BAND

a Fortran program for bandstructure calculations
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This chapter gives an extensive discussion of the computer program with many details concerning the
software. We start with alist of acronyms and abbreviations that will be used and a global flow chart.

Bz Brillouin Zone NAO numerical atomic orbital
DF density functional PW plane wave
DOS density of states SCF self consistent field
irrep irreducible representation SSA stable state approach
LCAO Linear combination of atomic STO Slater type orbital
orbitals XC exchange and correlation
LD local density
Flow chart
BAND
INIT initiation of variables
GETINP input analysis
GEMTRY geometry master routine
POINTS symmetry unique points and weights for numerical integration
SYMCRY space group operators
ATMSET division of atomsin sets of symmetry equivalent ones
SYMPRJ point group operators in reciprocal space, derived from the space group
operators
SYMADD inclusion of inversion symmetry into the k-space point group
KPNT integration points and related data for integrals over the BZ
PREPAR master routine for the preparation of crystal functions
RADIAL master routine for radial parts of one-center function
RADFNC master routine for generation of radial function tables
DIRAC numerical solution of DF equations for spherically symmetric free
atoms; output tables (NAOs, atomic densities and coulomb potentials)
SLTORB STOs, tables
FITRAD Slater type fit functions (STF's) and potential functions
RADMAX maximum radial extension of any tabulated function (valence, fit, atomic
density, atomic coulomb potential)
CELLS coordinates of lattice points that are relevant for the calculation of bloch
sums
CELMAX for each radia function table: the number of cells needed in the bloch
sum, derived from itsradial extension
FITSYM number of totally symmetric fit functions
NUMGRD master routine for computation of function valuesin the crystal
integration points: interpolation from the radial tables, bloch summation
by aloop over the relevant cells
RPNTID generation of all symmetry equivalent integration points, from the

unigue ones
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RPNTRE

VMULTI

ATOMIC
ELSTAT
ATMFNC

BASORT
PLANEW
BASPNT
BASCOR
BASOVL

BASTRA
HAMFIX

FTORT
FITPNT

HTOVL
FITTRA
(end of NUMGRD)

(end of PREPAR)

REORGF

SCF
SCFTST
RHOPMT,

RHOPSI
RHOFIT

RHOPOT
EIGSYS

FERMI

organization of the file with points: blocks of points with a pre-
determined maximum length (the vector length)

multipole potentials: potential values in the integration points due to a
Bravais lattice of multipoles; each {Im}-multipole; Bravaislattices
centered on each atom; symmetrized functions by combining symmetry
equivaent atoms

master routine for data related to the free-atom charges and coulomb
potentials

electrostatic interaction between unrelaxed free atoms (energy termin the
cohesive energy)

superposition of the atomic densities and coulomb potentialsin the
integration points (reference charge density and potential for the SCF
procedure)

master routine for the crystal core and valence functions

characteristics of the planes wavesin the valence basis (lattice pointsin
reciprocal space)

bloch summations of one-center basis functions (core and valence); PWs
are added to the valence function set

explicit orthogonalization of the valence basis on all core states
overlap matrix of the basis

transformation to an orthonormal basis

fixed part of the hamiltonian matrix (in the orthonormal basis): kinetic
energy and coulomb potential due to the free atoms; matrices (one for
each k-point) are stored on file

master routine for the fit functions

interpolation and bloch summation (k=0); combination into functions
that are totally symmetric with respect to all space group operators
overlap matrix of the (symmetrized) fit set

transformation to an orthonormal basis

reorganization of all files containing function values in the integration
points: fewer blocks of points/ more points per block

master routine for self consistency iterations

test termination conditions of the SCF procedure

charge density in the integration points from the density matrix
(RHOPMT) or

from the eigenstates (RHOPS!)

fit coefficients: expansion of the deformation density in fit functions, to
solve (approximately) the Poisson equation

the potential (coulomb plus XC), computed from the density and the fit
coefficients

evaluation and diagonalization of the hamiltonian matricesin the
respective k-points

master routine for k-space analysis
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FERMIE

PMATRX
(end of SCF)

PRPRTS
ENERGY
CHARGE
DOS
DOSTRA

DOSCAL
POPANA
FORMFA
PLANEW
CELRED
FORMF1

(end of PRPRTS)

(end of BAND)

fermi energy from the energy bands; occupation numbersfor all one-
electron states
the density matrix in the representation of the crystal valence basis

master routine for the analysis of results;, computation of properties
cohesive and total energy

charge distribution over the atoms by numerical integration

master routine for the (total and partial) density of states

back transformation of the self-consistent wave functions to the original,
non-orthogonal bloch-valence basis: for the partial densities of states and
for the Mulliken population analysis

partial and total density of statesfor a sequence of energy values
Mulliken population analysis

master routine for X-ray structure factors (form factors)

characteristics of the relevant plane waves

reduction to the symmetry unique set of plane waves

computation of the X-ray factors: fourier transformation of the charge
density by numerical integration
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1 Introduction

BAND isadensity functional (DF) program for electronic structure cal culations on periodic systems. The
programming language is FORTRAN77. Where in the text explicit reference is made to the software,
subroutine names are in small capitals (SCF, INIT), variables are underlined (pot, overlp) and key-words used
ininput are outlined (mix, lattice). Details of the implementation will be discussed in a number of
'software sections; these are referred to as SShinput, SS™basi's, and so on.

Energies and lengths are in atomic units (hartree, bohr), unless explicitly stated differently.

formalism

In the Kohn-Sham theory of the DF method [Hohenberg and Kohn 1964, Kohn and Sham 1965] the two-
particle coulomb interaction 1/ry, between electronsis replaced by the sum of two one-particle operators.
Thefirst isthe coulomb potential due to the average charge distribution. The second is the exchange-
correlation (XC) potential, representing exchange and correlation effects in an average way. The XC
potential isafunctional of the charge distribution.

With the usual approximation of motionless point nuclei the hamiltonian equation reads
Hyn(kin) © {T+ Vo) + Vi) } wnkin) =eqk) wnkin) (11)

T isthe kinetic energy operator, - D/2 in atomic units; V(r) isthe total coulomb potential, due to the
nuclear charges and the electron cloud; V,(r) isthe XC potential. Relativistic effects have not (yet) been
included in BAND.

yi(k;r) isaone-electron state with wave vector k; k serves also as asymmetry label, denoting the
irreducible representations (irreps) of the trandation group corresponding to the Bravais lattice. It isa
(pseudo) continuous variable that may assume al valuesin the (first) Brillouin Zone (B2).

The solutions { &,(k) ,wp(k;r) } vary continuously with k and form thus 'bands; the subscript n, which
enumerates the distinct solutionsin k, is called the band index.

The trangdlation properties of irrep k are expressed by (Bloch's theorem)
wnkir+R) =K Ry (12)

whereR is any point of the Bravais lattice. The states y,(k;r) are computed as linear combinations of
basis functions ¢. These are chosen of course to belong to the sameirrep and are labeled accordingly:
o;(k;r), i=1,2,...

The electronic charge density p(r) is obtained by a summation over all occupied states, i.e. al states with
energy en(k) below the fermi energy e- . The summation includes the integration in k-space



Introduction 7

p=a 8 dkoyykin) 62 (e —eK)) (13)

n BZ
0(x) isthe Heaviside step function: 6=1 (x>0) or 0 (x<0).
The fermi energy - is determined by the total amount of electronic charge Q per unit cell

6 pNd=Q (1.4)

unit cell

The potentials V(r) andV,(r) in(1.1) are computed from the density p(r) and hence they depend on the
solutions yp,(k;r) . The self-consistent solutions are found by an iterative self-consistent field (SCF)
procedure.

applicability and results

# Any type of periodic system can be handled. The systemswill be called n-dimensional crystals, by
which we understand polyatomic systems with periodicity in n directions; n may be 3 ('normal’ bulk
crystals), 2 (slabs) or 1 (polymers).

It seems natural to include also the case n=0 (molecules). BAND is based on the same theoretical model
as the Amsterdam DF molecule program and the two are very similar as regards the general set-up. In
fact they share a substantial portion of their software. A future melting together may well be undertaken
and should not present fundamental problems.

# Thetwo spins can be treated independently: both spin-restricted and spin-unrestricted calculations are
possible.

# For V,.(r) severa forms advocated in the literature are available in the program: the classical X, , the
Gunnarsson-Lundgvist (GL) and the Vosko-Wilk-Nusair (VWN) formulas. Any of these can be elected in
acalculation. Other varieties are easily implemented if desired.

# Apart from the self consistent solution of (1.1), the program computes the total and cohesive energies,
X-ray factors, total and partial densities of states and it performs a Mulliken population analysis.

# There are no restrictions on computational parameters such as a maximum number of atoms, basis
functions and so on. Of course computer resources may limit the applicability. To have an indication: a
slab containing 18 transition metal atoms and two first row atoms per 2D unit cell (periodic
chemisorption of CO on a copper layer) isa big system, as regards both CP-time and disc-usage. If the
basis set and other parameters are chosen to achieve high accuracy (0.001a.u. in the cohesive energy), the
program will take ten or more hours on a Cyber205 and handle ~10° words of data. Bulk silicon is
computed with fair precision (better than 0.01a.u. in the cohesive energy) in 20 minutes and stores
7" 10 words on disc duri ng the run.

We will discussin other sections how the demands on storage facilities and computer time may be cut
down by future developments of the program, primarily by making better use of symmetry properties
than is done currently (SS"symmetry). In the mentioned example of Cu-CO adsorption for instance this



I ntroduction 8

would reduce costs by roughly an order of magnitude. The gain in the silicon cal culation would be even
more, due to the high symmetry.

An improvement in efficiency may also result from arefining of the SCF procedure (the Stable State
Approach, see SS*basis).

basic characteristics of the method

starting up, one-center function tables

BAND contains a fully numerical Herman-Skillman [Herman and Skillman 1963] type subprogram DIRAC.
DIRAC solves the DF equations for the spherically symmetric free atoms from which the crystal is built up.
The superposition of the atomic densities and the corresponding potential is used to start up the self-
consistency iterations for the crystal. Cohesive energies are computed with respect to these atoms. The
atomic one-electron states are optionally used in the basis set for the crystal.

All data from DIRAC such as the atomic density, the coulomb potential and the orbitals are obtained in the
form of tables f(r; ), i=1,2,.., giving the values of f(r) for asequence of radial values. Other one-center
functions (see below) are represented in the same way, as radial tables, even if they could alternatively be
treated analytically.

Theradial grid pointsr; of atable constitute alogarithmic mesh: r; 4 /rj =constant. The grid-
characteristics, i.e. the number of points, the quotient-constant and the smallest valuer; are the same for all
one-center functions associated with a certain type of atoms. The radial meshes may be different for different
types of atoms.

basis

The program employs two types of basis functions ¢ (k;r):
a) Bloch functions [Bloch 1928]. These are computed as linear combinations of localized functions x (r)

okin=a &R yr-R) (15)
R
The phase factors dK'R in the summation over the direct lattice points R assure that ¢ (k;r) hasthe correct

trandational symmetry (1.2). The localized functions y (r) are one-center functions, centered on some atom
o.. They have the form

x() =Zim( Q) Py ) (1.6)

The subscript o signifies that the coordinates are relative to the position of atom a.. Z;,,(Q) isa(real
valued) spherical harmonic (23.30) and P(r) isaradia function.
Two types of radial functions are used in the program. They are the radial parts of
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al) Slater type orbitals (STOs): P(r)='tNe o .
a2) Numerical atomic orbitals (NAOs) from DIRAC.

b) Plane waves (PWs): (])(k;r)zei(k*'K)'r . K isapoint of the reciprocal Bravais lattice. Plane waves are
used only for 3-dimensional crystals. In other systems the asymptotic behaviour away from the crystal is
unsuitable to describe bound el ectron states.

Note: although the use of a pure PW valence basis is possible (orthogonalized on the core states, as the case
might be, see below), such an application should be undertaken cautiously. All integrals are evaluated
numerically and no useis made of the analytical integrability of Pws. The integration scheme has not been
devised for rapidly oscillating functions and hence it will be less accurate for them, or, if the number of
integration points is accordingly increased, we are confronted with higher costs. A high-precision PwW
calculation with large numbers of Pws may therefore be less efficient.

The cause of thisis purely historical: BAND has been developed as an LCAO program; the PWs have been
included later and are (currently) treated in the same way as other functions.

frozen core

Some of the NAOs may be specified to be core states. These are not iteratively computed in the crystal SCF
procedure. Each (valence) basis function is orthogonalized on al core states by explicitly projecting out the
core functions.

integrals

Integralsin real space over the crystal unit cell, such as overlaps and hamiltonian matrix el ements, are
evaluated numerically. The applied integration scheme is based on product Gauss formulas and a
partitioning of space in specific regions. atomic polyhedra (‘cells), inside each polyhedron an atomic 'core;
sphere, and the 'outer' region far away from the nuclei (not for 3D crystals). Any desired accuracy can be
achieved, but of course with a concomitant number of integration points [chapter 111].

k-space

Integrations over the BZ, for instance to compute the density (1.3), are performed numerically, using the
analytic-quadratic method [Wiesenekker et al. 1988, Wiesenekker and Baerends 1990]. Any quantity F is
approximated as

FOoa 8 kFyk) Be-ak)»a & 0k Fak) (17)

n B n k
Fn(k) isthe contribution to F from the eigenstate y,(k;r) ; in case of the density for instance F=p(r),
Fnk) =0wp(k;r) 6 2 The integration weights o, (k) may obviously be associated with occupation
numbers for the states y,(k;r) . Henceforth we will refer to them in this way, although the analytic-
guadratic method occasionally results in ‘non-physical’ negative occupation numbers.
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The analytic-quadratic method implicitly makes a piecewise quadratic expansion in the variable k both of
Fn(k) and of the energy function e,(k) . The occupation numbers are then determined such, that these
second order polynomials are integrated exactly. The method is accurate and converges quickly for all types
of systems: isolators, metals and semiconductors [Wiesenekker et al. 1988, Wiesenekker and Baerends
1990].

Poisson's equation

The coulomb potential V(r) dueto the nuclear charges Z, and the electronic density p(r) is defined in the
program as

Ve =8 {pr)+ A 2z, 80—y )} 6r-ro’t o (L8)
o
The tables from DIRAC give the coulomb potentials V,(r) due to the spherically symmetric atomic

densitiesp,(r) plusnuclei Z,, . Defining the deformation density pye(r) asthe difference between the
crystal charge distribution and the superposition of atomic densities gives

o Ve
Vo) =@ Vo) +8 pyglr) or-ro™t a (1.9)
[0
The form in which pye(r) isobtained precludes an analytical evaluation of the second term and the
singularity of the denumerator makes application of the normal numerical integration scheme unsuitable.
The problem is solved by afitting procedure as introduced by Baerends et al. [1973]. A set of fit functions

f;(r) ischosen such that a) the density pye(r) can accurately be expanded in them and b) the corresponding
coulomb potentials ff(r) are easily evaluated. Then, with

7

£ ° 8 fi() or-ro”t o (1.10)

[¢]
Paef) » A G fi(r) (1.11)
the coulomb potential is approximated by

Vo) » & Vo +a g £ (112)

o

Thefit functions are derived from one-center ‘atomic’ functions £(r)=Z;,,(Q ) P(r, )- Thisform allows an
easy evaluation of the corresponding potential functions&€(r) (S$*coulomb potential) .
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The density is a symmetric function, invariant under all operators of the space group. The generating
functions &(r) are therefore combined into symmetric functions f(r); these are the crystal fit functions. The
same combination coefficients yield the associated fit potentials f(r) from the potential functions EX(r) .

2 Implementation

We deal with the implementation on two levels. First we survey the flow of normal execution. We do this
from a conceptual point of view, neglecting details and simplifying matters for sake of clarity. This gives
insight in the organization of BAND and tells us globally what happens when and where.

In the second stage we look closer by giving attention to special aspectsin a series of Software Sections
(SS"basis, SShinput, SSMiles, etc). There we examine input specifications, usage of files, treatment of
symmetry, details of some algorithms and so on. Apart from being useful in itself as documentation, this
may be of aid in case of error-tracing and when modifications or extensions of BAND are contemplated. A
few suggestions for improvements of the existing code have been added.

survey

BAND consists conceptually of three parts. The heart is part two, the iterative SCF procedure to find the self-
consistent solution of the hamiltonian equations. Part one is the preparation for this: input reading,
geometry analysis, construction of the valence basis, etc.; it starts with subroutine INIT, where severa
variables areinitiated. In part three the results are analyzed and various properties are computed.

The global flow-chart at the beginning of this chapter lists the main routines (names in capitals) with a
summary of their purposes. The indentations reflect the hierarchical structure; for instance: INIT, GEMTRY
and PREPAR are called by the main program (BAND); GETINPin turnis called from INIT.

crystal functions

The primary goal of PREPAR is the preparation of various crystal functions (valence, fit, potential, density).
These functions are treated as purely numerical functions, whatever their origin; they are represented by the
valuesin the crystal integration points. These values are in most cases (the only exception being the PWs
in the valence basis) defined and computed as bloch sums: the contributions from the various cells are added
in aloop over the crystal lattice points.

As said before, al primitive one-center functions, whose contributions are to be added, are represented by
tables containing the radial values for anumber of distances from their respective 'origins. They are stored
on various files, together with the angular quantum numbers which define their angular dependency.
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The preparation of crystal functions thus consists roughly of two steps: @) generation of the radial tables
(DIRAC, SLTORB, FITRAD), b) interpolation from the tables to compute them in the crystal integration
points and bloch summation (ATMFNC, BASPNT, FITPNT).

bloch sums

Depending on the size of the unit cell and the dimensionality of the crystal, the loops over the cells (bloch
summations) may involve several thousands of terms and take a substantial time. To reduce the costs,
BAND attempts to limit these loops. For this purpose each involved radial function tableis analyzed to find
out at which distance the function becomes negligible; the corresponding number of cells, different for each
function, is determined (CELMAX) and used in the bloch summation procedures.

Asa preliminary the maximum extension of any radial function is determined (RADMAX); thisis used to
set up an appropriate list of lattice points (cell coordinates. CELLS).

orthonormal function sets

The valence function set and the fit function set are both transformed to an orthonormal basisvia
diagonalization of the overlap matrices (BASOVL, BASTRA, respectively FITOVL, FITTRA). Thisis
convenient in the subsequent employment: some computational procedures are simplified and memory
usage in the SCF procedureis alleviated substantially (the overlap matrices may be rather large).
Linear dependency is controlled by checking the eigenvalues of the overlap matrix.

symmetry and integration points

Symmetry plays an important role in reducing computational efforts (SS*symmetry). Furthermore the
crystal density and potential are explicitly symmetrized to preserve the symmetry of the hamiltonian
(symmetry breaking is prevented).

Some symmetry-analyzing routines (SYMCRY, ATMSET) are subordinate to the numerical integration
routine (POINTS) for the following reason:

POINTS is the master routine of an extensive and sophisticated numerical integration package for polyatomic
systems [chapter I11]; input are the coordinates of the atoms and the lattice structure, plus specifications
concerning the required precision. In order to generate an integration scheme that reflects the symmetry of
the polyatomic system, the symmetry operators are determined and the atoms are organized in groups of
symmetry equivalent ones. This symmetry information, in fact only a by-product of POINTS, is
subsequently used in various parts of BAND.

In principleitistrivial to derive the point group operators in k-space from the space group operators: the
point group parts of the affine symmetry transformations are symmetry operatorsin k-space. However, in
an n-dimensional crystal k-space has only n dimensions, which may be lower than 3. Moreover BAND
optionally neglects dispersion in certain directions in k-space. In general the k-space operators are therefore
obtained by projection into the space with the appropriate dimensionality (SYMPRJ).

Inversion is a symmetry operator in k-space, regardless of the space group. So, if it isnot yet present after
the 'projection’ procedure, it must be added (SYMADD).
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wor kspace and vector |ength

FITSYM determines only the number of symmetric fit functions; thisis used for appropriate dimensioning
of some arrays (BAND simulates dynamical allocation: SS*workspace).

The integration points are organized in blocks of points. All related data on files, such as the values of
various crystal functions in the points, are structured accordingly. The processing of these data thus takes
place in aloop over the blocks. The maximum number of points per block, npx, i.e. the block length, is
computed to organize work space in an optimal way (SS*workspace).

In comparison with the preparation part the SCF part has effectively more workspace available (in particular
thanks to the absence of various overlap matrices) to load in core e.g. the valence functionsin ablock of
integration points. Increasing the lengths of the blocks (REORGF) |eads then to longer vector lengthsin
vector operations, for instance in the evaluation of hamiltonian matrix elements by numerical integration.
Thisresultsin asubstantial improvement of efficiency (depending on the machine).

multipole |attice sums

BAND solves the Poisson equation by afitting procedure for the deformation density. The corresponding fit
potentials are | attice sums of functions that are asymptotically multipole potentials. Naturally these lattice
summations are split in arapidly converging summation of exponentially decaying functions and the lattice
sum of point-multipole potentials. The first term is treated in the fit section (FITPNT) by a straightforward
loop over lattice points. The second term gives the familiar solid state problem of slowly (or even
conditionally) convergent lattice sums. VMULTI evaluates the pure multipole lattice sums (by an
unconventional algorithm: SS*coulomb potential); the data are stored on file itvmul , read again in FITPNT
and combined with the other term to the fit potentials.

Finally al fit data (function values and potential values) are stored on file to be used in the SCF procedure.

CE

When all crystal functions have been prepared, the SCF procedure is started. Theinitial density and the

corresponding potential are given as the 'sum-of-overlapping-free-atoms. Iteratively the following steps are

then executed:

a. numerical integration of the potential matrix elements; this is added to the fixed part of the hamiltonian
(kinetic energy). The hamiltonian matrices (one for each k-point) are diagonaized (EIGSYS).

b. analysis of the energy bands to determine the fermi energy and the occupation numbers for the one-
electron states (FERMI).

c. computation of the density matrix in the representation of the basis functions (P-matrix) (PMATRX).
construction of the charge density in the integration points from the P-matrix (RHOPMT).
expansion of the deformation density in the fit functions, for the solution of Poisson's equation
(RHOFIT).
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f. calculation of the new potential (RHOPOT) from the fit functions (coulomb potential) and the density
(XC potential).

SCFTST tests various conditions for the termination of the SCF procedure (convergence, insufficient time,

maximum number of iterations).

post-SCF

After the SCF procedure BAND computes various properties. Thisis organized in the master section
PRPRTS. PRPRTS calls subsequently

a. ENERGY to compute the bonding energy, partitioned in various terms, and the crystal total energy.
b. CHARGE to determine by numerical integration the charge distribution over the atoms.

c. DOS, for an analysis of the density of states (total and partial) and a Mulliken population analysis.
d. FORMFA to compute the X-ray structure factors (form factors).

Software Sections

In the remainder of this chapter we focus attention on the implementation. Theoretical remarks and
derivations are included, but some acquaintance with the theory of solid state, quantum chemistry and
numerical mathematicsis assumed. The treated subroutines and subjects are listed in the Software Reference
Lists A and B, after the last Software Section.

A program like BAND is apt to be used on several types of computers. Furthermore its size and complexity
make it probable that errors are hidden in it, even after extensive testing. We have adhered therefore to
standard FORTRANT77. The use of 'smart and dirty tricks' and of machine-dependent FORTRAN dial ects may
let the program run faster, but it is heavily paid for in human time, when implementation on another
machine is on stage, or when bugs show up.

Itis hardly avoidable however that the program be machine-dependent in some respects. The imperfection of
compilers, as regards the generation of the most efficient code, may lead in some cases to unreasonably bad
performance. Although thisisin principle a matter of awaiting better compilers and 'not our business, it is
more practical to take measures. In particular we have done so with vectorizable loops. Consider

do 20 j=1,m1 (2.1)
do 10 i=1,n
10 a(i,j+1l)=a(i,j)+b(i)
20 conti nue

Theinner loop should be executed in vector mode, but the compiler may not consider it vectorizable (e.g.
suspicion of recurrence) and generate scalar code. If it is vectorized, memory banking conflicts may occur
when the inner loop length nisvery large.

To solve these problems we utilize a number of special subroutines for vector operations. The code aboveis
replaced by
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do 20 j=1,m1 (2.2)
call vauvw(n,a(l,j),b,a(1,j+1))
20 conti nue

Subroutine VAUVW (vector addition: u+v=w) adds two vectors and stores the result into athird. Similar
routines multiply, divide, perform triadic operations etcetera. The disadvantage is the overhead due to the
call; thisisrelatively small if nislarge enough. The advantage is that the problems are transferred from a
very large number of similar pieces of code to a small number of simple routines.

The vectorization problem is solved automatically in this way: the simplicity of the routines implicates
already that any compiler will generate vector code for them. We might even comfortably use explicit vector
statements if the local FORTRAN dialect allows so, because the resettings to standard FORTRAN are few and
straightforward.

Memory banking conflicts are solved by splitting up vectors that are too long. A special constant Iveccp,
the maximum vector length for CP-operations, controls this; it is of course machine-dependent and should
be adapted to the situation. lveccp can be set viainput, with the key cp vectors.

All explicit machine-dependency in BAND is controlled by afew similar constants; these are stored in
common block MACHIN.

BAND frequently tests the state of affairs during execution. Many of these tests are superfluous if the input
is sensible and the code is correct. The tests are there, because neither of these conditions is guaranteed. It
would not be the first time that a bug in the program, showing up in a new type of calculation, is noticed
and traced in thisway. Warnings are issued if intermediate results are suspicious and in some cases BAND
stops, to avoid the waste of human time and computer resources.

We have attempted in several ways to make the program flexible and easy to use. In particular input is
largely optional, with reasonable default settings for all omitted specifications; input is governed by keys
(strings, usually single words). Thisis discussed in SS"input. In many other Software Sections the related
input options and the corresponding keys are mentioned. Keys will be typed outlined (integration).
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3 Basis

The construction of the crystal basis functions is organized in BASORT. The generating one-center functions
%, produced in DIRAC and/or SLTORB for the NAOs and STOs respectively are on fileitpsi and the kinetic
energy functions- (D/2)y on itkin.

The plane wavesd K+K)'Tin the basis are characterized by the lattice points K of the reciprocal lattice.
BASORT calls PLANEW to generate these vectors from the input-specified number of stars nwavst
(Ss"input). The resulting number of plane wavesis nvawv. The total number of valence basis functions for
eachk-point is nbas.

general

BASPNT interpolates the one-center functions, computes their bloch sums and adds the plane waves to the
basis set. Thisis done for a number of k-points simultaneously (SS“workspace); after BASPNT the k-points
are processed one at atime.

BASOVL calculates and diagonalizes the overlap matrix of the basis{ ¢} . From the eigensystem the
transformation to an orthonormal basisis constructed. Let S be the overlap matrix and {E,A} the eigen
system: S=EAE" . Define the transformation matrix U as

-1/2
Uij :Eji }“i (3-1)
The transformed functions ¢'
, [o]
oi'=a U9 32
]
are orthonormal:

- ) ) * “1/2
#;'00j =8 Ujxoxoa Ujofi=a EgEjQRir) =" Sq =
k | KI
-a (a E;i Exm)(Q Ej E|*m) Am@AiA)) V2 =5 8jm Amidj) v =% (33
m k I

We used here that the eigenvectors of S are orthonormal. BASTRA performs the transformation.

Thefinal orthonormal vaence basis and the transformed kinetic energy functions (- D/2)¢' are written to
(scratch) filesitbasO and itkbas. These are used (and deleted again) in HAMFIX to construct the matrices T
andH . T isthekinetic energy matrix in the orthonormal basis, it is used to calculate the valence kinetic
energy of the crystal after completion of the SCF procedure (SS"energy).

Hg ° T+aV,, isthefixed part of the hamiltonian, consisting of the sum-of-atoms coulomb potential and
the kinetic energy. In the SCF part this is combined with the iteratively computed X C potential and the
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coulomb potential of the deformation density. The Hy -matrix is written to file ithO, the kinetic energy
matrix T to itdatm.

HAMFIX copies also the valence function values from itbas0 to itbas, where the data for all k-points are
accumulated for later use in the SCF part.

linear dependency

The eigenvalues of the overlap matrix are used to check linear dependency of the valence basis. Strictly we
have dependency only if Sissingular, that is, if at least one of the eigenvalues is zero. Non-zero but very
small eigenvalues are aready hazardous however. The corresponding eigenfunctions are linear combinations
of the original functions with large (and opposite) coefficients. Small numerical errors, for instance in the
kinetic energy of the primitive functions, are blown up and indeed we find in practice that the results
become unreliable.

Therefore BAND stops (in BASOVL) if the smallest eigenvalue is less than some criterium scrval. scrval is
input with the key scrval, basis overlap or basis depend; (first and second) defaults are 107 4 and
10°°.

The coefficientsin all eigenvectors with small eigenvalues indicate which of the basis functions cause the
dependency problems. We have summarized thisinformation in 'dependency coefficients, defined as

o scrva N
w =a Tj OEij 62 (34

i
The summation runs over all eigenvectors; kj isthe eigenvalue and E; i isthe coefficient of the i-th

function in the j-th eigenvector. The dependency coefficients are printed if they exceed athreshold. This
threshold depends on iprntp, the general print option for the preparation part.

frozen core

Some of the one-electron states computed in DIRAC may be specified to be core states (SS"input). Their
function tables are written to the filesitpsic and the kinetic energy functionsto itkinc. Like the valence set
they are interpolated and combined in a bloch sum by BASPNT.

Core states are assumed to remain fixed when the atom is embedded in the crystal. A necessary, though not
sufficient condition is of course that core states of different atoms have no overlap; in particular they must
not extend into neighbouring (Wigner-Seitz) cells. Their bloch sum consists therefore effectively of only
one term for any evaluation point r. So they display no dispersion and the bloch 'sum' has to be constructed
only for the G-point k=0. Thisisthe ideal situation. In practice however one may, e.g. for computational
reasons, wish to define larger core spaces, containing states that have non-negligible dispersion. To take
care of that the core is constructed for every k-point separately; the computational overhead isrelatively
small because the bloch-sum for core states is obtained always in a very short loop over lattice points. Core
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dispersion may be neglected by specifying the input key no core dispersion. In that case the core bloch
sums are computed only once (for the G-point) and used for al k-points.

The overlap matrix of the core is computed (BASOVL) and the transformation performed to an orthonormal
set (BASTRA), in the same way asit is done for the valence basis. Idedlly thisistrivial: the overlap matrix
should be the unit matrix. It is useful however to check this: the numerical integration may be inaccurate
and, more importantly, some of the core functions may be too diffuse, thereby violating the implicit
assumptions about core states. The eigenvalues of the core-overlap matrix are compared with a criterium
screor (input by key scrcor, core overlap or core depend; defaults are 0.98 and 0.90). BAND
terminates when the test reveals that the frozen core approximation is unjustified.

The core functions are kept frozen and they are not processed in the SCF procedure. The valence basis must
then be orthogonal on the core. Thisis achieved by explicitly projecting out the core components (before
the valence set is orthonormalized).

valence valence 2 core  core .  valence . valence core

; - 0 -a o @ 00 n= ¢; - é. Sji 9;
j j

(3.5)

BASCOR computes the core-valence overlap matrix S and orthogonalizes the valence on the core. The core
function values are stored on filesitcor and itkcor. The functions are retrieved again from these files when
the valence basis is constructed; after the orthogonalization of the valence space on the core the core-files are
deleted.

valence-core dependency

The frozen core approximation introduces an additional linear dependency problem: the valence space and the
core space may have avector (almost) in common. Analogous to the situation in the valence set itself this
must be checked as it may lead to the blowing up of numerical errors. (In fact we realized this problemin a
sequence of calculations on diamond; varying adouble-{ STO-basis we found an unexpected lowering of the
total energy by several eV for a particular valence set; indeed the valence basis contained effectively almost
the carbon 1s core orbital.)

BAND deals with this by computing for each k-point the maximum overlap between normalized vectorsin
the core and valence space respectively. Thisisanalyzed in BASOVL, where the transformation to an
orthonormal valence basisis to be computed.

The core basis has aready been orthonormalized at that moment. A general core state, with normalization
condition, isthen

core _ o core
f =ag o, (3.63)

cle=1 (3.6h)
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The valence basisis not (yet) orthonormal. Denote the valence overlap matrix by V; ageneral valence
function with normalization is

valence

fvalence _ éq (I)j (3.79)

df vd=1 (3.7b)

Let S be the rectangular core-valence overlap matrix, computed in BASCOR, S; :éb;:ore éq)}'al € HIn

BASOVL the valence set has already been orthogonalized on the core, but the matrices V and S above refer to
the valence set before the core-orthogonalization; the core-orthogonalized functions are denoted ¢ Va/ence
and their overlap matrix W.
—valence valence 2 core
; =0, -a Sji ¢j (3.8)
i

W isthe overlap matrix actually computed in BASOVL. The relation between V and W is

., valence .,  valence . ~—valence 2 core . —valence 2 core .
Vij = &; 00; A= &, +*a S0 09 ta S0 =
k I
o *
=W +a S Sjd =W +(st S)j (3.9)
kl

where we used the orthonormality of the core set and orthogonality of ¥ on all core functions. The
overlap between ageneral core and valence functionis

0° &g 0" 68 6,4 e T sd (3.10)

O isacomplex number. We maximize therefore the real scalar OO* under variation of the coefficients ¢ and
d. The normalization conditions are incorporated with Lagrange multipliers. Define

F=00*- AcT ¢ - pud" vd=c' sdd" stc- acT ¢ - pd™ vd (3.12)

From the variational equations we derive

F _ o el
£5=0p SI0°-Ac=0 b c=5- S 3.12)
9 _op ostc-uvd=0p stsi=+L vqg (3.13)
adT oo )

Multiplication from the left by V" 12 gives

v V28t sy U2y H2g) = v ”2%%8 viP20wv%) b oGd = ed (3.14)
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with
G=v V25t gy 12 g =LA d=v2g (3.15)

(3.14) is an eigenvalue equation for the hermitian matrix G. Combining (3.10) and (3.12) gives

oo cf Sd:cTc§ b =00 (3.16)
Similarly

00 ¢t sd= § atsfy Sd:% df v Y2t gy V24 :% edTd b e=n (3.17)
So that &(=A=1)=00*. The maximum overlap between core and valence can then be defined as (€ % )1/2

implementation

In BASCOR, where the original valence set is orthogonalized on the (orthonormal) core, the matrix (SJr S)is
computed from the core-valence overlap matrix S. The variables in the program are sdagsr and sdagsi for the
real and imaginary parts respectively

Thisisadded in BASOVL to W (ovire, ovlim), the overlap matrix of the valence set that has been
orthogonalized on the core: V:W+(SJr S). V isthen diagonalized to construct V" 12 from its eigensystem:

v=uaut p v 12 =yq Y2yt (3.18)

Next we obtain G by the similarity transformation (3.15) (routine SIMTRF). Finally G isdiagonalized to
find the maximum eigenvalue & gy - 8° (1- Cepay ) is used as the measure for the core-valence dependency.
(Thisis analogous to the smallest eigenvalue of the overlap matrix of a set of functions.) & is compared
with the criterium screv (input by key screv or core-valence; defaults 107 4.10°° ).

Likein the analysis of the valence basis itself, dependency coefficients are computed (3.4), which tell us
which vaence functions are dominant in the overlap with the core space. If the valence and core are found to
be dependent the program stops (in BASOVL) and prints the dependency coefficients.

the Stable State Approach (SSA)

The Stable State Approach (SSA) isa proposal for (future) improvement of accuracy and efficiency of the
SCF procedure. Conceptually it resembles the frozen core approximation; it is based on the following
consideration: the convergence of the one-particle eigenstates y,(k;r) towardsthe final self consistent
solution will in general be quite different for the various states. It iswell conceivable that some states attain
rapidly their final form while others converge owly. If we keep track of the developments and remove
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from the valence basis the states that do not change anymore, the efficiency is enhanced in the remaining
cycles: less data to keep on file, fewer matrix elements to compute, etcetera.

Thisis (partialy) counterbalanced by the necessary transformation of the basisto single out the stable
states. Analogous to the frozen core treatment the new function basis must be orthogonal to the fixed
states. The transformation overhead scales as the basis size squared and may therefore be appreciable.
Possibly anet gain results only if several stable states are removed at atime; such 'details should of course
be incorporated in a thoughtful implementation.

It may be noted here, as a side remark, that the reduction of the function space may not come only (or not
even predominantly) from finding stable occupied states, but aso from the detection and removal of stable
virtual states.

basic set-u

The eigenstates are expressed in the basis functions: ; :écij 0j - A statey; isstableif its coefficient
vector { G i }j and the number of electronsin it, the occupation number n; are constant within some
tolerance. Thisiseasily checked if we have the coefficient matrices and occupation numbers on file for the
last few cycles.

In this formulation some of the possibilities of the SSA may be missed. Two examples:

1) suppose y; andy, aretwo degenerate occupied states with, of course, equal occupation numbers.
Obviously any orthogonal transformation of {1 ,w» } yields the same physical situation. So, if we have a
stable space, spanned by y, andy, , we may not detect it when the computed eigenvectors rotate
arbitrarily around from one cycle to another.

2) suppose y; ..y, are (non-degenerate) virtua states and at the next cycleswefind N virtual states
spanned by the same functions. We can then remove these functions as they are apparently irrelevant for the
crystal electrons; theindividual virtual eigenstates need not be stable for this, only the space spanned by
them.

Both these cases are detected if we do not examine the individual el genstates but the P-matrices (density
matrices). Denote by P"' the P-matrix in the n-th cycle and choose as its representation not the employed
basis functions but the eigenstates of cycle ng . PO isthen diagonal and the diagonal elements are the
occupation numbers. A state y; isstable and can be singled out if at the following cyclesthe
corresponding diagonal element P;; remains the same and its off-diagonal elements P; i jti, are zero.

The criterium for stability has to be determined by experimentation. It must scale somehow with the
mixing parameter parmix employed in the iterative update of the crystal potential (SS"iteration).

the SSA and the frozen core

The frozen core approximation has some fundamental problems. In the first place the core states may not be
strictly orthonormal. Whereas they are explicitly orthonormalized in order to facilitate the projecting out of
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the core components from the valence basis, the corresponding energy term is not evaluated and implicates
thus an unknown error in the computed energy. The tests on the eigenvalues of the overlap matrix, as
discussed above, is only avery rough safety guard against extreme cases.

In the second place the relaxation of the crystal potential, especialy its change near the nuclei means that
even if the core states were orthonormal from the start, they may not be eigenstates of the final crystal
hamiltonian. This has consequences both for the energy of the core space and for the valence states. This
aspect has usually no severe consequences but neverthelessit is unsatisfactory.

The SSA aleviates this problem because we may include (part of) the corein the valence basis. The
corresponding crystal eigenstates will soon be converged (if the frozen core assumption is reasonable) so
that they have to be processed only during afew cycles. In principle we could thus discard the frozen core
idea altogether in the SSA, but in some situations (heavy atoms, many k-points) the enlarged basis size and
the resulting amount of data on file may be problematic, even if it would be for only two or three cycles.
(Data storage can and should be reduced however by a more sophisticated treatment of symmetry thanitis
currently being done in BAND (SS*symmetry)).

4 BZ-integration

Two types of integrals over the Brillouin Zone occur: the 'volume' integral and the 'surface’ integral,
respectively

IB=Q 8 fyk) 6E-ek))ck (4.18)

n

4 @ fn(k)

I(E) :e: 8 f k) S(E-e,k))k :an‘ - m (4.1b)

e,(k) isthedispersion relation of the n-th energy band and f,(k) isthe contribution to the integral from
the one-electron state y,(k;r) . The results depend on the energy parameter E. The surface and volume
integral arerelated by |(E)=dJ(E)/dE.

Example: the electronic charge density p(r) is given by the volume integral

7

pM=a 8 oynkin 62 6 —e k))& (42)
n

e- isthefermi energy.
As discussed in SS"symmetry the integrations can effectively be restricted to integrals over the symmetry
unique region in k-space, the irreducible wedge of the BZ; we will take this for granted here.
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The eigensystems (g, (k) , wn(k;r) , and hence any derived quantitiesf,(k) ) are computed in discrete points
of the BZ. Theintegrals (4.1a) and (4.1b) are thus evaluated numerically. The presence of the 6- and
d-functions in (4.1) makes 'normal’ methods of numerical integration, such as Gauss-L egendre, unsuitable.
BAND employs the (repeated) anaytic quadratic procedure [Wiesenekker et al. 1988, Wiesenekker and
Baerends 1990]: the (irreducible wedge of the) Bz is first written as a conjunction of (large) basic simplices;
these are further partitioned into smaller simplices. In each (small) simplex e,(k) andf,(k) are both
approximated by a quadratic form; the resulting quadratic integrals are evaluated exactly (analytically).

The precision in the total accumulated integral can be increased by using afiner partitioning of theBz.
Whereas the presence of the 6- and 8-function makes the integrals (4.1) alittle complicated, g,(k) and
f(k) themselves are smooth. The piecewise quadratic approximations converge therefore rapidly with the
partitioning (compare the commonly used repeated Simpson integration for 1D lineintegrals). Since the
sub integrals, employing the quadratic forms, are calculated exactly, the total integral approximation is
expected to be accurate and quickly converging. Thisis borne out in practice.

For the construction of the quadratic approximationsin a given simplex we need the function values of
ey(k) andf,(k) insufficiently many pointsto solve the defining linear systems of equations. It is
convenient is to use the vertices and the midpoints of the edges of the smplex.

Even without a further partitioning thisimplies already several k-points for each basic simplex. BAND
optionally uses fewer points, but of course a quadratic approximation is not possible then.

The integration accuracy is determined by the parameter kinteg. Kinteg is the number of sample pointson
any edge of a (large) basic simplex. Kinteg=1 implicates the use of only the G-point k=0; the numerical
integral over the BZ is then reduced to a single term; we may call this the zero-th order approximation.

Kinteg=2 leadsto first order (=linear) approximations: the basic simplices that span the irreducible wedge of
the BZ are generated; the only integration points are the vertices of these simplices, the midpoints of the
edges are not involved. A linear approximation of the functions is then feasible and the ensuing integrals are
evaluated analytically.

Kinteg=3 is the lowest setting that allows a quadratic approximation; the basic simplices are used directly,
i.e. no further partitioning takes place. With kinteg=>5 every edge of abasic simplex is bisectioned, yielding
two intervals with 3 points each (one point is shared). Each basic simplex is then divided into 2" smaller
simplices, in each of which the quadratic method is applied (n is the dimensionality of the BZ). Similarly
with kinteg=7 we get 3" smaller simplices and so on.

When kinteg is chosen even (4,6,..) it is not possible to have a partitioning of non-overlapping intervals
such that each has 3 points; one remains with only two points so that in some part of the BZ we haveto
resort to the linear approximation. In such a case the linear method is applied throughout: al edges are
partitioned into intervals with two points only. Thisis the approach of the commonly employed 'linear
tetrahedron method' [Lehman and Andersen 1972], which is by far inferior in performance to the quadratic
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one [Wiesenekker et al. 1988, Wiesenekker and Baerends 1990] . For higher integration accuracies
(kinteg? 3) one should therefore stick to odd values.

Kinteg isinput; key: k integ, k space, or BZ; first and second defaults: 3, 5. A (non-fatal) warning
message is issued by the program when K is chosen even.

data structure

KPNT generates the data structure needed for the BZ integration: a list of kt k-points xyzkpt(3,kt) and alist
of nsimpl simplices, represented as a pointer set ksimpl (nvertk,nsimpl). Nvertk is the number of points
associated with each simplex; this depends on the type of approximation and on the dimensionality; in two
dimensions for instance nvertk is 3 for the linear approximation (vertices only) and 6 for the quadratic
approximation (with the midpoints).

The values ksimpl (i,j),i=1..nvertk indicate which pointsin the list xyzkpt() belong to the j-th simplex.

The generated simplices span precisely an irreducible wedge of the BZ. Some of the k-points may
nevertheless be symmetry equivalent, e.q. by a Bravais trandation of the reciprocal lattice. KPNTEQ, called
from KPNT, checks the symmetry relations and generates a list of eguivalence indices kequiv(kt). Kequiv(kg
) isthe index of apoint equivalent to point kg . For all k: kequiv(kK)Ek; the symmetry unique points have
keguiv(k)=k. Only in these points the hamiltonian equation is solved. The other points serve to describe the
simplices and to generate the (linear or quadratic) function approximations. The total number of symmetry
uniquek-points is kuniqu.

The data arrays xyzkpt, kssmpl and kequiv are stored on fileitbz; the scalar variableskt, kunigu, nsimpl and
nvertk are in common FIXDAT.

simplices and points

The dimensionality of the BZ is hdimk and the primitive k-space lattice vectors are stored in the | eft-upper
ndimk” ndimk part of array bveq(3,3).

ndimk=0
Thistrivia case implies the zero-th order approximation: only the G-point, one 'simplex’, one point per
simplex (nvertk=1).

ndimk=1

Asinversion is always a k-space symmetry operator, the irreducible wedge is the interval (0, % bveq1,1)).
Thisis also the basic simplex. Depending on kinteg exceeding 3, theinterval is partitioned to obtain
smaller simplices.

The partitioning of asimplex in smaller onesis (for any dimensionality) performed by SIMPLS. SIMPLS
delivers both the pointer structure ksimpl () and the list of points xyzkpt(). In case of more than one basic
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simplex (in two or three dimensional regions, see below) SIMPLSis called for each of them. SIMPLS
updates the data arrays at every call, merging the data resulting from the current basic simplex with the
existing structure.

ndimk=2

LATTPT generates afew stars of lattice points (in k-space) around the origin. The bisecting 'planes’ (lines)
halfway them define the Wigner-Seitz BZ as the polygon inside these lines. POLYGN removes the redundant
lines to retain only the sides of the polygon. POLYG1 computes then the vertices of the polygon and
PLGIRR calculates the vertices of the irreducible wedge (a polygon again). The basic simplices are now the
triangles spanned by the origin and the edges of the irreducible polygon. For each of these SIMPLSis called
for further partitioning into smaller triangles.

ndimk=3

LATTPT gives again the surrounding lattice points; the planes halfway them define the Wigner-Seitz
polyhedron. POLYHE removes the redundant planes and computes also the vertices of the polygonal faces of
the polyhedron. The symmetry unique faces are subsequently rotated to the xy-plane (PYRROT), reduced to
theirreducible part (PLGIRR) and then back rotated again to the original frame. The basic simplices are
defined by the origin and the triangles that span the irreducible polygons on the faces. SIMPLS may further
partition them.

The geometric routines POLYGN, PLGIRR, POLYHE and SIMPL S are discussed in SS"geometry.

Since SIMPLS only delivers the (ndimk+1) vertices of the small simplices we have to add the midpoints of
the edges later (for the quadratic approximation). Thisisdone in KPNT after the generation of all simplices.
The pointer array ksimpl () is updated with pointers to the midpaints.

integration

The Bz integrals are evaluated numerically. The fixed set of integration points xyzkpt() is stored on file
itbz. The weights o, (k) , that is, the occupation numbers for the one-electron states y,(k;r) are computed
by OCCUPA from the energy bandse, (k) and an energy parameter E (4.1).

During the SCF procedure we need only one specific integral over the BZ: the charge density

pM=a onk) dyykir) 62 43)
nk

The constraint that the density contain the number of electrons gdec,

A o,k =gdec (4.4)
nk

defines the fermi energy e- (the energy parameter Ein (4.14)) .
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FERMIE repeatedly calls OCCUPA with trial values for the fermi energy until condition (4.4) is satisfied.
The resulting occupation numbers are then passed back to the master routine FERMI, which calls OCCSTA.
OCCSTA writes them to file, together with the corresponding eigenstates for further processing later.
Since the energy bandse, (k) change as the SCF iterations proceed the fermi energy and the occupation
numbers may also vary; they are computed anew at every cycle.

OCCUPA sets up aloop over the (small) simplicesin which the irreducible Bz has been partitioned and calls
OoccupPs for each of them, to obtain the occupation numbers for that simplex. OCCUPS discriminates
several cases: in the first place whether a surface or avolume integral is requested, in the second place the
order of the interpolation (linear or quadratic) and finally the dimensionality ndimk of the Bz.

linear approximation

The agorithm is discussed in detail by Wiesenekker et al. [1988]. The formulas have been implemented in
BZINTL.

quadr atic approximation

The 1D caseis more or less obvious (routines VIQD1 and VJQD1 for surface and volume integration
respectively). For the 2D case we refer to Wiesenekker et al. [1988], where all technical aspects are
explained. The formulas have been implemented in QUAD2 and a few auxiliary routines. The 3D case finally
isfairly complicated [Wiesenekker and Baerends 1990]. Implementation (QUAD3) ison itsway. A
satisfactory aternative, currently applied in BAND, is the hybrid-quadratic method: routine HYBRID.

hybrid-quadratic approximation

Asdiscussed by Wiesenekker et al. [1988] we need for the quadratic method the integrals

VhE = 8 hk) 6E-e,(K)) &k (45)
simplex

where the functions h(k) are all monomials up to second order (and similarly for the surface integrals with
the 6-function replaced by the 8-function, c.f. (4.1a) and (4.1b)). The occupation numbers are computed from
the monomial integrals Vy, asfixed linear combinations of them. The fundamental problem is therefore to
compute the integrals Vi, .

In the hybrid method we construct first explicitly the quadratic approximation of the energy dispersion &,(k)
in aparticular simplex (one of the small simplices in which the Bz has been divided): eq‘ad(k) say. This
simplex is then partitioned in still smaller simplices (using the same algorithm asin SIMPLS. For each of
these sub-simplices the energy values ,(k) in the vertices are computed from the analytical form eq‘ad(k)
and used to calculate the monomial integrals with the linear interpolation method (BZINTL). The
contributions from all small sub-simplices are added and yield finally the required monomial integrals over
the original simplex.
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The hybrid method is essentially a two step proces: first a quadratic approximation is made. Thisisthen
further approximated by a piecewise linear form. Obviously the precision of the result depends on the hybrid
partitioning. The number of additional hybrid partition stepsis kmesh. Thisisinput by the key kmesh;
first and second defaults are kmesh=2 and kmesh=3. Thusfar we have never encountered a system where the
values 2 and 3 (or higher) resulted in significantly different results. Apparently the first default valueis

adequate.

remark

The hybrid method is often used in a different form by integrating only the monomials up to order 1
(instead of 2) over the sub simplices [MacDonald et al. 1979]. The compounded integrals over the large
simplex are then used to compute the occupation numbers, but for lack of information, these correspond of
course to an approximation of the property function f(k) to first order only. If we assume that the hybrid
partitioning is pushed to its limit, then our form approaches the analytic quadratic results, while the
simplified form is equivalent to the linear-quadratic approximation: linear approximation of f(k) and
quadratic approximation of e,(k) ; as demonstrated by Wiesenekker et al. [1988] this gives results that are
by far inferior to the fully quadratic approximation.

temperature

BAND attempts to determine the occupation numbersin accordance with a finite temperature (the fermi-dirac
distribution). In routine FERMIE, where the fermi energy and the occupation numbers are determined, we
have to call OCCUPA therefore with a (small) array of energy valuesinstead of only the (trial) fermi energy.
The energy values are distributed around the trial fermi energy and the resulting sets of occupation numbers,
one set for each of the energies, are combined; this amounts to a numerical integration of the fermi-dirac
distribution. See SStemperature for a more detailed account.

efficiency

The determination of the fermi energy (FERMIE) at every cycle of the SCF procedure could be rather time

consuming (especially in 3D crystals) due to the following inefficiency. For each trial fermi energy all

bands might be analysed, piecewise-quadratically fitted etcetera to determine the occupation numbers. In
general however the majority of the bands are either completely occupied or empty. The occupation
numbers for such bands do not depend on their energy functions g,(k) . It is therefore unnecessary to
compute them again and again. This aspect is taken care of asfollows

a thefixed set of occupation numbers for all k-points in acompletely occupied band are determined at the
start of the SCF procedure and stored in a separate array.

b) at every cycle, when the fermi energy and the occupation numbers are to be determined, the energy range
of every band is computed first. For each trial energy it is then quickly surveyed which bands are empty,
fully occupied or to be analyzed in more detail. The determination of the band widths occursin routine
EMNMXB, with three auxiliary routines EMNMX1, 2 and -3 (for 1-, 2- and 3D crystals). The same
piecewise quadratic approximations for the energy bands are applied in fact by EMNMXB, but thisis
done only once (per cycle), not for every trial (fermi-)energy.
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In one case (at least) the occupation numbers are zero for some specific k-points, even if the band is not
empty. This known special case occurs for the quadratic integration in a2D crystal. Each fully occupied
simplex has zero occupations for the vertices (and occupations 1/3 for the mid-points of the edges). Thisis
an accidental effect of the integration scheme [Nooijen et al. 1990, Wiesenekker et al. 1988]. We do not
know whether there are more of such special cases.

Suppose now that for all bands the occupation numbers are zero in a particular k-point. If this remains so
during the whole calculation it must be possible to avoid most of the computational effort associated with
that k-point, such as the evaluation of matrix elements and so on.

Thusfar we have not worked out how to proceed with this possibility. As a preliminary for future work on
this we have implemented an array kzero(kt) in SCF, which is passed on to several sub-ordinated routines.
kzero stores for each k-point whether (and in how many subsequent cycles) the occupation numbers are zero
for al bands. Output messages are issued whenever such k-points are found.

5 Charge density

evaluation

The solution of the hamiltonian equation in each k-point yields (EIGSY S) the one-electron eigenstates as
linear combinations of the basis functions

vnkin =Q &Kk ojkin) (5.1)
j

The analysis of the energy bandse, (k) gives (FERMIE) the occupation numbers o, (k) . There are then two
ways to compute the charge density in the crystal integration points.
1.  Fromthe eigenstates:

o

pM=a opk) pakir) (5.2)
nk

pn(k;r) isthecrystal orbital density

pn(kir) =|é. Crhj (K) j(ksr) 2 (5.3)
i

With kt k-points, nbas basis functions and nband occupied states the amount of work per integration point
is proportional to kt” nband” nbas.
2. From the density matrices. First we construct the P-matrix (PMATRX) in each k-point.
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‘ nbgnd o .
Pi=ad a ik cyk) (5.4)
n=1 ij

Since PX  is hermitian we have to store and process only the upper triangle; define

=k k

Pj =2P; <]
(5.5)
—k K
Pii =Pii
This gives
m=a A Re[F] ok ojkin] (556)
kK if

The amount of work per integration point is proportional to kt” nbas (nbas+1)/2.
The construction of the P-matrices themselves can be neglected as they do not depend on the integration
points.

Depending on the number of occupied bands and the number of basis functions one or the other method is
more efficient. The break-even point may be expected to occur for nband»nbas/2, but of courseit isaso
determined by details of the computational procedures, in particular by the types of (vector) operations
involved and hence it may even be machine dependent.

In big calculations the evaluation of the charge density isamajor part of the SCF procedure and it is crucial
to pick the most efficient method. Both ways have been implemented; RHOPS! uses the eigenstates,
RHOPMT employs the density matrices. The times used for them are measured and stored in an array
rhotim(2). The values are compared by SCF to make its choice.

Rhotim isinitiated at zero for both and either of the two is used at the first cycle; itstiming isthen
updated. At the next cycle the other method is applied because it has still zero time-measurement and
appears therefore more efficient. At the third cycle a sensible decision can be made.

remarks

1. Theexecution times may change somewhat from cycle to cycle, for instance as a consequence of
varying circumstances in the computer during the run. Future developments of BAND (seeeg. SS"basis:
the SSA) may also induce variationsin the cycle-times. To keep the decision procedure flexible, SCF
reduces by a small amount at each cycle the stored time-measurement of the not-used alternative.
Eventually thiswill cause it to appear more efficient than itsrival, so that it is applied and clocked
again.
The disadvantage that the less efficient procedure is used from timeto time isrelatively small because
the artificial reduction of the stored timing is small (5% per cycle).
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2. Asdiscussed in SS"SCF-linearization the charge density is at some cycles evaluated as alinear
combination of previous densities. Thisisthen a completely different situation of course and the
timings of the exact evaluations via RHOPSI and RHOPMT are not updated.

The approximate eval uation does not depend on the choice discussed above: the expansion coefficients
are determined by comparing the density matrices pK , k=1..kt with those of previous cycles (so these
matrices have to be computed anyway). The corresponding density functions are on file itrstr and have
only to be combined (see SS"charge density). This could be done in either routine, RHOPS| or RHOPMT.
After the exact evaluation however the data onitrstr have to be updated. The required additiona lines of
code have therefore been implemented in both routines. On genera principles SCF chooses between the
two routines also in the approximation case. The array rhotim has thus four el ements instead of two:
rhotim(2,2).

analysis

The file with integration points, itpnt, contains for each point the index of the atom nearest to that point:
abs(idatom()); positive and negative values of idatom indicate whether the point is inside the atomic sphere
or in the interstitial region. Routine CHARGE, called from the properties section PRPRTS, applies this
information to calculate the distribution of the final self-consistent density over the atoms. Thisis done
both for the initial sum-of-atoms charge and for the deformation density. The data are presented separately
for the densities inside and outside the atomic spheres. In spin-polarized calculations the analysisis
performed for each spin.

The file itdatm contains the sum-of-atoms total density and valence density in all integration points; the
crystal valence density is onitrho.

The computed spin and charge polarizations may be compared with the Mulliken populations calculated in
POPANA. Often the agreement is poor. The discrepancies may be attributed to the arbitrariness in both
methods. In the Mulliken analysis the choice of basis functions influences the outcome, whereasin the
numerical integration employed by CHARGE, one may doubt the association of points with the atoms
nearest by: heavy atoms might for instance be attributed more space around them than hydrogen.

Any criterium related to the distances and e.g. the nuclear charges might be used and is easily implemented.
Theindex numbersidatom() are determined in RPNTID; adaptations of the algorithm should be
straightforward.

further developments

The analysisin CHARGE is very global and one would like to have more detailed information. An important
possibility isto generate plots of the density. This would be an interesting extension of BAND, because
such pictures provide adirect and instructive survey of the charge distribution; they are frequently published
and discussed in the literature. A relatively simple and efficient way to compute the desired valuesin some
plot-grid is viathe fit functions. The fit set is usually fairly accurate, but naturally the principal
disadvantage remains that it is not exact and some particular features of the distribution may be missed in
thisway.
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A genera drawback of density plotsisthat the information is only two-dimensional. A three-dimensional
numerical analysisis useful as support and may also be valuable in itself. We may for instance expand the
density inside the atomic spheres in spherical harmonics. The numerical integration grid iswell suited for
this: for a sequence of radial distances an angular integration mesh is present. The maximum possible
angular momentum value for the expansion depends on this mesh, varies with the radial value, but is
usually substantially higher than the values occurring in the fit set. The total density as well asthe
deformation charge can then be described in detail. The data may be used to generate one-dimensional radial
plots of the densities for each (Im)-component separately.

6 Control

BAND contains ageneral control mechanism, which we will refer to as the controller. The purpose of it is
twofold. In the first place many tasks performed by the program are relatively independent. The controller
may be used to manipulate the execution of various operations, e.g. viainstructions on the input file. This
will especialy be useful when, in the future, restart possibilities are incorporated in a general way.

For instance we may have obtained the self consistent solution of some system and wish to know in what
respects the outcome is influenced when plane waves are added to the valence basis, what happens when the
temperature isincreased, whether a spin-unrestricted cal culation would make some difference, or we may be
interested in afew particular partial densities of states that have not been computed in the original run. In
all such cases we do not want to duplicate work. The controller should take care of that when supplied with
the appropriate data on file and afew instructions.

In the second place the control mechanism may be of some help to uncover and analyze errors, by checking
relevant data and printing information when a problem is detected.

Many of the data related to the control structure are stored in the common blocks CNTRLC (character-type

data) and CNTRLYV (other variables). The controller in its present form isonly afirst, rather primitive

structure which might be embedded in a more sophisticated set-up.

A summary of the current implementation:

# The execution of al major subroutines and sectionsin BAND is enclosed between calls to two specia
routines, START and ENDOF.
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call start('calc',iopt,execut)
if (execut) then

call calc(....) (6.1)

call endof ('calc',jopt)
endi f

START determines whether CALC isto be executed. The decision is output in the logical execut. If
execut is true the name 'calc’ is added by START to an 'execution stack’, the list of names exstck().
Routine ENDOF removes 'calc' again from the stack and checks whether the run should be stopped at
this point.

Execut is computed in START by calling SKIP('calc'). The logical function SKIP compares its argument
with alist of sections to be skipped, skplst(). The skip-list is empty at the start-up of the program;
entries can be added viainput, with the key skip (see SS"input).

ENDOF compares its first argument with the character variableexlast in common CNTRLC, which stores
the name of the last section or routine to be executed; if they are equal ENDOF calls STOPIT to terminate
the run. By default exlast equals ‘band’, implying that the whole program is to be executed. Viainput,
with the key execute (SS"input), another |ast-to-be-executed routine or section may be specified.
Another variable, exfrst, states with what section the program should start. As no restart possibilities
have yet been implemented this variable can effectively not be used and must have the default value
‘band'.

The admissible arguments for the input commands skip and execute must be names that are
recognized by the controller: they must correspond to the arguments of START and ENDOF as
implemented in the program. See SS"input for more comments on these keys.

The integer option-arguments of START and ENDOF, iopt and jopt in example (6.1) above, specify
additional actionsto be undertaken by these routines. Currently this aspect is hardly used. START
optionally (iopt=1) copiesthe name of the section to the day-file. This providesinformation astoin
which stage the calculation is at a certain moment. ENDOF optionally calls the timing routine SECTIM.
(SECTIM keepstrack of how many times a certain section is executed and the amount of CP-time used
there (i.e. the time lapse since the previous call of SECTIM). The data structure of SECTIM isinitialized
by ITIMER (caled from INIT) and all information is output by TSTAT, called from STOPIT).

# STOPIT isthe routine which terminates the program after executing afew final tasks. STOPIT is called
whenever afatal problem is detected in some way, and also when the controller decides (ENDOF) that the
calculation has to be finished. STOPIT outputs
- the state of affairsin the file manager: the files currently in use by BAND, the pointer structure that

defines the relation between the files and the amount of data on them (SS™iles),
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- the situation in the workspace manager: the currently allocated arrays and the markers around them
(Ss*workspace),

- the contents of several common blocks; the variables stored in them represent important aspects of
the calculation and may give aclue to the cause of some problems,

- the execution stack, telling us in what stage of execution the calcul ation was terminated.

Since STOPIT calls other subroutines, in particular those of the file manager, which may themselves

call STOPIT in case of errors, we have a potential recurrency. The ensuing problems are circumvented

with avariableistop in common CNTRLV. Istop is set to zero in INIT. Thefirst actionsin STOPIT are

if (istop.ne.0) stop'recurrency’ (6.2)
istop = istop + 1

This assures that (infinite) recurrency loops are cut short.
# A few important aspects of BAND's control mechanisms have been organized in specific structures that
are discussed in other sections. These are
- theuseof files: SSiles.
- theutilization of work space: SS*workspace.

7 Coulomb potential and lattice sums
The charge density in the crystal is given by a sum over occupied orbitals, expressed in basis functions ¢:

p=a moyio? =Q Pij ¢: 0] (7.1)
i ij

n; are occupation numbers and the sum includes integration over the Brillouin Zone. P i isthe density
matrix in the representation of the basis functions. The coulomb potential is

7 7

V=8 pryor-rot a=Q P8 o () o) or-ro’t o (72)
ij

The basis functions are (mostly) one-center functions: numerical orbitals from the free atom subprogram
and/or Slater type orbitals. The integralsin ther.h.s. of (7.2) are hard to evaluate when ¢; and o) are located
on different atoms. Therefore a set of fit functionsf; isintroduced such that &) the true density is accurately
approximated by alinear combination of them andb) their coulomb potentials fiC can be computed.
The crystal density is split in the superposition of atomic densities and the deformation density
[o]
Pery =A Po + Pdef (7.3)

o
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with coulomb potential (including the contribution from the nuclei)

o
V=a Vq + Vge (7.4)

o

The atomic functions p,, andV, are produced in tabular form by DIRAC and interpolated in ATMFNC to
obtain their values in the crystal integration points. The fit functions are used for the deformation part of
the density

Put > A G f (7.58)
i

2 C
Vit > A G fi (7.5b)
i

The coefficients g are the least squares solution of (7.5a) with the constraint that the fitted density contain
zero charge. Neglect of this condition, though leading to a more accurate description of the density,
generates a potential corresponding to an incorrect amount of charge. The resulting error in the potential is
much larger than the gain from the better density approximation.

The crystal fit functions constitute an orthonormal set (see below). The constraint is applied by the
Lagrange multiplier technique. Define

7

Vi =§ Pdef fi o (7.63.)

n =8 f o (7.6b)

v; would be thefit coefficient in absence of the constraint; n; isthe charge content of the fit function. The
coefficients¢; are obtained from the usual variational equation, with& g n; =0

AL {dp-écini)z d-Aag n; } =0 P An =2(v; -G) (7.7)
Multiply by n; and sum over all
énjvj-écjnj zzénjvj

r=2—l- — (7.8)

anj anj

Reinsert into (7.7):
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An; anvi
Ci :VI -? :VI _nl Erjl—zl (7.9)

J

The fit coefficientsq; are computed in RHOFIT at every cycle of the self-consistency procedure. The fit
functions, potentials and charge contents are on fileitfit.

fit functions and fit potentials

Two types of fit functions may be useful. In the first place atomic one-center functions &(r)=Z;,(€2) P(r).
Since the density istotally symmetric the crystal fit functions are symmetric combinations of the one-
center functions (SS"symmetry); the one-center functions themselves are the generating (fit) functions.
The options availablein the program for P(r) are Slater type functions P(r):rI+n e %" and numerical
functions. The latter are the squares of the free atom (numerical) orbitals; the angular quantum number for
the corresponding fit functionsis set to 1=0, so that the I* 0 components in the charge density have to be
represented by the Slater type fit functions. See also SS"input.

To evaluate the potential £5(r) corresponding to a one-center function &(r) the expansion of 6r—r'd” Lin
spherical harmonicsis applied

|
e [o] * r<
0 =8 &' 2(@) PO A 35 Zy(@) Zim(@) Ty =

I'm' >
¥ r|
=£E_1 Zlm(g)g r|T<1(r')2 P(r)ae ff—l Zim(@) 10) (7.10)
>

For the numerical functions P(r), given as atable { P(r; )} I(r) is evaluated in routine COULOM, by
numerical integration.
For an analytical function P(r)=" e"*" we use the incomplete gamma function. Define

X=T B=oar (7.112)
and apply

; ® & 4o

7 k . _ k' [} |

8 xk eBx ob<_Bk+1 ¢ra 5= (7.12)

0 € =0 @

to write
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¥ 2 ¥ 5
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Some care is necessary in the numerical evaluation whenor is small. ePa ([3i /i) equalsalmost 1.0 then
and subtraction from unity in the first term of ther.h.s. of (7.13) may lead to aloss of significant digits.
Thisisremedied by using in such a case

JAU s Qi
1refa {3—, L ‘.BT (7.14)
i=0 i=m+1

Theinfinite seriesin ther.h.s. converges rapidly (B<<1) and can be truncated after afew terms.

The generating fit functions and the potential s are stored on file as tables of function valuesin aradial
logarithmic mesh, like all other one-center functions in BAND. The radia values are computed in FITRAD,
with auxiliary routines FITRAL and FITRA2.

In the second place plane waves might be useful asfit functions (in 3D crystals). The potential functions
are straightforward from the Poisson equation - DV = 4pp:

fry=dK T (7.15)
() :4KJ°§ dkr

Again these have to be combined into symmetric combinations.

Plane wave fit functions have not (yet) been implemented in BAND and are in fact not necessary. The
atomic one-center functions have proven to be very adequate in practice (see SS"energy for anote on the
errorsinvolved).

FITORT is the master routine for the crystal fit functions and potentials. FITPNT interpolates the radial
tables, constructs the bloch sums and combines them into symmetric functions.

FITOVL computes (from the overlap matrix) the transformation to an orthonormal set. FITTRA performsthe
transformation and FITQ determines the charge contents n; (7.6b) of the final orthonormal fit functions.
All data are written to file itfit.
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The eigenvalues of the overlap matrix are used to check linear dependency of the fit set. Eigenvectors with
too small eigenvalues are discarded. The smallest eigenvalue allowed is scrfit. Scrfit isinput with key
scrfit, fit overlap or fit dependency; first and second defaults are 107 5. 106.

Dependency coefficients, analogous to the valence basis (SS*basis) are computed and printed, depending on
the print option iprntp.

lattice sums

A crystal fit function is a (symmetrized) bloch sum of one-center functions. The potential function contains
the bloch sum of a multipole potential 17+ Thisis exposed by rewriting (7.13) as

e n—-1+1 ) n++2 U

=0 L o Sl B (an' (2! 1 - (an' 216

(r)_an+l+3 (l+l € e e it N3+l it g (7.16)
e i=0 i=0 a

(The numerical fit functions have a similar behaviour).

The second term decays exponentially with the distance and hence its bloch sum can be computed efficiently
in alimited loop over lattice points. The first term gives rise to the familiar lattice summation problem of
solid state theory: we have to calculate sums like

o Zim(QR)
Vim() =a % (7.17)

In athree-dimensional crystal the sum diverges for |=0, is conditionally convergent for [I=1,2 and it is
properly defined for higher [-values. But even then convergence is so slow, that a straightforward
summation would be unpractical. We will concentrate on the =0 lattice sum (for 3D crystals), sincethat is
the most difficult case.

Let achargeq be given at position s; in the unit cell. The potential due to the associated | attice of
chargesis

(¢}

V() =g A

R

1
0 r—R—siO (7.18)

The divergence of this sum is not afundamental physical problem because the net charge in the unit cell is
zero. The addition of the sums (7.18) dueto all chargesc leads to a cancelling of the ‘'infinities, but of
course only when properly combined. Hence the expression for the total Madelung potential

V) :é q é, (7.199)
R

1
ﬁr—R—Sjﬁ
j
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with the charge neutrality condition

a q =0 (7.19b)
j

is conditionally convergent. The same holds for the related Madelung energy (per unit cell)

NI

Ev =3a 4 V@) (7.20)
i

whereV',(s;) isthe Madelung potential at position's; given by (7.19), but without the singular term
(R=0, j=i):

1
6Si—3j6

[ [¢] 1 o

Vi) =ad a (}W +ad q (7.21)
R10 | jti

Conditional convergence implies that we can obtain any answer from the summation, depending on the
order in which the terms are taken. Since the Madelung energy is awell defined physical quantity the
conditional convergence of the sums (7.19a) and (7.21) is alittle puzzling at first sight. Thisis not a purely
mathematical inconvenience here, but it is related to the physical aspect that we cannot have atruly infinite
crystal. It is not difficult to show that for any large, but finite crystal the (Madelung) potential in the
interior does not only depend on the charge distribution {q , s; } inthe unit cell and on the lattice structure
{R}, but aso on the boundary of the macroscopic crystal. In the limit of avery large crystal it depends on
the average charge density on the surface [Y oung 1987]. The lattice sum may thus be interpreted as follows:
we take alarge but finite crystal of a specific shape, evaluate the finite (and hence well defined) sum and let
then increase the crystal size to infinity preserving the shape. The conditional convergenceis now trandated
in that the limiting result depends on the assumed shape of the crystal. The physically correct value is
obtained only if the shape has been chosen such that the average surface (and bulk) charge density is zero

[Young 1987].

The evaluation of |attice sums has attracted much attention in the literature (see Tosi [1964] and Glasser and
Zucker [1980] for adiscussion; a more recent, but concise survey with referencesis given by Bhowmick et
al. [1988]). The numerous proposed methods fall in two classes. The first uses some kind of integral
transform to replace the slowly or even conditionally convergent sum by (usually) two series which
converge both rapidly. The most famous exponent of this class is Ewald's method [Ewald 1921]. Part of the
sum (7.18) is transformed then into afourier series, i.e. a sum over lattice pointsin reciprocal space, and the
remaining real space part isasum over rapidly decaying error functions. The above mentioned boundary
condition for expanding shapesisin this case trandated in the implicit assumption (fourier series) that the
potential has the same periodicity asthe Bravais lattice; a surface charge density in a macroscopic crystal
would invalidate this, also in the interior far from the crystal boundary.
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In the second class of methods a direct real space summation is performed. Often some kind of expanding-
shapes procedure is utilized. Theintuitively attractive method of expanding spheresis inappropriate since
charge neutrality is not preserved and the average charge density on a spherical surface is not zero. In Evjen's
method, using expanding cubes, charge neutrality isimposed as an auxiliary condition [Evjen 1932]. For
the NaCl structure this gives indeed the correct value for the Madelung constant. Expanding cubesfail
however for the CsCl structure [Evjen 1932, Bhowmick et al. 1988] because in that case the average charge
density on acrystal boundary planeis not zero.

In the straightforward real-space summation techniques the assumed shape, i.e. the way in which the limit of
an infinite crystal is approached, isthus of crucial importance. The appropriateness of a choice depends of
course on the crystal and has to be determined separately for every new situation. When thisis taken care of,
one may have obtained a sequence that converges to the correct limit but only slowly. Various of the well
known convergence accelerating methods for sequences may then be applied to improve the efficiency.
Fortunately these sequence transforms may effectively also alleviate the mentioned shape dependence, as we
will see, and thus they make the (transformed) real space summation much more convenient for practical
use [Bhowmick et al. 1988]. To understand this we return to the definition of the Madelung potential.

A mathematically satisfactory and robust way to solve the apparent arbitrariness of the Madelung lattice
sum is provided by the technique of analytic continuation. The coulomb potential r’ Lis replaced by rt
with a complex parameter t. The corresponding lattice sum iswell defined for Re(t)>3. By analytic
continuation its value for other t, and in particular for t=1 can be derived; the outcome coincides with the
physically correct value and with the value obtained by expanding shapes with the appropriate condition on
the surface charge ['Y oung 1987, Borwein et al. 1985, 1988, Crandall and Buhler 1987].

The situation bears a close resemblence to other, more familiar sequences with problematic convergence.
Consider the power series representation of the logarithm

¥

2z 2z 7z s (M

In(l+2)=z- > +€ vy +.. =- A m (7.22)
m=1

The sum convergesonly for 6z6£1, 2t - 1 but thel.h.s. isdefined for all complex z not on the cut

(conventionally: zreal and z£- 1). So, even where the sequence of partial sums

n
o -7 m
A, =-a ﬂ—m)— (7.23)
m=1
does not converge we may assign the value In(1+2z) to the infinite sum, that is, to the limit {Ap, }h@ ¥ -

Putting it another way: the infinite, non-convergent sum is a correct, though somewhat inconvenient
representation of In(1+2).
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Following a discussion by Shanks[1955], many sequences occurring in physics and mathematics can be
written as ‘transients

k
A, =B+6°1 ai q"  (9q102) (7.24)
i=1

The constant B is called the base and the (complex) ratiosg  and amplitudes o; constitute the spectrumof
the sequence. The number of transient terms, k, is the order of the sequence. The order may be infinite or
even continuous so that the sum isto be replaced by an integral. (Levin [1973] treats a more general form
than (7.24), which covers more types of sequences and isin fact more related to our lattice sums [Weniger
et al. 1986], but the simpler case of Shanks suffices for the discussion here).

Depending ontheq the sequence may have monotonic and oscillatory, converging and diverging
components. If al 6 ¢ 6 <1 the sequence convergesto B and hence B is the limit of the sequence. If at least
one of the 6 g 6>1 the sequence diverges and B is then called the antilimit: the sequence diverges away
from B. In general B isthe'intrinsic part'.

An example. Consider the power series representation of (1- 2)° 1

1_izzl+z+22 i B (7.25)

The partial sum can be written in the transient form (7.24):

n
A, =a 2 :1%2 : @1—28 N (7.26)

m=0

so that it turns out to be afirst order transient with base 1/(1- 2) and only one ratio, z, with amplitude

- 1(1- 2). For 6 z6>1 the sequence A,, diverges, but the infinite sum is the base 1/(1- z). Thisisan
example of the general phenomenon that the base of a diverging sequence isthe 'correct' value for the
'limit', that is, the intrinsic part equals the analytic continuation of the sums of the convergent series
[Shanks 1955].

The same applies to our lattice sum. Replacing the coulomb potential 1~ ! by U the corresponding lattice

(7.27)

is a series representation of a generalized multidimensional Riemann z-function [Glasser and Zucker 1980,
Crandall and Buhler 1987, Borwein et al. 1988]. It has poles for t=0 and t=3 (in the 3-dimensional case) and
it is properly defined everywhere else in the complex plane. Its representation by the lattice sum yields a
sequence (when we take all terms inside a sphere of radius R and let R increase) which converges for
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Re(t)>3. For other t, and in particular for the ‘coulomb value' t=1 the sequence diverges but the physically
correct valueistheintrinsic part.

Obviously it is not possible to compute the intrinsic part of a diverging sequence by just monitoring the
sequence of partial sums. As noted already: the evaluation of lattice sums by the method of 'expanding
spheres fails. It would be desirable therefore to transform the diverging transient part into a converging
sequence (without affecting the intrinsic part of course). Two closely related methods are often applied in
such cases: 'screening' and 'sequence transformations’. We will shortly discuss both and indicate the
connection between them, because BAND employs a screening form which is heuristically motivated by a
particular type of sequence transformations.

screeni

Screening functions serve to suppress long-range tails of functions (such as the coulomb potential here) that
cause problems by the slowness of their decay. A screening function which is often used because of its
mathematical simplicity is the exponential function. Replace the coulomb potential 1/r by e *' /r with real
and positive o; finally we will then take the limit o™ 0.

Although for finite o the lattice sum due to one single lattice of charges ¢

vi“(r) =q a —_— (7.28)

is defined, its value diverges smoothly as we diminish o to zero. If we apply the screening however to the
total Madelung potential due to the combination of al charges, which isin fact the quantity of interest,

o

Vi =a qa 5=z
R

. Rso (7.29)
|

then the result stays bounded and converges to the correct value in the limit o 0. Thisis caused by the
‘cancelling of infinities’ from the compensating charges ¢ . Compare the 1D analogues

¥
i
s a eon =¥ (7.30a)
n=0
ax
lim ?f
wod € et =12 (7.300)
n=0

This confirms what may be intuitively obvious: screening may work for conditionally converging sums,
but it fails for diverging sums.
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The coulomb screening factor € " has been used for instance by Born [1921] in an analysis of the
electrostatic energy of cubic lattices. In BAND we employ a somewhat different screening function, namely
afermi-dirac function h(r)

-1

1 r
1+ e(r— rp,)/d

riop o h)rt (7.31)
Like e @' the function h(r) decays exponentially for larger. If we choose ro large enough however the
nearest terms in the lattice sum are only negligibly affected by the screening function h(r) and this turns out
to be an advantage in the convergence behaviour. The limiting case is obtained by taking d® ¥ and
simultaneously rq /d® ¥, so that h(r) converges uniformly to unity for all r asthe limit is approached. The
limit is not actually reached in the computational application; instead the cal culations are performed with a
finite screening; the results are therefore only (good) approximations of the limiting values.

The motive for this form of screening function originates from a particular type of sequence
transformations.

sequence transformations

A large number of transformations are known that accelerate the convergence for various types of sequences
[Brezinski 1977]. Among the most widely used are thee-transforms of Shanks [Shanks 1955] of which
Aitken's d? -procedure [Aitken 1926] is a specid case, Levin's u-transformation [Levin 1973], the Padé
approximations [Sarkar and Bhattacharyya 1988] and Euler's transformation. The latter will have our special
attention and istreated in detail by Hardy [1949].

Sequence to sequence transformations are not only used to speed up convergence but also to induce absolute
convergence in diverging or conditionally converging sequences [ Shanks 1955, Weniger et al. 1986,
Bhowmick et al. 1988]. The motive to do so is of course that we are interested in the intrinsic part, or the
base in Shank's terminology, of an ill-converging sequence. If the transformation leaves the base unaffected
the transformation is justified and may help us to handle the diverging extrinsic part by transforming it into
a conver ging sequence.

That sequence transformations are capable to transform diverging into converging sequences (with the
correct limit) may beillustrated by applying Shank's e, -transform (i.e. Aitken's method) to the sequence
(7.26)

1 . -
e, Anifni- (An)? & & (@2 HaY - @12 o
Av A 1+ Apst - 2A, 1 - 1, (732
n- n n ﬁ- 28{ (1- M- 1) + (1- Zn+1) - 2(1- Zn)}

This transformation turns thus out to be extremely well suited for the sequence at hand. In other casesthe
transformed sequence may of course not be converged immediately, asit is here, but at least it may be much
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more pleasant than the original one. See Shanks [1955] and Weniger et al. [1986] for a more general
discussion of this subject.

A transformation of interest for usis Euler's transformation, defined by simple averaging

Ap+ A
1 _"n n-1
An b An _T

(7.33)
Euler'stransformation is well suited to accelerate convergence in summations of alternating terms. The
reason is easily understood: due to the aternation in the terms the sequence of partial sums{A, } oscillates
and averaging two consecutive values will 'damp' the oscillations.

One may repeat the proces by applying the transformation also to the transformed sequence. In this case we
obtain the second-order Euler-transformed sequence

1 1
2 Ant Anr Apnt 2An g+ Ap

Al 5 2 (7.34)
and in general
N m I
m 1 ] [*] . U
An =3 ’::a §18An_k% n=m,m+1,... (7.35)
k=0

% -%1,...} (7.363)

The partia sums and the transformed sequences are then

Aﬂ ={ 10000, 05000, 08333, 05833, 07833, 0.6167,.}(7.36b)
Aﬁ ={ 0.7500, 0.6667, 0.7083, 0.6833, 0.7000,...}
Aﬁ ={ 0.7083, 06875 06958, 0.6917,.}
Aﬁ ={ 0.6979, 0.6917, 0.6938,...}

The exact limit islog(2)=0.693147... and each successive transformation improves the convergence
considerably.

If N+1termsg, are known, the transformation can be repeated at most N times to yield the number AH ;
the expression 'Euler transformation’ applies in fact to this ultimate value. For convenience in the
discussion we use the phrase 'repeated (Euler) transformation' and we denote the sequence A“ , N=0,1,.. as
the diagonal (Euler) transformation. Assuming that each successive Euler transformation yields a faster
convergence, the diagonal sequence represents the best approximation.
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An attractive aspect of Euler'stransform isthat it isalinear transformation. Whereas non-linear transforms,
such as the e-transforms, may in comparison be spectacularly more effective for some sequences, they do
not give the correct limit for all sequences. Linear transformations are more reliable in this respect [Hardy
1949, Shanks 1955, Weniger et al. 1986]. So one may be willing to accept a somewhat reduced efficiency
as an insurance premium for correctness of the results.

historical note

Already before the analysis of divergent sequences was given a solid mathematical foundation [Stieltjes
1886, Poincaré 1886] Euler assumed and used in his work that 'summa cujusque seriei est valor
expressionisillius finitage, ex cujus evolutioneilla series oritur’ . Whereasthisis strictly speaking not
true, in that distinct expressions with different numerical values may yield the same diverging series, itis
essentially correct, with a somewhat stricter definition and his 'repeated averaging' procedureis avery
natural method for the numerical evaluation of the sum of such (alternating) non-convergent series [Hardy
1949].

1.07
hry 8
0.61

041
0.2
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Fig.1. Coefficients CE in the diagonal Euler Fig.2. The fermi dirac screening function
sequences, with interpolating curve, for N=5,10 r‘(r):{ 1+exp((r-ro )/d)} -1 ; the parametersare
and 20. herearbitrarily taken as: rg =20, d=2.

The contribution of the primitive terms a, in the Euler sequences can be expressed as sums of binomial
coefficients. Let

L the sum of the seriesis the finite numerical value of the arithmetic expression from which the seriesis
derived [Hardy 1949]
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(mn)

n
A" = ™ g (7.37)
k=0

All terms kEn—m are fully present (g, =1), the next coefficients decrease and ¢, =0 for al k>n. The
fractional coefficients are, from (7.35)

n—k
q&mn) :Zim Eol g?g k=n—m, n-m+1.....,n (7.38)
i=0

The coefficients in the diagonal sequence are obtained by putting m=n° N:

Nk
o o

QN :% a &% k=0,1,....N N=0,1,... (7.39)
i=0

Fig.1 displays these coefficients, with an interpolating curve, for afew values of N.

As shown by the interpolating curves, the coefficients may also be described by continuous functions cN(x)
which reproduce the values (7.39) for the integer arguments x=0,1,2,..., or more generally for a set of
equidistant pointsx; , i=1,2,.... This suggests already the correspondence between screening and sequence
transformations. we might have started with the (screening) function c(x); then, if the members of the
original sequence A, , n=0,1,... correspond to equidistant values of x, we have effectively performed a
sequence transformation by application of the screening.

A second aspect suggested by the curvesin fig.1 is that the functions cN(x) , N=0,1,2,.. can also be
interpolated in the variableN. We may thus define a general function c(p;x) which coincides with cN(x) for
p=N and interpolates between these curves for non-integer p. Now we have arrived at a general screening
with a continuous screening parameter p, similar to the traditional exponential screening parameter o asin
(7.29).

The application of the (diagonal) Euler transformation to the lattice summation poses some problems.

First: how do we define the zero-th order sequence to be transformed? It is natural and intuitively attractive
to order the contributions according to their distance from the evaluation point r, and to group together all
terms with the same distance: an 'expanding spheres' picture. For the 'special’ evaluation points s; , where
the chargesq in the unit cell are located, we obtain then 'stars' of terms. For ageneral off-center evaluation
point r these stars are scattered and fall apart in distinct terms. In all cases the discrete distance-values for
which we find contributions are not equidistant and, although on the average the terms will be alternating,
this may not be true on the smallest scale and their sizes may be rather irregular. So, whereas we have the
general structure of an alternating sequence, on closer inspection the development of the sequenceisfar from
smooth and regular. This makesit alittle unclear how to apply exactly the Euler transformations.
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Secondly, and thisis possibly even more problematic from a practical point of view, the grouping of the
terms has to be determined anew for every evaluation point, because the sequence looks different, with
possibly even a different number of terms inside a sphere with fixed radius, and the combination coefficients
(7.39) will have to be computed many times. Considering the large number of evaluation points (all points
of the crystal integration grid) thisis computationally unwieldy.

Moreover the definition of the zero-th order sequence isto some extent arbitrary. We may for instance
introduce formally a very dense radial mesh with equidistant points R; , i=0,1,... and define the sequence as
the potential due to all terms inside the corresponding spheres. Of course, in the limit of a continuous mesh
we will find large subsequences of constant valuesin the sequence and sudden jumps at afew radial values.
The limiting long-range development of the sequenceis not essentially changed by this however and we
may still expect that screening, or equivalently a suitable sequence transformation, can be applied to remove
the divergence and to extract the desired intrinsic part of the sequence. We will use this approach (i.e.
conceptually introducing the dense and equidistant radial mesh) and use thus a continous screening function.

The next problem is then how to define that continuous function. Ideally we would like to reproduce the
Euler transformation by it, but we have not succeeded in finding an analytical form ¢(x) to compute
efficiently the binomial expressions for equidistant argumentsx; . Fortunately the precise form of the
screening function is not essential for our final purpose, the calculation of the intrinsic part of the sequence.
Only we expect that, the more it resembles the 'Euler screening', the more effective it will be as regards the
convergence with ever smoother and ‘weaker' screening. The fermi-dirac function which we employ in BAND
resembles the Euler function reasonably well and has shown to give satisfactory results; fig.2 displaysthis
function h(r) (7.31) for a comparison with fig.1.

remarks

# We have treated screening and sequence transformations as essentially different and only accidentally
similar. In fact both can be analyzed more rigorously as methods to 'sum'’ certain types of non-
convergent series. The screening as presented here isa specia case of the Abelian method. In the
chemical and physical literature the phrase 'screening' is often used, which is the reason to denote it here
as such.

# Theinterpolation in the variable N (7.39), i.e. the definition of a continuous-order Euler transformation
can a'so be given a strict meaning by a generalization of (7.39).

# These and many more fascinating aspects of the summation of non-convergent series are discussed
extensively by Hardy [1949] and the reader is referred to his work for mathematical rigor and more
background information. The intention of our presentation here has been to explain in an intuitively
appealing way (we hope) why and how our screening method works.

the screening function h(r)

Finally we have to determine the two fermi-dirac screening parametersry andd Sticking to the analogy
with the Euler transformations we may say that d corresponds to the order of the transformation (the
parameter m in (7.35)), but now as a continuous parameter, and ry issimilarly the member-index n of the
(transformed) sequence. The diagonal transformation corresponds to tuning dandry relative to each other in



Coulomb potential and lattice sums 47

such away that h(r) startsto fall off from unity already at small r (compare (7.38) and (7.39): all

coefficientsin the diagonal transform are fractional). The diagonal sequence, that is, increasing N in (7.39)

finally corresponds to increasing d and simultaneously adapting ry in the manner just discussed.

From our test calculations we learned the following:

# The'order of the transformation’ d should at least be of the same size as the nearest neighbour distance;
otherwise the oscillations in the sequence, i.e. the oscillations as a function of ry , are too large to make
the resultsreliable.

# Thecompleteinterval over which h(r) changes should be used; in particular all terms at larger must be
taken into account until h(r) has become truly negligible; neglect of this condition leads quickly to
unacceptable errors.

# Since the actual summation over lattice points must be limited as much as possible for computational
reasons, the extension of h(r) has to be restricted, so that dand hencery cannot be chosen arbitrarily
large. A good practical compromiseis expressed by the following conditions:
a8 d»0.65 Dy
b) rg»13d

whereDyy isthe nearest neighbour distance in the crystal.

In the implementation these figures are adapted to the general (integration) accuracy parameter accint (see

Sshintegration); higher accuracy induces larger valuesfor dand rg .

The association of the screening function h(r) with repeated Euler transformations is confirmed by the test
results for the Madelung energy. Let E(rg ,d) be the computed Madelung energy as afunction of the
screening parameters. Then, for fixed d, E oscillates as a function of ry . The amplitude of these oscillations
depends on dand diminishes if weincrease d The energy values oscillate around the limit, providedrg is
large enough. This corresponds to the general phenomenon in Euler transformations that each of the series
oscillates around the limit and the higer order transformations display smaller oscillations.

integration of the oscillations

Except for very small d, the oscillations as a function of ry arefound to be fairly regular over a
considerablerangeinrg , so that E(rg ) isreasonably well described by asimple cosine function around the
limit. The periodicity of the cosine depends on the crystal structure, isin the order of the nearest neighbour
distance (dlightly larger), but we have not been able to detect a strict relation.

Nevertheless the regularity of the oscillation suggests that we may determine the limit more precisely by
averaging the results for a sequence of different valuesry distributed over acycle of the oscillation. We do
S0 in BAND by taking five equidistant points; this corresponds to a numerical integration for periodic
functionsif the spacing between the points is one fifth of the period. BAND assumes that the period equals
1.15" Dy ; thiswill usually not be exact and consequently the 'integration’ is not optimal. It should be
noted however that some improvement results anyway from the averaging.
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remark

It would be possible to set up a standard pilot computation in BAND to determine a priori the periodicity of
the oscillation in the Madelung potential as afunction of the parameter ry . This could then be used to
replace the assumed periodicity, thereby raising the efficiency of the averaging. At first sight this does not
seem very important because the results are fairly accurate anyway. However with an improved averaging
the conditions on the parametersry and dmay be weakened, both can be reduced and this leads to asmaller
lattice summation loop: increased efficiency. It may be noticed here that in 3-D crystals the construction of
the multipole potential's, though not a bottleneck, takes a significant amount of time (a few percents of the
total calculation).

implementation
VMULTI computes the multipole potentials

Vo 0 —é Zlm(QR+Sa)
Im R OR+sy-ro!*l

h(6R+s, —rd) (7.40)
for all |-values occurring in the fit set. s, isthe position of an atom in the unit cell; h(r) is the screening
function.

The parametersry anddare in BAND the variables rmadedl and dmeddl. One may specify them in input with
thekeysr madelung andd madelung. By default they are derived (in RADIAL) from the nearest
neighbour distance dneigh (computed by NEIGHB) and the accuracy parameter accint:

dmadel = (0.50 + 0.05" accint)” dneigh (7.41a)

rmadel = (10+accint) © dmedd (7.41b)

The loop over the cells terminates when the tail of h(r) has become negligible. Experience shows that
cutting off the tail of h(r) at large r too quickly leads to unacceptable errors. The maximum cell distance,
rcelxis set at

rcelx = rmadel + (11+accint) © dmade (7.42¢)

The default for rcelx may be overruled viainput (key cell distance).
If one of the variables dmadd, rmadel and rcelx is specified viainput, the default determination of the others
is adapted to satisfy aswell as possible al conditions discussed here (routine RADIAL).

modifications of the screened | attice sums

1. Theevaluation of (7.29) in apoint r takes place in asimple loop over lattice points; no interpolation
is needed, in contrast with the treatment of other one-center functionsin BAND. The 'exact' evaluation,
without interpolation, gives rise to an awkward problem in the core regions. The potential of an =0 fit
function has the long range behaviour 1/r, but for small r it goes to zero: the 1/r multipole term is cancelled
by another term, as can be verified by inspection of (7.13). FITPNT constructs the fit potential, by addition
of the multipole lattice sum (from VMULTI) at one hand and the 'normal’ bloch sum of the exponentially
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decaying part at the other hand. The second part is obtained by interpolation from one-center function tables
and contains thus small inaccuracies which are not present in the multipole part. Consequently the
cancelling for r 0 is not exact and for very small r these numerical errors blow up.
Therefore the multipole term is modified such that for small r it is suppressed: that part is incorporated in
the other term, i.e. in the one-center function table (in routine FITRA2). The modified multipole potential

becomes
. r2
M () U Z;(Q 7.43
im() Im(€2) 143, ( )

For large r this equals
the pure multipole

; [+1
potential ~L/r'*+ . For Rock-salt Cesium Zinchlende Fluorite
r0it behavesas r? . Chloride
Consequently the
multipole lattice =2 | 1.7475141..| 1.0176541 .. 1.6377612..| 2.51908 40 ..
potentials as computed =4 | 1.7475619..| 1.0176795..| 1.6380634..| 2.5194007 ..
in VMULTI h '
n | have core: exact | 1.74756459.| 1.01768075.| 1.63805.. | 251939 .
holes. Thisis
compensated in BAND
in the one-center Table I. Computed Madelung constants for different accuracies A. The exact

tables (FITRA2), but it
must be kept in mind

values have been taken from Sarkar and Bhattacharyya [1988] (rock-salt and
cesiumchloride) and Atkins[1987] (zincblende and fluorite).

when the results of
VMULTI areto be
applied in another situation.

2. Thenumerical integration (over the parameter ry ) of the lattice sums, as discussed above, is carried
out by amadification of h(r). Let the spacing between the equidistant integration points be 6 and the five
points be rg - 28, rg =6, rg , g +9, rg +28. Then the multipole potential is computed as (we leave the first
modification aside for the moment)

ZimQR) 1 -
oR+ro!*1 4, o (OR-10- (r0+k6))/c%

2 ]
b —h ot

k (6R—10-rg)/dY
K=-2 1+ ¢ 0 b

(7.44)

gl

with f = e¥/9 _ fisthe variable fermfcin BAND; fermfc is computed in RADIAL. The screening function
actually employed (FITPNT, ATMFNC, VMULTI) isthus



Coulomb potential and lattice sums 50

=2 8 —— (7.45)
5 14¢ To)/d '
k=-2

In table | we display the computed Madelung constants of afew standard crystal types, for different values of
the accuracy parameter.

potential and density, another relation

The following equation connects the integral over the potential with an integral over the density
OV d =202 o) o (7.46)

In acrystal the region of integration is an ‘element of periodicity’, such as the crystal unit cell. When
divided by the cell volume (7.46) gives the average potential, sometimes called the ‘constant term (in the
potential)'. A discussion of the average potential and/or relation (7.46) turns up from timeto timein the
literature, without bearing much relevance, since the zero level of the potential in a3D crystal is physically
arbitrary.

The reason to mention it here is not that we found an interesting application, but rather that in the
derivation of (7.46) | overlooked in first instance an instructive mathematical aspect, which isfairly general
and which may easily be missed.

First we examine the relation in a finite system, where the integrations extend over all space.
The potential due to a charge distribution p(r) is defined by

V() = § pnd (7.47)

or-r'6

alternating sequences again

We noticefirst that (7.46) does not hold for an arbitrary charge distribution. Two conditions (at least) must
be fulfilled: the monopole and dipole moments of p(r) have to vanish both. The first condition is
intuitively obvious since otherwise the integral over the potential would be unbounded. Both requirements
are clearly exposed when we choose another coordinate frame by displacing the origin, i.e. setr® r+rg . The
r.h.s. of (7.46) becomes (apart from the factor - 2p/3)

7

B orrg 02 pM =8 2 pi)d +1p28 p)d+2rg- 8 rp(r)d=

=8 2 pnd+rp2 Q+2rg D (7.48)
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giving the original result plus a monopole and a dipole term; Q isthe total amount of charge, i.e. the
monopole moment of p(r), D isthe dipole moment. Sincethel.h.s. of (7.46) is not affected by the
diplacement of the origin, the integral over the potential is apparently not well defined unless both Q and D
are zero.

Now we will give aderivation of (7.46) in which the dipole condition is erronously juggled away; so we
assume only a vanishing monopole moment and proceed to 'prove' (7.46). Consider afinite system, a
molecule or cluster, such that all charge is confined within a huge but finite sphere with radius R. The
potential outside the sphere has an expansion in spherical harmonics

VO =Q Vim® Zim©@) 6ro>R (7.49)

Im

where the componentsV|,(r) are related to the multipole moments of the charge distribution. For a neutral
system the monopole term is zero. Hence, due to the angular integration of Z;,,(Q) , 131

8 vna=0 (7.50)
ouhsde

So for the potentia (aswell asfor the density) the integration over all spacein (7.46) can be restricted to
theintegral inside the sphere.

To evaluate the integral of the potential (thel.h.s. of 7.46) we use aformal expression for the density
analogous to (7.49), and the expansion of 6r—r'6" Lin spherical harmonics

1 _
or-r'o a 2I+1 |+1
Im

Zm@) Zim(@) (7.51)

r« andr, refer tothe smaller and larger respectively of 6ré anddr'6. Thisgives

R
. . , . r
B vind=8 R db b prdd =2 2|+1 T zlm(gz) Zrm(Q) =
all 0 I'm
space
R R I
, r. *
-8 2d8 ©0b (P A pm)Zm@) A 2| e Ijl Zp (@)
0 0 Im I'm'
Z m'(Q)—
R R
:g 2 dg ™2 dr d p|m(r)§f—1m§ K 7,Q) =

Im
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R R
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=2pR28 o) d - ggé 2 () d = - %é 2 o) o (7.52)

The charge neutrality of the system has been used in the last line of (7.52) and in (7.50), but what happened
to the dipolecondition?

The clue isthe dipole term in equation (7.50). A dipole moment D gives a potential at a position r relative
tothedipole

D cos9
Viipoler) = 2 (7.53)

where® is the angle between D andr. Theintegral of this potential over the region outside the sphereis

, & 5
B Viipole) & =D" B d*° g@ & cosb (7.54)
ouiside erR @

sphere

This was taken to be zero (7.50) because of the last factor, but the unboundedness of the radial integral
makes such an assessment hazardous: infinity” zero=27.

Integral (7.54) may be associated with the summation of an alternating sequence, of which the terms do not
go to zero. If we start at the sphere boundary and increase R by small discrete steps, each shell may be
thought to contribute two terms to the integral (7.54), one positive and one negative, corresponding to the
half shells (O£0£p/2) and (p/2£6£p). They cancel each other, but the individual terms do not go to zero as
R increases.

The'outside’ integral (7.54) resembles thus a summation like S=1- 1+1- 1+1- .... Putting it another way:
assume that the dipole moment is oriented along the z-axis and imagine a displacement of the spherein the
positive z-direction (a different choice of origin): as regards the integral over the dipole potential a positive
half-shell is drawn into the sphere from the outside region and a similar negativehalf shell is expelled. The
integral inside the sphereis thus changed by aterm which is not negligible however large we took R. An
equal, but opposite change has to take place in the 'outside’ integral if the integral over all space (7.46) is
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properly defined. Relation (7.50) cannot be true then in both situations, although the monopole condition,
presumably the only requirement for (7.50), may be satisfied.

Conclusion: the integral of the dipole potential over all space, and in particular over the outside region, is
not well defined. In analogy with a discrete series we may call (7.50) conditionally defined.

average potential in a crystal

Ina3D crystal the charge and potential are periodic functions. Divide p(r) in localized terms p;(r)
p(r) =ap;(r) (7.55)

such that the p;(r) transform into each other under the trandation operators of the crystal. This does not
uniquely define p;(r) . We might take for example p;(r) equal to the total chargep(r) in cell i, and p;(r) =0
otherwise; that is we may view p(r) as being build up from ‘cells. We may however also choose p;(r) as
an atomic-like distribution so that p(r) is described as a'sum-of-overlapping-atoms. We demand only that
pi(r) isof finite extension so that it can be contained in afinite sphere. Furthermore we require of course
that its monopole and dipole moments are zero (i.e. the following remarks do not apply if these conditions
cannot be met). Then, following the lines of the derivation (7.40), it is easily found that the average
potential is

Qi 6 V(r)or:%l 8 2 o0 o (7.56)

un” all
cel space
whereQ isthe volume of the unit cell.

A strange aspect of thisresult is that a different choice of the localized 'element’ p;(r) , e.g. a'cell instead of
an atomic-like distribution, may yield a different value for the average potential (we assume of course that
for all choices of p;(r) the dipole (and monopole) moments are zero). Indeed, in atruly infinite 3D crystal
the average potential has no physical meaning (we cannot take an electron out of the system) and
mathematically it is not defined.

For this reason BAND printsin a 3D calculation the final one-electron energies not as absolute numbers,
but gives their values relative to the fermi energy.

Inavery huge, but finite system, we may also define elements p;(r) to build up the system, but the
boundaries of the system now determine the p;(r) and the result (7.56) iswell defined and gives the average
potential in theinterior.
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8 DOS: density of states and population analysis

DOSis the master routine for the analysis of the eigenstates and energy bands after the SCF procedure has
been finished. A Mulliken population analysisis performed and optionally the density of states (DOS) is
computed. The evaluation of the necessary integrals over the Brillouin Zone is discussed in
SS'BZ-integration and will not be repeated here.

Apart from the total density of states various partial densities of states may be computed. They are
analogous to the Mulliken populations [Mulliken 1955]. We write the total DOS as

nB=a 4@ (81)
ij

wherei andj run over the primitive basis functions: atomic one center functions and/or plane wavesin the
current implementation; one might of course define other basic quantities such as fragment orbitals.
An equation for g i (E) isderived from the usual expression for the DOS:

nB=a 6 osE-ek)) 8.2

n Bz

We insert the identity (normalization of the one-particle states)
~ 2
1= Gypkino” o (83
and use the expansion of y(k;r) in the basis functions

wlin =a  Gitk) oi(kin) (8.4)

to write for (8.2)

nE)=a @k dr 3E-e,k)) cyk) cryk) oplkin) o ir) =
ijn
= Ock 3(E-e,(k)) cy(k) cyk) (k) (85)
ijn

S0 that
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4© = Ock 3E-e,K)) oK) crik) S;j(k) (86)

n

The (surface) Bz integral is evaluated numerically:

Odk 5E-e,(k) P A Wy(k) @7
k

The weights w,(k) depend on the energy E, giving

GiE =a wkiB ¢y (k) cyk) Sk (88)
n

The off-diagona overlap density of statesis then

mi® ° i +GiE =A WokiB [6;() k) Sjk) + oK) cyk) k)] =
nk

=& wikB 2Re{ i) i) S0} ° A wkiB uf” @) ©9)
nk nk

where we defined u!?” by

”:jn :“jkin =2Re{ ¢ () oK) ()} (8.10)

The gross density of statesis
nE =q® +3a [4E +qE1=A okbDiad u" A wykB v (@1
i# nk i nk

The diagonal elementsy;; in this expression are defined by (8.10) (i=j) and are twice the net density of
states.

implementation

DOSis the master routine of this section. The total and partial (gross and overlap) densities of states are
computed for anumber of equidistant energy values in the range (edosmn,edosmx). The number of energy
values, nedosis input by the key nedos or dos energies; first and second defaults are 0 and 100. The
value 0 implies that no DOSis computed. The DOS section performs then only the Mulliken population
analysis (see below).

The minimum and maximum energy values can be specified in the same input record as nedos (with
ordering: nedos, edosmn, edosmx), but they may be omitted; defaults are edosmn= 4 and edosmx=+1 (a.u.).
These values are relative to the fermi energy.
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By default only the total DOSis evaluated and output. Gross and overlap densities of states are generated if
thekeys gross pop, respectively averlap pop are supplied. Each datarecord in the corresponding key-
input block (see SS"input) specifies the number of the basis function, (respectively the numbers for a pair of
functions) for which the partial DOS is to be computed. Thisinformation isretrieved from the input file by
DOSINP and stored in the arrays idgrog) and idover().

The eigenstates y(k;r) and eigenvaluese, (k) areon fileiteig. The stored expansion coefficients relate
however to the orthonormal basis used in the SCF procedure. Thefirst step is therefore the back
transformation to the original basis, the plane waves and bloch sums of one-center functions. The
transformation matrix has been written on file itdata by BASOVL, together with the overlap matrix of the
original basis (S in (8.8)). DOSTRA performs the back transformation to obtain the required expansion
coefficients and calls then DOSCON. DOSCON computes the quantities u:} " and vik n ((8.10) and (8.11)) ad
stores them on file itcon.

DOSCAL finally organizes the calculation of the total and partial DOS The energy bands e,(k) areread from
fileiteig and the surface integral occupation numberswp(k;g) are computed (OCCUPA) for al required
energiesg . The summation over the bands and k-points yields directly the total DOS (DOSTOT). The gross
and overlap DOS are evaluated in DOSPOP by straightforward numerical integration of u:} " and v:( "

The DOS output (DOSOUT) is either printed (default) or written to a plotfile. The plot file is generated if the
key dos plot isfound in input. The same input record may also contain the unit number for the plot file
itplot (default: 7). The plot fileis aformatted file.

POPANA, called by DOS, computes the Mulliken populations. The procedure is completely analogous to
that in DOSPOP: the functions u!? " and V:( " are summed over the bands and numerically integrated over the
BZ. The integration weights refer now not to the surface integral for some energy, but to the volume
integration up to the fermi energy: they are the occupation numbers of the one-particle states.

9 Energy: total and cohesive

In the DF formalism, with the customary approximation of motionless point nuclei, the total energy of a
system s

E=E; +E +E; 9.1)
E; isthekinetic energy, E,. the XCenergy and E. the coulomb energy.
Er =an &y Ty; i 92)

The summation includes integration over the BZ; n; are occupation numbers of the one-particle states y; ;
T isthe kinetic energy operator, - D/2 in atomic units.
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Ec =8 &) o 9.3)

g4c(r) isthe XC energy density. It isafunctional of the electronic charge density p(r). The precise form
depends on the DF adopted, for example X, or Vosko-Wilk-Nusair (see S’XC).

1 N\ ° 1 °
Ec =5 @ary dy {p(ry )+a24 81 -Ry, )} o {p(rp )+ 2, 8(r5 - Ry, )} (9.4)
The summation runs over al atomsa.. Z, andR, arethe nuclear charge and position.

There are two sources of error in the computation of the energy. The first is from the evaluation of various
integrals. The applied numerical integration procedure [chapter [11], though fairly accurate, is not exact.

The second source of error is the coulomb potential, implicit in the Coulomb energy (9.4). To calculate the
coulomb potential from the charge density BAND employs fit functions {f; } for which the corresponding
coulomb potentials are known (SS*coulomb potential).

p=agf; +38 (9.5)
Veoul [P1» Veou [aG fi 1= élci Veoul [fi ] (9.6)

The coefficients ¢ are the least squares solution of the fitting problem, with the constraint that the fit
density psj; °a G f; represent the same total charge as the exact density p.  isthe difference between the
exact density and the fit density. The presence of 6 implicates an error in the computed coulomb energy
term.

The cohesive energy is the difference between the total energies of the crystal and the constituting atoms
respectively.

[o]
Ecoh =AEy — Egrystal (9.7)

The free atom subprogram DIRAC determines the first term inther.h.s. of (9.7) amost exactly. The crystal
energy could be calculated by numerical integration in the crystal integration grid. Since E.qp, is often very
small compared with the two terms defining it, care is needed lest a meaningless value for E.qp, is obtained
from (9.7), even when Egyyq5) is computed with arelative accuracy of 10° 4 or 107 . Thereforewe
rewrite expression (9.7) in aform that allows the calculation of E.qp, directly by numerical integration,
with corresponding precision. The crystal total energy is then defined and computed as

Ecrystal =aEy, - Eeon (9.8)

By interpolation from the tables produced in DIRAC, the free atom functions (the charge density, the
coulomb potential and the orbital functions y; andTy; ) are evaluated in the crystal integration points.
The various energy termsin E.q}, are conceptually the difference of the corresponding termsin the crystal
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and atomic total energies respectively. Since these are now computed by integration of the energy densities
in the same grid, the obtained difference term isidentical to the integral of the difference function. Hence the
precision of the integration is preserved in E.gp, :

awj Ecrystal (i) -8W; Egroms(fi) =aw, (Ecrystal(ri)' Eatoms(f)) =&w; DE(; ) (99
The summation runs over al integration points.

kinetic energy

Er crystal = aTjj Pjj (9.10)
Thisformisequivalent to (9.2).

XC energy

For each atom . the free atom charge density p,,(r) , evaluted in the crystal points by interpolation, is used
to compute the XC energy density &, ,(r) . Thisisthen integrated to contribute to the energy term

a Exc,o - The self consistent crystal charge density is used of coursefor B¢ orystal -

coulomb energy

The coulomb energy difference is rewritten to split off the electrostatic coulomb interaction between the
unrelaxed free atoms. This large term can be evaluated separately with high precision without much effort
(see below). Therest, the relaxation part, is computed by 'normal’ numerical integration.

Define

Patoms = &Po (9.119)
Perystal = Patoms t Pdef (9.11b)

The deformation density pgef IS approximated with fit functions for the solution of the Poisson equation
(SS*coulomb potential):

Pdef = Prit + 9 (9.11¢)

Vit = coulomb potential due to pyi; (9.11d)

V, = coulomb potential of atom o, including the nuclear potential Z, /r (9.11¢)

Vatoms = a Vo (9.111)
Then

\\ o 1 °
2DE. =@y oy {perystalr) +AZ4 81 - Ry, )} 0 {Perystal(r2) +8Zg, 8(r2 - R )} -
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é G)jrl d; {Poc(rl) +Z,,0(r1 - Ry, )} qlz {poc(rZ) +Z5 8(rp - Ry )} =

o

(omitting the spatial arguments)
A o 1 Q 2 X
= m"’l a2 { Patoms +& Zy, *+Pgef } [ { Patoms *@ Zo, *+pge } - A OVlpo*Zg) o =

N o Y
= WVatoms {patoms +A Zy +Pgef } d + ger Vatoms & +

N\

1 2
+ Dy o, Pt 7, Paet - & OV (Per#Z) o =

o] \ N o Y
=ad Ovq (PptZp) o +2(V atoms Pdet & - A OV, (P +Zy) O +(Dir1
op
1
a5 Efit+0) — (Pfit+0) =
2(Pf|t )flz(pf't )

o] hY N by Y 1
=aA Vy Pp+Zp) d +20Vaioms Pder & + O Viit (Pgertd) o + (I)jrl dy 6 o d

ol B
(9.12

In thelast line of (9.12) the first term is the electrostatic interaction between the free atoms, to be treated
below. The second and third term are the relaxation terms, evaluated by numerical integration.

fit error

Thelast termin (9.12) cannot be computed. It is an error term resulting from the inadequacy of the fit
functions to describe the (deformation) density exactly. An upperbound on this error term can be determined
for three-dimensional crystals. Let  have the fourier expansion

S(ry=as, dK T (9.13)
K runs over the reciprocal lattice sites. pyes CcONtains zero charge, as does pfj; (and hence 8) because of the

constraint in the fit. Hence 8y =0 in (9.13).
The coulomb potential dueto d is obtained from the Poisson equation - DV=4pp:

o O .
Vs =dp A — dKT (9.14)

This givesfor the error term
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SN 1 A Nfa 9K k2 K. 4 A
e = @Dr, dp 7 8= OV sar=4pOf & e dKTa 5 dK T} ar £ 22 (2
K K' min

¢ (9.15

Kmin isthe smallest nonzero vector of the reciprocal lattice. The integral 2 d is easily computed and has
shown in practice that the fit functions routinely employed are adequate.

This analysis does not include the effect of the inexactness of the fit on the self consistent solution itself. It
seems reasonable however to suppose that this may be neglected as regards the energy: asmall deviation in
the ground state density from the true variational minimum has a quadratic and hence a very small effect on
the resulting energy.

electrostatic interaction between neutral atoms

The electrostatic interaction between two spherically symmetric atoms A and B at positionsR, andRj is

N\
1 \ N
Eelstat :(Djrl d; {pA+ZA} E {PB +ZB} = O‘/A{pB +ZB} ar=ZgV,(Rp) + OVa ps
G (9.16)

Thelast integral is evaluated numerically in prolate spheroidal coordinates. Several other types of elliptic
coordinates [Arfken 1970] have been tried but yielded inferior precision.
Let A and B be located along the z-axis, at positions z=ta Define coordinates u,v,¢ by

x = asinh(u) sin(v) cos(o)
y = asinh(u) sin(v) sin(¢) (9.27)
z = acosh(u) cos(v)

Numerical integration can be set up as a product formulain the variables (u,p,¢) with p° cos(v). The
d-integration yields asimple factor 2p because the functions V5 (r) andpg(r) areinvariant for rotation
around thez-axis. So

¥ 1
OVa pg o =2p8 B o Jup) VaUP) pap) (9.18)
0 -1
The Jacobian is
Jup) =a> sinh(u) (cosh®(u) - p?) (9.19)

For neutral atoms the functions fall off rapidly as u goes to infinity, so that the upper limit on the
u-integration can be replaced by a suitable up,,, - Numerical integration is then performed by a Gauss-
Legendre product formulain u and p
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nu np

N [¢] [¢)

OVapg d>»@ A Hy.p)w W VaUp) pellip) (9:20)
i=1 j=1

For light atoms up to the first series of transition metals n;, =30, Ny =20 give already accurate results.
Heavier atoms require more points but still the electrostatic interaction energy can be calculated almost
exactly without much effort. The precision of the cohesive energy is determined by the other terms.

electrostatic Madelung energy

In case the crystal calculation is started up with ions, the electrostatic energy hasto be split in two terms:
the Madelung energy due to the effective ionic point charges plus the interaction between the neutral atoms.
The latter has been treated above. The former can be done in any of the standard ways, for instance the
Ewald technique. In BAND it is evaluated by afinite lattice sum in real space. For point charges ¢, at
positions d,, in the unit cell the Madelung energy per unit cell is computed as

_130 B
B =2 & §R7dy- a0
affR

h(@R-+d,, - dg 6) (9.21)

The prime on the summation signifies omission of the singular terms; h(r) is a screening function. The
formal expression for the Madelung energy has h(r)° 1, making the sum conditionally convergent. In BAND
h(r) is afermi-dirac distribution function

1

h(r) =————— 9.22
® 1+~ To)/d (022

so that the sum is absolutely convergent. The parametersry and d determine the accuracy of the resulting
sum. Typical values used arerg =40 a.u. and d=3 a.u. For adiscussion see SS*coulomb potential.
implementation

ATMFNC interpolates and sums the atomic functions and writes them to file. The coulomb potential is
stored on itvatm and the density (both the valence and the total density) on itdatm. ATMFNC calculates also
the energy terms By 4toms @dEyc atoms PY integration over the crystal grid. The atomic total energies
E, arecomputed inDIRAC. All these energy terms are written to file itdatm after the density values.

Auxiliary routine ELSTAB evaluates the interaction between two neutral atoms (9.20); the elliptic
integration parameters are nuelst and nvelst (in common FIXDAT).They can be assigned values viainput
(keysu elstat andv elstat respectively); first and second defaults are for nuelst: 40 and 60, for

nvelst: 80 and 120.

ELSTAB is called by ELSTAT where al terms are added to the total electrostatic interaction energy (9.16);
the Madelung part, a simple summation in ELSTAT, is kept separate. Both energy terms, elstt and emadd,
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are passed to ATOMIC where they are written to itdatm, together with the sum of atomic total energies
eatoms.

The variables defining the cut-off function (9.22) for the Madelung energy are rmadel (rq ) and dmaodd (d);
see SS*coulomb potential for the determination of their values.

The crystal kinetic energy matrix T; i is constructed in HAMFIX (one matrix for each k-point in the BZ) and
written to itdatm. The final self consistent density matrix Pij iscomputed in PMATRX and written to file
itpmat. The multiplication (9.10) is performed in ENERGY.

ENERGY integrates also the crystal XC energy (9.3), the coulomb terms vatdef and vdef (the 2nd and 3rd
term in (9.12) respectively) and the fit error integral 32 a.

Thefit coefficients are computed in RHOFIT and, at the last cycle of the SCF procedure, written by RHOPOT
to file itpot. They are used to compute the fit density and hence the deviation function & (9.11c). The
potential Vj; dueto thefit is constructed from the fit coefficients (and the fit potentials on jtfit) in
RHOPOT and written to itpot, after the fit coefficients.

10 Files

BAND employs alarge number of filesto store data during the calculation. Some of these files can be fairly
large. Thisisin particular so for the file that contains for each k-point the values of the basis functionsin
the integration points.

On some machines the total amount of datais not the problem, but there may be a severe limit on the
amount per file. This hasled usto devise a series of subroutinesin which all operations with internal files,
like reading, writing, open and close, are performed. We will denote this set of routines plus the related data
structures as the filemanager. The file manager keeps track of the amount of data per file and switchesto
another fileif a particular oneisfull.

Files are represented in the program as integer variables. The names of these variables start with the
characters'it’; itbas for instance is the file with the basis functions. The value of the variable is the unit
number of the file. This value may be changed by the file manager during input/output (I0) operations.
This happens when the fileis full and more data have to be written; the file manager takes another unit to
write on, but in the program we do not notice that: 10 is still performed with file itbas.

The implementation of the file manager has not only solved the problem with the maximum file-sizes, but
also it hasincreased the programming facilitiesin BAND. We can now freely open and usefiles, if some
program extension requires so, without bothering which units are available: the file manager knows. One
may for instance insert somewhere

call flnew (itnew, 'unformatted') (10.1)
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with the effect that a currently unused unit number is assigned to the variable itnew; the associated fileis
opened and rewound.

The file management system is structured as follows. File variablesin the program, such as itbas, are not
associated with one single unit, but with a sequence, or string of files. The value of the variable is the unit
number of the currently active member of the string. The members of the string are connected by a pointer
structure, implemented as atwo-dimensional array indfil(0:maxfil,2); the constant maxfil is the maximum
number of unitsthat isin principle available to the file manager. Indfil(ii,1) is the successor of unitii in
the same string and indfil(ii,2) precedesii. Begin and end of a string have the pointer pointing to itself: the
first unit in a string has indfil(ii,2)=ii and the last unit has indfil(ii,1)=ii.

A special string isthe string of freefiles: the units that are available but currently not in use. At the start-
up of the program all units 1 through maxfil are members of the free string. Indfil(0,1) points to the first
freefile; initialy indfil(0,1)=1, indfil(i,1)=i+1, i=1,2,... To detect when the last freefile is reached, the
forward pointer of that last freefile, indfil(maxfil,1), is set to zero (instead of maxfil, aswe would do at the
end of any other string). Whenever anew file is requested by the program, the file manager takes the first
free unit for it. Thisis removed from the free string to form a new string on its own; the new string
consists of one member at that moment. The main part of subroutine FLNEW, mentioned above, thus reads

subroutine flnew (itnew,....) (10.2)
itnew = indfil (0, 1) pick up a free unit

indfil (0,1) = indfil(itnew, 1) first next free unit

indfil (itnew, 1) = itnew poi nters of the new string
indifl(itnew, 2) = itnew

end

Apart from the index array indfil, the file manager employs an array lenfil. Thisis used to know when the
end of afile has been reached. Initialy lenfil(ii)=0 for all unitsii. When n words are written to fileii,
lenfil(ii) isincreased by n.

Actualy itisincreased by: n” Istor+markio. The extraterm markio is used to be on the safe side: depending
on the computer the system file manager may write some extrainformation to file while executing a
FORTRAN write instruction; consequently the file may already be more filled than the unwarned user
expects.

The value of lenfil() isto be compared with the maximum file size, which is given by the constant mxflin
in the program; the factor |stor converts the number of words, n, to the units in which mxflin is specified;
usually thiswill be in words so that Istor=1.

When lenfil() reaches the maximum file length mxflin, the file manager switches to the next filein the
same string. If necessary the string is extended with a unit from the free string.
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The analogous procedure is followed when reading from afile. The counter lenfil() is reset at zero when a
fileisrewound. It isincreased again with each read operation, so that we know when we have to switch to
the next file to retrieve more data.

All this has the consequence that read and write operations are accompanied by several checks and updates of
the file management information system. The same is true for file operations like rewind; rewind(itbas) has
now to beinterpreted as: a) associate with itbas the first unit in its string, b) rewind that unit, c) reset the
file counter(s) lenfil().

To keep the program as transparant as possible al operations with files are performed in the file manager
subroutines; the usual FORTRAN statements are replaced by callsto these routines. This makes it also easier
to adapt the file manager to future demands. We list the involved routines below with a concise explanation.

Read and write are performed in three routines FLIOI, FLIOL and FLIOR. These are completely similar; the
only difference is that they handle respectively integers, logicals and reals. A typical call is

call flior ("wite',itbas,n, aa) (10.3)

Thisis the analogue of the usual

wite (itbas) (aa(i),i=1,n) (10. 4)

Aamay be ascalar if n equals unity. The two statements above are also equivalent in that they have to be
interpreted as writing (or reading) exactly onerecord, whatever may happen ‘on the background'. So the
sequence

call flrwnd (itbas) rew nd (10.5)
call flior ("wite',itbas, 10, aa)

call flior ("wite',itbas, 10, bb)

call flrwnd (itbas)

call flior ('read',itbas,5,cc)

call flior ('read',itbas,5,dd)

has the effect that the first five elements of bb are stored into di(1:5) (i.e. not the last five of ag).
Furthermore the sequence

call flrwnd (itbas) (10.6)
call flior ("wite',itbas, 10, aa)

call flior ("wite',itbas, 10, bb)

call flrwnd (itbas)

call flior ('read',itbas, 15, cc)
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resultsin an error, because it requests the reading of alarger record than has been written. On some
machines the usual FORTRAN equivalent is possible and results in the reading of both written records. For
reasons of simplicity and error checking we have chosen not to support thisin BAND's file manager.

The read/write routines FLIO- can be used only for 1O with unformatted files.

Opening of new files, deleting of superfluous files and rewinding are performed as follows.

- FLNEW(it,..) supplies afree unit number, opens and rewinds the file and assigns the unit number to the
argument.

- FLFREE(it) closes, with status 'delete’, unit it and all other unitsin its string. The unit numbers are
inserted into the free string again.

- FLRWND(it) assignsto it the first unit in the string, rewinds that file and resets the counter lenfil(it).

The subroutines FLIOI, FLIOL, FLIOR, FLNEW, FLFREE and FLRWND are the only onesthat are called in the

‘normal’ program. A few auxiliary routines are used in the file manager to isolate some specific aspects.

- FLNEXT(it) picks up and rewinds the next file in the string.

- FLADD(it) picks up afree unit and addsiut to the string it.

- FLCLOg(it,..) and FLOPEN(it,..) perform the usual FORTRAN open and close operations (i.e. for one
unit)

Finally

- FLPROT(it) removes unit it from the string of free files, so that it is not available anymore to the file
manager. FLPROT can be activated viainput to protect specific units from use by the program; the key
is protect it, whereit is the unit number. Subroutine INIT calls FLPROT to protect the standard input
and output files, units 5 and 6 respectively in the current implementation.

- FLDUMP(message,action) writes the state of affairsin the file manager to output. messageis a string
that will be printed before the information, action specifies what to do with the currently open files:
action may be 'delete’ or 'keep'. FLDUMP s called by STOPIT when the program is normally terminated,
to check whether files are still not closed (action="delete'). For debugging purposes thisinformation can
be printed (action="keep') at many placesin the program by giving the input instruction trace files.

remark

The read and write routines of the file manager are used only for unformatted files. A few specific filesin
BAND are formatted. These are the plotfile for the density of states data, the input file for the numerical
integration package and the file to which all input for the program is copied. Furthermore the integration
package POINTS delivers two files with information. These have not been written (and hence cannot be read)
by the file manager. The unit numbers are controlled by the file manager but read and write is performed
with the normal FORTRAN statements (in GEMTRY).
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11 Form factors

X-ray factors, or form factors are (proportional to) the Fourier coefficients of the charge density. The form
factors are denoted F,, .

pr=ar, ek’ (11.1)

The summation runs over al lattice points K of the reciprocal lattice.
F, = é 8 o) KT g (11.2)

Integration is over the unit cell with volume Q. The form factors corresponding to symmetry related
K -vectors are equal, or differ at most by a phase factor. Let {t,R} be a space group operator,
r'={t,R}r=t+Rr, K'=RK, then

-i [K't + RpnKp R
m p

8 pt,RINe mppl o

Fo ==8 pr)elK'T o=

i 1
Q Q

_ iK't é@ o(r) e iKT g = giK't Fy (11.3)

where we used the symmetry of p(r) and the unitarity of the operator R.

BAND calculates the form factors for the stars of K -vectors 0..N, counting K =0 as the zero-th star. N may
be specified viainput by the key formf or equivalently xray ; default N=3.

FORMFA, the master routine, calls first PLANEW to generate the coordinates of N stars of (reciprocal) lattice
points, then CELRED to reduce this set to the subset of symmetry unique lattice points and finally FORMFL,
where the form factors are actually calculated.

Integral (11.2) is evaluated numerically, by summation over al integration points

1

aw

Fo =0 aw; e KT o) (11.4)

remarks
# Equation (11.2) follows from (11.1) by orthogonality of the plane waves. Let S ,.: be the overlap
matrix of the employed plane waves, evaluated numerically

éwj e 1K Tj glK'T = éwj el (K*=K)T; (11.5)

aw;

Starting from (11.1) we may define the form factors alternatively by
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— o -1
FK =a SKK' FK' (116)

K

whereF,. isgiven by (11.4). With a perfect numerical integration S .. equals§, , the analytical
value, and F, =F, . Both F, and F, arecalculated and printed. This gives someindication of the
reliability of the results as regards the numerical integration.

We may expect that the imperfection of the integration shows up more strongly for larger K, so that the
overlap matrix S will resemble the unit matrix better if its sizeis smaller, i.e. if less stars of K -vectors
are taken into account. Conseguently the discrepancies I_:K 0 —Fy 0 for aparticular Ky may be dueto
the presence of larger K in the set and not necessarily to the difference between F 0 B computed from
(11.4) and its analytical value (11.2).

# Theform factors provide also a means to check the fit functions used for the calculation of the coulomb
potential. Let the latter have a Fourier expansion

vin=av, &K (11.7)
From (11.1) and Poisson's equation - DV=4pp we may compute the form factors as

v _K2

Fe =29

Vi (11.8)
V. isdetermined from the potential values in the integration points, like F, (11.4) . In the program
V(r) is computed via the approximate expansion of the density in fit functions. Comparison of F, and
F\Ié givesthus an indication of the adequacy of the fit set. See also the note on the fit error in
SShenergy.

Relation (11.8) does not hold for K=0: F\é is physically meaningless. The corresponding Fourier
coefficient of the density relatesto the total amount of charge; this particular coefficient is therefore not
divided by the volume (éwj ) in FORMFL.

12 Geometry

The numerical integration schemes in BAND are closely related to geometric concepts: spaceisdivided in
polyhedra, low-dimensional crystals are envelopped in boundary planes, the points are generated in the
irreducible wedge, etc. In this section we discuss the representation and processing of such data.

planes

A plane consists of all points x that satisfy
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X-v=d (121)

and is therefore represented in BAND by the normal vector v and the distance d the variable names are
usualy plang(3) and dplane.

The same plane is obtained when we reverse the signs of both v and d Often we will beinterested in the
part of space at a particular side of the plane. With thisin mind we resolve the arbitrariness in the sign of
(v,d) by defining a point to be insidethe plane if x-v<dand outsideif x-v>d Reversing the signs means
then that we interchange inside and outside of the plane.

orientation and rotation

Geometrical analysisin aplane is most convenient in the xy-plane, since we can then neglect the third
coordinate. To achieve thiswe will usually need arotation of the plane under consideration. The rotation
matrix is computed by ROTMAT(v1,v2,rmat). Input are the vectors v1(3) and v2(3) and output is rmat(3,3),
the matrix that rotates the direction v1 to the direction v2; the input vectors need not be normalized. In the
mentioned application v1 would be the normal of the plane and v2 the z-axis, i.e. the vector (0,0,1).

The problem at hand does not uniquely define the rotation matrix: infinitely many unitary transformations
v1® v2 exist with determinant +1. ROTMAT takes the shortest possible arc of rotation; the fixed vector, the
axis of rotation is the vector product v1' v2.

This particular convention is useful when some particular compounded rotations have to be constructed.
Assume for instance that s; ands, are two vectors and we want to rotate them such that s; becomesthe
x-axisands, liesin the xy-plane. Let then u, andu, be the x-axis(1,0,0) and z-axis (0,0,1) respectively.
The rotation matrix rmat is calculated by

call r3vecp (sl1,s2,axis) vect or product of two vectors
call rotmat (s1,ux,rmatl) rotate sl to the x-axis
call rotate (rmatl, axi s, axi s2) rotate a vector
call rotmat (axis2,uz,rmat?2) rotate (sl1,s2) to xy-plane
do 10 i=1,3
10 call rotate (rmat2, rmat1(21,i),rmat(1,i)) product rotation
(12.2)

Since axisis orthogonal to sq (ands,) , axis2 is orthogonal to the x-axis (the rotated s, ) and liesthusin
the yz-plane. ROTMAT constructs then rmat2, which rotates axis2 to the z-axis, using the x-axis as the axis
of rotation. So rmat2 leaves u, , the rotated sq , invariant, hence the compounded rotation transforms sq
into the x-axis, asrequired. This procedureis used for example in PYRPT4 where a pyramid is rotated
(PYRROT) to some standard orientation.
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lines

Linesin the xy-plane are defined by (12.1), wherex and v have now only two components. In analogy with
the planes we define the inside and outside of aline (X -v<dand x -v>d).

By the direction of aline we will understand the angle ¢ that its normal makes with the positive x-axis
(CEd<2p). Any set of linesto be processed is ordered in BAND such that their directions are in increasing
order.

polygons

A polygon (in the xy-plane) is defined by its sides, i.e. by aset of lines with their orientations such that the
polygon isinside each line.

To find the vertices of the polygon we order the sides according to their directions. The intersection point x
of an adjacent pair of linesisthe solution of alinear 2 2 system

Vi X =¢ (12.39)
Vit X = q+1 (123'3)

Given aset of lines the polygon defined by them may have fewer sides if one or more of the lines are
redundant; fig.3 shows (part of) a set of lines, of which the numbers 2 and 3 are redundant; they are
excluded, or cut-off one might say, by thelines 1 and 4.



Geometry 70

Considering only the direct
neighbours we seethat line 3 is
cut off by 2 and 4, but line 2 is
not excluded by its neighbours
1 and 3. In general we have say
linesi andj, excluding al lines
i+1.j- 1 between them. At least
one of these excluded linesis
then cut off also by its own
direct neighbours. POLYGN uses
thisfact to remove from an
input set of lines all redundant
ones: for each line exclusion is
decided only with respect to its
neighbours. Having traversed
the whole set, POLYGN restarts
the loop if one or more lines
[ were removed, until no more

’ redundant lines are found.

4

Fig.3. The shaded area is (part of) a polygonal region, defined asthe polyhedra

spaceinside a set of lines. Thelines 2 and 3 are redundant. A potyhedron can be defined as

the region of space inside a set
of planes. Again, given a set of planes some of these may be redundant and should be removed.

Each of the remaining proper planes defines a ‘face’ of the polyhedron. The relevant part of that planeisa
polygon, defined by the intersection lines with the other planes. A polyhedron isin BAND represented as a)
aset of planes plang(3,nplane),dplane(nplane) plus b) alist of vertices vertex(3,*) with an index array
index(nplane+1). The vertices corresponding to planei are the numbers index(i)+1 through index(i+1);
Index(1)=0. Each vertex occurs at least three times in the list, once for each face it belongs to. The subset of
vertices of a particular face are in clock-wise order (viewed from inside the polyhedron), so that, when the
normal on the planeis rotated to the positive z-axis (the standard orientation) the rotated verticesarein
increasing order of their direction angles. This ordering of the verticesis assumed (and checked) for instance
in the integration package POINTS (the routines PYRPT3 and PYRPT4).

Routine POLYHE generates the polyhedron data structure from an input set of planes; redundant planes are
removed. The algorithm is as follows. For each plane the rotation matrix is constructed that rotatesit to the
xy-plane. In the rotated frame all intersection lines with the other planes are computed. The resulting
polygon is analyzed (POLYGN): if all sides are redundant, that is, if the 'inside’ of the polygon does not
exist, then the corresponding plane is redundant for the polyhedron and can be removed; otherwise the
vertices are computed, back rotated to the origina coordinate frame and added to the list.
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The line of intersection of a plane (v,d) and a plane parallel to the xy-plane, with z-coordinate z; iseasily
found: the normal on the lineis (apart from a normalizing scale factor) given by the x- and y-components of
v; the distance parameter OL<y for thelineis (fig.4)

dey =F‘j@ +79 19(6) (12.4)

¢ F-
symmetry o

Theirreducible wedge of a
polygon is constructed by |
PLGIRR. Input are the vertices
of the polygon (ordered) and
output the vertices of a
connected irreducible wedge (a
polygon again). In order to
construct this PLGIRR sets up \
an index array for the sides of
the polygon. Theindex is 1 for
a side belonging to the wedge,
0 for aside outside (which

must then be symmetry
equivalent to one of sides
belonging to the wedge), and

- 1if the boundary of the wedge
cuts the side in two equal parts.
All indicesareinitiated at 1. A loop over the sidesis then executed, starting with the first and counting
upwards. For each of them the equivalent sides are found and assigned index O (: to be removed). The loop
isinterrupted when the boundary of the wedge is reached. Thisis the case as soon as a side to be considered
has already index 0, so that it falls outside the wedge, or when one of the symmetry operators interchanges
the two vertices belonging to the side: only half of the side belongs then to the irreducible region (index

- 1).

Next a second loop is performed, starting with the last side and counting backwards until the other boundary
of the wedge is found. In thisway the irreducible wedge is constructed ‘around’ side 1, by traversing the
circumference of the polygon in both directions until the edge of the wedge is encountered.

Thefinal index array is then used to compute the vertices of the symmetry unique subregion.

=1

Fig.4. A plane, parallel to the xy-plane at z=7; is cut by a second
plane (v,d). The normal v makes an angle 6 with the xy-plane. The
distancedxy isgiven by (12.4); seetext.

The origin isaspecia point. Assuming the symmetry group not to be trivial, the origin is not one of the
vertices of the original polygon. In many cases however it is avertex of the irreducible wedge; if thisisthe
case PLGIRR permutes cyclically all final vertices such that the origin is the first in the output list of
vertices.
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If the original polygon ishalved (only one reflection plane for example), one of the sides of the wedge
passes through the origin, but the origin is not one of the vertices. Nevertheless it may be convenient
(SS"Bz integration) to define the origin as a vertex also in this case, spanning an angle p. Thisis not done
by PLGIRR, but to facilitate this adaptation PLGIRR permutes also in this case the final set of vertices such
that, if the origin isto be added, it fitsin between the first and the last of the output vertices.

In three dimensions we may need the irreducible wedge of a polyhedron. Associate with each of the
polygonal faces of the polyhedron the pyramid with the polygon as its base and the origin as the top. The
symmetry analysisisthen atwo-step proces. First we retain only the symmetry unique pyramids by
checking which of the normal vectors are transformed into each other by the symmetry operators (the
corresponding faces are then necessarily also equivalent). Then each of the remaining polygonal facesis
subsequently rotated to the xy-plane and dealt with by PLGIRR.

simplices

Simplices play arole in BAND in connection with the integration method in k-space. Simplices are defined
in any n-dimensional space by n+1 points: the simplex in one dimension isan interval, in two dimensions
itisatriangle, etcetera.

A special problem occurring in the generation of k-space integration pointsis the subdivision of a simplex
into smaller simplices by repeated bisection of the edges. SIMPLS performs this task. Input is a generating
simplex simplx(ndim,ndim+1) and the number of refinement-steps nmesh; ndimis the dimensionality and
hence the number of coordinates for each of the (ndint+1) points.

Output isalist of distinct points point(ndim,npnt) and an index array idsimp(nrow,nsimpl); nrow is the
row-dimension of idsimp (must at least be ndm+1); nsimpl is the generated number of simplices of the
specified refinement. Idsimp(1,i), idsimp(2,i),.. idsimp(ndim+1,i) specify the vertices of thei-th smplex by
pointing to entriesin the list of points (point). Each refinement step splits every simplex into M:Z”dim
smaller ones, so that the total number of smallest simplices will be nsimpl=2"dim” nmesh

The algorithm is basically a multiple nested loop, one for each level of refinement. Each of the loops runs
over al nsub sub-simplices of the one-level-larger simplex.

do il = 1,nsub

.. construct the i 1-th subsimplex (12.5)

do i2 = 1,nsub

.. the i2-th subsub(...)simplex

do i3 = 1,nsub
(etcetera)

Since the number of nestings, nmesh, is avariable the loops cannot be implemented explicit; they are
constructed implicitly, with 'goto’ statements and tests on loop termination; the loop counters are stored in
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array idsub(nmesh); array vertex(ndim,ndim+1,0:nmesh) stores the vertices of the simplices under current
treatment, one for each level; level 0 isthe input simplex.

A subsimplex may have one of its verticesin common with its parent simplex; the other vertices are then
the midpoints of the adjacent edges. Other subsimplices may have only a particular set of these midpoints
asvertices. In general the vertices of the subsimplex can then be defined as the averages of particular pairs
of parent vertices, where in some cases the average may be taken of one and the same point. Each of the
2ndim g mplicesis thus characterized as a special set of ndim+1 'pairs. This data structure is the fixed
dataarray idpart(2,ndi m+1,2nOlim ) in SIMPLS. Inspection shows that with an appropriate ordering of the
subsimplices the structures for the lower dimensional cases can conveniently be embedded in those for
higher dimensions. The implemented array idpart is the 3D case; when SIMPLSis called with ndim<3 the
appropriate submatrix is used.

13 Input

This section deals with the processing in BAND of input data and with the ways in which the operation of

the program can be directed viainput. A few remarks will be made concerning output.

Input is optional in many respects; omission leads to default settings. Input relating to alarge number of

detailsis dealt with in the corresponding Software Sections and is not discussed here. Reading this section
should supply sufficient information however to run the program.

BAND reads only one input file. Restart possibilities have not yet been implemented.
INIT excludes the unit numbers 5 and 6 from use by BAND's file manager (see SS™files), assuming that these
are associated with the standard input and output channels respectively.

Theinput file is defined to have two parts: the comment part and the data part. The comment part, which
may be empty, consists of all consecutive first records that have the character 'c' in the first column; the
other records constitute the data part. The data part and hence the input file is defined to end with either the
FORTRAN 'end-of-file'-code, or a specific record (see below), whichever comesfirgt.

INIT copies the complete input file to output. Simultaneously the comment part is copied to a file itcomm
and the data part to itinpt. These formatted files are processed further in HEADIN and GETINP, which are both
caled from INIT.

HEADIN prints the 'heading' of the output, directly after the copy of the input file. The heading provides
some general information about the program and the calculation, such as the rel ease number of the program,
the date of the release and the requested CP-time and memory-usage for the current run. Naturally some of
thisinformation is picked up by machine-dependent code. This has to be adapted when BAND is
implemented on another computer. The involved routines are SECTIM and HEADIN.
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HEADIN retrieves also the comment lines again from itcomm and writes them (without the first-column 'c')
into the output heading.

GETINP analyzes most of the information on itinpt. The rest, for example the characteristics of the basis
functions, is written to a new file unit; thisis (at the end of GETINP) assigned to itinpt, replacing the old
value. In various parts of the program the remaining information is extracted from (the new) itinpt.

All (data) input is structured by keys; akey isa (short) string, usually a single word. Each key defines a
separate key section. Two forms are used. In the first form the section consists of only one record; it
contains the key and, depending on the case, additional (numerical) information. The second formisa
seguence of records: the first record is the key; the last contains (only) two asterisks, **', signifying the end
of the section; the intermediate records provide al information; in one special case thefirst (key) record has
to contain also additional information.

We will denote the two forms by key record and key block respectively.

The form of the key section is not optional: each admissable key is associated with a particular form.
Generally speaking the block form is employed only for keys that relate potentially to large amounts of
data, such as alist of basis functions or atom coordinates. All keys that have the block form will be
mentioned in this section.

Empty linesin input are allowed and meaningless; INIT omits them when itinpt is written.

All numerical information is 'free format': the absolute positions of numbers and the form in which reals
are specified isirrelevant.

The ordering of the keysin input is free and has no implications (with one obvious exception, as we will
see).

Most of the keys are optional: omission leads to defaults for the corresponding variables or options. For
some keys second defaults are available; these are activated by giving the key without specifying further
information.

GETINP checks the occurrence of al keysthat are known to the program. Unknown keys are neglected and
their presence in input has no conseguences. As said before, in most cases GETINP extracts al information
and assigns values to the variables and/or sets the options that correspond to the encountered keys; for some
keystheinformation is only globally surveyed and copied to anew file to be processed later.

The occurrencein input of afew special keysis'kept in mind' by storing them in alist of keys, the array
keylst. This operation is performed by routine KEYSET, which is called from GETINP whenever such akey
isfound. Thelogical function KEY checks the presence of a specified key in the list, i.e. KEY('this key")
tells us whether this key has been stored in the list.
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This structure has made it easy to implement new options or to adapt the operation of BAND to new
insights, either permanently or temporarily for testing or debugging purposes. Suppose for instance that we
consider the replacement of some algorithm by a possibly more efficient one. To test this we would like to
compare the two aternativesin a number of calculations. Instead of keeping two versions of the program
during the testing period, we just define a new key, say algorithm, and insert afew linesin GETINPto
search for that key and to call KEYSET when it occurs. The aternative algorithm can then be implemented
side by side with the original one, with a simple if-then-else structure:

if (key('algorithm)) then
'('new al gorithm

el s'e' (13.1)
'(;)I d version)

endi'%

In this way we can keep both possibilities available as |ong as we wish, without bothering about the
maintenance of two programs instead of one.

Since BAND isaprogram in perpetual development, the set of keys changes rather often. The keys
mentioned in this section and in other Software Sections may therefore not exhaust the set employed in
BAND; at the other hand some of the keys may not be in use anymore. One should examine the code of
GETINP to ascertain which keys are in fact recognized in the current release.

In the next paragraphs we discuss the input of necessary information, such as the geometry and basis
functions. After that we will examine keys related to output printing and the 'control' keys, which determine
the operation of the program in general.

The keys are typed outlined (1 attice, debug). If the block form isto be used for the corresponding data,
thiswill be indicated between brackets. Keys may have synonyms; the alternatives will be listed (sto,
slater). In most cases akey is recognized also when it is embedded in alarger string; for instance the string
slaters isrecognized as denoting the key sl ater.

geometry
Information must be provided concerning the Bravais lattice of the crystal, its dimensionality, the

coordinates of the atoms and the units in which the data are specified on the input file.

angstrom. Lattice vectors and atom coordinates are interpreted as being specified in angstrems. Default
(omission of the key): atomic units.



Input 76

lattice (block). Each record contains a lattice vector: three cartesian coordinates; if fewer coordinates are
specified zeros are supplemented; at least one coordinate per record must be given (empty records are
discarded). The number of recordsis the dimensionality ndim of the crystal.
The lattice vectors (in atomic units) are stored in array avec(3,3). The inverse-transpose, which
describes the reciprocal lattice (apart from afactor 2p), is stored in bvedq3,3).

natural. The positions of the atoms are specified in natura units, i.e. in units of the lattice vectors.
Default: cartesian units.
If the dimensionality of the crystal isless than three, only the first ndim coordinates can possibly
refer to the lattice vectors; the others are automatically cartesian.
The (cartesian) coordinate values are stored in array xyzatm(3,natomt). Natomt is the total number of
atomsin the crystal unit cell.

atoms (block). The positions of the atoms. The key has to be specified anew for each (chemical) type of
atom that occurs in the crystal. The number of types of atoms, ntyp, is defined as the number of
occurrences of the key atoms. Atoms belonging to different types as defined here cannot be
symmetry equivalent.
This key isthe exceptional case in which the leading key-record itself must contain additional
information: the atomic number (=the nuclear charge).
Each of the intermediate records in the block gives the coordinates of one atom; zeros are suppplied
when fewer than three coordinates are found.
Note that the meaning of the input coordinate values depends on the absence or presence (anywherein
theinput file) of the keys natural and angstrom.

function sets

Data have to be supplied concerning the free atoms that make up the crystal (key dirac), the Slater type
valence basis functions (sto) and the Slater type fit functions (fit). For each of the ntyp types of atoms, as
defined above, dirac, sto andfit are searched for. Dirac is obligatory, but sto and fit are optional.

The order in which the keysdirac, sto andfit occur isrelevant (thisis the exception to the rule that the
order of keysin input has no meaning). In the first place: the keys atoms and dirac correspond in their
order of appearance. In the second place: for each of the atom types GETINP searches the keyssto and fit
after the corresponding dirac-block but before the next dirac-block (or the end of input); if they are not
found in that part it is assumed that they have been omitted for that type. In the third place if both the
fit-block and thesto-block are present for a certain type, thesto-block must precede the fit-block.

dirac (block). Thefirst record in the block (following the key) states the number of numerical one-electron
states natorb to be computed and the number of them that are to be interpreted as core states in the
crystal ncore: two integers; omission of the second implies ncore(ityp)=0.
The next records give for each of the natorb orbitals n,l,g the main and angular quantum numbers and
the number of electrons. Example: '3 2 7' implies 7 electrons in the 3d-shell of the spherically
symmetric atom. The occupation gmay be omitted; default: fully occupied (g=41+2).
Anywhere inside the dirac-block the following additional keys may be supplied:
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valence (or: basis). The numerical valence states are incorporated in the crystal valence basis.
Default (omission of the key): no.
Note that the numerical core states are used anyway.

fit. For each numerical one-electron state which has an angular quantum number |£]fit, the square of
the orbital (i.e. the orbital density function) is used as a spherically symmetric fit function (a
one-center fit function with 1=0) in the crystal. The value of Ifit may be specified in the key
record; default: Ifit=0.
Absence of the key implies Ifit= 1: no fit functions are derived from the numerical orbitals.

radial. All one-center functions, both those from DIRAC and the Slater type valence and fit functions
arerepresented in BAND as tables f(r; ),i=1..nr. Theradial coordinatesr; constitute a
logarithmic grid (141 /r; isconstant). Key radial specifies the number of pointsin this grid:
nr, thefirst value ry and the last value, ry, , in that order. Defaults are used for absent data
(nr=2000, r; =10 % a.u., 1y, =40 au.).

Remark: the radial grids (one for each type of atom) are stored by BAND in array rad(nrx,ntyp);
nrx is the maximum nr. of radial pointsin any of the grids. After the setting-up of the tables,
the valuesin rad are replaced by the reciprocals 1/rad; thisis more convenient in the
interpolation routines (ATMFNC, BASPNT, FITPNT). In some places in BAND the array is
accordingly denoted rinv(nrx,ntyp). The array nr(ntyp) stores the number of radial pointsin each
grid.

valence, basis, sto, slater (block). Each record characterizes one set of Slater type functions for the
valence basis by three variablesn,l,a.: two integers and one real. The corresponding functions are
Zm(Q) "1 7" centered on the atoms of the type under consideration.

fit, stf (block). Analogous to the previous; the functions are used in the fit set to describe the
(deformation) charge density in the crystal.

plane waves. Apart from the one-center numerical orbitals (from DIRAC) and the Slater type orbitals, the
valence basis may contain plane waves. The plane waves d(K+HK)T Lsed for each k-point k in the
BZ, are characterized by the lattice points K of the reciprocal lattice. The key record must state the
number of stars of these lattice points to be used in the valence basis, nwavst. Star no.0 consists only
of the central point K=0. Each subsequent star consists of all K with the next higher distanceto the
origin, regardless of symmetry relations.
The central 'star' is used only if no other valence functions are employed. Otherwise it is omitted to
prevent dependency problems in the valence set; only the star numeros 1 through nwavst are taken
then. The resulting number of plane wavesin the basis (per k-point) is nvalwv.

print directives

The amount of printed output is determined by a number of general print options and may further be directed
by print instructions.
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The genera print options are encoded by the variablesiprntp, iprnti, iprnts, iprnte and iprntr in common
FIXDAT. They determine the general output levels for respectively the preparation part, the numerical
integration package, the SCF-procedure in general, the eigensystems of the iteratively computed hamiltonian
and theresults (properties section). The higher their value, the moreis printed. The (low) default settings
provide aready afair amount of information; more output is usually only required to test accuracies and to
examine intermediate results. The corresponding keys and defaults are
print prepar. defaults (first and second): 1, 2
print integ. defaults: 1, 2.
print scf. defaults: O, 1.
When the SCF procedure encounters convergence problems, the value of iprnts is automatically
increased in SCFTST (but not higher than 2). This induces the output of information which may
clarify the type of convergence problem.
print eig. first default: O : eigenvalues at the first and the last cycle; no eigenvectors.
second default: 1 : complete eigensystems at the first and last cycle.
other values: 2 : (only) eigenvalues at all cycles. 3 : complete eigensystems at all cycles.
print prop. defaults: 0, 1

More specific print instructions are activated by keys that resemble those of the previous set, but that are

processed differently in the program. All these keys have the form print abc, where ‘abc is some specia

string. Whenever such akey isfound by GETINP, i.e. when 'abc’ does not equal (or contain) 'pre, 'int', 'scf',

'eig' or 'prop’, routine PRNTST is called, which adds the string ‘abc' to alist of print instructions, stored in

the array prtlst. The occurrence of a specific string in the list is checked by the logical function PRNT-;

PRNT("'abc) istrueif 'abc’ has been added to the print instruction list. This set-up is analogous to that for

the keys (cf. routines KEYSET, KEY) and has been devised to adapt the output easily to new demands. The

print strings recognized by BAND are

print fermi : detailed information about the determination of the fermi energy at every cycle and related
data.

print fit : fit coefficients and related data at every cycle.

print occup : the occupation numbers for all one-particle states at every cycle.

general control

execute (SS).BAND stops after execution of SS; 'ss must be the name of a subroutine or section that is
recognized by BAND's controller; all major subroutines satisfy this requirement (see SS“control).

skip (SS1, SS2,..). BAND skips the sections or subroutines SS1, SS2, ... Again 'ssl', etcetera must be
recognized by the controller. Any consequences of the not-executing are not (yet) taken care of in
BAND; the program may even 'crash' because e.g. variables have not been computed. In practice this
option is consequently only safe for afew specific sections (e.g. ELSTAT: the electrostatic interaction
energy is not computed then, but this has no further consegquences; also various parts of the properties
section may safely be skipped).
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The sections to be skipped are stored (by routine SKIPST, called from GETINP) in a'skip-list’, the
array skiplst; the presence of a specific string in the list is checked by the logical function SKIP('ss).
Compare the manipulation of keys and print directives.

The skip-list is printed in the output heading.

Of courseit is an easy matter to extend the applicability of the skip-command beyond the standard
sections and routines in BAND. Execution of any part of the program may be subjected to the value of
SKIP('ss); 'ss' has thereby automatically been made into a recognizable name. We have done so for
instance with the printing of all overlap populations (in POPANA); this output is suppressed now by
the input command: skip (overlap).

Other keys that influence the operation of BAND in ageneral way are

spin, unrestricted, polarized or magnetic. Both spins are treated independently as regards the
potential, charge density, eigensystems. The basis sets are identical (the free atom equations solved in
DIRAC are spin-restricted). Omission of the key implies a spin-restricted crystal calculation.

debug. The default value of all general print options are set so high that all possible output is generated.
Moreover BAND will not stop, as it would do otherwise, when intermediate results are suspect.

test. Thisincorporates most of the debug effects. In addition some (other) defaults attain different values.
In particular integration levelsin real space and ink-space are lowered. The default resettings are
performed by TESTST.

keys with block type input

We conclude this section with the enumeration of al keysthat carry with them in the input file a block-

structure, as defined before:

lattice, atoms, dirac, sto andfit have aready been mentioned.

integration providesinformation for the integration package. See SS"integration.

gross population andoverlap population determine which partial densities of states have to be
computed. See SS'DOS.

14 Integration

Integrals over the crystal unit cell are evaluated by numerical integration. The integration formulais based
on a partitioning of space in atomic polyhedra, core-like spheres and (except for 3D crystals) an outer
region. For each of the sub regions efficient product-Gauss rules are generated. The procedure is described
extensively in [chapter 111].

In other software sections some specific aspects are dealt with, such as the construction of the atomic
polyhedra and the irreducible wedge (SS*geometry) and the computation of the space group operators and
their application (SS"symmetry). Here we mention afew details that have not been covered yet.
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The theory and global set-up of the integration formulas are discussed in chapter I11. The integration package
POINTS s suited for periodic systems as well as for molecules; the latter have been used extensively to test
the performance and we will therefore refer to the molecular application from time to time in the discussion
below.

POINTSis called from GEMTRY. GEMTRY supplies the necessary data (atom positions, lattice structure and
integration parameters) to POINTS viafile itipnt. POINTS returns a file with points, itpnt, and afile with
geometric data, itgeom. The latter contains in particular the space group operators and the division of the
atomsin sets of symmetry equivalent ones.

Thefile with pointsis processed further in RPNTID. Each record written by POINTS contains precisely
one complete set of symmetry equivalent points. After the reorganization in RPNTID the block structure on
the file is such that a) the number of points per block does not exceed a prescribed maximum length npx
andb) each block contains only complete sets of symmetry related points. Also written to thisfileis
information concerning the symmetry relation between the points. This serves to facilitate in various parts
of BAND symmetry operations based on numerical integration: e.g. the symmetrization of a function by
averaging over the equivalent points (the density) and the expansion over al points of a symmetric function
that has been computed in the unique points only (the potential). Furthermore RPNTID computes for each
point which atom is nearest by (according to some metric); thisis used by CHARGE to partition the self
consistent charge density over the atoms.

Each block on the resulting pointsfile (itpnt) consists of the following records:

1 np: the total number of pointsin the block.

2 xp(np): the x-coordinates of the points.

3,4 ypandzp(np): the y- and z-coordinates.

5  wp(np): theintegration weights.

6 npsym: the number of symmetry unique pointsin the block.

7 nequiv(npsym): the number of equivalent points for each of the unique points.

8 idatom(np): for each point the index of the atom nearest by. Idatom() may have a positive or a
negative value; the indicated atom is abs(idatom()), positive and negative values signify that the
points are inside, respectively outside the atomic sphere.

As discussed in S3*workspaceitpnt is reorganized several times (RPNTRE, REORGF). The same structure is

maintained. Only the maximum block length npx may be changed.

input

A fileitintg isopened in INIT and used by BAND to collect integration parameters. In GEMTRY thisis
combined with the atom coordinates etc. to write the input file for POINTS itipnt. Integration parameters can
be specified viainput with the key integration. The contents of the associated data block (see SShinput) is
copied toitintg and finaly to itipnt. This data block is read again by the input routine of the integration
package, RDINTG. It must consists of a sequence of keys with additional numerical information. RDINTG
knows two types of keys. ) single records containing the key and a number, and b) one record with the
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key and a second record with an array of numbers, one for each type of atom in the system. The admissible
keys, their meanings and the default values are listed below; the names of the corresponding variables are
identical to the keys.

type a: single-value keys

1

10

accint; default: 3.5. Thisisthe general accuracy parameter. In normal operation only this parameter
should be supplied, if any at all. Almost all other parameters depend by default on accint.

The computed integration formulais intended to give an accuracy of accint significant digits for
integrals that normally occur in electronic structure calculations.

accsph; default: accint. Analogous to accint accsph is an accuracy parameter referring to the number
of significant digits of the formula, in this case for the radial integration in the atomic spheres only.
accpyr; default: accint. Similarly accpyr refers to the atomic polyhedra and the constituting
pyramids.

accpyu; default: accpyr. The integration over the atomic pyramidsis athreefold product formulain
variablesu,v andw. U and v describe more or less the angular integration and w parametrizes the
radial variation relative to the central atom in the polyhedron. Accpyu specifies of course the accuracy
of the outer integration 'loop' over the variable u.

accpyv and accpyw; defaults: accpyr. Similar to accpyu, now for the variables v and w.

accout; default: accint. The accuracy parameter for the outer region (not relevant for three-
dimensional crystals). The treatment of the outer regionsin POINTS s not very sophisticated
compared with the spheres and polyhedra: notest functions are employed to monitor and tune the
number of points to the specified accuracy. The parameter name accout is therefore a little misleading;
of courseit is meant to have the meaning suggested, but the necessary code has not yet been
developed. Fortunately the outer regions are in general not very relevant for the integrals. Moreover
accout does determine the number of pointsin the outer region (see below) and our experience thusfar
suggests that the resulting accuracy is at least good enough in the large majority of cases.

dishul; default: 2.3" rsphx. Rsphx isthe radius of the largest atomic sphere (see parameter rspher
below). Dishul isthe distance from the outer atomic spheres to the enveloping boundary planes that
constitute the inner limit of the outer region. The atomic spheres have usually radii in the order of 1
a.u., so that the outer region starts at approximately 3 a 3.5 a.u. from the nuclei.

frange; default depends on the nuclear charge and on accout. Frange specifies the distance at which all
one center functions become negligible (not counting the multipole potentials). In the integration
formulait is the position of the outward limit of the outer region, measured from the outermost
atoms.

The default depends on the nuclear charge of the heaviest atom, Z, and on the integration parameter
accout. The relation below is based on sometrial and error and on common sense. Set fr=10(Z, £2),
12(Z, £18),15(Z, £54) or 20 (otherwise). Then frange=fr’ (3- 2" 0-07" accout y rig 5 depicts frange
asafunction of accout for Z, =30.

nouter; default: 1+nint(2.5/dishul).

The outward integration in the outer region is logarithmically subdivided in nouter subintervals. In
most situations two subintervalsis optimal: arelatively narrow interval near the outer atoms and a
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11

12

13

large interval for the decaying tails of the functions. If dishul attains extreme values, some adaptation
is necessary of course, hence the applied default relation.

outrad; default: 1.3+0.9" accout.

This paramater governs the 'radial’ integration in the outer regions (outward, away from the atoms).
The default relation has been fitted by a number of test calculations on various molecules. Outrad is
the number of integration points per outward subinterval (see nouter above).

outpar; default: 0.5+1.5 accout.

Parameter for the 2D integrations parallél to the boundary planes of the outer region. The default
relation has again been determined from test calculations.

[inrot; default: lintgx+1. This parameter is relevant only for systems with an axis of infinite
rotational symmetry such that all atomsliein a straight line. The symmetry unique points can all be
chosen in ahaf plane: we have in fact a 2D integration problem. BAND however needs also the
equivalent points to evaluate correctly integrals over the rotational angular variable.

For each of the symmetry unique points (in the half plane) POINTS generates a circle of equidistant
points. The necessary number of points depends on the angular momentum quantum numbers of the
integrands. The maximum I-value is lintgx (see below); the required number of angularly equidistant
points to integrate the periodic functions of this order is lintgx+1.

If linrot is specified on input, the generated number of points on the circle is the smallest integer
multiple of linrot that equals or exceeds lintgx+1.

type b: keys with ntyp data in the next record

1

2

rspher. Theradii of the atomic spheres. By default they are determined for each type by a) the distance
0y tothe nearest atom and b) the nuclear charge Z, such that
a rspher<d, /2: the atomic sphere is inside the atomic voronoi polyhedron.

b
c

if dy issmall: rsphemd, /2: the sphereis as large as possible in narrow regions.

if oy islarge: rsphemdy /2: for free, isolated atomsintegration in spherical coordinatesis optimal,
so we extend the sphere as much as possible in such a situation. 'Very large' is defined to be frange,
the assumed function range, so rspher depends also on this parameter.

for 'normal’ values of d, : rspher equals approximately a standard val ue that depends on the nuclear
charge: heavier atoms get alarger 'core-sphere. The implemented function can be found in RDINTG.
It results for instance in rspher=0.5 for hydrogen, 1.0 for oxygen, 1.3 for copper and 1.7 for uranium.
(In fact a smooth function has been devised that produces precisely these values). To get an
impression of the combined effect of all aspects fig.6 displays the value of rspher as afunction of
dy for copper, with frange=25a.u.

linteq: the maximum angular momentum quantum number of one-center integrands, one value for
each type of atom. (Lintgx, used to determine the default value of linrot above, is the maximum over
this array). BAND automatically computes these values from the fit functions and basis functions
employed in the calculation. Lintgx is used by POINTS to choose the appropriate angular integration
formulas for the atomic spheres.

The default value for linteg as implemented in RDINTG depends on the nuclear charge: linteg=0 (Z£2), 4
(Z£18), 8 (ZE54) or 12. Thisis not relevant here because BAND overrules the default values anyway.
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remarks

# Thedefaults stated above might yield evidently ridiculous values in some situations. For instance dishul
(=2.3 rsphx) would become unreasonably small if we explicitly specify extreme values for the atomic
spheres. Thisisaccounted for in RDINTG by checking such extraordinary situations and changing the
default to more sensible values. The details of these checks and adaptati ons can be found by inspection
of RDINTG. We have attempted to provide reasonable defaults for all parameters, whatever the
specifications for the others.
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0y (a.u.) tothe nearest atom. (assumed function range: 25 a.u. (see text))

# Asmentioned

before, the
treatment of the
outer region is
not so well
developed (yet)
as the atomic
spheresand
polyhedra.
Although thisis
usualy not a
problem due to
therelative
unimportance of
that part of
spaceand
because the
implemented
strategy
functions
reasonably well
in practice, we
have
encountered
(minor)
difficulties with
some
molecules.
Invariably this
had to do with
the 'parallel’
integration
(parameter
outpar) over
large polygons
that were part of
the enveloping
molecular
polyhedron.
These polygons

are subdivided in quadrangles (and possibly atriangle). No further subdivision is made. Consequently we
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may occasionally have to integrate over very large quadrangles with one single product Gauss-L egendre
formula. Functionsthat are relatively localized are not integrated easily then and a subdivision in
smaller quadrangles would probably be better.

When such troubles come up one may specify alarger value for dishul, thereby shifting the problematic
region away and making it lessimportant, or one may increase outpar. It is not easy to say which of
the two leads effectively to more integration points. Increasing dishul implies enlarging some of the
atomic polyhedra; this results usually in significantly more pointsin the involved pyramids. At the
other hand, if the outer polygons are essentially too large for efficient integration, outpar will have to
beincreased considerably before the problem is solved.
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15 Interpolation and bloch sums

The construction of crystal basis functions involves interpolation and bloch summation. The crystal
functions are represented by their values in the integration points and they are computed (in most cases) as
bloch sums of one center functions

fkn=a é&KRyr-R) (15.1)
R

The summation over the lattice points, or cells R isinfinite but for the value of f(k;r) in apoint r in the
central unit cell the loop may be cut off at some large cell distance because the employed one-center
functions y (r) decay exponentidly for larger.

The functions x (r) are of the form Z,(22 ) P(r, ), consisting of a spherical harmonic times aradial
function in coordinates relative to some atom o.. The radial functions are in BAND represented as tables,
P {P(r; ),i=1,..,nr}.

interpolation

To compute the sum (15.1) we must in particular determine from the table the radial function value P(r) for
any distancer. Thisis achieved by athree-point Lagrange interpolation: given r we determine the three
nearest pointsin theradial grid, r; , r;;q andr;,;» . P(r) isthen computed as alinear combination

P()=e Pj +&Pji1 +&Pjip (15.2)

such that P(r) isimplicitly approximated by a parabola through the three points.

For each occurring distance r we have to determine the index i in the radial table and then the combination
coefficientse; , &) ande3 . Let ¢ be the multiplication constant that characterizes the radial mesh, ¢ fj41
/rj . The interpolated value is given by the Lagrange formula

_ na)rivg) (r—1)(—Ti+2) . (r—r)(—Ti+1) o
TN Car DG Ne2) Y @G Tie) 2

P(r)

(define b=r/r; )

_9b-d) p D) p D9 )
(1-0)(1-c2) (1A (@-1)(A-0)

=dy (b-Qb-c%) P; +dp (b-1)(b-A) Piyq + o5 (b-1)(b-0) Piy (15.3)
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¢, d anddy are constants of the radial mesh: d; =1/{(1-¢)(1-¢ )}, dp =14 (c-1)(c-c? )}, dg =14 (¢
—1)((:2 —0))}. Theinterpolation coefficientsin (15.2) are thus given by

e =y (b-9(b-c?)
& =0 (b-1)(b-c) (15.4)
& =3 (b-1)(b-0)

Of courser may be so large that we need extrapolation from the table. This should make no difference. The
tables are expected to contain the whole range of the function so thet the last few valuesPy, , Pyr_1 ... are
negligible and the result is almost zero. Polynomial extrapolation of an exponentially decaying function is
in principle hazardous however and we set the coefficients explicitly to zero as a safety measure.

Theradial grid pointsarer; =rq 1. li+1 isthegrid point closest tor, theindex i is computed as

ao9(r)o
e log(c) @

i =nint 3 (15.5)

Nint(x) isthe integer nearest to x. Theindex i to be used is of course constrained by 1£i£nr- 2.

implementation

Radial functions are interpolated in ATMFNC, BASPNT and FITPNT. The organization isin all three routines
analogous. The radial mesh points (that is, their reciprocals) are stored in array rinv. For each type of atom
subroutine INTDAT provides various constants related to the radial mesh: d1, d2and d3, cand @(=C2 ),
nr2(=nr- 2), rfag(=1/ry =rinv(1)) and clogi(=1/1og(c)) (cf. (15.4) and (15.5)).

Then we compute for avector of integration points, with the coordinates relative to some atom o in some
cell R, the interpolation coefficients for each point as follows:

determine the radial distancer,, r and (except in ATMFNC) also the values of the spherical harmonics.
getindex i: intpl=nint {clogi " log(r" rfac)}

apply the constraints: intpl=max(intpl,1) and intpl=min(intpl,nr2) (routine VBND2!).

b=r" rinv(intpl)

determine the coefficients from (15.4)

no extrapolation: if b>csg, set e; =&, =e3 =0 (routine CONDIT).

Some of these operations have been isolated in separate routines (CONDIT, VBND2I) because the code
appeared to be not so easily vectorized (by the Cy205 compiler) in the original context.

o gk~ wbdrE

accuracy and normalization

I nterpolation implicates obviously some inaccuracy, which depends on the denseness of the radial mesh. We
have tested this by interpolating exponential functions " e " and comparing the resulting integrals with
the analytical values; a numerical integration scheme with very high precision has been used for this, so

that the errors are determined by the interpolation. Fixing the first and last mesh-points at 10 4 and 40 au.
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(the defaults in BAND) we found relative errors of the order 2° 107 5 for 300 mesh points, 1.5 10 6 for
600 points, 2" 107 7 with 1200 pointsand 3" 10 8 s ng 2400 points. These figures are ther.m.s. errors
found for the employed set of test functions; the worst cases deviated less than an order of magnitude. The
default used in BAND, 2000 points, may thus be expected to give no significant interpolation errors.
Application of a four-point interpolation did not yield a substantial improvement. We have not tried afive-
point interpolation; the interpolation routines (especially BASPNT) take a major part of the execution time
(in the preparation stage of the program) and the use of five instead of three interpolation coefficients would
considerably increase the cost.

Of some functions the exact integral is known. This holds for instance for various functions of the
numerical free atoms: the charge density, the potential, the individua orbital densities and the corresponding
kinetic energy functions. Their integrals, as evaluated numerically over the radial logarithmic grid, are so
accurate that they may be called exact. The numerical integral over the crystal grid gives an indication of the
interpolation accuracy, but is also determined of course by the quality of the crystal grid itself. One may
now apply some normalization to correct the deviations, by simply multiplying the interpolated function
values by a constant. We have experimented with this possibility but found that it is better not to do so:
the total energy of the crystal and the cohesive energy were less stable against variations in the integration
precision and hence, on the average, their deviations from the exact (converged) result were larger. We have
applied the normalization to several combinations of the obvious candidates (only the density, the density
and the kinetic energy, the potential, and so on); in none case we found an improvement.

bloch sums

To limit the number of termsin the bloch sums (15.1) all radial function tables are analyzed; for each
function the minimum number of cellsis determined to evaluate (15.1) with sufficient precision. First
RADMAX calculates the maximum radial extension of any of the tabulated functions. The computed
maximum cell-distance needed in any bloch sum, rcelx, is then used by CELLSto generate alist of ncel
lattice points, xyzce (3,ncel), ordered according to their distances from the origin. Finally CELMAX re-
examines the radial tables and copies them to another file together with the maximum number of cellsto be
used for each of them individually.

RADMAX and CELMAX employ the same auxiliary routine RADMAA for the analysis of asingle table:
RADMAA takes the absolute values of the function and integrates then with a repeated simpson rule
(SIMPSL) over atrial subrange 1..ntry of the nr points. Thisis compared with the total integral and the
minimum value of ntry is determined (by bisection) where the missing part represents |less than a fraction
cutoff.

The criterium for negligibility cutoff is 10" MaX(3-0, accint+1.0) (computed in RADIAL) ; accint is the
genera accuracy parameter for integration over the crystal unit cell (SS"integration). cutoff is optionally read
from input (key: cut off; the second default 107 2 |eadsto arather crude approximation of the bloch
sums).
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remarks

1. Thegenerated list of ‘cells is usually larger than according to this section. The reason is that the lattice
summation of the multipole potentialsin VMULTI requires more terms and employs the same list
xyzcd (). Reelx istherefore determined also by the parameters rmadel and dmadel used in the evaluation
of these potentials (SS*coulomb potential).

2. Rcelx may be read from input with key rcel or cell distance.

16 Iteration

The crystal hamiltonian equation is solved by an iterative procedure. Self consistency may be checked by
monitoring in subsequent cycles for instance the total energy, the electronic charge density or the potential.
BAND uses the potential.

Define the cycle operator F. It comprises one complete cycle, in which the potential V leads, via
diagonalization of the hamiltonian and construction of the resulting density to a computed new potential

F(V).
F:Vb HP {ey}b pb F(V) (16.1)

In the self consistent situation F(V)=V. Starting from some trial V5 we obtain F(V ) and may insert this
into the next cycle as the new potential V, . The sequence V| , k=1,2,.. may then be hoped to converge,
but in many casesiit displays oscillatory behaviour.

optimized damping

BAND solves this by damping. The potential used in the next cycle is a mixture of the previous and the
computed one:

Vk =@ 7)Vig +YF(Vk-1)® HlVi-1) (16.2)

where we introduced the operator HY =(2- y)1+yF.

Invirtually all cases the oscillations are suppressed and convergence of the sequence { V| } isachieved if the
mixing parameter y is small enough. Of course too small avalue for y slows down the development of V
towards self consistency and one would like to use some optimum value y gy -

It turns out that Yopt not only varies from one atomic system to another, but also that it may depend on
the stage of the iterative proces. Often it is necessary to use stronger damping, by diminishing g, as self
consistency is approached. BAND tries to optimize g from cycle to cycle. The way in which thisisdoneis
based on a discussion of self consistency strategies in [Marchuk 1975].

Define by G° 1- F the operator that yields the difference between input and output of acycle.
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G(V) =V - F(V) (16.3)

The self consistent solution V* to be found satisfies G(V* )=0. We assume now that F and G can be
approximated by linear operators with real eigenvalues. Let then {u, ,u, }, n=0,1,.. be the eigensystem of F

F(up ) =Mp Up (16.4)

with ug ~V*, ug =1.

A proper self consistent V¥ must at |east be locally stable, so that u, <1, n=1,2,.. [Dederichsand Zeller
1983] Therelated eigensystem of G, {up, ,Ap © 1- uy, } thus satisfies Ag =0, A, >0, n=12....

If V has the expansion

V=V + & c,u, (16.5)
n=1
then
F(V)=V* + & upc, up (16.6)
n=1

The (local) stability of the self-consistent solution implies u, <1, but not 6 u, 6 <1, so it is not assured
that the sequence F(V), F(F(V)),.. should convergeto V*.

Consider now simple damping and define (16.2):
(¢}
H (V) =V- yG(V)= V* + @ (I vAy) ¢ Uy (16.7)
n=1

The convergence rate of the n-th component isnp, © (1- YAp, ). The sequence HY(V) , HY(HY(V)) yer
convergesif ony, 6 <1foral n.

The (asymptotic) rate of convergence is determined by the most slowly decreasing component, i.e. by mr?x
0np, 0. Denote the smallest and largest A by o. and 3 respectively, 0<o.£A, £B, n=1,2,.. and the
corresponding (normalized) eigenvectors by 6 afiand 6 bfi Best overall convergence is achieved with

Yopt =28(B+a) (16.8)
For 6 afiand 6 bfithis gives an absolute rate of convergence
01-Yopt @0 =01-yqpt PO = (B- @) B(B+a) (16.9)

and all other components decrease faster. With optimal damping the deviation of V|, from V* becomes
more and more dominated by 6 afiand 6 biias the iterations progress. L et us assume then for simplicity

Vi =V*+¢, Oafi+ s ODbh (16.10)
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S0 that

Ok ° G(Vi ) = oic, Oafi+ fog dbA° Adafi+ BobF (16.12)

This gives at the next cycle
Vier =Vk - Y9 =V* +(1-ya)c, Oafi+ (1-y[3)c|3 O bfi=
=V* + 1 Gy 0afi+ g c3 Obi (16.12)
Ok+1 =M Adaf+ ng Bob (16.13)

In optimal damping y=2/(3+a.), so that 1, = ng - For all reasonable values of y we have at least 0£1, <1
and- 1<nB £0: both components decrease and the B-component oscillates. fig.7 displays g, andgy.q as
vectorsin the two-dimensional space spanned by 6 afiand 6 bfi The coordinate axes are depicted oblique to
stress that 6 afiand 6 bfiare not necessarily orthogonal .

Our main purpose now isto achieve optimal damping. In that case the angle 6 between successive vectors
Ok isaconstant, independent of k, and g, andg,,, areparalel. The potential V and hence g are available
by their values in the integration points. The norm 6 gy, 6 and the inner product (g -0y 1 ) arethus easily
computed and defne the angle 6

(Ok-19)

S (16.14)
00,_10 00,0

cosHy

If A and B of (16.11) and (16.13) differ very much in size co®y »*1 and achangein 6 may be computed
less accurately. Therefore we strive to have 6 A6 =0 Bd as a secondary goal, together with y=y opt - Inthe
optimal situation that 6A0=0B0 andy=yqp; thevectorsgy_; andgy areorthogonal, cosH=0. The
overall strategy, combining the two goals, isto let cosd go slowly to zero in the course of the iterations.
The smallness of the changesin q assures that Y>Yopt ; the direction of the changes corresponds to making
the two components equal .

At every cycletheangle®) is calculated and compared with 6 _4 . The development in the angle tells us
whether y issmaller or larger than Yopt - while the value of 0 itself indicates the relative sizes of the o.-
and 3-components; v is then adapted accordingly.

This set-up isfairly straightforward but contains afew problems. In the first place we have to determine by
how much y should increase or decrease. Secondly we have made some strong assumptions. If they were
exact it would be possible to determine the vectors d afiand 6 bfiand their coefficients A and B from afew
consecutive ‘'measurements’ gy , i+ 1 »-.- We could then compute V* exactly. In reality however other
components than 6 afiand 6 bfiare also present. Furthermore the true operator G is not linear. The linearized
form represents afirst order approximation in the neighbourhood of the current potential V. Consequently
the apparent eigensystem {u,, ,A, } variesfrom cycleto cycle asV changes. Theangle 6), and itsrelation
to 6_q arethen not so simply related to the mixing parameter y as we have assumed above.
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In the past years we have

tried in several waysto use
various assumptions more
rigorously. Again and
again this hasyielded
spectacular convergencein
some cases and divergence
or oscillations in others.
The strategy implemented
in BAND employsthe
stated assumptions
cautiously and has proven
to be robust. Convergence
isreached amost aways,
though it may occasionally
take alarge number of
cycles, upto afew
hundred. Typically 30

Fig.7. Two consecutive difference vectors g and their components along
the o- and - axis (see text).

cycles suffice.

implementation

Subroutine RHOPOT computes the new potential F(V) from the density and callsMIXITR, which determines
the new mixing parameter. The variables that are relevant for monitoring the development of ¥ and 6 arein
common block VARDAT. At every cycle the previous potential V|_; and the corresponding difference
vector gi_q areon fileitpot. Together with the computed mixing parameter, parmix (y), they define the
current potential: Vi, =V _q - YOk_1 -

To compute anext value of v it is assumed that it lies between alower bound y| and an upperboundy, ,
the variables parmx| and parmxu in the program. To accomodate to changes in the apparent eigensystem of
G, v| andy, areupdated together withy itself. Theinterval (y, ,y ) isintended to indicate something
like an error bar on v itself and is used to scale the amount of change iny. The interval becomes smaller
wheny ismore or less stable over severa cycles and it is enlarged when the adaptationstoy appear to be
insufficient.

To monitor the development of the angle 6, between the vectorsg,_q andg, MIXITRemploys an ‘error’
function g , which is sensitive in the whole domain of 6, in particular near the undesirable extreme values
0 and p, which variesfrom - ¥ to +¥, equalling zero in the optimum 6=p/2.

_ 1
e =190 /2) - 1557 (16.15)
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gy , rather than cosf) is checked and guided to zero. The optimal development is defined to be g
=09%_1 . Therelative deviation from thisis

€k~ 0'9&k—1
S . (16.16)
0} SkO

v isincreased if 6<0 and diminished otherwise. The size of 5 is used to compute the new vy in the
appropriate interval (Y previous :Yu) OF (Y| Y previous ) respectively. The map dy (8) is chosen as a fermi-
distribution function: approximately linear dependency on & around the cut-off point (6=0) and an
exponential approach to the limit y| (or y,) forlarge6606.

The update of the boundariesis as follows. If y increases the lower boundary vy isincreased somewhat and
the upper boundary is shifted upward; this shift islarger when @) the last few changesin y have beenin the
same direction and/or b) the previousincrease of y was relatively large. Both cases suggest that the upper
bound has been too close and consequently the increments of y too small. A variable, pmixch, keeps track
of the number of consecutive changes of y in the same direction.

If v diminishes the boundaries are updated in a similar way, but the increasing and decreasing cases are not
treated on the same footing. The reason is that atoo largey may easily lead to a (temporary) divergencein
the SCF procedure, while atoo small value only slows down convergence (16.7). Therefore the implemented
adaptations are such, that a speed-up in boundary adaptationsis triggered more easily for decreases than for
increases of .

Thenorms 6 g 6 are used to check convergence. The current value, potdif, is compared in routine SCFTST
with the convergence criterium, convrg. The quotient of successive values of potdif defines the rate of
convergence. From fig.7 it can be inferred that this quotient will oscillate if the ‘coordinate’ axes are oblique
(assuming optimal damping). Such an oscillatory trend in the convergence rate is encountered fairly often.
The situation is then better judged by considering the devel opment over two cycles at atime; we do this by
taking the harmonic average of two successive quotients. ConvO is the current quotient, convrQ (in common
VARDAT) that of the previous cycle, and averag® (conv(Q coner)]J 2 the guantity used. In order to measure
the overall devel opment, neglecting moderate variations from one cycle to another, the convergence rate
convrt is defined in BAND as aweighted (harmonic) mean of averag-values of subsequent cycles:

convrt = convrt9-85 - averago'15 (16.17)

Convrt isinitialized in INIT (0.5) and checked at every cyclein SCFTST by comparison with a criterium
scfrix. It may happen that the automatic adaptations fail, in the sense that the SCF procedure converges too
slowly (or not at al): convrt exceeds scfrtx. This may be due to some weak point in the optimization
algorithm or to problematic aspects in the atomic system at hand. If for instance many bands are close to
the fermi level, previously unoccupied bands may drop below occupied ones as a consequence of the changes
in the potential. The occupation numbers are determined according to the aufbau-principle so that abrupt
variations in the electronic configuration may result with corresponding large changes in the computed F(V)
and hence in the difference vector g. When convergence seems to fail, SCFTST attempts to recover by
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halving y abruptly; the resulting slowing down of the iterative potential updates has proved to solve the

convergence problems in the large majority of cases.

At such an intervention by SCFTST, the boundary valuesy| andy,, areadapted accordingly; convrt is re-
initialized at 0.5 and scfrtx is slightly increased to allow slower convergence in the continuation.

Thistrick isrepeated until it is concluded that convergence is still failing. Thisis judged by comparing the
values of potdif at the successive interventions by SCFTST; if this sequence does not converge the program
is stopped; the last value in that sequence is stored in the variable difold.

g aswell asthe boundariesy| andvy, areallowed to assume values between zero and some maximum,

parmax. parmaxisinitialized at 2.0, but it is decreased by SCFTST when convergenceis problematic.

INIT initializes parmix (0.15), parmx! (0.10) and parmxu (0.20).

Viainput various aspects of the iterative procedure may be influenced, by using the following keys.

mix, or damp specifiestheinitial value of parmix. If the key record contains a second real value, thisis
assigned to afactor delmix (default: 0.75). The boundary values parmx| and parmxu areinitialized at
parmix” delmix and parmix/delmix.

converg overrules the default of the absolute convergence criterium convrg.

scf rix supplies the slowest allowable rate of convergence scfrtx.

cycle specifies the maximum number of cycles to be executed. For organizational reasons at least two
cycles will be executed. If maximally one cycleis ordered, then parmix is set at zero, so that the final
results correspond to the starting-up potential, without any update.

Chebyshev acceleration

Strategies for iterative processes are discussed frequently in the literature. A few words may be spend here on
amethod, called the Chebyshev acceleration [Marchuk 1975]. It may provide a significant improvement
over damping. Terminology and definitions are as above. In particular it is assumed again that the operator
G=1- Fislinear with real eigenvalues.

In damping V| isalinear combination of F(V_4 ) andV|_4 . The Chebyshev method is based on a
straightforward generalization of this: V| isalinear combination of F(V|_4 ) andall previous V, ,

m=k- 1k- 2,... It will turn out that it is not necessary to store all these previous potentials.

Let Vo besometria potential and let P (x) beapolynomial of degreek in the variable x. Define the

sequence{V) } by
Vi =Py(G) Vo (16.18)

With the expansion (16.5) for V( thisgives

o] o
Vk =@ A chuy =a  Pilp) ¢y uy (16.19)
n=0 n=0

with ¢y ug =V*. Two conditions are imposed on the polynomials Py, :
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a Pg(G) v¥=v* ® P, (0)=1. Thisisanormalization condition; it is analogous to the coefficients of
F(Vk_1)andV|_q1 adding up to unity in (16.2).

b) Px(A) isassmall aspossiblefor al A in the spectrum of G. This states that any component in V- V*
should be made as small as possible (16.19). Since we do not know all (discrete) A, , this condition is
generalized to the whole interval (o, )

a???)E(B Px(A) is minimal (16.20)

The Chebyshev polynomials of the first kind have the minimax property, so the conditionsaand b are

satisfied by

PV K Ba’ (16.21)

where T (x) isthe Chebyshev polynomial (of the first kind).
The recurrence relation for Chebyshev polynomials, Ty (X) =2XT_1(X) - Tx_2(X) , can be used to obtain a
convenient expression for V. from (16.19) and (16.21). Define

X = p+[§x__—a2c; 7= Btg (16.22)
This gives

4
B T Vo ZTk-1Vo - T20Vo - =5 CT-10Vo
Ve TAO Vo =g @ -

27T _1(@Pk_1(G)Vg - Tk_2(@Px_2(G)Vg - ﬁTk—l(Z)GPk—l(G)VO
- T @

4
2T 1@Vk-1 - Tk-2@Vk-2 - 55 Tk-10%-1
B @

(16.23)

Equation (16.23) shows that the Chebyshev method isin principle hardly more complicated than damping.
We haveto store Vi _, onfile, in addition to V|._4 . In damping we must determine one parameter, y; here
we need two parameters, o. and f. If these are known the numbers Ty (2) , k=1,2,... are computable with the
recurrence relaion.

The iterative procedure is started with sometrial potential V, . To use (16.23) also for the first cycle, define

T12@ =T1@ =z (16.24)

(satisfying the recurrence relation) and V_q =V . For k=1 we obtain then
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Vl =Vo - (1625)

Bro %0
i.e.: optimal damping at the first cycle.

Compared with damping the Chebyshev procedure gives theoretically a considerably faster convergence. In
optimal damping the convergence rate is given by (16.9): %™ =1/z. In the Chebyshev method the
components decrease as Py (Ay,) . Since Ty(x) isaperiodic function of k for all 6x6£1, all componentsin
(16.19) decrease on the average as 1/T\ (2) , giving for the convergence rate

T]Cheb =Ty 1@ 2T @ (16.26)
For large z>>1 Ty (2) is dominated by the leading term 21 X | making nc"eP
damping is afactor two per cycle.
For z close to unity (B>>), say z=1+d with 6<<1, damping converges very slowly: ndamP »1- 8. Inthe
Chebyshev method convergence is not very fast either in the first few cycles, but significantly better than
with damping: in afirst order Taylor expansion T (1+5) » 1+8k2 (6k2<<1) giving n»1- 8(2k- 1). For larger
k the variation in 1 from one cycle to another will diminish. Assuming for simplicity that it is constant,
the recurrence relation can be used to compute

»1/(22). The gain over

_ Tk—l(z) B 1 1 o
T T T,@ @ PNl @) (16.27)
1@

So, if for instance 6=0.1, damping needs 25 cycles to proceed one order of magnitude, while thisis achieved
in 4 cycles with the Chebyshev method (for large k); if §=0.01 these figures become 230 and 15 cycles
respectively.

All this presupposes of course that the assumptions are correct: that G isalinear operator and that o and B
are known, at least approximately. A useful implementation will in particular require some way to adapt the
procedure to changes in the apparent spectrum of G, i.e. to update o and 3 iteratively and to incorporate
such changes in the method.

Impressive results are reported by Akai and Dederichs[1985], but the presented data are very few, making
one suspicious that these may correspond only to non-problematic cases. We have done some
experimentation in a simple Hartree-Fock program, in calculations on small first-row molecules. With
rigid, fixed values for o and 3, the results varied from reasonable improvement over damping to problematic
oscillatory behaviour. In all casesit proved advantageous to use simple damping in the first few cycles,
before starting up the Chebyshev method; the same experience was mentioned in [Akai and Dederichs

1985]. We have thusfar not worked out a practical implementation with control of the devel opments and
provisions for problems that might occur.
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17 Lattice vectors

LATTYP reads the lattice vectors from itinpt into array avec(3,3). The inverse-transpose, bveq(3,3) describes
the Bravais lattice in k-space (apart from a scaling factor 2p). The dimensionality in real space ndimis the
number of lattice vectors found in input. Ndimk is the dimensionality in k-space. By default ndimk=ndim,
but alower value can be requested with the key suppress. This specifies the number of directionsin
k-space for which the dispersion is to be suppressed; the second default, induced by giving only the key
suppress without a numerical value in the same record, is: ndimk=0, i.e. all dispersion is neglected; only
the G-point K=0 is used then.

In one special case the program overrules whatever the input specifications imply by setting ndimk=0,
when each atom in the central unit cell is (or can be chosen to be) separated so far from any atomin a
neighbouring cell that the functions have no overlap. Effectively we have then in each unit cell a‘'molecule
isolated from all other atomsin the system. Thisis decided by ATMSEP. ATMSEP trand ates first by Bravais
translations all atomsin the central cell in such away that they from amaximally compact group. Then the
minimum distance to any other atom is calculated, which is then compared with g " rfar; faristhe
maximum extension of any of the one-center functionsin the crystal (not counting the multipole potentials
of course); rfar is calculated by RADMAX.

If dispersion isto be neglected in some but not all directions in k-space we have to determine which of the
ndim original vectorsin bvec are discarded. BAND chooses for this the shortest of the |attice vector(s) that
span the BZ.

Orientation

In many placesin the program it is convenient to have the lattice vectors oriented such that only the first
ndim, respectively ndimk cartesian coordinates are needed to describe the Bravais lattices. Asthe input
lattice vectors are not subject to any condition of this kind BAND performs arotation to a standard
orientation. The transformation matrix stdrot(3,3) is computed in LATTIC. The input-specified atom
coordinates are interpreted in the original coordinate system; they are rotated in GEMTRY to the new frame.

18 Legendre points

Points and weights for Gauss-L egendre quadrature are generated by routines LEGPNT(n,x,w) and
LEGEND(Nn,X,w,a,b).
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LEGPNT isthe basic routine. Input is n, the number of requested points; output are the n zeros x(i),i=1,n of
the n-th order Legendre polynomia and the associated weights w(i),i=1,n. The numerical integration with
this scheme is exact for polynomials of degree £2n- 1 [Krylov 1962]. The points are located on (- 1,1).
The integration scheme can be used for any finite interval by alinear transformation; the algebraic degree of
precision is then preserved. LEGEND calls LEGPNT to obtain the points on (- 1,1) and transforms them to

@b)

Xi+1
%o ar2pg
(18.1)
2w
Wi ? b

computation of the points and weights

Let P,(x) bethe Legendre polynomial of degreen, with zerosx; , i=1,n.

For each zero afirst guess x is made with a distribution function (see below) for the zeros. Thisguessis
improved iteratively by the Newton-Raphson method (i.e. first order Taylor expansion) until convergenceis
reached

Pn(X)

Xa X- =
Pn'(X)

(18.2)

Pn(X) and the derivative Py, '(x) are evaluated with the recurrence formulas for Legendre polynomias
[Arfken 1970] (Py(x) =1, P1(X) =X)

P, (X) :% {@En )P, 1) - (- DP0}  n=23. (183)
P00 =5 {Pa) - xPr } (18.4)

If x has converged to a zero, the associated weight can be computed from the relation [Krylov 1962]

W= % (185)
(1- x%) (Pp'(x))

Using recurrence relations for the Legendre polynomials this can be rewritten in numerous different forms.

Since x is only approximately the zero the weight is al'so only approximately the exact integration weight.

The different possible formulas for the weights result in significantly different deviations from the correct

value. The reason for thisisthat termsinvolving P,(x) are omitted in the analytical forms but they are not

strictly zero in the computation. Trial and error taught us to adopt the formula (from 18.4 and 18.5)

W= 1- x2
N2 (Pr_1() - XP ()2

(18.6)
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Omission of the second term in the numerator, analytically zero, deteriorates the result.

the distribution function

The zeros lie symmetrically around x=0. The distribution function gives the approximate location of the
zerosin (0,1). This approximation is

+1-2) g

 wain iR -
X sm;2 T2+ D78 (b i=1.n/2 (18.7a)
f(n,i):]./2+ncos;i}22 ?:1/22)' u (18.7b)

remarks

# The Newton-Raphson procedureis only guaranteed to converge (to the intended zero) if the initial
approximation is accurate enough. The approximation function (18.7) is purely empirical; we have not
tried to derive aformal proof of the adequacy. Tests with n£10,000 gave ho problems; they indicate
even that the approximation is better for higher n.

# We have compared our results with the tables of Stroud and Secrest [1966] for n up to 1,000. For the
higher n-values the weights tend to be less precise than the points, presumably because the weights are
related to the derivative (18.5). For higher n the polynomial P(x) oscillates rapidly, especially near the
endpointsx=+1, where the zeros cluster; small errorsin x give thus much larger deviationsin Py, '(x)
and hence in the weights.

The computed integration weights are added in LEGPNT. This sum should equal 2.0, the length of the
interval (- 1,1). The deviation from thisis 5e- 13 for n=100, 7e- 12 for n=1,000 and 7e- 11 for
n=10,000. The test computations have been carried out on a Cyber750, with approximately 14 digits
floating point accuracy.

# LEGPNT multipliesfinally all weights by a uniform normalizing factor to make their sum equal 2.0.

19 SCF linearization

In big calculations by far the most time-consuming parts in the SCF procedure are
a) the evaluation of the matrix elements of the potential, the iteratively computed part of the hamiltonian.

vk :éN. w V(@) o8 () oker) k=1K 1n (19.1)
pa i VAT Op T 9q(T o PEES '
i=1

V(r) isthe potential; {w; } aretheintegration weights. With K k-pointsin the BZ, n basis functions (in
each k-point) and N integration points the computational effort is propertional to KNn? .
b) the construction of the density.
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PI)=A A Phy of () og)  i=IN (192)
k pa

PK isthe densi ty matrix in the representation of the basis functions in the given k-point. Again we have
the factor KNn? .

(In fact there are two ways to compute the density: from the density matrix or directly from the occupied
eigenstates; see SS"charge density for adiscussion of this).

A considerable saving of time is achieved when the involved multiple loop structures can be circumvented.
For both cases thisis possible, be it only at some cycles of the iterative procedure. The integration points
and the basis functions are fixed quantities, so the only factors that change from cycleto cycle are the
potential V(r) in (19.1) and the density matrices PK in (19.2). The quantities to be computed, V:;q ad
p(rj ), depend linearly on them. So if in the first case the current potential Vo(r) isaccurately described by
alinear combination of potentialsin previous cycles, then the same holds for the potential matrices vk,
The second case is analogous: alinear combination of density matrices PK definesthe corresponding linear
combination of density functions.

In the SCF procedure of BAND these approximations are tested in the routines POTAPP and RHOAPP
respectively for the potential and the density. The implementation is structured as follows.

approximation of the potential

File itvstr contains a sequence of nstrp orthonormal (potential) functions Y (rj) » j=Lnstrp. These functions
are not the potentials on subsequent cycles, but they are derived from them. The current potential v(r;) is
on file itp. By straightforward numerical integration v isexpanded (POTAPP) inthe set {v; }

nstrp

Vo ° a G Y, (19.3)
j=1
o

G =a w volr) vj(r) (19.4)
i=1

Define the error in the approximation as the length (squared) of the difference vector vq - VO .

err = vnorm - é ﬁ-z (19.5)
j
o
vnorm=g W; vé(ri) (19.6)
i=1

A logical approx tests the accuracy of the approximation, using a relative tolerance test
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approx = err <test” vnorm (19.7)

Asthe SCF procedure approaches convergence ever smaller differencesin the potential become relevant. The
tolerance parameter test must therefore vary accordingly. SCF convergence is expressed by 6 (the variable
potdif in BAND), measuring the difference between the crystal potentia at the previous cycle and the
potential computed from the new density. The approximation criterium is set to

tet=10"7 (19.8)

Now, if the test is passed (approx=true) the coefficientscj are subsequently used in EIGSY Sto construct the
potential matrices (one in each k-point) as linear combinations of the (potential) matrices that correspond to
the set orthonormal potential vectors on file itvstr. The matrices are on file ithstr.

If the approximation is not sufficiently accurate, the difference vector v - Vo is constructed, normalized
and added to the set; nstrp increases by one. In EIGSY Sthe potential matrix is computed in the normal way,
by numerical integration (19.1). Thefileithstr is extended with the matrix (one for each k-point)
corresponding to the potential vector that has been added to itvstr. The new matrix is the difference between
the exact potential matrix for that cycle and the linear combination, multiplied by the normalization factor
for the potential vector.

remarks

1. Thenumber of potential vectors on itvstr and corresponding matrices on ithstr has a maximum nstrpx;
nstrpx is assigned avalue (70) in INIT. If this maximum has been reached and approx=false, i.e. anew
vector should be added, the first vector in the set is removed. The new vector is then defined such, that
the true potential is exactly approximated by the new orthonormal set, i.e. asif the removed vector had
never been there. So, apart from normalization

nstrp
Vnewinset =Vo - A VY (19.9)
j=2

Note that the lower bound in the summation is 2.
In practicenstrp hardly ever exceeds 19 at the end of the SCF stage; in most cases convergence is already
reached with nstrp equal to 4 or 5.

2. Inaspin-unrestriced calculation we have different potentials for up- and down spins. The
implementation contains therefore aloop over the number of independent spins (one or two), which we
have omitted here for sake of clarity. For normalization and approximation tests the spin coordinateis
treated on the same footing as the real space coordinates, e.g. (19.4) isreplaced by

N
G =a a W, Vg(fi) Vjc(fi) (19.10)
s i=L
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In particular thisimplies that the linear approximation is either used for both spins, or for neither.
3. File itp does not contain the true potential v directly, but two vectors; v, is defined as a specific
linear combination of them (SS"iteration).

approximation of the density

The approach in routines RHOAPP and RHOPMT is analogous to that in POTAPP and EIGSYS. File itpstr
contains nstrr (density) matrices (for each k-point in the BZ); nstrrisinitially zero (INIT) and cannot exceed
nstrrx (=70,INIT).

The current P-matrix, on file itpmat, is expanded in the set on itpstr. Norms and orthogonality for the
matrices are defined by an inner product S

S(P; P;) = 3 3 Pk Pk 19.11
k=1 pg

Note the summation over the k-points.
The corresponding density vectors Pj (rj) areonfileitrstr.

remarks

1. Asinthepotential case, in spin-unrestricted calculations the density approximation is used for both
spins or for neither; aloop over the spinsisincluded in the definition of the inner product S (19.11);
only oneset of expansion coefficients is determined, applying to both spins simultaneously. The
density matrices and vectors are distinct of course for up- and down spins.

2. Real and imaginary parts of the density matrices are treated as if the matrix P had just one more index to
be summed over (with values 'real’ and 'imaginary’). So in fact the inner product is defined (including
also spin now)

K
sij)=a a a Re(P:(,;;)Re(ij"pZ)+lm(P:(,S;)Im(PJ_k,’p(;) (19.12)
k=1 pg o

Of coursethisisjust a matter of definition. The only goal of the procedure is to have some way to test
the adequacy of the linear approximation. See however below.

final notes

1. Thesavingsin computer time by the linearizations depend strongly on the size of the calculation. In a
big one the approximate eval uations take only afew percent of exact evaluations. During the first
cyclesthere are of course no datafor an expansion: the set has to be build up. During the iterations an
additional vector is needed in the expansion set from time to time. In atypical big calculation with
slow convergence we would have, say 100 cyclesto reach self-consistency and exact evaluationsin 20
of them, i.e. linear approximations would be used in 80 cycles. Accounting for other parts of the SCF
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procedure and for the fact that the linearization procedures involve some overhead of testing and file-
manipulation, the gain is then afactor between 2 and 4 (in the SCF part).

2. Thelinearizations of the density and potential are tested and used independently. As a matter of
experience the potential behaves better in this respect than the density: linear approximationsin EIGSYS
are used more often that in RHOPMT. In some cases the density is exactly computed twice as many
times as the potential matrix.

3. Thecriterium factor 107/ inthe approximation testsis aresult of trial and error. Obviously aless
stringent test would allow the linear approximations more often, increasing at first sight thegainin
efficiency.

However the switch from approximate to exact evaluation unavoidably takes place from time to time
during the iterations. At such amoment thereis a (slight) discontinuity in the devel opment towards the
self-consistent solution: the function space in which the potential, or density, is described, changes
abruptly. The iterative procedureis rather sensitive to this and suffers from instability and oscillations if
these changes are too large. The adopted value 10 7 appears to be a reasonable compromise.

4. The approximation procedure for the potential is simple and straightforward; in particular the vectors,
their norms and the inner product are defined in anatural way. With respect to the density
approximation we feel less comfortable. The fact that this case performs worse and that the instability
aways seems to occur when the computational mode is switched for the density, but not if it happens
for the potential, suggests some inbalance in the procedure. Further investigation might be useful; this
has no high priority however because in practice the implemented strategy functions reasonbly well.

20 Symmetry

The most obvious symmetry in crystalsis the translational symmetry of the Bravais lattice. The
corresponding operators, the Bravais trand ations, are denoted by acapital T. All T are products of n basis
T, that span the unit cell of the n-dimensional crystal, by which we mean an atomic system with
translational symmetry in n directions; n=0 (molecule), 1 (polymer), 2 (slab) or 3 (bulk crystal).

The complete space group consists of affine transformations{t; R}
{t;R}x =t + Rx (20.1)

R isaunitary operator andt is atranslation which may have componentsin the n directions of periodicity.
The generators of the space group is asubset of {t;R} that generatesall {t;R} by multiplication with the
Bravais tranglations. The set of generators is defined to be minimal in the sense that not any pair of themis
related by a pure Bravais trandation.

A few aspects:

# Theinverseof {t;R} is{t;R}'1 ={- RL1tR? }:
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ERE-RIGR I Ix =t +R(-Rt + R1x) =t -RR It +RR I x=x (20.2)

# All generators have different point group parts R. Suppose{t41 ;R} and{t, ;R} are both generators.
Then

{ty RHto Ry Ix=t; - RR1t, +RRIx=(ty -ty) +x (20.3)
Thetrandation (tq - to ) isthen asymmetry operator and hence a Bravaistrandation T. So
{t; ;RY {t, RV =T b {t; ;R =T {t, ;R} (20.4)

contrary to the definition that two generators are not related by a pure Bravais trandlation.
# For each space group operator {t;R} the point-group part R is a symmetry operator of the Bravais
lattice. Let the symbol ~ denote symmetry equivalency. Then

X ~{tR I x Ry I x + T~{t;RI({t;RY Ix + T) =x +RT (20.5)

So the tranglation RT isa symmetry operator and hence a Bravais trandlation.

# Until now it has tacitly been assumed that the unit cell is chosen as small as possible. Thisisimplicit
in the argument that a pure translation must be a Bravais trandlation if it is a symmetry operator. One
may of course define alarger unit cell however, for example the simple cubic 'double’ unit cell in abce
crystal. This modifies the statements above alittle:

With any choice of unit cell, the resulting Bravais group is a subgroup of the true Bravais group.
The larger unit cell can be considered as a conjuction of N smaller unit cells. They are characterized by
operatorsT; , i=1..N, of the true Bravais lattice.

TheseT; arenaturally symmetry operators of the system, but they do not occur now in the employed
Bravais trandlation group. Consequently they will have to be included in the set of generators. In other
words, in case of alarger unit cell the point group parts R of the {t;R} are symmetry operators of the
true Bravais lattice, but not necessarily of the employed one; moreover each R in the set of generators
now occurs N times; the different translational partst belonging to the same R differ (or can be chosen
to differ) by theT; of the true lattice that define the enlarged unit cell.

# From time to time we have to deal with sets of pointsin the unit cell and their symmetry relations. For
apoint x in the unit cell theimage {t;R}x may be located in aneighbouring cell. We define now the
operator {ﬁ} asthe operator {t;R} followed by a Bravais back-trandlation to the central unit cell, i.e.

{tiR} ={t+T:R) (20.6)

whereT depends on the point to be operated upon; it is always the unique Bravais translation which
projects the image into the central unit cell. This definition is convenient because, given a set of all
equivalent points {x} in the unit cell the points {t;_R} X now belong to the same set and are not "only’
tranglationally equivalent points. We will call {t;_R} a centralizing operator. It is easily verified that the
set of centralizing generators constitutes a mathematical group.
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computation of the operators

The operators{t; R} are represented and computed in the coordinate representation: R isa unitary 3" 3 matrix
andt a 3-component vector.

In accordance with the notes above the construction of the operators takes place in two steps:

A compute the point group symmetry of the Bravais lattice (the holosymmetric point group)

B  for each operator R find the trandlational part t, if any, that makes it a space group operator.

point group operators

We address a more general problem. Let N sets of points be given, X; i j=L.N, i=1.Mj , in n-dimensiona
space: Xij ° (xﬁ xﬁ xlr} ). We want to compute all real unitary transformations R in the form of n" n
matrices, that are simultaneously symmetry operators for each of the N groups of points, Rx; i I {x Kj i -
An exampleisthe point group symmetry of a molecule: the points are the locations of the atoms;
chemically different atoms fall in distinct sets and the dimensionality is (usually) three. In case of the
Bravais lattice we have only one set, but infinitely many points; we will see however that it is sufficient to

consider only thefirst few 'stars' of lattice points around the origin.

The agorithm is based on the fact that n pairs of points (p; ,0; ), i=1..n, define alinear transformation in
n-dimensional space viathe system of equations

Rp; =g i=Ln (20.7)

The set {p; }.i=1..nwill be called the basis and the set {g; },i=1..n the projection. Any admissible basis

and projection must each constitute a linearly independent set, otherwise the system (20.7) does not

properly define the transformation R; in the following we assume that every basis or projection has been

checked to be independent.

Let now R be one of the symmetry operators to be found and let {p} be an arbitrary basis, the points of

which may be taken from any combination of the N sets. Since R is a by assumption a symmetry operator

there must obviously be a projection { g} such that the combination of R, {p} and{q} satisfies (20.7). So

the algorithm is

1. find any basis{p}.

2. loop over dl distinct projections{ g} and compute R from (20.7).

3. check for every poi ntxij j=1..N, i=1..Mj , Whether inj coincides with apoint in the appropriate
(j-th) set. If not, discard R.

Although this set-up suffices to determine all symmetry operators, the efficiency can be improved
somewhat. To avoid duplications and unnecessary work in loop 3) we check first, for each computed R the
unitarity and whether it has already been found before. Furthermore, as for each point x; i itsimage RXx; i
must belong to the same set j, we impose this condition also on the projection set {g}: g; andp; must
belong to the same set, for all i=1..n; this shortens loop 2).
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implementation

Subroutine PNTGRP computes the n” n matrices corresponding to a given configuration of pointsin
n-dimensional space.

First alinearly independent basisis constructed; array indgrp stores the types of basis-points: the i-th basis
point belongs to set indgrp(i). Then all distinct n-tuples of points are considered to serve as projection { g} .
Indgrp is used to control that p; andg; belong to the same set. After assuring linear independency of { g}
and unitarity of R, all image points RXij is examined to see whether R is a symmetry operator.

Two index arrays, indbas and indprj keep track of which points of the sets are used in the basis and (current)
projection respectively.

remarks

# Theidentity operator, a symmetry operator of every system of points, is generated first; it is the first
symmetry operator in the output list.

# Theinversion operator, if it occurs, is second in the output list. PNTGRP moves it to this position after
the calculation of all operators.

# Identity of points and operatorsis checked by comparing real numbers. Thetoleranceis set at afixed
absolute value 10" . To avoid numerical problems it may therefore be necessary to rescale the input
points.

# Therequirement that the basis be independent in n-dimensional space implies that PNTGRP cannot
compute for instance the three-dimensional point group of aflat molecule. A possible solution to this
is:

a rotatethe moleculeto the xy-plane.  (20.8)
generate the point group in two-dimensional space (PNTGRP).
copy the obtained 2 2-matrices to the |eft-upper parts of 3" 3-matrices, setting R33 =1 and the
remaining matrix elements zero.

d Incorporate the reflection in the xy-plane in the symmetry group (SYMADD).

e rotate the operators back to the origina coordinate frame.

Space group operators

First we construct the point group of the Bravaislattice. For this purpose PNTGRP is called with one set of
points: the lattice points of afew 'stars around the origin. Let T; , i=1..n be the unit cell basis vectors of
the n-dimensional crystal. It is then sufficient to consider only the stars of these T; , because their
combined sets of points has the same symmetry as the complete Bravais lattice:

# Let R beasymmetry operator of the Bravais lattice. Theimage of T under R, TR say, belongsto the
star of T becauseR isunitary and hence preserves lengths. So R is a symmetry operator of each star
separately. In particular this applies to the basis vectors T;  and their stars.

# Let now R be asymmetry operator for the basis stars. Then for any lattice point T, necessarily alinear
combination of the basis vectors, theimage under R is
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o o) R
RT=RA mT; =A m Ti (20.9)
i=1 i=1

which belongs to the Bravais lattice because each TiR isalattice point. Hence R is a symmetry
operator of the whole Bravais lattice.

Construction of the space group generators thus takes place (SYMCRY) as follows:
1. generatethe stars of points corresponding to the basis vectors (LATTPT).
2. compute from these points the Bravais point group operators R (PNTGRP).
3. for eachR find out whether it can be made into a space group operator {t;R}:
The atoms are divided in (chemically) distinct types.
a. takeany atom in the central unit cell, say the first atom of the first type, at position x and compute
the image under R: x'=RxX.
b. runover all atoms of the same type and in the same unit cell, at positionsy and definethe
tranglational part t of the space group operator ast=y- x', so that {t;R}x=y.
c. loop over al atoms of all types and check whether their images under {t;R} coincide with atoms of
the same type, possibly in neighbouring cells. If not, discard this{t;R} and try the next possible
translation (step b) by taking another atomyy.

remarks

1. Wehaveto consider only atomsy in the central unit cell. Atomsin other cells result in operators that
differ from those obtained aready by Bravais trandations.

2. If for aparticular R no translational part isfound that satisfies the requirements, R isdiscarded
atogether.

3. If for aparticular R more than one t isfound, then the crystal unit cell has not properly been defined, as
discussed above. Thetrue, smaller unit cell isthen computed and the procedure restarted. Thisis
necessary because with atoo large unit cell we may not have found all point group operators of the true
Bravais lattice.

The determination of the true unit cell is as follows:

Two arrays of lattice vectors are present. The first, the array avec in the program, is fixed and stores
the lattice vectors as defined by the user. The second, vlatt, describes the true unit cell; it is only used
locally (in SYMCRY). Vlatt isinitiated by copying avec; it may be changed in the course of the
symmetry analysis.

Since the identity E isthe first operator in the output list of PNTGRP, thisis the first operator
processed in the construction of the space group generators. Obviously {O;E} is a space group operator.
Any next t that is found with E, must be an element of the true Bravais lattice. t is expanded in the
vectorsvlatt.

n
t=Q ¢ viat (20.10)
i=1
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If vlatt describes atoo large unit cell, then for at least onet belonging to E, one of the expansion
coefficients is non-integer. By adding or subtracting integer multiples of the {vlatt; } we construct the
Bravais trandlation (of the true lattice)

n
[] —

v=a ¢ vlat (20.11)
i=1

whereall ¢; areinthe unit interval [0,1) and differ fromthe g in (20.10) by integers. By assumption
at least one of the obtained coefficients, Ej say, isnon-zero; in the set { vlatt} we replace then thej-th
vector by v. The new set describes a smaller unit cell. The procedure can now be restarted: generate the
pointgroup corresponding to { vlatt}, etc.

When each t found with E has an integer expansion (20.10) the correct unit cell has been found and the
procedure can be continued with al other operators R.

4. The same Bravais lattice may be generated with different sets of basis |attice vectors. The crystal unit
parallellepiped is not uniquely defined: we may add to any of the basis vectors an integer multiple of
any of the other basis vectors. For various reasons it is convenient in the program (though not strictly
necessary) to avoid extreme choices in this respect and define the unit parallellepiped as compact as
possible. Thisis done by recombining the vectors such that they have minimal lengths. LATTCH
(Iattice check) performs that task; LATTCH checksin thisway aso linear dependency of the lattice
vectors.

symmetry in k-space

The connection between the space group symmetry in real space and the symmetry ink-spaceis easily
derived [Jones 1975]. According to Bloch's theorem any eigenstate y,(k;r) can be written in the form

wpkin) =ugkr) kT (20.12)
whereup(k;r) issymmetric with respect to all Bravais translations
Un(K;T+r) =upk;r) (20.13)

The occurrence of k in the argument list of the function u does therefore not imply that it transforms as the
corresponding irrep of the translation group, but it signifies only that the u-parts of eigenstatesyi(k) at
different k-points are different.

It follows from the hamiltonian equation

{- DI2 + V(N} w(k;r) = ek) w(k:r) (20.14)
that the periodic function u(k ;r) satisfies

{-DI2+ K2 12 - ik-N + V()} uk:r) = (k) uk:r) (20.15)
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Let now {t;R} be a space group operator, defining the coordinate transformation r® r'

o (LRI =4 + Q Rjj Tj (20.16)
i

For the derivatives this gives

1.3y _38 gL
ﬂri - a ﬂﬁ ﬂrj- - a, RJ| ﬂrj. (2017)
J J

Define then the transformation in k-spacek® k' by
ko (RK) = @ Rij Kj (20.18)
i

Simultaneous application of the transformations (20.16) and (20.18) leaves (20.15) invariant because R is
unitary and V(r')=V(r). Hence the solutions { ey} in k and k' are symmetry related:

e (Rk) =e (k) (20.199)

un(RK{t;R}r) =u(k;r) (20.19b)
18 Rmntmkn

Yh(RK;{t;R}r) =e mn yhk;r) (20.19¢)

So, if {t;R} isasymmetry operator in real space, then R is a symmetry operator in k-space.

In addition the inversion operator Jis a symmetry operator in k-space, regardless of the space group: (20.15)
istransformed into its complex conjugate; all eigenvalues g,(k) arerea because the hamiltonian is an
hermitian operator. Hence

& k) = (k) (20.208)
Un- Kin) = U (kir) (20.20b)

The construction of the point group operators in k-space is thus straightforward once we have calculated the
space group generators{t;R}:

a gather al distinct point group operators R occurring among the {t;R}.

b. addtheinversion operator Jif it is not yet present (and of course al products JR).

Whereas real space is 3-dimensional this does not necessarily hold for k-space: in an nD crystal k-space has
only n dimensions. The operators must then of course also be operators in nD space and can be represented
asn’ n matrices. For aslab for instance the reflection in the plane is an irrelevant operator in k-space.
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With an appropriate orientation of the coordinate system the relevant part of the real space operatorsR is

then the | eft-upper n” n submatrix. From (20.18) we conclude that thisis an operator in k-spaceif the

summation can be restricted to thefirst n terms, that isif all R;; arezerowheni£n, j>n or vice-versa.

Otherwise apoint k would be mapped onto a point ‘outside’ the nD region.

The computation of the k-space symmetry group is therefore

1. Foreach{t;R} check that it does not couple the first n coordinates to the last 3- n, and gather all
resulting distinct n” n matrices (SYMPRJ).

2. AddinversioninnD space (SYMADD).

remark

The dimensionality of k-space isin BAND not only determined by the translational symmetry of the atomic
system. If that were the case, none of the operators {t; R} could couple thenD space to the other
coordinates. However, BAND optionally neglects dispersion in certain directions in k-space, thereby
artifically reducing the dimensionality of the Bz. This option may be activated (viainput) for example when
the crystal unit cell is much larger in one particular direction that in others (SS"Bz-integration).

integration in k-space

The point group symmetry in k-space is applied to reduce integrations over the BZ to integrals over the
irreducible wedge, the symmetry unique part of the BZ. In the employed anal ytic-quadratic integration
method [Wiesenekker et al. 1988, Wiesenekker and Baerends 1990] the BZ is divided in simplices and the
integration points are the vertices and the midpoints of the edges. The BZ is constructed as a Wigner-Seitz
polyhedron (in two dimensions a polygon, in one dimension an interval). The irreducible wedge is
determined (SS'BZ-integration) and that region is divided in simplices etc. By use of symmetry the number
of k-points needed is thus reduced; thisis an important saving in computer time since virtually all cost-
determining aspects in a calculation scale with the number of k-points processed.

The energy bands e,(k) are totally symmetric; hence a quantity like the density of states (DOS) can be
computed by integration over the irreducible wedge only. This does not apply however to al properties. The
eigenstates in symmetry related k-points are not identical (but they are symmetry related). If {t;R} isaspace
group operator and k' and k are related by k'=Rk, then

yntkin) =e'K iRy (20.21)

Let now F be aquantity to be computed as

F=a 8 &F,K (20.22)

nBZ

whereF (k) isthe contribution to F from the one-particle state y,(k;r)

Fnk) =Flynkir) ] (20.23)
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The summation is over the bands and integration is over the complete (first) Bz. Using the space group
generators{t;R} in rea space and the corresponding operators R in k-space (20.22) can be rewritten as

F-a4 & 6 «kFRO=a & 8 &Fiy kit:R N (20.24)
{tR} n irr.Bz {tR} n irr.Bz

The charge density for instanceis given by

=8 a 8 Koy kiR o2 o PR (20.25)
{tR} n irr.sz (tR}

pi (r) isthe charge density resulting from integration over the irreducible wedge only.

The occupation numberso,(k) for the one-particle states, which are the weights for the numerical
integration over theirreducible Bz, are in the program determined such, that they represent also the
equivalent k-points. The integrals over the BZ are therefore scaled aready and e.g. the symmetrized density is
computed as

= & & & o) dwnki(tiRy 02 o - § Friury ) (2026)
SR 0k ° (tR}

Ng isthe number of symmetry operators.

We see that the total charge density is obtained by projecting out the symmetric component of Bi”(r) .

In BAND the density, like al crystal functions, is represented by its valuesin the crystal integration points.
The integration scheme is symmetric, which allows the symmetrization (20.26) by straightforward
numerical integration (see below).

integration in real space

The numerical integration formulais symmetric: if r is an integration point and { t;R} a space group
operator thenr'© {t;R}r isalso an integration point and the weights are equal. The symmetry unique points
are called the generators (of the integration formula).

The construction of the symmetric schemeis extensively discussed in chapter I11. Here we are concerned
with the utilization of the symmetry property.

1.  Thecomponent of aparticular irreducible representation (irrep) of the group can be projected out of a
function. Whereas this applies to any irrep, the most common application is the symmetrization of a
function, i.e. the projecting out of the (totally) symmetric conponent.

Thisis done in BAND with the density. Aswe saw above, the integration in k-space over theirreducible
part of the BZ yields an incorrect, that is, non-symmetric charge density: we need the symmetric
component. The projector is (20.26)
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PAL== & (tR) (20.27)
G
{tR}

The points on file itpnt are grouped in a number of (large) blocks. Each block contains a sequence of sets of
symmetry related points. The file with basis function values is organized accordingly and the asymmetric
density, computed from the basis functions (SS"charge density) has the same structure. Symmetrization is
performed by averaging the values in each set of symmetry related points (20.27). This happensin
RHOPMT (or RHOPSI, see SS"charge density).

2. If afunction belongs to an irrep of the group, we have to compute and store only the valuesin the
generators, the symmetry unique points. The valuesin related points can be derived when desired from the
transformation properties of theirrep. This possibility isused in BAND for the density, the potential, the fit
functions and the fit potentials. All these functions are totally symmetric.

With the data structure on itpnt the functions can easily be expanded again over al points. Thisis done for
the potential in EIGSY'S, where the matrix elements of the hamiltonian are evaluated by numerical
integration of the potential against products of the basis functions (the basis functions currently used do not
belong to irreps).

3. Thenumerical integral of afunction is greatly ssmplified if it belongsto anirrep. Any irrep which is
not the symmetric one integrates to zero. For a symmetric integrand we have to loop only over the
generator points because the values in the related points are equal and they can be accounted for by
multiplication by the appropriate factor (the number of equivalent points), which can beincluded in the
weights of the generators.

Thisis used for the expansion of the density in the fit set (7.6a) in RHOFIT.

It would be an enormous improvement in efficiency of BAND if also the valence basis functions were
organized according to the irreps. This block diagonalizes the hamiltonian matrices. The off-diagonal blocks
are zero on grounds of symmetry and hence need not be computed at all. For the diagonal blocks the loop
over the integration points reduces to the generators.

special symmetry routines

Some specific tasks related to symmetry are performed by specia routines. These are examined here. Most
of them are general as regards the dimensionality; the point group operators are represented asn” n matrices.

extension of a point group

Given a point group GY andan operator R, SYMADD constructs the compounded group, consisting of e
andR and all additional operators required to make the new set a group.

A set of point group operators can be extended to a group by computing all possible product operators and
adding them if they are not yet present, until the set is closed under multiplication. Both the 'left' and the
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‘right' products have to be checked since for an arbitrary pair of operatorsR; andR, the productsR; “ Ry
andR, " R1 need not be identical.

This straightforward method assures that aso the identity E and the inverse of each operator will be
generated: for every point group operator R thereis an integer M such that RM =£. HenceR 1 =RV o

that R and E both occur among the products of R with itself.

SYMADD uses this algorithm but supposes that the input set GV isal ready a group: products among its
operators are not checked for occurrence in the set.

checking and reducing a point group

SYMCHK checks a point group against a set of points and removes the operators that are not symmetry
operators of the point set. The points may be divided in subsets of equivalent points.

The algorithm is simple: for each operator R compute all image points and check whether these coincide
with points in the appropriate subsets.

Note that symmetry operators of the point set that were not present in the input group are not generated, i.e.
the output group does not necessarily represent all symmetry of the point set (compare routine PNTGRP).

checking completeness of a point group

GRPCHK checks whether a set of n” n matricesis closed under multiplication, i.e. whether it constitutes a
group. An output error parameter ier gives the outcome (0:group, 1:not a group).

analysis and characterization of a symmetry operator

MAT3AN analyzes a unitary 3" 3 matrix (unitarity is checked). Output are the determinant D, an axis a
(normalized vector) and an angle o.. For a pure rotation (D=1) a and o are the axis and angle of clockwise
rotation. An improper rotation (D= 1) can be written as a reflection times a rotation around the normal on
the reflection plane; the axis and angle refer to that rotation; a pure reflection has o.=0.

Two special operators are the identity E (D=1, o.=0) and the inversionJ (D= 1, a.=p). For both of them the
axisis undefined and it is taken arbitrarily as thez-axis. MAT3AN checks first whether R is either of these
two operators. For al other operators R the axis and angle are computed as follows.

An auxiliary vector w orthogonal to the axis a is constructed. o is then the angle between w and Rw; the
axis aisthe vector product w” Rw. A suitable w can be computed from an arbitrary vector v by removing
the component along the axis. For a pure rotation (D=1):

w = (R- L)v (20.28)
and for an improper rotation (D= 1):

w=(RZ- 1) (20.29)
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Of course the "arbitrary' vector v must not coincide with the axis, since that would give w=0. Thisis
prevented in MAT3AN by taking for v the x-axis unless R1q =1 (20.28) respectively Ry = 1 (20.29); in
that case the y-axisis taken.

A zero result for w is also found for special angles of rotation. For a pure rotation (20.28) if o.=0 (the
identity E); for an improper rotation (20.29) if o.=p (the inversion J) or o.=0 (a pure reflection). AsE and J
have been checked a priori the only possibility is the pure reflection. So, if w isfound to be zero, the
situation isimmediately clear: o=0 and the axisis given by

a=(R- 1) (20.30)

Finally, in case of a pure rotation (not the identity), the determination of the axis as the vector product

w” Rw may yield zero. If this situation is encountered (D=1, a=p) a second general vector w' orthogonal to
the axisis constructed (20.28), where v is how the y-axis (or the z-axis). The axis ais then found as the
vector product w” w'.

local symmetry around an atom

GRPTYPisused in the integration package POINTS to determine the appropriate type of integration formula
for the atomic spheres. The symmetry of the formula must correspond to the local symmetry of an atom.
The available specia (Lebedev) formulas for the spherical surface al have the octahedral symmetry. Apart
from these we may generate a product formulain the coordinates cosd and ¢ [chapter I11]; this can be used
for all axial groups. The only point group type not covered is the icosahedral symmetry. Special formulas
of thistype are known [Stroud 1971], but they have not yet been implemented in the integration package.
Icosahedral symmetry israrely encountered in polyatomic systems and thusfar this restriction in the
possibilities has not played arole.

GRPTYP determines from a set of point group operators (3~ 3 matrices) whether the group is of the
octahedral or axia type; the octahedral type includes subgroups such as the tetrahedral group; an icosahedral
group will be detected as an 'error’.

Apart from the type of symmetry, GRPTY P computes the rotation matrix that will bring the coordinate
frame into a standard orientation (in which the implemented integration formulas for the sphere are defined).
The standard orientation of an axial group has the z-axis as the axis of rotation and the x-axisin a'vertica’
reflection plane (if there is any). For an octahedral group (or subgroup) the standard orientation is the usual
orientation of the cube: 4-fold rotations around the coordinate axes and 3-fold and improper 6-fold rotations
around the (111)-directions.

Finally GRPTYP outputs for axial groups the order of the rotation.

The algorithm in GRPTYP is based on the determination of the main axis and the highest order secondary
axis of the group. These are found by subsequently analyzing all operators (MAT3AN) and updating the main
and secondary axes and their orders of rotation.
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A group isdefined (in MAT3AN) to be of the axial type whenever the secondary axis hasa rotation order
not higher than 2; otherwise it is of the octahedral type. In the latter case the angle between the main and
secondary axisis checked in relation to their rotation orders (6-fold, 4-fold or 3-fold). In thisway the
icosahedral symmetry is detected as an 'incorrect octahedra' symmetry.

correcting symmetry inaccuracies in a set of points

Given a set of points which is approximately symmetric with respect to a symmetry group, SYMTRZ
removes the numerical noise from the position coordinates. The points are displaced slightly, such that the
output set is exactly symmetric (to machine accuracy). Thisisdone by explicitly projecting out the
symmetric component of the set of points.

The symmetry group is a space group, of which the generators {t;R} areinput into SYMTRZ; the set of
pointsin the crystal unit cell must be complete: if X isin the set then {t;_R} X must belong to the set,
apart of course from the coordinate inaccuracies to be corrected. {t;_R} isthe centralizing generator, defined
earlier in this section.

A 'normal’ point group, e.g. for amolecule, can be handled by specifying the crystal dimensionality as zero
and giving the zero vector for all trandational partst of the operators.

Given x thereisfor every {t;R} exactly one point y in the set such that x is (approximately) the centralized
image of y under {t;R}. The exact image of y under {t;R} , approximately equal to x, is denoted x ({t;R})

x » X(t;R}) ={t;R}y (20.31)

Running over all operators, the points x ({t;R}) are all images that should coincide with x. The exactly
symmetric points are computed as the mean positions

X' = Nl & XqtRY) (20.32)
G
{t;R}

Ng isthe number of operators. It is easily verified that this definition yields a perfectly symmetric set.
Consider theimage of such a point

TR x === & {GRIXEURY) (20.33)
{t;R}

Let z be the approximate image of x under {t;_R} , then
{GRIX{GRY) =Z(GRY {GRY) (20.34)

isone of the image points close to z. Hence
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TR =2 A Z(URY (LRY) :NiG a ZqtR") =2 (20.35)
{tiRy"

G
{t:R}

Thisis precisely one of the pointsin the output set (the corrected point z), as required. In the second
equality in (20.35) we used that the centralizing generators constitute a group.

It is assumed here that the operators themselves are exact (otherwise the product of two operators might not
equal one of the operators exactly and hence the second equality in (20.35) would not be correct. Asa
consequence, if the operators have been determined by PNTGRP from the (possibly inaccurate) set of points,
the symmetrizing cannot be done with these operators. It would be necessary to symmetrize first the
operators themselves.

operatorsin the spherical harmonics representation

A point group operator R transforms a spherical harmonic Z;,,(€2) into alinear combination of the (21+1)
functions Z,;(2) , m'=1...I. SYMZLM computes the matrix Z' of that representation (More precisely,
SYMZLM computes for a sequence of operators al Z;,,, -representation matrices up to amaximum |-value).
By spherical harmonics we understand here the real-valued spherical harmonics (23.30) as they are employed
In BAND.

The matrix elements of Z! are

Z =8 7 (@) RZm@) =8 7 (Q) ZmR Q) @ (20.36)

Theintegrand is an angular polynomial of degree 2I, so that (20.36) can be evaluated exactly by numerical

integration with aformula of the appropriate degree of precision. SPHPRD generates a product formulain

cos0 and ¢ of any desired degree. Let the points and weights of the formulabe Q; ° (x,y,2); w; , i=1..n.

The matrix elements (20.36) are then computed by

1. generate an integration formula of the appropriate degree: SPHPRD (or SPHPNT, the general routine for
spherical integration).

2. caculate Z;(Q;) , i=1..nfor al required (I,m): VZLM.

3. rotate al pointsto obtain R° L Q; . Since the operator R and the points (x,y,z); are both inthe
coordinate representation, thisis straightforward.

4. call routine VZLM again, now with the rotated points as input, to evaluate Z,,(R° 1Q) , 1=1.n.

5. compute Zlmm. as

me' =

A W Zn(Q) ZmR o) (20.37)

| B .
SYMZLM calculatesZ .. for al |-values|=0..Imax and for a sequence of noper operators. The result is one
large array oprzlm. It contains successively for all operatorsthe (trivial) 1 1 1=0 matrices, then for all
operators the 3" 3 1=1 matrices, and so on.
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symmetry adapted functions

The symmetry property of the crystal integration grid allows the computation of all symmetry components
of any function from the function values in the integration points. To construct in this way from a set of
functions the combinations that transform as irreps, would be a time consuming procedure. It is easier to
calculate the combination coefficients from the analytical properties of the functions.

It is natural to set up theirrepsin acrystal in two steps. First we take a point k in the (first) Bz, by which
we specify an irrep of the translation group. The generators{t;R} of the little group of k (i.e.Rk=k) are
then used for a further reduction to the irreps of the space group. For ageneral pointk there are no such
operators (except the identity) and we are finished immediately. Many of the k-points that are used in an
average calculation have more symmetry however, because they lie often on symmetry elements (reflection
planes, rotation axes) in k-space; the central G-point k=0 even has all generatorsin its group.

Let {t;R} bethe operators of the k-point under consideration. The centralizing operators {t;_R} constitute a
group and can be treated like any point group: analysis of the multiplication table to compute the classes,
characters and irreps. (For the moment we neglect the trandlational symmetry k).

Denote the matrices of the irreps by D:“.L 0y :1...nM » Ny isthe dimension of irrep . The projector Pivn ,
which picks up from a given function ti\e component corresponding to irrep v and column n is derived from
the orthogonality theorem of the theory of groups

[¢} _ NG
a Di*jL({t;R} h D} {t:R}) =5, 8 djk duy (20.39)
{t:R}
Ng isthe number of operators. The projector is
P oY & oY eRE Y (R (20.39)
[ Ng in

{t;R}

i isan arbitrary row-index of the representation matrix. It is usually kept fixed for all column-indicesn; this
assures for instance that the hamiltonian matrices of all partner representation columns are identical.

Suppose now that we have M functions which span areducible representation, and that we have the
operators{t;R} asM”~ M matrices in the representation of that function set. (20.39) gives then a so the
projector asanM”~ M matrix. This projector matrix has eigenvalues 0 and 1. The eigenvectors
corresponding to the latter are the v n-adapted functions. The combination coefficients can thus be computed
by diagonalization of the projector matrix. Equivalently they can be found by a Schmidt orthogonalization
procedure: take subsequently every column of the projector matrix, orthogonalize it on those obtained before
(and normalize). Some columns yield the zero vector; these singular solutions correspond to the eigenvalues
zero and can be discarded.
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(The apparent arbitrariness in the Schmidt orthogonalization procedure (that we may take asthefirst
solution any non-zero column) corresponds to the fact that all non-singular eigenvectors are degenerate. Any
linear combination is also a solution. So it is also arbitrary which eigenvectors are actually computed,
although this may not be realized when one implements a call to some standard diagonalization routine).

The functions employed in BAND fall in two classes: spherical harmonics and plane waves. We discuss first
the spherical harmonics. The plane waves will be treated essentially in the same way.

spherical harmonics

Consider afunction flor‘n(r) =P(ry, )Z)m(2,) centered on atom o.. A symmetry operator {t;R} maps flor‘n(r)
on asymmetry equivalent atom B, possibly o itself, and in addition it may rotate and/or reflect the
orientation. Theradia part P(r) is not relevant here and can be omitted from the discussion. The degree| of
the angular polynomial is not changed by any operator because symmetry operators are linear operators. The
functions spanning a representation can thus be limited to { Z,, (22 B) }Bm e where B runs over the
equivalent atoms. We deal with the trandational symmetry later and restrict B to the atoms in the unit cell,
N in number say. A spherical harmonic Z;,(Q2,) generates then a representation of dimension

M=(2+1)" N.

SYMZLM computes for the point group operators R the matrices Zlmm. which are their Z,,, -representations
(see elsewhere in this section). From thiswe construct { t;R} asthe M” M matrix. Thismatrix isin a
natural way divided in N” N blocks of size (21+1) each. If {W?} maps atom o, on the equivalent atom j3,
then the corresponding matrix Z,. .. occupies the (3,c.)-block of the large matrix; the other blocksin the
o.-th block-column are zero. The completeM”™ M matrix is determined by filling the appropriate block in
each block-column. Viewed asaN" N matrix with unity for the occupied blocks and zero otherwise, we
have the operator as a permuation of the equivalent atomsin the unit cell.

Summation (20.39) yields the projection matrix PV™ , which may then be diagonalized, or treated by the
Schmidt-orthogonalization method. This gives us all distinct v n-adapted functions.

translational symmetry

. . . vn .
Incorporation of the translation symmetry is as follows. Denote by Com o=1..N, m=1..1 the coefficients
which define a v n-adapted function as discussed above. Let ff‘m(r) =P(ro, )Z)m(€2,) beafunctionto be
symmetry adapted and k the k-point under consideration. The required crystal function is then

X V() =é é o o ¢-T) ek (Rg*T) :é M kR
I om Im
T mo mo

(20.40)

[o] kT
a flo‘m(r- T) X TuU
;
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Theterm in bracketsis the familiar bloch sum of the generating function f:xm(r) ; Ry, isthe position of
atom o.. The procedure is thus straighforward: compute first the coefficients {c} from the operators. Then,
for eachk-point: construct the bloch sums, calculate the phase-factors e K-Ro, and combine (20.40).

plane waves

The plane wavesd K+K)T are characterized by apoint k in the Bz and areciprocal lattice vector K. For a

given k arepresentation is generated by the star of K: all K that transform into each other under the
operatorsR. The matrix Z that represents {t;R} in this function set has elements Z, - = 1K' i RK'=K
and zero otherwise. Diagonalization of the projection matrix (20.39) (or Schmidt orthogonalization) gives
the coeffici entsc‘én for the symmetry adapted combinations

K

The translation symmetry is incorporated automatically by the prefactor dkr

fit functions

Thefit functions for the charge density are combined into symmetry adapted functions. The only
representation needed is the totally symmetric one; in particular the translation symmetry is k=0.

The projector (20.39) for the totally symmetric representation is simple. The dimension of the
representation isn,, =1 and all representation matrices D are scalars, equal to 1.

ZLMPRJ, with auxiliary routine ZLMPR1 constructs the projector. Viaa Schmidt orthogonalization all
distinct symmetric functions are obtained from a given generating spherical harmonic fit function (plane
wave fit functions are not employed in BAND).

Given the number of generating one-center fit functions for each type of atom and their |-values the total
number of symmetric fit combinations can be computed. Thisisdonein FITSYM to assist in the efficient
workspace organization (SS*"workspace). The coefficient vectors describing the fit combinations, calculated
in ZLMPRJ, are used in FITPNT during the interpolation and bloch summation (k=0) of the one-center
functions to construct the symmetry adapted fit functions.

basis functions

Symmetry adaptation of the basis functions has not yet been implemented in BAND. Since that would
increase the efficiency enormously it may be one of the future developments of the program; we spend some
words here on afew aspects of a possible set-up.

1. The computation of the combination coefficients, which define the symmetry adapted functions in terms
of the primitive one-center functions and their bloch sums, can proceed as described before, repeating the
procedure for each k-point.
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Sincein each k-point the local symmetry group is a subgroup of the space group and all generators
belong to the local group of k=0, it is also possible to determine the combination coefficients only
once, using all generators (i.e. we do it for the local group of k=0). The coefficients can then be used in
each k-point and define suitable functions (20.40 and 20.41). However it has then to be determined yet,
which of theirreps of the k=0 group are coupled in thek-point under consideration.

2. Thegainin efficiency from a symmetry oriented basis set is twofold. First: in each k-point the
hamiltonian HX is automatical ly block-diagonalized. The off-diagona blocks are zero on grounds of
symmetry and we don't have to compute them in EIGSYS. Similarly, in the construction of the density
(RHOPMT, see SS"charge density) the double loop over the basis functions is reduced to a sequence of
shorter double loops: the P-matrices are also block-diagonal.

The additional level in the multiple loop structures (the loop over the irreps) requires that we know the
partition of the basis functions over the irreps and suggests that the basis functions of the respective
irreps should be grouped together.

The computation of the basis functions in BASPNT may be organized in analogy with the
construction of the fit functions in FITPNT (with the symmetry coefficients from ZLMPRJ). For a proper
dimensioning of arrays one could use routines like FITSYM and ZLMPRJto determine in advance the
number of symmetry adapted functions for each irrep. Thisinformation can be stored on file for usage
by EIGSYS, RHOPMT efcetera.

3. The second enhancement of efficiency results from the numerical integration. When the functions
correspond to irreps, alarge number of integralsis zero on symmetry grounds and the remaining
integrands are (or can be chosen to be) totally symmetric so that the integration has to run only over the
symmetry unique points. This saves of course CP-timein the evaluation of the matrix elements. A
similar improvement results for the construction of the density. Consequently we have to store on file
only the function values in the generator points; this reduces also the demand on disc storage facilities,
which is currently a bottleneck in the program.

4. A dight complication isthat the irreducible wedge is a different thing for different k-points. For each
k-point we have to determine anew which integration points are the symmetry unique points.

Then, for the evaluation of the potential matrix elements (EIGSY S) we have to expand the potential,
known in the truly unique points (i.e. symmetry unique for the complete space group), over the
integration points used in that k-point. In the current set-up the potential has to be expanded over all
integration points; this is done with help of the symmetry information on the points file itpnt: the
points are organized in sets of equivalent points (SS"integration). In a symmetry oriented set-up we have
to know analogously the relation between the truly unique and the locally unique point sets. Since this
depends on the k-point we may need a different point file for each k-point (more probably we will have
different sections on one point file, since the total amount of these data is limited).

The same type of k-dependent information is also needed in the construction of the density (SS"charge
density): From the P-matrix (RHOPMT), or from the hamiltonian eigenfunctions (RHOPSI) the density is
computed in the points which are used for the basis functions; finally the density is contracted to the
truly unique points (and symmetrized in the proces by averaging, see elsewhere in this section).
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21 Temperature

ey

Bandstructure cal culations usually assume
zero temperature. A finite temperature
implies, among other things, a different
distribution of electrons over the
eigenstates. At T=0 the fermi energy e-

is asharp boundary between fully t .. *
occupied and completely empty states. PR I B o T
Thisisthelimiting case of the general S<
fermi-dirac distribution at temperature T, 5‘
giving the occupation of a state with NN XV

g

energy eas

oc(e) = ———— L

1+l E)/KT oL L Tyt -
8y Lo e

e isfixed by the condition that the
summation of ocq€) over al one electron
states yield the total number of electrons.
In finite systems, like molecules and
clusters, the eigen energies are discrete.
The determination of g- and the
occupation numbers is then straightforward. In bandstructure calculations thisis more complicated as we
have bands of eigenstates. Only states at afew discrete k-pointsin the Brillouin Zone are computed. These
states may be thought to represent all states of the surrounding region in k-space and the occupation
numbers are then associated with the fraction of represented states that is occupied. However, the
occupations are calculated as weights belonging to a particular numerical integration scheme in k-space
(SS"BZ-integration) and the values may be unexpected, even negative in some cases. Incorporation of afinite
temperature in that integration procedure is not obvious. We approximate therefore the effect of the correct
fermi-dirac distribution in another way.

Fig.8. Fermi-dirac distribution with a Riemann-Stieltjes
like integration.

Of course we are not interested in the occupation numbers themselves but in quantities that are computed by
asummation over one-particle states. Let A be such a quantity and A (k) the contribution from state
yh(k;r) , A isthen computed as

A=A oK) AK) (21.2)
kn

Theintegration over k-space has been replaced by a summation over discrete k-points and index n runs over
the bands. In case of the density for example A=p(r) and A (k) =0y (k;r) 6 2 . As mentioned above the
employed numerical integration method in k-space implies that the coefficients ¢, (k) cannot simply be
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associated with fermi-dirac distribution numbers. The true expression however, taking al infinitely many
k-points into account, would be

A=8 & ocde,k))AnK) K (21.3)

an

whereocde) is given by (21.1).
The value of A dependsone- andT via ocd(g) in (21.3), so A=A(e- ,T).

Consider now the fermi-dirac distribution and imagine (fig.8) a Riemann-Stieltjes or similar integration
scheme in the variable occon the interval [0,1]. The points 0, 0<04 <05 <...<0\ <1, have weights W
such that W, isthe part of the occ-interval represented by o; ; § isthe energy value corresponding to 0
viaequation (21.1): 0 :oco(q ). Hence (21.3) can be approximated by

AE.T)> A w; Alg .0 (21.4)
i

Our k-space integration procedure yields coefficients ¢, (k) corresponding to T=0, but depending on the
fermi energy: ¢, (k) =g, (k; &) , so that A may be computed as

AGT>A W AGO»>a WA ckig) Ak) ° A Shk) Ank) (215)
j j kn kn

Sk) =8 W ckig) (21.6)
i

Thefinal coefficientsc are thus defined as numerical integrals. The integration variable isocc, on the
interval [0,1], so (21.6) hasto beread as

6n®) =AW cnkieo) © A W cplkio) (217
i i

whereg(oco) isthe inverse function of (21.1).

The accuracy of the result depends of course on the functional dependence of the coefficients c on occand on
the employed numerical integration method. One would like to use some high precision method like Gauss-
Legendre quadrature. There are two types of problems. In thefirst place c may have discontinous derivatives
at occvalues, for which gocc) is aband-edge or another van-Hove energy. This may be remedied by
splitting the interval [0,1] in appropriate subintervals and using separate numerical integrations for each of
them. In the second place the energy e(occ) has infinite derivatives for the end-values 0 and 1; the same may
be true for the coefficients ¢, at occ=0 or 1, aswell as at band edges, so that some variable transformation
may be needed to make Gauss-L egendre quadrature applicable.
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At the current state of affairsBAND uses a straightforward Legendre integration without bothering about
these problematic aspects.

The temperature T and the number of integration points (nfdirc in the program) are input via the keys temp
andfdirc (or fermi-dirac) respectively; default values are nfdirc=2 and T=10. The latter has the effect of
T=0 on the final results: in energy units atemperature of one degree equals approximately 3" 10° 6au. so
that on the scale of interest (10° 3 a.u.) atemperature of 10 degrees gives virtually a step function for the
fermi-dirac distribution.

The temperature isin BAND represented by the variable tfdirc; its numerical value is the temperature in
atomic energy units (input isin degrees however).

When the SCF procedure has convergence problems, detected in SCFTST (SSMiteration), nfdirc isincreased by
2. Convergence problems are often related to near degeneracies around the fermi-level; amore detailed
approximation of the correct distribution of occupation numbers over the involved states may facilitate the
iterative procedure (but usually this does not help much).
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22 Workspace

dynamical allocation of arrays

BAND needs many arrays to store data: the coordinates of the atoms, the characteristics of the basis
functions, the values of functionsin the integration points and so on. Fixed sizesfor all these arrays are
unwieldy. With any configuration of fixed sizes we will soon encounter an application that does not fit,

while just aredistribution of the claimed workspace would suffice. This would then necessitate a
recompilation of the program with adapted array bounds. Fixed sizesimply also that in every run we pay for
memory we do not use.

FORTRAN77 does not support dynamical array allocation. BAND simulates dynamical allocation of arrays
with subroutine ARRAYS. We will refer to this routine and the related data structures as BAND's workspace
menager.

The total workspace available is fixed of course (FORTRAN77) and consists of two large arraysin (blank)
common, one for integers, iwork, and one for reals, rwork. Whenever an array is needed in the course of the
program execution ARRAYSis called. It gives back which element of iwork or rwork respectively isto be
used as starting address. Later it may be called to rel ease the claimed space again, when the allocated array is
not needed anymore.

A typical structure would be

n=..

call arrays ('allocate','real',"'store' ,n,ii)

call b(n,rwork(ii),....)

call arrays ('delocate','real','store',....) (22.1)
end

subroutine b (n,store,....)

di mensi on store(n)

The dlocated arrays are identified by a name, which is stored by ARRAYSin alist of names, together with
their positionsin iwork or rwork. Between each pair of allocated arraysin iwork or rwork one word is kept
free. ARRAYSwrites a marker there: a specific integer or rea value that isimprobable to occur often. As
soon as ARRAY Sis called to give the space free again, it checks whether the markers directly before and
after the array are intact: global array-bounds checking afterwards.

ARRAY S discriminates two types of data: integers (type 1) and reals (type 2). Array arname(nnames,2)
contains the names of the currently allocated arrays. The maximum number per type, nnames, is a constant
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in the program. Indexw contains the locations of the arrays: indexw(i,j) is the position of the marker before
the i-th array of typej (j=1,2). ncwork stores how many arrays are currently allocated: the number of
allocated arrays of typej is (Mk(j )- 1) . The relevant data are stored in the common blocksCNTRLC
(data of type 'character’) and CNTRLV (other variables).

One of the arguments of ARRAYS is action, a string to identify the purpose of the call. action may have the

values 'allocate’ or 'delocate’ with obvious meanings. Furthermore it may be

‘available' to find out how much spaceis still free,

‘space’ to allocate an array as large as possible. Thisis acombination of 'available’ and 'allocate’; output are
the pointer for the array and its size.

‘check’ to check the markers around a specific array,

'init' to initialize the information structure in ARRAYS (in thisway it is called only once of course, by
INIT),

'‘dump’ to output the current state of affairs,

'free’, which implies 'delocate’ for the specified array and for all arrays of the same type that were allocated
after it.

remarks

1. If severd arrays have been allocated, their de-all ocations may be executed in any order. However, the
space of adelocated array is not available for subsequent alocations until al arrays after it have been
given free aswell: free holesin iwork and rwork are not used, only the free final sections.

2. ARRAYSisalso used to manage array allocation for logicals and complex numbers. Logicals are treated
on the same footing as integers; complex data are treated as reals, taking two real words for each
complex. The size of an array as specified in the argument list is therefore multiplied by m when sizes
arejudged; m=1in all cases except for complex numbers, wherem equals 2.

3. Itispossiblein principle to have only one workarray in blank common and allocate both integer and
real arraysin it; this might be more efficient as we may now have atoo small real array rwork and
wasted space in iwork, or vice versa. The gain would be small, because the real array is an order of
magnitude larger so that some extra space from the integer array is not very important.

The reason to keep integers and reals separate is that type-mixing may cause problems on some
machines. The same might of course be true as regards the mixing of logicals with integers and
complex numbers with reals. In that case the number of types used in ARRAY S should be extended; the
necessary adaptations will be obvious from inspection of the implementation.

optimized vector lengths

Even with the optimized use of available workspace, by way of the pseudo-dynamical allocation procedure
just discussed, it isimpossible to have all datain core simultaneously. BAND evaluates most integrals
numericaly. The relatively large number of integration points necessitates the storage of data on file, such
as the values of the basis functions in the points. Each time we need them, for instance to compute matrix
elements of the potential, they are read and used. In general only part of these data can be kept in core at the
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same time and the numerical integration hasto be performed in a number of steps. At each step the values
corresponding to one block of points are read, processed in the computation and then replaced by the next
block of data.

The heart of the computation consists of vector operations; the length of the vector is the number of points
in ablock. It is advantageous to have the vectors as long as possible or, to be more precise, to have as few
blocks as possible, because each extra block costs one more start-up of the vector operation.

For organizational reasons the block structure is the same on all involved files. By the block structure we
understand here the number of blocks (of points) and the length of each individual block. In each routine
where we have to handle such data the avail able workspace is determined by what other data must currently
be kept in core, so that for each routine there may be a different maximum possible vector length. Routine
WRKORG computes these values for all sectionsin the preparation stage and gives back the minimum over
them: the absolute maximum vector length for the whole preparation part: npx. This can then be used to
write the various data to file in the appropriate block structure.

Asregards the SCF part alone, the maximum possible vector length is often much larger than in the
preparation stage: in the preparation part we need at certain moments the overlap matrices of the valence,
core, or fit functions; these occupy considerable parts of the total workspace. REORGF computes the SCF
vector length and reorganizes the relevant files after PREPAR and before SCF; auxiliary routines for REORGF
areREORGL, -2 and -3; each of these rewrites a (humber of) specific files.

The determination of the block structure for PREPAR has two complications.

a) In BASPNT the bloch sums of the basis functions are computed for all employed k-points of the Brillouin
Zone. Much of the involved computational work does not depend on thek-point. Hence it seems obvious to
do thisfor as many k-points together as possible, instead of repeating the work for each k-point. However
thisimplicates that more basis function data have to be kept in core (proportional to the number of k-points
processed simultaneously), thereby reducing the maximum possible vector length in BASPNT; this again
makes the execution more expensive by increasing the cost of the vector operations.

To achieve the optimal situation we have to minimize some sort of cost function. This function has to
depend both on the vector length and on the number of k-points handled together. The optimal balance may
be determined by many conditions and not in the least by the machine; we find for example that the optimal
situation on the Cyber205 differs markedly from that on the Cyber995.

We have implemented a cost function (in RPNTRE), but the form will not be discussed here: it isonly a
first guess; a systematic experimentation with it might very well yield a significant improvement in
performance of the program.

The number of k-points treated together is the variable karp. By default it is determined by RPNTRE, but
this may be overruled by fixing its value viainput, with key kgrp.
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b) For some functions, in particular the fit functions, we need only the values in the symmetry unique
points. The maximum vector length according to the fit section is thus the maximum number of symmetry
unique pointsin a block. The absolute maximum vector length can then be computed if we know the ratio
between the symmetry unique points and the total number of pointsin ablock. However thisis not afixed
value (e.g. the number of symmetry operators): some points may not be general points. If they are located
on asymmetry element, such as a reflection plane or arotation axis, the number of equivalent pointsis
only afraction of the number of symmetry operators. So the ratio depends on what kind of pointsarein a
particular block. Then, assuming a quotient (the variable symfrcin the program) it must be seen afterwards
whether the actual value in the realized block structure does not deviate so much from it asto cause
problems; RPNTRE checks this and adapts in such (exceptional) cases the block structure.

WRKORG is called first from PREPAR to obtain afirst assessment of the maximum vector length npx;
symfrchas been initiated (INIT) at the safe value 1.0. In RPNTID the file with integration points itpnt,
output from POINTS, is rewritten in accordance with the value of npx; meanwhile the maximum fraction of
symmetry unique points, symfrc, is determined. Then, in RPNTRE, the cost function mentioned above and
the new value of symfrcare used to optimize the points-file. The actual rewriting of itpnt occursin the
auxiliary routine RPNTRW.
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23 XC: exchange and correlation

The exchange and correlation (X C) interactions between the el ectrons are approximated with the density
functional (DF) formalism. Many DF formulas have been advocated in the literature for the XC
potential. The first proposal was by Slater [Slater 1951], later parametrized to the famous X,
potential. More recently the Gunnarson-Lundqvist (GL) [Gunnarsson and Lundqvist 1976] and the
Vosko-Wilk-Nusair (VWN) [Vosko et al. 1980] form were published. All these approximations are
based on homogeneous el ectron gas cal culations. BAND has the possibility to take either of these. The
VWN function is presumably the most accurate, but for sake of comparison the other options are
occasionally useful.

Even the more sophisticated DF functions, like VWN, are rather severely in error, depending on the
(poly-) atomic system. The error is roughly 10% in the exchange part and up to 100% in the
correlation [Stoll et al. 1978, Gunnarsson and Jones 1985, Becke 1986]. The signs of these deviations
are opposite and the sizes such that the net result, as regards the self consistent charge density and the
total energy, is often fairly good. Not in all cases however and from a more principal point of view this
situation is of course unsatisfactory.

According to Stoll et al. [1978] the correlation error is mainly due to an overestimation of the
correlation between electrons of the same spin. The program has therefore the option to suppress this
term, partially or completely. To prevent the total result from getting worse we should of course also
repair the exchange error. That can be done to alarge extent by including anon-local term, afunction
of the gradient of the density [Becke 1988]. Implementation in BAND has not yet been undertaken. It is
not very difficult and will be discussed at the end of this section.

local XC functions

The energy density and potentia will be denoted by €(r) and u(r) respectively.

Define:
pt(p") isthe charge density of spin-up (-down) electrons. (23.1)
p=p" +p

{=(p*-p )/ p isthespin polarization function

Q) = ((1+0"31- %2 2) 1 (292 2)

_xm3 &3 , ,
s —%81/ is the Wigner radius
_ o 513
=&
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Ec =8 o p(r) eyc(r)

The energy density and the potentia derived from it can conceptually be split into an exchange and a

correlation part

exc © excllsC) =&x *ec
* _d _ r's Exc e _
er(rsag) —E(p €xc) = Exc - gd’_ (10— CE_, = Uy tUc

The exchange part is given for al local spin density functionals by

+ 4/3+ 4/3..
0 (1+)¥3+ (1- 93 =5 3358 (p*) ()™
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w =S 00 @2 g8 ()Y

The difference between the various X C functions is the treatment of the correlation.

X-alpha

Inthe X, approximation the correlation part is represented by parametrizing the exchange term

Mxc =% Ox Hx
and similarly for e, . The X, parameter o, isusually taken between 0.6 and 1.0.

Gunnarsson-Lundgvist

€c 282 +(sfc-sg)f(l;)

p and f indicate the para- and ferro magnetic states. ({=0,1).
3 2
=-qg {((+g ) log(1+ 1) ) + 1128 -& - 13}
g =rsld j=pf

G andq are constants

¢, =00333au. ¢ =0.0203 au.
d, =114 au. & =159au.

Vosko-Wilk-Nusair

ec =eDr) +918(2%3-2) a1 1) Q) + (ef(re) - e209) ¢ Q)

(23.2)

(23.39)

(23.3b)

(23.4)

(23.5)

(23.6)

(23.7)

(23.8)
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The values of the parameters eg , sfc anda areall given by afunction

H(rs,X;,Bj,C;j,Q,CA;,CB;,CC; ). The arguments are different for the three cases, i=p,f,o..

H(rs,x,B,C,Q,CA,CB,CC) = CA{ log(r) - 2CB Iog(ds—x) + (23.9)

+(CB- 1) Iog( rS+B(“)S+c) +CC arctar‘@/( 2(")S+B) 8}
The constants x,B,C,Q,CA,CB and CC are givenin tablel.
The implementation of the function H needs allittle care. Asthe density approaches zero several terms

in (23.9) become unbounded. The 'infinities' cancel each other analytically. To prevent rounding errors
and other numerical problems from influencing the result a few terms are recombined. Set g:(3/4p)1/ 3,

rs =gp” V3
H:CA{ log(g) + log( p 1’3 - 2CB (Qr- xpm) - 2CBlog(p” m) +
+(cB- 1) log(p~ Y3 +(cB- 1) log(g+ BAPYC + ¥y +cc arctan BpVG( 26y+8pYY §

-

=CA{ log(g) - 2CB (Q]—xpm) +(CB- 1) log(g + BCyp/6 + Cp]'/% +

+ cc arctar@pY/9(2Gy+8pY5 G } (23.10)

Stoll's correction for the correlation

As mentioned before it may be argued [Stoll et al. 1978] that the commonly applied DF formalism,
based on the homogeneous electron gas, overestimates the correlation. They propose a correction
yielding an effective correlation function

e (160 =eclisd) - e Q) (23.11)

e s D) =3 (140) eclig.i=+D) + 5(1-0) el L= 1 (2312)

-3 o3 (23.13)
App~g

The corresponding effective correlation potential is

ff + * + d +
ui =ug - ol =) - pia ec(rs.G=£0) (23.14)

BAND applies the correction with an (input specified) multiplication factor A between zero and one.
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eff correc

ec =& —heg (23.15)

implementation
) ) p f o

Thelocal density functional (LDF)
formulas above are evaluated by two X -.10498 -.325 -.0047584
main routines: XCENER and XCPOT B 3.72744 7.06042 1.13107
for the energy density and potential Q | 6.15199 4.73093 7.12311
respectively. Input are a vector of cA | 0310907 01554535 | -.01688685
density values and information cB | -.0311676 | -.144601 | -.000414034
regarding the type of DF formula. cc | 124742 3.3766 317708
The GL form is not yet available
becavse the evaluation of the energy Table 1. Constantsin the VWN formula for the
density has not been implemented correlation functional.

thusfar.

A few auxiliary routines compute various (parts of the) formulas occurring in the VWN approximation.
These are XCVWND, XCVWNE, XCVWNF, XCVWNP.

The variableioptxc determines the type of formula (1:X,, , 2:VWN, 3:GL); xcpar provides additional
information: for the X, formulaitisthe usual X, parameter, in the other casesit is the amount of
Stoll-correction applied (A in 23.15). Default is the VWN formula without Stoll's correction: ioptxc=2,
xcpar=0. Input is with the keys X-alpha, VWN or Stoll. The last two request both the VWN formula
to be applied. In &l three cases the key record may contain avalue for xcpar; defaults respectively
0.7,0, 1.

gradient correction for the exchange

In recent years considerabl e success has been met in the elimination of the exchange error by inclusion
of aterm that depends on the gradient of the density. Becke [1988] gives a function for the exchange
energy

LDA o  ~ 43 Xo

Ex =E. - Ba Op, T o (23.16)
&+6Px,sinh "xH

E;DA is the exchange energy in the local density approximation, given by (23.1) and (23.3), o isthe
spin index, P isa constant whose value may be fitted to the exact Hartree Fock exchange energies for

atoms (»0.0042 a.u.) and the dependence on the gradient isvia
.0 Npg0

(6} p(S

(23.17)

Incorporation of thisfunction is straightforward if the density gradient can be evaluated in the
integration points. The density in the crystal is known as an expansion in basis functions ¢;(k)



XC: exchange and correlation 132

p=a A P 6ik) oK) (23.18)
Ko j

Pﬁ isthe density matrix. For the gradient we have then

=8 & Flf (0iNejkoi0oNoj00) =8 & (Fi+P) ot Noje)  (2319)
Ko j Ko j

The basis functions are either plane wavesdX T giving ReKT =ik €K' | or bloch sums of one center
functions y;
o i .
oikin =@ i(-R) &FR (23.20)

R

The one center functions have the form

x () =Zm(Q) P() (23.21)

where the radia function P(r) is an exponential function P(r):rI+k e %" or anumerical orbital from the
free atom subprogram DIRAC. In both cases the gradient Ny; and hence No;(k) can be computed.

For the evaluation of the gradient of the density we need in this formulation the derivatives of the basis
functions ¢;(k) . These values, in each integration point three numbers per basis function, will have to
be stored on file. In the current set-up of BAND the data of the basis functions themselves are already a
major bottleneck for the application to large systems so that this approach poses a serious problem. It
may therefore be advisable to employ the fit functionsf; that are also used for the evaluation of the
coulomb potential. The density is approximated by

o [*] [*]
P=aA Py *Pdef > A Py *A G (23.22)
o o i

Po isthe spherically symmetric charge density of free atomat, pyer isthe deformation charge

[}
Pdef © Perystal - A Py (23.23)

o

The fit functions are bloch sums (23.20) (with k=0) of one center functions of the form (23.21). The
total number of one center functions that are used for thefit is of the same order as the number of one
center functions for the valence basis. The latter are combined in bloch sums for each k-point, the fit
functions however only for k=0. Furthermore BAND employs as fit functions only the totally
symmetric combinations of one-center functions (SS*symmetry), while for the valence basis of course
al irreps are used. So evaluation of Np via (23.22), instead of (23.19) requires less additional datato be
stored; in most cases the difference will at least be an order of magnitude.

A second advantage is the computing time. Expression (23.22) leadsto
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~ o ~ [o] ~
Np»a Npy +a G Nf (23.24)

The striking difference with (23.19) is that not only the summation over the k-points is absent, but
that also the double summation over the functions has been replaced by a single sum.

derivatives of one-center functions

We conclude this section with the derivatives of one center functions of the form (23.21). It will be
convenient to express the desired derivatives with respect to the cartesian coordinates in spherical
coordinates. So we use

dlx = r/x didr + To/fx dido + T6/Tx d/do (23.25)

and similarly for d/dy and d/dz, with

r= \/x2+y2+z2 ,  0=acos(zlr), ¢ =arctan(y/x) (23.26)
to write

1. d/dX{:] i coshsin®  coshsiné/r - sin/rsind . ‘l d/df

id/dyy =] singsin® sinpcosB/r  cosp/rsing \/ | didd (23.27)

T d/dzb I cos - sinB/r 0 T d/dq)E

For an exponential function P(N=" e %" theradia derivativeis

d _ _
T Me ™ =(nr o) M e (23.28)

If P(r) is anumerical function, given as atable P(r; ) with logarithmically increasing r; , rj+q /rj =C
the derivative can be computed numerically by a 3-point interpolation. Define g(r; )° R(r; )/r; , then

1 é( (C+1)292 - (c+2)g1 - ng) i=1 1.:]
(P 'd
(r.) [ o+ @L-l(g”l - gy i=2.N- 1 (23.29)

i@gN—Z * (2C2+1)9N - (C+1)2gN_18 i=N

derivatives of spherical harmonics

The angular derivatives operate on the spherical harmonics. BAND uses real-valued spherical harmonics

P °m°(cose) cos(mo) mEO
Z|m(Q) =1

m (23.30)
19 PI (cod) sin(mo) m>0

o %t
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le isthe associated L egendre function and c|m isanormalization factor (m3 0)

g =) g—”:él g_L(::nnw]): (23.31)

The derivative with respect to¢ is obvious. For dZ,,,, /d8 the recurrence relations and the definitions of
the Legendre functions can be used [Arfken 1970].

" /b = - sind dP{" /dcosd = % ((+m)i-m+2)p™* - B (23.32)
From the relation to the Legendre polynomials [Arfken 1970]

P =sin™ @ (d/dcosp)™ P (23.33)
we may alternatively derive

P /o = (mitane) P — P (23.34)

Thefirst term in (23.34) presents a problem for sin6=0. For m=0 this term should be omitted (23.33),
whilefor mt O le contains afactor sin™ 6 removing the singularity. In view furthermore of the
restriction 8moé £1 apossible set-up is

1. useexplicit expressions for the derivatives of Z|,,, with |=0,1

2. forl32, m=I+1,....,I- Luse (23.32)

3. form=-1 use(23.34)

4. for m=l combine (23.32) and (23.34) to eliminate P|m)rl :

)" b = (+m)(-m+1) P - (mitan6) PY" (23.35)

For 6=0,p/2 the first term in (23.34), respectively the second term in (23.35) have to be omitted.
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Software Reference List A: subroutines

tstat...cooooveeie 32
diraC...coocoiiiiiiiii 8 entrle.. 31-33
Prepar......cccoeevvviiiiniieiiiinennn. 11 SEOPIte. e 32-33
POINES. .o, 12 AtMNC...oeveeeeeeeeeeee 34
VAUVW. oo 15 PROFit. e 35
machin...........coccoeevineinn, 15 coulom..onne 35
(o ] - T 16 Fito o 36
Sltorb....oiie 16 FIEPNE. vt 48
Planew..........coooviiiiin, 16 fitras. e, 49
hamfix.......cooii, 16 FIEr@ oo 49
bas-......cooi 16-20 DaSOVI......vvvveiieeeieiieieeeee 56
SIMET. e 20 POPANGL v veeeeeereeeerereeeeeene, 56
Kpnt-..ooiee e, 24 OS] 16—20
SIMPIS..coiii 24 atmfNC.......ooeeviieeeee e 61
lattpt. oo, 25 QlStab. oo 61
POIYGN..coii 25 ENETTY ..coiivvreeeeiirieeeeiiireeeas 61
pIgi I 25 fl- 16—20
POlYhe...coii, 25 formfa......cccovvvveieeeeiiiine, 66
PYITOL .o 25 Celred....ocooeiiieiieeieeeee. 66
bzintl..............cooi 26 rotmat....ooooooooo 68
quad-.......coooeiiieee 26 POIYGN. oo 69
QUAA-....coiiiiiiii e 26 POIYNE. oo, 70
hybrid.........ccooiviiii, 26 PIGIT oo, 70
fermi-...o 26-27 SIMPIS.. e 71
OCC- i 25-217 headin..............ooooeveiininnn 73
eMNMXD..ooo 27 QELNP. e 73
BIGSYS. vt 28 KEY ettt 24
PMALNX., 28 011 77
FhOPSI ..., 29 DI e, 77
rhoOPML.....oviii 29 SKIP- e, 78
SCF e, 29 SKID oo, 78
Charge........oooovniiiiiinnne, 30 LESES. v 78
S]] £ 30 POINES. ..o eeeeeeee e, 79
FPNtId.....ocveee e 30 GEMEY vt 79
Start.....cooeeeeiiiiiiii, 31 PPN, e, 79
endof.......ccoooiiiiiiiiii 31 20 (18110 FUTRTTTOTORRO 80
SKIP- 32 atmfnc............occ, 86
SECHIM. e 32 DASPNL. .o, 36
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INEAAL. et 86 o type of 75
. asis
vbNA2i...ooeiiiii 86 orthonormal 12,16
condit...cccoiiiiiiiiiii, 86 basis
functions 8,16
(o121 11 o=V G 87 '
blank common 123
radma-.........ccccoooeieiiiiinn, 24 bloch
SIMPSavveeeeeiicciieee e 87 theorem 6, 107
bloch
rh.opot ................................. 91 functions [Bloch 1928] 8
MIEXITE e 91 sum 12, 85, 87
Vardat.....ooveeeereeeeeeeeeeeee, 91 BZ-integration 22
hybrid-quadratic 26
SCFESE. i 92 quadratic 2%
AMSEP...ieneieieieeee e, 96 temperature 27
JAHIC..ovoeeeeen 96 BZ-integration ”
accuracy
Ieg- ................................ 16-20 cherge 7. (See densty)
[o10] = To] o F 99 control 31-33,78
ISV 100 convergence 9%
e1gys Chebyshev acceleration 93
rhoapp......ccccvvvveiiniieeeneens 101 core 9,17, 21
rhoOPMt.....ccvviieiiieeeiieee, 101 correlation (see XC)
Stoll's correction;. They propose a correction
101 (o] T 105 yielding an effective corrdlation function
SYMCIY e 106 129
L@EEPL. v 106 correlation
error 127
Ia1tch.. ................................ 107 coulomb potential 10, 33, 50
S3Y200] o] o 109 average 50, 53
L1174 111 VR 115 g:gﬂpl ng 6 ?88
ugging )
sphprd........coovvieiiiieieeen, 115 defaults 72
SPhPNt....eei e, 115 density 6, 28-31, 50, 110
deformation 10
IMe 115 N . )
vam _ expansion in spherical harmonics 31
zZImprj. 118 plot 30
fItSY M., 118 density
approximation 101
FItPNt e 118 density of states (seedos)
rhopmt........coooviiiiieiini, 119 dependency
CNEF = 124 core-valence 18
24 fit 37
AITAYS. e ee et valence 17
WIKOrg....oooeiiiii 125 dependency
FEOIGF ..o 125 coefficients 17,37
derivative
baspnt.........cocoeiiiiiiiiin 125 angular 132
0] 0 (T 125 one-center function 132
W e 126 redid 132
rprtny dimensionality 75
. XCm ettt 130 k-space 96, 108, 109
aternating sequence 40-45, 50 dipole 16-20
arrays 123 DOS 53
aoms gross 55
positions 75 overlap 55
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partial 54 interpolation 48, 85, 16-20
plot 56 irreducible wedge 119
efficiency8, 14, 20, 27, 29, 48, 98, 101, 111, polygon 70
118, 119, 125 polyhedron 71
energy irrep 111, 116
coulomb 58 matrix 116
electrostatic 60 projection 110
error 57 projector 116
kinetic 58 tranglation group 6, 107
Madelung 61 iteration 88
XC 58 key 73. (seeinput)
exchange (see XC) block 78
exchange integration 80
error 127 key
execution stack 32-33 block 73
fermi energy 6, 25 record 73
fermi-dirac distribution 120, 121 kinetic energy
files 62 functions 16
format 64, 65 matrix 16, 61
input, output 65 k-point
size 62 equivalence index 24
string 62 lattice 75, 96
files Bravais 102
manager 62 lattice
fit functions 10, 33-36, 131 sum 13
charge content 34 lattice sum 37
coefficients 35 lines 68
constraint 34 meachine-dependency 14, 62, 73
error 59. (see form factors). (see energy) Madelung 48
generating 35 memory banking conflict 14
plane waves 36 multipole 13,51
potential 35 n-dimensional crystal 7
form factors 65 nearest neighbour 47
frozen core (seecore) occupation numbers 9, 25, 28, 110, 120
geometry 67,75 orientation 96
hamiltonian 6 orthogonality theorem 116
Herman-Skillman 8 output 77. (see print)
input 15,72 heading 73
core 76 input data 73
defaults 72 plane waves 9,76
functions 75 symmetry adaptation 118
nuclear charge 75 planes 67
input P-matrix 21, 28, 101
file 72 point group 115
integration 79 polygons 68
accuracy 80 polyhedra 69
generators 110 population 30, 53
k-space 109 potential (see coulomb potential)
points approximation 99
blocks 79, 125 print
symmetry 79 instructions 77
symmetry 110 options 77
integration RADIAL 48, 76
parameters 80 reciprocal values 76
points radia
blocks 13 grid points 8
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tables 8 spin 7, 78, 100, 101
recurrency 33 symmetrization 110
relativistic effects 6 symmetry 12, 102
results 7 functions 116
SCF 13 k-space 107
screening 41 little group 116
screening function symmetry
modified 49 breaking 12
simplex 23,71 temperature 120. (see BZ-integration)
space group 102 timing 29
generators unit cell 103, 106
centralizing 103 vector length 13,125
generators 102 vectorization 14
operators 105 workspace 13, 123
spherical harmonics workspace
definition 132 manager 123
representation of operators 115 XC 6, 127
spherica harmonics error 127
symmetry adaptation 117 X-ray (seeform factors)
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