Modeling & Simulation for Pharma Reducing costs & time through computer-aided design

Fedor Goumans, Chief Customer Officer goumans@scm.com

Why bother with Computational Chemistry?

???

- Accelerate research, reduce costs & environmental impact
 - Reduce experimental search space (virtual screening) 0
 - Quicker optimization through structure-property insights 0
 - New developments from machine learning 0

Synergy experiment-calculations

- Ask relevant questions 0
- **Understand limitations model**
- **Experimental constraints**

Formulation => best mixture for solubility? Production => optimize catalyst (ligands, solvent -> lowest E_a)

Modeling properties in pharma

Solubility & co-crystal screening

- Screen solvent (mixtures) for solubility
- Screen excipients for solubility
- Screen co-crystals

Liquid-Liquid extraction

Screen biphasic solvent mixtures

<u>Spectroscopy</u>

• Help determine structure & AC • VCD, NMR, IR, UV/VIS, XANES

Reactivity & Catalysis

- Stability assessment (e.g. Fukui function)
- Map reaction pathways
- **Optimize catalyst**

Drug solubility with COSMO-RS

- Find best excipient for water-insoluble drugs •
- Screen co-polymers with COSMO-RS => maximize solubility

3 common features (library ~200 monomers)

Co-crystal screening with COSMO-RS

- Improve solubility, stability, mechanical properties of API •
- Screen candidates for co-crystallization •

Optimize solvent mixtures for extraction

• Remove impurities or extract (natural) products

Specify solvents

Water Methanol Ethanol 1-Hexanol Diethyl ether Benzene Toluene Acetic acid 2-Hexanone DMF THF Dioxane

Specify solutes

•••

Acetic acid Water

Specify problem conditions

Optimization direction: maximize Maximum number of solvents: 3 Temperature: 298.15K (or range)

...

Maximize the partition coefficient

Help assign spectra with DFT: NMR

Good agreement between calculated (ADF, spin-orbit) and experimental ¹⁹F NMR shifts for organic compounds, including taxol and fluoro-analine.

Saielli, Bini & Bagno: Computational ¹⁹F NMR. 2. Organic compounds <u>*RSC Adv.*</u> **4**, 41605 (2014)

Determine absolute configuration (VCD)

More confident AC assignment with Vibrational Circular Dichroism calculations

- Include conformers
- Include solvent effects
- Analyze coupling to establish robustness of peaks

Understand and improve catalysts: Pd allylation

Experimental + DFT study => Best catalyst: least stable intermediate Bonding energy analysis: increased bite angle ->larger steric strain Rational design: modify ligands and solvents to decrease E_a

Reaction Coordinate

Catalyst selection based on intermediate stability measured by mass spectrometry. Nature Chem. 2, 417 (2010)

Software for Chemistry & Materials

- SCM: Spin-off company from VU (1995) •
 - **Develop & market Amsterdam Density Functional (ADF)** 0
 - Continued development: Amsterdam Modeling Suite 0
- ADF = first DFT code for chemistry (1970s) Baerends@VU (>'73), Ziegler@Calgary⁽⁺⁾ (>'75)
 - 80s: support industry for catalysis Mitsui, Shell, Akzo, Unilever 0
 - 22 people (15 senior PhD's) + 3 EU fellows
 - New development, support, document, optimize 0
- Many collaborations non-profit & commercial \bullet
 - 160+ authors 0
 - New functionality, real-life pilot cases 0
- 1000s of users academia, government & industry

Amsterdam Modeling Suite

- ADF: powerful molecular DFT
 - Reactivity, spectroscopy
- BAND: periodic DFT, QE & VASP interface
 - (2D) Materials, spectroscopy, analysis
- DFTB & MOPAC: fast electronic structure
- ReaxFF: Reactive MD complex systems
- MLPotential
 - Backends SchNetPack, sGDML, PiNN, TorchANI
- COSMO-RS: fluid thermodynamics
 - VLE, LLE, logP, solubility
- AMSdriver: PES exploration, MD, MC
 - Hybrid: multi-layer, QM/MM, QM/QM'
- Integrated GUI, PLAMS: python scripting
- Interface with multi-scale and ML methods

Modeling & simulation to accelerate pharma RD&I © SCM 11

COSMO-RS Fluid Thermodynamics & Property Estimation

ReaxFF Reactive Force Field

MLPotential Machine Learning Potentials

DFTB & MOPAC

Fast approximate DFT Semiempirical

BAND Periodic DFT

ADF Molecular DFT

AMS driver: Potential Energy Surface

ADF: Molecular DFT

Reaction Coordinate

Bonding analysis: Understanding Catalyst-Substrate Interactions Nature Chem. 2, 417 (2010)

- 0
- - 0
 - 0
 - 0

NMR calculations locate ¹³C di-Rh carbene catalyst intermediate, Science, 342, 351 (2013)

Strong & unique points

All-electron Slaters, H-Og

Relativity: ZORA (SR, **SOC**)

Spectroscopy EPR, NMR, IR (VCD), UVVIS, XAS

Bonding analysis:

Fragment-based approach ETS-NOCV, QTAIM, MO diagrams, NCI, Fukui function Transfer integrals

Environments

Subsystem DFT (FDE), QM/MM, QM/QM', polarizable force fields

Fast & Accurate - Machine Learning Potentials

- Use machine learning potentials with AMS driver
- PES scans, conformers, MD, reaction energies, ... 0
- Can also be used with multi-layer methods 0

•

ullet

SCM

- Very fast & accurate when trained properly 0
- Automatically install popular ML Backends
 - Comes with <u>ANI-1ccx</u>, <u>ANI-2x</u> (H, C, N, O, F, Cl, S) potentials 0

	2_20		Х
s			Q
			0
			Ø
			Ø
			\odot
Kill		Pre-opti	mize

Background: fluid thermodynamics from quantum chemistry

COSMO-RS: COntinuum Solvation MOdel + RS (Klamt), SAC (Sandler) DFT-> chemical potential => activity coefficients => properties

Discuss your research challenge!

Which research challenges are most urgent?

We love to hear from you! <u>goumans@scm.com</u>

www.scm.com

