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This chapter gives an extensive discussion of the computer program with many details concerning the

software. We start with a list of acronyms and abbreviations that will be used and a global flow chart.

BZ Brillouin Zone

DF density functional

DOS density of states

irrep irreducible representation

LCAO Linear combination of atomic

orbitals

LD local density

NAO numerical atomic orbital

PW plane wave

SCF self consistent field

SSA stable state approach

STO Slater type orbital

XC exchange and correlation

F l  o w  c h a r t 

BAND

INIT initiation of variables
GETINP input analysis

GEMTRY geometry master routine
POINTS symmetry unique points and weights for numerical integration

SYMCRY space group operators
ATMSET division of atoms in sets of symmetry equivalent ones

SYMPRJ point group operators in reciprocal space, derived from the space group
operators

SYMADD inclusion of inversion symmetry into the k-space point group
KPNT integration points and related data for integrals over the BZ

PREPAR master routine for the preparation of crystal functions
RADIAL master routine for radial parts of one-center function

RADFNC master routine for generation of radial function tables
DIRAC numerical solution of DF equations for spherically symmetric free

atoms; output tables (NAOs, atomic densities and coulomb potentials)
SLTORB STOs, tables
FITRAD Slater type fit functions (STF's) and potential functions

RADMAX maximum radial extension of any tabulated function (valence, fit, atomic
density, atomic coulomb potential)

CELLS coordinates of lattice points that are relevant for the calculation of bloch
sums

CELMAX for each radial function table: the number of cells needed in the bloch
sum, derived from its radial extension

FITSYM number of totally symmetric fit functions
NUMGRD master routine for computation of function values in the crystal

integration points: interpolation from the radial tables, bloch summation
by a loop over the relevant cells

RPNTID generation of all symmetry equivalent integration points, from the
unique ones
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RPNTRE organization of the file with points: blocks of points with a pre-
determined maximum length (the vector length)

VMULTI multipole potentials: potential values in the integration points due to a
Bravais lattice of multipoles; each {lm}-multipole; Bravais lattices
centered on each atom; symmetrized functions by combining symmetry
equivalent atoms

ATOMIC master routine for data related to the free-atom charges and coulomb
potentials

ELSTAT electrostatic interaction between unrelaxed free atoms (energy term in the
cohesive energy)

ATMFNC superposition of the atomic densities and coulomb potentials in the
integration points (reference charge density and potential for the SCF

procedure)
BASORT master routine for the crystal core and valence functions

PLANEW characteristics of the planes waves in the valence basis (lattice points in
reciprocal space)

BASPNT bloch summations of one-center basis functions (core and valence); PWs
are added to the valence function set

BASCOR explicit orthogonalization of the valence basis on all core states
BASOVL overlap matrix of the basis
BASTRA transformation to an orthonormal basis
HAMFIX fixed part of the hamiltonian matrix (in the orthonormal basis): kinetic

energy and coulomb potential due to the free atoms; matrices (one for
each k-point) are stored on file

FITORT master routine for the fit functions
FITPNT interpolation and bloch summation (k=0); combination into functions

that are totally symmetric with respect to all space group operators
FITOVL overlap matrix of the (symmetrized) fit set
FITTRA transformation to an orthonormal basis

(end of NUMGRD)

(end of PREPAR)

REORGF reorganization of all files containing function values in the integration
points: fewer blocks of points / more points per block

SCF master routine for self consistency iterations
SCFTST test termination conditions of the SCF procedure
RHOPMT, charge density in the integration points from the density matrix

(RHOPMT) or
  RHOPSI from the eigenstates (RHOPSI)
RHOFIT fit coefficients: expansion of the deformation density in fit functions, to

solve (approximately) the Poisson equation
RHOPOT the potential (coulomb plus XC), computed from the density and the fit

coefficients
EIGSYS evaluation and diagonalization of the hamiltonian matrices in the

respective k-points
FERMI master routine for k-space analysis
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FERMIE fermi energy from the energy bands; occupation numbers for all one-
electron states

PMATRX the density matrix in the representation of the crystal valence basis

(end of SCF)

PRPRTS master routine for the analysis of results; computation of properties
ENERGY cohesive and total energy
CHARGE charge distribution over the atoms by numerical integration
DOS master routine for the (total and partial) density of states

DOSTRA back transformation of the self-consistent wave functions to the original,
non-orthogonal bloch-valence basis: for the partial densities of states and
for the Mulliken population analysis

DOSCAL partial and total density of states for a sequence of energy values
POPANA Mulliken population analysis

FORMFA master routine for X-ray structure factors (form factors)
PLANEW characteristics of the relevant plane waves
CELRED reduction to the symmetry unique set of plane waves
FORMF1 computation of the X-ray factors: fourier transformation of the charge

density by numerical integration

(end of PRPRTS)

(end of BAND)
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1 I n t r o d u c t i  o n 

BAND is a density functional (DF) program for electronic structure calculations on periodic systems. The

programming language is FORTRAN77. Where in the text explicit reference is made to the software,

subroutine names are in small capitals (SCF, INIT), variables are underlined (   pot   ,    overlp   ) and key-words used

in input are outlined (mix , lat t ice). Details of the implementation will be discussed in a number of

'software sections'; these are referred to as SS^input, SS^basis, and so on.

Energies and lengths are in atomic units (hartree, bohr), unless explicitly stated differently.

f  o  r m  a l  i  s  m  

In the Kohn-Sham theory of the DF method [Hohenberg and Kohn 1964, Kohn and Sham 1965] the two-

particle coulomb interaction 1/r12   between electrons is replaced by the sum of two one-particle operators.

The first is the coulomb potential due to the average charge distribution. The second is the exchange-

correlation (XC) potential, representing exchange and correlation effects in an average way. The XC

potential is a functional of the charge distribution.

With the usual approximation of motionless point nuclei the hamiltonian equation reads

H n(k ;r) ≡ {T + VC(r)  + VXC(r) } n(k ;r) = en(k )  n(k ;r) (1.1)

T is the kinetic energy operator, −∆/2 in atomic units; VC(r)  is the total coulomb potential, due to the

nuclear charges and the electron cloud; VXC(r)  is the XC potential. Relativistic effects have not (yet) been

included in BAND.

n(k ;r) is a one-electron state with wave vector k ; k  serves also as a symmetry label, denoting the

irreducible representations (irreps) of the translation group corresponding to the Bravais lattice. It is a

(pseudo) continuous variable that may assume all values in the (first) Brillouin Zone (BZ).

The solutions {en(k ) , n(k ;r) } vary continuously with k  and form thus 'bands'; the subscript n, which

enumerates the distinct solutions in k , is called the band index.

The translation properties of irrep k  are expressed by (Bloch's theorem)

n(k ;r+R ) = eik ·R   n(k ;r) (1.2)

where R  is any point of the Bravais lattice. The states n(k ;r) are computed as linear combinations of

basis functions . These are chosen of course to belong to the same irrep and are labeled accordingly:

i(k ;r) , i=1,2,...

The electronic charge density (r) is obtained by a summation over all occupied states, i.e. all states with

energy en(k )  below the fermi energy eF . The summation includes the integration in k-space
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(r) = ∑
n

 ⌡⌠
BZ

  dk   n(k ;r) 2  (eF en(k ) ) (1.3)

(x) is the Heaviside step function: =1 (x>0) or 0 (x<0).

The fermi energy eF  is determined by the total amount of electronic charge Q per unit cell

⌡⌠
unit cell

  (r) dr = Q (1.4)

The potentials VC(r)  and VXC(r)  in (1.1) are computed from the density (r) and hence they depend on the

solutions n(k ;r) . The self-consistent solutions are found by an iterative self-consistent field (SCF)

procedure.

a p  p  l  i  c  a b  i  l  i  t  y   a n d  r e  s  u l  t  s  

# Any type of periodic system can be handled. The systems will be called n-dimensional crystals, by

which we understand polyatomic systems with periodicity in n directions; n may be 3 ('normal' bulk

crystals), 2 (slabs) or 1 (polymers).

It seems natural to include also the case n=0 (molecules). BAND is based on the same theoretical model

as the Amsterdam DF molecule program and the two are very similar as regards the general set-up. In

fact they share a substantial portion of their software. A future melting together may well be undertaken

and should not present fundamental problems.

# The two spins can be treated independently: both spin-restricted and spin-unrestricted calculations are

possible.

# For VXC(r)  several forms advocated in the literature are available in the program: the classical X  , the

Gunnarsson-Lundqvist (GL) and the Vosko-Wilk-Nusair (VWN) formulas. Any of these can be elected in

a calculation. Other varieties are easily implemented if desired.

# Apart from the self consistent solution of (1.1), the program computes the total and cohesive energies,

X-ray factors, total and partial densities of states and it performs a Mulliken population analysis.

# There are no restrictions on computational parameters such as a maximum number of atoms, basis

functions and so on. Of course computer resources may limit the applicability. To have an indication: a

slab containing 18 transition metal atoms and two first row atoms per 2D unit cell (periodic

chemisorption of CO on a copper layer) is a big system, as regards both CP-time and disc-usage. If the

basis set and other parameters are chosen to achieve high accuracy (0.001a.u. in the cohesive energy), the

program will take ten or more hours on a Cyber205 and handle ~109  words of data. Bulk silicon is

computed with fair precision (better than 0.01a.u. in the cohesive energy) in 20 minutes and stores

7×107  words on disc during the run.

We will discuss in other sections how the demands on storage facilities and computer time may be cut

down by future developments of the program, primarily by making better use of symmetry properties

than is done currently (SS^symmetry). In the mentioned example of Cu-CO adsorption for instance this
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would reduce costs by roughly an order of magnitude. The gain in the silicon calculation would be even

more, due to the high symmetry.

An improvement in efficiency may also result from a refining of the SCF procedure (the Stable State

Approach, see SS^basis).

b  a s  i  c   c  h a r a c  t  e  r i  s  t  i  c  s   o  f   t  h e   m  e  t  h o  d 

starting up, one-center function tables

BAND contains a fully numerical Herman-Skillman [Herman and Skillman 1963] type subprogram DIRAC.

DIRAC solves the DF equations for the spherically symmetric free atoms from which the crystal is built up.

The superposition of the atomic densities and the corresponding potential is used to start up the self-

consistency iterations for the crystal. Cohesive energies are computed with respect to these atoms. The

atomic one-electron states are optionally used in the basis set for the crystal.

All data from DIRAC such as the atomic density, the coulomb potential and the orbitals are obtained in the

form of tables f(ri ), i=1,2,.. , giving the values of f(r) for a sequence of radial values. Other one-center

functions (see below) are represented in the same way, as radial tables, even if they could alternatively be

treated analytically.

The radial grid points ri  of a table constitute a logarithmic mesh: ri+1 /ri =constant. The grid-

characteristics, i.e. the number of points, the quotient-constant and the smallest value r1  are the same for all

one-center functions associated with a certain type of atoms. The radial meshes may be different for different

types of atoms.

basis

The program employs two types of basis functions (k ;r):

a) Bloch functions [Bloch 1928]. These are computed as linear combinations of localized functions (r)

(k ;r) = ∑
R

  eik ·R   (r R ) (1.5)

The phase factors eik ·R   in the summation over the direct lattice points R  assure that (k ;r) has the correct

translational symmetry (1.2). The localized functions (r) are one-center functions, centered on some atom

. They have the form

(r) = Zlm ( )  P(r  ) (1.6)

The subscript  signifies that the coordinates are relative to the position of atom . Zlm ( )  is a (real

valued) spherical harmonic (23.30) and P(r) is a radial function.

Two types of radial functions are used in the program. They are the radial parts of
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a1) Slater type orbitals (STOs): P(r)=rl+n e r .

a2) Numerical atomic orbitals (NAOs) from DIRAC.

b) Plane waves (PWs): (k ;r)=ei(k+K )·r . K  is a point of the reciprocal Bravais lattice. Plane waves are

used only for 3-dimensional crystals. In other systems the asymptotic behaviour away from the crystal is

unsuitable to describe bound electron states.

Note: although the use of a pure PW valence basis is possible (orthogonalized on the core states, as the case

might be, see below), such an application should be undertaken cautiously. All integrals are evaluated

numerically and no use is made of the analytical integrability of PWs. The integration scheme has not been

devised for rapidly oscillating functions and hence it will be less accurate for them, or, if the number of

integration points is accordingly increased, we are confronted with higher costs. A high-precision PW

calculation with large numbers of PWs may therefore be less efficient.

The cause of this is purely historical: BAND has been developed as an LCAO program; the PWs have been

included later and are (currently) treated in the same way as other functions.

frozen core

Some of the NAOs may be specified to be core states. These are not iteratively computed in the crystal SCF

procedure. Each (valence) basis function is orthogonalized on all core states by explicitly projecting out the

core functions.

integrals

Integrals in real space over the crystal unit cell, such as overlaps and hamiltonian matrix elements, are

evaluated numerically. The applied integration scheme is based on product Gauss formulas and a

partitioning of space in specific regions: atomic polyhedra ('cells'), inside each polyhedron an atomic 'core;

sphere, and the 'outer' region far away from the nuclei (not for 3D crystals). Any desired accuracy can be

achieved, but of course with a concomitant number of integration points [chapter III].

k      -      space

Integrations over the BZ, for instance to compute the density (1.3), are performed numerically, using the

analytic-quadratic method [Wiesenekker et al. 1988, Wiesenekker and Baerends 1990]. Any quantity F is

approximated as

F ≡ ∑
n

 ⌡⌠
BZ

  dk  Fn(k )  (eF en(k ) ) ≈ ∑
n

 ∑
k

  on(k )  Fn(k ) (1.7)

Fn(k )  is the contribution to F from the eigenstate n(k ;r) ; in case of the density for instance F= (r),

Fn(k ) = n(k ;r) 2 . The integration weights on(k )  may obviously be associated with occupation

numbers for the states n(k ;r) . Henceforth we will refer to them in this way, although the analytic-

quadratic method occasionally results in 'non-physical' negative occupation numbers.
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The analytic-quadratic method implicitly makes a piecewise quadratic expansion in the variable k  both of

Fn(k )  and of the energy function en(k ) . The occupation numbers are then determined such, that these

second order polynomials are integrated exactly. The method is accurate and converges quickly for all types

of systems: isolators, metals and semiconductors [Wiesenekker et al. 1988, Wiesenekker and Baerends

1990].

Poisson's equation

The coulomb potential VC(r)  due to the nuclear charges Z   and the electronic density (r) is defined in the

program as

VC(r)  = ⌡⌠  { (r') + ∑  Z  (r' r  )} r r'−1  dr' (1.8)

The tables from DIRAC give the coulomb potentials V (r)  due to the spherically symmetric atomic

densities (r) plus nuclei Z  . Defining the deformation density def(r) as the difference between the

crystal charge distribution and the superposition of atomic densities gives

VC(r)  = ∑  V (r)  + ⌡⌠  def(r') r r'−1  dr' (1.9)

The form in which def(r) is obtained precludes an analytical evaluation of the second term and the

singularity of the denumerator makes application of the normal numerical integration scheme unsuitable.

The problem is solved by a fitting procedure as introduced by Baerends et al. [1973]. A set of fit functions

fi(r)  is chosen such that a) the density def(r) can accurately be expanded in them and b) the corresponding

coulomb potentials f
c
i (r)  are easily evaluated. Then, with

f
c
i (r)  ≡ ⌡⌠  fi(r')  r r'−1  dr' (1.10)

def(r) ≈ ∑  ci  fi(r) (1.11)

the coulomb potential is approximated by

VC(r)  ≈  ∑  V (r)  + ∑  ci  f
c
i (r) (1.12)

The fit functions are derived from one-center 'atomic' functions (r)=Zlm ( ) P(r  ). This form allows an

easy evaluation of the corresponding potential functions c(r) (SS^coulomb potential) .
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The density is a symmetric function, invariant under all operators of the space group. The generating

functions (r) are therefore combined into symmetric functions f(r); these are the crystal fit functions. The

same combination coefficients yield the associated fit potentials fc(r)  from the potential functions c(r) .

2 I m p l  e m e n t a t i  o n 

We deal with the implementation on two levels. First we survey the flow of normal execution. We do this

from a conceptual point of view, neglecting details and simplifying matters for sake of clarity. This gives

insight in the organization of BAND and tells us globally what happens when and where.

In the second stage we look closer by giving attention to special aspects in a series of Software Sections

(SS^basis, SS^input, SS^files, etc). There we examine input specifications, usage of files, treatment of

symmetry, details of some algorithms and so on. Apart from being useful in itself as documentation, this

may be of aid in case of error-tracing and when modifications or extensions of BAND are contemplated. A

few suggestions for improvements of the existing code have been added.

s  u r v  e  y  

BAND consists conceptually of three parts. The heart is part two, the iterative SCF procedure to find the self-

consistent solution of the hamiltonian equations. Part one is the preparation for this: input reading,

geometry analysis, construction of the valence basis, etc.; it starts with subroutine INIT, where several

variables are initiated. In part three the results are analyzed and various properties are computed.

The global flow-chart at the beginning of this chapter lists the main routines (names in capitals) with a

summary of their purposes. The indentations reflect the hierarchical structure; for instance: INIT, GEMTRY

and PREPAR are called by the main program (BAND); GETINP in turn is called from INIT.

crystal functions

The primary goal of PREPAR is the preparation of various crystal functions (valence, fit, potential, density).

These functions are treated as purely numerical functions, whatever their origin; they are represented by the

values in the crystal integration points. These values are in most cases (the only exception being the PWs

in the valence basis) defined and computed as bloch sums: the contributions from the various cells are added

in a loop over the crystal lattice points.

As said before, all primitive one-center functions, whose contributions are to be added, are represented by

tables containing the radial values for a number of distances from their respective 'origins'. They are stored

on various files, together with the angular quantum numbers which define their angular dependency.
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The preparation of crystal functions thus consists roughly of two steps: a) generation of the radial tables

(DIRAC, SLTORB, FITRAD), b) interpolation from the tables to compute them in the crystal integration

points and bloch summation (ATMFNC, BASPNT, FITPNT).

bloch sums

Depending on the size of the unit cell and the dimensionality of the crystal, the loops over the cells (bloch

summations) may involve several thousands of terms and take a substantial time. To reduce the costs,

BAND attempts to limit these loops. For this purpose each involved radial function table is analyzed to find

out at which distance the function becomes negligible; the corresponding number of cells, different for each

function, is determined (CELMAX) and used in the bloch summation procedures.

As a preliminary the maximum extension of any radial function is determined (RADMAX); this is used to

set up an appropriate list of lattice points (cell coordinates: CELLS).

orthonormal function sets

The valence function set and the fit function set are both transformed to an orthonormal basis via

diagonalization of the overlap matrices (BASOVL, BASTRA, respectively FITOVL, FITTRA). This is

convenient in the subsequent employment: some computational procedures are simplified and memory

usage in the SCF procedure is alleviated substantially (the overlap matrices may be rather large).

Linear dependency is controlled by checking the eigenvalues of the overlap matrix.

symmetry and integration points

Symmetry plays an important role in reducing computational efforts (SS^symmetry). Furthermore the

crystal density and potential are explicitly symmetrized to preserve the symmetry of the hamiltonian

(symmetry breaking is prevented).

Some symmetry-analyzing routines (SYMCRY, ATMSET) are subordinate to the numerical integration

routine (POINTS) for the following reason:

POINTS is the master routine of an extensive and sophisticated numerical integration package for polyatomic

systems [chapter III]; input are the coordinates of the atoms and the lattice structure, plus specifications

concerning the required precision. In order to generate an integration scheme that reflects the symmetry of

the polyatomic system, the symmetry operators are determined and the atoms are organized in groups of

symmetry equivalent ones. This symmetry information, in fact only a by-product of POINTS, is

subsequently used in various parts of BAND.

In principle it is trivial to derive the point group operators in k-space from the space group operators: the

point group parts of the affine symmetry transformations are symmetry operators in k-space. However, in

an n-dimensional crystal k-space has only n dimensions, which may be lower than 3. Moreover BAND

optionally neglects dispersion in certain directions in k-space. In general the k-space operators are therefore

obtained by projection into the space with the appropriate dimensionality (SYMPRJ).

Inversion is a symmetry operator in k-space, regardless of the space group. So, if it is not yet present after

the 'projection' procedure, it must be added (SYMADD).
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workspace and vector length

FITSYM determines only the number of symmetric fit functions; this is used for appropriate dimensioning

of some arrays (BAND simulates dynamical allocation: SS^workspace).

The integration points are organized in blocks of points. All related data on files, such as the values of

various crystal functions in the points, are structured accordingly. The processing of these data thus takes

place in a loop over the blocks. The maximum number of points per block,    npx   , i.e. the block length, is

computed to organize work space in an optimal way (SS^workspace).

In comparison with the preparation part the SCF part has effectively more workspace available (in particular

thanks to the absence of various overlap matrices) to load in core e.g. the valence functions in a block of

integration points. Increasing the lengths of the blocks (REORGF) leads then to longer vector lengths in

vector operations, for instance in the evaluation of hamiltonian matrix elements by numerical integration.

This results in a substantial improvement of efficiency (depending on the machine).

multipole lattice sums

BAND solves the Poisson equation by a fitting procedure for the deformation density. The corresponding fit

potentials are lattice sums of functions that are asymptotically multipole potentials. Naturally these lattice

summations are split in a rapidly converging summation of exponentially decaying functions and the lattice

sum of point-multipole potentials. The first term is treated in the fit section (FITPNT) by a straightforward

loop over lattice points. The second term gives the familiar solid state problem of slowly (or even

conditionally) convergent lattice sums. VMULTI evaluates the pure multipole lattice sums (by an

unconventional algorithm: SS^coulomb potential); the data are stored on file    itvmul   , read again in FITPNT

and combined with the other term to the fit potentials.

Finally all fit data (function values and potential values) are stored on file to be used in the SCF procedure.

SCF

When all crystal functions have been prepared, the SCF procedure is started. The initial density and the

corresponding potential are given as the 'sum-of-overlapping-free-atoms'. Iteratively the following steps are

then executed:

a. numerical integration of the potential matrix elements; this is added to the fixed part of the hamiltonian

(kinetic energy). The hamiltonian matrices (one for each k-point) are diagonalized (EIGSYS).

b. analysis of the energy bands to determine the fermi energy and the occupation numbers for the one-

electron states (FERMI).

c. computation of the density matrix in the representation of the basis functions (P-matrix) (PMATRX).

d. construction of the charge density in the integration points from the P-matrix (RHOPMT).

e. expansion of the deformation density in the fit functions, for the solution of Poisson's equation

(RHOFIT).
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f. calculation of the new potential (RHOPOT) from the fit functions (coulomb potential) and the density

(XC potential).

SCFTST tests various conditions for the termination of the SCF procedure (convergence, insufficient time,

maximum number of iterations).

post-SCF

After the SCF procedure BAND computes various properties. This is organized in the master section

PRPRTS. PRPRTS calls subsequently

a. ENERGY to compute the bonding energy, partitioned in various terms, and the crystal total energy.

b. CHARGE to determine by numerical integration the charge distribution over the atoms.

c. DOS, for an analysis of the density of states (total and partial) and a Mulliken population analysis.

d. FORMFA to compute the X-ray structure factors (form factors).

S o  f  t  w  a r e   S e c  t  i  o  n s  

In the remainder of this chapter we focus attention on the implementation. Theoretical remarks and

derivations are included, but some acquaintance with the theory of solid state, quantum chemistry and

numerical mathematics is assumed. The treated subroutines and subjects are listed in the Software Reference

Lists A and B, after the last Software Section.

A program like BAND is apt to be used on several types of computers. Furthermore its size and complexity

make it probable that errors are hidden in it, even after extensive testing. We have adhered therefore to

standard FORTRAN77. The use of 'smart and dirty tricks' and of machine-dependent FORTRAN dialects may

let the program run faster, but it is heavily paid for in human time, when implementation on another

machine is on stage, or when bugs show up.

It is hardly avoidable however that the program be machine-dependent in some respects. The imperfection of

compilers, as regards the generation of the most efficient code, may lead in some cases to unreasonably bad

performance. Although this is in principle a matter of awaiting better compilers and 'not our business', it is

more practical to take measures. In particular we have done so with vectorizable loops. Consider

do 20 j=1,m-1 (2.1)

do 10 i=1,n

  10 a(i,j+1)=a(i,j)+b(i)

  20 continue

The inner loop should be executed in vector mode, but the compiler may not consider it vectorizable (e.g.

suspicion of recurrence) and generate scalar code. If it is vectorized, memory banking conflicts may occur

when the inner loop length n is very large.

To solve these problems we utilize a number of special subroutines for vector operations. The code above is

replaced by
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do 20 j=1,m–1 (2.2)

call vauvw(n,a(1,j),b,a(1,j+1))

  20 continue

Subroutine VAUVW (vector addition: u+v=w) adds two vectors and stores the result into a third. Similar

routines multiply, divide, perform triadic operations etcetera. The disadvantage is the overhead due to the

call; this is relatively small if n is large enough. The advantage is that the problems are transferred from a

very large number of similar pieces of code to a small number of simple routines.

The vectorization problem is solved automatically in this way: the simplicity of the routines implicates

already that any compiler will generate vector code for them. We might even comfortably use explicit vector

statements if the local FORTRAN dialect allows so, because the resettings to standard FORTRAN are few and

straightforward.

Memory banking conflicts are solved by splitting up vectors that are too long. A special constant    lveccp   ,

the maximum vector length for CP-operations, controls this; it is of course machine-dependent and should

be adapted to the situation.    lveccp    can be set via input, with the key cp vectors .

All explicit machine-dependency in BAND is controlled by a few similar constants; these are stored in

common block MACHIN.

BAND frequently tests the state of affairs during execution. Many of these tests are superfluous if the input

is sensible and the code is correct. The tests are there, because neither of these conditions is guaranteed. It

would not be the first time that a bug in the program, showing up in a new type of calculation, is noticed

and traced in this way. Warnings are issued if intermediate results are suspicious and in some cases BAND

stops, to avoid the waste of human time and computer resources.

We have attempted in several ways to make the program flexible and easy to use. In particular input is

largely optional, with reasonable default settings for all omitted specifications; input is governed by keys

(strings, usually single words). This is discussed in SS^input. In many other Software Sections the related

input options and the corresponding keys are mentioned. Keys will be typed outlined (integrat ion).
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3 B a s i  s 

The construction of the crystal basis functions is organized in BASORT. The generating one-center functions

, produced in DIRAC and/or SLTORB for the NAOs and STOs respectively are on file    itpsi    and the kinetic

energy functions −(∆ /2)  on    itkin   .

The plane waves ei(k+K )·r  in the basis are characterized by the lattice points K  of the reciprocal lattice.

BASORT calls PLANEW to generate these vectors from the input-specified number of stars    nwavst   

(SS^input). The resulting number of plane waves is    nvalwv   . The total number of valence basis functions for

each k-point is    nbas   .

g  e  n e  r a l  

BASPNT interpolates the one-center functions, computes their bloch sums and adds the plane waves to the

basis set. This is done for a number of k-points simultaneously (SS^workspace); after BASPNT the k-points

are processed one at a time.

BASOVL calculates and diagonalizes the overlap matrix of the basis { }. From the eigensystem the

transformation to an orthonormal basis is constructed. Let S  be the overlap matrix and {E, } the eigen

system: S=E E+ . Define the transformation matrix U as

Uij   = Eji    i
−1/2 (3.1)

The transformed functions '

i ' = ∑
j

  Uij  j (3.2)

are orthonormal:

〈 i ' j '〉 = 〈∑
k

  Uik k ∑
l

  Ujl  l 〉 = ∑
kl

  E
*
ki Elj  ( i j)

−1/2  Skl   =

= ∑
m

 (∑
k

 E
*
kiEkm)(∑

l

 EljE
*
lm)  m( i j)

−1/2 = im jm m( i j)
−1/2 = ij (3.3)

We used here that the eigenvectors of S  are orthonormal. BASTRA performs the transformation.

The final orthonormal valence basis and the transformed kinetic energy functions (−∆/2) ' are written to

(scratch) files    itbas0    and    itkbas   . These are used (and deleted again) in HAMFIX to construct the matrices T

and H0 . T is the kinetic energy matrix in the orthonormal basis; it is used to calculate the valence kinetic

energy of the crystal after completion of the SCF procedure (SS^energy).

H0 ≡T+∑V   is the fixed part of the hamiltonian, consisting of the sum-of-atoms coulomb potential and

the kinetic energy. In the SCF part this is combined with the iteratively computed XC potential and the
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coulomb potential of the deformation density. The H0 -matrix is written to file    ith0   , the kinetic energy

matrix T to    itdatm    .

HAMFIX copies also the valence function values from    itbas0    to    itbas   , where the data for all k-points are

accumulated for later use in the SCF part.

l  i  n e  a r  d e  p  e  n d e  n c  y  

The eigenvalues of the overlap matrix are used to check linear dependency of the valence basis. Strictly we

have dependency only if S  is singular, that is, if at least one of the eigenvalues is zero. Non-zero but very

small eigenvalues are already hazardous however. The corresponding eigenfunctions are linear combinations

of the original functions with large (and opposite) coefficients. Small numerical errors, for instance in the

kinetic energy of the primitive functions, are blown up and indeed we find in practice that the results

become unreliable.

Therefore BAND stops (in BASOVL) if the smallest eigenvalue is less than some criterium    scrval   .    scrval    is

input with the key scrval, basis  overlap or basis depend; (first and second) defaults are 10−4  and

10−5 .

The coefficients in all eigenvectors with small eigenvalues indicate which of the basis functions cause the

dependency problems. We have summarized this information in 'dependency coefficients', defined as

wi  = ∑
j

 scrval

j
  Eij  

2 (3.4)

The summation runs over all eigenvectors; j is the eigenvalue and Eij   is the coefficient of the i-th

function in the j-th eigenvector. The dependency coefficients are printed if they exceed a threshold. This

threshold depends on    iprntp   , the general print option for the preparation part.

f  r o  z  e  n  c  o  r e  

Some of the one-electron states computed in DIRAC may be specified to be core states (SS^input). Their

function tables are written to the files    itpsic    and  the kinetic energy functions to    itkinc   . Like the valence set

they are interpolated and combined in a bloch sum by BASPNT.

Core states are assumed to remain fixed when the atom is embedded in the crystal. A necessary, though not

sufficient condition is of course that core states of different atoms have no overlap; in particular they must

not extend into neighbouring (Wigner-Seitz) cells. Their bloch sum consists therefore effectively of only

one term for any evaluation point r. So they display no dispersion and the bloch 'sum' has to be constructed

only for the Γ-point k=0. This is the ideal situation. In practice however one may, e.g. for computational

reasons, wish to define larger core spaces, containing states that have non-negligible dispersion. To take

care of that the core is constructed for every k-point separately; the computational overhead is relatively

small because the bloch-sum for core states is obtained always in a very short loop over lattice points. Core
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dispersion may be neglected by specifying the input key no core dispersion. In that case the core bloch

sums are computed only once (for the Γ-point) and used for all k-points.

The overlap matrix of the core is computed (BASOVL) and the transformation performed to an orthonormal

set (BASTRA), in the same way as it is done for the valence basis. Ideally this is trivial: the overlap matrix

should be the unit matrix. It is useful however to check this: the numerical integration may be inaccurate

and, more importantly, some of the core functions may be too diffuse, thereby violating the implicit

assumptions about core states. The eigenvalues of the core-overlap matrix are compared with a criterium

scrcor    (input by key scrcor, core overlap or core depend; defaults are 0.98 and 0.90). BAND

terminates when the test reveals that the frozen core approximation is unjustified.

The core functions are kept frozen and they are not processed in the SCF procedure. The valence basis must

then be orthogonal on the core. This is achieved by explicitly projecting out the core components (before

the valence set is orthonormalized).

valence
i  ← 

valence
i  − ∑

j

  
core
j  〈 core

j  valence
i 〉 = 

valence
i  − ∑

j

  S ji  
core
j (3.5)

BASCOR computes the core-valence overlap matrix S  and orthogonalizes the valence on the core. The core

function values are stored on files    itcor    and    itkcor   . The functions are retrieved again from these files when

the valence basis is constructed; after the orthogonalization of the valence space on the core the core-files are

deleted.

v  a l  e  n c  e  -  c  o  r e   d e  p  e  n d e  n c  y  

The frozen core approximation introduces an additional linear dependency problem: the valence space and the

core space may have a vector (almost) in common. Analogous to the situation in the valence set itself this

must be checked as it may lead to the blowing up of numerical errors. (In fact we realized this problem in a

sequence of calculations on diamond; varying a double-  STO-basis we found an unexpected lowering of the

total energy by several eV for a particular valence set; indeed the valence basis contained effectively almost

the carbon 1s core orbital.)

BAND deals with this by computing for each k-point the maximum overlap between normalized vectors in

the core and valence space respectively. This is analyzed in BASOVL, where the transformation to an

orthonormal valence basis is to be computed.

The core basis has already been orthonormalized at that moment. A general core state, with normalization

condition, is then

fcore  = ∑ci 
core
i  (3.6a)

c† c  = 1 (3.6b)
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The valence basis is not (yet) orthonormal. Denote the valence overlap matrix by V ; a general valence

function with normalization is

fvalence  = ∑dj 
valence
j  (3.7a)

d† Vd = 1 (3.7b)

Let S  be the rectangular core-valence overlap matrix, computed in BASCOR, S ij  =〈 core
i  valence

j 〉. In
BASOVL the valence set has already been orthogonalized on the core, but the matrices V  and S  above refer to

the valence set before the core-orthogonalization; the core-orthogonalized functions are denoted valence  

and their overlap matrix W.

valence
i   = 

valence
i  − ∑

j

  S ji  
core
j (3.8)

W is the overlap matrix actually computed in BASOVL. The relation between V  and W is

V ij   = 〈 valence
i  valence

j 〉 = 〈 valence
i  +∑

k

  Ski 
core
k  valence

j  +∑
l

  S lj  
core
l 〉 =

= Wij   + ∑
kl

  S
*
ki Slj  δkl  = Wij   + (S† S)ij  (3.9)

where we used the orthonormality of the core set and orthogonality of v   on all core functions. The

overlap between a general core and valence function is

O ≡ 〈∑ci 
core
i ∑dj 

valence
j 〉 ≡ c† Sd (3.10)

O is a complex number. We maximize therefore the real scalar OO* under variation of the coefficients c and

d. The normalization conditions are incorporated with Lagrange multipliers. Define

F = OO* − c† c  − d† Vd = c† Sdd† S† c − c† c  − d† Vd (3.11)

From the variational equations we derive

F

c†
  = 0  ⇒  SdO* − c = 0  ⇒  c = 

O*
  Sd (3.12)

F

d†
  = 0  ⇒  OS† c − Vd = 0  ⇒  S† Sd = 

OO*
  Vd (3.13)

Multiplication from the left by V−1/2  gives

(V−1/2 S† SV−1/2 )(V+1/2 d) = V−1/2  OO*
  V+1/2 (V+1/2d)   ⇒  Gd' = d' (3.14)
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with

G = V−1/2 S† SV−1/2            = 
OO*

           d' = V+1/2 d (3.15)

(3.14) is an eigenvalue equation for the hermitian matrix G. Combining (3.10) and (3.12) gives

O ≡ c† Sd = c† c  
O*

   ⇒  = OO* (3.16)

Similarly

O ≡ c† Sd =  
O

 d'†S†   Sd = 
O

  d† V−1/2 S† SV−1/2 d' = 
O

   d'† d'  ⇒  = (3.17)

So that (= = )=OO*. The maximum overlap between core and valence can then be defined as (  max )1/2

.

implementation

In BASCOR, where the original valence set is orthogonalized on the (orthonormal) core, the matrix (S† S) is

computed from the core-valence overlap matrix S . The variables in the program are    sdagsr    and    sdagsi    for the

real and imaginary parts respectively

This is added in BASOVL to W (   ovlre   ,    ovlim    ), the overlap matrix of the valence set that has been

orthogonalized on the core: V=W+(S† S). V  is then diagonalized to construct V−1/2  from its eigensystem:

V  = U U†   ⇒  V−1/2  = U −1/2 U† (3.18)

Next we obtain G by the similarity transformation (3.15) (routine SIMTRF). Finally G is diagonalized to

find the maximum eigenvalue max . ≡(1−√ max ) is used as the measure for the core-valence dependency.

(This is analogous to the smallest eigenvalue of the overlap matrix of a set of functions.)  is compared

with the criterium    scrcv    (input by key scrcv or core-valence; defaults 10−4 , 10−5 ).

Like in the analysis of the valence basis itself, dependency coefficients are computed (3.4), which tell us

which valence functions are dominant in the overlap with the core space. If the valence and core are found to

be dependent the program stops (in BASOVL) and prints the dependency coefficients.

t  h e   S  t  a b  l  e   S  t  a t  e   A  p  p  r o  a c  h  (  S  S  A  )  

The Stable State Approach (SSA) is a proposal for (future) improvement of accuracy and efficiency of the

SCF procedure. Conceptually it resembles the frozen core approximation; it is based on the following

consideration: the convergence of the one-particle eigenstates n(k ;r) towards the final self consistent

solution will in general be quite different for the various states. It is well conceivable that some states attain

rapidly their final form while others converge slowly. If we keep track of the developments and remove
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from the valence basis the states that do not change anymore, the efficiency is enhanced in the remaining

cycles: less data to keep on file, fewer matrix elements to compute, etcetera.

This is (partially) counterbalanced by the necessary transformation of the basis to single out the stable

states. Analogous to the frozen core treatment the new function basis must be orthogonal to the fixed

states. The transformation overhead scales as the basis size squared and may therefore be appreciable.

Possibly a net gain results only if several stable states are removed at a time; such 'details' should of course

be incorporated in a thoughtful implementation.

It may be noted here, as a side remark, that the reduction of the function space may not come only (or not

even predominantly) from finding stable occupied states, but also from the detection and removal of stable

virtual states.

basic set-up

The eigenstates are expressed in the basis functions: i =∑cij  j . A state i is stable if its coefficient

vector {cij  }j  and the number of electrons in it, the occupation number ni  are constant within some

tolerance. This is easily checked if we have the coefficient matrices and occupation numbers on file for the

last few cycles.

In this formulation some of the possibilities of the SSA may be missed. Two examples:

1) suppose 1 and 2 are two degenerate occupied states with, of course, equal occupation numbers.

Obviously any orthogonal transformation of { 1 , 2 } yields the same physical situation. So, if we have a

stable space, spanned by 1 and 2 , we may not detect it when the computed eigenvectors rotate

arbitrarily around from one cycle to another.

2) suppose 1 .. N are (non-degenerate) virtual states and at the next cycles we find N virtual states

spanned by the same functions. We can then remove these functions as they are apparently irrelevant for the

crystal electrons; the individual virtual eigenstates need not be stable for this, only the space spanned by

them.

Both these cases are detected if we do not examine the individual eigenstates but the P-matrices (density

matrices). Denote by Pn  the P-matrix in the n-th cycle and choose as its representation not the employed

basis functions but the eigenstates of cycle n0 . Pn0  is then diagonal and the diagonal elements are the

occupation numbers. A state i is stable and can be singled out if at the following cycles the

corresponding diagonal element Pii   remains the same and its off-diagonal elements Pij  , j≠i, are zero.

The criterium for stability has to be determined by experimentation. It must scale somehow with the

mixing parameter    parmix    employed in the iterative update of the crystal potential (SS^iteration).

the SSA and the frozen core

The frozen core approximation has some fundamental problems. In the first place the core states may not be

strictly orthonormal. Whereas they are explicitly orthonormalized in order to facilitate the projecting out of
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the core components from the valence basis, the corresponding energy term is not evaluated and implicates

thus an unknown error in the computed energy. The tests on the eigenvalues of the overlap matrix, as

discussed above, is only a very rough safety guard against extreme cases.

In the second place the relaxation of the crystal potential, especially its change near the nuclei means that

even if the core states were orthonormal from the start, they may not be eigenstates of the final crystal

hamiltonian. This has consequences both for the energy of the core space and for the valence states. This

aspect has usually no severe consequences but nevertheless it is unsatisfactory.

The SSA alleviates this problem because we may include (part of) the core in the valence basis. The

corresponding crystal eigenstates will soon be converged (if the frozen core assumption is reasonable) so

that they have to be processed only during a few cycles. In principle we could thus discard the frozen core

idea altogether in the SSA, but in some situations (heavy atoms, many k-points) the enlarged basis size and

the resulting amount of data on file may be problematic, even if it would be for only two or three cycles.

(Data storage can and should be reduced however by a more sophisticated treatment of symmetry than it is

currently being done in BAND (SS^symmetry)).

4 B Z -  i  n t e g r a t i  o n 

Two types of integrals over the Brillouin Zone occur: the 'volume' integral and the 'surface' integral,

respectively

J(E) = ∑
n

 ⌡⌠  fn(k )  (E en(k ) ) dk (4.1a)

I(E) = ∑
n

 ⌡⌠  fn(k )  (E en(k ) ) dk  = ∑
n

 ⌡⌠
en(k )=E

  
fn(k )

∇en(k )  dS (4.1b)

en(k )  is the dispersion relation of the n-th energy band and fn(k )  is the contribution to the integral from

the one-electron state n(k ;r) . The results depend on the energy parameter E. The surface and volume

integral are related by I(E)=dJ(E)/dE.

Example: the electronic charge density (r) is given by the volume integral

(r) = ∑
n

 ⌡⌠   n(k ;r) 2  (eF en(k ) ) dk (4.2)

eF  is the fermi energy.

As discussed in SS^symmetry the integrations can effectively be restricted to integrals over the symmetry

unique region in k-space, the irreducible wedge of the BZ; we will take this for granted here.
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The eigensystems (en(k ) , n(k ;r) , and hence any derived quantities fn(k ) ) are computed in discrete points

of the BZ. The integrals (4.1a) and (4.1b) are thus evaluated numerically. The presence of the - and

-functions in (4.1) makes 'normal' methods of numerical integration, such as Gauss-Legendre, unsuitable.

BAND employs the (repeated) analytic quadratic procedure [Wiesenekker et al. 1988, Wiesenekker and

Baerends 1990]: the (irreducible wedge of the) BZ is first written as a conjunction of (large) basic simplices;

these are further partitioned into smaller simplices. In each (small) simplex en(k )  and fn(k )  are both

approximated by a quadratic form; the resulting quadratic integrals are evaluated exactly (analytically).

The precision in the total accumulated integral can be increased by using a finer partitioning of the BZ.

Whereas the presence of the - and -function makes the integrals (4.1) a little complicated, en(k )  and

fn(k )  themselves are smooth. The piecewise quadratic approximations converge therefore rapidly with the

partitioning (compare the commonly used repeated Simpson integration for 1D line integrals). Since the

sub integrals, employing the quadratic forms, are calculated exactly, the total integral approximation is

expected to be accurate and quickly converging. This is borne out in practice.

For the construction of the quadratic approximations in a given simplex we need the function values of

en(k )  and fn(k )  in sufficiently many points to solve the defining linear systems of equations. It is

convenient is to use the vertices and the midpoints of the edges of the simplex.

Even without a further partitioning this implies already several k-points for each basic simplex. BAND

optionally uses fewer points, but of course a quadratic approximation is not possible then.

The integration accuracy is determined by the parameter    kinteg   .     Kinteg    is the number of sample points on

any edge of a (large) basic simplex.     Kinteg   =1 implicates the use of only the Γ-point k=0; the numerical

integral over the BZ is then reduced to a single term; we may call this the zero-th order approximation.

Kinteg   =2 leads to first order (=linear) approximations: the basic simplices that span the irreducible wedge of

the BZ are generated; the only integration points are the vertices of these simplices, the midpoints of the

edges are not involved. A linear approximation of the functions is then feasible and the ensuing integrals are

evaluated analytically.

Kinteg   =3 is the lowest setting that allows a quadratic approximation; the basic simplices are used directly,

i.e. no further partitioning takes place. With    kinteg   =5 every edge of a basic simplex is bisectioned, yielding

two intervals with 3 points each (one point is shared). Each basic simplex is then divided into 2n  smaller

simplices, in each of which the quadratic method is applied (n is the dimensionality of the BZ). Similarly

with    kinteg   =7 we get 3n  smaller simplices and so on.

When    kinteg    is chosen even (4,6,..) it is not possible to have a partitioning of non-overlapping intervals

such that each has 3 points; one remains with only two points so that in some part of the BZ we have to

resort to the linear approximation. In such a case the linear method is applied throughout: all edges are

partitioned into intervals with two points only. This is the approach of the commonly employed 'linear

tetrahedron method' [Lehman and Andersen 1972], which is by far inferior in performance to the quadratic
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one [Wiesenekker et al. 1988, Wiesenekker and Baerends 1990] . For higher integration accuracies

(   kinteg   ≥3) one should therefore stick to odd values.

Kinteg    is input; key: k  in teg , k space, or BZ; first and second defaults: 3, 5. A (non-fatal) warning

message is issued by the program when K is chosen even.

d a t  a  s  t  r u c  t  u r e  

KPNT generates the data structure needed for the BZ integration: a list of    kt    k-points    xyzkpt   (3,   kt   ) and a list

of    nsimpl    simplices, represented as a pointer set    ksimpl   (   nvertk   ,   nsimpl   ).     Nvertk    is the number of points

associated with each simplex; this depends on the type of approximation and on the dimensionality; in two

dimensions for instance    nvertk    is 3 for the linear approximation (vertices only) and 6 for the quadratic

approximation (with the midpoints).

The values    ksimpl   (i,j),i=1..nvertk indicate which points in the list    xyzkpt   () belong to the j-th simplex.

The generated simplices span precisely an irreducible wedge of the BZ. Some of the k-points may

nevertheless be symmetry equivalent, e.g. by a Bravais translation of the reciprocal lattice. KPNTEQ, called

from KPNT, checks the symmetry relations and generates a list of equivalence indices    kequiv   (   kt   ).     Kequiv   (k0
) is the index of a point equivalent to point k0 . For all k:    kequiv   (k)≤k; the symmetry unique points have

kequiv   (k)=k. Only in these points the hamiltonian equation is solved. The other points serve to describe the

simplices and to generate the (linear or quadratic) function approximations. The total number of symmetry

unique k-points is    kuniqu   .

The data arrays    xyzkpt   ,    ksimpl    and    kequiv    are stored on file    itbz   ; the scalar variables    kt   ,    kuniqu   ,    nsimpl    and

nvertk    are in common FIXDAT.

s  i  m  p  l  i  c  e  s   a n d  p  o  i  n t  s  

The dimensionality of the BZ is    ndimk    and the primitive k-space lattice vectors are stored in the left-upper

ndimk   ×   ndimk    part of array    bvec   (3,3).

ndimk=0

This trivial case implies the zero-th order approximation: only the Γ-point, one 'simplex', one point per

simplex (   nvertk   =1).

ndimk=1

As inversion is always a k-space symmetry operator, the irreducible wedge is the interval (0, 
1
2     bvec   (1,1)).

This is also the basic simplex. Depending on    kinteg    exceeding 3, the interval is partitioned to obtain

smaller simplices.

The partitioning of a simplex in smaller ones is (for any dimensionality) performed by SIMPLS. SIMPLS

delivers both the pointer structure    ksimpl   () and the list of points    xyzkpt   (). In case of more than one basic
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simplex (in two or three dimensional regions, see below) SIMPLS is called for each of them. SIMPLS

updates the data arrays at every call, merging the data resulting from the current basic simplex with the

existing structure.

ndimk=2

LATTPT generates a few stars of lattice points (in k-space) around the origin. The bisecting 'planes' (lines)

halfway them define the Wigner-Seitz BZ as the polygon inside these lines. POLYGN removes the redundant

lines to retain only the sides of the polygon. POLYG1 computes then the vertices of the polygon and

PLGIRR calculates the vertices of the irreducible wedge (a polygon again). The basic simplices are now the

triangles spanned by the origin and the edges of the irreducible polygon. For each of these SIMPLS is called

for further partitioning into smaller triangles.

ndimk=3

LATTPT gives again the surrounding lattice points; the planes halfway them define the Wigner-Seitz

polyhedron. POLYHE removes the redundant planes and computes also the vertices of the polygonal faces of

the polyhedron. The symmetry unique faces are subsequently rotated to the xy-plane (PYRROT), reduced to

the irreducible part (PLGIRR) and then back rotated again to the original frame. The basic simplices are

defined by the origin and the triangles that span the irreducible polygons on the faces. SIMPLS may further

partition them.

The geometric routines POLYGN, PLGIRR, POLYHE and SIMPLS are discussed in SS^geometry.

Since SIMPLS only delivers the (   ndimk   +1) vertices of the small simplices we have to add the midpoints of

the edges later (for the quadratic approximation). This is done in KPNT after the generation of all simplices.

The pointer array    ksimpl   () is updated with pointers to the midpoints.

i  n t  e  g  r a t  i  o  n 

The BZ integrals are evaluated numerically. The fixed set of integration points    xyzkpt   () is stored on file

itbz   . The weights on(k ) , that is, the occupation numbers for the one-electron states n(k ;r) are computed

by OCCUPA from the energy bands en(k )  and an energy parameter E (4.1).

During the SCF procedure we need only one specific integral over the BZ: the charge density

(r) = ∑
nk

  on(k )   n(k ;r) 2 (4.3)

The constraint that the density contain the number of electrons    qelec   ,

∑
nk

  on(k )  = qelec (4.4)

defines the fermi energy eF (the energy parameter E in (4.1a)) .
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FERMIE repeatedly calls OCCUPA with trial values for the fermi energy until condition (4.4) is satisfied.

The resulting occupation numbers are then passed back to the master routine FERMI, which calls OCCSTA.

OCCSTA writes them to file, together with the corresponding eigenstates for further processing later.

Since the energy bands en(k )  change as the SCF iterations proceed the fermi energy and the occupation

numbers may also vary; they are computed anew at every cycle.

OCCUPA sets up a loop over the (small) simplices in which the irreducible BZ has been partitioned and calls

OCCUPS for each of them, to obtain the occupation numbers for that simplex. OCCUPS discriminates

several cases: in the first place whether a surface or a volume integral is requested, in the second place the

order of the interpolation (linear or quadratic) and finally the dimensionality    ndimk    of the BZ.

linear approximation   

The algorithm is discussed in detail by Wiesenekker et al. [1988]. The formulas have been implemented in

BZINTL.

quadratic approximation   

The 1D case is more or less obvious (routines VIQD1 and VJQD1 for surface and volume integration

respectively). For the 2D case we refer to Wiesenekker et al. [1988], where all technical aspects are

explained. The formulas have been implemented in QUAD2 and a few auxiliary routines. The 3D case finally

is fairly complicated [Wiesenekker and Baerends 1990]. Implementation (QUAD3) is on its way. A

satisfactory alternative, currently applied in BAND, is the hybrid-quadratic method: routine HYBRID.

hybrid-quadratic approximation   

As discussed by Wiesenekker et al. [1988] we need for the quadratic method the integrals

Vh(E)  = ⌡⌠
simplex

  h(k ) (E en(k ) ) dk (4.5)

where the functions h(k ) are all monomials up to second order (and similarly for the surface integrals with

the -function replaced by the -function, c.f. (4.1a) and (4.1b)). The occupation numbers are computed from

the monomial integrals Vh  as fixed linear combinations of them. The fundamental problem is therefore to

compute the integrals Vh .

In the hybrid method we construct first explicitly the quadratic approximation of the energy dispersion en(k ) 

in a particular simplex (one of the small simplices in which the BZ has been divided): equad(k )  say. This

simplex is then partitioned in still smaller simplices (using the same algorithm as in SIMPLS. For each of

these sub-simplices the energy values en(k )  in the vertices are computed from the analytical form equad(k ) 

and used to calculate the monomial integrals with the linear interpolation method (BZINTL). The

contributions from all small sub-simplices are added and yield finally the required monomial integrals over

the original simplex.
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The hybrid method is essentially a two step proces: first a quadratic approximation is made. This is then

further approximated by a piecewise linear form. Obviously the precision of the result depends on the hybrid

partitioning. The number of additional hybrid partition steps is    kmesh   . This is input by the key kmesh;

first and second defaults are    kmesh   =2 and    kmesh   =3. Thusfar we have never encountered a system where the

values 2 and 3 (or higher) resulted in significantly different results. Apparently the first default value is

adequate.

remark

The hybrid method is often used in a different form by integrating only the monomials up to order 1

(instead of 2) over the sub simplices [MacDonald et al. 1979]. The compounded integrals over the large

simplex are then used to compute the occupation numbers, but for lack of information, these correspond of

course to an approximation of the property function f(k ) to first order only. If we assume that the hybrid

partitioning is pushed to its limit, then our form approaches the analytic quadratic results, while the

simplified form is equivalent to the linear-quadratic approximation: linear approximation of f(k ) and

quadratic approximation of en(k ) ; as demonstrated by Wiesenekker et al. [1988] this gives results that are

by far inferior to the fully quadratic approximation.

temperature   

BAND attempts to determine the occupation numbers in accordance with a finite temperature (the fermi-dirac

distribution). In routine FERMIE, where the fermi energy and the occupation numbers are determined, we

have to call OCCUPA therefore with a (small) array of energy values instead of only the (trial) fermi energy.

The energy values are distributed around the trial fermi energy and the resulting sets of occupation numbers,

one set for each of the energies, are combined; this amounts to a numerical integration of the fermi-dirac

distribution. See SS^temperature for a more detailed account.

efficiency

The determination of the fermi energy (FERMIE) at every cycle of the SCF procedure could be rather time

consuming (especially in 3D crystals) due to the following inefficiency. For each trial fermi energy all

bands might be analysed, piecewise-quadratically fitted etcetera to determine the occupation numbers. In

general however the majority of the bands are either completely occupied or empty. The occupation

numbers for such bands do not depend on their energy functions en(k ) . It is therefore unnecessary to

compute them again and again. This aspect is taken care of as follows

a) the fixed set of occupation numbers for all k-points in a completely occupied band are determined at the

start of the SCF procedure and stored in a separate array.

b) at every cycle, when the fermi energy and the occupation numbers are to be determined, the energy range

of every band is computed first. For each trial energy it is then quickly surveyed which bands are empty,

fully occupied or to be analyzed in more detail. The determination of the band widths occurs in routine

EMNMXB, with three auxiliary routines EMNMX1, 2 and -3 (for 1-, 2- and 3D crystals). The same

piecewise quadratic approximations for the energy bands are applied in fact by EMNMXB, but this is

done only once (per cycle), not for every trial (fermi-)energy.
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In one case (at least) the occupation numbers are zero for some specific k-points, even if the band is not

empty. This known special case occurs for the quadratic integration in a 2D crystal. Each fully occupied

simplex has zero occupations for the vertices (and occupations 1/3 for the mid-points of the edges). This is

an accidental effect of the integration scheme [Nooijen et al. 1990, Wiesenekker et al. 1988]. We do not

know whether there are more of such special cases.

Suppose now that for all bands the occupation numbers are zero in a particular k-point. If this remains so

during the whole calculation it must be possible to avoid most of the computational effort associated with

that k-point, such as the evaluation of matrix elements and so on.

Thusfar we have not worked out how to proceed with this possibility. As a preliminary for future work on

this we have implemented an array    kzero   (kt) in SCF, which is passed on to several sub-ordinated routines.

kzero    stores for each k-point whether (and in how many subsequent cycles) the occupation numbers are zero

for all bands. Output messages are issued whenever such k-points are found.

5 C h a r g e  d e n s i  t y 

e v  a l  u a t  i  o  n 

The solution of the hamiltonian equation in each k-point yields (EIGSYS) the one-electron eigenstates as

linear combinations of the basis functions

n(k ;r) = ∑
j

  cnj(k )  j(k ;r) (5.1)

The analysis of the energy bands en(k )  gives (FERMIE) the occupation numbers on(k ) . There are then two

ways to compute the charge density in the crystal integration points.

1. From the eigenstates:

(r) = ∑
nk

  on(k )  n(k ;r) (5.2)

n(k ;r) is the crystal orbital density

n(k ;r) = |∑
j

  cnj(k )  j(k ;r) |2 (5.3)

With    kt    k-points,    nbas    basis functions and    nband    occupied states the amount of work per integration point

is proportional to    kt   ×   nband   ×   nbas   .

2. From the density matrices. First we construct the P-matrix (PMATRX) in each k-point.
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P
k
ij   = ∑

n=1

nband

 ∑
ij

  c
*
ni(k )  cnj(k ) (5.4)

Since Pk   is hermitian we have to store and process only the upper triangle; define

P
k
ij   = 2 P

k
ij        i<j

(5.5)

P
k
ii   = P

k
ii  

This gives

(r) = ∑
k

 ∑
i≤j

  Re [Pk
ij   

*
i (k ;r) j(k ;r) ] (5.6)

The amount of work per integration point is proportional to    kt   ×   nbas   ×(   nbas   +1)/2.

The construction of the P-matrices themselves can be neglected as they do not depend on the integration

points.

Depending on the number of occupied bands and the number of basis functions one or the other method is

more efficient. The break-even point may be expected to occur for    nband   ≈   nbas   /2, but of course it is also

determined by details of the computational procedures, in particular by the types of (vector) operations

involved and hence it may even be machine dependent.

In big calculations the evaluation of the charge density is a major part of the SCF procedure and it is crucial

to pick the most efficient method. Both ways have been implemented; RHOPSI uses the eigenstates,

RHOPMT employs the density matrices. The times used for them are measured and stored in an array

rhotim    (2). The values are compared by SCF to make its choice.

Rhotim     is initiated at zero for both and either of the two is used at the first cycle; its timing is then

updated. At the next cycle the other method is applied because it has still zero time-measurement and

appears therefore more efficient. At the third cycle a sensible decision can be made.

remarks

1. The execution times may change somewhat from cycle to cycle, for instance as a consequence of

varying circumstances in the computer during the run. Future developments of BAND (see e.g. SS^basis:

the SSA) may also induce variations in the cycle-times. To keep the decision procedure flexible, SCF

reduces by a small amount at each cycle the stored time-measurement of the not-used alternative.

Eventually this will cause it to appear more efficient than its rival, so that it is applied and clocked

again.

The disadvantage that the less efficient procedure is used from time to time is relatively small because

the artificial reduction of the stored timing is small (5% per cycle).
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2. As discussed in SS ŜCF-linearization the charge density is at some cycles evaluated as a linear

combination of previous densities. This is then a completely different situation of course and the

timings of the exact evaluations via RHOPSI and RHOPMT are not updated.

The approximate evaluation does not depend on the choice discussed above: the expansion coefficients

are determined by comparing the density matrices Pk  , k=1..   kt    with those of previous cycles (so these

matrices have to be computed anyway). The corresponding density functions are on file    itrstr    and have

only to be combined (see SS^charge density). This could be done in either routine, RHOPSI or RHOPMT.

After the exact evaluation however the data on    itrstr    have to be updated. The required additional lines of

code have therefore been implemented in both routines. On general principles SCF chooses between the

two routines also in the approximation case. The array    rhotim     has thus four elements instead of two:

rhotim    (2,2).

a n a l  y  s  i  s  

The file with integration points,    itpnt   , contains for each point the index of the atom nearest to that point:

abs(   idatom    ()); positive and negative values of    idatom     indicate whether the point is inside the atomic sphere

or in the interstitial region. Routine CHARGE, called from the properties section PRPRTS, applies this

information to calculate the distribution of the final self-consistent density over the atoms. This is done

both for the initial sum-of-atoms charge and for the deformation density. The data are presented separately

for the densities inside and outside the atomic spheres. In spin-polarized calculations the analysis is

performed for each spin.

The file    itdatm     contains the sum-of-atoms total density and valence density in all integration points; the

crystal valence density is on    itrho   .

The computed spin and charge polarizations may be compared with the Mulliken populations calculated in

POPANA. Often the agreement is poor. The discrepancies may be attributed to the arbitrariness in both

methods. In the Mulliken analysis the choice of basis functions influences the outcome, whereas in the

numerical integration employed by CHARGE, one may doubt the association of points with the atoms

nearest by: heavy atoms might for instance be attributed more space around them than hydrogen.

Any criterium related to the distances and e.g. the nuclear charges might be used and is easily implemented.

The index numbers    idatom    () are determined in RPNTID; adaptations of the algorithm should be

straightforward.

further developments

The analysis in CHARGE is very global and one would like to have more detailed information. An important

possibility is to generate plots of the density. This would be an interesting extension of BAND, because

such pictures provide a direct and instructive survey of the charge distribution; they are frequently published

and discussed in the literature. A relatively simple and efficient way to compute the desired values in some

plot-grid is via the fit functions. The fit set is usually fairly accurate, but naturally the principal

disadvantage remains that it is not exact and some particular features of the distribution may be missed in

this way.
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A general drawback of density plots is that the information is only two-dimensional. A three-dimensional

numerical analysis is useful as support and may also be valuable in itself. We may for instance expand the

density inside the atomic spheres in spherical harmonics. The numerical integration grid is well suited for

this: for a sequence of radial distances an angular integration mesh is present. The maximum possible

angular momentum value for the expansion depends on this mesh, varies with the radial value, but is

usually substantially higher than the values occurring in the fit set. The total density as well as the

deformation charge can then be described in detail. The data may be used to generate one-dimensional radial

plots of the densities for each (lm )-component separately.

6 C o n t r o l  

BAND contains a general control mechanism, which we will refer to as the controller. The purpose of it is

twofold. In the first place many tasks performed by the program are relatively independent. The controller

may be used to manipulate the execution of various operations, e.g. via instructions on the input file. This

will especially be useful when, in the future, restart possibilities are incorporated in a general way.

For instance we may have obtained the self consistent solution of some system and wish to know in what

respects the outcome is influenced when plane waves are added to the valence basis, what happens when the

temperature is increased, whether a spin-unrestricted calculation would make some difference, or we may be

interested in a few particular partial densities of states that have not been computed in the original run. In

all such cases we do not want to duplicate work. The controller should take care of that when supplied with

the appropriate data on file and a few instructions.

In the second place the control mechanism may be of some help to uncover and analyze errors, by checking

relevant data and printing information when a problem is detected.

Many of the data related to the control structure are stored in the common blocks CNTRLC (character-type

data) and CNTRLV (other variables). The controller in its present form is only a first, rather primitive

structure which might be embedded in a more sophisticated set-up.

A summary of the current implementation:

# The execution of all major subroutines and sections in BAND is enclosed between calls to two special

routines, START and ENDOF.



Control 32

call start('calc',iopt,execut)

if (execut) then

  ..

call calc(....) (6.1)

..

call endof('calc',jopt)

endif

START determines whether CALC is to be executed. The decision is output in the logical    execut   . If

execut    is true the name 'calc' is added by START to an 'execution stack', the list of names    exstck   ().

Routine ENDOF removes 'calc' again from the stack and checks whether the run should be stopped at

this point.

    Execut    is computed in START by calling SKIP('calc'). The logical function SKIP compares its argument

with a list of sections to be skipped,    skplst   (). The skip-list is empty at the start-up of the program;

entries can be added via input, with the key sk ip  (see SS^input).

ENDOF compares its first argument with the character variable    exlast    in common CNTRLC, which stores

the name of the last section or routine to be executed; if they are equal ENDOF calls STOPIT to terminate

the run. By default    exlast    equals 'band', implying that the whole program is to be executed. Via input,

with the key execute (SS^input), another last-to-be-executed routine or section may be specified.

Another variable,    exfrst   , states with what section the program should start. As no restart possibilities

have yet been implemented this variable can effectively not be used and must have the default value

'band'.

The admissible arguments for the input commands sk ip  and execute must be names that are

recognized by the controller: they must correspond to the arguments of START and ENDOF as

implemented in the program. See SS^input for more comments on these keys.

The integer option-arguments of START and ENDOF,    iopt    and    jopt    in example (6.1) above, specify

additional actions to be undertaken by these routines. Currently this aspect is hardly used. START

optionally (   iopt   =1) copies the name of the section to the day-file. This provides information as to in

which stage the calculation is at a certain moment. ENDOF optionally calls the timing routine SECTIM.

(SECTIM keeps track of how many times a certain section is executed and the amount of CP-time used

there (i.e. the time lapse since the previous call of SECTIM). The data structure of SECTIM is initialized

by ITIMER (called from INIT) and all information is output by TSTAT, called from STOPIT).

# STOPIT is the routine which terminates the program after executing a few final tasks. STOPIT is called

whenever a fatal problem is detected in some way, and also when the controller decides (ENDOF) that the

calculation has to be finished. STOPIT outputs

- the state of affairs in the file manager: the files currently in use by BAND, the pointer structure that

defines the relation between the files and the amount of data on them (SS^files),
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- the situation in the workspace manager: the currently allocated arrays and the markers around them

(SS^workspace),

- the contents of several common blocks; the variables stored in them represent important aspects of

the calculation and may give a clue to the cause of some problems,

- the execution stack, telling us in what stage of execution the calculation was terminated.

Since STOPIT calls other subroutines, in particular those of the file manager, which may themselves

call STOPIT in case of errors, we have a potential recurrency. The ensuing problems are circumvented

with a variable    istop    in common CNTRLV.    Istop    is set to zero in INIT. The first actions in STOPIT are

if (istop.ne.0) stop'recurrency' (6.2)

istop = istop + 1

This assures that (infinite) recurrency loops are cut short.

# A few important aspects of BAND's control mechanisms have been organized in specific structures that

are discussed in other sections. These are

- the use of files: SS^files.

- the utilization of work space: SS^workspace.

7 C o u l  o m b  p o t e n t i  a l   a n d  l  a t t i  c e  s u m s 

The charge density in the crystal is given by a sum over occupied orbitals, expressed in basis functions :

 = ∑
i

  ni  i 2  = ∑
ij

  Pij   
*
i j (7.1)

ni  are occupation numbers and the sum includes integration over the Brillouin Zone. Pij   is the density

matrix in the representation of the basis functions. The coulomb potential is

V(r) = ⌡⌠  (r') r r'−1  dr' = ∑
ij

   Pij  ⌡⌠  
*
i (r') j(r') r r'−1  dr' (7.2)

The basis functions are (mostly) one-center functions: numerical orbitals from the free atom subprogram

and/or Slater type orbitals. The integrals in the r.h.s. of (7.2) are hard to evaluate when i and j are located

on different atoms. Therefore a set of fit functions fi  is introduced such that a) the true density is accurately

approximated by a linear combination of them and b) their coulomb potentials f
c
i   can be computed.

The crystal density is split in the superposition of atomic densities and the deformation density

cry = ∑   + def (7.3)
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with coulomb potential  (including the contribution from the nuclei)

V  = ∑  V   + Vdef (7.4)

The atomic functions  and V   are produced in tabular form by DIRAC and interpolated in ATMFNC to

obtain their values in the crystal integration points. The fit functions are used for the deformation part of

the density

def ≈ ∑
i

  ci  fi (7.5a)

Vdef  ≈ ∑
i

  ci  f
c
i  (7.5b)

The coefficients ci  are the least squares solution of (7.5a) with the constraint that the fitted density contain

zero charge. Neglect of this condition, though leading to a more accurate description of the density,

generates a potential corresponding to an incorrect amount of charge. The resulting error in the potential is

much larger than the gain from the better density approximation.

The crystal fit functions constitute an orthonormal set (see below). The constraint is applied by the

Lagrange multiplier technique. Define

vi  = ⌡⌠  def fi  dr (7.6a)

ni  = ⌡⌠  fi  dr (7.6b)

vi  would be the fit coefficient in absence of the constraint; ni  is the charge content of the fit function. The

coefficients ci  are obtained from the usual variational equation, with ∑ci ni =0

∂/∂cj  {∫( −∑cini)2 dr ∑ci ni } = 0  ⇒  nj  =2(vj cj ) (7.7)

Multiply by nj  and sum over all j

 = 2 
∑njvj−∑cjnj

∑n
2
j

  = 2 
∑njvj

∑n
2
j

 (7.8)

Reinsert into (7.7):
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ci  = vi −
ni
2

  = vi ni 
∑njvj

∑n
2
j

 (7.9)

The fit coefficients ci  are computed in RHOFIT at every cycle of the self-consistency procedure. The fit

functions, potentials and charge contents are on file    itfit   .

f  i  t   f  u n c  t  i  o  n s   a n d  f  i  t   p  o  t  e  n t  i  a l  s  

Two types of fit functions may be useful. In the first place atomic one-center functions (r)=Zlm ( ) P(r).

Since the density is totally symmetric the crystal fit functions are symmetric combinations of the one-

center functions (SS^symmetry); the one-center functions themselves are the generating (fit) functions.

The options available in the program for P(r) are Slater type functions P(r)=rl+n e r  and numerical

functions. The latter are the squares of the free atom (numerical) orbitals; the angular quantum number for

the corresponding fit functions is set to l=0, so that the l≠0 components in the charge density have to be

represented by the Slater type fit functions. See also SS^input.

To evaluate the potential c(r) corresponding to a one-center function (r) the expansion of r r'−1  in
spherical harmonics is applied

c(r) = ⌡⌠  dr' Zlm ( ')  P(r') ∑
l'm'

 4π
2l'+1

  Z
*
l'm'( ') Z l'm'( ) 

r
l
<

r
l+1
>

  =

= 
4π

2l+1
  Zlm ( ) ⌡⌠

0

∞

 
r
l
<

r
l+1
>

 (r')2  P(r') dr' ≡ 
4π

2l+1
  Zlm ( )  I(r) (7.10)

For the numerical functions P(r), given as a table {P(ri )} I(r) is evaluated in routine COULOM, by

numerical integration.

For an analytical function P(r)=rn e r  we use the incomplete gamma function. Define

x = 
r'
r
                  = r (7.11)

and apply

⌡⌠
0

1

  xk   e x   dx = 
k!
k+1 









1−∑
i=0

k

 
i

i!
 (7.12)

to write
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I(r) = ⌡⌠
0

∞

 
r
l
<

r
l+1
>

 (r')n+2  e r '   dr'= rn+2 








⌡⌠
0

1

 xn+l+2 e x  dx +  ⌡⌠
1

∞

 xn l+1 e x  dx   =

= rn+2 











(n+l+2)!
n+l+3  









1−e ∑
i=0

n+l+2

  
i

i!
 +  

(n−l+1)!
n l+2

 e  ∑
i=0

n l+1

 i

i!
  =

= 











1

rl+1 
(n+l+2)!

n+l+3  









1−e ∑
i=0

n+l+2

  
i

i!
 +  

(n l+1)!
n l+2

 rle  ∑
i=0

n l+1

 i

i!
 (7.13)

Some care is necessary in the numerical evaluation when r is small. e  ∑( i /i!) equals almost 1.0 then

and subtraction from unity in the first term of the r.h.s. of (7.13) may lead to a loss of significant digits.

This is remedied by using in such a case

1−e  ∑
i=0

m

 i

i!
  = e  ∑

i=m+1

∞

  
i

i!
 (7.14)

The infinite series in the r.h.s. converges rapidly ( <<1) and can be truncated after a few terms.

The generating fit functions and the potentials are stored on file as tables of function values in a radial

logarithmic mesh, like all other one-center functions in BAND. The radial values are computed in FITRAD,

with auxiliary routines FITRA1 and FITRA2.

In the second place plane waves might be useful as fit functions (in 3D crystals). The potential functions

are straightforward from the Poisson equation −∆V  = 4π :

f(r) = eiK ·r (7.15)

fc(r)  = 
4π
K2  eiK ·r 

Again these have to be combined into symmetric combinations.

Plane wave fit functions have not (yet) been implemented in BAND and are in fact not necessary. The

atomic one-center functions have proven to be very adequate in practice (see SS^energy for a note on the

errors involved).

FITORT is the master routine for the crystal fit functions and potentials. FITPNT interpolates the radial

tables, constructs the bloch sums and combines them into symmetric functions.

FITOVL computes (from the overlap matrix) the transformation to an orthonormal set. FITTRA performs the

transformation and FITQ determines the charge contents ni  (7.6b) of the final orthonormal fit functions.

All data are written to file    itfit   .
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The eigenvalues of the overlap matrix are used to check linear dependency of the fit set. Eigenvectors with

too small eigenvalues are discarded. The smallest eigenvalue allowed is    scrfit   .     Scrfit    is input with key

scrfi t , f i t  overlap or fit dependency; first and second defaults are 10−5 , 10−6 .

Dependency coefficients, analogous to the valence basis (SS^basis) are computed and printed, depending on

the print option    iprntp   .

l  a t  t  i  c  e   s  u m  s  

A crystal fit function is a (symmetrized) bloch sum of one-center functions. The potential function contains

the bloch sum of a multipole potential 1/rl+1 . This is exposed by rewriting (7.13) as

I(r) = 
(n+l+2)!

n+l+3  
1

r l+1  + e r 











(n l+1)!
n l+2

 rl ∑
i=0

n l+1

 ( r)i

i!
 − 

(n+l+2)!
n+l+3  

1

rl+1 ∑
i=0

n+l+2

  
( r)i

i!
 (7.16)

(The numerical fit functions have a similar behaviour).

The second term decays exponentially with the distance and hence its bloch sum can be computed efficiently

in a limited loop over lattice points. The first term gives rise to the familiar lattice summation problem of

solid state theory: we have to calculate sums like

V lm (r)  = ∑
R

  
Zlm ( R)

r R l+1 (7.17)

In a three-dimensional crystal the sum diverges for l=0, is conditionally convergent for l=1,2 and it is

properly defined for higher l-values. But even then convergence is so slow, that a straightforward

summation would be unpractical. We will concentrate on the l=0 lattice sum (for 3D crystals), since that is

the most difficult case.

Let a charge qi  be given at position s i  in the unit cell. The potential due to the associated lattice of

charges is

V(r) = qi ∑
R

 1
r R s i

 (7.18)

The divergence of this sum is not a fundamental physical problem because the net charge in the unit cell is

zero. The addition of the sums (7.18) due to all charges qi  leads to a cancelling of the 'infinities', but of

course only when properly combined. Hence the expression for the total Madelung potential

VM(r)  = ∑
j

  qj ∑
R

 1
r R s j

 (7.19a)
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with the charge neutrality condition

∑
j

  qj  = 0 (7.19b)

is conditionally convergent. The same holds for the related Madelung energy (per unit cell)

EM  = 
1
2
 ∑

i

  qi  V'M(s i) (7.20)

where V'M(s i)  is the Madelung potential at position s i  given by (7.19), but without the singular term

(R =0, j=i):

V'M(s i)  = ∑
R≠0

 ∑
j

  qj 
1

s i R s j
   +  ∑

j≠i

  qj 
1

s i s j
 (7.21)

Conditional convergence implies that we can obtain any answer from the summation, depending on the

order in which the terms are taken. Since the Madelung energy is a well defined physical quantity the

conditional convergence of the sums (7.19a) and (7.21) is a little puzzling at first sight. This is not a purely

mathematical inconvenience here, but it is related to the physical aspect that we cannot have a truly infinite

crystal. It is not difficult to show that for any large, but finite crystal the (Madelung) potential in the

interior does not only depend on the charge distribution {qi ,  s i } in the unit cell and on the lattice structure

{R }, but also on the boundary of the macroscopic crystal. In the limit of a very large crystal it depends on

the average charge density on the surface [Young 1987]. The lattice sum may thus be interpreted as follows:

we take a large but finite crystal of a specific shape, evaluate the finite (and hence well defined) sum and let

then increase the crystal size to infinity preserving the shape. The conditional convergence is now translated

in that the limiting result depends on the assumed shape of the crystal. The physically correct value is

obtained only if the shape has been chosen such that the average surface (and bulk) charge density is zero

[Young 1987].

The evaluation of lattice sums has attracted much attention in the literature (see Tosi [1964] and Glasser and

Zucker [1980] for a discussion; a more recent, but concise survey with references is given by Bhowmick et

al. [1988]). The numerous proposed methods fall in two classes. The first uses some kind of integral

transform to replace the slowly or even conditionally convergent sum by (usually) two series which

converge both rapidly. The most famous exponent of this class is Ewald's method [Ewald 1921]. Part of the

sum (7.18) is transformed then into a fourier series, i.e. a sum over lattice points in reciprocal space, and the

remaining real space part is a sum over rapidly decaying error functions. The above mentioned boundary

condition for expanding shapes is in this case translated in the implicit assumption (fourier series) that the

potential has the same periodicity as the Bravais lattice; a surface charge density in a macroscopic crystal

would invalidate this, also in the interior far from the crystal boundary.
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In the second class of methods a direct real space summation is performed. Often some kind of expanding-

shapes procedure is utilized. The intuitively attractive method of expanding spheres is inappropriate since

charge neutrality is not preserved and the average charge density on a spherical surface is not zero. In Evjen's

method, using expanding cubes, charge neutrality is imposed as an auxiliary condition [Evjen 1932]. For

the NaCl structure this gives indeed the correct value for the Madelung constant. Expanding cubes fail

however for the CsCl structure [Evjen 1932, Bhowmick et al. 1988] because in that case the average charge

density on a crystal boundary plane is not zero.

In the straightforward real-space summation techniques the assumed shape, i.e. the way in which the limit of

an infinite crystal is approached, is thus of crucial importance. The appropriateness of a choice depends of

course on the crystal and has to be determined separately for every new situation. When this is taken care of,

one may have obtained a sequence that converges to the correct limit but only slowly. Various of the well

known convergence accelerating methods for sequences may then be applied to improve the efficiency.

Fortunately these sequence transforms may effectively also alleviate the mentioned shape dependence, as we

will see, and thus they make the (transformed) real space summation much more convenient for practical

use [Bhowmick et al. 1988]. To understand this we return to the definition of the Madelung potential.

A mathematically satisfactory and robust way to solve the apparent arbitrariness of the Madelung lattice

sum is provided by the technique of analytic continuation. The coulomb potential r−1  is replaced by r t 

with a complex parameter t. The corresponding lattice sum is well defined for Re(t)>3. By analytic

continuation its value for other t, and in particular for t=1 can be derived; the outcome coincides with the

physically correct value and with the value obtained by expanding shapes with the appropriate condition on

the surface charge [Young 1987, Borwein et al. 1985, 1988, Crandall and Buhler 1987].

The situation bears a close resemblence to other, more familiar sequences with problematic convergence.

Consider the power series representation of the logarithm

ln(1+z) = z − 
z2

2
  + 

z3

3
  − 

z4

4
  + ...   = − ∑

m=1

∞
 (−z)m

m
  (7.22)

The sum converges only for z≤1, z≠−1 but the l.h.s. is defined for all complex z not on the cut

(conventionally: z real and z≤−1). So, even where the sequence of partial sums

An  = − ∑
m=1

n

 (−z)m

m
 (7.23)

does not converge we may assign the value ln(1+z) to the infinite sum, that is, to the limit {An }n→∞ .

Putting it another way: the infinite, non-convergent sum is a correct, though somewhat inconvenient

representation of ln(1+z).
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Following a discussion by Shanks [1955], many sequences occurring in physics and mathematics can be

written as 'transients'

An  = B + ∑
i=1

k

  i qi
n      (qi≠0,1) (7.24)

The constant B is called the base and the (complex) ratios qi  and amplitudes i constitute the spectrum of

the sequence. The number of transient terms, k, is the order of the sequence. The order may be infinite or

even continuous so that the sum is to be replaced by an integral. (Levin [1973] treats a more general form

than (7.24), which covers more types of sequences and is in fact more related to our lattice sums [Weniger

et al. 1986], but the simpler case of Shanks suffices for the discussion here).

Depending on the qi  the sequence may have monotonic and oscillatory, converging and diverging

components. If all qi <1 the sequence converges to B and hence B is the limit of the sequence. If at least

one of the qi >1 the sequence diverges and B is then called the antilimit: the sequence diverges away

from B. In general B is the 'intrinsic part'.

An example. Consider the power series representation of (1−z)−1 

1
1−z

  = 1 + z + z2  + z3  + ... (7.25)

The partial sum can be written in the transient form (7.24):

An  = ∑
m=0

n

  zm  = 
1

1−z
  −  

1
1−z

  zn (7.26)

so that it turns out to be a first order transient with base 1/(1−z) and only one ratio, z, with amplitude

−1/(1−z). For z>1 the sequence An  diverges, but the infinite sum is the base 1/(1−z). This is an

example of the general phenomenon that the base of a diverging sequence is the 'correct' value for the

'limit', that is, the intrinsic part equals the analytic continuation of the sums of the convergent series

[Shanks 1955].

The same applies to our lattice sum. Replacing the coulomb potential r−1  by r t  the corresponding lattice

sum

V(r) = ∑
R

 1

r R s i
t
 (7.27)

is a series representation of a generalized multidimensional Riemann ζ-function [Glasser and Zucker 1980,

Crandall and Buhler 1987, Borwein et al. 1988]. It has poles for t=0 and t=3 (in the 3-dimensional case) and

it is properly defined everywhere else in the complex plane. Its representation by the lattice sum yields a

sequence (when we take all terms inside a sphere of radius R  and let R  increase) which converges for
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Re(t)>3. For other t, and in particular for the 'coulomb value' t=1 the sequence diverges but the physically

correct value is the intrinsic part.

Obviously it is not possible to compute the intrinsic part of a diverging sequence by just monitoring the

sequence of partial sums. As noted already: the evaluation of lattice sums by the method of 'expanding

spheres' fails. It would be desirable therefore to transform the diverging transient part into a converging

sequence (without affecting the intrinsic part of course). Two closely related methods are often applied in

such cases: 'screening' and 'sequence transformations'. We will shortly discuss both and indicate the

connection between them, because BAND employs a screening form which is heuristically motivated by a

particular type of sequence transformations.

screening

Screening functions serve to suppress long-range tails of functions (such as the coulomb potential here) that

cause problems by the slowness of their decay. A screening function which is often used because of its

mathematical simplicity is the exponential function. Replace the coulomb potential 1/r by e r /r with real

and positive ; finally we will then take the limit ↓0.

Although for finite  the lattice sum due to one single lattice of charges qi 

V
i

(r)  = qi ∑
R

 e r

r R s i
 (7.28)

is defined, its value diverges smoothly as we diminish  to zero. If we apply the screening however to the

total Madelung potential due to the combination of all charges, which is in fact the quantity of interest,

V (r)  = ∑
i

  qi ∑
R

 e r

r R s i
 (7.29)

then the result stays bounded and converges to the correct value in the limit ↓0. This is caused by the

'cancelling of infinities' from the compensating charges qi . Compare the 1D analogues

lim
↓0 ∑

n=0

∞
  e n  = ∞ (7.30a)

and

lim
↓0 ∑

n=0

∞
 (−)n  e n  = 1/2 (7.30b)

This confirms what may be intuitively obvious: screening may work for conditionally converging sums,

but it fails for diverging sums.



Coulomb potential and lattice sums 42

The coulomb screening factor e r  has been used for instance by Born [1921] in an analysis of the

electrostatic energy of cubic lattices. In BAND we employ a somewhat different screening function, namely

a fermi-dirac function h(r)

r−1   ⇒  r−1

1+e
(r r0)/d

   ≡ h(r) r−1 (7.31)

Like e r  the function h(r) decays exponentially for large r. If we choose r0  large enough however the

nearest terms in the lattice sum are only negligibly affected by the screening function h(r) and this turns out

to be an advantage in the convergence behaviour. The limiting case is obtained by taking d→∞ and

simultaneously r0 /d→∞, so that h(r) converges uniformly to unity for all r as the limit is approached. The

limit is not actually reached in the computational application; instead the calculations are performed with a

finite screening; the results are therefore only (good) approximations of the limiting values.

The motive for this form of screening function originates from a particular type of sequence

transformations.

sequence transformations

A large number of transformations are known that accelerate the convergence for various types of sequences

[Brezinski 1977]. Among the most widely used are the ε-transforms of Shanks [Shanks 1955] of which

Aitken's δ2 -procedure [Aitken 1926] is a special case, Levin's u-transformation [Levin 1973], the Padé

approximations [Sarkar and Bhattacharyya 1988] and Euler's transformation. The latter will have our special

attention and is treated in detail by Hardy [1949].

Sequence to sequence transformations are not only used to speed up convergence but also to induce absolute

convergence in diverging or conditionally converging sequences [Shanks 1955, Weniger et al. 1986,

Bhowmick et al. 1988]. The motive to do so is of course that we are interested in the intrinsic part, or the

base in Shank's terminology, of an ill-converging sequence. If the transformation leaves the base unaffected

the transformation is justified and may help us to handle the diverging extrinsic part by transforming it into

a converging sequence.

That sequence transformations are capable to transform diverging into converging sequences (with the

correct limit) may be illustrated by applying Shank's ε2 -transform (i.e. Aitken's method) to the sequence

(7.26)

A
ε2

n
   ≡ 

An−1An+1 − ( )An
2

An−1 +  An+1 − 2An
   = 

 
1

1−z
2 { }(1−zn−1)(1−zn+1)  − (1−zn)2

 
1

1−z
 { }(1−zn−1) + (1−zn+1)  − 2(1−zn)

  = 
1

1−z
 (7.32)

This transformation turns thus out to be extremely well suited for the sequence at hand. In other cases the

transformed sequence may of course not be converged immediately, as it is here, but at least it may be much
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more pleasant than the original one. See Shanks [1955] and Weniger et al. [1986] for a more general

discussion of this subject.

A transformation of interest for us is Euler's transformation, defined by simple averaging

An   ⇒  A
1
n  = 

An +  An−1

2
 (7.33)

Euler's transformation is well suited to accelerate convergence in summations of alternating terms. The

reason is easily understood: due to the alternation in the terms the sequence of partial sums {An } oscillates

and averaging two consecutive values will 'damp' the oscillations.

One may repeat the proces by applying the transformation also to the transformed sequence. In this case we

obtain the second-order Euler-transformed sequence

A
2
n  = 

A
1
n +  A

1
n−1

2
  = 

An +  2 An−1 +  An−2

4
 (7.34)

and in general

A
m
n   = 

1

2m
 







∑

k=0

m

  
m
k  An k            n=m ,m+1,... (7.35)

The effect of this simple transformation and its iterates is exemplified by the following. Let the terms be

ak   = 
(−)k

k+1
  = {1, −1

2
 , 1

3
 , −1

4
 ,...} (7.36a)

The partial sums and the transformed sequences are then

A
0
n  = { 1.0000, 0.5000, 0.8333, 0.5833, 0.7833, 0.6167,...}(7.36b)

A
1
n  = { 0.7500, 0.6667, 0.7083, 0.6833, 0.7000,...}

A
2
n  = { 0.7083, 0.6875, 0.6958, 0.6917,...}

A
3
n  = { 0.6979, 0.6917, 0.6938,...}

The exact limit is log(2)=0.693147... and each successive transformation improves the convergence

considerably.

If N+1 terms ak   are known, the transformation can be repeated at most N times to yield the number A
N
N ;

the expression 'Euler transformation' applies in fact to this ultimate value. For convenience in the

discussion we use the phrase 'repeated (Euler) transformation' and we denote the sequence A
N
N , N=0,1,.. as

the diagonal (Euler) transformation. Assuming that each successive Euler transformation yields a faster

convergence, the diagonal sequence represents the best approximation.
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An attractive aspect of Euler's transform is that it is a linear transformation. Whereas non-linear transforms,

such as the ε-transforms, may in comparison be spectacularly more effective for some sequences, they do

not give the correct limit for all sequences. Linear transformations are more reliable in this respect [Hardy

1949, Shanks 1955, Weniger et al. 1986]. So one may be willing to accept a somewhat reduced efficiency

as an insurance premium for correctness of the results.

historical note

Already before the analysis of divergent sequences was given a solid mathematical foundation [Stieltjes

1886, Poincaré 1886] Euler assumed and used in his work that 'summa cujusque seriei est valor

expressionis illius finitae, ex cujus evolutione illa series oritur'1 . Whereas this is strictly speaking not

true, in that distinct expressions with different numerical values may yield the same diverging series, it is

essentially correct, with a somewhat stricter definition and his 'repeated averaging' procedure is a very

natural method for the numerical evaluation of the sum of such (alternating) non-convergent series [Hardy

1949].

The contribution of the primitive terms ak   in the Euler sequences can be expressed as sums of binomial

coefficients. Let

                                                
1 the sum of the series is the finite numerical value of the arithmetic expression from which the series is
derived [Hardy 1949]
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Fig.1. Coefficients c
N
k   in the diagonal Euler

sequences, with interpolating curve, for N=5,10

and 20.

Fig.2. The fermi dirac screening function

h(r)={1+exp((r r0 )/d)} 1 ; the parameters are

here arbitrarily taken as: r0 =20, d=2.
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A
m
n   = ∑

k=0

n

  c
(mn)
k   ak  (7.37)

All terms k≤n m  are fully present (ck  =1), the next coefficients decrease and ck  =0 for all k>n. The

fractional coefficients are, from (7.35)

c
(mn)
k   = 

1

2m
 ∑
i=0

n k

   
m
i            k=n m , n m+1.....,n (7.38)

The coefficients in the diagonal sequence are obtained by putting m=n≡N:

c
N
k   = 

1
2N ∑

i=0

N k

   
N
i            k=0,1,...,N          N=0,1,... (7.39)

Fig.1 displays these coefficients, with an interpolating curve, for a few values of N.

As shown by the interpolating curves, the coefficients may also be described by continuous functions cN(x) 

which reproduce the values (7.39) for the integer arguments x=0,1,2,..., or more generally for a set of

equidistant points xi , i=1,2,.... This suggests already the correspondence between screening and sequence

transformations: we might have started with the (screening) function c(x); then, if the members of the

original sequence An , n=0,1,... correspond to equidistant values of x, we have effectively performed a

sequence transformation by application of the screening.

A second aspect suggested by the curves in fig.1 is that the functions cN(x) , N=0,1,2,.. can also be

interpolated in the variable N. We may thus define a general function c(p;x) which coincides with cN(x)  for

p=N and interpolates between these curves for non-integer p. Now we have arrived at a general screening

with a continuous screening parameter p, similar to the traditional exponential screening parameter  as in

(7.29).

The application of the (diagonal) Euler transformation to the lattice summation poses some problems.

First: how do we define the zero-th order sequence to be transformed? It is natural and intuitively attractive

to order the contributions according to their distance from the evaluation point r, and to group together all

terms with the same distance: an 'expanding spheres' picture. For the 'special' evaluation points s i , where

the charges qi  in the unit cell are located, we obtain then 'stars' of terms. For a general off-center evaluation

point r these stars are scattered and fall apart in distinct terms. In all cases the discrete distance-values for

which we find contributions are not equidistant and, although on the average the terms will be alternating,

this may not be true on the smallest scale and their sizes may be rather irregular. So, whereas we have the

general structure of an alternating sequence, on closer inspection the development of the sequence is far from

smooth and regular. This makes it a little unclear how to apply exactly the Euler transformations.
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Secondly, and this is possibly even more problematic from a practical point of view, the grouping of the

terms has to be determined anew for every evaluation point, because the sequence looks different, with

possibly even a different number of terms inside a sphere with fixed radius, and the combination coefficients

(7.39) will have to be computed many times. Considering the large number of evaluation points (all points

of the crystal integration grid) this is computationally unwieldy.

Moreover the definition of the zero-th order sequence is to some extent arbitrary. We may for instance

introduce formally a very dense radial mesh with equidistant points R i , i=0,1,... and define the sequence as

the potential due to all terms inside the corresponding spheres. Of course, in the limit of a continuous mesh

we will find large subsequences of constant values in the sequence and sudden jumps at a few radial values.

The limiting long-range development of the sequence is not essentially changed by this however and we

may still expect that screening, or equivalently a suitable sequence transformation, can be applied to remove

the divergence and to extract the desired intrinsic part of the sequence. We will use this approach (i.e.

conceptually introducing the dense and equidistant radial mesh) and use thus a continous screening function.

The next problem is then how to define that continuous function. Ideally we would like to reproduce the

Euler transformation by it, but we have not succeeded in finding an analytical form c(x) to compute

efficiently the binomial expressions for equidistant arguments xi . Fortunately the precise form of the

screening function is not essential for our final purpose, the calculation of the intrinsic part of the sequence.

Only we expect that, the more it resembles the 'Euler screening', the more effective it will be as regards the

convergence with ever smoother and 'weaker' screening. The fermi-dirac function which we employ in BAND

resembles the Euler function reasonably well and has shown to give satisfactory results; fig.2 displays this

function h(r) (7.31) for a comparison with fig.1.

remarks

# We have treated screening and sequence transformations as essentially different and only accidentally

similar. In fact both can be analyzed more rigorously as methods to 'sum' certain types of non-

convergent series. The screening as presented here is a special case of the Abelian method. In the

chemical and physical literature the phrase 'screening' is often used, which is the reason to denote it here

as such.

# The interpolation in the variable N (7.39), i.e. the definition of a continuous-order Euler transformation

can also be given a strict meaning by a generalization of (7.39).

# These and many more fascinating aspects of the summation of non-convergent series are discussed

extensively by Hardy [1949] and the reader is referred to his work for mathematical rigor and more

background information. The intention of our presentation here has been to explain in an intuitively

appealing way (we hope) why and how our screening method works.

the screening function h(r)

Finally we have to determine the two fermi-dirac screening parameters r0  and d. Sticking to the analogy

with the Euler transformations we may say that d corresponds to the order of the transformation (the

parameter m  in (7.35)), but now as a continuous parameter, and r0  is similarly the member-index n of the

(transformed) sequence. The diagonal transformation corresponds to tuning d and r0  relative to each other in
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such a way that h(r) starts to fall off from unity already at small r (compare (7.38) and (7.39): all

coefficients in the diagonal transform are fractional). The diagonal sequence, that is, increasing N in (7.39)

finally corresponds to increasing d and simultaneously adapting r0  in the manner just discussed.

From our test calculations we learned the following:

# The 'order of the transformation' d should at least be of the same size as the nearest neighbour distance;

otherwise the oscillations in the sequence, i.e. the oscillations as a function of r0 , are too large to make

the results reliable.

# The complete interval over which h(r) changes should be used; in particular all terms at large r must be

taken into account until h(r) has become truly negligible; neglect of this condition leads quickly to

unacceptable errors.

# Since the actual summation over lattice points must be limited as much as possible for computational

reasons, the extension of h(r) has to be restricted, so that d and hence r0  cannot be chosen arbitrarily

large. A good practical compromise is expressed by the following conditions:

a) d≈0.65×DNN 

b) r0 ≈13×d

where DNN  is the nearest neighbour distance in the crystal.

In the implementation these figures are adapted to the general (integration) accuracy parameter    accint    (see

SS^integration); higher accuracy induces larger values for d and r0 .

The association of the screening function h(r) with repeated Euler transformations is confirmed by the test

results for the Madelung energy. Let E(r0 ,d) be the computed Madelung energy as a function of the

screening parameters. Then, for fixed d, E oscillates as a function of r0 . The amplitude of these oscillations

depends on d and diminishes if we increase d. The energy values oscillate around the limit, provided r0  is

large enough. This corresponds to the general phenomenon in Euler transformations that each of the series

oscillates around the limit and the higer order transformations display smaller oscillations.

integration of the oscillations

Except for very small d, the oscillations as a function of r0  are found to be fairly regular over a

considerable range in r0 , so that E(r0 ) is reasonably well described by a simple cosine function around the

limit. The periodicity of the cosine depends on the crystal structure, is in the order of the nearest neighbour

distance (slightly larger), but we have not been able to detect a strict relation.

Nevertheless the regularity of the oscillation suggests that we may determine the limit more precisely by

averaging the results for a sequence of different values r0  distributed over a cycle of the oscillation. We do

so in BAND by taking five equidistant points; this corresponds to a numerical integration for periodic

functions if the spacing between the points is one fifth of the period. BAND assumes that the period equals

1.15×DNN ; this will usually not be exact and consequently the 'integration' is not optimal. It should be

noted however that some improvement results anyway from the averaging.
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remark

It would be possible to set up a standard pilot computation in BAND to determine a priori the periodicity of

the oscillation in the Madelung potential as a function of the parameter r0 . This could then be used to

replace the assumed periodicity, thereby raising the efficiency of the averaging. At first sight this does not

seem very important because the results are fairly accurate anyway. However with an improved averaging

the conditions on the parameters r0  and d may be weakened, both can be reduced and this leads to a smaller

lattice summation loop: increased efficiency. It may be noticed here that in 3-D crystals the construction of

the multipole potentials, though not a bottleneck, takes a significant amount of time (a few percents of the

total calculation).

implementation

VMULTI computes the multipole potentials

V
lm

(r)  = ∑
R

 
Zlm ( R+s )

R +s −rl+1   h(R +s  r) (7.40)

for all l-values occurring in the fit set. s   is the position of an atom in the unit cell; h(r) is the screening

function.

The parameters r0  and d are in BAND the variables    rmadel    and    dmadel   . One may specify them in input with

the keys r madelung and d madelung. By default they are derived (in RADIAL) from the nearest

neighbour distance    dneigh    (computed by NEIGHB) and the accuracy parameter    accint   :

dmadel = (0.50 + 0.05×accint) × dneigh (7.41a)

rmadel = (10+accint) × dmadel (7.41b)

The loop over the cells terminates when the tail of h(r) has become negligible. Experience shows that

cutting off the tail of h(r) at large r too quickly leads to unacceptable errors. The maximum cell distance,

rcelx    is set at

rcelx = rmadel + (11+accint) × dmadel (7.42c)

The default for    rcelx    may be overruled via input (key cell   distance).

If one of the variables    dmadel   ,    rmadel    and    rcelx    is specified via input, the default determination of the others

is adapted to satisfy as well as possible all conditions discussed here (routine RADIAL).

modifications of the screened lattice sums

1. The evaluation of (7.29) in a point r takes place in a simple loop over lattice points; no interpolation

is needed, in contrast with the treatment of other one-center functions in BAND. The 'exact' evaluation,

without interpolation, gives rise to an awkward problem in the core regions. The potential of an l=0 fit

function has the long range behaviour 1/r, but for small r it goes to zero: the 1/r multipole term is cancelled

by another term, as can be verified by inspection of (7.13). FITPNT constructs the fit potential, by addition

of the multipole lattice sum (from VMULTI) at one hand and the 'normal' bloch sum of the exponentially
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decaying part at the other hand. The second part is obtained by interpolation from one-center function tables

and contains thus small inaccuracies which are not present in the multipole part. Consequently the

cancelling for r↓0 is not exact and for very small r these numerical errors blow up.

Therefore the multipole term is modified such that for small r it is suppressed: that part is incorporated in

the other term, i.e. in the one-center function table (in routine FITRA2). The modified multipole potential

becomes

Mlm (r)  ⇐ Zlm ( ) 
r2

rl+3+e r
 (7.43)

For large r this equals

the pure multipole

potential ~1/rl+1 . For

r↓0 it behaves as r2 .

Consequently the

multipole lattice

potentials as computed

in VMULTI have 'core-

holes'. This is

compensated in BAND

in the one-center

tables (FITRA2), but it

must be kept in mind

when the results of

VMULTI are to be

applied in another situation.

2. The numerical integration (over the parameter r0 ) of the lattice sums, as discussed above, is carried

out by a modification of h(r). Let the spacing between the equidistant integration points be  and the five

points be r0 −2 r0 , r0 , r0 + , r0 +2 . Then the multipole potential is computed as (we leave the first

modification aside for the moment)

Vlm (r)  = 
1
5
 ∑
k=−2

2

 






∑

R

 Zlm ( R)

R+rl+1 
1

1+e (R r−(r0+k ))/d
  =

= ∑
R

 






Zlm ( R)

R+rl+1 × 
1
5
 ∑

k=−2

2

 1

1+fk  e(R r−r0)/d
 (7.44)

with f = e /d . f is the variable    fermfc    in BAND;    fermfc    is computed in RADIAL. The screening function

actually employed (FITPNT, ATMFNC, VMULTI) is thus

Rock-salt Cesium

Chloride

Zincblende Fluorite

A=2 1.747 51 41 .. 1.017 65 41 .. 1.637 76 12 .. 2.519 08 40 ..

A=4 1.747 56 19 .. 1.017 67 95 .. 1.638 06 34 .. 2.519 40 07 ..

exact 1.747 56 45 9. 1.017 68 07 5. 1.638 05 .. 2.519 39 ..

Table I. Computed Madelung constants for different accuracies A. The exact

values have been taken from Sarkar and Bhattacharyya [1988] (rock-salt and

cesiumchloride) and Atkins [1987] (zincblende and fluorite).
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h(r) = 
1
5
 ∑
k=−2

2

 1

1+fk  e(r r0)/d
 (7.45)

In table I we display the computed Madelung constants of a few standard crystal types, for different values of

the accuracy parameter.

p  o  t  e  n t  i  a l   a n d  d e  n s  i  t  y  ,   a n o  t  h e  r  r e  l  a t  i  o  n 

The following equation connects the integral over the potential with an integral over the density

∫  V(r) dr = 
−2π

3
 ∫  r2  (r) dr (7.46)

In a crystal the region of integration is an 'element of periodicity', such as the crystal unit cell. When

divided by the cell volume (7.46) gives the average potential, sometimes called the 'constant term (in the

potential)'. A discussion of the average potential and/or relation (7.46) turns up from time to time in the

literature, without bearing much relevance, since the zero level of the potential in a 3D crystal is physically

arbitrary.

The reason to mention it here is not that we found an interesting application, but rather that in the

derivation of (7.46) I overlooked in first instance an instructive mathematical aspect, which is fairly general

and which may easily be missed.

First we examine the relation in a finite system, where the integrations extend over all space.

The potential due to a charge distribution (r) is defined by

V(r) = ⌡⌠ (r)dr'
r r' (7.47)

alternating sequences again

We notice first that (7.46) does not hold for an arbitrary charge distribution. Two conditions (at least) must

be fulfilled: the monopole and dipole moments of (r) have to vanish both. The first condition is

intuitively obvious since otherwise the integral over the potential would be unbounded. Both requirements

are clearly exposed when we choose another coordinate frame by displacing the origin, i.e. set r→r+r0 . The

r.h.s. of (7.46) becomes (apart from the factor −2π/3)

⌡⌠  r+r0 2  (r) dr = ⌡⌠  r2  (r) dr + r0
2 ⌡⌠  (r) dr + 2r0 ·  ⌡⌠  r (r) dr =

= ⌡⌠  r2  (r) dr + r0
2  Q + 2r0 · D (7.48)
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giving the original result plus a monopole and a dipole term; Q is the total amount of charge, i.e. the

monopole moment of (r), D  is the dipole moment. Since the l.h.s. of (7.46) is not affected by the

diplacement of the origin, the integral over the potential is apparently not well defined unless both Q and D

are zero.

Now we will give a derivation of (7.46) in which the dipole condition is erronously juggled away; so we

assume only a vanishing monopole moment and proceed to 'prove' (7.46). Consider a finite system, a

molecule or cluster, such that all charge is confined within a huge but finite sphere with radius R . The

potential outside the sphere has an expansion in spherical harmonics

V(r) = ∑
lm

  V lm (r)  Z lm ( )           r>R (7.49)

where the components V lm (r)  are related to the multipole moments of the charge distribution. For a neutral

system the monopole term is zero. Hence, due to the angular integration of Zlm ( ) , l≥1

⌡⌠
outside
sphere

  V(r) dr = 0 (7.50)

So for the potential (as well as for the density) the integration over all space in (7.46) can be restricted to

the integral inside the sphere.

To evaluate the integral of the potential (the l.h.s. of 7.46) we use a formal expression for the density

analogous to (7.49), and the expansion of r r'−1  in spherical harmonics

1
r r'  = ∑

lm

 4π
2l+1

 
rl
<

rl+1
>

  Z
*
lm ( ')  Z lm ( ) (7.51)

r<  and r>  refer to the smaller and larger respectively of r and r'. This gives

⌡⌠
all

space

  V(r) dr = ⌡⌠
0

R

  r2  dr ⌡⌠  d  ⌡⌠  (r') dr' ∑
l'm'

 4π
2l'+1

 
rl'<

rl'+1
>

  Z
*
l'm'( ')  Z l'm'( )  =

= ⌡⌠
0

R

  r2  dr ⌡⌠  d  ⌡⌠
0

R

 (r')2  dr' ⌡⌠  d ' ∑
lm

  lm (r') Zlm ( ') ∑
l'm'

 4π
2l'+1

 
rl'<

rl'+1
>

  Z
*
l'm'( ') 

Zl'm'( ) =

= ⌡⌠
0

R

  r2  dr ⌡⌠
0

R

 (r')2  dr' ∑
lm

  lm (r') 
4π

2l+1
 

rl
<

rl+1
>

 ⌡⌠ d   Zlm ( )  =
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= 4π ⌡⌠
0

R

 (r')2  dr' 00 (r') ⌡⌠
0

R

 r2  dr  
(4π)1/2

r>
  = (4π)3/2 ⌡⌠

0

R

 (r')2  dr' 00 (r') 



R2

2
 − 

(r')2

6
 =

= 2πR2 ⌡⌠
0

R

  r2  dr  00 (r) ⌡⌠ d  Z00 ( )   −  
2π
3

 ⌡⌠
0

R

  r4  dr  00 (r) ⌡⌠ d  Z00 ( )  =

= ∑
lm

 








2πR2 ⌡⌠
0

R

 r2 dr lm (r)  ⌡⌠ d  Zlm ( ) − 
2π
3

 ⌡⌠
0

R

 r4 dr lm (r)  ⌡⌠ d  Zlm ( )   =

= 2πR2 ⌡⌠  (r) dr  − 
2π
3

 ⌡⌠  r2  (r) dr = − 
2π
3

 ⌡⌠  r2  (r) dr (7.52)

The charge neutrality of the system has been used in the last line of (7.52) and in (7.50), but what happened

to the dipole condition?

The clue is the dipole term in equation (7.50). A dipole moment D  gives a potential at a position r relative

to the dipole

Vdipole(r)  = 
D cos

r2
 (7.53)

where  is the angle between D  and r. The integral of this potential over the region outside the sphere is

⌡⌠
outside
sphere

  Vdipole(r)  dr = D × 








⌡⌠
R

∞

 dr   × 



⌡⌠ d  cos  (7.54)

This was taken to be zero (7.50) because of the last factor, but the unboundedness of the radial integral

makes such an assessment hazardous: infinity×zero=??.

Integral (7.54) may be associated with the summation of an alternating sequence, of which the terms do not

go to zero. If we start at the sphere boundary and increase R  by small discrete steps, each shell may be

thought to contribute two terms to the integral (7.54), one positive and one negative, corresponding to the

half shells (0≤ ≤π/2) and (π/2≤ ≤π). They cancel each other, but the individual terms do not go to zero as

R  increases.

The 'outside' integral (7.54) resembles thus a summation like S=1−1+1−1+1−.... Putting it another way:

assume that the dipole moment is oriented along the z-axis and imagine a displacement of the sphere in the

positive z-direction (a different choice of origin): as regards the integral over the dipole potential a positive

half-shell is drawn into the sphere from the outside region and a similar negative half shell is expelled. The

integral inside the sphere is thus changed by a term which is not negligible however large we took R . An

equal, but opposite change has to take place in the 'outside' integral if the integral over all space (7.46) is
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properly defined. Relation (7.50) cannot be true then in both situations, although the monopole condition,

presumably the only requirement for (7.50), may be satisfied.

Conclusion: the integral of the dipole potential over all space, and in particular over the outside region, is

not well defined. In analogy with a discrete series we may call (7.50) conditionally defined.

average potential in a crystal

In a 3D crystal the charge and potential are periodic functions. Divide (r) in localized terms i(r)

(r) = ∑ i(r) (7.55)

such that the i(r) transform into each other under the translation operators of the crystal. This does not

uniquely define i(r) . We might take for example i(r) equal to the total charge (r) in cell i, and i(r) =0

otherwise; that is we may view (r) as being build up from 'cells'. We may however also choose i(r) as

an atomic-like distribution so that (r) is described as a 'sum-of-overlapping-atoms'. We demand only that

i(r) is of finite extension so that it can be contained in a finite sphere. Furthermore we require of course

that its monopole and dipole moments are zero (i.e. the following remarks do not apply if these conditions

cannot be met). Then, following the lines of the derivation (7.40), it is easily found that the average

potential is

1
 ⌡⌠
unit
cell

  V(r) dr = 
−2π
3

 ⌡⌠
all

space

  r2  i(r) dr (7.56)

where  is the volume of the unit cell.

A strange aspect of this result is that a different choice of the localized 'element' i(r) , e.g. a 'cell' instead of

an atomic-like distribution, may yield a different value for the average potential (we assume of course that

for all choices of i(r) the dipole (and monopole) moments are zero). Indeed, in a truly infinite 3D crystal

the average potential has no physical meaning (we cannot take an electron out of the system) and

mathematically it is not defined.

For this reason BAND prints in a 3D calculation the final one-electron energies not as absolute numbers,

but gives their values relative to the fermi energy.

In a very huge, but finite system, we may also define elements i(r) to build up the system, but the

boundaries of the system now determine the i(r) and the result (7.56) is well defined and gives the average

potential in the interior.
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8 D O S :  d e n s i  t y  o f   s t a t e s  a n d  p o p u l  a t i  o n  a n a l  y s i  s 

DOS is the master routine for the analysis of the eigenstates and energy bands after the SCF procedure has

been finished. A Mulliken population analysis is performed and optionally the density of states (DOS) is

computed. The evaluation of the necessary integrals over the Brillouin Zone is discussed in

SS B̂Z-integration and will not be repeated here.

Apart from the total density of states various partial densities of states may be computed. They are

analogous to the Mulliken populations [Mulliken 1955]. We write the total DOS as

n(E) = ∑
ij

  qij(E) (8.1)

where i and j run over the primitive basis functions: atomic one center functions and/or plane waves in the

current implementation; one might of course define other basic quantities such as fragment orbitals.

An equation for qij(E)  is derived from the usual expression for the DOS:

n(E) = ∑
n

 ⌡⌠
BZ

  dk  (E en(k ) ) (8.2)

We insert the identity (normalization of the one-particle states)

1 = ∫  n(k ;r) 2
  dr (8.3)

and use the expansion of n(k ;r) in the basis functions

n(k ;r) = ∑
i

  cni(k )  i(k ;r) (8.4)

to write for (8.2)

n(E) = ∑
ijn

 ∫∫  dk  dr (E en(k ) ) c
*
ni(k )  cnj(k )  

*
ni(k ;r) nj(k ;r) =

= ∑
ijn

 ∫  dk  (E en(k ) ) c
*
ni(k )  cnj(k )  Sij(k ) (8.5)

so that
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qij(E)  = ∑
n

 ∫  dk  (E en(k ) ) c
*
ni(k )  cnj(k )  Sij(k ) (8.6)

The (surface) BZ integral is evaluated numerically:

∫  dk  (E en(k ) )  ⇒ ∑
k

  wn(k ) (8.7)

The weights wn(k )  depend on the energy E, giving

qij(E)  = ∑
n

  wn(k ;E)  c
*
ni(k )  cnj(k )  Sij(k ) (8.8)

The off-diagonal overlap density of states is then

nij(E)  ≡ qij(E)  + qji(E)  = ∑
nk

  wn(k ;E)  [c*
ni(k )  cnj(k )  Sij(k )  + c

*
nj(k )  cni(k )  Sji(k ) ] =

= ∑
nk

  wn(k ;E)  2 Re{c
*
ni(k )  cnj(k )  Sij(k ) } ≡ ∑

nk

  wn(k ;E)  u
k n
ij           (i≠j) (8.9)

where we defined u
k n
ij   by

u
k n
ij   =u

k n
ji   = 2 Re{c

*
ni(k )  cnj(k )  Sij(k ) } (8.10)

The gross density of states is

ni(E)  = qii(E)  + 
1
2
 ∑
i j

  [qij(E)  + qji(E) ] = ∑
nk

  on(k ;E) 
1
2
 ∑

j

  u
k n
ij   ≡ ∑

nk

  wn(k ;E)  v
k n
i  (8.11)

The diagonal elements uii   in this expression are defined by (8.10) (i=j) and are twice the net density of

states.

implementation

DOS is the master routine of this section. The total and partial (gross and overlap) densities of states are

computed for a number of equidistant energy values in the range (   edosmn   ,   edosmx   ). The number of energy

values,    nedos    is input by the key nedos or dos energies; first and second defaults are 0 and 100. The

value 0 implies that no DOS is computed. The DOS section performs then only the Mulliken population

analysis (see below).

The minimum and maximum energy values can be specified in the same input record as    nedos    (with

ordering:    nedos   ,    edosmn   ,    edosmx   ), but they may be omitted; defaults are    edosmn   =−4 and    edosmx   =+1 (a.u.).

These values are relative to the fermi energy.
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By default only the total DOS is evaluated and output. Gross and overlap densities of states are generated if

the keys gross  pop, respectively overlap pop are supplied. Each data record in the corresponding key-

input block (see SS^input) specifies the number of the basis function, (respectively the numbers for a pair of

functions) for which the partial DOS is to be computed. This information is retrieved from the input file by

DOSINP and stored in the arrays    idgros   () and    idover   ().

The eigenstates n(k ;r) and eigenvalues en(k )  are on file    iteig   . The stored expansion coefficients relate

however to the orthonormal basis used in the SCF procedure. The first step is therefore the back

transformation to the original basis, the plane waves and bloch sums of one-center functions. The

transformation matrix has been written on file    itdata    by BASOVL, together with the overlap matrix of the

original basis (S  in (8.8)). DOSTRA performs the back transformation to obtain the required expansion

coefficients and calls then DOSCON. DOSCON computes the quantities u
k n
ij   and v

k n
i  ((8.10) and (8.11))  and

stores them on file    itcon   .

DOSCAL finally organizes the calculation of the total and partial DOS The energy bands en(k )  are read from

file    iteig    and the surface integral occupation numbers wn(k ;ei)  are computed (OCCUPA) for all required

energies ei . The summation over the bands and k-points yields directly the total DOS (DOSTOT). The gross

and overlap DOS are evaluated in DOSPOP by straightforward numerical integration of u
k n
ij   and v

k n
i  .

The DOS output (DOSOUT) is either printed (default) or written to a plotfile. The plot file is generated if the

key dos plot  is found in input. The same input record may also contain the unit number for the plot file

itplot    (default: 7). The plot file is a formatted file.

POPANA, called by DOS, computes the Mulliken populations. The procedure is completely analogous to

that in DOSPOP: the functions u
k n
ij   and v

k n
i   are summed over the bands and numerically integrated over the

BZ. The integration weights refer now not to the surface integral for some energy, but to the volume

integration up to the fermi energy: they are the occupation numbers of the one-particle states.

9 E n e r g y :  t o t a l   a n d  c o h e s i  v e 

In the DF formalism, with the customary approximation of motionless point nuclei, the total energy of a

system is

E = ET  + EXC  + EC (9.1)

ET  is the kinetic energy, EXC  the XC energy and EC  the coulomb energy.

ET  = ∑ni  〈 i T i 〉 (9.2)

The summation includes integration over the BZ; ni  are occupation numbers of the one-particle states i ;

T is the kinetic energy operator, −∆/2 in atomic units.
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EXC  = ⌡⌠  XC(r) dr (9.3)

XC(r) is the XC energy density. It is a functional of the electronic charge density (r). The precise form

depends on the DF adopted, for example X   or Vosko-Wilk-Nusair (see SS X̂C).

EC  = 
1
2
 ∫∫   dr1  dr2  { (r1 )+∑Z  (r1 −R  )} 

1
r12

  { (r2 )+∑Z  (r2 −R  )} (9.4)

The summation runs over all atoms . Z   and R   are the nuclear charge and position.

There are two sources of error in the computation of the energy. The first is from the evaluation of various

integrals. The applied numerical integration procedure [chapter III], though fairly accurate, is not exact.

The second source of error is the coulomb potential, implicit in the Coulomb energy (9.4). To calculate the

coulomb potential from the charge density BAND employs fit functions {fi } for which the corresponding

coulomb potentials are known (SS^coulomb potential).

 = ∑ci fi  + (9.5)

VCoul [ ] ≈ VCoul [∑ci fi ] = ∑ci VCoul [fi ] (9.6)

The coefficients ci  are the least squares solution of the fitting problem, with the constraint that the fit

density fit ≡∑ci fi  represent the same total charge as the exact density .  is the difference between the

exact density and the fit density. The presence of  implicates an error in the computed coulomb energy

term.

The cohesive energy is the difference between the total energies of the crystal and the constituting atoms

respectively.

Ecoh  = ∑E    Ecrystal (9.7)

The free atom subprogram DIRAC determines the first term in the r.h.s. of (9.7) almost exactly. The crystal

energy could be calculated by numerical integration in the crystal integration grid. Since Ecoh  is often very

small compared with the two terms defining it, care is needed lest a meaningless value for Ecoh  is obtained

from (9.7), even when Ecrystal  is computed with a relative accuracy of 10−4  or 10−5 . Therefore we

rewrite expression (9.7) in a form that allows the calculation of Ecoh  directly by numerical integration,

with corresponding precision. The crystal total energy is then defined and computed as

Ecrystal  = ∑E    Ecoh (9.8)

By interpolation from the tables produced in DIRAC, the free atom functions (the charge density, the

coulomb potential and the orbital functions i and T i ) are evaluated in the crystal integration points.

The various energy terms in Ecoh  are conceptually the difference of the corresponding terms in the crystal
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and atomic total energies respectively. Since these are now computed by integration of the energy densities

in the same grid, the obtained difference term is identical to the integral of the difference function. Hence the

precision of the integration is preserved in Ecoh :

∑wi  Ecrystal(ri) −∑wi  Eatoms(ri)  = ∑wi (Ecrystal(ri)−Eatoms(ri))  = ∑wi  ∆E(ri ) (9.9)

The summation runs over all integration points.

kinetic energy

For each atom  the kinetic energy E ?????

ET crystal  = ∑Tij  Pij  (9.10)

This form is equivalent to (9.2).

XC energy

For each atom  the free atom charge density (r) , evaluted in the crystal points by interpolation, is used

to compute the XC energy density XC, (r) . This is then integrated to contribute to the energy term

∑EXC,  . The self consistent crystal charge density is used of course for EXC,crystal .

coulomb energy

The coulomb energy difference is rewritten to split off the electrostatic coulomb interaction between the

unrelaxed free atoms. This large term can be evaluated separately with high precision without much effort

(see below). The rest, the relaxation part, is computed by 'normal' numerical integration.

Define

atoms = ∑ (9.11a)

crystal = atoms + def (9.11b)

The deformation density def is approximated with fit functions for the solution of the Poisson equation

(SS^coulomb potential):

def = fit + (9.11c)

V fit  = coulomb potential due to fit (9.11d)

V   = coulomb potential of atom , including the nuclear potential Z  /r (9.11e)

Vatoms  = ∑V  (9.11f)

Then

2 ∆EC  = ∫∫  dr1 dr2  { crystal(r1) +∑Z  (r1 −R  )} 1
r12

  { crystal(r2) +∑Z  (r2 −R  )} −
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  ... ∑ ∫∫  dr1 dr2  { (r1) +Z  (r1 −R  )} 1
r12

  { (r2) +Z  (r2 −R  )} =

(omitting the spatial arguments)

= ∫∫  dr1 dr2  { atoms +∑Z  + def } 
1

r12
  { atoms +∑Z  + def } − ∑∫ V ( +Z ) dr =

= ∫ Vatoms  { atoms +∑Z  + def } dr + ∫ def Vatoms  dr +

  +  ∫∫  dr1 dr2  def 
1

r12
 def −∑∫ V  ( +Z )  dr =

= ∑ ∫ V  ( +Z )  dr + 2∫ Vatoms  def dr  −∑∫ V  ( +Z )  dr +∫∫  dr1

dr2 ( fit+ ) 
1

r12
 ( fit+ )  =

= ∑
≠

 ∫ V  ( +Z )  dr + 2∫ Vatoms  def dr + ∫  V fit ( def+ )  dr + ∫∫  dr1 dr2   
1

r12
  δ

(9.12)

In the last line of (9.12) the first term is the electrostatic interaction between the free atoms, to be treated

below. The second and third term are the relaxation terms, evaluated by numerical integration.

f  i  t   e  r r o  r 

The last term in (9.12) cannot be computed. It is an error term resulting from the inadequacy of the fit

functions to describe the (deformation) density exactly. An upperbound on this error term can be determined

for three-dimensional crystals. Let  have the fourier expansion

(r) = ∑ K eiK ·r (9.13)

K  runs over the reciprocal lattice sites. def contains zero charge, as does fit (and hence ) because of the

constraint in the fit. Hence 0 =0 in (9.13).

The coulomb potential due to  is obtained from the Poisson equation −∆V=4π :

V   = 4π ∑
K 0

 K

K2  eiK ·r (9.14)

This gives for the error term
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 = ∫∫  dr1 dr2 
1

r12
   = ∫ V    dr = 4π∫  {∑

K

 K

K2  eiK ·r ∑
K '

  K ' eiK '·r } dr  ≤ 
4π

K
2
min

 ∫ 2

dr (9.15)

Kmin  is the smallest nonzero vector of the reciprocal lattice. The integral ∫ 2 dr is easily computed and has

shown in practice that the fit functions routinely employed are adequate.

This analysis does not include the effect of the inexactness of the fit on the self consistent solution itself. It

seems reasonable however to suppose that this may be neglected as regards the energy: a small deviation in

the ground state density from the true variational minimum has a quadratic and hence a very small effect on

the resulting energy.

e l  e  c  t  r o  s  t  a t  i  c   i  n t  e  r a c  t  i  o  n  b  e  t  w  e  e  n  n e  u t  r a l   a t  o  m  s  

The electrostatic interaction between two spherically symmetric atoms A and B at positions R A  and R B  is

Eelstat  = ∫∫  dr1 dr2  { A +ZA } 
1

r12
  { B +ZB } = ∫ VA { B +ZB } dr = ZB V (R B)  + ∫ VA  B 

dr (9.16)

The last integral is evaluated numerically in prolate spheroidal coordinates. Several other types of elliptic

coordinates [Arfken 1970] have been tried but yielded inferior precision.

Let A and B be located along the z-axis, at positions z=±a. Define coordinates u,v,  by

x = a sinh(u) sin(v) cos( )

y = a sinh(u) sin(v) sin( ) (9.17)

z = a cosh(u) cos(v)

Numerical integration can be set up as a product formula in the variables (u,p, ) with p≡cos(v). The

-integration yields a simple factor 2π because the functions VA(r)  and B(r) are invariant for rotation

around the z-axis. So

∫ VA  B dr  = 2π⌡⌠
0

∞

  du⌡⌠
−1

1

  dp J(u,p) VA(u,p)  B(u,p) (9.18)

The Jacobian is

J(u,p) = a3  sinh(u) (cosh2(u)  − p2 ) (9.19)

For neutral atoms the functions fall off rapidly as u goes to infinity, so that the upper limit on the

u-integration can be replaced by a suitable umax . Numerical integration is then performed by a Gauss-

Legendre product formula in u and p
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∫ VA  B dr ≈ ∑
i=1

nu

 ∑
j=1

np

  J(ui ,p j ) w
u
i   w

p
j   VA(ui,pj)  B(ui,pj) (9.20)

For light atoms up to the first series of transition metals nu =30, np =20 give already accurate results.

Heavier atoms require more points but still the electrostatic interaction energy can be calculated almost

exactly without much effort. The precision of the cohesive energy is determined by the other terms.

e l  e  c  t  r o  s  t  a t  i  c   M  a d e  l  u n g   e  n e  r g  y  

In case the crystal calculation is started up with ions, the electrostatic energy has to be split in two terms:

the Madelung energy due to the effective ionic point charges plus the interaction between the neutral atoms.

The latter has been treated above. The former can be done in any of the standard ways, for instance the

Ewald technique. In BAND it is evaluated by a finite lattice sum in real space. For point charges q   at

positions d   in the unit cell the Madelung energy per unit cell is computed as

EM  = 
1
2
 ∑

R

' q q

R +d −d   h(R +d  −d  ) (9.21)

The prime on the summation signifies omission of the singular terms; h(r) is a screening function. The

formal expression for the Madelung energy has h(r)≡1, making the sum conditionally convergent. In BAND

h(r) is a fermi-dirac distribution function

h(r) = 
1

1+e(r−r0)/d
 (9.22)

so that the sum is absolutely convergent. The parameters r0  and d determine the accuracy of the resulting

sum. Typical values used are r0 =40 a.u. and d=3 a.u. For a discussion see SS^coulomb potential.

implementation

ATMFNC interpolates and sums the atomic functions and writes them to file. The coulomb potential is

stored on    itvatm     and the density (both the valence and the total density) on    itdatm    . ATMFNC calculates also

the energy terms ET, atoms  and EXC, atoms  by integration over the crystal grid. The atomic total energies

E   are computed in DIRAC. All these energy terms are written to file    itdatm     after the density values.

Auxiliary routine ELSTAB evaluates the interaction between two neutral atoms (9.20); the elliptic

integration parameters are    nuelst    and    nvelst    (in common FIXDAT).They can be assigned values via input

(keys u  e ls ta t  and v  e ls ta t  respectively); first and second defaults are for    nuelst   : 40 and 60, for

nvelst   : 80 and 120.

ELSTAB is called by ELSTAT where all terms are added to the total electrostatic interaction energy (9.16);

the Madelung part, a simple summation in ELSTAT, is kept separate. Both energy terms,    elstt    and    emadel   ,
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are passed to ATOMIC where they are written to    itdatm    , together with the sum of atomic total energies

eatoms   .

The variables defining the cut-off function (9.22) for the Madelung energy are    rmadel    (r0 ) and    dmadel    (d);

see SS^coulomb potential for the determination of their values.

The crystal kinetic energy matrix Tij   is constructed in HAMFIX (one matrix for each k-point in the BZ) and

written to    itdatm    . The final self consistent density matrix Pij   is computed in PMATRX and written to file

itpmat   . The multiplication (9.10) is performed in ENERGY.

ENERGY integrates also the crystal XC energy (9.3), the coulomb terms    vatdef    and    vdef    (the 2nd and 3rd

term in (9.12) respectively) and the fit error integral ∫ 2 dr.

The fit coefficients are computed in RHOFIT and, at the last cycle of the SCF procedure, written by RHOPOT

to file    itpot   . They are used to compute the fit density and hence the deviation function  (9.11c). The

potential V fit  due to the fit is constructed from the fit coefficients (and the fit potentials on    itfit   ) in

RHOPOT and written to    itpot   , after the fit coefficients.

1 0 F i  l  e s 

BAND employs a large number of files to store data during the calculation. Some of these files can be fairly

large. This is in particular so for the file that contains for each k-point the values of the basis functions in

the integration points.

On some machines the total amount of data is not the problem, but there may be a severe limit on the

amount per file. This has led us to devise a series of subroutines in which all operations with internal files,

like reading, writing, open and close, are performed. We will denote this set of routines plus the related data

structures as the filemanager. The file manager keeps track of the amount of data per file and switches to

another file if a particular one is full.

Files are represented in the program as integer variables. The names of these variables start with the

characters 'it';    itbas    for instance is the file with the basis functions. The value of the variable is the unit

number of the file. This value may be changed by the file manager during input/output (IO) operations.

This happens when the file is full and more data have to be written; the file manager takes another unit to

write on, but in the program we do not notice that: IO is still performed with file    itbas   .

The implementation of the file manager has not only solved the problem with the maximum file-sizes, but

also it has increased the programming facilities in BAND. We can now freely open and use files, if some

program extension requires so, without bothering which units are available: the file manager knows. One

may for instance insert somewhere

call flnew (itnew,'unformatted') (10.1)
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with the effect that a currently unused unit number is assigned to the variable    itnew    ; the associated file is

opened and rewound.

The file management system is structured as follows. File variables in the program, such as    itbas   , are not

associated with one single unit, but with a sequence, or string of files. The value of the variable is the unit

number of the currently active member of the string. The members of the string are connected by a pointer

structure, implemented as a two-dimensional array    indfil   (0:maxfil,2); the constant     maxfil    is the maximum

number of units that is in principle available to the file manager.    Indfil   (ii,1) is the successor of unit ii in

the same string and    indfil   (ii,2) precedes ii. Begin and end of a string have the pointer pointing to itself: the

first unit in a string has    indfil   (ii,2)=ii and the last unit has    indfil   (ii,1)=ii.

A special string is the string of free files: the units that are available but currently not in use. At the start-

up of the program all units 1 through     maxfil    are members of the free string.    Indfil   (0,1) points to the first

free file; initially    indfil   (0,1)=1,    indfil   (i,1)=i+1, i=1,2,... To detect when the last free file is reached, the

forward pointer of that last free file,    indfil   (maxfil,1), is set to zero (instead of     maxfil   , as we would do at the

end of any other string). Whenever a new file is requested by the program, the file manager takes the first

free unit for it. This is removed from the free string to form a new string on its own; the new string

consists of one member at that moment. The main part of subroutine FLNEW, mentioned above, thus reads

subroutine flnew (itnew,....) (10.2)

itnew = indfil(0,1) pick up a free unit

indfil(0,1) = indfil(itnew,1) first next free unit

indfil(itnew,1) = itnew pointers of the new string

indifl(itnew,2) = itnew ..

..

end

Apart from the index array    indfil   , the file manager employs an array    lenfil   . This is used to know when the

end of a file has been reached. Initially    lenfil   (ii)=0 for all units ii. When n words are written to file ii,

lenfil   (ii) is increased by n.

Actually it is increased by: n×   lstor   +    markio   . The extra term     markio    is used to be on the safe side: depending

on the computer the system file manager may write some extra information to file while executing a

FORTRAN write instruction; consequently the file may already be more filled than the unwarned user

expects.

The value of    lenfil   () is to be compared with the maximum file size, which is given by the constant     mxflln   

in the program; the factor    lstor    converts the number of words, n, to the units in which     mxflln    is specified;

usually this will be in words so that    lstor   =1.

When    lenfil   () reaches the maximum file length     mxflln   , the file manager switches to the next file in the

same string. If necessary the string is extended with a unit from the free string.
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The analogous procedure is followed when reading from a file. The counter    lenfil   () is reset at zero when a

file is rewound. It is increased again with each read operation, so that we know when we have to switch to

the next file to retrieve more data.

All this has the consequence that read and write operations are accompanied by several checks and updates of

the file management information system. The same is true for file operations like rewind; rewind(   itbas   ) has

now to be interpreted as: a) associate with    itbas    the first unit in its string, b) rewind that unit, c) reset the

file counter(s)    lenfil   ().

To keep the program as transparant as possible all operations with files are performed in the file manager

subroutines; the usual FORTRAN statements are replaced by calls to these routines. This makes it also easier

to adapt the file manager to future demands. We list the involved routines below with a concise explanation.

Read and write are performed in three routines FLIOI, FLIOL and FLIOR. These are completely similar; the

only difference is that they handle respectively integers, logicals and reals. A typical call is

call flior ('write',itbas,n,aa) (10.3)

This is the analogue of the usual

write (itbas) (aa(i),i=1,n) (10.4)

Aa    may be a scalar if n equals unity. The two statements above are also equivalent in that they have to be

interpreted as writing (or reading) exactly one record, whatever may happen 'on the background'. So the

sequence

call flrwnd (itbas) rewind (10.5)

call flior ('write',itbas,10,aa)

call flior ('write',itbas,10,bb)

call flrwnd (itbas)

call flior ('read',itbas,5,cc)

call flior ('read',itbas,5,dd)

has the effect that the first five elements of    bb    are stored into    dd   (1:5) (i.e. not the last five of    aa   ).

Furthermore the sequence

call flrwnd (itbas) (10.6)

call flior ('write',itbas,10,aa)

call flior ('write',itbas,10,bb)

call flrwnd (itbas)

call flior ('read',itbas,15,cc)
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results in an error, because it requests the reading of a larger record than has been written. On some

machines the usual FORTRAN equivalent is possible and results in the reading of both written records. For

reasons of simplicity and error checking we have chosen not to support this in BAND's file manager.

The read/write routines FLIO- can be used only for IO with unformatted files.

Opening of new files, deleting of superfluous files and rewinding are performed as follows.

- FLNEW(it,..) supplies a free unit number, opens and rewinds the file and assigns the unit number to the

argument.

- FLFREE(it) closes, with status 'delete', unit    it    and all other units in its string. The unit numbers are

inserted into the free string again.

- FLRWND(it) assigns to    it    the first unit in the string, rewinds that file and resets the counter    lenfil   (it).

The subroutines FLIOI, FLIOL, FLIOR, FLNEW, FLFREE and FLRWND are the only ones that are called in the

'normal' program. A few auxiliary routines are used in the file manager to isolate some specific aspects.

- FLNEXT(it) picks up and rewinds the next file in the string.

- FLADD(it) picks up a free unit and adds iut to the string    it   .

- FLCLOS(it,..) and FLOPEN(it,..) perform the usual FORTRAN open and close operations (i.e. for one

unit)

Finally

- FLPROT(it) removes unit    it    from the string of free files, so that it is not available anymore to the file

manager. FLPROT can be activated via input to protect specific units from use by the program; the key

is protect  i t , where    it    is the unit number. Subroutine INIT calls FLPROT to protect the standard input

and output files, units 5 and 6 respectively in the current implementation.

- FLDUMP(message,action) writes the state of affairs in the file manager to output.     message    is a string

that will be printed before the information,    action    specifies what to do with the currently open files:

action    may be 'delete' or 'keep'. FLDUMP is called by STOPIT when the program is normally terminated,

to check whether files are still not closed (action='delete'). For debugging purposes this information can

be printed (action='keep') at many places in the program by giving the input instruction t race  f i les .

remark

The read and write routines of the file manager are used only for unformatted files. A few specific files in

BAND are formatted. These are the plotfile for the density of states data, the input file for the numerical

integration package and the file to which all input for the program is copied. Furthermore the integration

package POINTS delivers two files with information. These have not been written (and hence cannot be read)

by the file manager. The unit numbers are controlled by the file manager but read and write is performed

with the normal FORTRAN statements (in GEMTRY).
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1 1 F o r m  f  a c t o r s 

X-ray factors, or form factors are (proportional to) the Fourier coefficients of the charge density. The form

factors are denoted FK .

(r) = ∑FK  eiK ·r (11.1)

The summation runs over all lattice points K  of the reciprocal lattice.

FK  = 
1

 ⌡⌠  (r) e iK ·r dr (11.2)

Integration is over the unit cell with volume . The form factors corresponding to symmetry related

K -vectors are equal, or differ at most by a phase factor. Let {t ,R} be a space group operator,

r'={t,R}r=t+Rr, K '=RK , then

FK'  = 
1

 ⌡⌠  (r') e iK '·r'  dr' = 
1

 ⌡⌠  ({t ,R}r) e
-i [K '·t  +

∑

m
∑

n
RmnK n ∑

p
Rmprp]

  dr =

= e iK '·t 
1

 ⌡⌠  (r) e iK ·r  dr = e iK '·t   FK  (11.3)

where we used the symmetry of (r) and the unitarity of the operator R .

BAND calculates the form factors for the stars of K -vectors 0..N, counting K =0 as the zero-th star. N may

be specified via input by the key formf or equivalently xray ; default N=3.

FORMFA, the master routine, calls first PLANEW to generate the coordinates of N stars of (reciprocal) lattice

points, then CELRED to reduce this set to the subset of symmetry unique lattice points and finally FORMF1,

where the form factors are actually calculated.

Integral (11.2) is evaluated numerically, by summation over all integration points

FK  = 
1

∑wj
  ∑wj e

iK ·rj  (rj ) (11.4)

remarks

# Equation (11.2) follows from (11.1) by orthogonality of the plane waves. Let SKK '  be the overlap

matrix of the employed plane waves, evaluated numerically

SKK '  = 
1

∑wj
  ∑wj  e

iK ·rj  eiK '·rj  = 
1

∑wj
  ∑wj  e

i(K ' K )·rj (11.5)

Starting from (11.1) we may define the form factors alternatively by
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FK  = ∑
K'

  S−1
KK '

  FK ' (11.6)

where FK'  is given by (11.4). With a perfect numerical integration SKK '  equals KK ' , the analytical

value, and FK =FK . Both FK  and FK  are calculated and printed. This gives some indication of the

reliability of the results as regards the numerical integration.

We may expect that the imperfection of the integration shows up more strongly for larger K, so that the

overlap matrix S  will resemble the unit matrix better if its size is smaller, i.e. if less stars of K -vectors

are taken into account. Consequently the discrepancies FK0
 FK0

  for a particular K 0  may be due to

the presence of larger K in the set and not necessarily to the difference between FK0
  as computed from

(11.4) and its analytical value (11.2).

# The form factors provide also a means to check the fit functions used for the calculation of the coulomb

potential. Let the latter have a Fourier expansion

V(r) = ∑VK  eiK ·r (11.7)

From (11.1) and Poisson's equation −∆V=4π  we may compute the form factors as

F
V

K
  = 

K2

4π   VK (11.8)

VK  is determined from the potential values in the integration points, like FK (11.4) . In the program

V(r) is computed via the approximate expansion of the density in fit functions. Comparison of FK  and

F
V

K
  gives thus an indication of the adequacy of the fit set. See also the note on the fit error in

SS^energy.

Relation (11.8) does not hold for K =0: F
V

0  is physically meaningless. The corresponding Fourier

coefficient of the density relates to the total amount of charge; this particular coefficient is therefore not

divided by the volume (∑wj ) in FORMF1.

1 2 G e o m e t r y 

The numerical integration schemes in BAND are closely related to geometric concepts: space is divided in

polyhedra, low-dimensional crystals are envelopped in boundary planes, the points are generated in the

irreducible wedge, etc. In this section we discuss the representation and processing of such data.

p  l  a n e  s  

A plane consists of all points x  that satisfy
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x ·v  = d (12.1)

and is therefore represented in BAND by the normal vector v  and the distance d; the variable names are

usually    plane   (3) and    dplane   .

The same plane is obtained when we reverse the signs of both v  and d. Often we will be interested in the

part of space at a particular side of the plane. With this in mind we resolve the arbitrariness in the sign of

(v ,d) by defining a point to be inside the plane if x ·v <d and outside if x ·v >d. Reversing the signs means

then that we interchange inside and outside of the plane.

o  r i  e  n t  a t  i  o  n  a n d  r o  t  a t  i  o  n 

Geometrical analysis in a plane is most convenient in the xy-plane, since we can then neglect the third

coordinate. To achieve this we will usually need a rotation of the plane under consideration. The rotation

matrix is computed by ROTMAT(v1,v2,rmat). Input are the vectors    v1   (3) and    v2   (3) and output is    rmat   (3,3),

the matrix that rotates the direction    v1    to the direction    v2   ; the input vectors need not be normalized. In the

mentioned application    v1    would be the normal of the plane and    v2    the z-axis, i.e. the vector (0,0,1).

The problem at hand does not uniquely define the rotation matrix: infinitely many unitary transformations

v1   →   v2    exist with determinant +1. ROTMAT takes the shortest possible arc of rotation; the fixed vector, the

axis of rotation is the vector product    v1   ×   v2   .

This particular convention is useful when some particular compounded rotations have to be constructed.

Assume for instance that s1  and s2  are two vectors and we want to rotate them such that s1  becomes the

x-axis and s2  lies in the xy-plane. Let then ux   and uz  be the x-axis (1,0,0) and z-axis (0,0,1) respectively.

The rotation matrix    rmat    is calculated by

call r3vecp (s1,s2,axis) vectorproduct of two vectors

call rotmat (s1,ux,rmat1) rotate s1 to the x-axis

call rotate (rmat1,axis,axis2) rotate a vector

call rotmat (axis2,uz,rmat2) rotate (s1,s2) to xy-plane

do 10 i=1,3

  10 call rotate (rmat2,rmat1(1,i),rmat(1,i)) product rotation

(12.2)

Since    axis    is orthogonal to s1 (and s2) ,    axis2    is orthogonal to the x-axis (the rotated s1 ) and lies thus in

the yz-plane. ROTMAT constructs then    rmat2   , which rotates    axis2    to the z-axis, using the x-axis as the axis

of rotation. So    rmat2    leaves ux  , the rotated s1 , invariant, hence the compounded rotation transforms s1 

into the x-axis, as required. This procedure is used for example in PYRPT4 where a pyramid is rotated

(PYRROT) to some standard orientation.
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l  i  n e  s  

Lines in the xy-plane are defined by (12.1), where x  and v  have now only two components. In analogy with

the planes we define the inside and outside of a line (x ·v <d and x ·v >d).

By the direction of a line we will understand the angle  that its normal makes with the positive x-axis

(0≤ <2π). Any set of lines to be processed is ordered in BAND such that their directions are in increasing

order.

p  o  l  y  g  o  n s  

A polygon (in the xy-plane) is defined by its sides, i.e. by a set of lines with their orientations such that the

polygon is inside each line.

To find the vertices of the polygon we order the sides according to their directions. The intersection point x

of an adjacent pair of lines is the solution of a linear 2×2 system

v i ·x  = di (12.3a)

v i+1 ·x  = di+1 (12.3b)

Given a set of lines the polygon defined by them may have fewer sides if one or more of the lines are

redundant; fig.3 shows (part of) a set of lines, of which the numbers 2 and 3 are redundant; they are

excluded, or cut-off one might say, by the lines 1 and 4.
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Considering only the direct

neighbours we see that line 3 is

cut off by 2 and 4, but line 2 is

not excluded by its neighbours

1 and 3. In general we have say

lines i and j, excluding all lines

i+1..j−1 between them. At least

one of these excluded lines is

then cut off also by its own

direct neighbours. POLYGN uses

this fact to remove from an

input set of lines all redundant

ones: for each line exclusion is

decided only with respect to its

neighbours. Having traversed

the whole set, POLYGN restarts

the loop if one or more lines

were removed, until no more

redundant lines are found.

p  o  l  y  h e  d r a 

A polyhedron can be defined as

the region of space inside a set

of planes. Again, given a set of planes some of these may be redundant and should be removed.

Each of the remaining proper planes defines a 'face' of the polyhedron. The relevant part of that plane is a

polygon, defined by the intersection lines with the other planes. A polyhedron is in BAND represented as a)

a set of planes    plane   (3,nplane),   dplane   (nplane) plus b) a list of vertices    vertex   (3,*) with an index array

index   (nplane+1). The vertices corresponding to plane i are the numbers    index   (i)+1 through    index   (i+1);

Index   (1)=0. Each vertex occurs at least three times in the list, once for each face it belongs to. The subset of

vertices of a particular face are in clock-wise order (viewed from inside the polyhedron), so that, when the

normal on the plane is rotated to the positive z-axis (the standard orientation) the rotated vertices are in

increasing order of their direction angles. This ordering of the vertices is assumed (and checked) for instance

in the integration package POINTS (the routines PYRPT3 and PYRPT4).

Routine POLYHE generates the polyhedron data structure from an input set of planes; redundant planes are

removed. The algorithm is as follows. For each plane the rotation matrix is constructed that rotates it to the

xy-plane. In the rotated frame all intersection lines with the other planes are computed. The resulting

polygon is analyzed (POLYGN): if all sides are redundant, that is, if the 'inside' of the polygon does not

exist, then the corresponding plane is redundant for the polyhedron and can be removed; otherwise the

vertices are computed, back rotated to the original coordinate frame and added to the list.

Fig.3. The shaded area is (part of) a polygonal region, defined as the

space inside a set of lines. The lines 2 and 3 are redundant.
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The line of intersection of a plane (v ,d) and a plane parallel to the xy-plane, with z-coordinate z0  is easily

found: the normal on the line is (apart from a normalizing scale factor) given by the x- and y-components of

v ; the distance parameter dxy   for the line is (fig.4)

dxy   = 
d

cos( )
  + z0   tg( ) (12.4)

s  y  m  m  e  t  r y  

The irreducible wedge of a

polygon is constructed by

PLGIRR. Input are the vertices

of the polygon (ordered) and

output the vertices of a

connected irreducible wedge (a

polygon again). In order to

construct this PLGIRR sets up

an index array for the sides of

the polygon. The index is 1 for

a side belonging to the wedge,

0 for a side outside (which

must then be symmetry

equivalent to one of sides

belonging to the wedge), and

−1 if the boundary of the wedge

cuts the side in two equal parts.

All indices are initiated at 1. A loop over the sides is then executed, starting with the first and counting

upwards. For each of them the equivalent sides are found and assigned index 0 (: to be removed). The loop

is interrupted when the boundary of the wedge is reached. This is the case as soon as a side to be considered

has already index 0, so that it falls outside the wedge, or when one of the symmetry operators interchanges

the two vertices belonging to the side: only half of the side belongs then to the irreducible region (index

−1).

Next a second loop is performed, starting with the last side and counting backwards until the other boundary

of the wedge is found. In this way the irreducible wedge is constructed 'around' side 1, by traversing the

circumference of the polygon in both directions until the edge of the wedge is encountered.

The final index array is then used to compute the vertices of the symmetry unique subregion.

The origin is a special point. Assuming the symmetry group not to be trivial, the origin is not one of the

vertices of the original polygon. In many cases however it is a vertex of the irreducible wedge; if this is the

case PLGIRR permutes cyclically all final vertices such that the origin is the first in the output list of

vertices.

Fig.4. A plane, parallel to the xy-plane at z=z0  is cut by a second

plane (v ,d). The normal v  makes an angle  with the xy-plane. The

distance dxy   is given by (12.4); see text.
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If the original polygon is halved (only one reflection plane for example), one of the sides of the wedge

passes through the origin, but the origin is not one of the vertices. Nevertheless it may be convenient

(SS B̂Z integration) to define the origin as a vertex also in this case, spanning an angle π. This is not done

by PLGIRR, but to facilitate this adaptation PLGIRR permutes also in this case the final set of vertices such

that, if the origin is to be added, it fits in between the first and the last of the output vertices.

In three dimensions we may need the irreducible wedge of a polyhedron. Associate with each of the

polygonal faces of the polyhedron the pyramid with the polygon as its base and the origin as the top. The

symmetry analysis is then a two-step proces. First we retain only the symmetry unique pyramids by

checking which of the normal vectors are transformed into each other by the symmetry operators (the

corresponding faces are then necessarily also equivalent). Then each of the remaining polygonal faces is

subsequently rotated to the xy-plane and dealt with by PLGIRR.

s  i  m  p  l  i  c  e  s  

Simplices play a role in BAND in connection with the integration method in k-space. Simplices are defined

in any n-dimensional space by n+1 points: the simplex in one dimension is an interval, in two dimensions

it is a triangle, etcetera.

A special problem occurring in the generation of k-space integration points is the subdivision of a simplex

into smaller simplices by repeated bisection of the edges. SIMPLS performs this task. Input is a generating

simplex    simplx   (ndim,ndim+1) and the number of refinement-steps    nmesh   ;    ndim     is the dimensionality and

hence the number of coordinates for each of the (   ndim    +1) points.

Output is a list of distinct points    point   (ndim,npnt) and an index array    idsimp   (nrow,nsimpl);    nrow     is the

row-dimension of    idsimp    (must at least be    ndim    +1);    nsimpl    is the generated number of simplices of the

specified refinement.    Idsimp   (1,i),    idsimp   (2,i),..    idsimp   (ndim+1,i) specify the vertices of the i-th simplex by

pointing to entries in the list of points (   point   ). Each refinement step splits every simplex into    nsub   =2ndim  

smaller ones, so that the total number of smallest simplices will be    nsimpl   =2ndim×nmesh .

The algorithm is basically a multiple nested loop, one for each level of refinement. Each of the loops runs

over all    nsub    sub-simplices of the one-level-larger simplex.

do i1 = 1,nsub

.. construct the i1-th subsimplex (12.5)

do i2 = 1,nsub

.. the i2-th subsub(...)simplex

do i3 = 1,nsub

  .. (etcetera)

Since the number of nestings,    nmesh   , is a variable the loops cannot be implemented explicit; they are

constructed implicitly, with 'goto' statements and tests on loop termination; the loop counters are stored in
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array    idsub   (nmesh); array    vertex   (ndim,ndim+1,0:nmesh) stores the vertices of the simplices under current

treatment, one for each level; level 0 is the input simplex.

A subsimplex may have one of its vertices in common with its parent simplex; the other vertices are then

the midpoints of the adjacent edges. Other subsimplices may have only a particular set of these midpoints

as vertices. In general the vertices of the subsimplex can then be defined as the averages of particular pairs

of parent vertices, where in some cases the average may be taken of one and the same point. Each of the

2ndim  subsimplices is thus characterized as a special set of ndim+1 'pairs'. This data structure is the fixed

data array    idpart   (2,ndim+1,2ndim ) in SIMPLS. Inspection shows that with an appropriate ordering of the

subsimplices the structures for the lower dimensional cases can conveniently be embedded in those for

higher dimensions. The implemented array    idpart    is the 3D case; when SIMPLS is called with    ndim    <3 the

appropriate submatrix is used.

1 3 I n p u t 

This section deals with the processing in BAND of input data and with the ways in which the operation of

the program can be directed via input. A few remarks will be made concerning output.

Input is optional in many respects; omission leads to default settings. Input relating to a large number of

details is dealt with in the corresponding Software Sections and is not discussed here. Reading this section

should supply sufficient information however to run the program.

BAND reads only one input file. Restart possibilities have not yet been implemented.

INIT excludes the unit numbers 5 and 6 from use by BAND's file manager (see SS^files), assuming that these

are associated with the standard input and output channels respectively.

The input file is defined to have two parts: the comment part and the data part. The comment part, which

may be empty, consists of all consecutive first records that have the character 'c' in the first column; the

other records constitute the data part. The data part and hence the input file is defined to end with either the

FORTRAN 'end-of-file'-code, or a specific record (see below), whichever comes first.

INIT copies the complete input file to output. Simultaneously the comment part is copied to a file    itcomm    

and the data part to    itinpt   . These formatted files are processed further in HEADIN and GETINP, which are both

called from INIT.

HEADIN prints the 'heading' of the output, directly after the copy of the input file. The heading provides

some general information about the program and the calculation, such as the release number of the program,

the date of the release and the requested CP-time and memory-usage for the current run. Naturally some of

this information is picked up by machine-dependent code. This has to be adapted when BAND is

implemented on another computer. The involved routines are SECTIM and HEADIN.
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HEADIN retrieves also the comment lines again from    itcomm     and writes them (without the first-column 'c')

into the output heading.

GETINP analyzes most of the information on    itinpt   . The rest, for example the characteristics of the basis

functions, is written to a new file unit; this is (at the end of GETINP) assigned to    itinpt   , replacing the old

value. In various parts of the program the remaining information is extracted from (the new)    itinpt   .

All (data) input is structured by keys; a key is a (short) string, usually a single word. Each key defines a

separate key section. Two forms are used. In the first form the section consists of only one record; it

contains the key and, depending on the case, additional (numerical) information. The second form is a

sequence of records: the first record is the key; the last contains (only) two asterisks, '**', signifying the end

of the section; the intermediate records provide all information; in one special case the first (key) record has

to contain also additional information.

We will denote the two forms by key record and key block respectively.

The form of the key section is not optional: each admissable key is associated with a particular form.

Generally speaking the block form is employed only for keys that relate potentially to large amounts of

data, such as a list of basis functions or atom coordinates. All keys that have the block form will be

mentioned in this section.

Empty lines in input are allowed and meaningless; INIT omits them when    itinpt    is written.

All numerical information is 'free format': the absolute positions of numbers and the form in which reals

are specified is irrelevant.

The ordering of the keys in input is free and has no implications (with one obvious exception, as we will

see).

Most of the keys are optional: omission leads to defaults for the corresponding variables or options. For

some keys second defaults are available; these are activated by giving the key without specifying further

information.

GETINP checks the occurrence of all keys that are known to the program. Unknown keys are neglected and

their presence in input has no consequences. As said before, in most cases GETINP extracts all information

and assigns values to the variables and/or sets the options that correspond to the encountered keys; for some

keys the information is only globally surveyed and copied to a new file to be processed later.

The occurrence in input of a few special keys is 'kept in mind' by storing them in a list of keys, the array

keylst   . This operation is performed by routine KEYSET, which is called from GETINP whenever such a key

is found. The logical function KEY checks the presence of a specified key in the list, i.e. KEY('this key')

tells us whether th is  key  has been stored in the list.
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This structure has made it easy to implement new options or to adapt the operation of BAND to new

insights, either permanently or temporarily for testing or debugging purposes. Suppose for instance that we

consider the replacement of some algorithm by a possibly more efficient one. To test this we would like to

compare the two alternatives in a number of calculations. Instead of keeping two versions of the program

during the testing period, we just define a new key, say a lgor i thm, and insert a few lines in GETINP to

search for that key and to call KEYSET when it occurs. The alternative algorithm can then be implemented

side by side with the original one, with a simple if-then-else structure:

if (key('algorithm')) then

..

(new algorithm)

..

else (13.1)

..

(old version)

..

endif

In this way we can keep both possibilities available as long as we wish, without bothering about the

maintenance of two programs instead of one.

Since BAND is a program in perpetual development, the set of keys changes rather often. The keys

mentioned in this section and in other Software Sections may therefore not exhaust the set employed in

BAND; at the other hand some of the keys may not be in use anymore. One should examine the code of

GETINP to ascertain which keys are in fact recognized in the current release.

In the next paragraphs we discuss the input of necessary information, such as the geometry and basis

functions. After that we will examine keys related to output printing and the 'control' keys, which determine

the operation of the program in general.

The keys are typed outlined (lat t ice, debug). If the block form is to be used for the corresponding data,

this will be indicated between brackets. Keys may have synonyms; the alternatives will be listed (s to ,

slater). In most cases a key is recognized also when it is embedded in a larger string; for instance the string

slaters is recognized as denoting the key slater.

g  e  o  m  e  t  r y  

Information must be provided concerning the Bravais lattice of the crystal, its dimensionality, the

coordinates of the atoms and the units in which the data are specified on the input file.

angstrom. Lattice vectors and atom coordinates are interpreted as being specified in ångstrøms. Default

(omission of the key): atomic units.
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lat t ice (block). Each record contains a lattice vector: three cartesian coordinates; if fewer coordinates are

specified zeros are supplemented; at least one coordinate per record must be given (empty records are

discarded). The number of records is the dimensionality    ndim     of the crystal.

The lattice vectors (in atomic units) are stored in array    avec   (3,3). The inverse-transpose, which

describes the reciprocal lattice (apart from a factor 2π), is stored in    bvec   (3,3).

natural. The positions of the atoms are specified in natural units, i.e. in units of the lattice vectors.

Default: cartesian units.

If the dimensionality of the crystal is less than three, only the first    ndim     coordinates can possibly

refer to the lattice vectors; the others are automatically cartesian.

The (cartesian) coordinate values are stored in array    xyzatm    (3,natomt).     Natomt    is the total number of

atoms in the crystal unit cell.

a toms (block). The positions of the atoms. The key has to be specified anew for each (chemical) type of

atom that occurs in the crystal. The number of types of atoms,    ntyp   , is defined as the number of

occurrences of the key a toms. Atoms belonging to different types as defined here cannot be

symmetry equivalent.

This key is the exceptional case in which the leading key-record itself must contain additional

information: the atomic number (=the nuclear charge).

Each of the intermediate records in the block gives the coordinates of one atom; zeros are suppplied

when fewer than three coordinates are found.

Note that the meaning of the input coordinate values depends on the absence or presence (anywhere in

the input file) of the keys natural and angstrom.

f  u n c  t  i  o  n  s  e  t  s  

Data have to be supplied concerning the free atoms that make up the crystal (key dirac), the Slater type

valence basis functions (s to) and the Slater type fit functions (f i t ). For each of the    ntyp    types of atoms, as

defined above, dirac, s to  and f i t  are searched for. Dirac is obligatory, but s to  and f i t  are optional.

The order in which the keys dirac, s to  and f i t  occur is relevant (this is the exception to the rule that the

order of keys in input has no meaning). In the first place: the keys a toms and dirac correspond in their

order of appearance. In the second place: for each of the atom types GETINP searches the keys s to  and f i t

after the corresponding dirac-block but before the next dirac-block (or the end of input); if they are not

found in that part it is assumed that they have been omitted for that type. In the third place if both the

f i t -block and the s to-block are present for a certain type, the s to-block must precede the f i t -block.

dirac (block). The first record in the block (following the key) states the number of numerical one-electron

states    natorb    to be computed and the number of them that are to be interpreted as core states in the

crystal    ncore   : two integers; omission of the second implies    ncore   (ityp)=0.

The next records give for each of the    natorb    orbitals n,l,q: the main and angular quantum numbers and

the number of electrons. Example: '3 2 7' implies 7 electrons in the 3d-shell of the spherically

symmetric atom. The occupation q may be omitted; default: fully occupied (q=4l+2).

Anywhere inside the dirac-block the following additional keys may be supplied:
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valence (or: basis). The numerical valence states are incorporated in the crystal valence basis.

Default (omission of the key): no.

Note that the numerical core states are used anyway.

f i t . For each numerical one-electron state which has an angular quantum number l≤   lfit   , the square of

the orbital (i.e. the orbital density function) is used as a spherically symmetric fit function (a

one-center fit function with l=0) in the crystal. The value of    lfit    may be specified in the key

record; default:    lfit   =0.

Absence of the key implies    lfit   =−1: no fit functions are derived from the numerical orbitals.

radial. All one-center functions, both those from DIRAC and the Slater type valence and fit functions

are represented in BAND as tables f(ri ),i=1..   nr   . The radial coordinates ri  constitute a

logarithmic grid (ri+1 /ri  is constant). Key radial specifies the number of points in this grid:

nr   , the first value r1  and the last value, rnr , in that order. Defaults are used for absent data

(   nr   =2000, r1 =10−4 a.u., rnr =40 a.u.).

Remark: the radial grids (one for each type of atom) are stored by BAND in array    rad   (nrx,ntyp);

nrx    is the maximum nr. of radial points in any of the grids. After the setting-up of the tables,

the values in    rad    are replaced by the reciprocals 1/rad; this is more convenient in the

interpolation routines (ATMFNC, BASPNT, FITPNT). In some places in BAND the array is

accordingly denoted    rinv   (nrx,ntyp). The array    nr   (ntyp) stores the number of radial points in each

grid.

valence, basis , s to , slater (block). Each record characterizes one set of Slater type functions for the

valence basis by three variables n,l, : two integers and one real. The corresponding functions are

Zlm ( ) rn 1 e r , centered on the atoms of the type under consideration.

f i t , s t f  (block). Analogous to the previous; the functions are used in the fit set to describe the

(deformation) charge density in the crystal.

plane waves. Apart from the one-center numerical orbitals (from DIRAC) and the Slater type orbitals, the

valence basis may contain plane waves. The plane waves ei(k+K )·r  used for each k-point k  in the

BZ, are characterized by the lattice points K  of the reciprocal lattice. The key record must state the

number of stars of these lattice points to be used in the valence basis,    nwavst   . Star no.0 consists only

of the central point K =0. Each subsequent star consists of all K  with the next higher distance to the

origin, regardless of symmetry relations.

The central 'star' is used only if no other valence functions are employed. Otherwise it is omitted to

prevent dependency problems in the valence set; only the star numeros 1 through    nwavst    are taken

then. The resulting number of plane waves in the basis (per k-point) is    nvalwv   .

p  r i  n t   d i  r e  c  t  i  v  e  s  

The amount of printed output is determined by a number of general print options and may further be directed

by print instructions.
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The general print options are encoded by the variables    iprntp   ,    iprnti   ,    iprnts   ,    iprnte    and    iprntr    in common

FIXDAT. They determine the general output levels for respectively the preparation part, the numerical

integration package, the SCF-procedure in general, the eigensystems of the iteratively computed hamiltonian

and the results (properties section). The higher their value, the more is printed. The (low) default settings

provide already a fair amount of information; more output is usually only required to test accuracies and to

examine intermediate results. The corresponding keys and defaults are

print  prepar. defaults (first and second): 1, 2

pr in t  in teg . defaults: 1, 2.

pr int  scf . defaults: 0, 1.

When the SCF procedure encounters convergence problems, the value of    iprnts    is automatically

increased in SCFTST (but not higher than 2). This induces the output of information which may

clarify the type of convergence problem.

pr int  e ig . first default: 0 : eigenvalues at the first and the last cycle; no eigenvectors.

second default: 1 : complete eigensystems at the first and last cycle.

other values: 2 : (only) eigenvalues at all cycles. 3 : complete eigensystems at all cycles.

pr int  prop. defaults: 0, 1

More specific print instructions are activated by keys that resemble those of the previous set, but that are

processed differently in the program. All these keys have the form pr int  abc, where 'abc' is some special

string. Whenever such a key is found by GETINP, i.e. when 'abc' does not equal (or contain) 'pre', 'int', 'scf',

'eig' or 'prop', routine PRNTST is called, which adds the string 'abc' to a list of print instructions, stored in

the array    prtlst   . The occurrence of a specific string in the list is checked by the logical function PRNT-:

PRNT('abc') is true if 'abc' has been added to the print instruction list. This set-up is analogous to that for

the keys (cf. routines KEYSET, KEY) and has been devised to adapt the output easily to new demands. The

print strings recognized by BAND are

print  fermi : detailed information about the determination of the fermi energy at every cycle and related

data.

pr in t  f i t  : fit coefficients and related data at every cycle.

print  occup : the occupation numbers for all one-particle states at every cycle.

g  e  n e  r a l   c  o  n t  r o  l  

execute (SS).BAND stops after execution of SS; 'ss' must be the name of a subroutine or section that is

recognized by BAND's controller; all major subroutines satisfy this requirement (see SS^control).

sk ip  (SS1,  SS2, .. ). BAND skips the sections or subroutines SS1, SS2, ... Again 'ss1', etcetera must be

recognized by the controller. Any consequences of the not-executing are not (yet) taken care of in

BAND; the program may even 'crash' because e.g. variables have not been computed. In practice this

option is consequently only safe for a few specific sections (e.g. ELSTAT: the electrostatic interaction

energy is not computed then, but this has no further consequences; also various parts of the properties

section may safely be skipped).
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The sections to be skipped are stored (by routine SKIPST, called from GETINP) in a 'skip-list', the

array    skiplst   ; the presence of a specific string in the list is checked by the logical function SKIP('ss').

Compare the manipulation of keys and print directives.

The skip-list is printed in the output heading.

Of course it is an easy matter to extend the applicability of the skip-command beyond the standard

sections and routines in BAND. Execution of any part of the program may be subjected to the value of

SKIP('ss'); 'ss' has thereby automatically been made into a recognizable name. We have done so for

instance with the printing of all overlap populations (in POPANA); this output is suppressed now by

the input command: sk ip  (overlap).

Other keys that influence the operation of BAND in a general way are

spin , unrestricted, polarized or magnetic. Both spins are treated independently as regards the

potential, charge density, eigensystems. The basis sets are identical (the free atom equations solved in

DIRAC are spin-restricted). Omission of the key implies a spin-restricted crystal calculation.

debug. The default value of all general print options are set so high that all possible output is generated.

Moreover BAND will not stop, as it would do otherwise, when intermediate results are suspect.

tes t . This incorporates most of the debug effects. In addition some (other) defaults attain different values.

In particular integration levels in real space and in k-space are lowered. The default resettings are

performed by TESTST.

k  e  y  s   w  i  t  h  b  l  o  c  k   t  y  p  e   i  n p  u t  

We conclude this section with the enumeration of all keys that carry with them in the input file a block-

structure, as defined before:

lat t ice, a toms, dirac, s to  and f i t  have already been mentioned.

integrat ion provides information for the integration package. See SS^integration.

gross  popula t ion and overlap populat ion determine which partial densities of states have to be

computed. See SS D̂OS.

1 4 I n t e g r a t i  o n 

Integrals over the crystal unit cell are evaluated by numerical integration. The integration formula is based

on a partitioning of space in atomic polyhedra, core-like spheres and (except for 3D crystals) an outer

region. For each of the sub regions efficient product-Gauss rules are generated. The procedure is described

extensively in [chapter III].

In other software sections some specific aspects are dealt with, such as the construction of the atomic

polyhedra and the irreducible wedge (SS^geometry) and the computation of the space group operators and

their application (SS^symmetry). Here we mention a few details that have not been covered yet.
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The theory and global set-up of the integration formulas are discussed in chapter III. The integration package

POINTS is suited for periodic systems as well as for molecules; the latter have been used extensively to test

the performance and we will therefore refer to the molecular application from time to time in the discussion

below.

POINTS is called from GEMTRY. GEMTRY supplies the necessary data (atom positions, lattice structure and

integration parameters) to POINTS via file    itipnt   . POINTS returns a file with points,    itpnt   , and a file with

geometric data,    itgeom    . The latter contains in particular the space group operators and the division of the

atoms in sets of symmetry equivalent ones.

The file with points is processed further in RPNTID. Each record written by POINTS contains precisely

one complete set of symmetry equivalent points. After the reorganization in RPNTID the block structure on

the file is such that a) the number of points per block does not exceed a prescribed maximum length    npx   

and b) each block contains only complete sets of symmetry related points. Also written to this file is

information concerning the symmetry relation between the points. This serves to facilitate in various parts

of BAND symmetry operations based on numerical integration: e.g. the symmetrization of a function by

averaging over the equivalent points (the density) and the expansion over all points of a symmetric function

that has been computed in the unique points only (the potential). Furthermore RPNTID computes for each

point which atom is nearest by (according to some metric); this is used by CHARGE to partition the self

consistent charge density over the atoms.

Each block on the resulting points file (   itpnt   ) consists of the following records:

1    np   : the total number of points in the block.

2    xp   (np): the x-coordinates of the points.

3,4    yp    and    zp   (np): the y- and z-coordinates.

5     wp   (np): the integration weights.

6    npsym    : the number of symmetry unique points in the block.

7    nequiv   (npsym): the number of equivalent points for each of the unique points.

8    idatom    (np): for each point the index of the atom nearest by.    Idatom    () may have a positive or a

negative value; the indicated atom is abs(   idatom    ()), positive and negative values signify that the

points are inside, respectively outside the atomic sphere.

As discussed in SS^workspace    itpnt    is reorganized several times (RPNTRE, REORGF). The same structure is

maintained. Only the maximum block length n   px    may be changed.

i  n p  u t  

A file    itintg    is opened in INIT and used by BAND to collect integration parameters. In GEMTRY this is

combined with the atom coordinates etc. to write the input file for POINTS    itipnt   . Integration parameters can

be specified via input with the key integrat ion. The contents of the associated data block (see SS^input) is

copied to    itintg    and finally to    itipnt   . This data block is read again by the input routine of the integration

package, RDINTG. It must consists of a sequence of keys with additional numerical information. RDINTG

knows two types of keys: a) single records containing the key and a number, and b) one record with the
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key and a second record with an array of numbers, one for each type of atom in the system. The admissible

keys, their meanings and the default values are listed below; the names of the corresponding variables are

identical to the keys.

type a: single-value keys   

1    accint   ; default: 3.5. This is the general accuracy parameter. In normal operation only this parameter

should be supplied, if any at all. Almost all other parameters depend by default on    accint   .

The computed integration formula is intended to give an accuracy of    accint    significant digits for

integrals that normally occur in electronic structure calculations.

2    accsph   ; default:    accint   . Analogous to accint accsph is an accuracy parameter referring to the number

of significant digits of the formula, in this case for the radial integration in the atomic spheres only.

3    accpyr   ; default:    accint   . Similarly    accpyr    refers to the atomic polyhedra and the constituting

pyramids.

4    accpyu   ; default:    accpyr   . The integration over the atomic pyramids is a threefold product formula in

variables u,v and w. U and v describe more or less the angular integration and w parametrizes the

radial variation relative to the central atom in the polyhedron.     Accpyu    specifies of course the accuracy

of the outer integration 'loop' over the variable u.

5,6    accpyv    and    accpyw    ; defaults:    accpyr   . Similar to    accpyu   , now for the variables v and w.

7    accout   ; default:    accint   . The accuracy parameter for the outer region (not relevant for three-

dimensional crystals). The treatment of the outer regions in POINTS is not very sophisticated

compared with the spheres and polyhedra: notest functions are employed to monitor and tune the

number of points to the specified accuracy. The parameter name    accout    is therefore a little misleading;

of course it is meant to have the meaning suggested, but the necessary code has not yet been

developed. Fortunately the outer regions are in general not very relevant for the integrals. Moreover

accout    does determine the number of points in the outer region (see below) and our experience thusfar

suggests that the resulting accuracy is at least good enough in the large majority of cases.

8    dishul   ; default: 2.3×   rsphx   .     Rsphx    is the radius of the largest atomic sphere (see parameter    rspher   

below).     Dishul    is the distance from the outer atomic spheres to the enveloping boundary planes that

constitute the inner limit of the outer region. The atomic spheres have usually radii in the order of 1

a.u., so that the outer region starts at approximately 3 à 3.5 a.u. from the nuclei.

9    frange   ; default depends on the nuclear charge and on    accout   .     Frange    specifies the distance at which all

one center functions become negligible (not counting the multipole potentials). In the integration

formula it is the position of the outward limit of the outer region, measured from the outermost

atoms.

The default depends on the nuclear charge of the heaviest atom, Zx   and on the integration parameter

accout   . The relation below is based on some trial and error and on common sense. Set fr=10 (Zx  ≤2),

12 (Zx  ≤18), 15 (Zx  ≤54) or 20 (otherwise). Then    frange   =fr×(3−2e−0.07×accout ). Fig.5 depicts    frange   

as a function of    accout    for Zx  =30.

10    nouter   ; default: 1+nint(2.5/    dishul   ).

The outward integration in the outer region is logarithmically subdivided in    nouter    subintervals. In

most situations two subintervals is optimal: a relatively narrow interval near the outer atoms and a
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large interval for the decaying tails of the functions. If    dishul    attains extreme values, some adaptation

is necessary of course, hence the applied default relation.

11    outrad   ; default: 1.3+0.9×   accout   .

This paramater governs the 'radial' integration in the outer regions (outward, away from the atoms).

The default relation has been fitted by a number of test calculations on various molecules.     Outrad    is

the number of integration points per outward subinterval (see    nouter    above).

12    outpar;    default: 0.5+1.5×   accout   .

Parameter for the 2D integrations parallel to the boundary planes of the outer region. The default

relation has again been determined from test calculations.

13    l inrot   ; default:    lintgx   +1. This parameter is relevant only for systems with an axis of infinite

rotational symmetry such that all atoms lie in a straight line. The symmetry unique points can all be

chosen in a half plane: we have in fact a 2D integration problem. BAND however needs also the

equivalent points to evaluate correctly integrals over the rotational angular variable.

For each of the symmetry unique points (in the half plane) POINTS generates a circle of equidistant

points. The necessary number of points depends on the angular momentum quantum numbers of the

integrands. The maximum l-value is    lintgx    (see below); the required number of angularly equidistant

points to integrate the periodic functions of this order is    lintgx   +1.

If    linrot    is specified on input, the generated number of points on the circle is the smallest integer

multiple of    linrot    that equals or exceeds    lintgx   +1.

type b: keys with ntyp data in the next record   

1    rspher   . The radii of the atomic spheres. By default they are determined for each type by a) the distance

d0  to the nearest atom and b) the nuclear charge Z, such that

a    rspher   <d0 /2: the atomic sphere is inside the atomic voronoi polyhedron.

b if d0  is small:    rspher   ≈d0 /2: the sphere is as large as possible in narrow regions.

c if d0  is large:    rspher   ≈d0 /2: for free, isolated atoms integration in spherical coordinates is optimal,

so we extend the sphere as much as possible in such a situation. 'Very large' is defined to be    frange   ,

the assumed function range, so    rspher    depends also on this parameter.

d for 'normal' values of d0 :    rspher    equals approximately a standard value that depends on the nuclear

charge: heavier atoms get a larger 'core'-sphere. The implemented function can be found in RDINTG.

It results for instance in    rspher   =0.5 for hydrogen, 1.0 for oxygen, 1.3 for copper and 1.7 for uranium.

(In fact a smooth function has been devised that produces precisely these values). To get an

impression of the combined effect of all aspects fig.6 displays the value of    rspher    as a function of

d0  for copper, with    frange   =25 a.u.

2    l in teg   : the maximum angular momentum quantum number of one-center integrands, one value for

each type of atom. (    Lintgx   , used to determine the default value of    linrot    above, is the maximum over

this array). BAND automatically computes these values from the fit functions and basis functions

employed in the calculation.     Lintgx    is used by POINTS to choose the appropriate angular integration

formulas for the atomic spheres.

The default value for    linteg    as implemented in RDINTG depends on the nuclear charge:    linteg   =0 (Z≤2), 4

(Z≤18), 8 (Z≤54) or 12. This is not relevant here because BAND overrules the default values anyway.
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remarks

# The defaults stated above might yield evidently ridiculous values in some situations. For instance    dishul   

(=2.3×   rsphx   ) would become unreasonably small if we explicitly specify extreme values for the atomic

spheres. This is accounted for in RDINTG by checking such extraordinary situations and changing the

default to more sensible values. The details of these checks and adaptations can be found by inspection

of RDINTG. We have attempted to provide reasonable defaults for all parameters, whatever the

specifications for the others.
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# As mentioned

before, the

treatment of the

outer region is

not so well

developed (yet)

as the atomic

spheres and

polyhedra.

Although this is

usually not a

problem due to

the relative

unimportance of

that part of

space and

because the

implemented

strategy

functions

reasonably well

in practice, we

have

encountered

(minor)

difficulties with

some

molecules.

Invariably this

had to do with

the 'parallel'

integration

(parameter

outpar   ) over

large polygons

that were part of

the enveloping

molecular

polyhedron.

These polygons

are subdivided in quadrangles (and possibly a triangle). No further subdivision is made. Consequently we
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Fig.5. Assumed function-range (frange), in a.u., depending on the integration

parameter accout, for Zx  =30. (see text)
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Fig.6. Radius of the atomic sphere (a.u.) for Cu, as a function of the distance

d0 (a.u.)  to the nearest atom. (assumed function range: 25 a.u. (see text))
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may occasionally have to integrate over very large quadrangles with one single product Gauss-Legendre

formula. Functions that are relatively localized are not integrated easily then and a subdivision in

smaller quadrangles would probably be better.

When such troubles come up one may specify a larger value for    dishul   , thereby shifting the problematic

region away and making it less important, or one may increase    outpar   . It is not easy to say which of

the two leads effectively to more integration points. Increasing    dishul    implies enlarging some of the

atomic polyhedra; this results usually in significantly more points in the involved pyramids. At the

other hand, if the outer polygons are essentially too large for efficient integration,    outpar    will have to

be increased considerably before the problem is solved.
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1 5 I n t e r p o l  a t i  o n  a n d  b l  o c h  s u m s 

The construction of crystal basis functions involves interpolation and bloch summation. The crystal

functions are represented by their values in the integration points and they are computed (in most cases) as

bloch sums of one center functions

f(k ;r) = ∑
R

  eik ·R  (r R ) (15.1)

The summation over the lattice points, or cells R  is infinite but for the value of f(k ;r) in a point r in the

central unit cell the loop may be cut off at some large cell distance because the employed one-center

functions (r) decay exponentially for large r.

The functions (r) are of the form Zlm ( ) P(r  ), consisting of a spherical harmonic times a radial

function in coordinates relative to some atom . The radial functions are in BAND represented as tables,

P(r)≡{P(ri ),i=1,..,nr}.

i  n t  e  r p  o  l  a t  i  o  n 

To compute the sum (15.1) we must in particular determine from the table the radial function value P(r) for

any distance r. This is achieved by a three-point Lagrange interpolation: given r we determine the three

nearest points in the radial grid, ri , ri+1  and ri+2 . P(r) is then computed as a linear combination

P(r) = e1 Pi  + e2 Pi+1  + e3 Pi+2 (15.2)

such that P(r) is implicitly approximated by a parabola through the three points.

For each occurring distance r we have to determine the index i in the radial table and then the combination

coefficients e1 , e2  and e3 . Let c be the multiplication constant that characterizes the radial mesh, c≡rj+1
/rj . The interpolated value is given by the Lagrange formula

P(r) = 
(r ri+1)(r ri+2)

(ri ri+1)(ri ri+2)
  Pi   + 

(r ri)(r ri+2)

(ri+1 ri)(ri+1 ri+2)
  Pi+1   + 

(r ri)(r ri+1)

(ri+2 ri)(ri+2 ri+1)
  Pi+2  =

(define b=r/ri )

= 
(b c)(b c2)

(1 c)(1 c2)
  Pi   + 

(b 1)(b c2)

(c 1)(c c2)
  Pi+1   + 

(b 1)(b c)

(c2 1)(c2 c)
 ) Pi+2  =

= d1 (b c)(b c2)  Pi   + d2 (b 1)(b c2)  Pi+1   + d3 (b 1)(b c)  Pi+2 (15.3)
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d1 , d2  and d3  are constants of the radial mesh: d1 =1/{(1 c)(1 c2 )}, d2 =1/{(c 1)(c c2 )}, d3 =1/{(c2

1)(c2 c))}. The interpolation coefficients in (15.2) are thus given by

e1  = d1 (b c)(b c2) 

e2  = d2 (b 1)(b c2) (15.4)

e3  = d3 (b 1)(b c) 

Of course r may be so large that we need extrapolation from the table. This should make no difference. The

tables are expected to contain the whole range of the function so that the last few values Pnr , Pnr 1 ,.. are

negligible and the result is almost zero. Polynomial extrapolation of an exponentially decaying function is

in principle hazardous however and we set the coefficients explicitly to zero as a safety measure.

The radial grid points are ri =r1 ci 1 . If ri+1  is the grid point closest to r, the index i is computed as

i = nint 



log(r/r1)

log(c)
 (15.5)

Nint(x) is the integer nearest to x. The index i to be used is of course constrained by 1≤i≤nr−2.

implementation

Radial functions are interpolated in ATMFNC, BASPNT and FITPNT. The organization is in all three routines

analogous. The radial mesh points (that is, their reciprocals) are stored in array    rinv   . For each type of atom

subroutine INTDAT provides various constants related to the radial mesh:    d1   ,    d2    and    d3   ,    c    and    csq   (=c2 ),

nr2   (=nr−2),    rfac   (=1/r1 =   rinv   (1)) and    clogi   (=1/log(   c   )) (c.f. (15.4) and (15.5)).

Then we compute for a vector of integration points, with the coordinates relative to some atom  in some

cell R , the interpolation coefficients for each point as follows:

1. determine the radial distance r ,R  and (except in ATMFNC) also the values of the spherical harmonics.

2. get index i: intpl=nint {clogi×log(r×rfac)}

3. apply the constraints: intpl=max(intpl,1) and intpl=min(intpl,nr2) (routine VBND2I).

4. b=r×rinv(intpl)

5. determine the coefficients from (15.4)

6. no extrapolation: if b>csq, set e1 =e2 =e3 =0 (routine CONDIT).

Some of these operations have been isolated in separate routines (CONDIT, VBND2I) because the code

appeared to be not so easily vectorized (by the Cy205 compiler) in the original context.

accuracy and normalization

Interpolation implicates obviously some inaccuracy, which depends on the denseness of the radial mesh. We

have tested this by interpolating exponential functions rn e r  and comparing the resulting integrals with

the analytical values; a numerical integration scheme with very high precision has been used for this, so

that the errors are determined by the interpolation. Fixing the first and last mesh-points at 10−4  and 40 a.u.



Interpolation and bloch sums 88

(the defaults in BAND) we found relative errors of the order 2×10−5  for 300 mesh points, 1.5×10−6  for

600 points, 2×10−7  with 1200 points and 3×10−8  using 2400 points. These figures are the r.m.s. errors

found for the employed set of test functions; the worst cases deviated less than an order of magnitude. The

default used in BAND, 2000 points, may thus be expected to give no significant interpolation errors.

Application of a four-point interpolation did not yield a substantial improvement. We have not tried a five-

point interpolation; the interpolation routines (especially BASPNT) take a major part of the execution time

(in the preparation stage of the program) and the use of five instead of three interpolation coefficients would

considerably increase the cost.

Of some functions the exact integral is known. This holds for instance for various functions of the

numerical free atoms: the charge density, the potential, the individual orbital densities and the corresponding

kinetic energy functions. Their integrals, as evaluated numerically over the radial logarithmic grid, are so

accurate that they may be called exact. The numerical integral over the crystal grid gives an indication of the

interpolation accuracy, but is also determined of course by the quality of the crystal grid itself. One may

now apply some normalization to correct the deviations, by simply multiplying the interpolated function

values by a constant. We have experimented with this possibility but found that it is better not to do so:

the total energy of the crystal and the cohesive energy were less stable against variations in the integration

precision and hence, on the average, their deviations from the exact (converged) result were larger. We have

applied the normalization to several combinations of the obvious candidates (only the density, the density

and the kinetic energy, the potential, and so on); in none case we found an improvement.

b  l  o  c  h  s  u m  s  

To limit the number of terms in the bloch sums (15.1) all radial function tables are analyzed; for each

function the minimum number of cells is determined to evaluate (15.1) with sufficient precision. First

RADMAX calculates the maximum radial extension of any of the tabulated functions. The computed

maximum cell-distance needed in any bloch sum,    rcelx   , is then used by CELLS to generate a list of    ncel   

lattice points,    xyzcel   (3,ncel), ordered according to their distances from the origin. Finally CELMAX re-

examines the radial tables and copies them to another file together with the maximum number of cells to be

used for each of them individually.

RADMAX and CELMAX employ the same auxiliary routine RADMAA for the analysis of a single table:

RADMAA takes the absolute values of the function and integrates then with a repeated simpson rule

(SIMPSL) over a trial subrange 1..ntry of the    nr    points. This is compared with the total integral and the

minimum value of ntry is determined (by bisection) where the missing part represents less than a fraction

cutoff   .

The criterium for negligibility    cutoff    is 10−max(3.0, accint+1.0) (computed in RADIAL) ;    accint    is the

general accuracy parameter for integration over the crystal unit cell (SS^integration).    cutoff    is optionally read

from input (key: cut  off ; the second default 10−2  leads to a rather crude approximation of the bloch

sums).
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remarks

1. The generated list of 'cells' is usually larger than according to this section. The reason is that the lattice

summation of the multipole potentials in VMULTI requires more terms and employs the same list

xyzcel()   .     Rcelx    is therefore determined also by the parameters    rmadel    and    dmadel    used in the evaluation

of these potentials (SS^coulomb potential).

2. Rcelx may be read from input with key rcel or cell  distance.

1 6 I t e r a t i  o n 

The crystal hamiltonian equation is solved by an iterative procedure. Self consistency may be checked by

monitoring in subsequent cycles for instance the total energy, the electronic charge density or the potential.

BAND uses the potential.

Define the cycle operator F. It comprises one complete cycle, in which the potential V  leads, via

diagonalization of the hamiltonian and construction of the resulting density to a computed new potential

F(V).

F: V  ⇒ H ⇒ {e, } ⇒  ⇒ F(V) (16.1)

In the self consistent situation F(V)=V . Starting from some trial V0  we obtain F(V0 ) and may insert this

into the next cycle as the new potential V1 . The sequence Vk  , k=1,2,.. may then be hoped to converge,

but in many cases it displays oscillatory behaviour.

o  p  t  i  m  i  z  e  d  d a m  p  i  n g  

BAND solves this by damping. The potential used in the next cycle is a mixture of the previous and the

computed one:

Vk   = (1− )Vk 1  + F(Vk 1 ) ≡ H (Vk 1) (16.2)

where we introduced the operator H  =(1− )1+ F.

In virtually all cases the oscillations are suppressed and convergence of the sequence {Vk  } is achieved if the

mixing parameter  is small enough. Of course too small a value for  slows down the development of V

towards self consistency and one would like to use some optimum value opt .

It turns out that opt not only varies from one atomic system to another, but also that it may depend on

the stage of the iterative proces. Often it is necessary to use stronger damping, by diminishing γ , as self

consistency is approached. BAND tries to optimize γ  from cycle to cycle. The way in which this is done is

based on a discussion of self consistency strategies in [Marchuk 1975].

Define by G≡1−F the operator that yields the difference between input and output of a cycle.
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G(V) = V − F(V) (16.3)

The self consistent solution V*  to be found satisfies G(V*)=0. We assume now that F and G can be

approximated by linear operators with real eigenvalues. Let then {un , n }, n=0,1,.. be the eigensystem of F

F(un ) = n un (16.4)

with u0 ~V*, 0 =1.

A proper self consistent V*  must at least be locally stable, so that n <1, n=1,2,.. [Dederichs and Zeller

1983] The related eigensystem of G, {un , n ≡1− n } thus satisfies 0 =0, n >0, n=1,2,...

If V  has the expansion

V  = V*  + ∑
n=1

  cn un (16.5)

then

F(V) = V*  + ∑
n=1

  n cn  un (16.6)

The (local) stability of the self-consistent solution implies n <1, but not  n <1, so it is not assured

that the sequence F(V), F(F(V)),.. should converge to V* .

Consider now simple damping and define (16.2):

H (V)  = V − G(V) =  V* + ∑
n=1

 (1− n)  cn  un (16.7)

The convergence rate of the n-th component is n ≡(1− n ). The sequence H (V) , H (H (V)) ,..

converges if  n <1 for all n.

The (asymptotic) rate of convergence is determined by the most slowly decreasing component, i.e. by max
n

 n . Denote the smallest and largest  by  and  respectively, 0< ≤ n ≤ , n=1,2,.. and the

corresponding (normalized) eigenvectors by α〉 and β〉. Best overall convergence is achieved with

opt = 2 ⁄  ( + ) (16.8)

For α〉 and β〉 this gives an absolute rate of convergence

1− opt  =1− opt  = ( − ) ⁄  ( + ) (16.9)

and all other components decrease faster. With optimal damping the deviation of Vk   from V*  becomes

more and more dominated by α〉 and β〉 as the iterations progress. Let us assume then for simplicity

Vk   = V* + c  α〉 + c  β〉 (16.10)
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so that

gk   ≡ G(Vk  ) = c  α〉 + c  β〉 ≡ Aα〉 + Bβ〉 (16.11)

This gives at the next cycle

Vk+1  = Vk   − gk   = V* + (1− )c  α〉 + (1− )c  β〉 =

= V* + c  α〉 + c  β〉 (16.12)

gk+1  = Aα〉 + Bβ〉 (16.13)

In optimal damping =2/( + ), so that =− . For all reasonable values of  we have at least 0≤ <1

and −1< ≤0: both components decrease and the -component oscillates. fig.7 displays gk   and gk+1  as

vectors in the two-dimensional space spanned by α〉 and β〉. The coordinate axes are depicted oblique to

stress that α〉 and β〉 are not necessarily orthogonal.

Our main purpose now is to achieve optimal damping. In that case the angle  between successive vectors

gk   is a constant, independent of k, and gk   and gk+2  are parallel. The potential V  and hence g are available

by their values in the integration points. The norm gk   and the inner product (gk  ·gk+1 ) are thus easily

computed and defne the angle 

cos k  = 
(gk 1·gk )

gk 1 gk (16.14)

If A  and B of (16.11) and (16.13) differ very much in size cos k ≈±1 and a change in  may be computed

less accurately. Therefore we strive to have A=B as a secondary goal, together with = opt . In the

optimal situation that A=B and = opt the vectors gk 1  and gk   are orthogonal, cos =0. The

overall strategy, combining the two goals, is to let cos  go slowly to zero in the course of the iterations.

The smallness of the changes in θ assures that ≈ opt ; the direction of the changes corresponds to making

the two components equal.

At every cycle the angle k  is calculated and compared with k 1 . The development in the angle tells us

whether  is smaller or larger than opt , while the value of  itself indicates the relative sizes of the -

and -components;  is then adapted accordingly.

This set-up is fairly straightforward but contains a few problems. In the first place we have to determine by

how much  should increase or decrease. Secondly we have made some strong assumptions. If they were

exact it would be possible to determine the vectors α〉 and β〉 and their coefficients A  and B from a few

consecutive 'measurements' gk  , gk+1 ,... We could then compute V*  exactly. In reality however other

components than α〉 and β〉 are also present. Furthermore the true operator G is not linear. The linearized

form represents a first order approximation in the neighbourhood of the current potential V . Consequently

the apparent eigensystem {un , n } varies from cycle to cycle as V  changes. The angle k  and its relation

to k 1 are then not so simply related to the mixing parameter  as we have assumed above.
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In the past years we have

tried in several ways to use

various assumptions more

rigorously. Again and

again this has yielded

spectacular convergence in

some cases and divergence

or oscillations in others.

The strategy implemented

in BAND employs the

stated assumptions

cautiously and has proven

to be robust. Convergence

is reached almost always,

though it may occasionally

take a large number of

cycles, up to a few

hundred. Typically 30

cycles suffice.

implementation

Subroutine RHOPOT computes the new potential F(V) from the density and calls MIXITR, which determines

the new mixing parameter. The variables that are relevant for monitoring the development of  and  are in

common block VARDAT. At every cycle the previous potential Vk 1  and the corresponding difference

vector gk 1  are on file    itpot   . Together with the computed mixing parameter,    parmix    ( ), they define the

current potential: Vk  =Vk 1 − gk 1 .

To compute a next value of  it is assumed that it lies between a lower bound l and an upperbound u ,

the variables    parmxl    and    parmxu    in the program. To accomodate to changes in the apparent eigensystem of

G, l and u are updated together with  itself. The interval ( l , u ) is intended to indicate something

like an error bar on  itself and is used to scale the amount of change in . The interval becomes smaller

when  is more or less stable over several cycles and it is enlarged when the adaptations to  appear to be

insufficient.

To monitor the development of the angle k  between the vectors gk 1  and gk   MIXITR employs an 'error'

function k , which is sensitive in the whole domain of , in particular near the undesirable extreme values

0 and π, which varies from −∞ to +∞, equalling zero in the optimum =π/2.

k  = tg( k /2) − 
1

tg( k /2)
 (16.15)

Fig.7. Two consecutive difference vectors g  and their components along

the - and - axis (see text).
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k , rather than cos k  is checked and guided to zero. The optimal development is defined to be k
=0.95 k 1 . The relative deviation from this is

 = 
k−0.95 k 1

 k  (16.16)

 is increased if <0 and diminished otherwise. The size of  is used to compute the new  in the

appropriate interval ( previous , u ) or ( l , previous ) respectively. The map d ( ) is chosen as a fermi-

distribution function: approximately linear dependency on  around the cut-off point ( =0) and an

exponential approach to the limit l (or u) for large  .

The update of the boundaries is as follows. If  increases the lower boundary l is increased somewhat and

the upper boundary is shifted upward; this shift is larger when a) the last few changes in  have been in the

same direction and/or b) the previous increase of  was relatively large. Both cases suggest that the upper

bound has been too close and consequently the increments of  too small. A variable,    pmixch   , keeps track

of the number of consecutive changes of  in the same direction.

If  diminishes the boundaries are updated in a similar way, but the increasing and decreasing cases are not

treated on the same footing. The reason is that a too large  may easily lead to a (temporary) divergence in

the SCF procedure, while a too small value only slows down convergence (16.7). Therefore the implemented

adaptations are such, that a speed-up in boundary adaptations is triggered more easily for decreases than for

increases of .

The norms gk   are used to check convergence. The current value,    potdif   , is compared in routine SCFTST

with the convergence criterium,    convrg   . The quotient of successive values of    potdif    defines the rate of

convergence. From fig.7 it can be inferred that this quotient will oscillate if the 'coordinate' axes are oblique

(assuming optimal damping). Such an oscillatory trend in the convergence rate is encountered fairly often.

The situation is then better judged by considering the development over two cycles at a time; we do this by

taking the harmonic average of two successive quotients.     Conv0    is the current quotient,    convr0    (in common

VARDAT) that of the previous cycle, and    averag   ≡(   conv0   ×   convr0   )1/2  the quantity used. In order to measure

the overall development, neglecting moderate variations from one cycle to another, the convergence rate

convrt    is defined in BAND as a weighted (harmonic) mean of    averag   -values of subsequent cycles:

convrt ← convrt0.85  × averag0.15 (16.17)

Convrt    is initialized in INIT (0.5) and checked at every cycle in SCFTST by comparison with a criterium

scfrtx   . It may happen that the automatic adaptations fail, in the sense that the SCF procedure converges too

slowly (or not at all):    convrt    exceeds    scfrtx   . This may be due to some weak point in the optimization

algorithm or to problematic aspects in the atomic system at hand. If for instance many bands are close to

the fermi level, previously unoccupied bands may drop below occupied ones as a consequence of the changes

in the potential. The occupation numbers are determined according to the aufbau-principle so that abrupt

variations in the electronic configuration may result with corresponding large changes in the computed F(V)

and hence in the difference vector g. When convergence seems to fail, SCFTST attempts to recover by
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halving  abruptly; the resulting slowing down of the iterative potential updates has proved to solve the

convergence problems in the large majority of cases.

At such an intervention by SCFTST, the boundary values l and u are adapted accordingly;    convrt    is re-

initialized at 0.5 and    scfrtx    is slightly increased to allow slower convergence in the continuation.

This trick is repeated until it is concluded that convergence is still failing. This is judged by comparing the

values of    potdif    at the successive interventions by SCFTST; if this sequence does not converge the program

is stopped; the last value in that sequence is stored in the variable    difold   .

γ  as well as the boundaries l and u are allowed to assume values between zero and some maximum,

parmax   .    parmax    is initialized at 2.0, but it is decreased by SCFTST when convergence is problematic.

INIT initializes    parmix    (0.15),    parmxl    (0.10) and    parmxu    (0.20).

Via input various aspects of the iterative procedure may be influenced, by using the following keys:

mix , or damp specifies the initial value of    parmix   . If the key record contains a second real value, this is

assigned to a factor    delmix    (default: 0.75). The boundary values    parmxl    and    parmxu    are initialized at

parmix   ×   delmix    and    parmix   /   delmix   .

converg overrules the default of the absolute convergence criterium    convrg   .

scfrtx supplies the slowest allowable rate of convergence    scfrtx   .

cycle specifies the maximum number of cycles to be executed. For organizational reasons at least two

cycles will be executed. If maximally one cycle is ordered, then    parmix    is set at zero, so that the final

results correspond to the starting-up potential, without any update.

C  h e  b  y  s  h e  v   a c  c  e  l  e  r a t  i  o  n 

Strategies for iterative processes are discussed frequently in the literature. A few words may be spend here on

a method, called the Chebyshev acceleration [Marchuk 1975]. It may provide a significant improvement

over damping. Terminology and definitions are as above. In particular it is assumed again that the operator

G=1−F is linear with real eigenvalues.

In damping Vk   is a linear combination of F(Vk 1 ) and Vk 1 . The Chebyshev method is based on a

straightforward generalization of this: Vk   is a linear combination of F(Vk 1 ) and all previous Vm ,

m=k−1,k−2,... It will turn out that it is not necessary to store all these previous potentials.

Let V0  be some trial potential and let Pk (x)  be a polynomial of degree k in the variable x. Define the

sequence {Vk  } by

Vk   = Pk (G)  V0 (16.18)

With the expansion (16.5) for V0  this gives

Vk   = Pk (G) ∑
n=0

  cn un  = ∑
n=0

  Pk ( n)  cn  un (16.19)

with c0 u0 =V* . Two conditions are imposed on the polynomials Pk  :
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a) Pk (G) V*=V*  → Pk (0) =1. This is a normalization condition; it is analogous to the coefficients of

F(Vk 1 ) and Vk 1  adding up to unity in (16.2).

b) Pk ( )  is as small as possible for all  in the spectrum of G. This states that any component in V−V*

should be made as small as possible (16.19). Since we do not know all (discrete) n , this condition is

generalized to the whole interval ( , )

max
≤ ≤   Pk ( )  is minimal (16.20)

The Chebyshev polynomials of the first kind have the minimax property, so the conditions a and b are

satisfied by

Pk ( )  = 
Tk (

+ 2
)

Tk (
+

)
 (16.21)

where Tk (x)  is the Chebyshev polynomial (of the first kind).

The recurrence relation for Chebyshev polynomials, Tk (x) =2xTk 1(x) −Tk 2(x) , can be used to obtain a

convenient expression for Vk   from (16.19) and (16.21). Define

x = 
+ 2G

            z = 
+

 (16.22)

This gives

Vk   = Pk (G)  V0  = 
Tk (x)  V0

Tk (z)
  = 

2zTk 1(x)V0 − T k 2(x)V0 − 
4

GTk 1(x)V0

Tk (z)
  =

= 
2zTk 1(z)Pk 1(G)V0 − T k 2(z)Pk 2(G)V0 − 

4
Tk 1(z)GPk 1(G)V0

Tk (z)
  =

= 
2zTk 1(z)Vk 1 − T k 2(z)Vk 2 − 

4
Tk 1(z)gk 1

Tk (z)
 (16.23)

Equation (16.23) shows that the Chebyshev method is in principle hardly more complicated than damping.

We have to store Vk 2  on file, in addition to Vk 1 . In damping we must determine one parameter, ; here

we need two parameters,  and . If these are known the numbers Tk (z) , k=1,2,... are computable with the

recurrence relation.

The iterative procedure is started with some trial potential V0 . To use (16.23) also for the first cycle, define

T 1(z)  = T1(z)  = z (16.24)

(satisfying the recurrence relation) and V 1 =V1 . For k=1 we obtain then
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V1  = V0  − 
2
+

  g0 (16.25)

i.e.: optimal damping at the first cycle.

Compared with damping the Chebyshev procedure gives theoretically a considerably faster convergence. In

optimal damping the convergence rate is given by (16.9): damp =1/z. In the Chebyshev method the

components decrease as Pk ( n) . Since Tk (x)  is a periodic function of k for all x≤1, all components in

(16.19) decrease on the average as 1/Tk (z) , giving for the convergence rate

cheb = Tk 1(z)  ⁄  Tk (z) (16.26)

For large z>>1 Tk (z)  is dominated by the leading term 2k 1 zk  , making cheb ≈1/(2z). The gain over

damping is a factor two per cycle.

For z close to unity ( >> ), say z=1+  with <<1, damping converges very slowly: damp ≈1− . In the

Chebyshev method convergence is not very fast either in the first few cycles, but significantly better than

with damping: in a first order Taylor expansion Tk (1+ ) ≈1+ k2 ( k2<<1)  giving ≈1− (2k−1). For larger

k the variation in  from one cycle to another will diminish. Assuming for simplicity that it is constant,

the recurrence relation can be used to compute

 = 
Tk 1(z)

Tk (z)
  = 

1

2z  − 
Tk 2(z)

Tk 1(z)

  = 
1

(2z− )
   ⇒   ≈  1 − (2 )1/2 (16.27)

So, if for instance =0.1, damping needs 25 cycles to proceed one order of magnitude, while this is achieved

in 4 cycles with the Chebyshev method (for large k); if =0.01 these figures become 230 and 15 cycles

respectively.

All this presupposes of course that the assumptions are correct: that G is a linear operator and that  and 

are known, at least approximately. A useful implementation will in particular require some way to adapt the

procedure to changes in the apparent spectrum of G, i.e. to update  and  iteratively and to incorporate

such changes in the method.

Impressive results are reported by Akai and Dederichs [1985], but the presented data are very few, making

one suspicious that these may correspond only to non-problematic cases. We have done some

experimentation in a simple Hartree-Fock program, in calculations on small first-row molecules. With

rigid, fixed values for  and , the results varied from reasonable improvement over damping to problematic

oscillatory behaviour. In all cases it proved advantageous to use simple damping in the first few cycles,

before starting up the Chebyshev method; the same experience was mentioned in [Akai and Dederichs

1985]. We have thusfar not worked out a practical implementation with control of the developments and

provisions for problems that might occur.
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1 7 L a t t i  c e  v e c t o r s 

LATTYP reads the lattice vectors from    itinpt    into array    avec   (3,3). The inverse-transpose,    bvec   (3,3) describes

the Bravais lattice in k-space (apart from a scaling factor 2π). The dimensionality in real space    ndim     is the

number of lattice vectors found in input.     Ndimk    is the dimensionality in k-space. By default    ndimk   =   ndim    ,

but a lower value can be requested with the key suppress. This specifies the number of directions in

k-space for which the dispersion is to be suppressed; the second default, induced by giving only the key

suppress without a numerical value in the same record, is:    ndimk   =0, i.e. all dispersion is neglected; only

the Γ-point K =0 is used then.

In one special case the program overrules whatever the input specifications imply by setting    ndimk   =0,

when each atom in the central unit cell is (or can be chosen to be) separated so far from any atom in a

neighbouring cell that the functions have no overlap. Effectively we have then in each unit cell a 'molecule'

isolated from all other atoms in the system. This is decided by ATMSEP. ATMSEP translates first by Bravais

translations all atoms in the central cell in such a way that they from a maximally compact group. Then the

minimum distance to any other atom is calculated, which is then compared with 
3
2 ×   rfar   ;    rfar    is the

maximum extension of any of the one-center functions in the crystal (not counting the multipole potentials

of course);    rfar    is calculated by RADMAX.

If dispersion is to be neglected in some but not all directions in k-space we have to determine which of the

ndim     original vectors in bvec are discarded. BAND chooses for this the shortest of the lattice vector(s) that

span the BZ.

O r i  e  n t  a t  i  o  n 

In many places in the program it is convenient to have the lattice vectors oriented such that only the first

ndim    , respectively    ndimk    cartesian coordinates are needed to describe the Bravais lattices. As the input

lattice vectors are not subject to any condition of this kind BAND performs a rotation to a standard

orientation. The transformation matrix    stdrot   (3,3) is computed in LATTIC. The input-specified atom

coordinates are interpreted in the original coordinate system; they are rotated in GEMTRY to the new frame.

1 8 L e g e n d r e  p o i  n t s 

Points and weights for Gauss-Legendre quadrature are generated by routines LEGPNT(n,x,w) and

LEGEND(n,x,w,a,b).
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LEGPNT is the basic routine. Input is n, the number of requested points; output are the n zeros    x(i)   ,i=1,n of

the n-th order Legendre polynomial and the associated weights     w(i)   ,i=1,n. The numerical integration with

this scheme is exact for polynomials of degree ≤2n−1 [Krylov 1962]. The points are located on (−1,1).

The integration scheme can be used for any finite interval by a linear transformation; the algebraic degree of

precision is then preserved. LEGEND calls LEGPNT to obtain the points on (−1,1) and transforms them to

(   a   ,   b   )

xi  ← a + 2 
xi+1

b a
 

(18.1)

wi  ← 
2wi
b a

 

computation of the points and weights

Let Pn(x)  be the Legendre polynomial of degree n, with zeros xi , i=1,n.

For each zero a first guess x is made with a distribution function (see below) for the zeros. This guess is

improved iteratively by the Newton-Raphson method (i.e. first order Taylor expansion) until convergence is

reached

x ← x − 
Pn(x)

Pn'(x)
 (18.2)

Pn(x)  and the derivative Pn '(x) are evaluated with the recurrence formulas for Legendre polynomials

[Arfken 1970] (P0(x) =1, P1(x) =x)

Pn(x)  = 
1
n
   {(2n−1)xPn 1(x)  − (n−1)Pn 2(x) }       n=2,3,.. (18.3)

Pn '(x) = 
n

1−x2  {Pn 1(x)  − xPn(x) } (18.4)

If x has converged to a zero, the associated weight can be computed from the relation [Krylov 1962]

w = 
2

(1−x2) (Pn'(x))2
 (18.5)

Using recurrence relations for the Legendre polynomials this can be rewritten in numerous different forms.

Since x is only approximately the zero the weight is also only approximately the exact integration weight.

The different possible formulas for the weights result in significantly different deviations from the correct

value. The reason for this is that terms involving Pn(x)  are omitted in the analytical forms but they are not

strictly zero in the computation. Trial and error taught us to adopt the formula (from 18.4 and 18.5)

w = 
1−x2

n2 (Pn 1(x) − xPn(x))2
 (18.6)
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Omission of the second term in the numerator, analytically zero, deteriorates the result.

t  h e   d i  s  t  r i  b  u t  i  o  n  f  u n c  t  i  o  n 

The zeros lie symmetrically around x=0. The distribution function gives the approximate location of the

zeros in (0,1). This approximation is

xi  ≈ sin 




π

2
 

(n+1−2i)
[(n+1/2+1)/(8 f(n,i))]

           i=1..n/2 (18.7a)

f(n,i) = 1/2 + n cos 




π

2
 
(n+1−2i)
(n+1/2)

 (18.7b)

remarks

# The Newton-Raphson procedure is only guaranteed to converge (to the intended zero) if the initial

approximation is accurate enough. The approximation function (18.7) is purely empirical; we have not

tried to derive a formal proof of the adequacy. Tests with n≤10,000 gave no problems; they indicate

even that the approximation is better for higher n.

# We have compared our results with the tables of Stroud and Secrest [1966] for n up to 1,000. For the

higher n-values the weights tend to be less precise than the points, presumably because the weights are

related to the derivative (18.5). For higher n the polynomial Pn(x)  oscillates rapidly, especially near the

endpoints x=±1, where the zeros cluster; small errors in x give thus much larger deviations in Pn '(x)

and hence in the weights.

The computed integration weights are added in LEGPNT. This sum should equal 2.0, the length of the

interval (−1,1). The deviation from this is 5e−13 for n=100, 7e−12 for n=1,000 and 7e−11 for

n=10,000. The test computations have been carried out on a Cyber750, with approximately 14 digits

floating point accuracy.

# LEGPNT multiplies finally all weights by a uniform normalizing factor to make their sum equal 2.0.

1 9 S C F  l  i  n e a r i  z a t i  o n 

In big calculations by far the most time-consuming parts in the SCF procedure are

a) the evaluation of the matrix elements of the potential, the iteratively computed part of the hamiltonian.

V
k
pq  = ∑

i=1

N

  wi  V(ri ) 
k*
p (ri) 

k
q(ri)          k=1,K    p,q=1,n (19.1)

V(r) is the potential; {wi } are the integration weights. With K k-points in the BZ, n basis functions (in

each k-point) and N integration points the computational effort is propertional to KNn2 .

b) the construction of the density.
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(ri ) = ∑
k

 ∑
pq

  P
k
pq  k*

p
(ri) 

k
q
(ri)          i=1,N (19.2)

Pk   is the density matrix in the representation of the basis functions in the given k-point. Again we have

the factor KNn2 .

(In fact there are two ways to compute the density: from the density matrix or directly from the occupied

eigenstates; see SS^charge density for a discussion of this).

A considerable saving of time is achieved when the involved multiple loop structures can be circumvented.

For both cases this is possible, be it only at some cycles of the iterative procedure. The integration points

and the basis functions are fixed quantities, so the only factors that change from cycle to cycle are the

potential V(r) in (19.1) and the density matrices Pk   in (19.2). The quantities to be computed, V
k
pq  and

(ri ), depend linearly on them. So if in the first case the current potential V0(r)  is accurately described by

a linear combination of potentials in previous cycles, then the same holds for the potential matrices Vk  .

The second case is analogous: a linear combination of density matrices Pk   defines the corresponding linear

combination of density functions.

In the SCF procedure of BAND these approximations are tested in the routines POTAPP and RHOAPP

respectively for the potential and the density. The implementation is structured as follows.

a p  p  r o  x  i  m  a t  i  o  n  o  f   t  h e   p  o  t  e  n t  i  a l  

File    itvstr    contains a sequence of    nstrp    orthonormal (potential) functions vj(ri) , j=1,   nstrp   . These functions

are not the potentials on subsequent cycles, but they are derived from them. The current potential v0(ri)  is

on file    itp   . By straightforward numerical integration v0  is expanded (POTAPP) in the set {vi }

v 0  ≡ ∑
j=1

nstrp

  cj vj (19.3)

cj  = ∑
i=1

N

  wi  v0(ri)  vj(ri) (19.4)

Define the error in the approximation as the length (squared) of the difference vector v0 −v 0 .

err = vnorm − ∑
j

  c
2
j  (19.5)

vnorm = ∑
i=1

N

  wi  v
2
0(ri) (19.6)

A logical    approx    tests the accuracy of the approximation, using a relative tolerance    test   
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approx = err < test × vnorm (19.7)

As the SCF procedure approaches convergence ever smaller differences in the potential become relevant. The

tolerance parameter    test    must therefore vary accordingly. SCF convergence is expressed by  (the variable

potdif    in BAND), measuring the difference between the crystal potential at the previous cycle and the

potential computed from the new density. The approximation criterium is set to

test = 10−7 (19.8)

Now, if the test is passed (   approx   =true) the coefficients cj  are subsequently used in EIGSYS to construct the

potential matrices (one in each k-point) as linear combinations of the (potential) matrices that correspond to

the set orthonormal potential vectors on file    itvstr   . The matrices are on file    ithstr   .

If the approximation is not sufficiently accurate, the difference vector v0 −v 0  is constructed, normalized

and added to the set;    nstrp    increases by one. In EIGSYS the potential matrix is computed in the normal way,

by numerical integration (19.1). The file    ithstr    is extended with the matrix (one for each k-point)

corresponding to the potential vector that has been added to    itvstr   . The new matrix is the difference between

the exact potential matrix for that cycle and the linear combination, multiplied by the normalization factor

for the potential vector.

remarks

1. The number of potential vectors on    itvstr    and corresponding matrices on    ithstr    has a maximum    nstrpx   ;

nstrpx    is assigned a value (70) in INIT. If this maximum has been reached and    approx   =false, i.e. a new

vector should be added, the first vector in the set is removed. The new vector is then defined such, that

the true potential is exactly approximated by the new orthonormal set, i.e. as if the removed vector had

never been there. So, apart from normalization

vnew in set   = v0  − ∑
j=2

nstrp

  vj (19.9)

Note that the lower bound in the summation is 2.

In practice    nstrp    hardly ever exceeds 19 at the end of the SCF stage; in most cases convergence is already

reached with     nstrp    equal to 4 or 5.

2. In a spin-unrestriced calculation we have different potentials for up- and down spins. The

implementation contains therefore a loop over the number of independent spins (one or two), which we

have omitted here for sake of clarity. For normalization and approximation tests the spin coordinate is

treated on the same footing as the real space coordinates, e.g. (19.4) is replaced by

cj  = ∑ ∑
i=1

N

  wi  v0
(ri)  vj

(ri) (19.10)
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In particular this implies that the linear approximation is either used for both spins, or for neither.

3. File    itp    does not contain the true potential v0  directly, but two vectors; v0  is defined as a specific

linear combination of them (SS^iteration).

a p  p  r o  x  i  m  a t  i  o  n  o  f   t  h e   d e  n s  i  t  y  

The approach in routines RHOAPP and RHOPMT is analogous to that in POTAPP and EIGSYS. File    itpstr   

contains    nstrr    (density) matrices (for each k-point in the BZ);    nstrr    is initially zero (INIT) and cannot exceed

nstrrx    (=70,INIT).

The current P-matrix, on file    itpmat   , is expanded in the set on    itpstr   . Norms and orthogonality for the

matrices are defined by an inner product S

S (Pi ,P j ) = ∑
k=1

K

 ∑
pq

  P
k
i pq   P

k
j pq  (19.11)

Note the summation over the k-points.

The corresponding density vectors j(ri) are on file    itrstr   .

remarks

1. As in the potential case, in spin-unrestricted calculations the density approximation is used for both

spins or for neither; a loop over the spins is included in the definition of the inner product S  (19.11);

only one set of expansion coefficients is determined, applying to both spins simultaneously. The

density matrices and vectors are distinct of course for up- and down spins.

2. Real and imaginary parts of the density matrices are treated as if the matrix P had just one more index to

be summed over (with values 'real' and 'imaginary'). So in fact the inner product is defined (including

also spin now)

S (i,j) = ∑
k=1

K

 ∑
pq

 ∑  Re(Pk,
i,pq

 ) Re(Pk,
j,pq

 ) + Im(Pk,
i,pq

 ) Im(Pk,
j,pq

 ) (19.12)

Of course this is just a matter of definition. The only goal of the procedure is to have some way to test

the adequacy of the linear approximation. See however below.

final notes

1. The savings in computer time by the linearizations depend strongly on the size of the calculation. In a

big one the approximate evaluations take only a few percent of exact evaluations. During the first

cycles there are of course no data for an expansion: the set has to be build up. During the iterations an

additional vector is needed in the expansion set from time to time. In a typical big calculation with

slow convergence we would have, say 100 cycles to reach self-consistency and exact evaluations in 20

of them, i.e. linear approximations would be used in 80 cycles. Accounting for other parts of the SCF
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procedure and for the fact that the linearization procedures involve some overhead of testing and file-

manipulation, the gain is then a factor between 2 and 4 (in the SCF part).

2. The linearizations of the density and potential are tested and used independently. As a matter of

experience the potential behaves better in this respect than the density: linear approximations in EIGSYS

are used more often that in RHOPMT. In some cases the density is exactly computed twice as many

times as the potential matrix.

3. The criterium factor 10−7  in the approximation tests is a result of trial and error. Obviously a less

stringent test would allow the linear approximations more often, increasing at first sight the gain in

efficiency.

However the switch from approximate to exact evaluation unavoidably takes place from time to time

during the iterations. At such a moment there is a (slight) discontinuity in the development towards the

self-consistent solution: the function space in which the potential, or density, is described, changes

abruptly. The iterative procedure is rather sensitive to this and suffers from instability and oscillations if

these changes are too large. The adopted value 10−7  appears to be a reasonable compromise.

4. The approximation procedure for the potential is simple and straightforward; in particular the vectors,

their norms and the inner product are defined in a natural way. With respect to the density

approximation we feel less comfortable. The fact that this case performs worse and that the instability

always seems to occur when the computational mode is switched for the density, but not if it happens

for the potential, suggests some inbalance in the procedure. Further investigation might be useful; this

has no high priority however because in practice the implemented strategy functions reasonbly well.

2 0 S y m m e t r y 

The most obvious symmetry in crystals is the translational symmetry of the Bravais lattice. The

corresponding operators, the Bravais translations, are denoted by a capital T . All T  are products of n basis

T i  that span the unit cell of the n-dimensional crystal, by which we mean an atomic system with

translational symmetry in n directions; n=0 (molecule), 1 (polymer), 2 (slab) or 3 (bulk crystal).

The complete space group consists of affine transformations {t ;R}

{t ;R}x  = t  + Rx (20.1)

R  is a unitary operator and t  is a translation which may have components in the n directions of periodicity.

The generators of the space group is a subset of {t ;R} that generates all {t ;R} by multiplication with the

Bravais translations. The set of generators is defined to be minimal in the sense that not any pair of them is

related by a pure Bravais translation.

A few aspects:

# The inverse of {t ;R} is {t ;R}-1 ={−R-1 t ;R−1 }:
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{t ;R}{−R−1 t ;R−1 }x  = t  + R  ( )−R−1t  +  R−1x   = t   RR−1 t  + RR−1 x  = x (20.2)

# All generators have different point group parts R . Suppose {t 1 ;R} and {t 2 ;R} are both generators.

Then

{t 1 ;R}{t 2 ;R}−1 x  = t 1  − RR−1 t 2  + RR−1 x  = (t 1 −t 2 ) + x (20.3)

The translation (t 1 −t 2 ) is then a symmetry operator and hence a Bravais translation T . So

{t 1 ;R}×{t 2 ;R}−1  = T  ⇒ {t 1 ;R} = T×{t 2 ;R} (20.4)

contrary to the definition that two generators are not related by a pure Bravais translation.

# For each space group operator {t ;R} the point-group part R  is a symmetry operator of the Bravais

lattice. Let the symbol ~ denote symmetry equivalency. Then

x ' ~ {t ;R}−1 x  ~{t ;R}−1 x  + T  ~ {t ;R}( ){t ;R}−1x  +  T   = x  + RT (20.5)

So the translation RT  is a symmetry operator and hence a Bravais translation.

# Until now it has tacitly been assumed that the unit cell is chosen as small as possible. This is implicit

in the argument that a pure translation must be a Bravais translation if it is a symmetry operator. One

may of course define a larger unit cell however, for example the simple cubic 'double' unit cell in a bcc

crystal. This modifies the statements above a little:

With any choice of unit cell, the resulting Bravais group is a subgroup of the true Bravais group.

The larger unit cell can be considered as a conjuction of N smaller unit cells. They are characterized by

operators T i , i=1...N, of the true Bravais lattice.

These T i  are naturally symmetry operators of the system, but they do not occur now in the employed

Bravais translation group. Consequently they will have to be included in the set of generators. In other

words, in case of a larger unit cell the point group parts R  of the {t ;R} are symmetry operators of the

true Bravais lattice, but not necessarily of the employed one; moreover each R  in the set of generators

now occurs N times; the different translational parts t  belonging to the same R  differ (or can be chosen

to differ) by the T i  of the true lattice that define the enlarged unit cell.

# From time to time we have to deal with sets of points in the unit cell and their symmetry relations. For

a point x  in the unit cell the image {t ;R}x  may be located in a neighbouring cell. We define now the

operator {t ;R}    as the operator {t ;R} followed by a Bravais back-translation to the central unit cell, i.e.

{t ;R}    = {t+T;R} (20.6)

where T  depends on the point to be operated upon; it is always the unique Bravais translation which

projects the image into the central unit cell. This definition is convenient because, given a set of all

equivalent points {x} in the unit cell the points {t ;R}   x  now belong to the same set and are not 'only'

translationally equivalent points. We will call {t ;R}    a centralizing operator. It is easily verified that the

set of centralizing generators constitutes a mathematical group.
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c o  m  p  u t  a t  i  o  n  o  f   t  h e   o  p  e  r a t  o  r s  

The operators {t ;R} are represented and computed in the coordinate representation: R  is a unitary 3×3 matrix

and t  a 3-component vector.

In accordance with the notes above the construction of the operators takes place in two steps:

A compute the point group symmetry of the Bravais lattice (the holosymmetric point group)

B for each operator R  find the translational part t , if any, that makes it a space group operator.

point group operators   

We address a more general problem. Let N sets of points be given, x ij  , j=1..N, i=1..Mj , in n-dimensional

space: x ij  ≡(x
1
ij  ,x

2
ij  ,..,x

n
ij  ). We want to compute all real unitary transformations R  in the form of n×n

matrices, that are simultaneously symmetry operators for each of the N groups of points, Rx ij  ∈{xkj }k  .

An example is the point group symmetry of a molecule: the points are the locations of the atoms;

chemically different atoms fall in distinct sets and the dimensionality is (usually) three. In case of the

Bravais lattice we have only one set, but infinitely many points; we will see however that it is sufficient to

consider only the first few 'stars' of lattice points around the origin.

The algorithm is based on the fact that n pairs of points (p i ,qi ), i=1..n, define a linear transformation in

n-dimensional space via the system of equations

Rp i  = qi           i=1..n (20.7)

The set {p i },i=1..n will be called the basis and the set {qi },i=1..n the projection. Any admissible basis

and projection must each constitute a linearly independent set, otherwise the system (20.7) does not

properly define the transformation R ; in the following we assume that every basis or projection has been

checked to be independent.

Let now R  be one of the symmetry operators to be found and let {p} be an arbitrary basis, the points of

which may be taken from any combination of the N sets. Since R  is a by assumption a symmetry operator

there must obviously be a projection {q} such that the combination of R , {p} and {q} satisfies (20.7). So

the algorithm is

1. find any basis {p}.

2. loop over all distinct projections {q} and compute R  from (20.7).

3. check for every point x ij  , j=1..N, i=1..Mj , whether Rx ij   coincides with a point in the appropriate

(j-th) set. If not, discard R .

Although this set-up suffices to determine all symmetry operators, the efficiency can be improved

somewhat. To avoid duplications and unnecessary work in loop 3) we check first, for each computed R  the

unitarity and whether it has already been found before. Furthermore, as for each point x ij   its image Rx ij 

must belong to the same set j, we impose this condition also on the projection set {q}: qi  and p i  must

belong to the same set, for all i=1..n; this shortens loop 2).
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implementation

Subroutine PNTGRP computes the n×n matrices corresponding to a given configuration of points in

n-dimensional space.

First a linearly independent basis is constructed; array    indgrp    stores the types of basis-points: the i-th basis

point belongs to set    indgrp   (i). Then all distinct n-tuples of points are considered to serve as projection {q}.

Indgrp    is used to control that p i  and qi  belong to the same set. After assuring linear independency of {q}

and unitarity of R , all image points Rx ij   is examined to see whether R  is a symmetry operator.

Two index arrays,    indbas    and    indprj    keep track of which points of the sets are used in the basis and (current)

projection respectively.

remarks

# The identity operator, a symmetry operator of every system of points, is generated first; it is the first

symmetry operator in the output list.

# The inversion operator, if it occurs, is second in the output list. PNTGRP moves it to this position after

the calculation of all operators.

# Identity of points and operators is checked by comparing real numbers. The tolerance is set at a fixed

absolute value 10−6 . To avoid numerical problems it may therefore be necessary to rescale the input

points.

# The requirement that the basis be independent in n-dimensional space implies that PNTGRP cannot

compute for instance the three-dimensional point group of a flat molecule. A possible solution to this

is:

a. rotate the molecule to the xy-plane. (20.8)

b. generate the point group in two-dimensional space (PNTGRP).

c. copy the obtained 2×2-matrices to the left-upper parts of 3×3-matrices, setting R33  =1 and the

remaining matrix elements zero.

d. Incorporate the reflection in the xy-plane in the symmetry group (SYMADD).

e. rotate the operators back to the original coordinate frame.

space group operators

First we construct the point group of the Bravais lattice. For this purpose PNTGRP is called with one set of

points: the lattice points of a few 'stars' around the origin. Let T i , i=1...n  be the unit cell basis vectors of

the n-dimensional crystal. It is then sufficient to consider only the stars of these T i , because their

combined sets of points has the same symmetry as the complete Bravais lattice:

# Let R  be a symmetry operator of the Bravais lattice. The image of T  under R , TR  say, belongs to the

star of T  because R  is unitary and hence preserves lengths. So R  is a symmetry operator of each star

separately. In particular this applies to the basis vectors T i  and their stars.

# Let now R  be a symmetry operator for the basis stars. Then for any lattice point T , necessarily a linear

combination of the basis vectors, the image under R  is
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RT  = R∑
i=1

n

  mi T i  = ∑
i=1

n

  m i  T
R
i  (20.9)

which belongs to the Bravais lattice because each T
R
i   is a lattice point. Hence R  is a symmetry

operator of the whole Bravais lattice.

Construction of the space group generators thus takes place (SYMCRY) as follows:

1. generate the stars of points corresponding to the basis vectors (LATTPT).

2. compute from these points the Bravais point group operators R  (PNTGRP).

3. for each R  find out whether it can be made into a space group operator {t ;R}:

The atoms are divided in (chemically) distinct types.

a. take any atom in the central unit cell, say the first atom of the first type, at position x  and compute

the image under R : x '=Rx .

b. run over all atoms of the same type and in the same unit cell, at positions y  and define the

translational part t  of the space group operator as t=y −x ', so that {t ;R}x=y .

c. loop over all atoms of all types and check whether their images under {t ;R} coincide with atoms of

the same type, possibly in neighbouring cells. If not, discard this {t ;R} and try the next possible

translation (step b) by taking another atom y .

remarks

1. We have to consider only atoms y  in the central unit cell. Atoms in other cells result in operators that

differ from those obtained already by Bravais translations.

2. If for a particular R  no translational part is found that satisfies the requirements, R  is discarded

altogether.

3. If for a particular R  more than one t  is found, then the crystal unit cell has not properly been defined, as

discussed above. The true, smaller unit cell is then computed and the procedure restarted. This is

necessary because with a too large unit cell we may not have found all point group operators of the true

Bravais lattice.

The determination of the true unit cell is as follows:

Two arrays of lattice vectors are present. The first, the array    avec    in the program, is fixed and stores

the lattice vectors as defined by the user. The second,    vlatt   , describes the true unit cell; it is only used

locally (in SYMCRY).     Vlatt    is initiated by copying    avec   ; it may be changed in the course of the

symmetry analysis.

Since the identity E is the first operator in the output list of PNTGRP, this is the first operator

processed in the construction of the space group generators. Obviously {0 ;E} is a space group operator.

Any next t  that is found with E, must be an element of the true Bravais lattice. t  is expanded in the

vectors    vlatt   .

t  = ∑
i=1

n

  ci  vlatti (20.10)
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If    vlatt    describes a too large unit cell, then for at least one t  belonging to E, one of the expansion

coefficients is non-integer. By adding or subtracting integer multiples of the {   vlatt   i       } we construct the

Bravais translation (of the true lattice)

v  = ∑
i=1

n

 ci  vlatti (20.11)

where all ci  are in the unit interval [0,1) and differ from the ci  in (20.10) by integers. By assumption

at least one of the obtained coefficients, cj  say, is non-zero; in the set {   vlatt   } we replace then the j-th

vector by v . The new set describes a smaller unit cell. The procedure can now be restarted: generate the

pointgroup corresponding to {   vlatt   }, etc.

When each t  found with E has an integer expansion (20.10) the correct unit cell has been found and the

procedure can be continued with all other operators R .

4. The same Bravais lattice may be generated with different sets of basis lattice vectors. The crystal unit

parallellepiped is not uniquely defined: we may add to any of the basis vectors an integer multiple of

any of the other basis vectors. For various reasons it is convenient in the program (though not strictly

necessary) to avoid extreme choices in this respect and define the unit parallellepiped as compact as

possible. This is done by recombining the vectors such that they have minimal lengths. LATTCH

(lattice check) performs that task; LATTCH checks in this way also linear dependency of the lattice

vectors.

s  y  m  m  e  t  r y   i  n  k  -  s  p  a c  e  

The connection between the space group symmetry in real space and the symmetry in k-space is easily

derived [Jones 1975]. According to Bloch's theorem any eigenstate n(k ;r) can be written in the form

n(k ;r) = un(k ;r)  eik ·r (20.12)

where un(k ;r)  is symmetric with respect to all Bravais translations

un(k ;T+r)  = un(k ;r) (20.13)

The occurrence of k  in the argument list of the function u does therefore not imply that it transforms as the

corresponding irrep of the translation group, but it signifies only that the u-parts of eigenstates (k ) at

different k-points are different.

It follows from the hamiltonian equation

{−∆/2 + V(r)} (k ;r) = e(k ) (k ;r) (20.14)

that the periodic function u(k ;r) satisfies

{−∆/2 + k2 /2 − ik ·∇ + V(r)} u(k ;r) = e(k ) u(k ;r) (20.15)
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Let now {t ;R} be a space group operator, defining the coordinate transformation r→r'

ri ' ≡ ({t ;R}r)i  = ti  + ∑
j

  R ij   rj (20.16)

For the derivatives this gives

∂
∂ri

  = ∑
j

 
∂rj'

∂ri
 

∂
∂rj'

  = ∑
j

  R ji  
∂

∂rj'
 (20.17)

Define then the transformation in k-space k→k ' by

ki ' ≡ (Rk )i  = ∑
j

  R ij   kj (20.18)

Simultaneous application of the transformations (20.16) and (20.18) leaves (20.15) invariant because R  is

unitary and V(r')=V(r). Hence the solutions {e, } in k  and k ' are symmetry related:

en(Rk )  = en(k ) (20.19a)

un(Rk ;{t ;R}r)  = u(k ;r) (20.19b)

n(Rk ;{t ;R}r) = e 
i ∑
mn

 Rmntmkn
  n(k ;r) (20.19c)

So, if {t ;R} is a symmetry operator in real space, then R  is a symmetry operator in k-space.

In addition the inversion operator J is a symmetry operator in k-space, regardless of the space group: (20.15)

is transformed into its complex conjugate; all eigenvalues en(k )  are real because the hamiltonian is an

hermitian operator. Hence

en(−k )  = en(k ) (20.20a)

un(−k ;r)  = u
*
n(k ;r) (20.20b)

The construction of the point group operators in k-space is thus straightforward once we have calculated the

space group generators {t ;R}:

a. gather all distinct point group operators R  occurring among the {t ;R}.

b. add the inversion operator J if it is not yet present (and of course all products JR).

Whereas real space is 3-dimensional this does not necessarily hold for k-space: in an nD crystal k-space has

only n dimensions. The operators must then of course also be operators in nD space and can be represented

as n×n matrices. For a slab for instance the reflection in the plane is an irrelevant operator in k-space.
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With an appropriate orientation of the coordinate system the relevant part of the real space operators R  is

then the left-upper n×n submatrix. From (20.18) we conclude that this is an operator in k-space if the

summation can be restricted to the first n terms, that is if all R ij   are zero when i≤n, j>n or vice-versa.

Otherwise a point k  would be mapped onto a point 'outside' the nD region.

The computation of the k-space symmetry group is therefore

1. For each {t ;R} check that it does not couple the first n coordinates to the last 3−n, and gather all

resulting distinct n×n matrices (SYMPRJ).

2. Add inversion in nD space (SYMADD).

remark

The dimensionality of k-space is in BAND not only determined by the translational symmetry of the atomic

system. If that were the case, none of the operators {t ;R} could couple the nD space to the other

coordinates. However, BAND optionally neglects dispersion in certain directions in k-space, thereby

artifically reducing the dimensionality of the BZ. This option may be activated (via input) for example when

the crystal unit cell is much larger in one particular direction that in others (SS B̂Z-integration).

i  n t  e  g  r a t  i  o  n  i  n  k  -  s  p  a c  e  

The point group symmetry in k-space is applied to reduce integrations over the BZ to integrals over the

irreducible wedge, the symmetry unique part of the BZ. In the employed analytic-quadratic integration

method [Wiesenekker et al. 1988, Wiesenekker and Baerends 1990] the BZ is divided in simplices and the

integration points are the vertices and the midpoints of the edges. The BZ is constructed as a Wigner-Seitz

polyhedron (in two dimensions a polygon, in one dimension an interval). The irreducible wedge is

determined (SS B̂Z-integration) and that region is divided in simplices etc. By use of symmetry the number

of k-points needed is thus reduced; this is an important saving in computer time since virtually all cost-

determining aspects in a calculation scale with the number of k-points processed.

The energy bands en(k )  are totally symmetric; hence a quantity like the density of states (DOS) can be

computed by integration over the irreducible wedge only. This does not apply however to all properties. The

eigenstates in symmetry related k-points are not identical (but they are symmetry related). If {t ;R} is a space

group operator and k ' and k  are related by k '=Rk , then

n(k ';r) = e it . k ' n(k ;{t ;R}−1r) (20.21)

Let now F be a quantity to be computed as

F = ∑
n

 ⌡⌠
BZ

  dk  Fn(k ) (20.22)

where Fn(k )  is the contribution to F from the one-particle state n(k ;r)

Fn(k )  = F[ n(k ;r) ] (20.23)
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The summation is over the bands and integration is over the complete (first) BZ. Using the space group

generators {t ;R} in real space and the corresponding operators R  in k-space (20.22) can be rewritten as

F = ∑
{t R}

 ∑
n

 ⌡⌠
irr.BZ

  dk  Fn(Rk )  = ∑
{t R}

 ∑
n

 ⌡⌠
irr.BZ

  dk  F[ n(k ;{t ;R}−1r) ] (20.24)

The charge density for instance is given by

(r) = ∑
{t R}

 ∑
n

 ⌡⌠
irr.BZ

  dk   n(k ;{t ;R}−1r) 2  ≡ ∑
{t R}

  irr({t ;R}−1r) (20.25)

irr(r) is the charge density resulting from integration over the irreducible wedge only.

The occupation numbers on(k )  for the one-particle states, which are the weights for the numerical

integration over the irreducible BZ, are in the program determined such, that they represent also the

equivalent k-points. The integrals over the BZ are therefore scaled already and e.g. the symmetrized density is

computed as

(r) = 
1

NG
 ∑
{t R}

 ∑
n

 ∑
k

  on(k )   n(k ;{t ;R}−1r) 2  ≡ 
1

NG
 ∑
{t R}

 irr({t ;R}−1r) (20.26)

NG  is the number of symmetry operators.

We see that the total charge density is obtained by projecting out the symmetric component of irr(r) .

In BAND the density, like all crystal functions, is represented by its values in the crystal integration points.

The integration scheme is symmetric, which allows the symmetrization (20.26) by straightforward

numerical integration (see below).

i  n t  e  g  r a t  i  o  n  i  n  r e  a l   s  p  a c  e  

The numerical integration formula is symmetric: if r is an integration point and {t ;R} a space group

operator then r'≡{t ;R}r is also an integration point and the weights are equal. The symmetry unique points

are called the generators (of the integration formula).

The construction of the symmetric scheme is extensively discussed in chapter III. Here we are concerned

with the utilization of the symmetry property.

1. The component of a particular irreducible representation (irrep) of the group can be projected out of a

function. Whereas this applies to any irrep, the most common application is the symmetrization of a

function, i.e. the projecting out of the (totally) symmetric conponent.

This is done in BAND with the density. As we saw above, the integration in k-space over the irreducible

part of the BZ yields an incorrect, that is, non-symmetric charge density: we need the symmetric

component. The projector is (20.26)
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PA1  = 
1

NG
 ∑
{t R}

  {t ;R} (20.27)

The points on file    itpnt    are grouped in a number of (large) blocks. Each block contains a sequence of sets of

symmetry related points. The file with basis function values is organized accordingly and the a-symmetric

density, computed from the basis functions (SS^charge density) has the same structure. Symmetrization is

performed by averaging the values in each set of symmetry related points (20.27). This happens in

RHOPMT (or RHOPSI, see SS^charge density).

2. If a function belongs to an irrep of the group, we have to compute and store only the values in the

generators, the symmetry unique points. The values in related points can be derived when desired from the

transformation properties of the irrep. This possibility is used in BAND for the density, the potential, the fit

functions and the fit potentials. All these functions are totally symmetric.

With the data structure on    itpnt    the functions can easily be expanded again over all points. This is done for

the potential in EIGSYS, where the matrix elements of the hamiltonian are evaluated by numerical

integration of the potential against products of the basis functions (the basis functions currently used do not

belong to irreps).

3. The numerical integral of a function is greatly simplified if it belongs to an irrep. Any irrep which is

not the symmetric one integrates to zero. For a symmetric integrand we have to loop only over the

generator points because the values in the related points are equal and they can be accounted for by

multiplication by the appropriate factor (the number of equivalent points), which can be included in the

weights of the generators.

This is used for the expansion of the density in the fit set (7.6a) in RHOFIT.

It would be an enormous improvement in efficiency of BAND if also the valence basis functions were

organized according to the irreps. This block diagonalizes the hamiltonian matrices. The off-diagonal blocks

are zero on grounds of symmetry and hence need not be computed at all. For the diagonal blocks the loop

over the integration points reduces to the generators.

s  p  e  c  i  a l   s  y  m  m  e  t  r y   r o  u t  i  n e  s  

Some specific tasks related to symmetry are performed by special routines. These are examined here. Most

of them are general as regards the dimensionality; the point group operators are represented as n×n matrices.

extension of a point group

Given a point group G0  and an operator R , SYMADD constructs the compounded group, consisting of G0 

and R  and all additional operators required to make the new set a group.

A set of point group operators can be extended to a group by computing all possible product operators and

adding them if they are not yet present, until the set is closed under multiplication. Both the 'left' and the
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'right' products have to be checked since for an arbitrary pair of operators R1  and R2  the products R1 ×R2 

and R2 ×R1  need not be identical.

This straightforward method assures that also the identity E and the inverse of each operator will be

generated: for every point group operator R  there is an integer M such that RM =E. Hence R−1 =RM 1  so

that R  and E both occur among the products of R  with itself.

SYMADD uses this algorithm but supposes that the input set G0  is already a group: products among its

operators are not checked for occurrence in the set.

checking and reducing a point group

SYMCHK checks a point group against a set of points and removes the operators that are not symmetry

operators of the point set. The points may be divided in subsets of equivalent points.

The algorithm is simple: for each operator R  compute all image points and check whether these coincide

with points in the appropriate subsets.

Note that symmetry operators of the point set that were not present in the input group are not generated, i.e.

the output group does not necessarily represent all symmetry of the point set (compare routine PNTGRP).

checking completeness of a point group

GRPCHK checks whether a set of n×n matrices is closed under multiplication, i.e. whether it constitutes a

group. An output error parameter    ier    gives the outcome (0:group, 1:not a group).

analysis and characterization of a symmetry operator

MAT3AN analyzes a unitary 3×3 matrix (unitarity is checked). Output are the determinant D, an axis a

(normalized vector) and an angle . For a pure rotation (D=1) a and  are the axis and angle of clockwise

rotation. An improper rotation (D=−1) can be written as a reflection times a rotation around the normal on

the reflection plane; the axis and angle refer to that rotation; a pure reflection has =0.

Two special operators are the identity E (D=1, =0) and the inversion J (D=−1, =π). For both of them the

axis is undefined and it is taken arbitrarily as the z-axis. MAT3AN checks first whether R  is either of these

two operators. For all other operators R  the axis and angle are computed as follows.

An auxiliary vector w  orthogonal to the axis a is constructed.  is then the angle between w  and Rw ; the

axis a is the vector product w ×Rw . A suitable w  can be computed from an arbitrary vector v  by removing

the component along the axis. For a pure rotation (D=1):

w  = (R−1)v (20.28)

and for an improper rotation (D=−1):

w  = (R2 −1)v (20.29)
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Of course the 'arbitrary' vector v  must not coincide with the axis, since that would give w =0. This is

prevented in MAT3AN by taking for v  the x-axis unless R11  =1 (20.28) respectively R11  =−1 (20.29); in

that case the y-axis is taken.

A zero result for w  is also found for special angles of rotation. For a pure rotation (20.28) if =0 (the

identity E); for an improper rotation (20.29) if =π (the inversion J) or =0 (a pure reflection). As E and J

have been checked a priori the only possibility is the pure reflection. So, if w  is found to be zero, the

situation is immediately clear: =0 and the axis is given by

a = (R−1)v (20.30)

Finally, in case of a pure rotation (not the identity), the determination of the axis as the vector product

w ×Rw  may yield zero. If this situation is encountered (D=1, =π) a second general vector w ' orthogonal to

the axis is constructed (20.28), where v  is now the y-axis (or the z-axis). The axis a is then found as the

vector product w ×w '.

local symmetry around an atom

GRPTYP is used in the integration package POINTS to determine the appropriate type of integration formula

for the atomic spheres. The symmetry of the formula must correspond to the local symmetry of an atom.

The available special (Lebedev) formulas for the spherical surface all have the octahedral symmetry. Apart

from these we may generate a product formula in the coordinates cos  and  [chapter III]; this can be used

for all axial groups. The only point group type not covered is the icosahedral symmetry. Special formulas

of this type are known [Stroud 1971], but they have not yet been implemented in the integration package.

Icosahedral symmetry is rarely encountered in polyatomic systems and thusfar this restriction in the

possibilities has not played a role.

GRPTYP determines from a set of point group operators (3×3 matrices) whether the group is of the

octahedral or axial type; the octahedral type includes subgroups such as the tetrahedral group; an icosahedral

group will be detected as an 'error'.

Apart from the type of symmetry, GRPTYP computes the rotation matrix that will bring the coordinate

frame into a standard orientation (in which the implemented integration formulas for the sphere are defined).

The standard orientation of an axial group has the z-axis as the axis of rotation and the x-axis in a 'vertical'

reflection plane (if there is any). For an octahedral group (or subgroup) the standard orientation is the usual

orientation of the cube: 4-fold rotations around the coordinate axes and 3-fold and improper 6-fold rotations

around the (111)-directions.

Finally GRPTYP outputs for axial groups the order of the rotation.

The algorithm in GRPTYP is based on the determination of the main axis and the highest order secondary

axis of the group. These are found by subsequently analyzing all operators (MAT3AN) and updating the main

and secondary axes and their orders of rotation.
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A group is defined (in MAT3AN) to be of the axial type whenever the secondary axis has a  rotation order

not higher than 2; otherwise it is of the octahedral type. In the latter case the angle between the main and

secondary axis is checked in relation to their rotation orders (6-fold, 4-fold or 3-fold). In this way the

icosahedral symmetry is detected as an 'incorrect octahedral' symmetry.

correcting symmetry inaccuracies in a set of points

Given a set of points which is approximately symmetric with respect to a symmetry group, SYMTRZ

removes the numerical noise from the position coordinates. The points are displaced slightly, such that the

output set is exactly symmetric (to machine accuracy). This is done by explicitly projecting out the

symmetric component of the set of points.

The symmetry group is a space group, of which the generators {t ;R} are input into SYMTRZ; the set of

points in the crystal unit cell must be complete: if x  is in the set then {t ;R}   x  must belong to the set,

apart of course from the coordinate inaccuracies to be corrected. {t ;R}    is the centralizing generator, defined

earlier in this section.

A 'normal' point group, e.g. for a molecule, can be handled by specifying the crystal dimensionality as zero

and giving the zero vector for all translational parts t  of the operators.

Given x  there is for every {t ;R} exactly one point y  in the set such that x  is (approximately) the centralized

image of y  under {t ;R}. The exact image of y  under {t ;R}   , approximately equal to x , is denoted x ({t ;R}) 

x  ≈ x ({t ;R})  = {t ;R}   y (20.31)

Running over all operators, the points x ({t ;R})  are all images that should coincide with x . The exactly

symmetric points are computed as the mean positions

x ' = 
1

NG
 ∑
{t ;R}

 x ({t ;R}) (20.32)

NG  is the number of operators. It is easily verified that this definition yields a perfectly symmetric set.

Consider the image of such a point

{t ;R}   x ' = 
1

NG
 ∑
{t ;R}'

 {t ;R}  x ({t ;R}') (20.33)

Let z  be the approximate image of x  under {t ;R}   , then

{t ;R}  x ({t ;R}')  = z ({t ;R}×{t ;R}') (20.34)

is one of the image points close to z . Hence
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{t ;R}   x ' = 
1

NG
 ∑
{t ;R}'

 z ({t ;R}×{t ;R}')  = 
1

NG
 ∑
{t ;R}''

 z ({t ;R}'')  = z ' (20.35)

This is precisely one of the points in the output set (the corrected point z ), as required. In the second

equality in (20.35) we used that the centralizing generators constitute a group.

It is assumed here that the operators themselves are exact (otherwise the product of two operators might not

equal one of the operators exactly and hence the second equality in (20.35) would not be correct. As a

consequence, if the operators have been determined by PNTGRP from the (possibly inaccurate) set of points,

the symmetrizing cannot be done with these operators. It would be necessary to symmetrize first the

operators themselves.

operators in the spherical harmonics representation

A point group operator R  transforms a spherical harmonic Zlm ( )  into a linear combination of the (2l+1)

functions Zlm'( ) , m'=−l...l. SYMZLM computes the matrix Zl  of that representation (More precisely,

SYMZLM computes for a sequence of operators all Zlm  -representation matrices up to a maximum l-value).

By spherical harmonics we understand here the real-valued spherical harmonics (23.30) as they are employed

in BAND.

The matrix elements of Zl  are

Z
l
mm'  = ⌡⌠  Z

*
lm '( )  RZlm ( )  d  = ⌡⌠  Z

*
lm '( )  Z lm (R−1 )  d (20.36)

The integrand is an angular polynomial of degree 2l, so that (20.36) can be evaluated exactly by numerical

integration with a formula of the appropriate degree of precision. SPHPRD generates a product formula in

cos  and  of any desired degree. Let the points and weights of the formula be i ≡(x,y,z)i  wi , i=1..n.

The matrix elements (20.36) are then computed by

1. generate an integration formula of the appropriate degree: SPHPRD (or SPHPNT, the general routine for

spherical integration).

2. calculate Zlm ( i) , i=1..n for all required (l,m): VZLM.

3. rotate all points to obtain R−1 i . Since the operator R  and the points (x,y,z)i  are both in the

coordinate representation, this is straightforward.

4. call routine VZLM again, now with the rotated points as input, to evaluate Zlm (R−1 ) , i=1..n.

5. compute Z
l
mm'   as

Z
l
mm'  = ∑

i

  wi  Z
*
lm '( i)  Z lm (R−1

i) (20.37)

SYMZLM calculates Z
l
mm'  for all l-values l=0..   lmax    and for a sequence of    noper    operators. The result is one

large array    oprzlm    . It contains successively for all operators the (trivial) 1×1 l=0 matrices, then for all

operators the 3×3 l=1 matrices, and so on.
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s  y  m  m  e  t  r y   a d a p  t  e  d  f  u n c  t  i  o  n s  

The symmetry property of the crystal integration grid allows the computation of all symmetry components

of any function from the function values in the integration points. To construct in this way from a set of

functions the combinations that transform as irreps, would be a time consuming procedure. It is easier to

calculate the combination coefficients from the analytical properties of the functions.

It is natural to set up the irreps in a crystal in two steps. First we take a point k  in the (first) BZ, by which

we specify an irrep of the translation group. The generators {t ;R} of the little group of k  (i.e. Rk=k ) are

then used for a further reduction to the irreps of the space group. For a general point k  there are no such

operators (except the identity) and we are finished immediately. Many of the k-points that are used in an

average calculation have more symmetry however, because they lie often on symmetry elements (reflection

planes, rotation axes) in k-space; the central Γ-point k=0 even has all generators in its group.

Let {t ;R} be the operators of the k-point under consideration. The centralizing operators {t ;R}    constitute a

group and can be treated like any point group: analysis of the multiplication table to compute the classes,

characters and irreps. (For the moment we neglect the translational symmetry k ).

Denote the matrices of the irreps by D
ij

 , i,j=1...n  ; n   is the dimension of irrep . The projector P n
i

 ,

which picks up from a given function the component corresponding to irrep  and column n is derived from

the orthogonality theorem of the theory of groups

∑
{t ;R}

  D
ij

({t ;R}−1)  D
kl

({t ;R})  = 
NG
n

  il  jk δ  (20.38)

NG  is the number of operators. The projector is

P n
i

  = 
n

NG
 ∑
{t ;R}

  D
in

({t ;R}−1)  {t ;R} (20.39)

i is an arbitrary row-index of the representation matrix. It is usually kept fixed for all column-indices n; this

assures for instance that the hamiltonian matrices of all partner representation columns are identical.

Suppose now that we have M functions which span a reducible representation, and that we have the

operators {t ;R} as M×M matrices in the representation of that function set. (20.39) gives then also the

projector as an M×M matrix. This projector matrix has eigenvalues 0 and 1. The eigenvectors

corresponding to the latter are the n-adapted functions. The combination coefficients can thus be computed

by diagonalization of the projector matrix. Equivalently they can be found by a Schmidt orthogonalization

procedure: take subsequently every column of the projector matrix, orthogonalize it on those obtained before

(and normalize). Some columns yield the zero vector; these singular solutions correspond to the eigenvalues

zero and can be discarded.
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(The apparent arbitrariness in the Schmidt orthogonalization procedure (that we may take as the first

solution any non-zero column) corresponds to the fact that all non-singular eigenvectors are degenerate. Any

linear combination is also a solution. So it is also arbitrary which eigenvectors are actually computed,

although this may not be realized when one implements a call to some standard diagonalization routine).

The functions employed in BAND fall in two classes: spherical harmonics and plane waves. We discuss first

the spherical harmonics. The plane waves will be treated essentially in the same way.

spherical harmonics

Consider a function f
lm

(r) =P(r  )Zlm ( )  centered on atom . A symmetry operator {t ;R} maps f
lm

(r) 

on a symmetry equivalent atom , possibly  itself, and in addition it may rotate and/or reflect the

orientation. The radial part P(r) is not relevant here and can be omitted from the discussion. The degree l of

the angular polynomial is not changed by any operator because symmetry operators are linear operators. The

functions spanning a representation can thus be limited to {Zlm ( ) }
m=-l..l

 , where  runs over the

equivalent atoms. We deal with the translational symmetry later and restrict  to the atoms in the unit cell,

N in number say. A spherical harmonic Zlm ( )  generates then a representation of dimension

M=(2l+1)×N.

SYMZLM computes for the point group operators R  the matrices Z
l
mm'  which are their Zlm  -representations

(see elsewhere in this section). From this we construct {t ;R} as the M×M matrix. This matrix is in a

natural way divided in N×N blocks of size (2l+1) each. If {t ;R}    maps atom  on the equivalent atom ,

then the corresponding matrix Z
l
mm'  occupies the ( , )-block of the large matrix; the other blocks in the

-th block-column are zero. The complete M×M matrix is determined by filling the appropriate block in

each block-column. Viewed as a N×N matrix with unity for the occupied blocks and zero otherwise, we

have the operator as a permuation of the equivalent atoms in the unit cell.

Summation (20.39) yields the projection matrix P n , which may then be diagonalized, or treated by the

Schmidt-orthogonalization method. This gives us all distinct n-adapted functions.

translational symmetry

Incorporation of the translation symmetry is as follows. Denote by c
n,l

m
 , =1..N, m= l.. l the coefficients

which define a n-adapted function as discussed above. Let f
lm

(r) =P(r  )Zlm ( )  be a function to be

symmetry adapted and k  the k-point under consideration. The required crystal function is then

k , n
l

(r) = ∑
T

 ∑
m

  c
n,l

m
  f

lm
(r−T)  eik ·(R +T)  = ∑

m

  c
n,l

m
  eik ·R  







∑

T

 f
lm

(r−T)  eik ·T

(20.40)
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The term in brackets is the familiar bloch sum of the generating function f
lm

(r) ; R   is the position of

atom . The procedure is thus straighforward: compute first the coefficients {c} from the operators. Then,

for each k-point: construct the bloch sums, calculate the phase-factors eik ·R    and combine (20.40).

plane waves

The plane waves ei(k+K )·r  are characterized by a point k  in the BZ and a reciprocal lattice vector K . For a

given k  a representation is generated by the star of K : all K  that transform into each other under the

operators R . The matrix Z that represents {t ;R} in this function set has elements ZKK ' =e iK '·t   if RK '=K

and zero otherwise. Diagonalization of the projection matrix (20.39) (or Schmidt orthogonalization) gives

the coefficients c n
K

  for the symmetry adapted combinations

k , n
K

(r) = eik ·r ∑
K'

  c n
K

  eiK '·r (20.41)

The translation symmetry is incorporated automatically by the prefactor eik ·r .

fit functions

The fit functions for the charge density are combined into symmetry adapted functions. The only

representation needed is the totally symmetric one; in particular the translation symmetry is k=0.

The projector (20.39) for the totally symmetric representation is simple. The dimension of the

representation is n  =1 and all representation matrices D are scalars, equal to 1.

ZLMPRJ, with auxiliary routine ZLMPR1 constructs the projector. Via a Schmidt orthogonalization all

distinct symmetric functions are obtained from a given generating spherical harmonic fit function (plane

wave fit functions are not employed in BAND).

Given the number of generating one-center fit functions for each type of atom and their l-values the total

number of symmetric fit combinations can be computed. This is done in FITSYM to assist in the efficient

workspace organization (SS^workspace). The coefficient vectors describing the fit combinations, calculated

in ZLMPRJ, are used in FITPNT during the interpolation and bloch summation (k=0) of the one-center

functions to construct the symmetry adapted fit functions.

basis functions

Symmetry adaptation of the basis functions has not yet been implemented in BAND. Since that would

increase the efficiency enormously it may be one of the future developments of the program; we spend some

words here on a few aspects of a possible set-up.

1. The computation of the combination coefficients, which define the symmetry adapted functions in terms

of the primitive one-center functions and their bloch sums, can proceed as described before, repeating the

procedure for each k-point.
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Since in each k-point the local symmetry group is a subgroup of the space group and all generators

belong to the local group of k=0, it is also possible to determine the combination coefficients only

once, using all generators (i.e. we do it for the local group of k=0). The coefficients can then be used in

each k-point and define suitable functions (20.40 and 20.41). However it has then to be determined yet,

which of the irreps of the k=0 group are coupled in the k-point under consideration.

2. The gain in efficiency from a symmetry oriented basis set is twofold. First: in each k-point the

hamiltonian Hk   is automatically block-diagonalized. The off-diagonal blocks are zero on grounds of

symmetry and we don't have to compute them in EIGSYS. Similarly, in the construction of the density

(RHOPMT, see SS^charge density) the double loop over the basis functions is reduced to a sequence of

shorter double loops: the P-matrices are also block-diagonal.

The additional level in the multiple loop structures (the loop over the irreps) requires that we know the

partition of the basis functions over the irreps and suggests that the basis functions of the respective

irreps should be grouped together.

The computation of the basis functions in BASPNT may be organized in analogy with the

construction of the fit functions in FITPNT (with the symmetry coefficients from ZLMPRJ). For a proper

dimensioning of arrays one could use routines like FITSYM and ZLMPRJ to determine in advance the

number of symmetry adapted functions for each irrep. This information can be stored on file for usage

by EIGSYS, RHOPMT etcetera.

3. The second enhancement of efficiency results from the numerical integration. When the functions

correspond to irreps, a large number of integrals is zero on symmetry grounds and the remaining

integrands are (or can be chosen to be) totally symmetric so that the integration has to run only over the

symmetry unique points. This saves of course CP-time in the evaluation of the matrix elements. A

similar improvement results for the construction of the density. Consequently we have to store on file

only the function values in the generator points; this reduces also the demand on disc storage facilities,

which is currently a bottleneck in the program.

4. A slight complication is that the irreducible wedge is a different thing for different k-points. For each

k-point we have to determine anew which integration points are the symmetry unique points.

Then, for the evaluation of the potential matrix elements (EIGSYS) we have to expand the potential,

known in the truly unique points (i.e. symmetry unique for the complete space group), over the

integration points used in that k-point. In the current set-up the potential has to be expanded over all

integration points; this is done with help of the symmetry information on the points file    itpnt   : the

points are organized in sets of equivalent points (SS^integration). In a symmetry oriented set-up we have

to know analogously the relation between the truly unique and the locally unique point sets. Since this

depends on the k-point we may need a different point file for each k-point (more probably we will have

different sections on one point file, since the total amount of these data is limited).

The same type of k-dependent information is also needed in the construction of the density (SS^charge

density): From the P-matrix (RHOPMT), or from the hamiltonian eigenfunctions (RHOPSI) the density is

computed in the points which are used for the basis functions; finally the density is contracted to the

truly unique points (and symmetrized in the proces by averaging, see elsewhere in this section).
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2 1 T e m p e r a t u r e 

Bandstructure calculations usually assume

zero temperature. A finite temperature

implies, among other things, a different

distribution of electrons over the

eigenstates. At T=0 the fermi energy eF 

is a sharp boundary between fully

occupied and completely empty states.

This is the limiting case of the general

fermi-dirac distribution at temperature T,

giving the occupation of a state with

energy e as

occ(e) = 
1

1+e(e eF)/kT
 (21.1)

eF  is fixed by the condition that the

summation of occ(e) over all one electron

states yield the total number of electrons.

In finite systems, like molecules and

clusters, the eigen energies are discrete.

The determination of eF  and the

occupation numbers is then straightforward. In bandstructure calculations this is more complicated as we

have bands of eigenstates. Only states at a few discrete k-points in the Brillouin Zone are computed. These

states may be thought to represent all states of the surrounding region in k-space and the occupation

numbers are then associated with the fraction of represented states that is occupied. However, the

occupations are calculated as weights belonging to a particular numerical integration scheme in k-space

(SS B̂Z-integration) and the values may be unexpected, even negative in some cases. Incorporation of a finite

temperature in that integration procedure is not obvious. We approximate therefore the effect of the correct

fermi-dirac distribution in another way.

Of course we are not interested in the occupation numbers themselves but in quantities that are computed by

a summation over one-particle states. Let A  be such a quantity and An(k )  the contribution from state

n(k ;r) , A  is then computed as

A  = ∑
k n

  cn(k )  An(k ) (21.2)

The integration over k-space has been replaced by a summation over discrete k-points and index n runs over

the bands. In case of the density for example A= (r) and An(k ) = n(k ;r) 2 . As mentioned above the

employed numerical integration method in k-space implies that the coefficients cn(k )  cannot simply be

Fig.8. Fermi-dirac distribution with a Riemann-Stieltjes

like integration.
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associated with fermi-dirac distribution numbers. The true expression however, taking all infinitely many

k-points into account, would be

A  = ⌡⌠
BZ

 ∑
n

  occ(en(k ) ) An(k )  dk (21.3)

where occ(e) is given by (21.1).

The value of A  depends on eF  and T via occ(e) in (21.3), so A=A(eF ,T).

Consider now the fermi-dirac distribution and imagine (fig.8) a Riemann-Stieltjes or similar integration

scheme in the variable occ on the interval [0,1]. The points oj , 0<o1 <o2 <...<oN <1, have weights wj 

such that wj  is the part of the occ-interval represented by oj ; ej  is the energy value corresponding to oj 

via equation (21.1): oj =occ(ej ). Hence (21.3) can be approximated by

A(eF ,T) ≈ ∑
j

  wj  A(ej ,0) (21.4)

Our k-space integration procedure yields coefficients cn(k )  corresponding to T=0, but depending on the

fermi energy: cn(k ) =cn(k ;eF) , so that A  may be computed as

A(eF ,T) ≈ ∑
j

  wj  A(ej ,0) ≈ ∑
j

  wj ∑
k n

  cn(k ;ej)  An(k )  ≡ ∑
k n

 cn(k )  An(k ) (21.5)

cn(k )  = ∑
j

  wj  cn(k ;ej) (21.6)

The final coefficients c  are thus defined as numerical integrals. The integration variable is occ, on the

interval [0,1], so (21.6) has to be read as

cn(k )  = ∑
j

  wj  cn(k ;e(oj))  ≡ ∑
j

  wj  cn(k ;oj) (21.7)

where e(occ) is the inverse function of (21.1).

The accuracy of the result depends of course on the functional dependence of the coefficients c on occ and on

the employed numerical integration method. One would like to use some high precision method like Gauss-

Legendre quadrature. There are two types of problems. In the first place c may have discontinous derivatives

at occ-values, for which e(occ) is a band-edge or another van-Hove energy. This may be remedied by

splitting the interval [0,1] in appropriate subintervals and using separate numerical integrations for each of

them. In the second place the energy e(occ) has infinite derivatives for the end-values 0 and 1; the same may

be true for the coefficients c, at occ=0 or 1, as well as at band edges, so that some variable transformation

may be needed to make Gauss-Legendre quadrature applicable.
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At the current state of affairs BAND uses a straightforward Legendre integration without bothering about

these problematic aspects.

The temperature T and the number of integration points (   nfdirc    in the program) are input via the keys temp

and fdirc (or fermi-dirac) respectively; default values are    nfdirc   =2 and T=10. The latter has the effect of

T=0 on the final results: in energy units a temperature of one degree equals approximately 3×10−6 a.u. so

that on the scale of interest (10−3 a.u.) a temperature of 10 degrees gives virtually a step function for the

fermi-dirac distribution.

The temperature is in BAND represented by the variable    tfdirc   ; its numerical value is the temperature in

atomic energy units (input is in degrees however).

When the SCF procedure has convergence problems, detected in SCFTST (SS^iteration),    nfdirc    is increased by

2. Convergence problems are often related to near degeneracies around the fermi-level; a more detailed

approximation of the correct distribution of occupation numbers over the involved states may facilitate the

iterative procedure (but usually this does not help much).
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2 2 W o r k s p a c e 

d y  n a m  i  c  a l   a l  l  o  c  a t  i  o  n  o  f   a r r a y  s  

BAND needs many arrays to store data: the coordinates of the atoms, the characteristics of the basis

functions, the values of functions in the integration points and so on. Fixed sizes for all these arrays are

unwieldy. With any configuration of fixed sizes we will soon encounter an application that does not fit,

while just a redistribution of the claimed workspace would suffice. This would then necessitate a

recompilation of the program with adapted array bounds. Fixed sizes imply also that in every run we pay for

memory we do not use.

FORTRAN77 does not support dynamical array allocation. BAND simulates dynamical allocation of arrays

with subroutine ARRAYS. We will refer to this routine and the related data structures as BAND's workspace

manager.

The total workspace available is fixed of course (FORTRAN77) and consists of two large arrays in (blank)

common, one for integers,    iwork   , and one for reals,    rwork   . Whenever an array is needed in the course of the

program execution ARRAYS is called. It gives back which element of    iwork    or    rwork    respectively is to be

used as starting address. Later it may be called to release the claimed space again, when the allocated array is

not needed anymore.

A typical structure would be

n = ..

call arrays ('allocate','real','store',n,ii)

call b(n,rwork(ii),....)

..

call arrays ('delocate','real','store',....) (22.1)

end

subroutine b (n,store,....)

dimension store(n)

..

The allocated arrays are identified by a name, which is stored by ARRAYS in a list of names, together with

their positions in    iwork    or    rwork   . Between each pair of allocated arrays in    iwork    or    rwork    one word is kept

free. ARRAYS writes a marker there: a specific integer or real value that is improbable to occur often. As

soon as ARRAYS is called to give the space free again, it checks whether the markers directly before and

after the array are intact: global array-bounds checking afterwards.

ARRAYS discriminates two types of data: integers (type 1) and reals (type 2). Array    arname   (nnames,2)

contains the names of the currently allocated arrays. The maximum number per type,    nnames   , is a constant
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in the program.    Indexw     contains the locations of the arrays:    indexw    (i,j) is the position of the marker before

the i-th array of type j (j=1,2).    ncwork    stores how many arrays are currently allocated: the number of

allocated arrays of type j is (   ncwork   (j)−1). The relevant data are stored in the common blocks CNTRLC

(data of type 'character') and CNTRLV (other variables).

One of the arguments of ARRAYS is    action   , a string to identify the purpose of the call.    action    may have the

values 'allocate' or 'delocate' with obvious meanings. Furthermore it may be

'available' to find out how much space is still free,

'space' to allocate an array as large as possible. This is a combination of 'available' and 'allocate'; output are

the pointer for the array and its size.

'check' to check the markers around a specific array,

'init' to initialize the information structure in ARRAYS (in this way it is called only once of course, by

INIT),

'dump' to output the current state of affairs,

'free', which implies 'delocate' for the specified array and for all arrays of the same type that were allocated

after it.

remarks

1. If several arrays have been allocated, their de-allocations may be executed in any order. However, the

space of a delocated array is not available for subsequent allocations until all arrays after it have been

given free as well: free holes in    iwork    and    rwork    are not used, only the free final sections.

2. ARRAYS is also used to manage array allocation for logicals and complex numbers. Logicals are treated

on the same footing as integers; complex data are treated as reals, taking two real words for each

complex. The size of an array as specified in the argument list is therefore multiplied by m  when sizes

are judged; m=1 in all cases except for complex numbers, where m  equals 2.

3. It is possible in principle to have only one workarray in blank common and allocate both integer and

real arrays in it; this might be more efficient as we may now have a too small real array    rwork    and

wasted space in    iwork   , or vice versa. The gain would be small, because the real array is an order of

magnitude larger so that some extra space from the integer array is not very important.

The reason to keep integers and reals separate is that type-mixing may cause problems on some

machines. The same might of course be true as regards the mixing of logicals with integers and

complex numbers with reals. In that case the number of types used in ARRAYS should be extended; the

necessary adaptations will be obvious from inspection of the implementation.

o  p  t  i  m  i  z  e  d  v  e  c  t  o  r  l  e  n g  t  h s  

Even with the optimized use of available workspace, by way of the pseudo-dynamical allocation procedure

just discussed, it is impossible to have all data in core simultaneously. BAND evaluates most integrals

numerically. The relatively large number of integration points necessitates the storage of data on file, such

as the values of the basis functions in the points. Each time we need them, for instance to compute matrix

elements of the potential, they are read and used. In general only part of these data can be kept in core at the
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same time and the numerical integration has to be performed in a number of steps. At each step the values

corresponding to one block of points are read, processed in the computation and then replaced by the next

block of data.

The heart of the computation consists of vector operations; the length of the vector is the number of points

in a block. It is advantageous to have the vectors as long as possible or, to be more precise, to have as few

blocks as possible, because each extra block costs one more start-up of the vector operation.

For organizational reasons the block structure is the same on all involved files. By the block structure we

understand here the number of blocks (of points) and the length of each individual block. In each routine

where we have to handle such data the available workspace is determined by what other data must currently

be kept in core, so that for each routine there may be a different maximum possible vector length. Routine

WRKORG computes these values for all sections in the preparation stage and gives back the minimum over

them: the absolute maximum vector length for the whole preparation part:    npx   . This can then be used to

write the various data to file in the appropriate block structure.

As regards the SCF part alone, the maximum possible vector length is often much larger than in the

preparation stage: in the preparation part we need at certain moments the overlap matrices of the valence,

core, or fit functions; these occupy considerable parts of the total workspace. REORGF computes the SCF

vector length and reorganizes the relevant files after PREPAR and before SCF; auxiliary routines for REORGF

are REORG1, -2 and -3; each of these rewrites a (number of) specific files.

The determination of the block structure for PREPAR has two complications.

a) In BASPNT the bloch sums of the basis functions are computed for all employed k-points of the Brillouin

Zone. Much of the involved computational work does not depend on the k-point. Hence it seems obvious to

do this for as many k-points together as possible, instead of repeating the work for each k-point. However

this implicates that more basis function data have to be kept in core (proportional to the number of k-points

processed simultaneously), thereby reducing the maximum possible vector length in BASPNT; this again

makes the execution more expensive by increasing the cost of the vector operations.

To achieve the optimal situation we have to minimize some sort of cost function. This function has to

depend both on the vector length and on the number of k-points handled together. The optimal balance may

be determined by many conditions and not in the least by the machine; we find for example that the optimal

situation on the Cyber205 differs markedly from that on the Cyber995.

We have implemented a cost function (in RPNTRE), but the form will not be discussed here: it is only a

first guess; a systematic experimentation with it might very well yield a significant improvement in

performance of the program.

The number of k-points treated together is the variable    kgrp   . By default it is determined by RPNTRE, but

this may be overruled by fixing its value via input, with key kgrp.
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b) For some functions, in particular the fit functions, we need only the values in the symmetry unique

points. The maximum vector length according to the fit section is thus the maximum number of symmetry

unique points in a block. The absolute maximum vector length can then be computed if we know the ratio

between the symmetry unique points and the total number of points in a block. However this is not a fixed

value (e.g. the number of symmetry operators): some points may not be general points. If they are located

on a symmetry element, such as a reflection plane or a rotation axis, the number of equivalent points is

only a fraction of the number of symmetry operators. So the ratio depends on what kind of points are in a

particular block. Then, assuming a quotient (the variable    symfrc    in the program) it must be seen afterwards

whether the actual value in the realized block structure does not deviate so much from it as to cause

problems; RPNTRE checks this and adapts in such (exceptional) cases the block structure.

WRKORG is called first from PREPAR to obtain a first assessment of the maximum vector length    npx   ;

symfrc    has been initiated (INIT) at the safe value 1.0. In RPNTID the file with integration points    itpnt   ,

output from POINTS, is rewritten in accordance with the value of    npx   ; meanwhile the maximum fraction of

symmetry unique points,    symfrc   , is determined. Then, in RPNTRE, the cost function mentioned above and

the new value of    symfrc    are used to optimize the points-file. The actual rewriting of    itpnt    occurs in the

auxiliary routine RPNTRW.
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2 3 X C :  e x c h a n g e  a n d  c o r r e l  a t i  o n 

The exchange and correlation (XC) interactions between the electrons are approximated with the density

functional (DF) formalism. Many DF formulas have been advocated in the literature for the XC

potential. The first proposal was by Slater [Slater 1951], later parametrized to the famous X  

potential. More recently the Gunnarson-Lundqvist (GL) [Gunnarsson and Lundqvist 1976] and the

Vosko-Wilk-Nusair (VWN) [Vosko et al. 1980] form were published. All these approximations are

based on homogeneous electron gas calculations. BAND has the possibility to take either of these. The

VWN function is presumably the most accurate, but for sake of comparison the other options are

occasionally useful.

Even the more sophisticated DF functions, like VWN, are rather severely in error, depending on the

(poly-) atomic system. The error is roughly 10% in the exchange part and up to 100% in the

correlation [Stoll et al. 1978, Gunnarsson and Jones 1985, Becke 1986]. The signs of these deviations

are opposite and the sizes such that the net result, as regards the self consistent charge density and the

total energy, is often fairly good. Not in all cases however and from a more principal point of view this

situation is of course unsatisfactory.

According to Stoll et al. [1978] the correlation error is mainly due to an overestimation of the

correlation between electrons of the same spin. The program has therefore the option to suppress this

term, partially or completely. To prevent the total result from getting worse we should of course also

repair the exchange error. That can be done to a large extent by including a non-local term, a function

of the gradient of the density [Becke 1988]. Implementation in BAND has not yet been undertaken. It is

not very difficult and will be discussed at the end of this section.

l  o  c  a l   X  C   f  u n c  t  i  o  n s  

The energy density and potential will be denoted by (r) and (r) respectively.

Define:

+( )    is the charge density of spin-up (-down) electrons. (23.1)

 = + + 

 = ( + − ) /     is the spin polarization function

f( ) = ( )(1+ )4/3+(1− )4/3−2   / ( )24/3−2  

rs  =  
3

4π
1/3

     is the Wigner radius

 =  
4

9π
1/3
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EXC  = ⌡⌠  dr (r) XC(r)

The energy density and the potential derived from it can conceptually be split into an exchange and a

correlation part

XC ≡ XC(rs, ) = X + C

(23.2)

±
XC

(rs, ) = 
d

d ± (  XC)  = XC − 
rs
3

 
d XC

drs
  ± (1−+ ) 

d XC

d
  = X + C

The exchange part is given for all local spin density functionals by

X = 




−3

8π rs
 ( )(1+ )4/3 +  (1− )4/3    





= 
−3
2

  
3

4π  
( +)4/3 +  ( )4/3

 (23.3a)

±
X
 = 





−1

π rs
 (1±ζ)1/3    = −2   

3
4π  ( ±)1/3  (23.3b)

The difference between the various XC functions is the treatment of the correlation.

X-alpha   

In the X   approximation the correlation part is represented by parametrizing the exchange term

XC = 
3
2
  X X (23.4)

and similarly for XC . The X   parameter X is usually taken between 0.6 and 1.0.

Gunnarsson-Lundqvist   

C = 
p
C
 + (

f
C

− p
C

) f( ) (23.5)

p and f indicate the para- and ferro magnetic states. ( =0,1).

j
C
 = −cj  {((1+

3
j ) log(1+ 1/ j ) + 1/2 j - 

2
j  − 1/3}

(23.6)

j = rs /dj           j=p,f

cj  and dj  are constants

cp  = 0.0333 a.u. cf  = 0.0203 a.u. (23.7)

dp = 11.4 a.u. df = 15.9 a.u.

Vosko-Wilk-Nusair   

C = 
p
C
(rs) + 9/8 (24/3 −2) C(rs)(1− 4) f( ) + (

f
C
(rs) − p

C
(rs) ) 4 f( ) (23.8)
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The values of the parameters 
p
C

, 
f
C
  and C are all given by a function

H(rs,xi,Bi,Ci,Qi,CAi,CBi,CCi ). The arguments are different for the three cases, i=p,f, .

H(rs,x,B,C,Q,CA,CB,CC ) = CA {log(rs ) − 2CB log( )√rs x   + (23.9)

  + (CB−1) log( )rs+B√rs+C   + CC arctan Q/( )2√rs+B  }

The constants x,B,C,Q,CA,CB and CC are given in table II.

The implementation of the function H needs a little care. As the density approaches zero several terms

in (23.9) become unbounded. The 'infinities' cancel each other analytically. To prevent rounding errors

and other numerical problems from influencing the result a few terms are recombined. Set g=( )3/4π 1/3 ,

rs =g −1/3 :

H = CA {log(g) + log( )−1/3   − 2CB ( )√g−x 1/6   − 2CB log( )−1/6   +

  + (CB−1) log( )−1/3   + (CB−1) log( )g +  B√g 1/6 +  C 1/3   + CC arctan  Q 1/6/( )2√g+B 1/6   

} =

= CA {log(g) − 2CB ( )√g x 1/6   + (CB−1) log( )g +  B√g 1/6 +  C 1/3   +

+ CC arctan Q 1/6/( )2√g+B 1/6   } (23.10)

S  t  o  l  l  '  s   c  o  r r e  c  t  i  o  n  f  o  r  t  h e   c  o  r r e  l  a t  i  o  n 

As mentioned before it may be argued [Stoll et al. 1978] that the commonly applied DF formalism,

based on the homogeneous electron gas, overestimates the correlation. They propose a correction

yielding an effective correlation function

eff
C

(rs, ) = C(rs, ) − 
correc
C

(rs, ) (23.11)

correc
C

(rs, ) = 
1
2 (1+ )  C(r

+
s , =+1) +  

1
2 (1− )  C(r−

s
, =−1) (23.12)

r
±
s   = 





3

4π ±
1/3 (23.13)

The corresponding effective correlation potential is

eff ±
C

 = 
±
C
 − C(r

±
s , =±1) − ± 

d
d ±

 C(r
±
s , =±1) (23.14)

BAND applies the correction with an (input specified) multiplication factor  between zero and one.
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eff
C

 = C   
correc
C

(23.15)

implementation

The local density functional (LDF)

formulas above are evaluated by two

main routines: XCENER and XCPOT

for the energy density and potential

respectively. Input are a vector of

density values and information

regarding the type of DF formula.

The GL form is not yet available

because the evaluation of the energy

density has not been implemented

thusfar.

A few auxiliary routines compute various (parts of the) formulas occurring in the VWN approximation.

These are XCVWND, XCVWNE, XCVWNF, XCVWNP.

The variable    ioptxc    determines the type of formula (1:X  , 2:VWN, 3:GL);    xcpar    provides additional

information: for the X   formula it is the usual X   parameter, in the other cases it is the amount of

Stoll-correction applied (  in 23.15). Default is the VWN formula without Stoll's correction:    ioptxc   =2,

xcpar   =0. Input is with the keys X-alpha, VWN or S to l l . The last two request both the VWN formula

to be applied. In all three cases the key record may contain a value for xcpar; defaults respectively

0.7, 0, 1.

g  r a d i  e  n t   c  o  r r e  c  t  i  o  n  f  o  r  t  h e   e  x  c  h a n g  e  

In recent years considerable success has been met in the elimination of the exchange error by inclusion

of a term that depends on the gradient of the density. Becke [1988] gives a function for the exchange

energy

EX  = E
LDA

X
  − ∑ ∫ 4/3 x

 1+6 x sinh−1x
 dr (23.16)

E
LDA

X
  is the exchange energy in the local density approximation, given by (23.1) and (23.3),  is the

spin index,  is a constant whose value may be fitted to the exact Hartree Fock exchange energies for

atoms ( ≈0.0042 a.u.) and the dependence on the gradient is via

x   ≡ 
∇ 

 (23.17)

Incorporation of this function is straightforward if the density gradient can be evaluated in the

integration points. The density in the crystal is known as an expansion in basis functions i(k )

p f

x −.10498 −.325 −.0047584

B 3.72744 7.06042 1.13107

Q 6.15199 4.73093 7.12311

CA .0310907 .01554535 −.01688685

CB −.0311676 −.144601 −.000414034

CC 1.24742 3.3766 .317708

Table II. Constants in the VWN formula for the

correlation functional.
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 = ∑
k

 ∑
ij

  P
k
ij   i(k ) j(k ) (23.18)

P
k
ij   is the density matrix. For the gradient we have then

∇  = ∑
k

 ∑
ij

  P
k
ij  ( )i(k )∇ j(k )+ i(k )∇ j(k )   = ∑

k

 ∑
ij

 (P
k
ij+P

k
ji)  i(k ) ∇ j(k ) (23.19)

The basis functions are either plane waves eik ·r  giving ∇eik ·r =ik ·eik ·r , or bloch sums of one center

functions i

i(k ;r) = ∑
R

  i(r R ) eik ·R  (23.20)

The one center functions have the form

(r) = Zlm ( )  P(r) (23.21)

where the radial function P(r) is an exponential function P(r)=rl+k e r  or a numerical orbital from the

free atom subprogram DIRAC. In both cases the gradient ∇ i and hence ∇ i(k ) can be computed.

For the evaluation of the gradient of the density we need in this formulation the derivatives of the basis

functions i(k ) . These values, in each integration point three numbers per basis function, will have to

be stored on file. In the current set-up of BAND the data of the basis functions themselves are already a

major bottleneck for the application to large systems so that this approach poses a serious problem. It

may therefore be advisable to employ the fit functions fi  that are also used for the evaluation of the

coulomb potential. The density is approximated by

 = ∑   + def ≈  ∑   + ∑
i

  ci fi (23.22)

 is the spherically symmetric charge density of free atom , def is the deformation charge

def ≡ crystal − ∑  (23.23)

The fit functions are bloch sums (23.20) (with k=0) of one center functions of the form (23.21). The

total number of one center functions that are used for the fit is of the same order as the number of one

center functions for the valence basis. The latter are combined in bloch sums for each k-point, the fit

functions however only for k=0. Furthermore BAND employs as fit functions only the totally

symmetric combinations of one-center functions (SS^symmetry), while for the valence basis of course

all irreps are used. So evaluation of ∇  via (23.22), instead of (23.19) requires less additional data to be

stored; in most cases the difference will at least be an order of magnitude.

A second advantage is the computing time. Expression (23.22) leads to
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∇  ≈ ∑  ∇  + ∑
i

  ci ∇fi (23.24)

The striking difference with (23.19) is that not only the summation over the k-points is absent, but

that also the double summation over the functions has been replaced by a single sum.

derivatives of one-center functions

We conclude this section with the derivatives of one center functions of the form (23.21). It will be

convenient to express the desired derivatives with respect to the cartesian coordinates in spherical

coordinates. So we use

d/dx = ∂r/∂x d/dr + ∂ /∂x d/d  + ∂ /∂x d/d (23.25)

and similarly for d/dy and d/dz, with

r = x2+y2+z2 ,     = acos(z/r),     = arctan(y/x) (23.26)

to write









d/dx

d/dy

d/dz

  = 







cos sin cos sin /r −sin /rsin

sin sin  sin cos /r cos /rsin

cos  −sin /r 0

 









d/dr

d/d

d/d

 (23.27)

For an exponential function P(r)=rn e r  the radial derivative is

d
dr

  rn  e r  = ( )n/r   rn  e r (23.28)

If P(r) is a numerical function, given as a table P(ri ) with logarithmically increasing ri , ri+1 /ri =c,

the derivative can be computed numerically by a 3-point interpolation. Define g(ri )≡R(ri )/ri , then

dP(ri)

dr
  = 









1

c2( )(c+1)2g2 − (c+2)g1 − cg3 i=1

gi +  
c

c2−1( )gi+1 − gi 1 i=2..N−1

1

c2−1
 cg

N 2 +  (2c2+1)g
N
 − (c+1)2g

N 1 i=N

 (23.29)

derivatives of spherical harmonics

The angular derivatives operate on the spherical harmonics. BAND uses real-valued spherical harmonics

Zlm ( )  = 






c

m
l  P

m
l (cos ) cos(m ) m≤0

c
m
l  P

m
l (cos ) sin(m ) m>0

 (23.30)



XC: exchange and correlation 134

P
m
l   is the associated Legendre function and c

m
l   is a normalization factor (m≥0)

c
m
l   = (−)m 

(2l+1)
4π  

(l m)!
(l+m)!

 (23.31)

The derivative with respect to  is obvious. For dZlm  /d  the recurrence relations and the definitions of

the Legendre functions can be used [Arfken 1970].

dP
m
l  /d  = −sin  dP

m
l  /dcos  = 

1
2
 ((l+m)(l m+1)P

m-1
l  − P

m+1
l ) (23.32)

From the relation to the Legendre polynomials [Arfken 1970]

P
m
l   = sinm  ( )d/dcos m  Pl (23.33)

we may alternatively derive

dP
m
l  /d  = ( )m/tan   P

m
l    P

m+1
l  (23.34)

The first term in (23.34) presents a problem for sin =0. For m=0 this term should be omitted (23.33),

while for m≠0 P
m
l   contains a factor sinm   removing the singularity. In view furthermore of the

restriction m≤l a possible set-up is

1. use explicit expressions for the derivatives of Zlm   with l=0,1

2. for l≥2, m=−l+1,....,l−1 use (23.32)

3. for m= −l use (23.34)

4. for m=l combine (23.32) and (23.34) to eliminate P
m+1
l  :

dP
m
l  /d  = (l+m)(l m+1) Pm 1

l
  − ( )m/tan   P

m
l  (23.35)

For =0,π/2 the first term in (23.34), respectively the second term in (23.35) have to be omitted.
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S o f  t w a r e  R e f  e r e n c e  L i  s t  A :  s u b r o u t i  n e s 

:

dirac......................................8

prepar..................................11

points.................................12

vauvw.................................15

machin................................15

dirac....................................16

sltorb..................................16

planew................................16

hamfix................................16

bas-...............................16–20

simtrf..................................20

kpnt-...................................24

simpls.................................24

lattpt...................................25

polygn................................25

plgirr..................................25

polyhe.................................25

pyrrot..................................25

bzintl..................................26

quad-...................................26

quad-...................................26

hybrid.................................26

fermi-.............................26–27

occ-...............................25–27

emnmxb..............................27

eigsys.................................28

pmatrx................................28

rhopsi.................................29

rhopmt................................29

scf......................................29

charge.................................30

prprts..................................30

rpntid..................................30

start....................................31

endof...................................31

skip-...................................32

sectim.................................32

itimer..................................32

tstat....................................32

cntrl-..............................31–33

stopit.............................32–33

atmfnc.................................34

rhofit..................................35

coulom................................35

fit-......................................36

fitpnt..................................48

fitra-...................................49

fitra-...................................49

basovl.................................56

popana................................56

dos-...............................16–20

atmfnc.................................61

elstab..................................61

energy.................................61

fl- 16–20

formfa.................................66

celred..................................66

rotmat.................................68

polygn................................69

polyhe.................................70

plgirr..................................70

simpls.................................71

headin.................................73

getinp.................................73

key-....................................24

prnt-...................................77

prnt-...................................77

skip-...................................78

skip-...................................78

testst...................................78

points.................................79

gemtry................................79

rpntid..................................79

rdintg..................................80

atmfnc.................................86

baspnt.................................86

fitpnt..................................86
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intdat..................................86

vbnd2i.................................86

condit..................................86

celmax................................87

radma-.................................24

simpsl.................................87

rhopot.................................91

mixitr.................................91

vardat..................................91

scftst...................................92

atmsep................................96

lattic...................................96

leg-................................16–20

potapp.................................99

eigsys................................100

rhoapp................................101

rhopmt...............................101

pntgrp................................105

symcry...............................106

lattpt..................................106

lattch.................................107

symprj...............................109

symzlm..............................115

sphprd................................115

sphpnt................................115

vzlm..................................115

zlmprj................................118

fitsym................................118

fitpnt.................................118

rhopmt...............................119

cntrl-..................................124

arrays..................................24

wrkorg...............................125

reorgf.................................125

baspnt................................125

rpntre.................................125

rpntrw................................126

xc-.....................................130
alternating sequence 40–45, 50
arrays 123
atoms

positions 75

type of 75
basis

orthonormal 12, 16
basis

functions 8, 16
blank common 123
bloch

theorem 6, 107
bloch

functions [Bloch 1928] 8
sum 12, 85, 87

BZ-integration 22
hybrid-quadratic 26
quadratic 26
temperature 27

BZ-integration
accuracy 23

charge 7. (see density)
control 31–33, 78
convergence 95

Chebyshev acceleration 93
core 9, 17, 21
correlation (see XC)

Stoll's correction;. They propose a correction
yielding an effective correlation function

129
correlation

error 127
coulomb potential 10, 33, 50

average 50, 53
damping 88
debugging 65, 78
defaults 72
density 6, 28–31, 50, 110

deformation 10
expansion in spherical harmonics 31
plot 30

density
approximation 101

density of states (see dos)
dependency

core-valence 18
fit 37
valence 17

dependency
coefficients 17, 37

derivative
angular 132
one-center function 132
radial 132

dimensionality 75
k-space 96, 108, 109

dipole 16–20
DOS 53

gross 55
overlap 55
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partial 54
plot 56

efficiency8, 14, 20, 27, 29, 48, 98, 101, 111,
118, 119, 125

energy
coulomb 58
electrostatic 60
error 57
kinetic 58
Madelung 61
XC 58

exchange (see XC)
exchange

error 127
execution stack 32–33
fermi energy 6, 25
fermi-dirac distribution 120, 121
files 62

format 64, 65
input, output 65
size 62
string 62

files
manager 62

fit functions 10, 33–36, 131
charge content 34
coefficients 35
constraint 34
error 59. (see form factors). (see energy)
generating 35
plane waves 36
potential 35

form factors 65
frozen core (see core)
geometry 67, 75
hamiltonian 6
Herman-Skillman 8
input 15, 72

core 76
defaults 72
functions 75
nuclear charge 75

input
file 72

integration 79
accuracy 80
generators 110
k-space 109
points

blocks 79, 125
symmetry 79

symmetry 110
integration

parameters 80
points

blocks 13

interpolation 48, 85, 16–20
irreducible wedge 119

polygon 70
polyhedron 71

irrep 111, 116
matrix 116
projection 110
projector 116
translation group 6, 107

iteration 88
key 73. (see input)

block 78
integration 80

key
block 73
record 73

kinetic energy
functions 16
matrix 16, 61

k-point
equivalence index 24

lattice 75, 96
Bravais 102

lattice
sum 13

lattice sum 37
lines 68
machine-dependency 14, 62, 73
Madelung 48
memory banking conflict 14
multipole 13, 51
n-dimensional crystal 7
nearest neighbour 47
occupation numbers 9, 25, 28, 110, 120
orientation 96
orthogonality theorem 116
output 77. (see print)

heading 73
input data 73

plane waves 9, 76
symmetry adaptation 118

planes 67
P-matrix 21, 28, 101
point group 115
polygons 68
polyhedra 69
population 30, 53
potential (see coulomb potential)

approximation 99
print

instructions 77
options 77

RADIAL 48, 76
reciprocal values 76

radial
grid points 8
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tables 8

recurrency 33
relativistic effects 6
results 7
SCF 13
screening 41
screening function

modified 49
simplex 23, 71
space group 102

generators
centralizing 103

generators 102
operators 105

spherical harmonics
definition 132
representation of operators 115

spherical harmonics
symmetry adaptation 117

spin 7, 78, 100, 101
symmetrization 110
symmetry 12, 102

functions 116
k-space 107
little group 116

symmetry
breaking 12

temperature 120. (see BZ-integration)
timing 29
unit cell 103, 106
vector length 13, 125
vectorization 14
workspace 13, 123
workspace

manager 123
XC 6, 127

error 127
X-ray (see form factors)
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