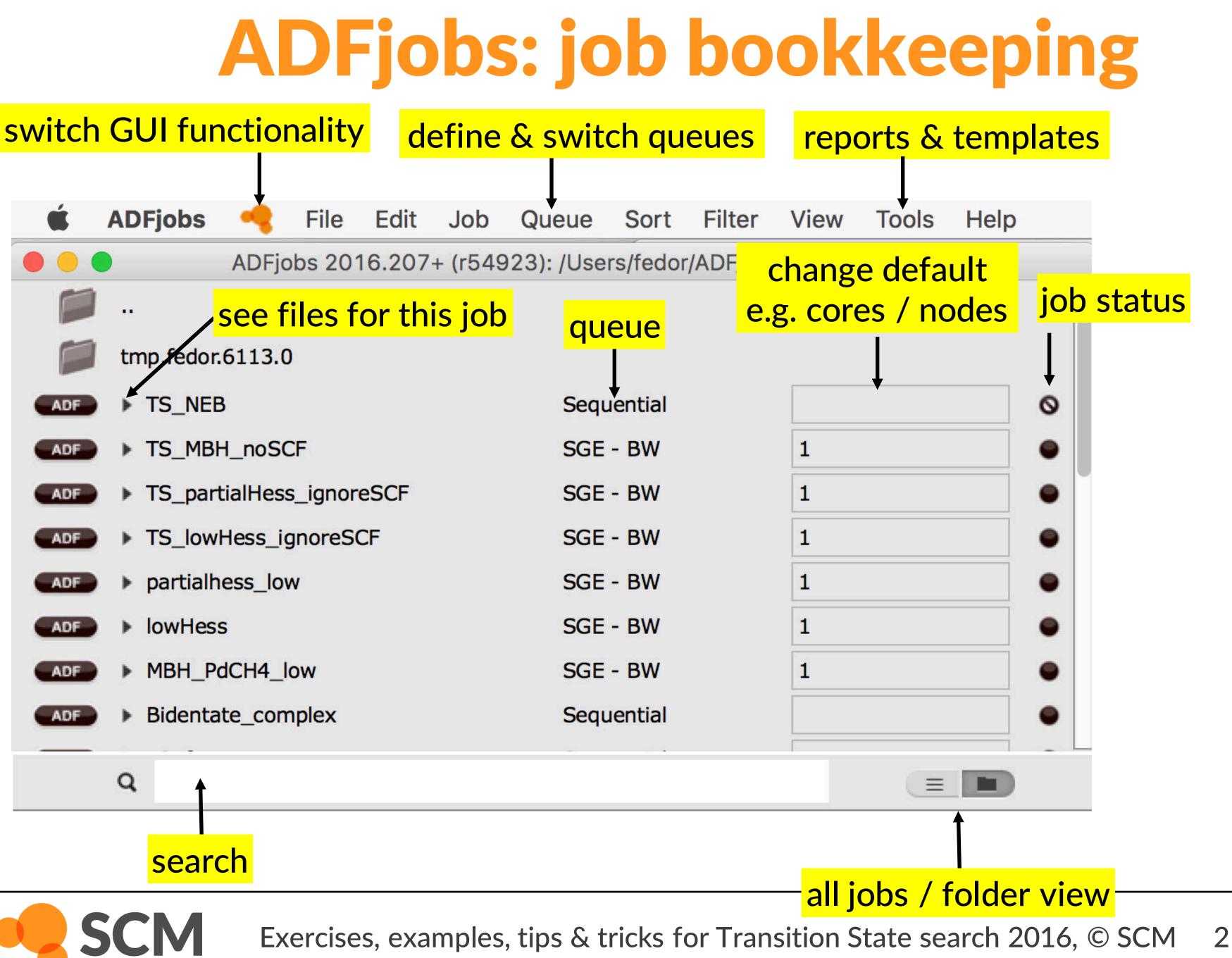
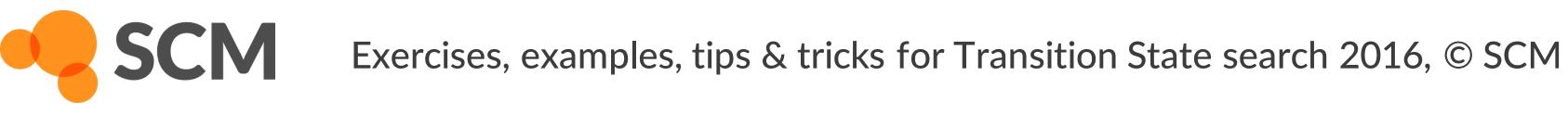
Hands-on Transition State Search


- Getting started building molecules
- Running basic calculations & settings
- Transition states (TSs)
 - Finding & characterizing TSs
 - Activation strain model & EDA
 - **ETS-NOCV** 0

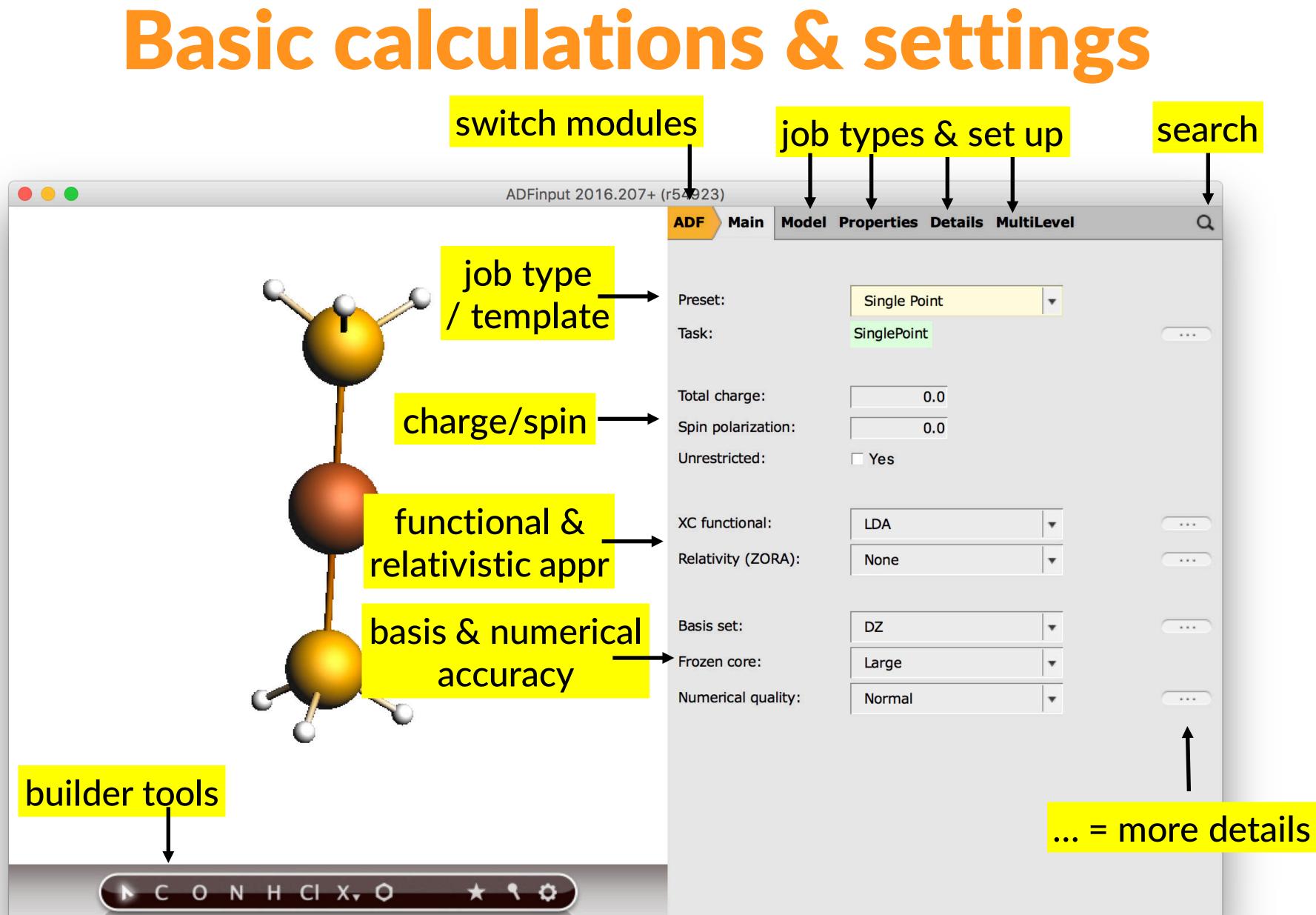
SCM

- Best practices & recommendations
- Properties demo: IR, NMR, EPR, UV/VIS?

Exercises, examples, tips & tricks for Transition State search 2016, © SCM



Building molecules


www.scm.com/doc/Tutorials/GUI_overview/Building_Molecules.html

- Import: SMILES, xyz, cif, pdb, ...
- Included library + building tools (step 7 tutorial = TM complexes)
- Nanoparticles: start from periodic => cut a cluster

• **Excercise:** Build a small molecule of choice and optimize (default settings)

Exercises, examples, tips & tricks for Transition State search 2016, © SCM

SCM

Transition states

- 1. Get close to the transition state
- Good guess for the transition mode 2.

How to get a good guess geometry?

- Intuition^{*)} + constrained optimization
- Linear transit

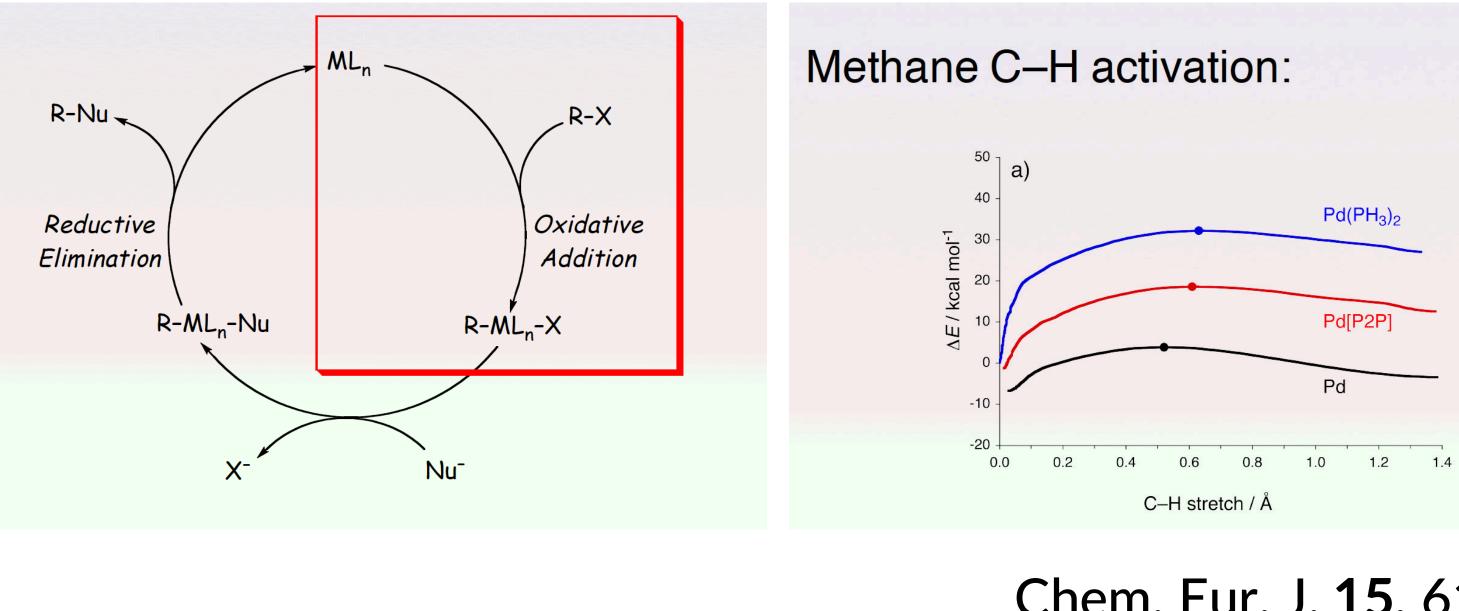
SCM

- Nudged elastic band
- *) e.g. from literature, geometry from a previous TS

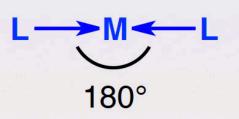
How to get a good guess for the transition mode?

- Transition State Reaction Coordinate (TSRC)
- Hessian: full, partial, or mobile-block, maybe smaller basis & lower accuracy?

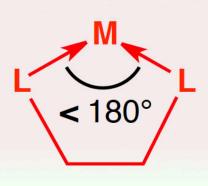
Remember: a TS has 1 and only 1 negative Hessian eigenvalue


Example: Pd-catalysed oxidative addition

Goal: find reactant and transition states, understand

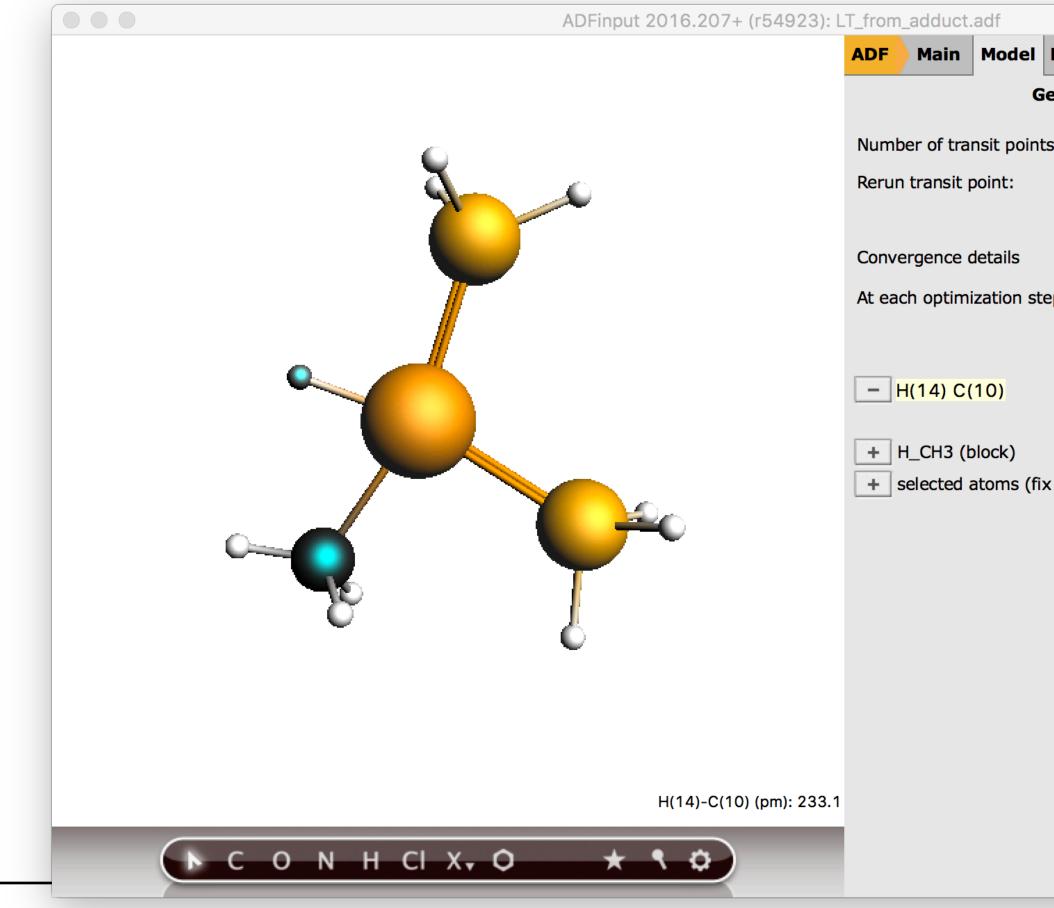

- Get a good geometry: LT, previous geometry, NEB
- Good Hessian: TSRC, partial Hessian

SCM


- Bonding analysis: Activation Strain Model (ASM)
- Example: Pd catalyzed oxidative addition: Wolters & Bickelhaupt

Exercises, examples, tips & tricks for Transition State search 2016, © SCM

ligands raise barriers

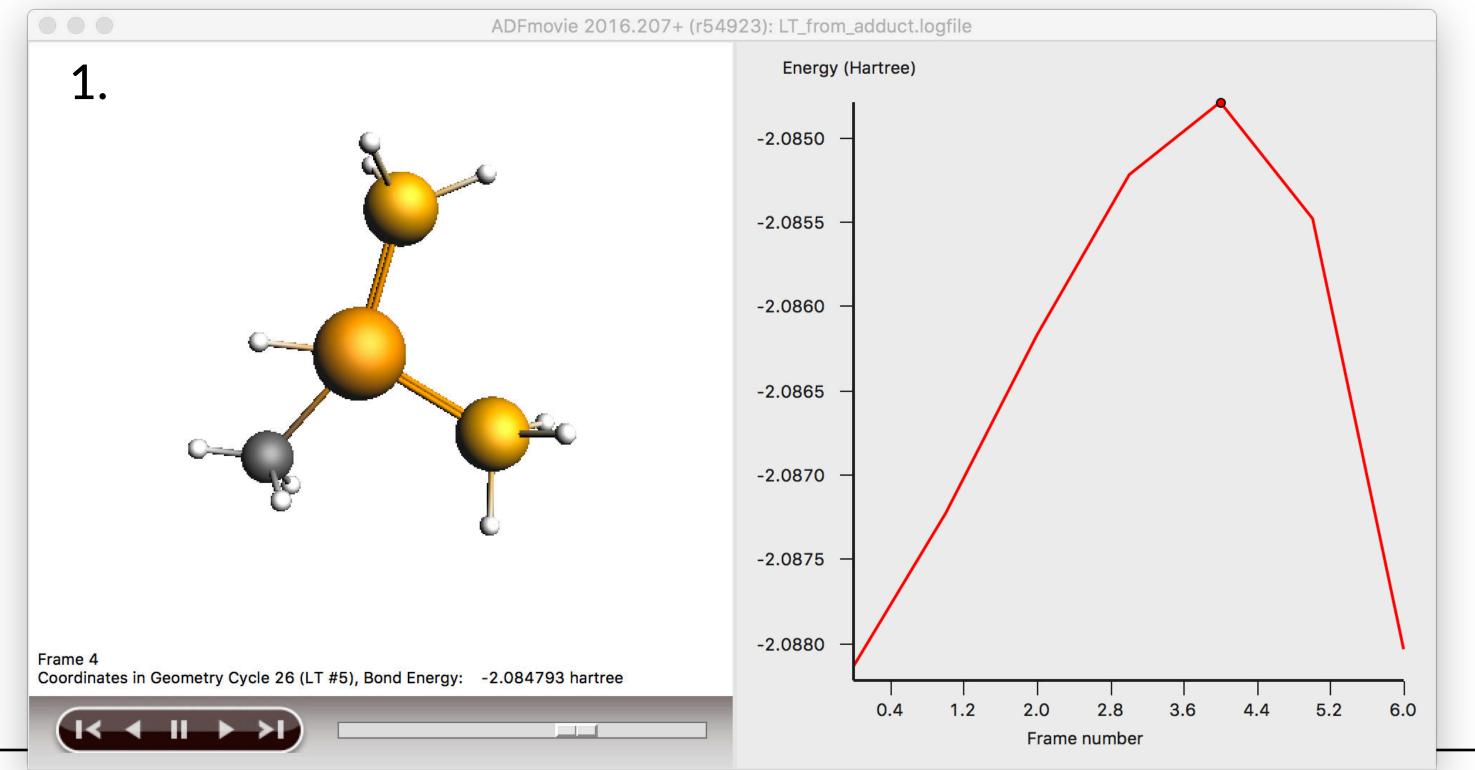


 smaller bite angle → lower barrier

Chem. Eur. J. **15**, 6112 (2009)

Good geometry guess: 1. LT

- Build $(CH_3)(H)Pd(PH_3)_2$ start with ML₄ complex 1.
- Optimize product (Oxaddproduct_PdPH32.adf) 2.
- Set up a linear transit to reduce C-H (LT_from_adduct.adf) 3.


SCM

Exercises, examples, tips & tricks for Transition State search 2016, © SCM

Properties	Details	MultiLevel		Q
ometry Co	nstraints	and Scan		i
:		9		
	□ Yes			
p:	PartialC	onverge	•	
		-	I	
		2.2	1.4	Angstrom
positions)				

Good Hessian: 1. TSRC

- View linear transit result: ADFmovie -> view conv. geom. only 1.
- Click highest point; File => Update geometry in input 2.
- Change number of transition points to 0, remove constraint 3.
- Change preset to Transition State Search, click details (...) 4.
- Select C + H to add to TSRC (TSsearch_1LT.adf) 5.

Exercises, examples, tips & tricks for Transition State search 2016, © SCM

SCN

Get a guess Hessian: 2.-4.

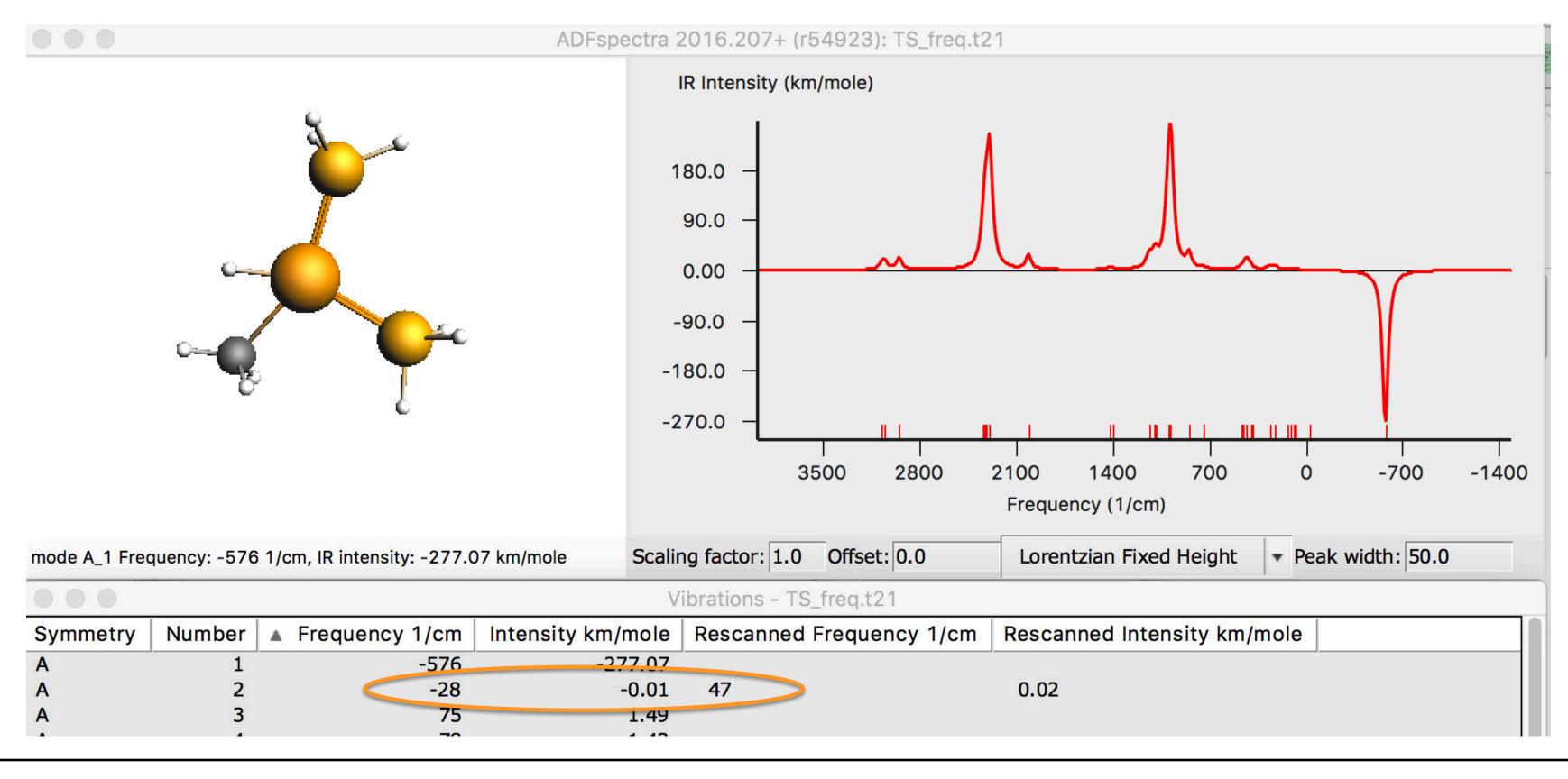
- Partial Hessian (partialhess_low.adf) e.g. H, C, Pd 2.
- Mobile Block Hessian (MBH_PdCH₄_low.adf) 3.
 - define regions first. E.g. treat $Pd(PH_3)_2$ as mobile block
- Less accurate xc, basis set, numerical settings (lowHess.adf) 4.
 - Can be combined with 1. & 2.

SCM

Restart with Hessian (TS_MBH.adf, TS_pHess.adf, TS_lowHess.adf) 5.

	ADFinput 2016.207+ (r54	4923): MBH_PdCH4_low.adf		
		ADF Main Model Propertie	s Details MultiLevel	Q
		Free	juencies (IR)	i
3.		Analytical frequencies:	No	•
•••		Max number of CPKS iterations:		
		Partial Hessian for:		
		Blocks for MBH:	Pd_PH32	•
			_	
		Scan frequencies in range	<mark>□ Yes</mark>	
		Scan lower limit	-1000 1/cm)	
		Scan upper limit	0 1/cm)	
		Numerical differentiation details		
		Numerical differentiation:	2	🚽 point:
_		Radial displacement:	Angstror	n
	8	Angular displacement:	degrees	
		Maximum number of geometries:		
		Use symmetric displacements:	☐ Yes	
		IR-visible frequencies only:	☐ Yes	
N C O N H	ci x, o * • •			

Exercises, examples, tips & tricks for Transition State search 2016, © SCM


3): TS_MBH.adf				
ADF Main Model	Properties	Details	MultiLevel	Q
5.	Files	(Restart	.)	i
Restart options				
Restart file:	MBH_Pd	CH4_low.	t21	
Ignore:	SCF result	ts		
Ignore:	Geometry			
Ignore:	🗆 Hessian			
Save files				
	gzipped			
Grid-based data:	TAPE41			
Numint data:	TAPE10			
Fit integrals:	TAPE11			
Checkpoint:	TAPE13			
Scratch data:	TAPE15			
COSMO data:				

Calculate frequencies

Update geometry from TS run

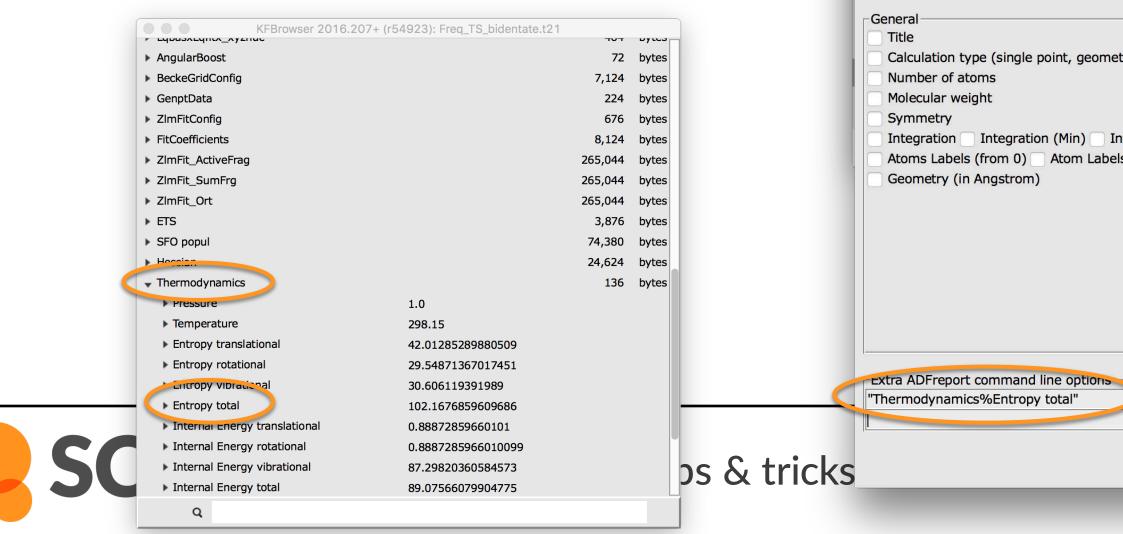
SCM

- Change preset to frequency, click (...) for details
- In the Scan frequency range, set the lower limit to -100 or -50
 - This will rescan low-lying imaginary modes numerically 0

Exercises, examples, tips & tricks for Transition State search 2016, © SCM

Calculate $\Delta E^{\#}$, $\Delta H^{\#}$, $\Delta G^{\#}$

- Get the binding energy for reactants $CH_4 + Pd(PH_3)_2$
 - First optimize reactants separately, run frequencies for ZPE Ο
 - Read from logfile, outputfile, use PLAMS / adfreport, or use report tool in GUI 0

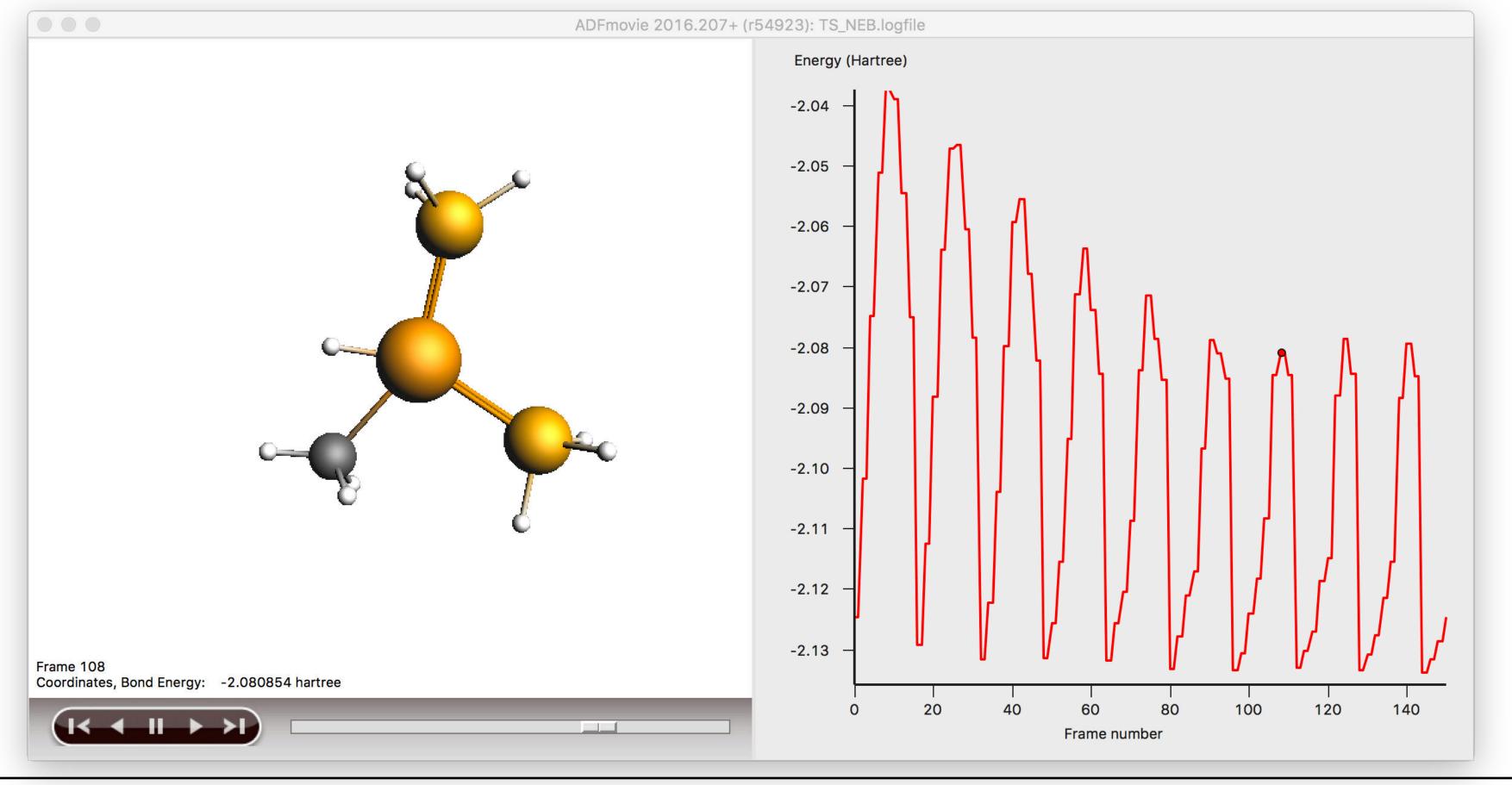

Note: ADF uses a fragment-based approach: binding energies are with respect to (atomic) fragments

Report

Template name: Thermo

Generate: 🔘 HTML 💽 Tab separated plai

- $\Delta E^{\#} = E(TS) E(reactants)$, same for H, G (add ZPEs, pV term, S)
- Find relevant results on t21?
 - KFBrowser => expert mode Ο
 - (adfreport –h result.t21 non-exhaustive) Ο



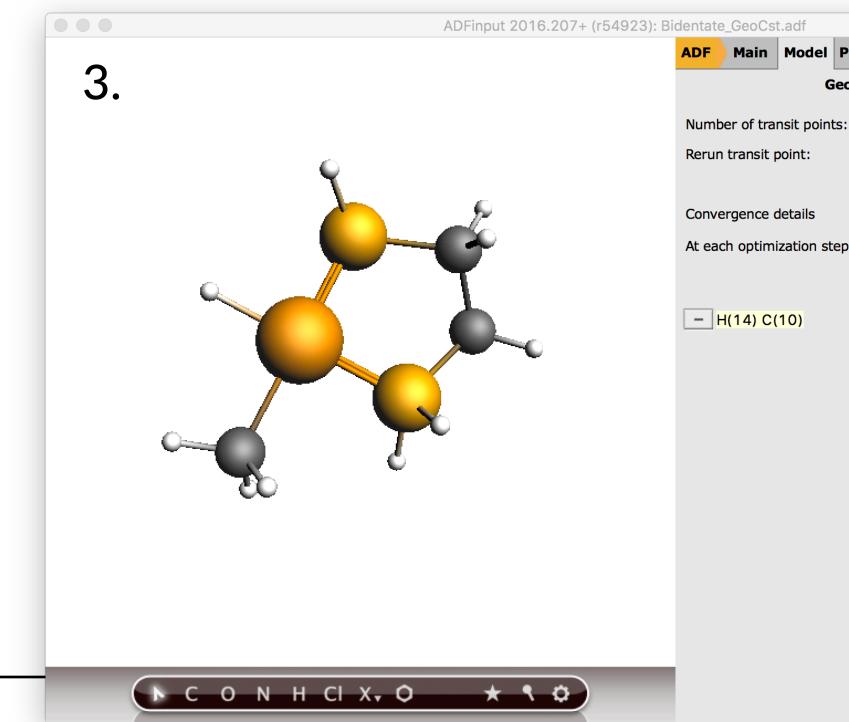
Report	Thermo
n text	Images Molecule HOMO - 0 through HOMO LUMO through LUMO + 0 View Vector: 1 2 5 Zoom: 1.0 SCF Density Density Colored By Potential Background Color: #220000 Grid: Coarse AntiAlias
ry optimization, etc)	Results Voronoi Hirshfeld Mulliken MDC charges NMR Shieldings NMR Shielding Tensor NMR J Coupling Constant NMR J Coupling Tensor NMR K Coupling Constant NMR K Coupling Tensor Orbital info: HOMO - 3 through LUMO + 3
tegration (Max) 5 (from 1)	 All energies Bonding Energy Dipole Moment Dipole Vector Quadrupole Tensor Gradients Hessian For Excitation Energies 1 through 99999 Energies Oscillator Strenghts Labels For IR modes 1 through 25 Frequencies Intensities Labels IR Normal Modes: 1 through 3 Zero-Point Energy

Cancel

Good geometry guess: 2. NEB

- Optimize reactant state complex $CH_4....Pd(PH_3)_2$ 1.
- Set up a NEB via ASE from reactant to product (TS_NEB.adf) 2.
- Don't run through to the end. Stop and update geometry (highest point) 3.

Exercises, examples, tips & tricks for Transition State search 2016, © SCM

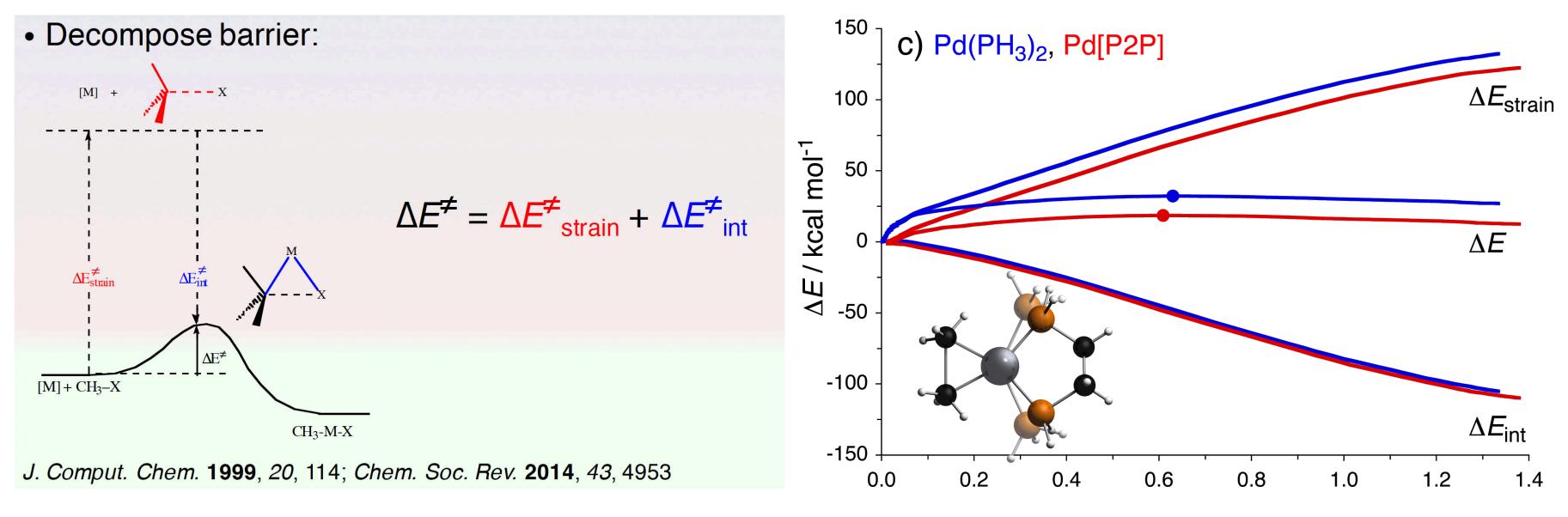

SCM

Geometry guess: 3. intuition

- Start from a TS from a comparable reaction (e.g. change ligands)
- Take TS or product from $Pd(PH_3)_2$ 1.

SCM

- Make a bidentate ligand (diphosphinoethane, dpe) 2.
- Run with a **constraint**: C-H distance ~1.8A (Bidentate_GeoCst.adf) 3. (may use sloppy accuracy as well, or get xyz from literature)
- Run your TS with TSRC or other Hessian (Bidentate_TS.adf) 4.



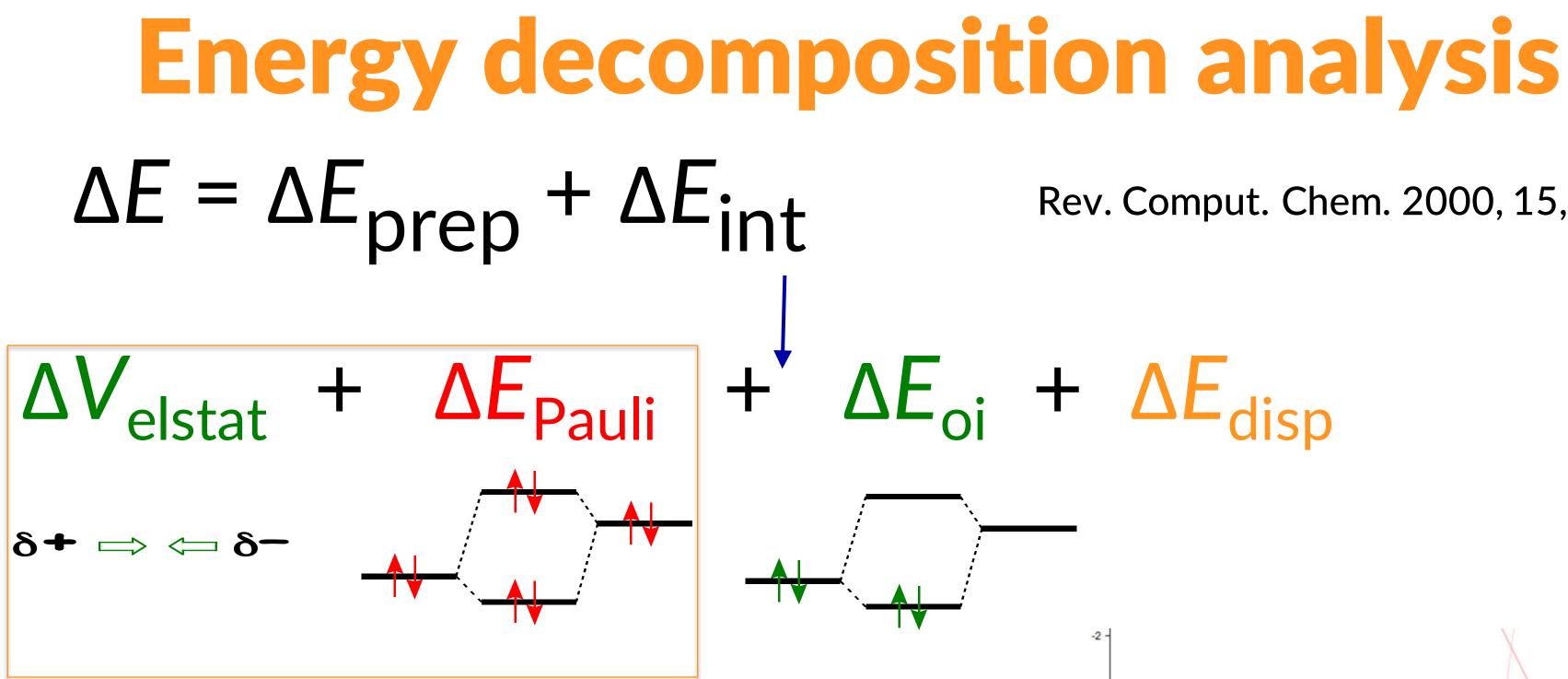
Exercises, examples, tips & tricks for Transition State search 2016, © SCM

Properties	Details	MultiLeve	el	Q
ometry Co	nstraints	and Scan		i
:		0		
	Yes			
p:	FullCon	verge	•	
			1.8	Angstrom

Bonding analysis: ASM, EDA, NOCV

Activation Strain Model Bickelhaupt & co. based on Fragment MOs

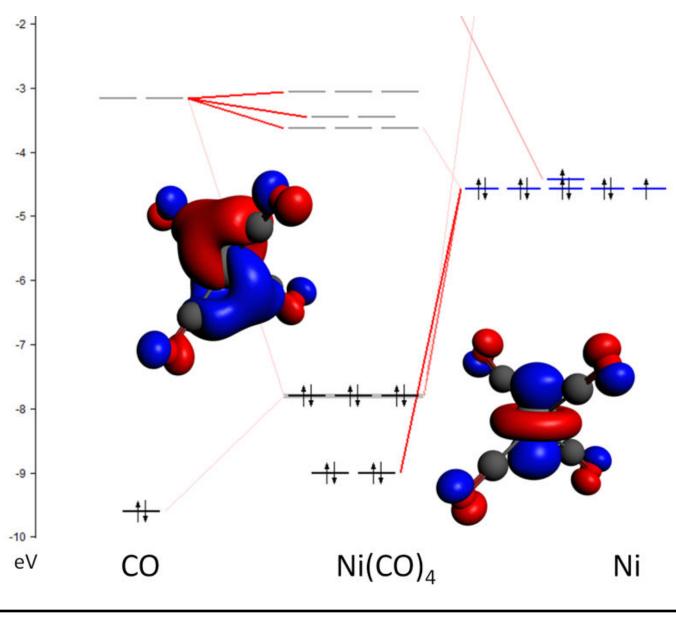
C–H stretch / Å EDA along the reaction path **Bite-Angle Effect: Activation Strain analyses:** HOMO-LUMO interaction marginally improved • But: strain reduced by building it into catalyst


Exercise: check Pd(PH₃)₂ vs Pd(diphosphinoethane) TSs: C-H distance, EDA

SCM

Rev. Comput. Chem. 2000, 15, 1; Chem. Soc. Rev. 2014, 43, 4953; WIRES Comput. Mol. Sci. 2015, 5, 324

Exercises, examples, tips & tricks for Transition State search 2016, © SCM 14

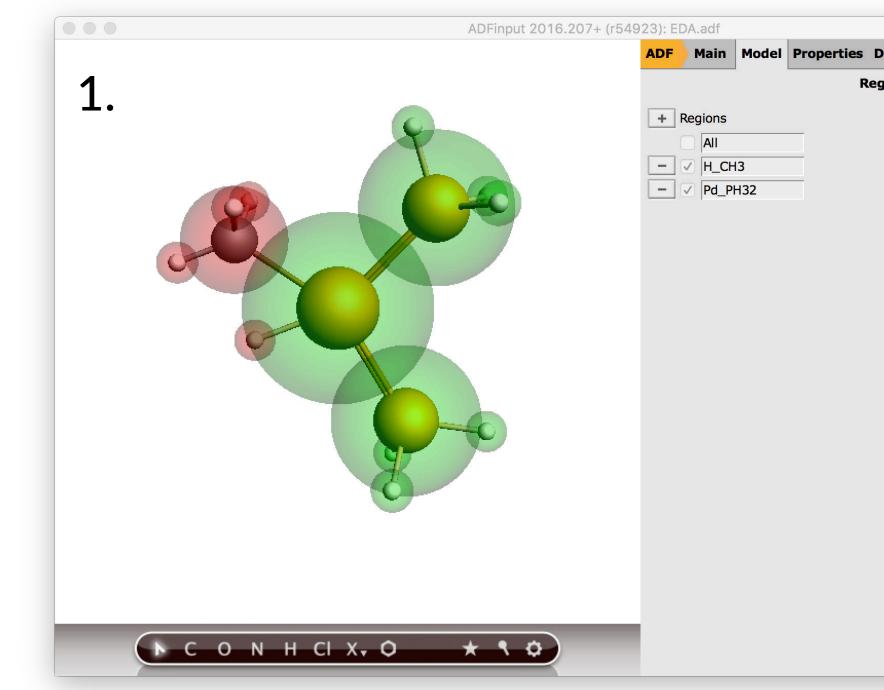

- $\Delta E_{\text{steric}} = \Delta V_{\text{elstat}} + \Delta E_{\text{pauli}}$
- ΔE_{oi} = decomposed in irreps.

Extensions:

SCN

- ETS-NOCV: orbital interactions + deformation density M. Mitoraj et al., J. Chem. Theor. Comput. 5, 962 (2009)
- Periodic EDA: M. Raupach & R. Tonner, J. Chem. • Phys. 142, 194105 (2015)): molecule-surface interactions

Rev. Comput. Chem. 2000, 15, 1



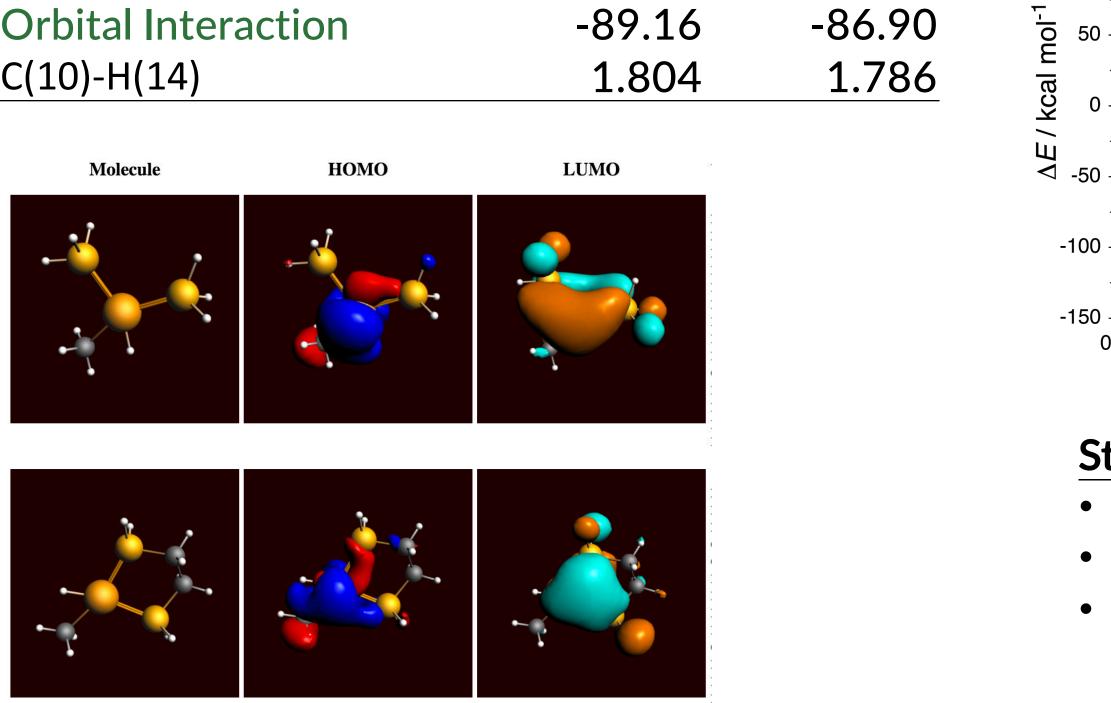
Energy decomposition analysis

Define your fragments (**regions**) 1.

SCM

- **Run your EDA or ETS-NOCV calculation** 2.
 - Single point calculation; check 'Use fragments' in MultiLevel tab
 - (Select ETS-NOCV type calculation in Properties => ETS-NOCV)
 - Results: ADFouput => Properties => Bonding Energy Decomposition
- **Optimize fragments to get** $\Delta E_{prep} = E_{(fragments, relaxed)} E_{(fragments in complex)}$ 3.

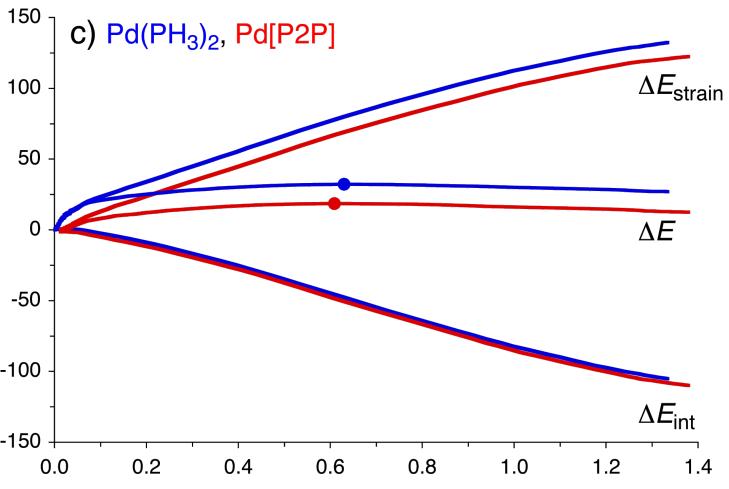
Exercises, examples, tips & tricks for Transition State search 2016, © SCM



etails	MultiLevel			Q
ions				i
				9590
		Select	ion	
		✓		•
		✓	+ -	•
		v	+ -	•

Energy decomposition analysis

ADFreport to get EDA results (EDA.adf) (add distance#labels#10#14)


	Pd(PH3)2	Pd(dpe)
Bonding Energy	-59.16	-59.62
Pauli Repulsion	186.41	178.66
Electrostatic Interaction	-155.27	-150.37
Steric Interaction	31.14	28.29
Orbital Interaction	-89.16	-86.90
C(10)-H(14)	1.804	1.786

SCM

Exercises, examples, tips & tricks for Transition State search 2016, © SCM

C–H stretch / Å

Strain built into bidentate **Reduces** *activation strain* Earlier TS Lower $\Delta E^{\#}$

ETS-NOCV

Select closed-shell ETS-NOCV & run (ETSNOCV.adf)

Visualize deformation densities in ADFview – play with settings

	ADFview 2016.207+ (r54923): ETSNOCV.t21	
	ADFVIEW 2016.207+ (r54923): ETSNOCV.t21	ETS-NOCV-decomposition: taken restricted fragments 1. Eigenvalue pairs from diagonalization of DeltaP expl 1 -0.76123 132 0.76123 2 -0.37277 131 0.37277 3 -0.16523 130 0.16523 4 -0.10905 129 0.10905 5 -0.09276 128 0.09276 6 -0.08372 127 0.08372 7 -0.05703 126 0.05703
		<pre>8 -0.05360 125 0.05360 2. Orbital Interaction Energy Contributions from each 1 -0.10523 2 -0.02033 3 -0.00970 4 -0.00192 5 -0.00124 6 -0.00091 7 -0.00036 8 -0.00060 3. Orbital Interaction Energy Contributions from each 1 -66.02979</pre>
		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
I 🗆 Isosurface: D		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Opacity: 100	Ambient: 1 Diffuse: 70 Specular: 50 Power: 70	3 -6.08650 4 -1.20538 5 -0.77599 6 -0.57025 7 -0.22664 8 -0.37879 SFO decomposition of Delta rho k (major contributions
Opacity: 100 Color Scale	Ambient: 1 Diffuse: 70 Specular: 50 Power: 70	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Opacity: 100 Color Scale	Ambient: 1 1 Diffuse: 70 Specular: 50 Power: 70 100 Hue: 200 74 Saturation: 100 65 Value: 100 90 Colo	<pre>3 -6.08650 4 -1.20538 5 -0.77599 6 -0.57025 7 -0.22664 8 -0.37879 SFO decomposition of Delta rho k (major contributions) Diver -XY Threshold for a NOCVs energy (in kcal/mol) is 2.000(1 NOCV eigenvalues: -0.76123 0.76123, sum from</pre>
Opacity: 100 Color Scale Use Clip Type	Ambient: 1 Diffuse: 70 Specular: 50 Power: 70 Hue: 200 74 Saturation: 100 65 Value: 100 90 Colo Plane Interactive Plane Use Atoms Use Atoms (mirror) XY Select NOCV Deformation Density Spin Contribution Combination	<pre>3 -6.08650 4 -1.20538 5 -0.77599 6 -0.57025 7 -0.22664 8 -0.37879 SFO decomposition of Delta rho k (major contributions) Diver -XY Threshold for a NOCVs energy (in kcal/mol) is 2.0000 Threshold for an individual SFO contribution is 1.000</pre>
Opacity: 100 Color Scale Use Clip Type NOCV_Def_Density	Ambient: 1 Diffuse: 70 Specular: 50 Power: 70 Hue: 200 74 Saturation: 100 65 Value: 100 90 Colo Plane Interactive Plane Use Atoms Use Atoms (mirror) XY Select NOCV Deformation Density Spin Contribution Combination y A -0.7612 NOCV_1**2-NOCV_132**2	<pre>3 -6.08650 4 -1.20538 5 -0.77599 6 -0.57025 7 -0.22664 8 -0.37879 SFO decomposition of Delta rho k (major contributions Threshold for a NOCVs energy (in kcal/mol) is 2.0000 Threshold for an individual SFO contribution is 1.000 1 NOCV eigenvalues: -0.76123 0.76123, sum from Corresponding Delta E k: -66.02979 (kcal/mol) 13 SFO contribution: -0.55422 96 SFO contribution: 0.52917</pre>
Opacity: 100 Color Scale Use Clip Type NOCV_Def_Density NOCV_Def_Density	Ambient: 1 Diffuse: 70 Specular: 50 Power: 70 Hue: 200 74 Saturation: 100 65 Value: 100 90 Colo Plane Interactive Plane Use Atoms Use Atoms (mirror) XY Select NOCV Deformation Density Spin Contribution Combination y A -0.7612 NOCV_1**2-NOCV_132**2 y A -0.3728 NOCV_2**2-NOCV_131**2	<pre>3 -6.08650 4 -1.20538 5 -0.77599 6 -0.57025 7 -0.22664 8 -0.37879 SFO decomposition of Delta rho k (major contributions Threshold for a NOCVs energy (in kcal/mol) is 2.0000 Threshold for an individual SFO contribution is 1.000 1 NOCV eigenvalues: -0.76123 0.76123, sum from Corresponding Delta E k: -66.02979 (kcal/mol) 13 SFO contribution: -0.55422 96 SFO contribution: 0.52917 97 SFO contribution: 0.01541 8 SFO contribution: -0.01079</pre>
Opacity: 100 Color Scale Use Clip Type NOCV_Def_Density	Ambient: 1 Diffuse: 70 Specular: 50 Power: 70 Hue: 200 74 Saturation: 100 65 Value: 100 90 Colo Plane Interactive Plane Use Atoms Use Atoms (mirror) XY Select NOCV Deformation Density Spin Contribution Combination y A -0.7612 NOCV_1**2-NOCV_132**2 y A -0.3728 NOCV_2**2-NOCV_131**2 y A -0.1652 NOCV_3**2-NOCV_130**2	<pre>3 -6.08650 4 -1.20538 5 -0.77599 6 -0.57025 7 -0.22664 8 -0.37879 SFO decomposition of Delta rho k (major contributions prmap: Diver -XY Threshold for a NOCVs energy (in kcal/mol) is 2.0000 Threshold for an individual SFO contribution is 1.000 1 NOCV eigenvalues: -0.76123 0.76123, sum from Corresponding Delta E k: -66.02979 (kcal/mol) 13 SFO contribution: -0.55422 96 SFO contribution: 0.52917 97 SFO contribution: 0.01541</pre>
Opacity: 100 Color Scale Use Clip Use Clip NOCV_Def_Density NOCV_Def_Density NOCV_Def_Density	Ambient: 1 ↓ Diffuse: 70 ↓ Specular: 50 ↓ Power: 70 ↓ Hue: 200 ↓ 74 ↓ Saturation: 100 ↓ 65 ↓ Value: 100 ↓ 90 ↓ Colo Plane Interactive Plane Use Atoms Use Atoms Use Atoms (mirror) XY Select NOCV Deformation Density y A -0.7612 NOCV_1**2-NOCV_132**2 y A -0.3728 NOCV_2**2-NOCV_131**2 y A -0.1652 NOCV_4**2-NOCV_130**2 y A -0.1091 NOCV_4**2-NOCV_129**2 y A -0.0928 NOCV_5**2-NOCV_128**2	<pre>3 -6.08650 4 -1.20538 5 -0.77599 6 -0.57025 7 -0.22664 8 -0.37879 SFO decomposition of Delta rho k (major contributions Threshold for a NOCVs energy (in kcal/mol) is 2.0000 Threshold for an individual SFO contribution is 1.000 1 NOCV eigenvalues: -0.76123 0.76123, sum from Corresponding Delta E k: -66.02979 (kcal/mol) 13 SFO contribution: -0.55422 96 SFO contribution: 0.52917 97 SFO contribution: 0.01541 8 SFO contribution: -0.01079</pre>

More (workshop) materials:

SCM

https://www.scm.com/adf-modeling-suite/wizard/teaching/adf-teaching-materials/ https://www.scm.com/adf-modeling-suite/adf-hands-on-workshops/

Exercises, examples, tips & tricks for Transition State search 2016, © SCM

ADFOULDUL 2010.207+ (154923) ragments DeltaP expressed in Lowdin: from each NOCV pair (in a.u.) from each NOCV pair (in kcal/mol) tributions): is 2.000000000000000 n is 1.0000000000000000E-002 sum from all SFOs: 0.12388E-02 kcal/mol)

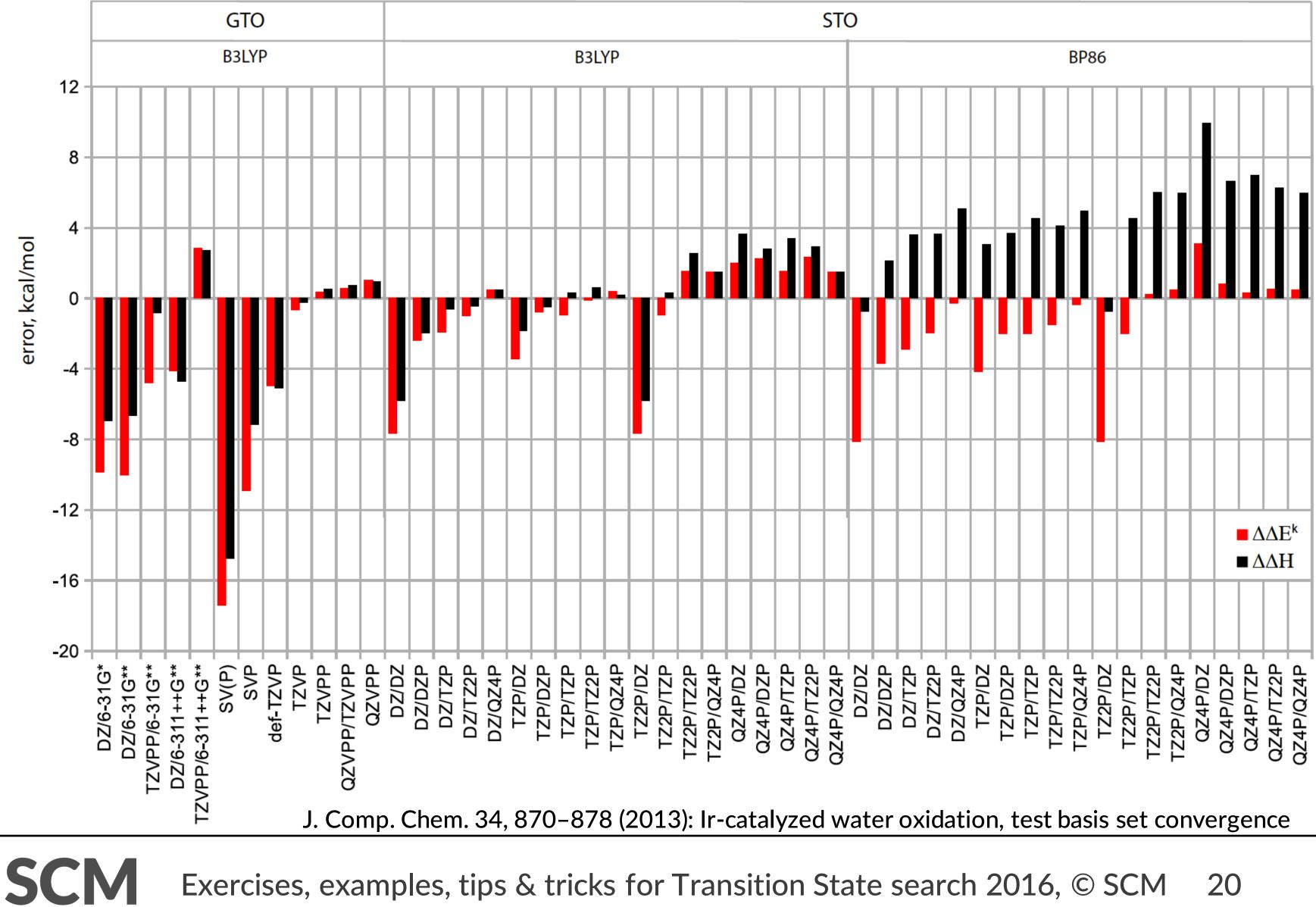
sum from all SFOs: 0.18312E-01

Accuracy Recommendations

• Relativity: always use ZORA

- For most systems + properties scalar relativistic (SR) suffices
- Spin-orbit coupling (SOC) may be necessary for 0
 - Spectroscopy 4d, 5d elements (energy 5d? Ir < 1kcal/mol)(*)
 - Geometries 6s, 6p elements (and beyond)
- xc functional: check experiments & literature(*)
 - Dispersion corrections: D3, or D3(BJ) good pragmatic options (may not affect $\Delta E^{\#}$ Ο
 - GGAs are faster in ADF than hybrids, and most have analytical frequencies Ο
 - GGAs are usually as good or better than hybrids for geometries Ο
 - Hybrids *may* give better (TS) energies, for TM catalysis GGAs usually OK Ο
 - Good options: PBE-D3, BPD3(*). mGGAs: MN15L, S12g, M06L 0

Basis sets: STOs converge faster than GTOs(*)


- Geometries: DZP (=TZP for TM), or TZP. DZ not good enough Ο
- Energies: TZP or TZ2P, small or no core. *Large core not good enough for TM energies*. Ο
- Core spectroscopy: QZ4P Ο

SC

Numerical accuracy: normal or good (higher for mGGAs, spectroscopy?)

(*) J. Comp. Chem. 34, 870–878 (2013): Ir-catalyzed water oxidation, test basis set convergence

Basis set convergence

Exercises, examples, tips & tricks for Transition State search 2016, © SCM

- QUILD has more options for initial Hessians (ihopt) + updates (ihupd)
 - Uses a Hessian check by default (check a 2^{nd} small negative => freq + scan?)
- Solvent effects?
 - COSMO, SM12 (single point), COSMO-RS Ο
 - Advanced: multi-layer (QM/MM, QUILD), embedding SCRF, FDE Ο
- Save your settings (xc, basis set, etc.) + job type as template in ADFinput
- Use ADF prepare to make multiple jobs
- Convergence tests http://www.scm.com/doc/Tutorials/ADF/Generating_a_batch_of_jobs.html Ο • Use ADFreport to get your results (GUI or cmd line scripting)
- - Commandline ADFreport allows further python / shell scripting Ο
 - PLAMS: python workflows Ο

SCM

See the scripting materials on: https://www.scm.com/adf-modeling-suite/wizard/teaching/adf-Ο teaching-materials/

> Contact us at support@scm.com with any questions or problems

Exercises, examples, tips & tricks for Transition State search 2016, © SCM 21