Source code for scm.plams.tools.postprocess_results

import numpy as np
from typing import Union, Literal, Tuple


def _gaussian(x, A, x0, sigma):
    return A * np.exp(-((x - x0) ** 2) / (2 * sigma**2))


def _lorentzian(x, A, x0, sigma):
    return (A / np.pi) * (0.5 * sigma) / ((x - x0) ** 2 + (0.5 * sigma) ** 2)


def _generate_broadening_widths(x_data, broadening_width: Union[float, np.ndarray], centers):
    if not isinstance(broadening_width, np.ndarray):
        sigmas = x_data * 0 + broadening_width
    else:
        if len(broadening_width) == len(centers):
            sigmas = broadening_width
        else:
            raise ValueError(f"{len(broadening_width)=} != {len(centers)=} they should be equal")
    return sigmas


[docs]def broaden_results( centers: np.ndarray, areas: np.ndarray, broadening_width: Union[float, np.ndarray] = 40, broadening_type: Literal["gaussian", "lorentzian"] = "gaussian", x_data: Union[np.ndarray, Tuple[float, float, float]] = (0, 4000, 0.5), post_process: Literal["max_to_1"] = None, ) -> Tuple[np.ndarray, np.ndarray]: """convenient function for create xy curve with gaussian or lorentzian peaks. Used to obtain IR or Raman spectra for example. :param centers: x positions of the centers of the peaks :type centers: np.ndarray :param areas: areas of the peaks :type areas: np.ndarray :param broadening_width: if is np.ndarray each peak broadening is assigned otherwise apply the same value for all the peaks, defaults to 40 :type broadening_width: Union[float, np.ndarray], optional :param broadening_type: the line shape of the peak, defaults to "gaussian" :type broadening_type: Literal['gaussian', 'lorentzian'], optional :param x_data: it can be a np.ndarray or you can set a tuple with (min,max,step_size), defaults to (0, 4000, 0.5) :type x_data: Union[np.ndarray, Tuple[float, float, float]], optional :param post_process: if max_to_1 the resulted spectrum has the max peak hight =1, defaults to None :type post_process: Literal['max_to_1'], optional :return: the x and y arrays :rtype: Tuple[np.ndarray, np.ndarray] """ Function_Broaden = { "gaussian": _gaussian, "lorentzian": _lorentzian, } if isinstance(x_data, tuple) and len(x_data) == 3: x_data = np.arange(*x_data) y_data: np.ndarray = x_data * 0 sigmas = _generate_broadening_widths(x_data, broadening_width, centers) for freq_i, Abs_i, sigma_i in zip(centers, areas, sigmas): y_data += Function_Broaden[broadening_type](x_data, A=Abs_i, x0=freq_i, sigma=sigma_i) if post_process == "max_to_1": y_data /= np.max(y_data) return x_data, y_data