Amsterdam Modeling Suite

GUI Modules

AMSjobs – Calculation Management

SCM

Getting Started

- Open AMSjobs
 - Windows: double-click desktop icon
 - Mac OSX: open Application
 - Linux: run \$ADFBIN/adfjobs
- Other GUI modules
 - Open as executables
 - ▶ SCM-button \rightarrow <GUImodule>

AMSjobs

AMSinput

GUI Controls – ADFinput Editor Controls

- left mouse button (LMB) & drag Free rotation
- In-plane rotation
- In-plane shift
- Zoom
- Area selection
- Deselect
- Undo
- Redo

- ctrl + LMB & drag **right mouse button** (**RMB**) & drag mouse wheel / alt & drag shift + LMB
- **LMB** on drawing space
- ctrl + Z
- shift + ctrl + Z
- View along x- / y- / z-axis
 ctrl + 1 / ctrl + 2 / ctrl + 3

GUI Controls – ADFinput Editor Controls

- Selection free rotation
- Selection In-plane rotation
- Selection in-plane shift
- Select all atoms ctrl + A
- Add hydrogen atoms ctrl + I
- Link selected atoms ctrl + L
- Delete selected atoms del / backspace

• More shortcuts: **Help** \rightarrow **Shortcuts**

LMB & drag from a selected atom
ctrl + LMB & drag from atom
(shift +) RMB & drag from atom
ctrl + A
ctrl + E
$\mathtt{ctrl} + \mathtt{L}$
del / backspace

GUI Controls – Molecular Editor

- Click on C-tool & place first C-atom
- Draw bond & place second C-atom
- Click on O-tool, draw bond & place O-atom

SCM File Edit Select Atoms Bonds View Help				
	ADF Main Model	Properties Details	MultiLevel	Q
	Task:	Single Point	-	•
	Total charge:	0		
	Spin polarization:	0		
	Unrestricted:	T Yes		
E Ta	XC functional:	LDA	•	•
	Relativity (ZORA):	None	•	•
C-tool 0-tool		5.I.	1	-
O tool, create single bond	Basis set:	DZ	•	٠
C(2), 4 connectors	Frozen core:	Large	•	
▶ с о м н сі х , о → < ¢	Numerical quality:	Normal	•	٠
O tool, create single bond C(2), 4 connectors C(2), 4 connectors C(2), 4 connectors	Basis set: Frozen core: Numerical quality:	DZ Large Normal	▼ ▼ ▼	C

GUI Controls – Molecular Editor

- Leave drawing mode with esc & LMB
- ctrl + E to saturate with H-atoms
- Area select (shift + LMB) OH group
- Rotate OH into anti-conformation & click preoptimizer button

SCM <u>File Edit Select A</u> toms <u>B</u> onds <u>V</u> iew <u>H</u> elp			
	ADF Main Model	Properties Details Mult	tiLevel Q
6	Task:	Single Point	•
	Total charge: Spin polarization: Unrestricted:	0 0 TYes	
2	XC functional:	LDA	· •
preoptimizer	Relativity (ZORA):	None	▼
	Basis set:	DZ	· •
	Frozen core:	Large	•
	Numerical quality:	Normal	•

Geometry Optimization

- When preoptimization yields wrong conformer
 - Hold shift & click atoms in order H-C-O-H
 - Set slider on bottom bar to proper angle
- ► Select Task → Geometry Optimization
 - Save & run calculation
 - ► Monitor progress with **SCM** → **AMSmovie**

Load Results & Frequency Calculation

▶ SCM \rightarrow New Input

- Load previously optimized geometry
 - File \rightarrow Import Coordinates
 - Select <OptimizationJob>.results/ams.rkf
- Frequencies: \rightarrow tick \Box Yes
- Save & run calculation
- ▶ SCM \rightarrow Spectra
 - Examine modes

Tip: **ams.rkf** contains driver results (optimization, MD trajectory etc.) **<engine>.rkf** contains engine-related data and results

GUI Efficiency Tricks & Features

- Chained calculations
 - Model Coordinates \rightarrow Use: Job Result
 - E.g. from prior (pre-) Optimization

ADF	Main	Model	Properties	Details	MultiLevel		Q,
			Coordina	ates		₿	9
Use:		Jo	b Result		•		Ð
Moleo	cule fro	m: 🔳]				

- Presets: repeatedly access the same settings e.g. basis, functional, grid...
 - Select settings
 - File \rightarrow Save as preset (difference from default)
 - ► File → Save as full preset (all input options)
 - ► Load via: File → Preset → <PresetName>
- AMSprepare & (report)
 - ► In AMSjob: select job, **tools** → **prepare**
 - AMSreport to gather & visualize results

UV/Vis spectrum of Ir(ppy)₃

- ▶ SCM \rightarrow New Input
- $\blacktriangleright \text{ ADF} \rightarrow \text{DFTB}$
 - Task \rightarrow Single Point
 - Model \rightarrow SCC-DFTB
 - Occupation \rightarrow Aufbau
 - Parameter directory \rightarrow QUASINANO2013.1
- ► TDDFTB-Settings: **Properties** → **Excitations** (UV/VIS)
 - Type of excitations: \rightarrow Singlet
 - Number of excitations: \rightarrow 1000
 - Excitations up to: \rightarrow 0.25 Hartree
- Save and Run calculation

UV/Vis spectrum of Ir(ppy)₃

▶ SCM \rightarrow Spectra

Periodic Structures

- File → Import Coordinates → cif/POSCAR/xyz
 - SCM extended xyz-format

3			
0	5.38944814	4.97842943	5.08087025
н	5.44702552	5.93631265	5.10815739
н	5.21671599	4.69375471	4.18046817
VEC1	10.00000000	0.0000000	0.0000000
VEC2	0.00000000	10.0000000	0.0000000
VEC3	0.0000000	0.0000000	10.0000000

- Common structures from library
 - Switch to periodic engine e.g.
 - Periodicity \rightarrow Bulk
 - Crystal structure library: • Hexagonal \rightarrow Graphite

Slab Models for Surfaces

- ► Manually: Periodicity → Slab
- Create surface
 - Edit \rightarrow Crystal \rightarrow Generate Slab
 - Set Miller indices. Here: 001
 - Number of layers: 1
- Select and delete one carbon layer

Tip: Edit \rightarrow Crystal \rightarrow Map Atoms to (0 .. 1)

Lattice Optimization

- Consistent geometry: needs lattice optimization (using GFN-xTB here)
 - Task \rightarrow Geometry Optimization
 - Further Geometry Optimization details: click on
 - Optimize Lattice → tick □ Yes
- Save and run calculation: File \rightarrow Run
- Switch to amsmovie to check optimization: SCM \rightarrow Movie
- After calculation, use structure directly in new calculation

Supercells

- Adsorption needs a bigger unit cell
 - Edit \rightarrow Crystal \rightarrow Generate Super Cell..
 - Enter coefficients 2 0 and -1 2 in popup mask for rectangular cell

► Export Coordinates → .xyz and save for later

Adsorption Complex

- \blacktriangleright Click $X_{\overline{x}}$ and select F in the periodic table
- Place F-atom on top of Graphene layer, above a C-atom

- ▶ Task \rightarrow Geometry Optimization \rightarrow \bigcirc \rightarrow Disable lattice optimization
- Run optimization, load structure into input afterwards
- ► Export Coordinates → .xyz and save for later

- Open new input
- File \rightarrow Import Coordinates to load adsorption complex geometry
- $\succ \text{ Switch to BAND } \textbf{ADF} \rightarrow \textbf{BAND}$
- Task \rightarrow Single Point
- Calculate DOS → tick □ Yes
 Calculate band structure → tick □ Yes
- Run calculation
- Repeat for Graphene Supercell structure

DOS & Band Structure

► SCM → band structure to visualize results

DOS & Band Structure

projected DOS

- Switch to Atoms view and select atom(s)
- Right-click on selection and pick the orbitals of interest

Transition States

- Transition state search for stationary point along reaction coordinate needed for reaction mechanism, barrier heights, reaction rates
- Two main approaches available in AMS
 - Quasi-Newton: needs estimate for TS structure and (usually) definition of the reaction mode
 - Nudged Elastic Band (NEB): samples entire reaction path

Molecular SN₂ Reaction

▶ In AMSinput: build CI…CH₃…F guess (or import CICH3F.xyz)

- Task → Transition State
 for larger systems () to set details e.g. reaction coordinate
- Frequencies \rightarrow tick \Box Yes
- Spin polarization $\rightarrow 1$
- Save and run job

SN2 Transition State Analysis

▶ SCM \rightarrow Movie

to inspect transition state search

▶ SCM \rightarrow Spectra

to analyze reaction mode

- One negative frequency
- Click on negative mode
 to see movie of motion

Nudged Elastic Band (NEB)

- Sample reaction path with multiple images (beads) of the system
- Adjacent images connected by "spring"
- Only coordinates orthogonal to the reaction path optimized

Surface Water Splitting Reaction with NEB

- AMSinput: import ZnOwatersplit_initial.xyz
- ► Edit → New Molecule opens new editor tab
- Switch to Mol-2 tab and import ZnOwatersplit_final.xyz

Tip: rename tabs to *initial* and *final* by double-clicking on them

NEB Calculation

- **Task** \rightarrow **NEB** then click \bigcirc next to it
 - Number of images \rightarrow 16
 - ▶ Initial system → Mol-1 (or initial) Final system → Mol-2 (or final)
- Return to Main panel
 - Frequencies → tick □ Yes
 - Force Field \rightarrow ZnOH.ff
- Save and run calculation

ReaxFF Main Model	Properties	Details		Q	
Nudged Elastic Band (NEB)					
Maximum number of iter	ations:		J		
Number of images:		16			
Initial system:		initial	•	,	
Final system:		final		•	
Intermediate system:				,	
		1			
Spring value:		1.0	Hartre	ee/Bohr^2 🔻	
Skewness:		1.0			
Interpolate in Internal co	ordinates:	Yes			
Optimize reactants/produ	icts:	Yes			
Climb highest image to T	S:	Yes			
CL force threshold:		0.0	Hartre	ee/Bohr 💌	
Characterize PES point:		Ves	- Turci -	20,0011	
endracterize reo point.		105			
Optimize lattice:		Yes			
Jacobian value:]		
Convergence and optimiz	zation details			Ø	
Restart from:					
Re-optimize reactants/pr	oducts:	Yes			
Use old tangent:		Yes			
Map atoms to cell:		Yes			
hap deams to cent					

NEB Reaction Path

SCM \rightarrow **Movie** to examine NEB path

• SCM \rightarrow Spectra to confirm the correct reaction mode

Snapping Polymer Chain

- ▶ File → Import Coordinates → cis_polyacetylene.xyz
- $\blacktriangleright \text{ BAND} \rightarrow \text{ReaxFF}$
 - Force Field \rightarrow CHO.ff
- \blacktriangleright Task: \rightarrow Molecular Dynamics, then click \bigcirc
 - Number of steps: \rightarrow 80000
- Thermostat: click
 - Thermostat: \rightarrow NHC
 - Temperature: \rightarrow 300.15
 - Damping constant: \rightarrow 100 fs
- Model \rightarrow MD deformations
 - Length rate \rightarrow Y: 0.00002
- ▶ Properties \rightarrow Gradients, Stress tensor
 - Stress tensor \rightarrow tick \Box Yes

Snapping Polymer Chain

- Save and run calculation
- **SCM** \rightarrow **Movie** to monitor progress
- Switch to console
 - Linux/Mac OSX: source amsbashrc.sh
 - Windows: start ams_command_line.bat
 - amspython stress_strain_curve.py <JobName>
 - amspython plot_stress.py stress-strain-curve.csv
- cis- and trans-configurations have different mechanical properties

Optional Exercise: Bouncing Buckyball

https://www.scm.com/doc/Tutorials/ molecularDynamicsAndMonteCarlo/MoleculeGun.html