#!/usr/bin/env amspython
# coding: utf-8
# ## Initial Imports
from scm.plams import AMSResults, Units, add_to_class, Settings, read_molecules, AMSJob, init
# this line is not required in AMS2025+
init()
# ## Helper Functions
# Set up a couple of useful functions for extracting results.
@add_to_class(AMSResults)
def get_excitations(results):
"""Returns excitation energies (in eV) and oscillator strenghts (in Debye)."""
if results.job.ok():
exci_energies_au = results.readrkf("Excitations SS A", "excenergies", file="engine")
oscillator_str_au = results.readrkf("Excitations SS A", "oscillator strengths", file="engine")
# The results are stored in atomic units. Convert them to more convenient units:
exci_energies = Units.convert(exci_energies_au, "au", "eV")
oscillator_str = Units.convert(oscillator_str_au, "au", "Debye")
return exci_energies, oscillator_str
else:
return [], []
@add_to_class(AMSResults)
def has_good_excitations(results, min_energy, max_energy, oscillator_str_threshold=1e-4):
"""Returns True if there is at least one excitation with non-vanishing oscillator strenght
in the energy range [min_energy, max_energy]. Unit for min_energy and max energy: eV."""
exci_energies, oscillator_str = results.get_excitations()
for e, o in zip(exci_energies, oscillator_str):
if min_energy < e < max_energy and o > oscillator_str_threshold:
return True
return False
# ## Calculation settings
#
# Configure the settings for the various jobs.
# Settings for geometry optimization with the AMS driver:
go_sett = Settings()
go_sett.input.ams.Task = "GeometryOptimization"
go_sett.input.ams.GeometryOptimization.Convergence.Gradients = 1.0e-4
# Settings for single point calculation with the AMS driver
sp_sett = Settings()
sp_sett.input.ams.Task = "SinglePoint"
# Settings for the DFTB engine (including excitations)
dftb_sett = Settings()
dftb_sett.input.dftb.Model = "SCC-DFTB"
dftb_sett.input.dftb.ResourcesDir = "QUASINANO2015"
dftb_sett.input.dftb.Properties.Excitations.TDDFTB.calc = "singlet"
dftb_sett.input.dftb.Properties.Excitations.TDDFTB.lowest = 10
dftb_sett.input.dftb.Occupation.Temperature = 5.0
# Settings for the geometry optimization with the ADF engine
adf_sett = Settings()
adf_sett.input.adf.Basis.Type = "DZP"
adf_sett.input.adf.NumericalQuality = "Basic"
# Settings for the excitation calculation using the ADF engine
adf_exci_sett = Settings()
adf_exci_sett.input.adf.Basis.Type = "TZP"
adf_exci_sett.input.adf.XC.GGA = "PBE"
adf_exci_sett.input.adf.NumericalQuality = "Basic"
adf_exci_sett.input.adf.Symmetry = "NoSym"
adf_exci_sett.input.adf.Excitations.lowest = 10
adf_exci_sett.input.adf.Excitations.OnlySing = ""
# ## Load Molecules
# Import all xyz files in the folder 'molecules'.
molecules = read_molecules("molecules")
# ## DFTB Prescreen
# Perform an initial prescreen of all molecules with DFTB.
promising_molecules = {}
for name, mol in molecules.items():
dftb_job = AMSJob(name="DFTB_" + name, molecule=mol, settings=go_sett + dftb_sett)
dftb_job.run()
if dftb_job.results.has_good_excitations(1, 6):
promising_molecules[name] = dftb_job.results.get_main_molecule()
print(f"Found {len(promising_molecules)} promising molecules with DFTB")
# ## Optimization and excitations calculation with ADF
# For each of the molecules identified in the prescreen, run a further calculation with ADF.
for name, mol in promising_molecules.items():
adf_go_job = AMSJob(name="ADF_GO_" + name, molecule=mol, settings=go_sett + adf_sett)
adf_go_job.run()
optimized_mol = adf_go_job.results.get_main_molecule()
adf_exci_job = AMSJob(name="ADF_exci_" + name, molecule=optimized_mol, settings=sp_sett + adf_exci_sett)
adf_exci_job.run()
if adf_exci_job.results.has_good_excitations(2, 4):
print(f"Molecule {name} has excitation(s) satysfying our criteria!")
print(optimized_mol)
exci_energies, oscillator_str = adf_exci_job.results.get_excitations()
print("Excitation energy [eV], oscillator strength:")
for e, o in zip(exci_energies, oscillator_str):
print(f"{e:8.4f}, {o:8.4f}")