Thermoset Polymers

are polymers that are forming *irreversible and well-defined 3D networks* either via heating or the addition of a curing agent. The resulting materials are very *strong and rigid*.

Individual polymer chains

Cross linked 3D thermoset polymer

Construction Industry

Aerospace Engineering & Military

5-minute Epoxy

Thermosets: Epoxide resins cured with amine hardeners

FIGURE 2 Epoxide-amine crosslinking reactions.

Objective

- Study effect of crosslinking on mechanical properties
- Exp. very slow, ~ 5h to reach 77% cross-linking
- Sim. time scale for MD calculations typically nanoseconds

TGDDM-DETDA polymer

- xlink density = 0.78
- 5244 atoms

How to generate these structures?

Generating highly cross-linked Epoxies

Generating Polymer Structures

Local bond boost ansatz

A. Vashisth, et al. J. Phys. Chem. A 2018, 122, 32, 6633-6642 (2018).

Generating highly cross-linked Epoxies

Generating Polymer Structures

Advanced SCM tutorial online:

Polymer structures with the bond boost acceleration method

Mechanical Properties of highly cross-linked Epoxies

Calculating mechanical properties

Advanced SCM tutorial online: <u>Mechanical properties of epoxy polymers</u>

- Strain one lattice vector while allowing the others to relax
- Average over all directions and several different polymer structures
- Stress response calculated from atomic stresses (Thompson, Plimpton, Mattson, J Chem Phys, 131, 154107 (2009))

Mechanical Properties of highly cross-linked Epoxies

Calculating mechanical properties

Advanced SCM tutorial online: <u>Mechanical properties of epoxy polymers</u>

- Strain one lattice vector while allowing the others to relax
- Average over all directions and several different polymer structures
- Stress response calculated from atomic stresses (Thompson, Plimpton, Mattson, J Chem Phys, 131, 154107 (2009))

Mechanical Properties of highly cross-linked Epoxies

Calculating mechanical properties

Advanced SCM tutorial online: <u>Mechanical properties of epoxy polymers</u>

- Strain one lattice vector while allowing the others to relax
- Average over all directions and several different polymer structures
- Stress response calculated from atomic stresses (Thompson, Plimpton, Mattson, J Chem Phys, 131, 154107 (2009))

Results: Young's Modulus

workflow based on M.S. Radue, et al. J. Polym. Sci. B 2018, 56, 255–264.

TU Delft - hands-on workshop - 21-22. 01. 2021

Results: Yield Points

workflow based on M.S. Radue, et al. J. Polym. Sci. B 2018, 56, 255–264.

TU Delft - hands-on workshop - 21-22. 01. 2021

Results: Yield Points

M.S. Radue, *et al.* J. Polym. Sci. B 2018, 56, 255–264.

Results: Poisson's Ratio

calculations based on M.S. Radue, et al. J. Polym. Sci. B 2018, 56, 255–264.

TU Delft - hands-on workshop - 21-22. 01. 2021

TU Delft - hands-on workshop - 21-22. 01. 2021

-12-