Amsterdam Modeling Suite

Making Computational Chemistry Work for You

The Amsterdam Modeling Suite

Powerful Computational Chemistry

Cutting-edge software

The Amsterdam Modeling Suite (AMS) is stateof-the-art computational chemistry & materials modeling software. Our developers focus on support and usability.

Proven since the early days of computational chemistry, AMS has grown into a versatile chemistry & materials modeling suite covering atomistic, kinetics, and fluid thermodynamics simulations.

Functionality

Selected compute engines

Fluid Thermodynamics

COSMO-RS COSMO-SAC UNIFAC

Kinetics Kinetic Monte Carlo Microkinetics

Force Fields

ReaxFF, GFN-FF Machine Learning Potentials Apple & P

QM/MM FDE, Hybrid Engine

Tight binding GFN-xTB, DFTB

Periodic DFT BAND, Quantum Espresso

Molecular DFT ADF

www.scm.com/applications/materials-science

Predict and understand materials properties from atomistic simulations with AMS: From molecular and periodic DFT to reactive molecular dynamics and fluid thermodynamics.

Your benefits

- Easily build clusters, nanotubes, crystals
- Workfunctions, electric fields, polarization, deposition processes treated naturally with real 2D surfaces
- ReaxFF: Many properties, acceleration techniques, and parametrization tools

Chemical Vapor Deposition of AIH3 on Ge(100) simulated with ReaxFF

www.scm.com/product/reaxff

Excellent predictions for ionization potential and fundamental gap with qsGW

www.scm.com/qs-gw

www.scm.com/semiconductor-spectra

Batteries & Photovoltaics

www.scm.com/applications/batteries

Simulate battery discharge processes with ReaxFF to understand and optimize charge mobility and reduce electrolyte decomposition. Screen electrode materials for desired band structures and accurately model surface-electrolyte interactions for detailed atomistic insight in electrochemical processes.

What can you model with AMS?

- Reactions, diffusion and charge transport
- Partial, local, full densities of states (DOS)
- Accurate relativistic treatments
- Advanced excited state properties (e.g. exciton coupling) for photovoltaics
- Improved band gaps with model potentials
- Easy orbital and density analysis
- Accurate mobilities for electrolytes with Apple&P polarizable force field
- Spectroscopic properties from NMR to XANES

SEI formation in Li-ion batteries with ReaxFF

www.scm.com/reaxff-sei

Screening redox potentials of dyes for photelectrochemical cells

www.scm.com/redox-screening

Organic Electronics

www.scm.com/organic-electronics

Optimize materials for organic electronic devices through atomistic modeling of materials. Improve emission, charge generation, charge transport and other properties in OLEDs, OFETs, and OPVs.

Selected Applications

- Phosphorescence
- Charge transport
- Exciton coupling
- Charge transfer states with (tuned) range separated hybrids
- Accurate ionization potentials and electron affinities with qsGW
- Multiscale OLED workflows from ab-initio atomistic to device level kinetic Monte Carlo

www.scm.com/oled_phosphorescence

Tutorial: Thermally delayed fluorescence

www.scm.com/tadf-tutorial

Tutorial: Charge transfer integrals

www.scm.com/charge-transfer-integrals

Study catalytic activation with DFT, combustion reactions with ReaxFF, or predict vapor-liquid equilibria with COSMO-RS.

How will AMS modeling help you?

- Analyze combustion reaction networks / kinetics
- Accelerate reaction dynamics
- Bonding Analysis: Activation strain model for rational catalyst design
- Optimize solvents for extraction and other chemical processes

Tutorial: Collective-variable driven hyperdynamics

www.scm.com/cvhd

ChemTraYzer 2: Unique reactions and rate constants from MD trajectories

www.scm.com/ct2

Polymers

www.scm.com/applications/polymers

The Amsterdam Modeling Suite offers powerful computational chemistry tools to advance your polymer research projects.

How will AMS modeling help you?

- Predict polymer cross-linking and degradation mechanisms
- Stress/strain and failure mechanisms of polymers and composites
- Predict glass transition temperatures, thermal expansion coefficients
- Design optimal solvent mixtures to dissolve your polymers
- Study catalytic polymerization
- Predict important thermodynamic properties for polymer/solvent and polymer/polymer systems

Reversing fatigue in carbon-fiber reinforced vitrimer composites

www.scm.com/self-healing-polymers

AMS polymer modeling playlist

www.scm.com/polymer-playlist

Study ligand binding, conformations, and absolute configuration with ADF. Use COSMO-RS to quickly reduce the solvent mixture search space for recrystallization, improving solubility with excipients or purifying active pharmaceutical ingredients.

Boost your research

- Solubilities, logP, pKa, VLE, etc. based on DFT + thermodynamics
- Solvent optimization, e.g. for liquid-liquid extraction or recrystallization
- Accurate NMR predictions and analysis
- VCD analysis tools
- Accurate energies of organic crystals with DFTB+D

Instantaneous prediction of solubilities

www.scm.com/cosmo-rs-solubilities

Solvent optimization for solubility and liquid-liquid extraction

www.scm.com/solvent-optimization

Nanotechnology

www.scm.com/applications/nanotechnology

Predict optical properties of quantum dots and other nanoparticles with the fast & accurate methods in ADF. Prescreen even more quickly with DFTB. Understand nanoparticle formation and other reactive processes at the nanoscale with ReaxFF.

Selected Features

- Accurate relativistic effects with ZORA
- Frozen density embedding for environment effects and large systems
- Efficient and flexible embedding scheme (QM/ QM',QM/MM,MM/MM) via hybrid engine.
- Fast TD-DFT with Model Potentials (SAOP, LB) and many spectroscopic properties
- 1000s of atoms with (TD)DFTB and Millions of atoms with ReaxFF

Tutorial: Plasmon-enhanced non-linear optical properties

ADF Powerful GUI to run and analyze calculations

www.scm.com/gui

Inorganic Chemistry

www.scm.com/applications/inorganic-chemistry

ADF and BAND are well suited for studying inorganic compounds: transition metal and organometallic complexes or systems with heavy elements. Fast, robust and accurate tight-binding method, GFN1-xTB, for structures and vibrational frequencies for all elements (Z=1-86).

Selected Features

- From NMR to X-ray: Many spectroscopic properties
- Unique chemical bonding analysis
- Scalar-relativistic and spin-orbit coupling
- Slater-type all-electron, basis sets for all elements
- Robust SCF convergence methods

Exceptional Uranium-Nitride Triple Bond Covalency

www.scm.com/uranium-nitride-triple-bond

ParAMS: Powerful parametrization toolkit

www.scm.com/params

Our powerful parametrization toolkit ParAMS enables you to parametrize ReaxFF and DFTB with full GUI support and an extensive Python library for customization.

Highlights

- Easily import, build, and visualize training data sets
- Use data from AMS, VASP, Quantum ESPRESSO, and experiments
- Properties: energies, forces, geometries, stress tensors, charges, and many more...
- Use of validation sets to prevent overfitting
- Walk-through tutorials for real-life ReaxFF and DFTB use cases

ReaxFF Tutorial: Parametrization of ZnS and H₂S on ZnS(110)

GFN1-xTB Tutorial: Refitting of repulsive terms with ParAMS corrects Li-F interactions

Full GUI support at every stage of the fitting workflows

Reaction discovery and kinetics

From atomistic to mesoscopic modeling

pyZacros/Zacros

Reactions on catalytic surfaces with kinetic Monte Carlo

Automated PES Exploration

Automatic search for saddle points and local minima on any Potential Energy Surface

ChemTraYzer2

Automatic extraction of unique reactions and reaction rate constants from MD trajectories

works.	Assistant Composition	Order +	Rate perstant & one*3, rest, si	A lower bound +	A typer bound	Notice of events	RestDark or	••• ·	. 1	Q
0 + 1HEHI -> 1HI + 1010	02 + H2 +> H + H02	2	4.407e+11	3.728e=10	1.307e+13	2	1 28		~ 2	1 . Q
D41 + 10 800 + 24	H07 => 02 + H	10.1	2.507e+12	2.101e+13	3.065e+12	100	25133418	5 64	- S 1	9 16 1
00 = 040 => 0000	02 # W => H02	2	1.0076+15	11910-15	1.668e+15	105	3 6 6 13 15	1 - L		L.
+1000 +> 00	H + H02 => 9062	2	4.350e+14	1.434e+14	1.100e+15	1	18 411 561	S		6 6 6
=> (0H) + (0H)	H202 => H0 + H0	1	5.032#+21	3.041e+11	8.750e+13	10	39 363 252	· •	<u>د</u> (π 👂
folloh (fild ++ (Hild + c	02 + 82 +> 8202	2	2.2046111	1.047e+10	8.6656111	1	20			. 🚅 ° '
N10L01 => 1HI = 1010	H202 # > H + H02	3	1.000e+14	8.583#+12	3.932++14	1	22	÷ •	5	S
+ (04) +> 0	H + H0 => H20	2	1.903e+15	1.221e+15	2.8020+15	34	23 74 99 18	6.6	- C	
00(HEH) = = 0000 + 14	H2 + H02 wir H000	2	4.418e+12	8.252e+11	1.211e+13	2	24.216		10	 1
000 -> 0404 + 1080	H302 -> H2 = H02	1	5.55Pe=13	1.471e+13	1.8280+14	2	26 137		<u> </u>	• • • • • • •
0 => 101 = 10H1	H02 => 0 + H0	1	1.784e+11	8.095e+10	3.215e+11	¥	82 179 814	~ ^	-	Cini 1
H + (0H) = = [H(H)0	H2 + H0 == H30	2	2.529e+13	1.470e+13	3.889e+13	15	33 389 202	× -	1	2 0
0 + 041 == 0100	H90 -> H > H20	1	1740e+13	9.501e+12	2.901#+15		38 100 190 2	04 220 253 330 4	05 432	and the second se

MKMCXX Microkinetics

Reaction rates and rate limiting factors from elmentary reactions

Getting started

www.scm.com/support

Get started right away with our easy to follow step-by-step tutorials. From drawing and optimizing an ethanol molecule to fitting a ReaxFF force field or running an OLED workflow, there's a tutorial waiting.

Easy start

- Online tutorials
- Videos
- Webinars
- Mailing list
- Expert technical support
- Custom tutoring, Consulting, Contract research

Contact us

www.scm.com

About us

Scientists at SCM are passionate about making computational chemistry work for you. Our mission is to develop powerful, easy-to-use software for your research and development needs.

We always value feedback on how to further improve our software in terms of capabilities, speed and usability! Not sure if a certain property can be modeled? Contact us and find out!

info@scm.com

Pricing

www.scm.com/price-quote/

Resellers

Our regional resellers offer first-line support for the Amsterdam Modeling Suite in the local language.

CHINA: 费米科技(北京)有限公司 www.fermitech.com.cn/ams/ 技术支持: support@fermitech.com.cn

JAPAN: www.molsis.co.jp/ams/ Dr. Kouji Chiba – sales@molsis.co.jp

KOREA: www.tnjtech.co.kr/v4/ Dr. Youngdae Joo – comj@tnjtech.co.kr

OTHER: www.scm.com/ams-resellers

Explore the Amsterdam Modeling Suite yourself

www.scm.com/trial

