Source code for scm.plams.tools.geometry

import numpy as np

try:
    from scipy.spatial.distance import cdist

    scipy_present = True
except ImportError:
    scipy_present = False

from scm.plams.tools.units import Units

__all__ = [
    "rotation_matrix",
    "axis_rotation_matrix",
    "distance_array",
    "angle",
    "dihedral",
    "cell_shape",
    "cellvectors_from_shape",
]


[docs]def rotation_matrix(vec1, vec2): """ Calculate the rotation matrix rotating *vec1* to *vec2*. Vectors can be any containers with 3 numerical values. They don't need to be normalized. Returns 3x3 numpy array. """ vec1, vec2 = np.array(vec1), np.array(vec2) a = vec1 / np.linalg.norm(vec1) b = vec2 / np.linalg.norm(vec2) # avoid division by zero in case of antiparallel vectors if abs(1 + np.dot(a, b)) < 1e-8: return -np.eye(3) v1, v2, v3 = np.cross(a, b) M = np.array([[0, -v3, v2], [v3, 0, -v1], [-v2, v1, 0]]) return np.identity(3) + M + np.dot(M, M) / (1 + np.dot(a, b))
[docs]def axis_rotation_matrix(vector, angle, unit="radian"): """ Calculate the rotation matrix rotating along the *vector* by *angle* expressed in *unit*. *vector* can be any container with 3 numerical values. They don't need to be normalized. A positive angle denotes counterclockwise rotation, when looking along *vector*. Returns 3x3 numpy array. """ vector /= np.linalg.norm(vector) v0, v1, v2 = vector W = np.array([[0, -v2, v1], [v2, 0, -v0], [-v1, v0, 0]]) angle = Units.convert(angle, unit, "radian") a1 = np.sin(angle) a2 = 1.0 - np.cos(angle) return np.identity(3) + a1 * W + a2 * W @ W
[docs]def distance_array(array1, array2): """Calculates distance between each pair of points in *array1* and *array2*. Returns 2D ``numpy`` array. Uses fast ``cdist`` function if ``scipy`` is present, otherwise falls back to slightly slower ``numpy`` loop. Arguments should be 2-dimensional ``numpy`` arrays with the same second dimension. If *array1* is A x N and *array2* is B x N, the returned array is A x B. """ return cdist(array1, array2) if scipy_present else np.array([np.linalg.norm(i - array2, axis=1) for i in array1])
[docs]def angle(vec1, vec2, result_unit="radian"): """Calculate an angle between vectors *vec1* and *vec2*. *vec1* and *vec2* should be iterable containers of length 3 (for example: tuple, list, numpy array). Values stored in them are expressed in Angstrom. Returned value is expressed in *result_unit*. This method requires all atomic coordinates to be numerical values, :exc:`~exceptions.TypeError` is raised otherwise. """ vec1 = np.array([*vec1], dtype=float) vec2 = np.array([*vec2], dtype=float) num = np.dot(vec1, vec2) den = np.sqrt(((vec1) ** 2).sum()) * np.sqrt(((vec2) ** 2).sum()) return Units.convert(np.arccos(num / den), "radian", result_unit)
[docs]def dihedral(p1, p2, p3, p4, unit="radian"): """Calculate the value of diherdal angle formed by points *p1*, *p2*, *p3* and *p4* in a 3D space. Arguments can be any containers with 3 numerical values, also instances of |Atom|. Returned value is always non-negative, measures the angle clockwise (looking along *p2-p3* vector) and is expressed in *unit*.""" p1 = np.array([*p1], dtype=float) p2 = np.array([*p2], dtype=float) p3 = np.array([*p3], dtype=float) p4 = np.array([*p4], dtype=float) b0 = p1 - p2 b1 = p3 - p2 b2 = p4 - p3 b1 /= np.linalg.norm(b1) v = b0 - np.dot(b0, b1) * b1 w = b2 - np.dot(b2, b1) * b1 x = np.dot(v, w) y = np.dot(np.cross(b1, v), w) ret = np.arctan2(y, x) ret = 2 * np.pi + ret if ret < 0 else ret return Units.convert(ret, "radian", unit)
[docs]def cell_shape(lattice): """ Converts lattice vectors to lengths and angles (in radians) Sets internal cell size data, based on set of cell vectors. *cellvectors* is list containing three cell vectors (a 3x3 matrix) """ lattice = np.asarray(lattice) a, b, c = np.sqrt((lattice**2).sum(axis=1)) if a == 0.0 and b == 0.0 and c == 0.0: return alpha, beta, gamma = (90.0, 90.0, 90.0) if c != 0: alpha = angle(lattice[1], lattice[2]) beta = angle(lattice[0], lattice[2]) if b != 0: gamma = angle(lattice[0], lattice[1]) return [a, b, c, alpha, beta, gamma]
def cell_lengths(lattice, unit="angstrom"): """Return the lengths of the lattice vector. Returns a list with the same length as the number of lattice vector.""" if lattice is None or len(lattice) == 0: raise ValueError("Cannot calculate cell_lengths for nonperiodic system") lattice = np.asarray(lattice) ret = np.sqrt((lattice**2).sum(axis=1)) * Units.conversion_ratio("angstrom", unit) return ret.tolist() def cell_angles(lattice, unit="degree"): """Return the angles between lattice vectors. unit : str output unit For 2D systems, returns a list [gamma] For 3D systems, returns a list [alpha, beta, gamma] """ ndim = len(lattice) if ndim < 2: raise ValueError( "Cannot calculate cell_angles for fewer than 2 lattice vectors. Tried with {} lattice vectors".format(ndim) ) gamma = angle(lattice[0], lattice[1], result_unit=unit) if ndim == 2: return [gamma] if ndim >= 3: alpha = angle(lattice[1], lattice[2], result_unit=unit) beta = angle(lattice[0], lattice[2], result_unit=unit) return [alpha, beta, gamma]
[docs]def cellvectors_from_shape(box): """ Converts lengths and angles (in radians) of lattice vectors to the lattice vectors """ a = box[0] b = box[1] c = box[2] alpha, beta, gamma = 90.0, 90.0, 90 if len(box) == 6: alpha = box[3] # *np.pi/180. beta = box[4] # *np.pi/180. gamma = box[5] # *np.pi/180. va = [a, 0.0, 0.0] vb = [b * np.cos(gamma), b * np.sin(gamma), 0.0] cx = c * np.cos(beta) cy = (np.cos(alpha) - np.cos(beta) * np.cos(gamma)) * c / np.sin(gamma) volume = 1 - np.cos(alpha) ** 2 - np.cos(beta) ** 2 - np.cos(gamma) ** 2 volume += 2 * np.cos(alpha) * np.cos(beta) * np.cos(gamma) volume = np.sqrt(volume) cz = c * volume / np.sin(gamma) vc = [cx, cy, cz] lattice = [va, vb, vc] return lattice