

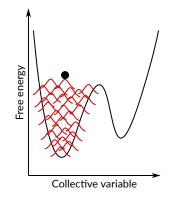
Accelerating ReaxFF Simulation of Alkane Pyrolysis using CVHD

Tomáš Trnka support@scm.com

October 25, 2018

Motivation

- Many interesting problems driven by rare events (ms-h+ timescales)
 - Chemical reactions (catalysis, industry, enzymes)
 - Slow physical processes (diffusion, phase transitions)
- ► Brute-force MD not feasible:
 - Theoretical "wonder HW" capable of a timestep (1 fs) per clock cycle (1 ns): 10⁶ wall-s (12 days) per sim-s
- ► How to find the rare reactive trajectory?
 - ► Lower the effective barrier biased simulation
 - Cherry-pick interesting trajectories


Introducing Enhanced Sampling Methods

- ► Biased MD philosophy
 - Simulate using a modified potential or equations of motion
 - Remove the effect of the bias from results
- Free-energy methods (Potential of Mean Force) need to record the bias for unbiasing
 - ► Need to define suitable collective variables (CVs) to reduce dimensionality
 - Up to 2 (3) CVs feasible (Umbrella, Metadynamics, ABF ...), or sampling along a predefined reaction path (String Method, Nudged Elastic Band ...)
 - "Good" CVs crucial for usable results
 - Needs to unambiguously define the state of the system (different states must not overlap)
 - All orthogonal processes need to average out
 - Needs to be smooth and continuous
 - Not usable for studying many independent simultaneous processes

Example Free Energy Sampling Method: Metadynamics

- $V_{\text{bias}}(\xi) = \sum_{i}^{N_{\text{biaspts}}} g(\xi \xi_i)$
- New bias function g(ξ) (usually Gaussian) periodically deposited at the current CV value ξ_i
- Incrementally fills energy valleys by bias until there are no barriers left (diffusive regime)
 - ► Free energy = negative of converged V_{bias}

Alternatives to Free Energy Sampling Methods

- ► "(Almost-)Memory-less" methods: Derivatives of Hyperdynamics
 - ► No free energy information
 - "Unbias" on the fly to recover time
- Biased sampling of trajectories: Transition Path Sampling, Transition Interface Sampling

Hyperdynamics

- Simulate on a modified potential $V'(x) = V(x) + V_{\text{bias}}(x)$
- Advance "hypertime clock" by $\Delta t_{hyper} = he^{V_{blas}(x)/(k_BT)}$
 - ► Hypertime = "How long would it take to get here in an unbiased simulation?"
- ► Transition state regions must be bias-free
- ► Suitable choice of V_{bias}(x) crucial, hard to set manually
- ► Self-learning bias: CV-based Hyperdynamics (CVHD)
 - ▶ $V_{\rm bias}$ built on the fly using Metadynamics with a suitable CV η
 - Bias reset once a transition is detected CV only needs to be valid for a single transition

CVHD in ReaxFF

- Global CV η composed of primitive local CVs χ_i
 - η is dominated by the bond with the highest χ_i

$$\eta = \frac{1}{2} \left(1 - \cos \left(\pi \chi_{\text{tot}}^2 \right) \right) \qquad \chi_{\text{tot}} = \left(\sum_{i}^N \chi_i^p \right)^{1/p}$$

► Only a bond-breaking local CV implemented (Bal and Neyts, J. Chem. Theory Comput. 2015, doi:10.1021/acs.jctc.5b00597)

$$\chi_i = \frac{r_i - r_i^{\min}}{r_i^{\max} - r_i^{\min}} \qquad 0 \le \chi_i \le 1$$

- Bias is applied to bonds approaching a transition distance between r_i^{min} and r_i^{max}
- Only bonds with $BO \ge cutoff$ at the beginning of the run are considered
- Transition is assumed when $\eta = 1$ for a specified time

Designing Advanced CVs

- ► Participating atoms defined in ADFinput as "Element-Region" pairs
 - Simplest case: Use the predefined "All" region ("C-All" means any carbon atom in the system)
 - Define multiple regions to distinguish chemically different atoms of the same element
- Exponent p sets the degree of "locality" of η
 - Higher p focus on dissociating one bond (closest to transition highest χ_i)
 - ► Lower *p* bias several bonds at the same time (concerted dissociation)
 - Results commonly not very sensitive to the exact value used
- ► Only bond-breaking CVs currently supported
 - ► Other CV types (bond formation, angles/torsions etc.) planned
- Definition can be edited in cvhd.in
- See the online documentation for details

Tutorial: Pyrolysis of Dodecane

- ► Following Bal and Neyts, Chem. Sci. 2016, doi:10.1039/c6sc00498a
- ▶ Pyrolysis of alkanes under realistic conditions (1000 K, about 50 kg m⁻³)
- ► Some deviations from the paper to save time:
 - ► Integration timestep increased to 0.2 fs (lower accuracy)
 - Small system (only 114 atoms)
- ► We won't have enough data for proper statistics (rate constants)
 - We can still roughly estimate the timescales of different processes

System Preparation

- Open ADFinput and switch to the ReaxFF module
- Open the Builder tool (Edit → Builder)
- ► Set up a 25 Å cubic box
- Add 3 molecules of dodecane (type into the field and click "Dodecane (ADF)" in the drop-down)
- Click "Generate molecules" and "Close"

Builder		
Lattice vectors (Angs	trom):	Volume: 15625.0 Angstrom^3
25	0.0	0.0
0.0	25	0.0
0.0	0.0	25
Propagate diagona Molecules:	1	
- Current	•	Move to center of box
 Fill box with: 	▼ 3 copies	s of: dodecane 💼
C8H1 C12F C10F	422: Spiro[5.6]dode L6N4: 1.4.6, 9-Tetra 426: Dodecane (ADF 41802: 1.4-Dioxaspi 426: Dihexyl	zatricyclo[4.4.1.1.4,9](F)
Random start: Ye Distance: 2.5 Ar	es ngstrom	
Current density: 0 g/ New density will be a		
	Clo	Generate Molecules

Simulation Setup

- ► Select the CHO.ff force field
- ► Set the timestep to 0.2 fs
- ► Turn on the Nosé-Hoover thermostat and set the temperature to 1000 K
- Set "number of iterations" (MD steps) as high as time permits
 - The absolute minimum needed to see a reaction is one million steps (20-40 minutes depending on your CPU)
 - More steps strongly recommended (at least 1.5-2 million)
- Increase the output periods on the Details → Molecular Dynamics panel to 1000

ReaxFF Main Mode	el Properties Details	Q
Task:	Molecular Dynamics	
Periodicity:	Bulk	•
Force field:	CHO.ff	0
Corrected torsions:	T Yes	
Number of iterations: Start with: Time step:	2000000 0 non-reactive iterations 0.2 fs	
Method:	NVT Nose-Hoover chains 🔻	
Temperature: Damping constant:	1000.0 K 100.0 fs	
ReaxFF Main Mode	el Properties Details	Q
	Molecular Dynamics	0
Fix cell parameters (NP	T only): None 💌	
Output frequencies		
KF result file:	1000	
Energies, temperatures	s and more: 1000	
Coordinates:	1000000	
Remove Rot/Trans ever	y: 25 iterations	

CVHD Setup

- Set the bias deposition frequency to 1000 steps (200 fs) after an initial delay of 1000 steps
- Set the waiting time for events to 5000 steps (1 ps)
- Using the "+" button next to "Bond-breaking CV", define these two local collective variables (parameters taken from the Bal and Neyts paper):
 - ▶ C-C with Rmin 1.55 Å and Rmax 2.20 Å
 - C–H with Rmin 1.05 Å and Rmax 1.65 Å
- Now you can save and run the simulation!

	F Main M	odel	Prope	rties I	Det	ails					0
	Colle	ective	Variat	le-Driv	/en	Hy	perc	lynam	cs		6
Start i	teration:				10	000					
Deposition frequency:		1000		000	step	os.					
When	done, keep b	ias fo	r:		50	000	step	DS .			
Gaussi	ian height:				0.3	250	kca	l/mol			
Gaussian height: Gaussian half width:			0.025								
Rips to	emperature:			-	-	-	к				
	Atom types (i	name	s and re	aions)		Rm	in. B	max Å	BO cutoff	nEx	n
	Atom types (I			gions)					cutoff		
	Atom types (i C-All C-All	name •	C-All	gions)	•	1	.55		cutoff 0.5		р 6

Understanding the Logfile

Iteration	Nmol	HyperTime(s)
0	3	0.0000000E+00
1000	3	2.0000000E-13
2000	3	4.25989508E-13
3000	3	6.76215653E-13
4000	3	9.69874961E-13
5000	3	1.30267608E-12
100000	3	2.18783039E-09
200000	3	2.05119905E-07

- Select "Logfile" from the SCM menu
- Hypertime is the "true" timescale after unbiasing (how long a process would take without CVHD)
- First 1000 steps unbiased (hypertime equals simulation time - 200 fs)
- Afterwards, bias starts building up, gradually accelerating the simulation
 - 30 % speedup already after 5000 steps (1 ps)
 - ▶ 2.2 ns effectively sampled in 20 ps
 - ► 205 ns sampled in 40 ps

CVHD Events in the Logfile

Iteration	Nmol	HyperTime(s)
588000	3	9.23210824E-04
589000	3	9.41709394E-04
590000	3	9.41904071E-04
591000	3	9.42270720E-04
592000	4	9.42279978E-04
593000	4	9.42279979E-04
594000	4	9.42279979E-04
595000	4	9.42279979E-04
596000	4	9.42279979E-04

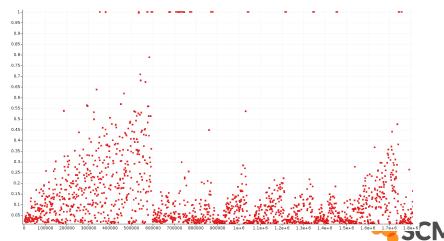
CVHD: the system has completed the state change. Resetting CVHD.

597000	4	9 CVHD event
598000	4	9.42279980E-04
599000	4	9.42279980E-04
600000	4	9.42279980E-04
601000	4	9.42279980E-04

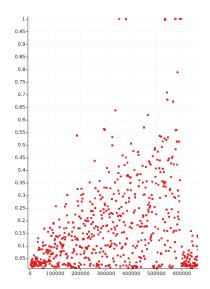
- System approaches a transition between steps 589000 and 591000 (hypertime evolution slows down somewhat – not much bias in this region)
- A molecule dissociates around step 592000 and the CV reaches 1.0 (hypertime evolution slows down a lot – transition state unbiased)
- ► The algorithm waits for 5000 steps to see if the system recrosses back into the original state
- No recrossing occurs, so CVHD declares that an event (reaction) just took place and removes all bias
- New bias starts slowly building up from step 597000

Monitoring Bias Deposition

The cvhd-hills Tool


- ▶ Run cvhd-hills to plot where biasing hills where deposited
 - ► Either cd into the .results directory (or tmp.* for running jobs), or pass the path to a fort.84 file as an argument
 - Output file name can be set with a second optional argument
 - ► By default, output is written to cvhd-hills.csv and displayed using ADFgraphs
- ADFgraphs defaults to plotting using lines (not very useful in this case)
 - ▶ Open Plot \rightarrow Options \rightarrow Curves, uncheck "Curve" and check "Data Points"

Monitoring Bias Deposition


Example Result

- Horizontal axis MD step, vertical axis CVHD global collective variable η
 - ► Some versions of ADFgraphs incorrectly label axes as "Energy" ignore it
- Each point represent a single Gaussian bias hill

Monitoring Bias Deposition

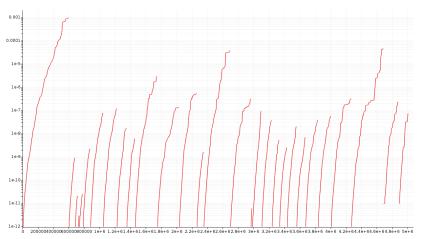
A Closer Look at One CVHD Event

- Initially, system stays around η = 0 (all bonds relaxed) and deposits bias there
- Bias gradually pushes η to higher and higher values (more and more stretched bonds)
- Sometimes (between steps 30000-400000), η reaches 1.0 but returns back to lower values (no transition occurs during specified wait time)
- Finally, around step 600000 η stays at 1.0 long enough to indicate that a bond has dissociated

Improving the CV using the Bias Deposition Plot

- Initial η not close to zero Rmin is set too low (CVHD "thinks" the equilibrium structure is already partly dissociated)
- η doesn't explore higher values (stays at zero) Rmin set too high
- Too many recrossings (η keeps hitting 1.0 but no true reaction occurs) Rmax set too low (not close enough to a transition)
- System jumps from low η directly to 1.0, triggering a reaction Rmax set too high (past the transition state)
- ► It's often useful to tune each local CV (bond type) separately before combining them in a single simulation
- Global CV contains a weighted sum of local CVs optimal Rmin is system-size-dependent (large systems need somewhat higher Rmin)

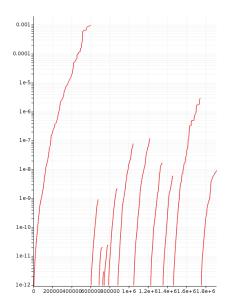
Analyzing Event Timescales


The cvhd-hypertime Tool

- Run cvhd-hypertime jobname.logfile to plot the hypertime for each CVHD event
 - Output file name can be set with an optional second argument
 - By default, output is written to cvhd-hypertime.csv and displayed using ADFgraphs
- ► Switch the vertical axis to logarithmic scale for best results
 - ▶ Open Plot → Options → Left Y axis
 - ► Make sure that "Minimum value" is set to a positive number (for example 1e-12)
 - ► Check "Logscale"

Analyzing Event Timescales

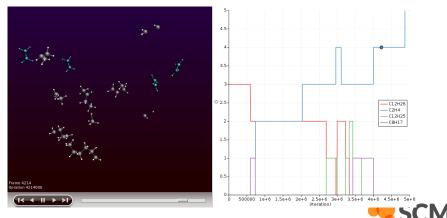
Example Result



► X axis – MD step, Y axis – hypertime in seconds since previous event

Analyzing Event Timescales

A Closer Look



- Each curve shows the gradual acceleration of time as the bias evolves until an event (bond dissociation) is detected
- Classes of processes corresponding to different timescales are visible:
 - Initiation (dodecane chain splitting) at a (sub-)millisecond timescale
 - Propagation steps at ns-µs timescales
- ► Curves should be (mostly) smooth
 - Jagged staircase-like curves indicate issues with CVHD setup (Rmin/Rmax, deposition rate etc.)

Analyzing System Composition

- ► Open ADFmovie and use Properties → Molecule Fractions
 - ► Check "Graph" to plot the number of particular molecules/fragments
 - Click on a curve to highlight corresponding molecules
- ► Example: dodecane consumption (red), ethylene production (blue), initiation by C-C splitting (purple) or H abstraction (green)

Discussion

- ► Not enough data for reasonable statistics or rate constants
 - Most elementary reactions observed only once, some probably completely missed
 - Only rough order-of-magnitude estimate of the timescale from a single observed event time
 - ► Large differences in results between multiple trajectories
 - ► Bigger system and longer simulation would be necessary for usable results
- Integration with the 0.2 fs timestep possibly too inaccurate during transitions
 - Results should be verified using a shorter timestep (0.1 fs)
- \blacktriangleright Bias deposition plot shows cases of η going from low values straight to dissociation (1.0)
 - ► Rmin/Rmax for C-H bonds may need to be tuned

CVHD Summary

- Suitable for accelerating bond dissociation
 - ► Any process that starts with bond dissociation can be accelerated
- ► Relatively low setup effort
 - Only Rmin/Rmax distances needed for each bond can be estimated and tuned in a few short testing runs
 - Hill height and deposition rate may need to be adjusted depending on expected barrier height
- Works best for moderately-sized systems
 - CVs comprising many thousands of bonds trigger events too often, limiting bias buildup and accelerations
 - Only the number of biased bonds matters (not the overall system size) can be limited using suitable regions

Current Software Limitations and TODOs

- ChemTraYzer ("Reaction Event Detection" in the GUI) not yet fully compatible with CVHD
 - ► Hypertime not considered calculated reaction rates incorrect
 - Reaction network analysis and visualization works
- ► CVHD not yet ported to the new AMS MD driver
 - New implementation will write all data to the RKF file bias/hypertime visualization through the GUI instead of separate helper scripts

