

Day 1: Introduction to AMS2018 Getting started

Hands-on workshop Chemistry & Materials with the Amsterdam Modeling Suite

2-day workshops, October 2018, China Fedor Goumans, goumans@scm.com SCM support: support@scm.com FermiTech support: wiki, support@fermitech.com.cn

Making Computational Chemistry Work for You

Program

- Introduction
 - SCM & AMS
 - Computational chemistry& materials science
- Molecules: builder, database, import SMILES, xyz
 - Spectroscopy
 - Advanced: bonding analysis, charge transfer, SOCME
- Periodic structures: database, cif, surfaces
 - Advanced: bonding analyses (PEDA-NOCV, COOP)
- COSMO-RS: properties, optimizing mixtures
- ReaxFF: acceleration, fitting parameters (tomorrow)

Background: SCM & ADF

- ADF = first DFT code for chemistry (1970s)
 Baerends@VU (>'73), Ziegler@Calgary † (>'75)
- SCM: Spin-off company 1995
- 15 people (10 senior PhD's) + 5 EU fellows
- Many academic collaborators / EU networks
 - ~120 authors
 - New functionality
- SCM: development, debug, port, optimize, docs & <u>support</u>

articles &patents in materials science with "density functional theory", Nat. Mat. 4619

The SCM team

Amsterdam Modeling Suite

- ADF: powerful molecular DFT
 - Spectroscopy: NMR, EPR, VCD, UV, XAS
 - Advanced solvation / environments
 - Bonding & density analysis
- BAND: periodic DFT
 - (2D) Materials
- DFTB: fast approximate DFT
- ReaxFF: Reactive MD
 - Dynamics of large complicated systems
- COSMO-RS: fluid thermodynamics
 - VLE, LLE, logP, solubility
- Integrated GUI use out of the box
- Scripting: workflows & automation

Why bother with calculations?

Computational chemistry & materials modeling

- Accelerate research, reduce costs & environmental impact
 - Reduce experimental search space
 - Analyze structure-property-reactivity
- Models: physics & empiricism
 - Accuracy?
- Synergy experiment-calculations
 - Ask relevant questions
 - Limitations model
 - Constraints experiments

Best catalyst? => mechanism? lowest E_a ? best ligand? side reactions?

Best battery? => discharge? voltage? interaction with electrolyte?

Best OLED? => charge & exciton mobility? emission speed & color?

Compute power (r)evolution

Computational Chemistry & Materials

Electronic structure methods: Schrödinger equation

Electrons in molecules & materials

Expand ψ : atomic orbitals / plane waves

Solve self-consistently

Pragmatic: DFT

Properties: energies (gradients), MOs, densities & related, spectroscopy (EPR, NMR, IR, UV/VIS,)

Computational Chemistry & Materials

$$d^2x/dt^2 = F(x)$$
$$F(x) = -dV(x)/dx$$

Molecular dynamics: Newton's equations of motion

Movement of atoms: solve numerically + propagate,

Properties: reaction rates, diffusion coefficients, stress-strain,

Electronic Structure methods

• ab initio (basis set dependencies!)

 $H\psi = E\psi$

- Hartree-Fock (HF): mean field (no explicit e-e interaction)
- MP2: perturbation theory (if HF = good guess)
- CC: coupled cluster
- CI: configuration interaction (full CI = max. Accuracy)
- Multi-reference / active space
- Density Functional Theory (DFT)
 - 'first principle' functionals (physics)
 - empirical functionals (fit to data)
- DFT-based tight binding (DFTB)
 - Fit to DFT data
 - Nearest neighbor, minimal basis
- Semi-empirical (MOPAC: PM7)
 - Fit to exp. Data
 - Nearest neighbor, minimal basis

Computational Methods

Relative costs, scaling & accuracy for computational methods (* depending also strongly on the system & property!)

Method	~ max atoms	~ relative cost	scaling	Typical Accuracy*
Classical force field (UFF, Amber,)	1,000,000	0.0005	N ¹	<20 kcal/mol
Reactive force field (ReaxFF)	500,000	0.001	N^1	<15 kcal/mol
Semi-empirical methods (e.g. AM1, PM7)	5,000	1	N ^{1~2}	<10 kcal/mol
DFTB	5,000	1	N ^{1~2}	<10 kcal/mol
DFT	500	500	N ^{3~4}	<5 kcal/mol
MP2	100	2000	N ⁵	<5 kcal/mol
CCSD(T)/cc-pVTZ	30	100000	N ⁷	~1 kcal/mol

Density Functional Theory

- Density ρ = central quantity
- Density functional ρ gives E $E[\rho] = T[\rho] + E_{ee}[\rho] + E_{ne}[\rho]$
- Usually expanded in orbitals
 - Linear combination of atomic orbitals
 - Basis set
 - Kohn-Sham DFT
 - 'Non-interacting' reference T_s

$$E[\rho] = T_s[\rho] + E_{ee}[\rho] + J[\rho] + E_{xc}[\rho]$$

- Solve self-consistently
- $v_{xc}[\rho] = E_{xc}[\rho]/d\rho = 'functional'$
 - approximate: LDA, BP86, PBE, M15L, ...
- Which basis & functional?

Check literature or benchmark!

More general: v_{ext}

SCF

Getting started with the GUI

Starting ADFjobs: job bookkeeping tool

- Win: dbl-click desktop item
- Mac: open Application
- Linux: run \$ADFBIN/adfjobs

- Other GUI modules: (Input, View, Levels, Movie, Spectra, Band Structure, COSMO-RS, ...)
 - o Can be opened by dbl-clicking '.exe' (Win) or opening e.g. '\$ADFBIN/adfinput'

ADFjobs: job bookkeeping

Basic calculations & settings

AM

Building molecules

www.scm.com/doc/Tutorials/GUI_overview/Building_Molecules.html

- NB: tutorials also offline with your ADF!
- Import: SMILES, xyz, cif, pdb, ...
- Included library + building

- By searching for it in the GUI
- By starting from the benzene template (press 2 for double bond, Ctrl+E to add Hs)
- By importing smiles CC(=O)c1ccccc1 (e.g. from Wikipedia or Chemspider)
- Exercise 2: Symmetrize, pre-opt & optimize: SR-ZORA-PBE-D3(BJ)/DZP

Spectra: IR

www.scm.com/doc/Tutorials/ADF/ADF-GUI_tutorials.html#spectroscopy

• Excercise 3: Calculate & visualize frequencies

- NB analytical frequencies available for most GGAs, not for hybrids
- Go to spectra, visualize the CO stretch at ~1690cm⁻¹
- Increase the line width to ~20
- Compare to NIST data

Spectra: UV/VIS

- Exercise 4: Calculate 10 allowed excitations with the SAOP model potential
 - See also UV/VIS FAQ for more tips
 - Go to spectra, change x-axis to nm
 - Increase the line width to ~10
 - Visualize the pi-pi* NTOs at ~250 & 285nm
 - Compare to NIST data
 - Now rerun with method 'sTDA' and tick TDA
 - Compare timings & spectra (File -> add spectra)
 - AMS2018: optimize excited states also with
 - Range-separated hybrids
 - COSMO solvation

Phosphorescent OLED emitters

Optimize OLED performance

- $_{\circ}$ Phosphorescence T₁→ S₀
- o TADF: min. S-T, max. SOCME
- ∘ Fast ISC: $S_n \rightarrow T_1$
- High charge mobility

ADF features

- SOC-TDDFT: k_{phos}
- SOCME: k_{ISC}
- Transfer integrals (mobilities)
- Other couplings (FDE)
- Vibrationally resolved abs/em

23 Ir, Rh, Ru, Os, Pt, Re complexes

K. Mori, T. P. M. Goumans, E. van Lenthe, F. Wang, PCCP 16, 14523 (2014)

ADF tutorial online

Intersystem crossing: spin-orbit coupling

El-Sayed for organometallics:

SOC is largest when:

- both S (${}^{1}d\pi^{*}$) and T (${}^{3}d'\pi^{*}$) are MLCT
- different d-orbitals are involved (d ≠ d').

 $\frac{\lambda_{exc}\text{-dependent quantum yield}}{\text{SOCME negligible for S}_1\text{-T}_n}$ ISC from higher S_n states

Phys. Chem. Chem. Phys. **16**, 26184-26192 (2014) NB: See also full k_{ISC} Paul et al. JPCL, 2017, **8**, 4893

Surface-Hopping Dynamics Ru(bpy)₃²⁺

- Interface SHARC-ADF with ISC (SOC)
- ISC from higher S_n states within 26 ± 3 fs

Atkins & Gonzalez

J. Phys. Chem. Lett., 8, 3840–3845 (2017)

Thermally Activated Delayed Fluorescence

Optimize radiative rate

- Minimize S1-T1 gap
- Maximize SOC
- Maximize k_{phos} & k_{TADF}

$$k_{\text{UISC}} = \frac{2\pi}{\hbar} \rho_{\text{FC}} |\langle S_1 | \hat{H}_{\text{SO}} | T_1 \rangle|^2$$

$$\rho_{FC} = \frac{1}{\sqrt{4\pi\lambda_{M}k_{B}T}} \sum_{n=0}^{\infty} \exp(-S)$$

$$\frac{S^n}{n!} \exp \left[-\frac{(\Delta E_{\rm ST} + n\hbar\omega_{\rm eff} + \lambda_{\rm M})^2}{4\lambda_{\rm M}k_{\rm B}T} \right]$$

Z.-M. su et al. Dyes & Pigments **145**, 277-2847 (2017) Bredas et al. J. Am. Chem. Soc. **139**, 4042-4051 (2017)

ADF tutorial in progress

Spin-orbit coupling TDDFT

- Exercise 5: Calculate the SOC spectrum and the SOCME
 - Switch to perturbative Spin-Orbit and tick SOCM
 - ADF can do full and perturbative SOC
 - SOCME useful for (R)ISC, e.g. TADF/OLEDs
 - Visualize the spectrum: any effect?
 - SOC small for purely organic
 - Check SCM -> Output
 - Go to Response Properties -> All Singlet-Singlet Excitations. Compare with All Spin-Orbital Coupling Excitation Energies. Go to -> SO Matrix. This is the full matrix. Further down you will find the averaged spin-orbit coupling matrix elements (SOCMEs)

All Sr	All Spin-Orbital Coupling Excitation Energies					
no.	E/a.u.	E/eV	f	tau/s	Symmetry	
1:	0.12004	3.26655	0.1880E-08	1.149	A'	
2:	0.12004	3.26657	0.4159E-06	0.5193E-02	A'	
3:	0.12004	3.26655	0.2580E-09	8.371	A''	
4:	0.13339	3.62962	0.2890E-04	0.6054E-04	A''	
5:	0.13363	3.63626	0.1693E-11		A'	
6:	0.13363	3.63626	0.4123E-10		A''	
7:	0.13367	3.63732	0.4724E-05	0.3687E-03	A''	
8:	0.14001	3.80992	0.7306E-11		A'	
0 -	0 14001	2 00002	0 710CH 11		2011	

Spin-orbit couplings calculated as root mean squares: square root of (the sum of squares of spin-orbit coupling matrix elements of

21.60

0.01

0.60

all sublevels of the uncoupled states) in cm-1

0.38

3.41

0.06

<S | Hso | T>

S1:

S2:

T4

3.87

0.08

5.22

3.45

0.00

1.61

Т6

0.72

0.00

19.20

0.33

5.84

0.09

Speeding it up: DFTB

Parameter directory:

www.scm.com/doc/Tutorials/DFTB/DFTB-GUI_tutorials.html

- Exercise 6: Switch to DFTB and re-run the spectra
 - The default SCC-DFTB method is fine
 - Chose the 3ob-3-1 parameter set
 - Re-optimize, recalculate frequencies, recalculate UV/VIS spectrum
 - How do the spectra compare: TDDFT, sTDA, TDDFTB? Timings?
 - Also try the IR spectrum with DFTB & MOPAC
- To visualize DFTB MOs: single point SCC-DFTB/QuasiNano15!

DFTB.org/3ob-3-1

Going periodic with DFTB

- Exercise 7: Acetophenone crystal
 - Make a new input, search for acetophenone, select the crystal (optimized with MOPAC)
 - Switch from BAND to DFTB and choose D3-BJ dispersion and the 3-ob-3-1 parameter set
 - Ignore the small unit cell warning
 - NB: consider to go to a larger supercell instead of k-point sampling (will use FIRE)
 - You may also consider optimizing the lattice (slow)
 - Check progress with SCM -> Movie

Methods to calculate charge mobilities

- Hopping transport:
 - Charge transfer integrals (FO) easy
 - Electronic couplings from FDE

- Band transport: effective mass tensors in BAND
 - AMS2018: for any k-point & also for DFTB
 - Simulating excited state: <u>create a core hole</u>
- Non-equilibrium Green's Function (NEGF)
 - transmission probabilities for single-molecule junctions
 - quick calculation: wide-band limit
 - o also in BAND (periodic structures, fully self-consistent, bias) and in DFTB
 - See online tutorials

Effective transfer integral J_{eff} = electronic coupling V

dimers

Anisotropic mobility:

$$V = \frac{J_{\text{RP}} - S_{\text{RP}} (H_{\text{RR}} + H_{\text{PP}})/2}{1 - S_{\text{RP}}^2}$$

$$k = \frac{4\pi^2}{h} \frac{V^2}{\sqrt{4\pi\lambda k_B T}} \exp\left\{-\frac{\lambda}{4k_B T}\right\}$$

$$\mu_{\Phi} = \frac{e}{2k_{\rm B}T} \sum_{i} W_{i} r_{i}^{2} P_{i} \cos^{2} \gamma_{i} \cos^{2}(\theta_{i} - \Phi)$$

S.-H. Wen et al., J. Phys. Chem. B 113, 8813 (2009)

ADF tutorial online, ADF prints $V/J_{eff} = >$ use with Marcus theory for hopping rates

Charge transfer integrals & recombination

- Exercise 8: 1st Select the dimer for the charge transfer event
 - Update the geometry from your DFTB run
 - Make a 2x2x2 supercell (Edit-> Crystal -> Generate Supercell)
 - Switch from DFTB to ADF
 - Select 1 atom from the middle 'flat' acetophenone and one from the molecule above
 - Press Ctrl+M to select both molecules

Charge transfer integrals & recombination

- Exercise 8: Calculate the charge transfer integral
 - Select -> Invert selection. Delete all other atoms
 - o In the Model Region Panel select each molecule as a new region (delete the crystal region):

V for electron transfer:

V for charge recombination 1-2:

V for charge recombination 2-1:

- Select PW91 functional (often used) with a DZP basis
 - Frozen cores are incorrect in principle; in practice usually fine
- Find 'transfer integral' in the GUI search, and tick it.
- In Multilevel -> Fragments pane, tick 'Use fragments'
- SCM-> Output; Properties -> Charge transfer integrals
- ADF tutorial: how to get mobilities
- AMS2018: charge recombination

0.00433

-0.00434

eV

eV

-0.09641 eV

(Charge transfer) analysis excited state

Charge transfer descriptors

- Exercise 9: Calculate the excitations with SFO analysis + CT descriptors
 - Untick charge transfer integrals
 - Properties -> Excitations: select Allowed only select Allowed
 - Tick SFO Analysis + CT descriptors
 - Save as a different file & run
 - Visualize the spectrum and NTOs of two lowest states (CT)
 - In output search for Plasser (see paper with Lischka)
 - $_{\circ}$ CT = 1 & POS = 1.5 and CTNET = 0 => Charge resonance
 - Very small exciton splitting
 - $_{\circ}$ LAMBDA = 0.4655 => perhaps use hybrid or RSH (Tozer)

-	•	Plasser, Lisch R HE =	•	.)	
CT =	0.8778	PR = CTNET =	1.9530	СОН =	1.2649
Descriptors	(Peach, Toz	zer, et al.) R HE =			
FRAGMENT ->	FRAGMENT AN	NALYSIS BASED	on SFOs		
Frag ->	Frag	weight n	nu(x) mu	(y) mu(z)	
1 ->	1	0.0698 0.	.0247 -0.00	011 -0.0072	
	2			157 -0.0011	
1 ->		0.5172 -0.	.0082 0.01	182 -0.0066	
2 ->	1	0.3630 -0.	.0089 0.00	099 -0.0036	
711 ->	Δ11	1.0000 0.	0275 0 0	114 _0 0186	

ADFview 2018.105: NTO 1 1

BAND & QE: Periodic DFT

Dielectric function ML ZnO

STM PtGe(100)

Band structure, pDOS, fat bands ZnS

Polarizing MoS₂ with an electric field

BAND vs. Plane Wave codes (QE)

- Atom centered basis functions, STO or NAO
 - Compare cluster with periodic
 - No pseudopotentials, all elements
 - Core spectroscopy (core holes)
 - Easy (orbital, density) analysis with GUI
 - Fast for empty (1D, 2D, porous)
 - o xc: SCAN, MN15-L, HSE06, GLLB-sc, D3(BJ), ...
 - Self-consistent NEGF
 - Gate & bias potential
 - Spin transport

- Het. catalysis: polarization, COSMO
- 2D electronics (homogeneous E field)
- Nanotubes

- Easy set up & analysis
- Switch: ADF, BAND & Quantum Espresso

crystal orbitals, periodic energy decomposition analysis M. Raupach and M. Tonner, J. Chem. Phys. **142**, 194105 (2015)

Band structure, pDOS, fat bands, COOP

• Exercise 10: ZnS bulk

- New input, go to BAND
- click on the 'crystal' builder tool in the bottom
- select cubic -> Zincblende and accept the default
- Settings: BP, SR-ZORA, and DZP
- Select DOS and Bandstructure (default interpolation)
- o Run it!

Band structure, pDOS, fat bands, COOP

• Exercise 10: ZnS bulk

- Visualize the band structure (SCM Menu). You will automatically see the pDOS and 'fat bands'
- ZnS is a direct band gap semiconductor (p-s transition)
 - Check the logfile and output for band gap info and kmesh
 - Low band gap: try model potentials (TB-mBJ, GLLB-sc) and HSE06? see benchmark study.
 - Should also be converged wrt kpoints, basis, etc.
- Restart the calculation from SCF and in the DOS details tick 'COOP'
 - Visualize the crystal orbital overlap population between the Zn s and S p orbitals

recent JACS study by

Hoffmann: COOP in perovskites

(tutorial)

Band structure, pDOS with QE

- Exercise 10: ZnS bulk with QE
 - Switch from BAND to Quantum ESPRESSO
 - \circ Choose the same k-mesh (5x5x5), functional and Vanderbilt pseudopotentials
 - You will see a similar band structure, but they aren't colored according to character
 - DOS can be projected by QE

Surfaces, dielectric function

- Exercise 11: ZnS monolayer: 2D-TDCDFT
 - Cut the 111 surface with the slicer tool, and choose 1 layer
 - From properties -> dielectric function choose NewResponse
 - Calculate 30 frequencies between 2-5 eV
 - Set the SCF convergence criterion to 0.01 and switch off the z-component
 - Run it (you will prompted Nosymm is used)

Surfaces, dielectric function

- Exercise 11: ZnS monolayer: 2D-TDCDFT
 - SCM -> Spectra will show the averaged dielectric function
 - Look at the susceptibility, polarizability and refractive index in Spectra->TDCDFT
 - You could use a 'scissor' shift to upshift the virtuals
 - Converge with respect to k-points!
 - Geometry of the ions should be optimized, this will effect electronic properties
 - For free-standing ML, also optimize lattice ?!

Energy decomposition analysis

$$\Delta E = \Delta E_{\text{prep}} + \Delta E_{\text{int}}$$

• ΔE_{prep} = geometry 'deformation' energy

Chem. Soc. Rev. 2014, **43**, 4953; WIRES Comput. Mol. Sci. 2015, **5**, 324 Oline tutorial & teaching materials

• ΔE_{oi} = decomposed in irreps.

Extensions:

- Periodic EDA: M. Raupach & R. Tonner, J. Chem. Phys. 142, 194105 (2015)): molecule-surface interactions
- Ziegler, Michalak, Mitoraj: ETS-NOCV

EDA/ETS-NOCV: bond & density decomposition

- Molecule built from fragments
- Bond analysis with meaningful terms:

$$\Delta V_{\text{elstat}} + \Delta E_{\text{Pauli}} + \Delta E_{\text{oi}}$$

- Combine with NOCV (webinar)
 - Orbital interactions / charge transfer
- Also periodic 1D, 2D, 3D (tutorials)
 - (Ad)sorption nanotbues, surfaces, MOFs etc.
 - Raupach & Tonner, <u>J. Chem. Phys. 142, 194105 (2015)</u>

Catalyst design: activation strain model

Chem. Eur. J. (communication) 2009, 15, 6112 Org. Biomol. Chem. 2010, 8, 3118 Nature Chem. 2010, 2, 417

Latest reviews:

Chem. Soc. Rev. 2014, 43, 4953 WIRES Comput. Mol. Sci. 2015, 5, 324 EDA along the reaction path Bite-Angle Effect: Activation Strain analyses:

- HOMO-LUMO interaction marginally improved
- But: strain reduced by building it into catalyst

Catalyst natural selection: survival of the weakest

Increased bite angle dppe → dppb

- Improved electronic interaction and larger repulsive strain
- Strain outweighs electronic interactions \rightarrow dppb most destabilized \rightarrow best catalyst

Reaction Coordinate

J. Wassenaar, et al. Catalyst selection based on intermediate stability measured by mass spectrometry. Nature Chem. 2, 417 (2010)

CO on MgO: COOP

- Exercise 13: First do the PEDA-NOCV tutorial
- New input with same coordinates
- Scalar, PBE, DZP/small, basic, DOS, BandStructure
 - DOS details (...) => COOP, -20 to + 20eV

- o DOS-> COOP... Try different Mg (s) + Mg (p_z) and C (p_z) + C (s) combo's
- \circ What is the biggest contribution to the -10 eV band? Mg(s)+C(s-p_z); Mg's p_z helps a bit

Show MO of that band with ADFview, improve grid & tweak cut-off

AMS: Powerful driver

- Scan multiple coordinates for any periodicity
 - Works with ADF, BAND, DFTB, MOPAC, UFF, ReaxFF
 - Can be extended/interfaced with other codes
- Advanced MD barostats and thermostats
 - Also with DFT(B): AIMD
 - Other 'ReaxFF' functionality to be ported:
 - fbMC, CVHD, Molecule Gun, GCMC
- Reuse PES information
- Task farming (double parallelization)
 - Elastic tensors, phonons, frequencies

AMS: PES scan & TS search

- Exercise 14: H₂ on graphene
 - $_{\circ}$ Find graphite (or build it), slice a 1L 001 surface & remove top layer to get graphene
 - Create 3x3 super cell and build H₂ somewhere in the input window
 - Adjust Model -> Coordinates to put it atop, 2.4 above surface

H(19)	0.0	0.37	2.4
H(20)	0.0	-0.37	2.4

- Go to DFTB, choose DFTB3-D3BJ/3ob-3-1 and set Task: PES Scan, click '...'
- In the PES Scan panel set the Scan coordinates by selecting atoms and clicking +:
 - Set SC-1 to H₂ from 0.74-1.4 (7 points)
 - Set SC-2 both H-C coordinates from 2.4-1.8 (7 points)

Lower convergence criteria in Details -> Geometry Optimization

Save & Run

Gradient convergence:

1.0e-2 Hartree/Å

Energy convergence:

1.0e-4 Hartree

Step convergence:

1.0e-2 Å

AMS: PES scan & TS search

- Exercise 14: Explore the 2D PES
 - When Finished: SCM -> Movie
 - \circ Find a plausible TS start point (x=1.18, y = 2.0)
 - File -> Save Geometry
 - Make a New input & import that geometry
 - Now we calculate the Hessian:
 - Go to DFTB, choose DFTB3-D3BJ/3ob-3-1
 - Task: Single point, followed by frequencies
 - Save & Run
 - Visualize the Spectra and check that there is 1 large imaginary mode

AMS: PES scan & TS search

- Exercise 14: Find the TS
 - Change Task to Transition State
 - In Details -> Geometry Optimization: Initial Hessian -> From file -> find dftb.rkf

- Save as a different file & Run
- Check the TS geometry and it's normal mode spectrum

 \circ Calculate the activation energy as E(TS) – E (graphene + H₂) (you can put H₂ at 50A)

