt}(i)=\operatorname{ratomparam}(i, 7)$
		$2 /(\operatorname{rapt}(\mathrm{i})+\operatorname{rapt}(\mathrm{j})$)	otherwise	
$\frac{1}{r_{o}^{\pi \pi}}$	rob1(i,j)	roffdiagparam(i,6)	if defined and roffdiagparam(i,6) >0	
		0.5 (vnq(i) + vnq(j))	if rob3 $\leq 1.0 \mathrm{e}-15$	vnq(i) $=$ ratomparam(i,17)
		$2 /(v n q(i)+v n q(j))$	otherwise	
$p_{b o 1}$	bop1	rbondparam(13)	σ - bond parameters	
$p_{b o 2}$	bop2	rbondparam(14)		
$p_{b o 3}$	pdp	rbondparam(10)	π - bond parameters	
$p_{\text {bo4 }}$	ptp	rbondparam(11)		
$p_{b o 5}$	pdo	rbondparam(5)	$\pi \pi$ - bond parameters	
$p_{b o 6}$	popi	rbondparam(7)		

Based on the uncorrected bond orders $B O^{\prime}$, derived from Equation (1), an uncorrected overcoordination Δ^{\prime} can be defined for the atoms as the difference between the total bond order around the atom and the number of its bonding electrons Val .
$\Delta_{i}^{\prime}=-V a l_{i}+\sum_{j=1}^{\text {neighbours }(i)} B O_{i j}^{\prime}$
ReaxFF then uses these uncorrected overcoordination definitions to correct the bond orders $B O_{i j}^{\prime}$ using the scheme described in Equations ($4 \mathrm{a}-\mathrm{f}$). To soften the correction for atoms bearing lone electron pairs a second overcoordination definition $\Delta^{b o c}$ (Equation (3b)) is used in Equations (4e) and (4f). This allows atoms like nitrogen and oxygen, which bear lone electron pairs after filling their valence, to break up these electron pairs and involve them in bonding without obtaining a full bond order correction.

$$
\begin{equation*}
\Delta_{i}^{\prime b o c}=-V a l_{i}^{\text {boc }}+\sum_{j=1}^{\text {neighbours }(i)} B O_{i j}^{\prime} \tag{3b}
\end{equation*}
$$

Formula	Code	Definition	Condition	Comment
Δ_{i}^{\prime}	ovi		$\begin{aligned} & \text { if ovc }(i)= \\ & \text { rbondparam }(i, 15)> \\ & 0.001 \end{aligned}$	uncorrected overcoordination
$\Delta_{i}^{\text {boc }}$	ovi2			second overcoordination definiton; to soften the correction for atoms bearing lone electron pairs
Δ_{i}	ovi4			corrected overcoordination
$V a l_{i}$	aval (i)	ratomparam(i, 2)		number of bonding electrons of an atom
$V a l_{i}^{\prime b o c}$	vval3(:)	ratomparam(28)		$=\operatorname{valf}(:)=$ ratomparam(11) value changes for the first row elements
neighbours(i)		abo(i) + bo(nbon)	in CheckAndAddBond and CorrectBondOrders	
$\sum_{j=1} B O_{i j}^{\prime}$	aboi	$\begin{aligned} & \text { abo(i) + bor - } \\ & \text { cutoff } \end{aligned}$	in UpdateBondOrders	cutoff $=0.01 \cdot \operatorname{vpar}(30)$ formula is a bit different and might hold an error, bor = borsi + borpi + borpi2 (4a); total bond order

2.2 Corrected BO

$$
B O_{i j}=B O_{i j}^{\sigma}+B O_{i j}^{\pi}+B O_{i j}^{\pi}
$$

$$
B O_{i j}^{\sigma}=B O_{i j}^{\prime \sigma} \cdot f_{1}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right) \cdot f_{4}\left(\Delta_{i}^{\prime}, B O_{i j}^{\prime}\right) \cdot f_{5}\left(\Delta_{j}^{\prime}, B O_{i j}^{\prime}\right)
$$

$$
B O_{i j}^{\pi}=B O_{i j}^{\prime \pi} \cdot f_{1}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)^{2} \cdot f_{4}\left(\Delta_{i}^{\prime}, B O_{i j}^{\prime}\right) \cdot f_{5}\left(\Delta_{j}^{\prime}, B O_{i j}^{\prime}\right)
$$

$$
B O_{i j}^{\pi \pi}=B O_{i j}^{\prime \pi \pi} \cdot f_{1}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)^{2} \cdot f_{4}\left(\Delta_{i}^{\prime}, B O_{i j}^{\prime}\right) \cdot f_{5}\left(\Delta_{j}^{\prime}, B O_{i j}^{\prime}\right)
$$

Formulas	Code	Definition	Subroutine	Comment
$B O_{i j}^{\prime \sigma}$	borsi	uncorrected bond orders	CheckAndAddBond	
$B O_{i j}^{\prime \pi}$	bopi ($:$) = borpi			
$B O_{i j}^{\prime \pi}$	bopi2(:)=borpi2			
$B O_{i j}^{\prime}$	bor= borsi + borpi + borpi2			
$B O_{i j}^{\sigma}$	bo(:)=bor - cutoff	corrected bond orders	CorrectBondOrders	cutoff $=0.01 \cdot \operatorname{vpar}(30)$
$B O_{i j}^{\pi}$	bopi(:)			
$B O_{i j}^{\pi \pi}$	bopi2(:)			
$B O_{i j}$	abo(:)			

$$
\begin{align*}
& f_{1}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)=\frac{1}{2} \cdot\left(\frac{V a l_{i}+f_{2}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)}{V a l_{i}+f_{2}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)+f_{3}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)}+\frac{V a l_{j}+f_{2}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)}{V a l_{j}+f_{2}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)+f_{3}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)}\right) \tag{4b}\\
& f_{2}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)=\exp \left(-p_{b o c 1} \cdot \Delta_{i}^{\prime}\right)+\exp \left(-p_{b o c 1} \cdot \Delta_{j}^{\prime}\right) \tag{4c}\\
& f_{3}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)=-\frac{1}{p_{b o c 2}} \cdot \ln \left\{\frac{1}{2} \cdot\left[\exp \left(-p_{\text {boc } 2} \cdot \Delta_{i}^{\prime}\right)+\exp \left(-p_{b o c 2} \cdot \Delta_{j}^{\prime}\right)\right]\right\} \tag{4d}\\
& f_{4}\left(\Delta_{i}^{\prime}, B O_{i j}^{\prime}\right)=\frac{1}{1+\exp \left(-p_{\text {boc } 3} \cdot\left(p_{b o c 4} \cdot B O_{i j}^{\prime} \cdot B O_{i j}^{\prime}-\Delta_{i}^{\text {boc }}\right)+p_{b o c 5}\right)} \tag{4e}\\
& f_{5}\left(\Delta_{j}^{\prime}, B O_{i j}^{\prime}\right) \equiv f_{4}\left(\Delta_{j}^{\prime}, B O_{i j}^{\prime}\right) \tag{4f}
\end{align*}
$$

Formula	Code	Comment
$f_{1}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)$	corrtot	
$f_{2}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)$	$\exp 11+\exp 12$	
$f_{3}\left(\Delta_{i}^{\prime}, \Delta_{j}^{\prime}\right)$	ovcor	
$f_{4}\left(\Delta_{i}^{\prime}, B O_{i j}^{\prime}\right)$	bocor 1	
$f_{5}\left(\Delta_{j}^{\prime}, B O_{i j}^{\prime}\right)$	bocor2	
$p_{\text {boc1 }}$	vpar(1)	
$p_{\text {boc } 2}$	$\operatorname{vpar}(2)$	
$p_{\text {boc } 3}$	vp132 $=$ sqrt (bol32(i) $\cdot \mathrm{bol32}(\mathrm{j})$)	bol32(:) = ratomparam(21)
$p_{\text {boc } 4}$	vp131 $=$ sqrt (bol31(i) $\cdot \mathrm{bol31}(\mathrm{j})$)	bol31(:) = ratomparam(20)
$p_{\text {boc } 5}$	$\mathrm{vp133}=\operatorname{sqrt}(\mathrm{bol33}(\mathrm{i}) \cdot \mathrm{bol33}(\mathrm{j})$)	bo133(:) = ratomparam(22)

A corrected overcoordination Δ_{i} can be derived from the corrected bond orders using equation (5).
$\Delta_{i}=-$ Val $_{i}+\sum_{j=1}^{\text {neighbours(i) }} B O_{i j}$

Equation (6) is used to calculate the bond energies from the corrected bond orders $B O_{i j}$.
$E_{b o n d}=-D_{e}^{\sigma} \cdot B O_{i j}^{\sigma} \cdot \exp \left[p_{b e 1}\left(1-\left(B O_{i j}^{\sigma}\right)^{p_{b e 2}}\right)\right]-D_{e}^{\pi} \cdot B O_{i j}^{\pi}-D_{e}^{\pi \pi} \cdot B O_{i j}^{\pi \pi}$

Symbol	Code
$E_{\text {bond }}$	ebh
D_{e}^{σ}	$\operatorname{de1h}=\operatorname{vsymm} * \operatorname{de1}(:), \operatorname{de1}(:)=\operatorname{rbondparam}(:, \mathbf{1})$
D_{e}^{π}	$\operatorname{de2h}=\operatorname{vsymm} * \operatorname{de2}(:), \operatorname{de2}(:)=\operatorname{rbondparam}(:, \mathbf{2})$
$D_{e}^{\pi \pi}$	$\operatorname{de3h}=\operatorname{vsymm} * \operatorname{de3}(:), \operatorname{de3}(:)=\operatorname{rbondparam}(:, \mathbf{3})$
$p_{\text {be } 1}$	$\operatorname{psi}(:)=\operatorname{rbondparam}(:, 4)$
$p_{\text {be } 2}$	$\operatorname{psp}(:)=\operatorname{rbondparam}(:, \mathbf{9})$

Implementation: RxfBondsModule.f90, subroutine: CalcCovalentBonds

2.3 Fe dimer correction

It was added in 2012. Paper: [1] (http://link.springer.com/article/10.1007\%2Fs11837-012-0463-5) In order to turn it on - fedime should be set to $\mathbf{1}$ in control file.
$E_{F e-\text { dim }}=p_{f e 1} \cdot\left(B O_{i j}\right)^{p_{f e 2}} \cdot \exp \left(1-\left(\frac{B O_{i}^{\prime}+B O_{j}^{\prime}}{2 \cdot B O_{i j}}\right)^{p_{f e 3}}\right)$

Symbol	Code
$p_{f e 1}$	$\operatorname{vpar(14)}$
$p_{f e 2}$	$\operatorname{vpar(19)}$
$p_{f e 3}$	$\operatorname{vpar(23)}$

3. Lone pair energy

Equation (8) is used to determine the number of lone pairs around an atom. Δ_{i}^{e} is determined in Equation (7) and describes the difference between the total number of outer shell electrons (6 for oxygen, 4 for silicon, 1 for hydrogen) and the sum of bond orders around an atomic center.
$\Delta_{i}^{e}=-V a l_{i}^{e}+\sum_{j=1}^{\text {neighbours }(i)} B O_{i j}$
$n_{l p, i}=-\operatorname{int}\left(\frac{\Delta_{i}^{e}}{2}\right)+\exp \left[-p_{l p 1} \cdot\left(2+\Delta_{i}^{e}-2 \cdot \operatorname{int}\left\{\frac{\Delta_{i}^{e}}{2}\right\}\right)^{2}\right]$
Implementation: file RxfBondsModule.f90, subroutine: vlpFunc \& CalcValenceAngles in RxfValAngModule.f9 0 ;

Formulas	Code
Δ_{i}^{e}	delta_e [in vlpFunc] = exlpl = atoms\%abo(:) - stlp(atoms\%iatype(:))
$V a l_{i}^{e}$	stlp (:) = ratomparam (8)
$B O_{i j}$	boa = bonds\%bo(:) - bocutof f; bocutoff = config\%bondOrderCutoff
$p_{l p 1}$	vpar (16)
$n_{l p, i}$	vlp, - in vlpFunc;

For oxygen with normal coordination (total bond order $=2, \Delta_{i}^{e}=4$), Equation (8) leads to 2 lone pairs. As
the total bond order associated with a particular O starts to exceed 2, Equation (8) causes a lone pair to gradually break up, causing a deviation $\Delta_{i}^{l p}$, defined in Equation (9), from the optimal number of lone pairs $n_{l p, o p t}$ (e.g. 2 for oxygen, 0 for silicon and hydrogen).
$\Delta_{i}^{l p}=n_{l p, o p t}-n_{l p, i}$
$n_{l p, o p t}=\frac{1}{2} \cdot\left(V a l_{i}^{e}-V a l_{i}\right)$

This is accompanied by an energy penalty, as calculated by equation (10).
$E_{l p}=\frac{p_{l p 2} \cdot \Delta_{i}^{l p}}{1+\exp \left(-75 \cdot \Delta_{i}^{l p}\right)}$
Implementation: file RxfBondsModule.f90, subroutine: preCompute, lonpa r;

Formulas	Code
$E_{l p}$	elph
$\Delta_{i}^{l p}$	deltaLP(i) - in preCompute, deltaLP - in lonpar
$p_{l p 2}$	vlp1(:) = ratomparam(18)
$n_{l p, i}$	$\mathrm{vlp},-\mathrm{number}$ of lone pairs; for heavier elements amas (:) = ratomparam (3) $>21,=n_{l p, o p t}$
$n_{l p, o p t}$	nlpopt $=0.5$ (${ }^{\text {atoms\%stlpc }}$ (:) - atoms\%avalc(:)) ;
$V a l_{i}^{e}$	stlpc(i) = gRxFFld\%stlp(i) = ratomparam(8), - number of valence electrons
$V a l_{i}$	avalc(i) = gRxFFld\%aval(i) = ratomparam(2), - valence

4. Overcoordination

For an overcoordinated atom ($\Delta_{i}>0$), Equations (11a-b) impose an energy penalty on the system. The degree of overcoordination Δ is decreased if the atom contains a broken-up lone electron pair. This is done by calculating a corrected overcoordination (equation 11b), taking the deviation from the optimal number of lone pairs, as calculated in Equation (9), into account.
$E_{\text {over }, i}=\frac{\sum_{j=1}^{\text {nbond }} p_{\text {ovun } 1} \cdot D_{e}^{\sigma} \cdot B O_{i j}}{\Delta_{i}^{\text {poorr }}+\text { Val }_{i}} \cdot \Delta_{i}^{\text {lporrr }} \cdot\left[\frac{1}{1+\exp \left(p_{\text {ovun } 2} \cdot \Delta_{i}^{\text {lporr }}\right)}\right]$
$\Delta_{i}^{L_{\text {poorr }}}=\Delta_{i}-\frac{\Delta_{i}^{l_{p}}}{1+p_{\text {ovun } 3} \cdot \exp \left(p_{\text {ovun } 4} \cdot\left\{\sum_{j=1}^{\text {neighbours }(i)}\left(\Delta_{j}-\Delta_{j}^{l p}\right) \cdot\left(B O_{i j}^{\pi}+B O_{i j}^{\pi \pi}\right)\right\}\right)}$

Implementation: file RxfBondsModule.f90, subroutine: ovco r;

Formulas	Code
$E_{\text {over }}$	Eover
$\Delta_{j}^{l p}$	deltaLP(j) = nlpopt - nlp-mentioned befor e; compare
Δ_{j}	deltaXel(j) = delta = atoms\%abo(:) - atoms\%avalc(:) - mentioned befor e; compar e;
$\Delta_{i}^{\text {lpcorr }}$	deltaLPcor
$p_{\text {ovun } 1}$	vover(:) = rbondparam(8)
$p_{\text {ovun } 2}$	vovun(:) = ratomparam(25)
$p_{\text {ovun } 3}$	vpar(33)
$p_{\text {ovun } 4}$	vpar(32)
D_{e}^{σ}	de1(:) = rbondparam(1)
$V a l_{i}$	```avalc(i) = gRxFFld%aval(i) = ratomparam(2), avalc(:) = avalc(:) + helec(:)*eshare, eshare = exp(-vpar(37) * nvlr(:)^2)```

5. Undercoordination

For an undercoordinated atom ($\Delta_{i}<0$), we want to take into account the energy contribution for the resonance of the p-electron between attached under-coordinated atomic centers. This is done by Equations (12) where $E_{\text {under }}$ is only important if the bonds between under-coordinated atom i and its undercoordinated neighbors j partly have π-bond character.
$E_{\text {under }}=-p_{\text {ovun } 5} \cdot \frac{1-\exp \left(p_{\text {ovun } 6} \cdot \Delta_{i}^{l \text { pcor }}\right)}{1+\exp \left(-p_{\text {ovun } 2} \cdot \Delta_{i}^{\text {lpcor }}\right)}$.
$\overline{1+p_{\text {ovun } 7} \cdot \exp \left[p_{\text {ovun } 8} \cdot\left\{\sum_{j=1}^{\text {neighbours }(i)}\left(\Delta_{j}-\Delta_{j}^{l p}\right) \cdot\left(B O_{i j}^{\pi}+B O_{i j}^{\pi \pi}\right)\right\}\right]}$
Implementation: file RxfBondsModule.f90, subroutine: ovco r;

Formulas	Code
$E_{\text {under }}$	Eunder
$\Delta_{j}^{\text {lp }}, \Delta_{j}, \Delta_{i}^{\text {lpcorr }}$	the same as in previous section
$p_{\text {ovun } 2}$	vovun $=$ ratomparam (25)
$p_{\text {ovun } 5}$	$\operatorname{valp1}=$ ratomparam (12)
$p_{\text {ovun } 6}$	$\operatorname{vpar(7)}$
$p_{\text {ovun } 7}$	$\operatorname{vpar(9)}$
$p_{\text {ovun } 8}$	$\operatorname{vpar(10)}$

6. Valence Angle Terms

6.1 Angle energy.

Just as for bond terms, it is important that the energy contribution from valence angle terms goes to zero as the bond orders in the valence angle goes to zero. Equations (13a-g) are used to calculate the valence
angle energy contribution. The equilibrium angle Θ_{o} for $\Theta_{i j k}$ depends on the sum of p-bond orders (SBO) around the central atom j as described in Equation (13d). Thus, the equilibrium angle changes from around 109.47 for $s p^{3}$ hybridization ($\pi-$ bond $=0$) to 120 for $s p^{2}(\pi$-bond=1) to 180 for $\mathrm{sp}(\pi$-bond=2) based on the geometry of the central atom j and its neighbors. In addition to including the effects of π-bonds on the central atom j, Equation (13d) also takes into account the effects of over- and under-coordination in central atom j , as determined by Equation (13e), on the equilibrium valency angle, including the influence of a lone electron pair. $V a l^{\text {angle }}$ is the valency of the atom used in the valency and torsion angle evaluation. Val angle is the same as $V_{a l}{ }^{b o c}$ used in equation (3c) for non-metals. The functional form of Equation (13f) is designed to avoid singularities when $S B O=0$ and $S B O=2$.

- The angles in Equations (13a-g) are in radians.
- Remark: Equation (13a) has several forms, depending on the sign of $p_{v a l 1 \text {. For }} p_{v a l}<0$ the angular function is inverted to avoid linear Me-H-Me angle. Metal distance is large (>2 Angstrom) => H-atom can come in between the Me atoms, making $2 \mathrm{H}-\mathrm{Me}$ bonds, without breaking the $\mathrm{Me}-\mathrm{Me}$ bond. Inverted angular function gives maximum repulsion at 0 degrees and than tapers off exponentially, not affecting a normal, off-center bridging.

$$
\begin{align*}
& E_{v a l}= \begin{cases}f_{7}\left(B O_{i j}\right) \cdot f_{7}\left(B O_{j k}\right) \cdot f_{8}\left(\Delta_{j}\right) \cdot\left\{p_{v a l 1}-p_{v a l 1} \exp \left[-p_{v a l 2}\left(\Theta_{o}(B O)-\Theta_{i j k}\right)^{2}\right]\right\}, & \text { if } p_{v a l 1} \geqslant 0 \\
f_{7}\left(B O_{i j}\right) \cdot f_{7}\left(B O_{j k}\right) \cdot f_{8}\left(\Delta_{j}\right) \cdot\left\{-p_{v a l 1} \exp \left[-p_{v a l 2}\left(\Theta_{o}(B O)-\Theta_{i j k}\right)^{2}\right]\right\}, & \text { if } p_{\text {val } 1}<0\end{cases} \tag{13a}\\
& f_{7}\left(B O_{i j}\right)=1-\exp \left(-p_{v a l 3} \cdot B O_{i j}^{p_{v a l 4}}\right) \tag{13b}\\
& f_{8}\left(\Delta_{j}\right)=p_{\text {val } 5}-\left(p_{\text {val5 }}-1\right) \cdot \frac{2+\exp \left(p_{\text {val } 6} \cdot \Delta_{j}^{\text {angle }}\right)}{1+\exp \left(p_{\text {val } 6} \cdot \Delta_{j}^{\text {angle }}\right)+\exp \left(-p_{\text {val } 7} \cdot \Delta_{j}^{\text {angle }}\right)} \\
& \text { SBO }=\sum_{n=1}^{\text {neighbors }(j)}\left(B O_{j n}^{\pi}+B O_{j n}^{\pi \pi}\right)+\left[1-\prod_{n=1}^{\text {neighbours }(j)} \exp \left(-B O_{j n}^{8}\right)\right] \cdot\left(-\Delta_{j}^{\text {angle }}-p_{\text {val8 }} \cdot n_{l p, j}\right) \tag{13d}\\
& \Delta_{j}^{\text {angle }}=-V a l_{j}^{\text {angle }}+\sum_{n=1}^{\text {neighbours }(j)} B O_{j n} \tag{13e}\\
& S B O 2= \begin{cases}0, & \text { if } S B O \leqslant 0 \\
S B O^{p_{\text {val9 }}}, & \text { if } 0<S B O<1 \\
2-(2-S B O)^{p_{\text {val9 }},}, & \text { if } 1<S B O<2 \\
2, & \text { if } S B O>2\end{cases} \tag{13f}
\end{align*}
$$

Implementation: file RxfValAngModule.f90, subroutine: CalcValenceAngle s;

Formulas	Code
$E_{v a l}$	epenh
$B O_{i j}, B O_{j k}$	boa = bonds\%bo(:) - bocutoff, bo b; bocutoff = config\%bondOrderCutoff
$f_{7}\left(B O_{i j}\right), f_{7}\left(B O_{j k}\right)$	exa2, exb2
$f_{8}\left(\Delta_{j}\right)$	evboadj2
Δ_{j}	ovb = atoms\%abo(:) - aval(atoms\%iatype(:)), aval = ratomparam(2)
$\Delta_{j}^{a n g l e}$	exbo = atoms\%abo(:) - gRxFFld\%valf(:)
	0 , if $\operatorname{vpar}(38) \quad!=0$ for non-C-C-C angles
$\text { Val }{ }_{j}^{\text {angle }}$	valf = ratomparam (11)
$n_{l p, j}$	vlpadj
$p_{\text {val } 1}$	vka = rvalangparam (2)
$p_{\text {val2 }}$	vka3 = rvalangparam(3)
$p_{\text {val3 }}$	vval1 = ratomparam(26)
$p_{v a l} 4$	vval2 = rvalangparam(7)
$p_{\text {val } 5}$	vval4 = ratomparam(29)
$p_{\text {val } 6}$	vpar(15)
$p_{\text {val7 }}$	vkac = rvalangparam (5)
$p_{\text {val8 }}$	vpar(34)
$p_{\text {val9 }}$	vpar(17)
$p_{\text {val } 10}$	vpar(18)
$\Theta_{0}(B O)$	thetao
$\Theta_{0,0}$	th0(jkl) = rvalangparam(jkl, 1)
$\Theta_{j k l}$	hl , most likely calculated based on geometries

6.2 Penalty energy.

To reproduce the stability of systems with two double bonds sharing an atom in a valency angle, like allene, an additional energy penalty, as described in Equations (14a-b), is imposed for such systems. Equation (14b) deals with the effects of over/undercoordination in central atom j on the penalty energy.
$E_{p e n}=p_{p e n 1} \cdot f_{9}\left(\Delta_{j}\right) \cdot \exp \left[-p_{p e n 2} \cdot\left(B O_{i j}-2\right)^{2}\right] \cdot \exp \left[-p_{p e n 2} \cdot\left(B O_{j k}-2\right)^{2}\right]$
$f_{9}\left(\Delta_{j}\right)=\frac{2+\exp \left(-p_{\text {pen } 3} \cdot \Delta_{j}\right)}{1+\exp \left(-p_{\text {pen } 3} \cdot \Delta_{j}\right)+\exp \left(p_{\text {pen } 4} \cdot \Delta_{j}\right)}$
Implementation: file RxfValAngModule.f90, subroutine: CalcValenceAngle s;

Formulas	Code
$E_{\text {pen }}$	epenh
$f_{9}\left(\Delta_{j}\right)$	ecsboardj
Δ_{j}	ovb = atoms\%abo(:) - aval(atoms\%iatype(:)), aval = ratomparam(2)
$B O_{i j}, B O_{j k}$	boa = bonds\%bo(:) - bocutoff, bo b; bocutoff = config\%bondOrderCutoff
$p_{\text {pen } 1}$	vkap = rvalangparam(6)
$p_{\text {pen } 2}$	vpar(20)
$p_{\text {pen } 3}$	$\operatorname{vpar(21)}$
$p_{\text {pen } 4}$	$\operatorname{vpar(22)}$

6.3 Three-body conjugation term.

The hydrocarbon ReaxFF potential contained only a four-body conjugation term (see section 7.2), which was sufficient to describe most conjugated hydrocarbon systems. However, this term failed to describe the stability obtained from conjugation by the NO_{2}-group. To describe the stability of such groups a three-body conjugation term is included (Equation (15)).

$$
\begin{align*}
E_{c o a}= & p_{c o a 1} \cdot \frac{1}{1+\exp \left(p_{c o a 2} \cdot \Delta_{j}^{\text {val }}\right)} \cdot \exp \left[-p_{c o a 3} \cdot\left(-B O_{i j}+\sum_{n=1}^{\text {neighbours }(i)} B O_{i n}\right)^{2}\right] . \\
& \cdot \exp \left[-p_{c o a 3} \cdot\left(-B O_{j k}+\sum_{n=1}^{\text {neighbours }(i)} B O_{k n}\right)^{2}\right] . \tag{15}\\
& \cdot \exp \left[-p_{c o a 4} \cdot\left(B O_{i j}-1.5\right)^{2}\right] \cdot \exp \left[-p_{c o a 4} \cdot\left(B O_{j k}-1.5\right)^{2}\right]
\end{align*}
$$

Implementation: file RxfValAngModule.f90, subroutine: CalcValenceAngle s;

Formulas	Code
$E_{c o a}$	ecoah
$B O_{i j}, B O_{j k}$	boa = bonds\%bo(:) - bocutoff, bo b; bocutoff = config\%bondOrderCutoff
$p_{\text {coal }}$	vka8(:) = rvalangparam(:,4)
$p_{\text {coa } 2}$	- vpar(3)
$p_{\text {coa3 }}$	vpar(39)
$p_{\text {coa4 }}$	vpar(31)
$\Delta_{j}^{\text {val }}$	ovb = atoms\%abo(:) - vval3(atoms\%iatype(:)),vval3 = ratomparam(27)

7. Torsion angle terms

7.1 Torsion rotation barriers.

Just as with angle terms we need to ensure that dependence of the energy of torsion angle $w_{i j k l}$ accounts properly for $B O \rightarrow 0$ and for BO greater than 1. This is done by Equations (16a)-(16c).
$E_{\text {tors }}=f_{10}\left(B O_{i j}, B O_{j k}, B O_{k l}\right) \cdot h_{s i n}\left(\Theta_{i j k}, \Theta_{j k l}\right)$
$:\left[\frac{1}{2} V_{1} \cdot\left(1+\cos \omega_{i j k l}\right)+V_{2} \cdot \exp \left\{p_{\text {tor } 1} \cdot\left[1-\left(B O_{j k}^{\pi}-1+f_{11}\left(\Delta_{j}, \Delta_{k}\right)\right)\right]^{2}\right\} \cdot\left(1-\cos 2 \omega_{i j k l}\right)+V_{3} \cdot\left(1+\cos 3 \omega_{i j k l}\right)\right]$

$f_{11}\left(\Delta_{j}, \Delta_{k}\right)=\frac{2+\exp \left[-p_{\text {tor } 3} \cdot\left(\Delta_{j}^{\text {angle }}+\Delta_{k}^{\text {angle }}\right)\right]}{1+\exp \left[-p_{\text {tor } 3} \cdot\left(\Delta_{j}^{\text {angle }}+\Delta_{k}^{\text {angle }}\right)\right]+\exp \left[p_{\text {tor } 4} \cdot\left(\Delta_{j}^{\text {angle }}+\Delta_{k}^{\text {angle }}\right)\right]}$
$h_{s i n}\left(\Theta_{i j k}, \Theta_{j k l}\right)= \begin{cases}\left(\sin \Theta_{i j k} \cdot \sin \Theta_{j k l}\right)^{3}, & \text { if tors19 } \\ \sin \Theta_{i j k} \cdot \sin \Theta_{j k l}, & \text { otherwise }\end{cases}$

Implementation: file RxfTorsionModule.f90, subroutine: CalcTorsionAngle s;

Formulas	Code
$E_{\text {tors }}$	eth
$f_{10}\left(B O_{i j}, B O_{j k}, B O_{k l}\right)$	bocor4
$f_{11}\left(\Delta_{j}, \Delta_{k}\right)$	etboadj
$B O_{i j}, B O_{j k}, B O_{k l}$	boa = bonds\%bo(:) - bocutoff, bob, boc; bocutoff = config\%bondOrderCutoff
$B O_{j k}^{\pi}$	bopi(:)
$p_{\text {tor } 1}$	v4(:) = rtorangparam(:,4)
$p_{\text {tor } 2}$	vpar(24)
$p_{\text {tor } 3}$	vpar(25)
$p_{\text {tor } 4}$	vpar(26)
V_{1}	v1 = rtorangparam(1)
V_{2}	v2 = rtorangparam(2)
V_{3}	v3 = rtorangparam(3)
$\omega_{i j k l}$	th
$\sin ^{2}\left(\omega_{i j k l}\right)$	sinth2
$\Theta_{i j k}, \Theta_{j k l}$	ht1, ht2
$\sin \left(\Theta_{i j k}\right), \sin \left(\Theta_{j k l}\right)$	sinhd $=\sin (\mathrm{ht} 1)$, sinhe $=\sin (\mathrm{ht2})$
$h_{s i n}\left(\Theta_{i j k}, \Theta_{j k l}\right)$	hsin
$\Delta_{j}^{\text {angle }}, \Delta_{k}^{\text {angle }}$	exbol = abo(:) - valf(iatype(:)), exbo2; valf = ratomparam(11)
$\Delta_{j}^{\text {angle }}+\Delta_{k}^{\text {angle }}$	htovt

version is set in the control file.
According to the old / original document in Equation (16a) were made few changes:

- 1) instead of the term: $\left[1-\left(B O_{j k}^{\pi}-1+f_{11}\left(\Delta_{j}, \Delta_{k}\right)\right)\right]=\left(2-B O_{j k}^{\pi}-f_{11}\left(\Delta_{j}, \Delta_{k}\right)\right)$ was used $\left(B O_{j k}^{\pi}-1+f_{11}\left(\Delta_{j}, \Delta_{k}\right)\right) ;$
-2) part of the sum was missing: $\frac{1}{2} V_{1} \cdot\left(1+\cos \omega_{i j k l}\right)$.
- 3) there was constant $\frac{1}{2}$ in front of $V 2$ and $V 3$. It no longer corresponds to current implementation.

7.2 Four body conjugation term.

Equations (17a-b) describe the contribution of conjugation effects to the molecular energy. A maximum contribution of conjugation energy is obtained when successive bonds have bond order values of 1.5 as in benzene and other aromatics.

$$
\begin{align*}
& E_{c o n j}=f_{12}\left(B O_{i j}, B O_{j k}, B O_{k l} \cdot p_{\cot 1} \cdot\left[1+\left(\cos ^{2} \omega_{i j k l}-1\right) \cdot \sin \Theta_{i j k} \cdot \sin \Theta_{j k l}\right]\right. \tag{17a}\\
& f_{12}\left(B O_{i j}, B O_{j k}, B O_{k l}\right)= \begin{cases}{\left[\sin \left(B O_{i j} \cdot \frac{\pi}{3}\right) \cdot \sin \left(B O_{j k} \cdot \frac{\pi}{3}\right) \cdot \sin \left(B O_{k l} \cdot \frac{\pi}{3}\right)\right]^{4},} & \text { if tors13 } \\
\exp \left[-p_{\cot 2} \cdot\left(B O_{i j}-1 \frac{1}{2}\right)^{2}\right] \cdot \exp \left[-p_{\cot 2} \cdot\left(B O_{j k}-1 \frac{1}{2}\right)^{2}\right] \cdot \exp \left[-p_{\cot 2} \cdot\left(B O_{k l}-1 \frac{1}{2}\right)^{2}\right], & \text { otherwise }\end{cases} \tag{17b}
\end{align*}
$$

Implementation: file RxfTorsionModule.f90, subroutine: CalcTorsionAngle s;

Formulas	Code
$E_{\text {conj }}$	ecoh
$f_{12}\left(B O_{i j}, B O_{j k}, B O_{k l}\right)$	sbo = sbo(boa, bob, boc)
$B O_{i j}, B O_{j k}, B O_{k l}$	boa = bonds\%bo(:) - bocutoff, bob, bo c; bocutoff = config\%bondOrderCutoff
$p_{\text {cot } 1}$	$\operatorname{vconj}(:)=$ rtorangparam (: ,5)
$p_{\cot 2}$	$\operatorname{vpar(28)}$
$\omega_{i j k l}$	th
$\sin ^{2}\left(\omega_{i j k l}\right)$	sinth2
$\Theta_{i j k}, \Theta_{j k l}$	ht1, ht2
$\sin \left(\Theta_{i j k)}, \sin \left(\Theta_{j u l}\right)\right.$	$\operatorname{sinhd}=\sin (\mathrm{ht1}), \operatorname{sinhe}=\sin (\mathrm{ht2})$

config - refers to control file.

8. Hydrogen bond interactions

Equation (18) described the bond-order dependent hydrogen bond term for a $\mathrm{X}-\mathrm{H}--\mathrm{Z}$ system as incorporated in ReaxFF.
$E_{H b o n d}=p_{h b 1} \cdot\left[1-\exp \left(p_{h b 2} \cdot B O_{X H}\right)\right] \cdot \exp \left[p_{h b 3}\left(\frac{r_{h b}^{o}}{r_{H Z}}+\frac{r_{H Z}}{r_{h b}^{o}}-2\right)\right] \cdot \sin ^{4}\left(\frac{\Theta_{X H Z}}{2}\right)$
Implementation: file RxfHBondModule.f90, subroutine CalcHBonds;

Formulas	Code	Code
$E_{\text {Hbond }}$	ehbh	
$p_{h b 1}$	dehb(:)	rhbondparam(:,2)
$p_{h b 2}$	- vhb1(:)	- rhbondparam(:,3)
$p_{\text {hb3 }}$	- vhb2(:)	- rhbondparam(:,4)
$B O_{X H}$	boa	bonds\%bo(:)
$r_{H Z}$	distance, calculated from coordinates	
$r_{h b}^{o}$	rhb (:)	rhbondparam(: ,1)
$\frac{r_{h b}^{o}}{r_{H Z}}$	rhu1	
$\Theta_{X H Z}$	hhb	

Originally in 2008 formula (18) contained $\sin ^{8}\left(\frac{\Theta_{X H Z}}{2}\right)$ instead of $\sin ^{4}\left(\frac{\Theta_{X H Z}}{2}\right)$. This was changed after the development of water-branch force fields.

9. Correction for C_{2}

ReaxFF erroneously predicts that two carbons in the C_{2}-molecule form a very strong (triple) bond, while in fact the triple bond would get de-stabilized by terminal radical electrons, and for that reason the carboncarbon bond is not any stronger than a double bond. To capture the stability of C_{2} we introduced a new partial energy contribution $\left(E_{C 2}\right)$. Equation (19) shows the potential function used to de-stabilize the C_{2} molecule:
$E_{C 2}= \begin{cases}k_{c 2} \cdot\left(B O_{i j}-\Delta_{i}-0.04 \cdot \Delta_{i}^{4}-3\right)^{2}, & \text { if } B O_{i j}-\Delta_{i}-0.04 \cdot \Delta_{i}^{4}>3 \\ 0, & \text { if } B O_{i j}-\Delta_{i}-0.04 \cdot \Delta_{i}^{4} \leqslant 3\end{cases}$
where Δ_{i} is the level of under/overcoordination on atom i as obtained from subtracting the valency of the atom (4 for carbon) from the sum of the bond orders around that atom and $k_{c 2}$ - the force field parameter associated with this partial energy contribution.

Implementation: file RxfBondsModule.f90, subroutine lonpa r;

Formulas	Code
$E_{C 2}$	elph
$k_{c 2}$	$\operatorname{vpar}(6)$

Extra condition: abs(vpar(6)) >0.001

10. Triple bond energy correction.

To describe the triple bond in carbon monoxide a triple bond stabilization energy is used, making CO both stable and inert. This energy term only affects C-O bonded pairs. Equation (20) shows the energy function used to describe the triple bond stabilization energy. Extra condition to turn on tripleBondOption is:
$\operatorname{vpar}(40)=1$

$$
\begin{align*}
& E_{\text {trip }}=p_{\text {trip } 1} \cdot \exp \left[-p_{\text {trip } 2}\left(B O_{i j}-2.5\right)^{2}\right] \text {. } \\
& \cdot \frac{\exp \left[-p_{\text {trip } 4} \cdot\left(\sum_{k=1}^{\text {neighbours }(i)} B O_{i k}-B O_{i j}\right)\right]+\exp \left[-p_{\text {trip } 4} \cdot\left(\sum_{k=1}^{\text {neighbours }(i)} B O_{j k}-B O_{i j}\right)\right]}{1+25 \cdot \exp \left[p_{\text {trip } 3} \cdot\left(\Delta_{i}+\Delta_{j}\right)\right]} \tag{20}
\end{align*}
$$

Implementation: file RxfBondsModule.f90, subroutine CalcCovalentBonds;

Formulas	Code
$E_{\text {trip }}$	estriph
$p_{\text {trip } 1}$	vpar(11)
$p_{\text {trip } 2}$	vpar(8)
$p_{\text {trip } 3}$	vpar(5)
$p_{\text {trip } 4}$	vpar(4)

11. Nonbonded interactions

In addition to valence interactions, which model the interactions between overlapping orbitals, there are non-covalent interactions:

1. Repulsion at short interatomic distances due to the Pauli principle. (Strictly speaking, this is also due to the interaction of overlapping orbitals, yet without transferring electrons from an anti-bonding to bonding orbital.)
2. Long-range attraction energies due to dispersion.
3. Electrostatic and polarization interactions.

The first two effects are described by a van der Waals potential in ReaxFF, while the last point is described with a fluctuating charge model.

The non-covalent interactions are included between all atom pairs, thus avoiding discontinuities in the energy when bonds are broken or formed. Instead, the repulsive short-range interaction is smoothly switched off when bonds are formed.

11.1 Taper correction

Nonbonded interactions are only computed when the distance between two particles is below the nonbonded cutoff radius, $R_{c u t}$. To avoid energy discontinuities when particles move in and out of the nonbonded cutoff radius, ReaxFF employs a Taper correction, as developed by de Vos Burchart (1995). Each nonbonded energy and derivative is multiplied by a Taper-term, which is taken from a distance-dependent $7^{\text {th }}$ order polynomial (equation 20).

$$
\begin{cases}\operatorname{Tap}_{7} \cdot r_{i j}^{7}+\text { Tap }_{6} \cdot r_{i j}^{6}+\text { Tap }_{5} \cdot r_{i j}^{5}+\text { Tap }_{4} \cdot r_{i j}^{4}+\text { Tap }_{3} \cdot r_{i j}^{3}+\text { Tap }_{2} \cdot r_{i j}^{2}+\text { Tap }_{1} \cdot r_{i j}+\text { Tap } & \text { when } r_{i j}<R_{\text {cut }} \tag{21}\\ 0 & \text { when } r_{i j} \geq R_{c u t}\end{cases}
$$

The terms in this polynomal are chosen to ensure that all $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ derivatives of the nonbonded interactions to the distance are continuous and go to zero at the cutoff boundary. To that end, the terms $T a p_{0}$ to $T a p_{7}$ in equation (20) are calculated by the scheme in equation (21):

Variable	Code	Formula
$\operatorname{Tap}\left(r_{i j}\right)$	gTaper\%sw	
Tap_{7}	swc7	$20 / D^{7}$
Tap $_{6}$	swc6	$-70 \cdot(s w a+s w b) / D^{7}$
Tap $_{5}$	swc5	$84 \cdot\left(s w a^{2}+3 \cdot s w a \cdot s w b+s w b^{2}\right) / D^{7}$
Tap_{4}	swc4	$-35 \cdot\left(s w a^{3}+9 \cdot s w a^{2} \cdot s w b+9 \cdot s w a \cdot s w b^{2}+s w b^{3}\right) / D^{7}$
Tap_{3}	swc3	$140 \cdot\left(s w a^{3} \cdot s w b+3 \cdot s w a^{2} \cdot s w b^{2}+s w a \cdot s w b^{3}\right) / D^{7}$
Tap_{2}	swc2	$-210 \cdot\left(s w a^{3} \cdot s w b^{2}+s w a^{2} \cdot s w b^{3}\right) / D^{7}$
Tap ${ }_{1}$	swc1	$140 \cdot s w a^{3} \cdot s w b^{3} / D^{7}$
Tap_{0}	swc0	$\left(-35 \cdot s w a^{3} \cdot s w b^{4}+21 \cdot s w a^{2} \cdot s w b^{5}+7 \cdot s w a \cdot s w b^{6}+s w b^{7}\right) / D^{7}$
swa	vpar(12)	
swb	vpar(13)	$R_{\text {cut }}$
D	D	$s w b-s w a$

File: Taper.f90

11.2 van der Waals interactions

There are several types of van der Waals interaction [nonbontype], depending on the presence of Inner Wall or Shielding:

```
    Inner wall, shielding
    Inner wall, no shielding
No inner wall, shielding
No inner wall, no shielding
```

This conditions are switched on or off based on the following criteria:

```
IInner Wall: ratomparam(30)>0.01 .and. ratomparam(32)>0.01
'Shielding: ratomparam(10)>0.5
```

Van der Waals interactions are modeled with a distance-corrected Morse-potential (Eq.23a-b). By including a shielded interaction (Eq.23b) excessively high repulsions between bonded atoms (1-2 interactions) and atoms sharing a valence angle (1-3 interactions) are avoided. Alternatively, without shielding (23b) is not used and in (23a) instead of $f_{13}\left(r_{i j}\right)$ used $r_{i j}$-distance between 2 atoms.
$E_{v d W a a l s}=\operatorname{Tap}\left(r_{i j}\right) \cdot D_{i j} \cdot\left\{\exp \left[\alpha_{i j} \cdot\left(1-\frac{f_{13}\left(r_{i j}\right)}{r_{v d W}}\right)\right]-2 \cdot \exp \left[\frac{1}{2} \cdot \alpha_{i j} \cdot\left(1-\frac{f_{13}\left(r_{i j}\right)}{r_{v d W}}\right)\right]\right\}$
$\begin{cases}{\left[r_{i j}^{p_{v d W 1}}+\left(\frac{1}{\gamma_{w}}\right)^{p_{v d W 1}}\right]^{\frac{1}{p_{v d W 1}}}} & , \text { shielding } \\ r_{i j} & , \text { no shielding }\end{cases}$

Corresponding parameters [files: RxfNonbond.f90, vvNonBon.fh]:

Formula	Code	Definition	Condition
$D_{i j}$	p2co(i, j)	roffdiagparam(i, ${ }^{\text {, 1 }}$)	if defined
		sqrt(ratomparam(i,5) •ratomparam(j,5))	otherwise
$\alpha_{i j}$	p3co(i, j)	roffdiagparam(i,j,3)	if defined
		sqrt (ratomparam(i,9) • ratomparam(j, 9))	otherwise
$r_{v d W}$	p1co(i,j)	roffdiagparam(i,j,2)	if defined
		$\operatorname{sqrt}($ ratomparam(i,4) $\cdot \operatorname{ratomparam}(\mathrm{j}, 4)$)	otherwise
$p_{v d W 1}$	vpar (29)		
γ_{w}		ratomparam(i,10) . ratomparam(j,10)	
$\left(\frac{1}{\gamma_{w}}\right)^{p_{v d W 1}}$	gamwco(i,j)		
$\operatorname{Tap}\left(r_{i j}\right)$		taper correction	
$r_{i j}$		distance between 2 atoms: i and j	

In case inner wall is present, next energy term is added to $E_{v d W a a l s}$ and thus to total Energy:
$E_{\text {coreh }}=p c 2 \cdot \exp \left(p c 3 \cdot\left(1-\frac{r_{i j}}{p c 1}\right)\right) \quad(23 c)$

Formula	Code	Definition
$p c 1$	$\operatorname{rcore}(\mathrm{i}, \mathrm{j})$	$\operatorname{sqrt}(\operatorname{ratomparam}(\mathrm{i}, \mathbf{3 0}) \cdot \operatorname{ratomparam}(\mathrm{j}, \mathbf{3 0}))$
$p c 2$	$\operatorname{ecore}(\mathrm{i}, \mathrm{j})$	$\operatorname{sqrt}(\operatorname{ratomparam}(\mathrm{i}, 31) \cdot \operatorname{ratomparam}(\mathrm{j}, \mathbf{3 1}))$
$p c 3$	$\operatorname{acore}(\mathrm{i}, \mathrm{j})$	$\operatorname{sqrt}(\operatorname{ratomparam}(\mathrm{i}, \mathbf{3 2}) \cdot \operatorname{ratomparam}(\mathrm{j}, \mathbf{3 2}))$

11.3 lg - dispersion correction

The long-range correction was added [2] (http://pubs.acs.org/doi/abs/10.1021/jp201599t). The low-gradient model is used.
$E_{l g}=\sum_{i j, i<j}^{\text {natom }} \frac{C_{l g, i j}}{r_{i j}^{6}+d \cdot R_{e i j}^{6}}$

Formulas	Code
$E_{l g}$	eDisp
$C_{l g, i j}$	$\frac{2 \cdot C_{i} \cdot C_{j}}{C_{i}+C_{j}} \text {, if clgDispoffDiag(:, :) <-0.5 }$
	clgDispoffdiag(:,:)
clgDispoffdiag(:,:)	roffdiagparam($:, 7$) , if dispersionType =1
	-1, else
C_{i}	clgDispondiag(:)
d	scaling, scaling factor
$r_{i j}$	rr
$R_{e i j}$	vdWr, vdW Radii in the UFF

Subruotine: LgDispersionCorrection

11.4 Energy due to charges (includes Coulomb)

ReaxFF includes an energy term for fluctuating charges, which are re-optimized for every new geometry,
e.g. at every time step in a molecular dynamics simulation. ReaxFF can be used with two fluctuating charge modes: the electronegativity equalization method (EEM) and the atom-condensed Kohn-Sham DFT approximated to 2nd order (ACKS2), for which the equations will be specified in more detail below.

11.4.1 EEM

EEM was originally proposed by Mortier et al. in 1986 [3] (http://dx.doi.org/10.1021/ja00275a013). Another common name for this type of model is Charge Equilibration (QEq), a variant introduced by Rappe and Goddard, replacing the electrostatic point-charge interactions by those of 1s Slater-type densities. (A second modification in QEq is a third-order term for the self-energy of the hydrogen atoms, which is not used in ReaxFF.) [4] (http://dx.doi.org/10.1021/j100161a070) Later Njo et al proposed a simple analytic approximation for the interaction between 1s Slater-type densities [5] (http://dx.doi.org/10.1016/s1381-116 9(98)00024-7), which is used in ReaxFF.
$E_{E E M}=\min _{q_{i}: \sum q_{i}=q_{\mathrm{tot}}}\left[\sum_{i=1}^{\text {natom }} \chi_{i} q_{i}+\frac{1}{2} \sum_{i=1, j=1}^{\text {natom }} \eta_{i j} q_{i} q_{j}\right]$
The EEM energy contains the following ingredients:

Variables (implicit geometry dependence)	Unit	Code	Description
q_{i}	e	gRxfAt\%ch(i), gRxfAt\%chgold(i), gRxfAt\%chgold2(i)	Atomic charge
Quantitites with explicit geometry dependence	Unit	Code	Description
$\eta_{i j}=\operatorname{Tap}\left(r_{i j}\right) \frac{1}{4 \pi \epsilon_{0}} \frac{q_{i} \cdot q_{j}}{\left[r_{i j}^{3}+\left(\gamma_{i} \gamma_{j}\right)^{-3 / 2}\right]^{1 / 3}} \quad \forall i \neq j$	kcal mol ${ }^{-1}$	xmortr, xmortr1, xmortr2, xmortrr	Coulomb interaction between a pair of atoms, with shortrange damping
$\operatorname{Tap}\left(r_{i j}\right)$	1	Taper0()	Taper correction
$r_{i j}$	A	dis2, distance	Interatomic distance
Constant quantities	Unit	Code	Description
$q_{\text {tot }}$	e	config\%totalCharge	Total charge
χ_{i}	$e \mathrm{~V} \mathrm{e}^{-1}$	$\begin{aligned} & \text { ratomparam(i,14) } \\ & \text { gRxFFld\%chi(i) } \end{aligned}$	Intrinsic atomic electronegativity, negative of the intrinsic atomic chemical potential
$\eta_{i i} / 2=\eta_{i}$	$\mathrm{eV} \mathrm{e}^{-2}$	ratomparam(i,15), gRxFFld\%eta(i)	Atomic hardness, using the factor-two convention introduced by Parr and Pearson. [6] (http://dx.doi.org/1 0.1021/ja00364a005)
γ_{i}	\AA^{-1}	ratomparam(i,6), gRxFFld\%gam(i)	Atomic short-range damping constant for electrostatic interactions
$\left(\gamma_{i} \gamma_{j}\right)^{-3 / 2}$	\AA^{3}	gRxFFld\%gamcco(i, j)	Auxiliary variable to avoid recomputation
$\frac{1}{4 \pi \epsilon_{0}}$	$\underset{\AA}{\mathrm{kcal} \mathrm{~mol}}{ }^{-1} \mathrm{e}^{-2}$	(hard-wired in code, implicit in conversion between eV and kcal mol^{-1})	332.0638

The polarization catastrophe can be avoided, for any geometry, by imposing the following inequality constraint during the parameter calibration:
$\eta_{i i}>\frac{\gamma_{i}}{4 \pi \epsilon_{0}} \quad$ or $\quad \eta_{i}>\frac{\gamma_{i}}{8 \pi \epsilon_{0}}$
When this condition is satisfied for all pairs of atomic hardness and short-range damping parameters, the
hardness matrix, $\eta_{i j}$, is always positive definite.
Instead of constraining the total charge of the system, one may also divide the system into fragments and constrain the charge of each fragment to a fixed vaule. This will result in one Lagrange multiplier per fragment in the EEM equations instead of just one for the total charge.

11.4.2 ACKS2

The ACKS2 model is an extension of EEM with extra terms due to the Kohn-Sham kinetic energy: [7] (http:// dx.doi.org/10.1063/1.4791569)
$E_{A C K S 2}=\min _{q_{i}: \sum q_{i}=\sum q_{i}^{0}}\left[\sum_{i=1}^{\text {natom }} \chi_{i} q_{i}+\frac{1}{2} \sum_{i=1, j=1}^{\text {natom }} \eta_{i j} q_{i} q_{j}+\max _{u_{i}: \sum u_{i}=0}\left[\sum_{i=1}^{n \text { natom }} u_{i}\left(q_{i}-q_{i}^{0}\right)+\frac{1}{2} \sum_{i=1, j=1}^{\text {natom }} X_{i j} u_{i} u_{j}\right]\right]$

ACKS2 is a generalization of the SQE model. [8] (http://dx.doi.org/10.1103/physrevb.79.104303) and it fixes the following weaknesses of EEM:

- When molecular fragments dissociate, the net charge of the fragments becomes equal to the sum of the reference charges (of the atoms and other particles in the fragment). This can be used to force isolated fragments to bear an integer charge, whereas EEM allows for fractional charges in the dissociation limit.
- Materials can have a finite dielectric constant when using the ACKS2 model. EEM suffers from the socalled metallic polarizability scaling [9] (http://dx.doi.org/10.1063/1.2872603), which is unrelated to the polarization catastrophe. This artifact of EEM may lead to large amounts of charge-transfer between two phases in one simulation, which differ in intrinsic electronegativity. Another manifestation of the EEM artifact was observed in eReaxFF: explicit electron or hole particles are almost completely compensated by excessive charge flow. These artifacts are not present in ACKS2.
- The extra parameter (bond softness, inverse of bond hardness in SQE) has a sound physical interpretation: it is a condensed property of the non-interacting response kernel in Kohn-Sham DFT [10] (http://dx.doi.org/10.1063/1.4791569) and it is directly related to the dielectric constant. [11] (htt p://dx.doi.org/10.1103/physrevb.79.104303)

ACKS2 also imposes a few limitations:

- Atomic reference charges must be set. (In EEM, such reference charges can always be eliminated by a transformation of variables, not so in ACKS2 or SQE.)
- The set of equations to be solved is twice as large as those of EEM. However, the additional equations are more sparse.

The ACKS2 energy contains the following new ingredients (in addition to those already present in EEM as discussed above):

Variables (implicit geometry dependence)	Unit	Code	Description
u_{i}	V	gRxfAt\%effpot(i)	Change in atomic KohnSham (or effective) potential (relative to that of a isolated atom)
Quantitites with explicitly geometry dependence	Unit	Code	Description
$X_{i j}= \begin{cases}X_{\text {soft }}\left(\frac{2 r_{i j}}{C_{i}+C_{j}}\right)^{3}\left(1-\frac{2 r_{i j}}{C_{i}+C_{j}}\right)^{6} & \text { if } \quad r_{i j}<\left(C_{i}+C_{j}\right) / 2 \\ 0 & \text { otherwise }\end{cases}$	$\begin{aligned} & \mathrm{eV}^{-1} \& n b s \\ & \mathrm{p} ; \mathrm{e}^{2} \end{aligned}$	xmortr, xmortr1, xmortr2, xmortrr	Bond or atom-pair softness
$X_{i i}=-\sum_{j=1, j \neq i}^{\text {natom }} X_{i j}$	$\mathrm{eV}^{-1} \mathrm{e}^{2}$	xmortr, xmortr1, xmortr2, xmortrr	Sum rule imposed on the X matrix
Constant quantities	Unit	Code	Description
$q_{i}^{0}= \begin{cases}\text { Oxidation state, usually } 0 & \text { atom } \\ -1 & \text { electron } \\ +1 & \text { hole }\end{cases}$	e	vmcha(mol)/N(mol), where $\mathrm{N}(\mathrm{mol})$ is the number of atoms in the molecule	The reference charge of an atom or a particle.
C_{i}	A	gRxFFld\%softcut(i) $=$ ratomparam(i, 23)	Atomic softness cutoff parameter
$X_{\text {soft }}$	$\mathrm{eV}^{-1} \mathrm{e}^{2}$	vpar(35)	Universal softness parameter

The polarization catastrophe can be avoided, for any geometry, by imposing the following inequality during the parameterization (in addition to the requirements for EEM given above):
$X_{\text {soft }}>0$

This will guarantee that the X matrix is always negative semi-definite, which is the expected behavior for a response kernel.

Instead of constraining the total charge of the system, one may also divide the system into fragments and constrain the charge of each fragment to a fixed value. This can be done by zeroing all off-diagonal blocks of the X matrix that correspond to atom pairs in different fragments. This will force all fragments to bear a charge equal to the sum of the reference charges. This is now implemented differently, i.e. with additional Lagrange multipliers as in EEM, which is not the most efficient way.

11.4.3 Remark on the "Coulomb" and "Charge" energy

The "Coulomb" energy is a part of the EEM or ACKS2 energy. As with the van der Waals-interactions, Coulomb interactions are taken into account between all atom pairs:
$E_{\text {coulomb }}=\frac{1}{2} \sum_{i \neq j}^{\text {natom }} \eta_{i j}$

Note that no Ewald summation is implememted in ReaxFF, nor any of its more advanced alternatives such as SPME. Electrostatic interactions are truncated at the cutoff radius ($R_{c u t}$) using the Taper function, similarly to the Wolf summation. [12] (http://dx.doi.org/10.1063/1.478738) In periodic systems, the electrostatic interactions with atoms in periodic images are also taken into account, if they are within the cutoff. For small periodic systems, this may imply that Coulomb contributions are present to the diagonal terms of the Coulomb energy, i.e. between an atom and its own periodic image (not shown in equation). Such diagonal contributions contribute to the total energy and the virial tensor but not the forces.

The "Charge" energy in the ReaxFF output is the EEM or ACKS2 energy minus the Coulumb energy.

12. eReaxFF

Limited pseudo-classical explicit electron/holes degrees-of-freedom scheme, complementary to implicit treatment of electrons in the bonded interactions of ReaxFF The electron or hole is represented as an additional particle that carries a -1 (electron) or +1 (hole) charge:

- nuclei are treated as point charges
- electrons - Gaussian-type function $\psi=\exp \left(-a *\left(r-r^{\prime}\right)^{2}\right)$

Following energy terms are added to Equation (1), when eReaxFF is turned on. The pairwise electrostatic interaction between the electron and core-charge:

$$
\begin{aligned}
& E_{\text {nucl }(i)-\text { elec }(j)}=-\frac{Z_{i}}{4 \pi \epsilon_{0} R_{i j}} \beta_{i} \operatorname{erf}\left(\sqrt{\alpha_{i}} R_{i j}\right) \operatorname{Tap}\left(R_{i j}\right) \\
& E_{\text {elec }(i)-\text { hole }(i)-\text { elec }(j)}=\frac{1}{4 \pi \epsilon_{0} R_{i j}}\left(p_{\text {elho }} \cdot \operatorname{erf}\left(\sqrt{2 \sqrt{\alpha_{i} \alpha_{j}}} R_{i j}\right)-\beta_{i} \cdot \operatorname{erf}\left(\sqrt{2 \alpha_{i}} R_{i j}\right)-\beta_{j} \cdot \operatorname{erf}\left(\sqrt{2 \alpha_{j}} R_{i j}\right)\right) \operatorname{Tap}\left(R_{i j}\right) \\
& \beta_{e} \operatorname{erf}\left(\sqrt{\alpha_{e}} R_{i j}\right) \operatorname{Tap}\left(R_{i j}\right)
\end{aligned}
$$

Value	Code	Description
$E_{\text {nucl }(i)-\text { elec }(j)}$		the pairwise electrostatic interaction between the electron and core-charge
$\operatorname{erf} x=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t$	$\operatorname{DERF}(:)$	error function
$R_{i j}$		distance between electron and nucleus
Z_{i}		nuclear charge
α	ratomparam (24)	constants, dependent on atom type
β	ratomparam (27)	
$p_{\text {elho }}$	vpar(27)	electron-hole interaction
Tap $\left(R_{i j}, R_{\text {cut,e }}\right)$	$R_{\text {cut,e }}=$ vpar (41)	taper correction with a separate radius

Electron - electron interactions are treated through Coulomb and short-range Gaussian repulsion function. Exponential function is used to determine number of electrons in the host atom, thus electron can virtually split itself among its neighbouring atoms.

```
\(n_{e l, i j}=\exp \left(-p_{v a l} \cdot R_{i j}^{2}\right)\) - fraction of the \(j\)-th electron on the \(i\)-th atom
\(n_{e l, i}=\sum_{j=1}^{\text {electrons }} n_{e l, i j}\) number of electrons on the \(i\)-th atom
```

Value	Code	Description
$n_{e l, i j}$	eshare	fraction of the j-th electron on the i-th atom
$n_{e l, i}$		number of electrons on the i-th atom
$R_{i j}$	nvlr(:)	distance between the atom-center and the electron/hole
$p_{v a l}$	vpar(37)	general parameter in the force field

Changes in over- and under-coordination energy terms are minimal: $\Delta_{i}^{\text {xel }}$ is used instead of Δ_{i} in formulas (11a)-(11b) and (12).

$$
\begin{equation*}
\Delta_{i}^{\text {xel }}=\Delta_{i} \cdot \exp \left(-p_{i}^{\text {xel2 }} \cdot n_{e l, i} \cdot \frac{\sum_{j=1}^{\text {neighbours }(i)} B O_{i j} \cdot p_{i j}^{\text {xel }}}{\sum_{j=1}^{\text {neighbours }(i)} B O_{i j}}\right) \tag{27}
\end{equation*}
$$

Variable valency will be extended to the 3- and 4-body terms: valence angle and torsion energy expression.

Value	Code	Description
$\Delta_{i}^{\text {xel }}$	deltaXel	corrected degree of over-coordination
Δ_{i}	delta	degree of over-coordination
$p_{i j}^{x e l 1}$	rbondparam(16)	bond type parameter, for adjusting number of electrons available to host atom
$p_{i}^{x e l 2}$	ratomparam(13)	atom type parameter
$n_{e l, i}$	nel(i)	number of electrons on the i - th
$\sum_{j=1}^{\text {neighbours }(i)} B O_{i j} \cdot p_{i j}^{x e l 1}$	sumpB0(i)	sum of scaled bond orders of atom i
$\sum_{j=1}^{\text {neighbours }(i)} B O_{i j}$	abo(i)	sum of bond orders of atom i

