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Overview of the thesis 

This PhD thesis is focused on the theoretical simulation and the interpretation of 

photoabsorption spectra. Two lines of research have been followed: the calculation of 

Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra at Density Functional 

Theory (DFT) level for molecules in the gas phase and the development of a new 

algorithm for the calculation of photoabsorption spectra at Time Dependent Density 

Functional Theory (TDDFT) level for large size systems (>100 atoms). 

NEXAFS C1s and XPS spectra in the gas phase for two polycyclic aromatic 

hydrocarbons (PAHs) (Phenanthrene and Coronene) have been calculated, interpreted 

and compared to the experimental data. The electronic spectra calculated at ΔKS level 

exhibit significant differences with respect to the experiment, in particular for the 

intensity distribution. On the other hand vibrationally resolved spectra calculated at 

Frank-Condon level with linear coupling model. Simulate properly the experimental 

data. Furthermore, NEXAFS C1s and XPS spectra in the gas phase for a thiophenes 

series (Thiophene, Dithiophene and Terthiophene) have been calculated at ΔKS level, 

interpreted and compared to the experimental data.  

The second part of this thesis concerns the development of a new TDDFT algorithm 

to calculate photoabsorption spectra. The aim of this project is to go beyond the intrinsic 

limits of the actual codes, which employ the Casida algorithm and the Davidson 

diagonalization. In fact, for large size systems (typically >100 atoms), e.g. metallic 

clusters, the density of states is so high that, with conventional algorithms based on the 

Davidson diagonalization, it is not possible to calculate the spectrum over on energy 

range wide enough to cover the optical region of practical interest, say up at least 5 eV. 

The new algorithm solves the TDDFT equations in the space of the density fitting 

auxiliary basis set and extracts the spectrum point by point from the imaginary part of 

polarizability. The original idea, which made the present scheme very efficient, consists 

in the simplification of the double sum over occupied-virtual pairs in the definition of 

the dielectric susceptibility, allowing for an easy and efficient calculation of such matrix 

as a linear combination of constant matrices with photon energy dependent coefficients.   
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This method has been applied to several systems, different for nature and size (from 

H2 to [Au147]
-). The new algorithm shows, in all cases, a good agreement with respect to 

the results obtained with the Amsterdam Density Functional (ADF) code (maximum 

deviation 0.2 eV). Furthermore, the analysis of the results in terms of transition 

contribution maps (TCM), the Jacob plasmon scaling factor and the induced density 

analysis have been implemented and successfully employed in the application. 

The new algorithm has been employed to study different systems consisting of metal 

clusters, simulating both the plasmonic resonance phenomena and the trend with respect 

to the dimensions and the nature of ligands. In particular, we studied two series of 

icosahedra of gold and silver (M13, M55, M147, M309) and Au30S(S-tBu)18 cluster. It has 

been also possible to analyze different systems characterized by large dimensions and 

low symmetry, e.g. Au144(SH)60. 

Finally, the new TDDFT algorithm has been extended, in order to describe the 

Circular Dichroism effect in chiral molecules. New expressions for the calculation of 

the optical rotation tensor have been developed, and the rotatory strength evaluation has 

been implemented as well. Preliminary calculation on a chiral silver chain (Ag8) 

furnished nice agreement with ADF for two different response schemes in both length 

and velocity gauge.  

  



7 

 

1 Introduction 

1.1 Core Spectroscopy 

The core – level spectroscopy, or X-Ray Absorption Spectroscopy (XAS), is based 

on formation of a core – hole, which can be defined like the absence of one electron 

from a core level, i.e. from an inner orbital. 

 When a core electron is hit by a 

radiation with a opportune energy 

(soft x-ray: 100eV – 3KeV), two 

phenomena may happen (Figure 

1.1): the excitation of the electron 

to a unoccupied bound state, or the 

excitation of the electron to a 

continuum state; i.e. with an energy 

higher than the ionization 

threshold: in this case the energy excess with respect to the ionization energy remains as 

the photoelectron kinetic energy.   

The earliest x-ray absorption investigations were reported at the beginning of the last 

century, however the main advances for these studies are related to the development of 

x-ray sources, and in particular to the introduction of the synchrotron light (electron 

synchrotron sources, with 𝐸 < 1𝐺𝑒𝑉 in the 1960s and early 1970s, and electron storage 

rings, with 𝐸 > 1𝐺𝑒𝑉, in the 1970s)[1.1]. 

More specifically, XAS studies the behavior of the absorption coefficient 𝜇, which 

gives the probability of x-ray to be absorbed by the matter, as a function of the incident 

photon energy: 

Figure 1.1 The x-ray absorption phenomena  



8 

 

 𝐼 = 𝐼0 ∙ 𝑒−𝜇∙𝑥 (1.1.1) 

Where 𝐼0 is the intensity of incident x-ray, 𝐼 is the 

intensity transmitted through the sample and 𝑥 is the 

sample thickness. When the incident x-ray photon 

energy is equal to the binding energy of a core 

electron, a sharp rise in absorption is observed, 

called absorption edge, corresponding to the ejection 

of this core electron into the continuum 

(photoelectric effect). XAS is involved in the study 

of 𝜇 just around these absorption edge.  

 In Figure 1.2 a typical XAS spectrum is 

reported, which displays two edges: the K-edge and 

the L-edge, relative to the ionization potential from 

1s and 2s, 2p orbitals respectively. 

In fact the core spectrum nomenclature is based to on the orbital of the excited 

electron. The edge is named in crescent energy order: K, LI, LII, LIII, MI, …; where the 

letter indicates the principle quantum number n, that is 1, 2, 3, …  → 𝐾, 𝐿, 𝑀, …; and the 

number indicates the orbital angular momentum l, and total angular momentum j, that is 

𝑠1
2⁄ , 𝑝1

2⁄ , 𝑝3
2⁄ , … → 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, … . 

The x-ray absorption spectrum is commonly divided into two great regimes, 

depending on the photon energy and following on the distinct interpretation of the 

spectral features and on the kind of information they can provide: they are respectively 

addressed to as NEXAFS and EXAFS. 

 The Near Edge X-ray Absorption Fine Structure (NEXAFS) region covers 

the energy range from few eV below the ionization threshold (pre-edge 

region) up to few tens of eV above it (early known as “Kossel structure”). 

Figure 1.2 example of XAS 

spectrum 
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The NEXAFS profile is sensitive to the atomic geometrical arrangement 

around the absorbing atom, and provides “local” information, such as 

oxidation state and coordination chemistry of the excited atom. The 

acronyms XANES and NEXAFS should be interchangeable, even if over the 

year “NEXAFS” has become the main terminology for low-Z molecules 

absorbed on surfaces[1.2], while the term “XANES”, has been more often 

employed for solids and inorganic complexes[1.1]. Currently “NEXAFS” is 

by far the most used terminology, and the term “XANES”, survives only to 

indicate the lower NEXAFS region (up to 10 eV above the edge). 

 The Extended X-ray Absorption Fine Structure (EXAFS) region start from 

the upper limit of NEXAFS and spreads for hundreds of eV in the continuum 

(for many years it has been referred to as the “Kronig structure”). The 

EXAFS is due to single scattering of the ejected photoelectron, which now 

has a very high kinetic energy, so this part of the XAS spectrum permits the 

determination of interatomic distances, coordination numbers and species of 

neighbors surrounding the absorbing atom. 

The boundary energy between NEXAFS and EXAFS corresponds approximately to 

the wavelength that equals the distance between the absorbing atom and its first 

neighbors [1.3]. 

The NEFAFS spectrum comes out to be a powerful local probe of the chemical 

environment of the absorbing atom; in fact the probability of a transition is proportional 

to the square of the transition moment, which is the integral of electric dipole moment 

operator between initial and final state wave functions: 

 𝑃𝑖𝑓 ∝ |⟨Ψ𝑖|𝜇̂|Ψ𝑓⟩|
2
 (1.1.2) 

 In atoms, the transition moment is strictly governed by the dipole selection rules: 

Δ𝑙 = ±1, ∆𝑗 = ±1 and ∆𝑠 = 0, where 𝑙 is the orbital angular momentum quantum 
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number, 𝑗 is the total angular momentum quantum number and 𝑠 is the spin quantum 

number, consequently only the transitions 𝑠 → 𝑝, 𝑝 → 𝑑,𝑝 → 𝑠, … are allowed. 

Non-dipolar effects can be important for dipole forbidden transitions, which may 

gain intensity from higher order terms, like for example electric quadrupole or magnetic 

dipole moments. These features are very important, for example, in transition metal K-

edge excitations, giving rise to typical excitonic features described to metal 1s→3d 

dipole forbidden transitions [1.4].  

The NEXAFS spectrum is usually in turn subdivided into two energy ranges: 

 The low energy pre-edge region, whose features are caused by electronic 

transitions to empty bound states, that are controlled by the dipolar selection 

rules, as discussed above. This narrow energy range (extending for about 8 

eV [1.1] up to the ionization threshold) is rich in information on the local 

geometry around the absorbing atom, on oxidation state and binding 

characteristic. The physical origin of the absorption features in the edge 

region is different in different classes of materials, many-body singularities in 

metals, bond atom-like localized excitation in solid [1.5]. 

 The high energy region, whose features are essentially explained by means of 

multiple-scattering resonances (with large cross sections) of the 

photoelectrons ejected at low kinetic energy [1.6]; information is provided 

about the atomic position of the neighbors of the absorbing atom, both for 

interatomic distances and bond angles. 

This distinction directly involves the concept of absorption threshold, which can be 

defined in a threshold manner [1.1]: 

 The “absorption threshold”, that is the energy of the lowest state reached by 

the core excitation; 

 The “absorption jump edge” or “rising edge”, that is the energy where the 

absorption coefficient is at half-height of the atomic absorption jump; 

because the dipole selection rule can suppress a number of the lowest 
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transitions, the energy of the absorption jump edge can be much larger than 

the absorption threshold; 

 The “continuum threshold” or “ionization threshold”, that is the energy at 

which the electron is ejected into the continuum. 

If we limit our discussion, for the sake of simplicity, to K shell excitation spectra (but 

the following considerations have more general validity) the 1s Ionization Potential (IP) 

or Binding Energy (BE) is defined as the minimum energy necessary to excite a 1s 

electron to the continuum of states above the vacuum level, i.e. the third definition of 

absorption edge presented above; it is conveniently measured by x-ray photoelectron 

spectroscopy (XPS) as the difference between the exciting photon energy (ℎ𝜈) and the 

Kinetic Energy of the photoelectron (KE), i.e. the energy position of the corresponding 

peak in the XPS spectrum: 

 𝐼𝑃 = 𝐵𝐸 = ℎ𝜈 − 𝐾𝐸 (1.1.3) 

An alternative experimental technique for the investigation of the electronic 

structure, as concerns the conduction band, especially for solids is represented by the 

high-energy Electron Energy-Loss Spectroscopy (EELS) in transmission [1.7]. It 

consists in exposing the sample to a beam of electrons with a known, narrow range of 

kinetic energies; some electrons will undergo inelastic scattering (interaction between 

the beam electron and an electron in the sample) and consequently will lose energy; the 

measurement of the scattered electron energies gives the distribution of energy loss, i.e. 

the EELS spectrum. EELS and XAS provide similar information about the conduction 

band; among the EELS advantages one has the opportunity to use smaller samples and 

to increase the momentum transfer so that other than dipole selection rules apply. 
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1.2 NEXAFS theoretical approach 

NEXAFS is considerably hard to fully interpret; for this reason precise and accurate 

calculations are mandatory for a correct and non-ambiguous interpretation of the 

spectral features. The theoretical description of NEXAFS spectra represents a big 

challenge due to the difficulty to calculate both the pre-edge and post-edge energy 

regions. A customary general theoretical approach explains the NEXAFS structures as 

arising from a multiple scattering process, where the excited electron is resonantly 

scattered by the surrounding atoms in the molecules. This has the advantage to provide 

the MS-Xα computational method which can estimate both the bound and the above 

edge transitions [1.8]. This approach, which is at present the only widely employed 

scheme to describe the above edge region, is however limited by the crude muffin-tin 

approximation. 

Alternatively the near-edge absorption structures can be investigated at theoretical 

level in terms of discrete below edge transitions of the core electron into the unoccupied 

orbitals of the molecule characterized by well defined excitation energies and oscillator 

strengths, and the continuum transitions which generate the photoionization cross 

section profiles above the ionization limit. The LCAO Molecular Orbital (MO) 

approach is particularly convenient to describe below edge excitations in terms of one-

electron transitions which are known to make usually the largest contribution to the 

discrete structure of the XAS spectra. The calculations of bound excited states can be 

performed at various levels of approximation in the framework of accurate theoretical 

schemes, however these methods are based on localized orbitals, therefore they are not a 

suitable tool to describe states in the continuum. For the present, discrete transitions 

evaluated above the edge, although partly basis set dependent, may be qualitatively 

associated with the prominent resonances in the spectrum, in particular in the lowest 

energy range [1.9]. Such approximation can be further refined in the rigorous 

framework provided by Stieltjes moment theory [1.10]. 
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A very powerful typology of NEXAFS spectra is represented by angular resolved 

NEXAFS, which consists of studying by the system under analysis of polarized x-rays. 

The use of the polarization dependence of the absorption cross section in the NEXAFS 

spectra of anisotropic sites allows to select the multiple-scattering contributions due to a 

set of atoms placed in a particular direction or on a particular plane; consequently, the 

orientation and angular distribution of neighboring atoms can be easily determined by 

changing the relative position of the incident beam and the sample. 

Obviously, resolved NEXAFS is of practical important only when the molecule 

orientation is fixed in the laboratory frame, which happens when the molecules is 

absorbed over a surface, so that polarization direction is fixed with respect to the 

molecule. On the other hand, when the molecule is in the gas phase and therefore free to 

rotate, the NEXAFS spectrum will be a rotational average of all possible mutual 

orientations between molecule and polarization. 

In MO approach the polarization dependence of the resonance intensities can be 

correlated to the spatial displacement of the final orbital [1.2]: the resonance intensity 

associated with a specific molecular orbital final state is largest if the electric field is 

parallel to the direction of that molecular orbital, and the intensity vanishes if the 

electric field is perpendicular to that direction. The main application of this technique is 

the determination of the orientation of the molecules chemisorbed on surfaces.  

 

1.3 Peculiar proprieties of metallic nanoparticles 

The study of nanoscaled metallic particles is nowadays strongly motivated by their 

unusual physical and chemical properties with respect to bulk materials [1.11]. In the 

last 20 years, the extensive production of scientific works related to the synthesis, 

characterization and technological applications of metallic nanoparticles gave rise to 

revolution in terms nanoelectronics, catalysis and sensing [1.12][1.13][1.14]. In 

particular, noble metals nanoparticles, such as gold, have played a central role in 
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material science research due to their optical, electronic and chemical properties as well 

as biomedical applications [1.15]. 

The nanoscale is so interesting for metal nanoparticles because the electronic 

structure of these kind of systems is no longer the one of the molecular case, such as 

inorganic clusters, but neither the one of the bulk metals. Most of the metallic 

nanoparticles keep a discrete distribution of the energy levels, however these levels 

approach to degeneracy while the dimension of the cluster grows, becoming an almost 

continuos distribution of the states like a band structure of a macroscopic crystal. Not 

only the size plays an important role in influencing the electronic properties of small 

metal cluster, but also the shape [1.16]. These systems can be produced in various 

shapes of different sizes such as spheres, rods, plates, prisms, cube, different polyhedral 

and wires. By varying the aspect ratio of the geometrical shape of the cluster (e.g. the 

ratio between the height and the dimension of the base of a prism) it is possible to 

generate confinement effects, reducing the mobility of the electron gas in quasi-2, 1 and 

even 0 dimensions. This direct dependence of the electronic structure to the size and 

shape of the nanoclusters is commonly related to their optical behavior. 

1.4 Surface Plasmon Resonance 

As noble metals are reduced in size of tens of nanometers a strong absorption due to 

the collective oscillations of the electrons between two opposite regions of the particle 

surface is observed. This effect is not relevant in the bulk case because of the low 

surface/volume ratio. In particular as gold and silver nanoparticles, this absorption 

occurs in the visible region, becoming very useful for several technological 

applications. The phenomenon is called Surface Plasmon Resonance (SPR) [1.16]. It 

has been confirmed both experimentally and theoretically that the plasmonic absorption 

is strongly related to structure (size and shape) of the nanomaterials. The main feature 

observed, is a general redshift and enhancement of the absorption peak while increasing 

the size of the cluster. 
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Under specific size conditions (e.g. spherical NPs with less than 15 nm of radius), 

where the scattering processes are negligible, the metallic nanoparticles generally 

absorb radiation through three main mechanisms: 

1. collective excitations of the free electrons which determine surface modes and 

SPRs directly connected to shape, size, chemical environment and composition 

2. single excitations of bound electrons from occupied to empty bulk bands of 

different indexes, also called interband transitions 

3. surface dispersion or scattering of the free electrons with a mean free path 

comparable to the dimensions of the nanoparticle. 

The first two mechanisms are mostly the fundamental way of absorption, while the 

last one is the main mechanism to dissipate the energy absorbed by plasma oscillations. 

It is important to notice that bound electrons excitations are not involved in the 

collective motion of the electron gas, so they have not reasonable influence on the 

nature of SPRs. Furthermore, surface dispersion effects do not change the position of 

the SPRs bands but have effects on the absorption spectra, making them wider and less 

intense due to coupling of the proper modes to the applied field [1.17]. 

Metals like copper, silver and gold absorb visible light by means of plasma 

oscillation mechanisms, whereas most other transition metals show only a broad and 

poorly resolved band in the UV region. This important difference is attributed to the 

strong coupling between the plasmon transition and the interband excitation. In 

addition, the conduction band electrons of the noble metals can move freely, 

independently from the ionic background, and the ions act only as scattering centers. 

This gives the electrons in the noble metals a higher polarizability, which shifts the 

plasmon resonance to lower frequencies with a sharp bandwidth. 

The SPR was theoretically explained by Mie in 1908, including linear optical 

properties such as extinction and scattering of small metal particles. Mies’s theory and 

experimental spectra agree well in the size regime > 20 nm. But when the size of 

nanoparticles is much smaller than < 20 nm and even much smaller than the wavelength 

of the incident light, the Mie’s theory cannot reproduce experimental results, because 
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the plasmon band shows still a size dependence and even seems to disappear completely 

for nanoparticles of size < 2 nm. 

 

1.5 Theoretical description 

One of the most interesting spectral features of noble metal clusters are their optical 

response in the interaction with a radiating source. In the previous section the 

“plasmon” have been introduced, which is a collective excitation of the conduction 

electrons: a joined motion of the nearly-free electrons, induced by the light, within the 

mean positively charged field of the ionic cores. 

 This feature has been discovered and then explained by classical electrodynamics 

models based on the Mie theory, where the cluster is assumed as an homogeneous 

conduction sphere. Since the optical properties are sensitive to the dimension of the 

system, even at the classic or semi-classic level, with Discrete Dipole Approximation 

(DDA), this is a difficult problem to deal with.  

The problem becomes even more tricky when the cluster size is smaller than the 

electron mean path: in this case quantum confinement effects must be introduced in the 

model, since the band structure has been replaced by discrete energy levels.  

So, a quantum mechanical treatment is required to approach this problem and, at the 

moment, the most practical method is the Time Dependent Density Functional Theory 

(TDDFT) which formally includes the coupling of mono-excited configurations, 

necessary to describe the “collective” plasmonic behavior of MNP.  

There are two main different implementations of the TDDFT: 

 the first adopts the formalism based on molecular orbitals, following the Casida 

procedure[1.18]; 

 the second studies the temporal evolution of the system, employing plane waves 

or Cartesian grids to solve the TDDFT equations. 
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The first approach is advantageous because it allows a detailed analysis of the 

transitions in terms of molecular orbitals involved, so the nature of these transitions can 

be inferred. On the other hand, this procedure allows to study the optical properties in 

only a limited range of energy, because a limited number of eigenvalues can be 

extracted by the diagonalization algorithm commonly employed in the procedure [1.19].  
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2 Theory 

2.1 Density Functional Theory 

The Density Functional Theory (DFT) is an alternative approach to ab-initio method; 

it is a rigorous method but it is necessary to introduce some approximations, with minor 

computational cost than ab-initio methods. 

  The density functional theory[2.1] is based on the idea, that the electronic structure 

of atoms, molecules and solids can be rigorously described by the electronic density 

𝜌(𝑟̅) instead of the wave function in N particles Ψ(𝑥1, 𝑥2, … , 𝑥𝑁). In this way the 

energy of the system will be a functional of the electron density. 

In the ’60 Hohenberg and Kohn[2.2] have demonstrated two theorems that are the 

background of DFT. First consider the definition of a functional: it is an application 

from a vector space into its underlying scalar field, or more specifically an application 

from a set of functions to the real number 𝑓 → ℝ.. 

In the non-relativistic case and assuming the Born-Oppenheimer approximation, the 

generic Hamiltonian for N electrons is given by: 

 

𝐻̂ = ∑ (−
1

2
∇𝑖

2)

𝑁

𝑖=1

+ ∑
1

𝑟𝑖𝑗

𝑁

𝑖<𝑗

+ ∑ 𝑉𝑒𝑥𝑡(𝑟̅𝑖)

𝑁

𝑖=1

= 𝑇̂ + 𝑉̂𝑒𝑒 + 𝑉̂ext (2.1.1) 

Where the first term 𝑇̂ is the kinetic energy of the electrons, the second 𝑉̂𝑒𝑒 is the 

potential energy contribution for the repulsion between electrons pairs, and the last 𝑉̂𝑒𝑥𝑡 

is the external potential due interactions between nuclei and electrons.  

At this time the functional 𝐹[𝜌] is defined as the minimum of the integral for the first 

two Hamiltonian contributions. 
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 𝐹[𝜌] = min
Ψ→𝜌

⟨Ψ|𝑇 + 𝑉𝑒𝑒|Ψ⟩ (2.1.2) 

Where Ψ are the antisymmetric wave function that correspond to the density ρ 

 𝜌(𝑟̅) = 𝑁 ∫ Ψ(𝑥̅1, 𝑥̅2, … , 𝑥̅𝑁) Ψ∗(𝑥̅1, 𝑥̅2, … , 𝑥̅𝑁)𝑑𝜔1𝑑𝑥̅2, … , 𝑑𝑥̅𝑁 
(2.1.

3) 

The first variable is integrated only in the spin coordinate ω, so the expression gives 

the electronic density at the point 𝑟̅. The functional F[ρ] is universal because it doesn’t 

depend on 𝑉𝑒𝑥𝑡, so it depends only on the number of electrons i.e. on the density. 

Now another functional 𝐸[𝜌] is defined: 

 𝐸[𝜌] = 𝐹[𝜌] + ∫ 𝑉𝑒𝑥𝑡(𝑟̅)𝜌(𝑟̅)𝑑𝑟̅ (2.1.4) 

Where the classical potential energy contribution for the nuclei-electrons interactions 

is introduced, indeed it’s possible to demonstrate that this classic expression is 

equivalent to the quantum mechanical one. 

Now it can be shown that a variational principle based on the electronic density ρ 

rather than on the wave function Ψ holds: 

 𝐸[𝜌] ≥ 𝐸𝐺𝑆 (2.1.5) 

 𝐸[𝜌𝐺𝑆] = 𝐸𝐺𝑆 (2.1.6) 

Where 𝐸𝐺𝑆 and 𝜌𝐺𝑆 are respectively the exact energy and density of the ground state. 

Therefore E[ρ] has the minimum value when the density is that of ground state.  
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At this point, minimizing the energy E means minimizing the functional E[ρ], 

moreover since F[ρ] associates ρ to the wave functions Ψ𝑚𝑖𝑛
𝜌

, then it is possible to 

define a functional for each term of Hamiltonian: 

 𝐸[𝜌] = 𝑇[𝜌] + 𝑉𝑒𝑒[𝜌] + ∫ 𝑉𝑒𝑥𝑡(𝑟̅)𝜌(𝑟̅)𝑑𝑟̅ (2.1.7) 

There are two possible approaches to deal with this problem: 

 Direct Method (Thomas-Fermi approach or more recent Orbital Free (OF) 

method[2.3]): the electronic density ρ is taken as independent variable. 

 Indirect Method (Kohn-Sham approach[2.4]): which refers to a non-

interacting system, with the same electronic density of the real one, and 

where the molecular orbitals are taken as independent variables instead of the 

density. 

 

2.2 The Kohn-Sham method 

In the fictitious non-interacting system, the interaction potential between electrons is 

absent 𝑉𝑒𝑒 = 0. Such system has a simpler Hamiltonian, the so called Kohn-Sham 

Hamiltonian: 

 𝐻̂𝐾𝑆 = ∑ (−
1

2
∇𝑖

2)

𝑁

𝑖=1

+ ∑ 𝑉𝐾𝑆(𝑟̅𝑖)

𝑁

𝑖=1

 (2.2.1) 

The 𝑉𝐾𝑆(𝑟̅𝑖) is the Kohn-Sham potential and it must be determined. It is a local 

mono-electronic potential that has to be chosen so that the density of the KS system is 

equal to the electronic density of the interacting one.  

The wave function Ψ𝐾𝑆 is the solution of the non-interacting system, and therefore it 

can be described with a single Slater Determinant 
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 Ψ𝐾𝑆 =
1

√𝑁!
det [𝜑1𝜑2 … 𝜑𝑁] (2.2.2) 

Therefore the problem can be separated in N mono-electronic equations  

 [−
1

2
∇2 + 𝑉𝐾𝑆] 𝜑𝑖 = 𝜀𝑖𝜑𝑖  𝑖 = 1,2, … , 𝑁 (2.2.3) 

Now the value of the kinetic energy for the non-interacting system can be calculated 

from the spin-orbitals, with a very good approximation of the real system 

 𝑇0[𝜌] = ∑ ⟨𝜑𝑖|−
1
2 ∇𝑖

2|𝜑𝑖⟩

𝑁

𝑖=1

 (2.2.4) 

This is the essential reason why the Kohn-Sham method is superior with respect to 

the Thomas-Fermi scheme which gives very large errors in the kinetic energy. Now the 

energy functional for the interacting system can be defined like sum of different 

contributions 

 𝐸[𝜌] = 𝑇0[𝜌] + 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌] + ∫ 𝑉𝑒𝑥𝑡(𝑟̅)𝜌(𝑟̅)𝑑𝑟̅ (2.2.5) 

Where 𝑇0[𝜌] is the kinetic energy functional for the non-interacting system, 𝐽[𝜌] is 

the functional of the classic Coulomb repulsion energy: 

 𝐽[𝜌] =
1

2
∬

𝜌(𝑟̅)𝜌(𝑟̅′)

|𝑟̅ − 𝑟̅′|
𝑑𝑟̅𝑑𝑟̅′ (2.2.6) 

𝐸𝑥𝑐[𝜌] is the exchange-correlation functional, and it contains all terms to correct the 

first two terms to the real system, it is defined as: 
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 𝐸𝑥𝑐[𝜌] = 𝑇[𝜌] − 𝑇0[𝜌] + 𝑉𝑒𝑒[𝜌] − 𝐽[𝜌] (2.2.7) 

The 𝐸𝑥𝑐[𝜌] is unknown, therefore it must be approximated using some model, for 

example the electron gas, anyway it is a good approximation because this term 

represents small contribution in the whole expression of the energy. 

The energy functional has to be minimized with respect to the electronic density, but 

the minimum has to be constrained because the number of electrons is constant: 

 ∫ 𝜌(𝑟̅)𝑑𝑟̅ = 𝑁 (2.2.8) 

Now the Lagrangian multiplier 𝜇 that operates on the constrain is introduced and the 

following Lagrangian function is obtained: 

 𝐿 = 𝐸[𝜌] − 𝜇 (∫ 𝜌(𝑟̅)𝑑𝑟̅ − 𝑁) (2.2.9) 

The minimum condition corresponds to zero functional derivative: 

 
𝛿

𝛿𝜌
[𝐸[𝜌] − 𝜇 (∫ 𝜌(𝑟̅)𝑑𝑟̅ − 𝑁)] = 0 (2.2.10) 

Performing the functional derivatives, the minimum condition for the real system is 

 
𝛿𝑇0

𝛿𝜌
+ ∫

𝜌(𝑟̅′)

|𝑟̅ − 𝑟̅′|
𝑑𝑟̅′ +

𝛿𝐸𝑋𝐶

𝛿𝜌
+ 𝑉𝑒𝑥𝑡(𝑟̅) = 𝜇 (2.2.11) 

While for the non-interactive system 
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𝛿𝑇0

𝛿𝜌
+ 𝑉𝐾𝑆(𝑟̅) = 𝜇 (2.2.12) 

Requiring that the two systems have the same electronic density 𝜌, an expression of 

the 𝑉𝐾𝑆(𝑟̅) can be found requiring that equations (2.2.11) and (2.2.12) are equal: 

 𝑉𝐾𝑆(𝑟̅) = ∫
𝜌(𝑟̅′)

|𝑟̅ − 𝑟̅′|
𝑑𝑟̅′ +

𝛿𝐸𝑋𝐶

𝛿𝜌
+ 𝑉𝑒𝑥𝑡(𝑟̅) (2.2.13) 

Where the first term is the electronic potential generated by the electron density of 

the system, the second is the functional derivative of the exchange-correlation energy:  

 𝑉𝑥𝑐[𝜌(𝑟̅)] =
𝛿𝐸𝑋𝐶

𝛿𝜌
 (2.2.14) 

And the third is the external potential. 

Now it is possible define the Kohn-Sham equations which are one-electron 

Schrödinger type equations, consequently the orbitals are the solutions of the N mono-

electronic equations. 

 𝐻̂𝐾𝑆𝜑𝑖 = 𝜀𝑖𝜑𝑖  𝑖 = 1,2, … , 𝑁 (2.2.15) 

The electronic density is defined by the orbitals (𝜑𝑖): 

 𝜌(𝑟̅) = ∑ ∑ 𝑛𝑖|𝜑1(𝑟, 𝑠)|2

𝑠𝑝𝑖𝑛

𝑠

𝑜𝑐𝑐

𝑖

 (2.2.16) 

The Hamiltonian depends on the density and therefore is defined by the solutions, 

consequently self-consistent field (SCF) method is necessary. This approach is rigorous 
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only for the ground state, but it is possible to choose a different occupation number set 

with respect to the ground state, and apply this method for the excited states as well.  

 

2.3 The Transition State (TS) Method 

 The simplest and pragmatic approach to calculate excitation or ionization processes 

by DFT consists to neglect of relaxation effects by means of a frozen-orbital [2.5] 

assumption: excitation energies are simply calculated as the differences between the 

energy eigenvalues relative to the initial occupied level and the final virtual level: 

 ∆𝐸𝑖→𝑓 = 𝜀𝑓 − 𝜀𝑖 (2.3.1) 

While the IP is directly obtained following Koopmans’ like theorem as the opposite 

eigenvalue of the initial level: 

 𝐼𝑃𝑖 = −𝜀𝑖 (2.3.2) 

In other words this approximation assumes that, upon removal of an electron from 

some initial orbital 𝜑𝑖, none of the other 𝜑𝑘 ones change. 

The intensity of the transition is proportional to the square module of electric dipole 

moment between final and initial states: 

 𝐼 ∝ |⟨Ψ𝑖|𝜇̂|Ψ𝑓⟩|
2
 (2.3.3) 

Where 𝜇̂ is the dipole operator; at this point the wave functions are described by the 

Kohn-Sham determinants (GS and one-electron excited configuration), and in particular 

the intensity is represented by the oscillator strength: 
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 𝑓𝑖→𝑓 =
2

3
∆𝐸𝑖→𝑓𝑛𝑖|⟨φ𝑖|𝜇̂|φ𝑓⟩|

2
 (2.3.4) 

Where 𝑛𝑖 is the occupation number of the initial state. This form is used when the 

radiation isn’t polarized or when the sample is randomly oriented in gas phase. For the 

polarized spectra the form is the following: 

 𝑓𝑖→𝑓 =
2

3
∆𝐸𝑖→𝑓𝑛𝑖|⟨φ𝑖|𝑒 ∙ 𝜇⃗|φ𝑓⟩|

2
 (2.3.5) 

Where 𝑒 ∙ 𝜇⃗ is the scalar product between the electric field and the dipole operator. 

 The ∆𝑆𝐶𝐹 scheme, as suggested by the name itself, consists in performing two 

different SCF calculations, one for the N-electron GS and one for the ion, or the excited 

state that is for the (N-1)-electron configuration or for the N-electron excited 

configuration obtained by properly fixing the occupation numbers; the corresponding 

excitation or ionization energy is obtained as the difference in total energy between the 

ground state and the excited or ionized state: 

 ∆𝐸𝑖→𝑓 = 𝐸𝑖
𝑓

− 𝐸𝐺𝑆 

(2.3.6) 

 𝐼𝑃𝑖 = 𝐸i − 𝐸𝐺𝑆 

It clearly follows that such procedure for the calculation of excitation energies is 

rather cumbersome, as it requires a different calculations for each unoccupied final 

orbital. 

The Transition State (TS) method, formulated by J.C. Slater [2.6], consists in 

performing one SCF calculation for the electronic configuration in which half an 

electron is promoted from the initial to the final level. Slater analyzed the eigenvalues of 

excited states, and observed that SCF calculations of non-physical states that are in 
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between the ground state and the excited state, are good approximations to excitation 

energies calculation. 

To justify the choice of fractional occupation numbers, it is useful to expand the total 

energy E in Taylor series as a function of occupation numbers [2.7]: 

 𝐸(𝑛𝑖) = 𝐸̅ + ∑ 𝐸̅𝑖(

𝑖

𝑛𝑖 − 𝑛̅𝑖) +
1

2
∑ ∑ 𝐸̅𝑖𝑗

𝑗𝑖

(𝑛𝑖 − 𝑛̅𝑖)(𝑛𝑗 − 𝑛̅𝑗) + ⋯ (2.3.7) 

Where 𝐸̅ is the total energy when the occupations are 𝑛𝑖 = 𝑛̅𝑖; using Janak 

theorem[2.8][2.9], the 𝐸̅𝑖 are the first derivatives of total energy with respect to the 

occupation numbers and are equal to mono-electron equation eigenvalues.  

 𝐸̅𝑖 =
𝜕𝐸𝑡𝑜𝑡

𝜕𝑛𝑖
= 𝜀𝑖 (2.3.8) 

While 𝐸̅𝑖𝑗 are the second derivatives of total energy. 

At this point, we consider the total energy for a second electronic configuration 𝑛𝑖
′ 

and again expand in Taylor series. The difference between total energies for 

occupations 𝑛𝑖 and 𝑛𝑖
′ is equal to the eigenvalue difference, obtained with a single SCF 

calculation using the occupation: 

 𝑛̅𝑖 =
(𝑛𝑖 + 𝑛𝑖

′)

2
 (2.3.9) 

This is the Transition State method according to Slater, and the result is simply 

formulated in this way[2.9]: 

 𝐸(𝑛𝑖
′) − 𝐸(𝑛𝑖) = ∑ 𝐸̅𝑖

𝑖

(𝑛𝑖
′ − 𝑛𝑖) + 𝑡ℎ𝑖𝑟𝑑 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 ≅ 𝜀𝑓 − 𝜀𝑖 (2.3.10) 
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The third order term is very small and can be neglected with good approximation, 

and the excitation energy is determined with good approximation by the difference 

between eigenvalues of a state that is in between the two configurations. 

In Figure 2.1 the occupations for three 

different cases are reported: the first case 

reports the occupation for the ground 

state, the second and third show the 

scheme of transition state, the central 

scheme consist in electronic 

configuration that resulted by removing a 

half electron from initial state and leaving 

the virtual states unoccupied [2.11], this 

scheme is used to calculate the ionization 

energy, the right scheme shows the 

electronic configuration for the promotion a half an electron from the initial state to the 

final state [2.12], this last scheme is used to calculate a specific transition. 

At this point, to calculate a spectrum, the Kohn-Sham equations are solved using the 

transition state occupations: 

 𝐻𝐾𝑆
𝑇𝑆𝜑𝑖

𝑇𝑆 = 𝜀𝑖
𝑇𝑆𝜑𝑖

𝑇𝑆  𝑖 = 1,2, … , 𝑁 (2.3.11) 

Where 𝐻𝐾𝑆
𝑇𝑆 is the Kohn-Sham Hamiltonian built whit transition state electronic 

configurations: (𝑖)−1
2⁄ (𝑎)0 or (𝑖)−1

2⁄ (𝑎)+1
2⁄  for ionization and excitation respectively. 

The ionization potentials and the excitation energies can be obtained by solution of 

these equations. In fact the ionization potential correspond to the initial orbital’s 

opposite eigenvalue 𝐼𝑃𝑖 = −𝜀𝑖
𝑇𝑆, and the excitation energies are the difference between 

to final virtual orbital and initial orbital eigenvalues ∆𝐸𝑖→𝑓 =  𝜀𝑓
𝑇𝑆 − 𝜀𝑖

𝑇𝑆. In practice, TS 

is not practical when many excitations are needed. In that case it is much more 

Figure 2.1 Ground state and transition 

state occupations 
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convenient to use the ionization configuration (𝑖)−1
2⁄ (𝑎)0 for the excitation as well, this 

scheme is called Transition Potential (TP). 

 

2.4 Response Theory 

DFT furnishes a rigorous electronic structure description only for the ground state of 

a given system. Therefore, when dealing with electronic excited states, the only rigorous 

theoretical approach is the Time – Dependent Density Functional Theory (TDDFT). It is 

convenient to start from general Response Theory [2.13]. 

Let us consider a system of N electrons which obeys the time-dependent Schrödinger 

equation: 

 𝐻Ψ = 𝑖
𝜕Ψ

𝜕𝑡
 (2.4.1) 

When the TD perturbation is small, the perturbed Hamiltonian can be expressed as 

follows: 

 𝐻(𝑡) = 𝐻0 + 𝜆𝐻(1)(𝑡) (2.4.2) 

The unperturbed wave function can be factorized in two parts, one spatial and the 

other time dependent; and assuming that 𝐻0Ψ𝑛
0 = 𝐸𝑛Ψ𝑛

0 has already been solved: 

 Ψ𝑛
0(𝑥̅, 𝑡) = Ψ𝑛

0(𝑥̅)𝑒−𝑖𝐸𝑛𝑡 (2.4.3) 

Therefore the solution of the perturbed system can be expressed as follows: 

 |Ψ0⟩′ = Ψ′0(𝑥̅, 𝑡)𝑒−𝑖𝐸0𝑡 = Ψ0
0(𝑥̅)𝑒−𝑖𝐸0𝑡 + 𝜆 ∑ 𝑐𝑛(𝑡)

𝑛≠0

Ψ𝑛
0(𝑥̅)𝑒−𝑖𝐸𝑛𝑡 (2.4.4) 
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Setting 𝜔0𝑛 = 𝐸𝑛 − 𝐸0 so: 

 Ψ′0(𝑥̅, 𝑡) = Ψ0
0(𝑥̅) + 𝜆 ∑ 𝑐𝑛(𝑡)

𝑛≠0

Ψ𝑛
0(𝑥̅)𝑒−𝑖𝜔0𝑛𝑡 (2.4.5) 

Introducing (2.4.5) in (2.4.1), considering the first order in the expansion series, and 

collecting the exponential terms one obtains: 

 𝐻(1)Ψ0
0 = 𝑖 ∑ 𝑐̇𝑛

𝑛≠0

Ψ𝑛
0𝑒−𝑖𝜔0𝑛𝑡 (2.4.6) 

After the introducing the bra element ⟨Ψ𝑘
0|, the coefficients 𝑐𝑘 can be found 

resolving: 

 𝑐𝑘(𝑡) = ∫ 𝑐̇𝑘𝑑𝑡
𝑡

−∞

= −𝑖 ∫ ⟨Ψ𝑘
0|𝐻(1)|Ψ0

0⟩𝑒𝑖𝜔0𝑛𝑡′
𝑑𝑡′

𝑡

−∞

 (2.4.7) 

Where 𝐻(1)(𝑡) = 𝐴𝐹(𝑡), where 𝐴 is only space dependent and 𝐹(𝑡) only time 

dependent. Therefore the integral above can be split in two parts: a spatial one which 

gives the shape of the perturbation; and one then time dependent. The coefficients count 

for the contribution of the excited state, due to the perturbation, on the first order 

perturbed wave function. 

Usually, it is more interesting to consider the effect of the perturbation on some 

properties of the wave function, the actual response of the system. This can be seen 

from the differences in the expectation value 〈𝐵〉, generated by a perturbation A, and the 

first order result will determine the linear response (linear in F(t)). 

 𝛿𝐵 = 〈𝐵〉 − 〈𝐵〉0 (2.4.8) 

Using the expression above for the wave function: 
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 𝛿𝐵 = ⟨Ψ|𝐵|Ψ⟩ − ⟨Ψ0|𝐵|Ψ0⟩ (2.4.9) 

 
𝛿𝐵 = −𝑖 ∑⟨0|𝐵|𝑛⟩⟨𝑛|𝐴|0⟩ ∫ 𝐹(𝑡′)𝑒−𝑖𝜔0n(𝑡−𝑡′)𝑑𝑡′

𝑡

−∞𝑛≠0

+ 𝑐. 𝑐. (2.4.10) 

Introducing the “time-correlation function” K, the expression can be simplified 

 𝛿𝐵 = ∫ 𝐾(𝐵𝐴|𝑡 − 𝑡′)𝐹(𝑡′)𝑑𝑡′
𝑡

−∞

+ 𝑐. 𝑐. (2.4.11) 

The perturbation A at time 𝑡′ is related to the oscillations 〈𝐵〉 at time 𝑡; in according 

with the causality principle it must be that 𝑡 > 𝑡′ unless 𝐾(𝐵𝐴|𝑡 − 𝑡′) isn’t defined.  

At this point it is convenient to consider the function 𝐹(𝑡), with all its frequency 

components with the Fourier transform 𝑓(𝜔). Consequently the first order perturbed 

Hamiltonian is expressed: 

 𝐻′(𝑡) =
1

2𝜋
∫ 𝑓(𝜔)

1

2
[𝐴𝜔𝑒−𝑖𝜔𝑡 − 𝐴−𝜔𝑒𝑖𝜔𝑡]𝑑𝜔

+∞

−∞

 (2.4.12) 

Considering the simplest case of a monochromatic perturbation 𝐻′(𝑡) =

1

2
[𝐴𝜔𝑒−𝑖𝜔𝑡 − 𝐴−𝜔𝑒𝑖𝜔𝑡] and introducing an attenuating convergence factor (𝑒𝜀𝑡) with 

𝜀 → 0+ that is zero for 𝑡 = −∞ and is equal to one for 𝑡 = 𝑡′. Now the coefficients of 

the perturbed wave function can be expressed in frequency term by the Fourier anti-

transform. 

 𝑐𝑛(𝑡) = −
𝑖

2
∫ ⟨𝑛|𝐴𝜔|0⟩𝑒𝑖(𝜔0𝑛−𝜔−𝑖𝜀)𝑡′

𝑑𝑡′
𝑡

−∞

+ 𝑡𝑒𝑟𝑚𝜔→−𝜔 (2.4.13) 

The integral gives: 
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 𝑐𝑛(𝑡) = (−
1

2
) [⟨𝑛|𝐴𝜔|0⟩

𝑒𝑖(𝜔0𝑛−𝜔+𝑖𝜀)𝑡

𝜔0𝑛 − 𝜔 − 𝑖𝜀
+ 𝑡𝑒𝑟𝑚𝜔→−𝜔] (2.4.14) 

Since this expressions are taken to the limit 𝜀 → 0+, this factor is important only at 

the denominator, and it can be interpreted as the imaginary part of the photon frequency. 

Moreover when 𝜔0𝑛 = 𝜔 (resonance condition, photon energy equal to transition 

energy) the expression tends to ∞ and a discrete line spectrum is obtained. If instead a 

small but finite 𝜀 is employed, the excitations are described as Lorentzian shape 

functions. 

Therefore, turning back to the oscillations of 〈𝐵〉, and expressing them as a function 

of the frequency oscillations: 

 𝛿𝐵𝜔 =
1

2
[𝛼(𝐵𝐴𝜔|𝜔)𝑒−𝑖𝜔𝑡 + 𝛼(𝐵𝐴−𝜔|−𝜔)𝑒𝑖𝜔𝑡] (2.4.15) 

We obtain an expression for the dynamic polarizability 𝛼, which consists of the 

Fourier transform of the time correlation function K: 

 𝛼(𝐵𝐴𝜔|𝜔) = ∑
⟨0|𝐵|𝑛⟩⟨𝑛|𝐴𝜔|0⟩

−𝜔0𝑛 + 𝜔 + 𝑖𝜀
−

𝑛≠0

⟨0|𝐴𝜔|𝑛⟩⟨𝑛|𝐵|0⟩

𝜔0𝑛 + 𝜔 + 𝑖𝜀
 (2.4.16) 

It is worth noting that when the system is resonant 𝜔 = 𝜔0𝑘 the first term 

denominator tends to zero and the whole expression blows up for the resonance state k, 

while the others 𝑛 ≠ 𝑘 elements of the sum remain finite and therefore negligible. 

Being 𝐴̂ and 𝐵̂ both electronic dipole components, so: 

 𝛼(𝐵𝐴𝜔|𝜔) ∝
|⟨0|𝑧|𝑘⟩|2

𝑖𝜀
 (2.4.17) 
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The dynamic polarizability is proportional to the transition moment and on the 

resonance it is an imaginary number. 

From this expression the problem can be solved in different method: 

 Solving the response matrix with a diagonalization, and obtaining a discrete 

spectra. 

 Calculating the spectrum point by point from the imaginary part of the 

polarizability, setting the value of ε as a finite number. 

We obtained formal exact expressions with the only limitation imposed by the first 

order perturbation. However such expressions are not practical since involved infinite 

summations on all the exact excited states, which are not accessible in practice. 

So it is desirable to apply such formalism on simplified, model descriptions of the 

system (Kohn-Sham), in order to obtain a method that can be implemented and used in 

practice. 

 

2.5 Random Phase Approximation (RPA) and Time 

dependent Density Functional Theory (TDDFT) 

In the previous section, devoted to the linear response theory, we have obtained 

formal exact expressions (2.4.16) with the limitation imposed by the first order 

perturbation. However such expressions are not practical since involve infinite 

summations on all the exact excited states, which are not accessible in practice. 

So it is desirable to apply such formalism on simplified, model descriptions of the 

system, namely Hartree-Fock (HF) or Kohn-Sham (KS), in order to obtain a method 

that can be implemented and used in practice.  

Although the rigorous to introduce the TDDFT consist in the demonstration of the 

Runge – Gross theorem [2.14], we have followed a different path. Since in this work we 
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are interested in the reformulation of the TDDFT algorithm, we have considered more 

convenient to follow the conventional linear – response formalism. 

Referring to the first order Time Dependent Perturbation Theory (TD-PT) (2.4.12) 

and considering a perturbing term with 𝜔 frequency: 

 𝐻(1)(𝑡) = 𝐴𝜔𝑒−𝑖𝜔𝑡 + 𝐴−𝜔𝑒𝑖𝜔𝑡 (2.5.1) 

So the time dependent Schrödinger equation will be: 

[𝐻(0) + 𝜆(𝐴𝜔𝑒−𝑖𝜔𝑡 + 𝐴−𝜔𝑒𝑖𝜔𝑡)] [Ψ0
(0)(𝑥̅)𝑒−𝑖𝐸0𝑡 + 𝜆(Ψ(1,−)(𝑥̅)𝑒−𝑖(𝐸0+𝜔)𝑡 + Ψ(1,+)(𝑥̅)𝑒−𝑖(𝐸0−𝜔)𝑡)]

= 𝑖
𝜕

𝜕𝑡
[Ψ0

(0)(𝑥̅)𝑒−𝑖𝐸0𝑡 + 𝜆(Ψ(1,−)(𝑥̅)𝑒−𝑖(𝐸0+𝜔)𝑡 + Ψ(1,+)(𝑥̅)𝑒−𝑖(𝐸0−𝜔)𝑡)] 
(2.5.2) 

The expression (2.5.2) has been written assuming that the first order perturbed wave-

function has only two different “time behaviors”: 𝑒−𝑖(𝐸0+𝜔)𝑡 and 𝑒−𝑖(𝐸0−𝜔)𝑡, this is due 

to the two different terms which appear in 𝐻(1) (2.5.1). 

The zero order equation corresponds to the time independent equation: 

 𝐻(0)Ψ0
(0)(𝑥̅)𝑒−𝑖𝐸0𝑡 = 𝐸0Ψ0

(0)(𝑥̅)𝑒−𝑖𝐸0𝑡 (2.5.3) 

The first order terms can be grouped in two linear independent, time dependent 

contributions: one for 𝑒−𝑖(𝐸0+𝜔)𝑡 and the other for 𝑒−𝑖(𝐸0−𝜔)𝑡. 

 𝑒−𝑖(𝐸0+𝜔)𝑡[𝐻(0)Ψ(1,−)(𝑥̅) + 𝐴𝜔Ψ0
(0)

− (𝐸0 + 𝜔)Ψ(1,−)] + (2.5.4) 

 𝑒−𝑖(𝐸0−𝜔)𝑡[𝐻(0)Ψ(1,+)(𝑥̅) + 𝐴−𝜔Ψ0
(0)

− (𝐸0 − 𝜔)Ψ(1,+)] = 0 (2.5.5) 
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Since the whole expression must be zero identically, both expressions in brackets 

must be zero. 

So far the expressions have always been general, now instead the special case of 

Hartree-Fock will be considered: so 𝐻(0) ≡ 𝐹̂ and Ψ0 will correspond to all occupied 

orbitals Ψ0 = 𝜑𝑖  𝑖 = 1, … , 𝑁. 

Ψ𝑖
(1,−)

 and Ψ𝑖
(1,+)

 are perturbations of the occupied orbitals, therefore they also have 

been labelled with the index 𝑖. 

The perturbed wave functions must preserve the orthonormality condition, ⟨𝜑𝑖|𝜑𝑗⟩ =

𝛿𝑖𝑗 where 𝑖, 𝑗 sign up for the occupied orbitals, so: 

 ⟨𝛿𝜑𝑖|𝜑𝑗⟩ + ⟨𝜑𝑖|𝛿𝜑𝑗⟩ = 0 (2.5.6) 

Therefore each term is zero, this means that the perturbed function is orthogonal to 

all the occupied orbitals, then it must be a linear combination of virtual orbitals: 

 |𝛿𝜑𝑖⟩ = ∑ 𝑐𝑖𝑏|𝜑𝑏⟩

𝑉𝑖𝑟𝑡

𝑏

 (2.5.7) 

The expression (2.5.7) must hold for both the “time behaviors” of the perturbed wave 

function, which can be expressed as follows: 

 φ𝑖
(1,−)

= ∑ 𝑋𝑖𝑏𝜑𝑏

𝑉𝑖𝑟𝑡

𝑏

  φ𝑖
(1,+)

= ∑ 𝑌𝑖𝑏
∗ 𝜑𝑏

𝑉𝑖𝑟𝑡

𝑏

 (2.5.8) 

Resuming the general equations of the first order TD-DP, making the proper 

substitutions and doing a scalar product on the left with a virtual orbital ⟨𝜑𝑎| the 

following expressions are obtained: 
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 ∑⟨𝜑𝑎|𝐹|𝜑𝑏⟩𝑋𝑖𝑏

𝑏

+ ⟨𝜑𝑎|𝐴𝜔|𝜑𝑖⟩ − (𝜀𝑖 + 𝜔) ∑⟨𝜑𝑎|𝜑𝑏⟩𝑋𝑖𝑏

𝑏

= 0 (2.5.9) 

 ∑⟨𝜑𝑎|𝐹|𝜑𝑏⟩𝑌𝑖𝑏
∗

𝑏

+ ⟨𝜑𝑎|𝐴−𝜔|𝜑𝑖⟩ − (𝜀𝑖 − 𝜔) ∑⟨𝜑𝑎|𝜑𝑏⟩𝑌𝑖𝑏
∗

𝑏

= 0 (2.5.10) 

where equation (2.5.9) corresponds to equation (2.5.4), while (2.5.10) corresponds to 

(2.5.5). 

In both expressions the sum reduces to one term only, which correspond to 𝑏 = 𝑎, 

and transforming the second equation in its conjugated complex other two simpler 

expression are found: 

 (𝜀𝑎 − 𝜀𝑖 − 𝜔)𝑋𝑖𝑎 + ⟨𝜑𝑎|𝐴𝜔|𝜑𝑖⟩ = 0 (2.5.11) 

 (𝜀𝑎 − 𝜀𝑖 + 𝜔)𝑌𝑖𝑎 + ⟨𝜑𝑎|𝐴𝜔|𝜑𝑖⟩ = 0 (2.5.12) 

The TD external field, whose strength corresponds to the 𝐴𝜔 operator that contains 

its dipole components, does affect the orbitals and consequently also the Fock operator 

will change.  

Therefore in order to evaluate the ⟨𝜑𝑎|𝐴𝜔|𝜑𝑖⟩ term, ⟨𝜑𝑎|𝐹(1)|𝜑𝑖⟩ = ⟨𝑎|𝐹(1)|𝑖⟩ =

∑ (⟨𝑎𝛿𝑗‖𝑖𝑗⟩ + ⟨𝑎𝑗‖𝑖𝛿𝑗⟩)𝑗  should be considered first, where 𝐹(1) = ∑ (⟨ 𝛿𝑗‖ 𝑗⟩ +𝑂𝑐𝑐
𝑗

⟨ 𝑗‖ 𝛿𝑗⟩) and both 𝑗 and 𝛿𝑗 are expressed with their TD components; so 

 

⟨𝑎|𝐹(1)|𝑖⟩ = ∑ 𝑒−𝑖𝜔𝑡[𝑌𝑗𝑏⟨𝑎𝑏‖𝑖𝑗⟩ + 𝑋𝑗𝑏⟨𝑎𝑗‖𝑖𝑏⟩]

𝑗,𝑏

+ ∑ 𝑒𝑖𝜔𝑡[𝑋𝑖𝑏
∗ ⟨𝑎𝑏‖𝑖𝑗⟩ + 𝑌𝑗𝑏

∗ ⟨𝑎𝑗‖𝑖𝑏⟩]

𝑗,𝑏

 
(2.5.13) 
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Therefore ⟨𝜑𝑎|𝐴𝜔|𝜑𝑖⟩ = ⟨𝑎|𝑧|𝑖⟩ + ∑ ⟨𝑎𝑗‖𝑖𝑏⟩𝑋𝑗𝑏𝑗,𝑏 + ⟨𝑎𝑏‖𝑖𝑗⟩𝑌𝑗𝑏, where the 

coefficients 𝑋 and 𝑌 are unknown. 

At this point the expressions (2.5.11) and (2.5.12) can be rewritten as follows: 

 (𝜀𝑎 − 𝜀𝑖 − 𝜔)𝑋𝑖𝑎 + ∑⟨𝑎𝑗‖𝑖𝑏⟩𝑋𝑗𝑏

𝑗,𝑏

+ ⟨𝑎𝑏‖𝑖𝑗⟩𝑌𝑗𝑏 = −⟨𝑎|𝑧|𝑖⟩ (2.5.14) 

 (𝜀𝑎 − 𝜀𝑖 + 𝜔)𝑌𝑖𝑎 + ∑⟨𝑖𝑏‖𝑎𝑗⟩𝑌𝑗𝑏

𝑗,𝑏

+ ⟨𝑖𝑗‖𝑎𝑏⟩𝑋𝑗𝑏 = −⟨𝑖|𝑧|𝑎⟩ (2.5.15) 

And they can be both represented in matrix form: 

 (
𝐴 𝐵
𝐵∗ 𝐴∗) (

𝑋
𝑌

) − 𝜔 (
1 0
0 −1

) (
𝑋
𝑌

) = (
−𝑉
−𝑉

) (2.5.16) 

Where 𝐴𝑖𝑎,𝑗𝑏 = 𝛿𝑖𝑗𝛿𝑎𝑏(𝜀𝑎 − 𝜀𝑖) + ⟨𝑎𝑗‖𝑖𝑏⟩ and 𝐵𝑖𝑎,𝑗𝑏 = ⟨𝑎𝑏‖𝑖𝑗⟩. 

The equations give the coefficients 𝑋 and 𝑌 for a given 𝜔; and when the frequency 

corresponds to an excitation energy then the polarizability goes to infinite.  

The response of the system is manifest looking at the expectation value oscillations 

𝛿𝐵, like already seen in the previous section, the (2.4.8) expression should be observed 

and in this case is: 

 𝛿𝐵 = ∑⟨𝛿𝜑𝑖|𝐵̂|𝜑𝑖⟩ +

𝑖

⟨𝜑𝑖|𝐵̂|𝛿𝜑𝑖⟩ = ∑⟨𝛿𝜑𝑖|𝑧|𝜑𝑖⟩ +

𝑖

⟨𝜑𝑖|𝑧|𝛿𝜑𝑖⟩ (2.5.17) 

Which, referring to (2.5.7) becomes: 
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𝛿𝐵 = ∑ 𝑒−𝑖𝜔𝑡[𝑌𝑖𝑎⟨𝑎|𝑧|𝑖⟩ + 𝑋𝑖𝑎⟨𝑖|𝑧|𝑎⟩]

𝑖,𝑎

+ ∑ 𝑒𝑖𝜔𝑡[𝑋𝑖𝑎
∗ ⟨𝑎|𝑧|𝑖⟩ + 𝑌𝑖𝑎

∗ ⟨𝑖|𝑧|𝑎⟩]

𝑖,𝑎

 (2.5.18) 

And by comparison with the expression (2.4.15) a new expression is found: 

 𝛼(𝐵𝐴𝜔|𝜔) ≡ ∑ 𝑌𝑖𝑎⟨𝑎|𝑧|𝑖⟩ +

𝑖𝑎

𝑋𝑖𝑎⟨𝑖|𝑧|𝑎⟩ (2.5.19) 

The oscillations of the expectation value 𝛿𝐵, so expression (2.5.17), goes to infinite 

when 𝑋 and 𝑌 are the solutions to the pseudo-eigenvalues equations: 

 (
𝐴 𝐵
𝐵∗ 𝐴∗) (

𝑋
𝑌

) = 𝜔 (
1 0
0 −1

) (
𝑋
𝑌

) (2.5.20) 

The expression above is the well known Random Phase Approximation (RPA) 

equation. 

The problem can be simplified when: 

 Orbitals are real, so 𝐴 = 𝐴∗ and 𝐵 = 𝐵∗ 

 B matrix can be neglected, this is called the Tamm Dancoff Approximation 

(TDA) which leads to the more common eigenvalues equation 𝐴𝑋 = 𝜔𝑋. 

If, instead of HF Hamiltonian 𝐹̂, 𝐻̂𝐾𝑆 is employed as 𝐻(0), starting again from 

equations (2.5.16) is possible to switch from RPA to TDDFT equations. The matrix 

elements of 𝐴 and 𝐵 differs from RPA ones for bi-electronic term only, since in the KS 

approach 𝑉𝑋𝐶 must be included. 

 RPA: 

 𝐴𝑖𝑎,𝑗𝑏 = 𝛿𝑖𝑗𝛿𝑎𝑏(𝜀𝑎 − 𝜀𝑖) + ⟨𝑎𝑗‖𝑖𝑏⟩ = 𝛿𝑖𝑗𝛿𝑎𝑏(𝜀𝑎 − 𝜀𝑖) + ⟨𝑎𝑗|𝑖𝑏⟩ − ⟨𝑎𝑗|𝑏𝑖⟩ (2.5.21) 
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 𝐵𝑖𝑎,𝑗𝑏 = ⟨𝑎𝑏‖𝑖𝑗⟩ = ⟨𝑎𝑏|𝑖𝑗⟩ − ⟨𝑎𝑏|𝑗𝑖⟩ (2.5.22) 

 TDDFT 

 

𝐴𝑖𝑎,𝑗𝑏 = 𝛿𝑖𝑗𝛿𝑎𝑏(𝜀𝑎 − 𝜀𝑖) + ⟨𝑎𝑗‖𝑖𝑏⟩

= 𝛿𝑖𝑗𝛿𝑎𝑏(𝜀𝑎 − 𝜀𝑖) + ⟨𝑎𝑗|𝑖𝑏⟩ − ⟨𝑎𝑗|𝐾𝑥𝑐|𝑖𝑏⟩ 
(2.5.23) 

 𝐵𝑖𝑎,𝑗𝑏 = ⟨𝑎𝑏‖𝑖𝑗⟩ = ⟨𝑎𝑏|𝑖𝑗⟩ − ⟨𝑎𝑏|𝐾𝑥𝑐|𝑖𝑗⟩ (2.5.24) 

Assuming that both 𝐴 and 𝐵 are real matrices, then ⟨𝑎𝑗|𝑖𝑏⟩ = ⟨𝑎𝑏‖𝑖𝑗⟩ because they 

are real objects and the (2.5.16) equations turn into a simpler equations system: 

 {
𝐴𝑋 + 𝐵𝑌 − 𝜔𝑋 = −𝑉
𝐵𝑋 + 𝐴𝑌 + 𝜔𝑌 = −𝑉

 (2.5.25) 

Deducing the value of (𝑋 − 𝑌) = 𝜔(𝐴 − 𝐵)−1(𝑋 + 𝑌) and rehashing the equations, 

the following equation is found: 

 (𝐴 + 𝐵) − 𝜔2(𝐴 − 𝐵)−1(𝑋 + 𝑌) = −2𝑉 (2.5.26) 

Where (𝐴 − 𝐵)−1 is diagonal in TDDFT and can be redefine as 𝜀−1 where 𝜀𝑖𝑎,𝑗𝑏 =

𝛿𝑖𝑗𝛿𝑎𝑏(𝜀𝑎 − 𝜀𝑖). 

At the end the final expression leads to the Casida formulation of TDDFT: 

 Ω𝐹 = 𝜔2𝐹 (2.5.27) 

Where Ω ≡ 𝜀−1
2⁄ (𝐴 + 𝐵)𝜀1

2⁄  and 𝐹 ≡ 𝜀−1
2⁄ (𝑋 + 𝑌). 
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A this point the problem reduces to an eigenvalues equation that, with the proper 

transformations, gives (Ω − 𝜔2)−1 = 𝐹𝑝 (
1

𝜔𝑝
2−𝜔2) 𝐹𝑝

†
 and looking at the result of this 

perturbation on a system property: 

 𝛿𝐵 = 𝑉†(𝑋 + 𝑌) = 𝑉†𝜀1
2⁄ 𝐹 = 𝑉†𝜀1

2⁄ (−2)𝐹𝑝 (
1

𝜔𝑝
2 − 𝜔2

) 𝐹𝑝
†𝜀1

2⁄ 𝑉 (2.5.28) 

The oscillations of the expectation value 〈𝐵〉 lead to the familiar expression, when 

the frequency of the external potential is resonant with one of the excited state energy 

(𝜔 → 𝜔𝑝). 

 

𝛿𝐵 ≅ |(𝑉†𝜀1
2⁄ 𝐹𝑝)|

2 (−2)

𝜔𝑝
2 − 𝜔2

≅
|(𝑉†𝜀1

2⁄ 𝐹𝑝)|
2

(−2)

(𝜔𝑝 − 𝜔)2𝜔
=

|(𝑉†𝜀1
2⁄ 𝐹𝑝)|

2

(𝜔 − 𝜔𝑝)𝜔

=
|⟨𝑝|𝑧|0⟩|2

𝜔 − 𝜔𝑝
 

(2.5.29) 

With 𝜔|⟨𝑝|𝑧|0⟩|2 = |(𝑉†𝜀1
2⁄ 𝐹𝑝)|

2

. 

So, in the Casida formalism, the solutions to the TDDFT problem is to be found in 

the diagonalization of the matrix Ω, and its matrix elements are the folloing: 

 Ω𝑖𝑎𝜎,𝑗𝑏𝜏 = 𝛿𝜎𝜏𝛿𝑖𝑗𝛿𝑎𝑏(𝜀𝑎 − 𝜀𝑖)
2 + 2√𝜀𝑎 − 𝜀𝑖K𝑖𝑎𝜎,𝑗𝑏𝜏√𝜀𝑏 − 𝜀𝑗 (2.5.30) 

Where K𝑖𝑎𝜎,𝑗𝑏𝜏 is called Coupling Matrix and it is: 
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K𝑖𝑎𝜎,𝑗𝑏𝜏 = ∫ 𝑑𝑟 ∫ 𝑑𝑟′ 𝜑𝑖𝜎(𝑟)𝜑𝑎𝜎(𝑟) [
1

𝑟 − 𝑟′

+ 𝑓𝑥𝑐
𝐴𝐿𝐷𝐴(𝑟)𝛿(𝑟 − 𝑟′)] 𝜑𝑗𝜏(𝑟′)𝜑𝑏𝜏(𝑟′) 

(2.5.31) 

Concerning the intensity of the spectral lines, corresponding to the excitation 

energies given by 𝜔𝑝, it is expressed by the oscillator strengths that are extracted from 

the eigenvectors 𝐹𝑝. 

𝑓𝑝𝐼 =
2

3
𝜔(|⟨𝑝|𝑥|0⟩|2 + |⟨𝑝|𝑦|0⟩|2 + |⟨𝑝|𝑧|0⟩|2)

=
2

3
(𝑥†𝜀1

2⁄ 𝐹𝑝 + 𝑦†𝜀1
2⁄ 𝐹𝑝 + 𝑧†𝜀1

2⁄ 𝐹𝑝) 

(2.5.32) 

And 𝑥† is defined as 𝑥† = (… ⟨𝑖|𝑥|𝑎⟩ … ). 

Until now the Spin coordinate hasn’t been discussed; in this approach adding the 

Spin contribution is simplified because spin flip is not allowed: the excited electron 

keeps the same spin it had in its ground state.  

So the Ω matrix can conveniently count also for the spin value of the electrons 

involved in the transitions, therefore the matrix elements will have two more labels 

Ω𝑖𝑎𝜎,𝑗𝑏𝜏:  

 𝜎 is the spin state of 𝑖 and 𝑎; (which can be both 𝛼 or 𝛽) 

 𝜏 is the spin state of 𝑗 and 𝑏; (which can be both 𝛼 or 𝛽) 

Introducing the spin state, the exchange-correlation contribution is the only term 

which is changed by this new contribution. 
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This formulation is practical restricted by the very large dimension of the matrix Ω in 

the equations, so the calculation of the spectra for the very large system is difficult. 

For this reason we think to enveloped a new algorithm to calculate a spectra point by 

point from the imaginary part of the dynamical polarizability 

 

2.6 The new TDDFT algorithm [2.15] 

As already mentioned before this formulation is based on calculation of the 

photoabsorption spectrum 𝜎(𝜔) point by point from the imaginary part of the 

dynamical polarizability 𝛼(𝜔) 

 𝜎(𝜔) =
4𝜋𝜔

𝑐
ℑ[𝛼(𝜔)] (2.6.1) 

This expression is of practical interest when the polarizability is calculated for 

complex frequency, i.e., 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖, where the real part 𝜔𝑟  is the scanned photon 

frequency (energy) and 𝜔𝑖 is the imaginary part which corresponds to a broadening of 

the discrete lines and can be interpreted as a pragmatic inclusion of the excited states 

finite lifetime.  

Now it will be shown that it is possible to calculate efficiently the complex 𝛼(𝜔) 

introducing some approximations. First let us start with the definition: 

 𝛼𝑧𝑧(𝜔) = ∫ 𝜌𝑧
(1)(𝜔, 𝑟̅)𝑧𝑑𝑟̅ (2.6.2) 

Where 𝛼𝑧𝑧(𝜔) is the z-th diagonal term of the polarizability tensor, 𝜌𝑧
(1)(𝜔, 𝑟̅) stands 

for the Fourier component of a given frequency of the first order time dependent 

induced density by the external time dependent electromagnetic field. For the 
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calculation of the spectrum, the isotropic part of the tensor is actually extracted from the 

trace: 𝛼(𝜔) =
1

3
∑ 𝛼𝑖𝑖(𝜔)3

𝑖=1  where the index i runs on the three components x, y and z. 

For the TDDFT the induced density can be calculated from the Kohn-Sham dielectric 

susceptibility 𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′) of a reference system of non-interacting electrons under the 

effect of an effective perturbing potential 𝑉𝑆𝐶𝐹
𝑧 (𝜔, 𝑟̅) sum of the external potential plus 

the Coulomb and XC response potential. 

This is summarized by the following coupled linear equations: 

 𝜌𝑧
(1)(𝜔, 𝑟̅) = ∫ 𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′)𝑉𝑆𝐶𝐹

𝑧 (𝜔, 𝑟̅′)𝑑𝑟̅′ (2.6.3) 

 
𝑉𝑆𝐶𝐹

𝑧 (𝜔, 𝑟̅) = 𝑉𝐸𝑋𝑇
𝑧 (𝜔, 𝑟̅) + ∫

𝜌𝑧
(1)(𝜔, 𝑟̅′)𝑑𝑟̅′

|𝑟̅ − 𝑟̅′|
+

𝜕𝑉𝑋𝐶

𝜕𝜌
|

𝜌0

𝜌𝑧
(1)(𝜔, 𝑟̅) (2.6.4) 

In last expression the Adiabatic Local Density Approximation (ALDA)[2.16] has 

been employed (XC kernel local in time and additionally also in space, 𝑉𝑋𝐶 is the same 

for the Casida formulation) and 𝑉𝐸𝑋𝑇
𝑧 (𝜔, 𝑟̅) corresponds in practice to the z dipole 

component. 

Now rewrite expressions for the induced density and the perturbing potential in 

operatorial form: 

 𝜌𝑧
(1)

= 𝜒𝐾𝑆𝑉𝑆𝐶𝐹
𝑧  (2.6.5) 

 𝑉𝑆𝐶𝐹
𝑧 = 𝑉𝐸𝑋𝑇

𝑧 + 𝐾𝜌𝑧
(1)

 (2.6.6) 

Where in expression (2.6.6) K stands for the sum of the Coulomb and the XC 

kernels: 
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 𝐾(𝑟̅, 𝑟̅′) = 𝐾𝐶(𝑟̅, 𝑟̅′) + 𝐾𝑋𝐶(𝑟̅, 𝑟̅′) =
1

|𝑟 − 𝑟′|
+ 𝛿(𝑟 − 𝑟′)

𝜕𝑉𝑋𝐶

𝜕𝜌
|

𝜌0

 (2.6.7) 

Due to the linearity of (2.6.5) and (2.6.6) it is possible to eliminate 𝑉𝑆𝐶𝐹
𝑧  and to obtain 

an equation for, 𝜌𝑧
(1)

 which reads: 

 [1 − 𝜒𝐾𝑆𝐾]𝜌𝑧
(1)

= 𝜒𝐾𝑆𝑉𝐸𝑋𝑇
𝑧  (2.6.8) 

Now it is convenient to represent equation (2.6.8) over a basis set and since the 

unknown term corresponds to the induced density, it is natural to choose the auxiliary 

density fitting functions 𝑓𝜇 as basis set. More precisely it is even better to choose such 

basis as a subset of the fitting set, since the induced density will be affected mainly by 

valence orbitals so all the functions needed to fit the core density should be excluded 

without loosing of accuracy. With this representation   𝜌𝑧
(1)(𝜔, 𝑟̅) = ∑ 𝑓𝜇(𝑟̅)𝑏𝜇(𝜔)𝐾

𝜇 , the 

following non-homogeneous system of linear algebraic equations is obtained, which 

written in matrix formulation reads: 

 [𝑺 − 𝑴(𝝎)]𝒃 = 𝒅 (2.6.9) 

Where S is the overlap matrix between fitting functions, b is the unknown vector 

with the expansion coefficients 𝑏𝜇(𝜔) of 𝜌𝑧
(1)

, d is the frequency dependent vector 

corresponding to the known non-homogeneous term, whose components are: 

 𝑑𝜇 = ⟨𝑓𝜇|𝜒𝐾𝑆(𝜔)|𝑧⟩ (2.6.10) 

and finally the elements of the frequency dependent matrix M are: 
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 𝑀𝜇𝜈 = ⟨𝑓𝜇|𝜒𝐾𝑆(𝜔)𝐾|𝑓𝜈⟩ (2.6.11) 

Now, let us analyse the efforts needed to build the frequency dependent 𝑴(𝜔) 

matrix: apparently this is a prohibitive task for a practical calculation, since it should be 

repeated for each frequency. The original characteristic of the present new method is the 

introduction of a simple approximation which should enable the construction of 𝑴(𝜔) 

as a linear combination of frequency independent matrices 𝑮𝑘 with frequency 

dependent coefficients 𝑠𝑘(𝜔), with this expression: 

 𝑴(𝜔) = ∑ 𝑠𝑘(𝜔)𝑮𝑘

𝑘

 (2.6.12) 

with this idea a set of matrices {𝑮𝑘} is calculated and stored once at the beginning, 

then the matrix 𝑴(𝜔) is calculated very rapidly at each photon energy . 

 Now let us justify the expression (2.6.12), starting with the expression of the KS 

dielectric susceptibility: 

 

𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′) = ∑ ∑ 𝜑𝑖(𝑟̅)𝜑𝑎(𝑟̅)
4𝜀𝑖𝑎

𝜔2 − 𝜀𝑖𝑎
2 𝜑𝑖(𝑟̅′)𝜑𝑎(𝑟̅′)

𝑁𝑣𝑖𝑟𝑡

𝑎

𝑁𝑜𝑐𝑐

𝑖

= ∑ ∑ Θ𝑖𝑎(𝑟̅)λ𝑖𝑎(𝜔)Θ𝑖𝑎(𝑟̅′)

𝑁𝑣𝑖𝑟𝑡

𝑎

𝑁𝑜𝑐𝑐

𝑖

 

(2.6.13) 
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where in (2.6.13) we have assumed real KS occupied 𝜑𝑖 and virtual 𝜑𝑎 orbitals and 

𝜀𝑖𝑎 = 𝜀𝑎 − 𝜀𝑖 are differences between virtual and occupied KS eigenvalues. Now 

consider carefully the right hand side of expression (2.6.13): the frequency dependence 

enters only in the λ𝑖𝑎(𝜔) factor, which is 'almost' constant for all the pairs of index i- 

and a- for which 𝜀𝑎 − 𝜀𝑖 is almost constant. This happens when many 𝜀𝑖𝑎 are close 

together, that is when the density of 'zero order' excitation energies is high. This 

important observation allows to profitably change the double sum in expression 

(2.6.13).  

In fact, let us consider the distribution of all the 𝜀𝑖𝑎 on the excitation energy axis, like 

in the next Figure 2.2, and define an energy grid over this axis, starting from the 

minimum 𝜀𝑖𝑎 which corresponds to 𝜀𝐿𝑈𝑀𝑂 − 𝜀𝐻𝑂𝑀𝑂. The energy grid consists of P+1 

knots {𝐸𝑘}𝑘=1,…,𝑃+1 and P intervals 𝐼𝑘. 

Now it is possible to change the double sum of previous equation (2.6.13) as follows: 

 𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′) = ∑ ∑ Θ𝑖𝑎(𝑟̅)λ𝑖𝑎(𝜔)Θ𝑖𝑎(𝑟̅′)

𝜀𝑖𝑎∈𝐼𝑘

𝑃

𝑘=1

 (2.6.14) 

the advantage of this new double sum is that, if the energy knots are dense enough, 

the values of 𝜀𝑖𝑎 within each interval can be considered, with good approximation, 

 

  
EX

 
i

  
1   

2   
k   

P 

  
1   

2   
3   

k   
k+1   

P   
P+

Figure 2.2 Grid of the energy axis to place 𝜺𝒊𝒂 to simplify the dielectric susceptibility 

expression. 



46 

 

almost constant and equal to the average 𝐸̅𝑖 =
𝐸𝑖+𝐸𝑖+1

2
: this allows to bring the λ𝑖𝑎(𝜔) 

factor outside the inner sum: 

 𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′) = ∑
4𝐸̅𝑘

𝜔2 − 𝐸̅𝑘
2 ∑ Θ𝑖𝑎(𝑟̅)Θ𝑖𝑎(𝑟̅′)

𝜀𝑖𝑎∈𝐼𝑘

𝑃

𝑘=1

 (2.6.15) 

so in expression (2.6.15) the frequency dependent dielectric susceptibility is a linear 

combination of frequency independent objects (the inner sum) while only the 

coefficients are frequency dependent. Moreover, if one is interested in the lowest part of 

the spectrum as usually it happens, the sum in (2.6.15) can be safely truncated at a 

maximum energy cut-off, which can be chosen checking the convergence of the results 

with respect to such energy cut-off. 

This re-summation is the central idea of the present algorithm. Now we will use this 

approach to build the matrix 𝑴(𝜔). From equation (2.6.11) and using expression 

(2.6.15) we get: 

 𝑀𝜇𝜈 = ∑ 𝑠𝑘(𝜔) ∑ ⟨𝑓𝜇|Θ𝑖𝑎(𝑟̅)⟩⟨Θ𝑖𝑎(𝑟̅′)|𝐾|𝑓𝜈⟩

𝜀𝑖𝑎∈𝐼𝑘

𝑃

𝑘=1

= ∑ 𝑠𝑘(𝜔)𝐺𝜇𝜈
𝑘

𝑃

𝑘=1

 (2.6.16) 

which now justifies previous expression (2.6.12), defines the matrix 𝐺𝜇𝜈
𝑘  and the 

coefficients: 

 𝑠𝑘(𝜔) =
4𝐸̅𝑘

𝜔2 − 𝐸̅𝑘
2 (2.6.17) 

The construction of each 𝐺𝜇𝜈
𝑘  matrix corresponds to a matrix-matrix product: 
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 𝐺𝜇𝜈
𝑘 = ∑ ⟨𝑓𝜇|Θ𝑖𝑎(𝑟̅)⟩⟨Θ𝑖𝑎(𝑟̅′)|𝐾|𝑓𝜈⟩

𝜀𝑖𝑎∈𝐼𝑘

= ∑ 𝐴𝜇,𝑖𝑎
𝑘 𝐵𝑖𝑎,𝜈

𝑘

𝜀𝑖𝑎∈𝐼𝑘

 (2.6.18) 

Where the matrices A and B are: 

 𝐴𝜇,𝑖𝑎
𝑘 = ⟨𝑓𝜇|Θ𝑖𝑎(𝑟̅)⟩ (2.6.19) 

 
𝐵𝑖𝑎,𝜈

𝑘 = ⟨Θ𝑖𝑎(𝑟̅′)|𝐾|𝑓𝜈⟩ = ⟨Θ𝑖𝑎(𝑟̅′)|
1

|𝑟̅′ − 𝑟̅′′|
|𝑓𝜈⟩ + ⟨Θ𝑖𝑎(𝑟̅′)|

𝜕𝑉𝑋𝐶

𝜕𝜌
|𝑓𝜈⟩ (2.6.20) 

Finally from the coefficients 𝑏𝜇, solution to the equation (2.6.9), we can be possible 

calculate the dynamic polarizability: 

 𝛼𝑧𝑧(𝜔) = ∑ 𝑏𝜇 ∫ 𝑓𝜇𝑧𝑑𝑟̅

𝜇

 (2.6.21) 

Having the components of the complex dynamic polarizability the first order TD 

density perturbation, i.e. the spectrum, is obtained. 

 

2.7 Basis sets 

Since DFT is commonly used for solid states problems, plane waves are the most 

commonly function adopted as basis set functions for condensed matter. In quantum 

chemistry instead, more localized functions are regularly employed: for example 

Gaussian functions or Slater Type Orbitals (STO). 

In the Amsterdam Density Functional (ADF) program[2.17][2.18], which is a 

commercial molecular DFT code, the STO functions are employed as basis set.  
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ADF employs a second auxiliary basis set to fit the electronic density. In fact, in 

order to reduce the computational effort of the Coulomb term in the Hamiltonian, it is 

useful to expand 𝜌(𝑟̅) by the auxiliary basis set functions 𝑓𝑖(𝑟̅): 

 𝜌̃(𝑟̅) = ∑ 𝑎𝑖𝑓𝑖

𝑖

(𝑟̅) (2.7.1) 

The fit functions 𝑓𝑖(𝑟̅) are provided by a data base included in ADF, while the 

coefficients 𝑎𝑖 are obtained minimizing the error: 

 𝐷 = ∫[𝜌(𝑟̅) − 𝜌̃(𝑟̅)]2𝑑𝑟̅ (2.7.2) 

With the constrain ∫ 𝜌̃(𝑟̅) 𝑑𝑟̅ = 𝑁 

Once the electron density has been fitted with such procedure, the Coulomb term of 

the KS Hamiltonian matrix is calculated by Gaussian quadrature between the basis 

function pair and the Coulomb potential generated by 𝜌̃(𝑟̅), the latter being analytical. 

 

2.8 Relativistic effects 

When relativistic effects are not considered in the theoretical description of heavy 

atoms compounds anomalies between the expected properties and the theoretical results 

are found[2.19]. It is well known that, gold compounds, in particular, must be treated 

with the relativistic theory in order to describe properly their electronic structure. 

The relativistic effects concern mainly the core orbitals (1s), anyway the whole 

electronic structure is affected as a consequence. All the s-type orbitals, in fact, must be 

orthonormals to the 1s orbital; therefore the relativistic contraction in the 1s orbital 

whose average speed is comparable with that of light, produces a contraction in all the 

s-type orbitals. Moreover, the valence orbitals feel a minor attraction towards the 
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nucleus as a result of the increased shield of the contracted core orbitals, so they raise in 

energy. These two effects combined reduce the energy gap between the 5d and 6s 

bands.  

The theoretical description of the electronic structures including the relativistic 

effects means that the Dirac equation must be solved, which can be difficult because the 

solution furnishes also eigenvalues with negative energy since the equation is not bound 

from below.  

Some approximations of the Dirac Hamiltonian 𝐻𝐷𝑖𝑟𝑎𝑐 are therefore necessary: 

𝐻𝐷𝑖𝑟𝑎𝑐 has four components: the so called large and small components which are each 

split in two spin components. The small and large components can be approximately 

decoupled, so two approximated Hamiltonian with two components (spatial and spin 

coordinates) are found. And when the Spin-Orbit coupling can be neglected the 

Hamiltonian has one component only and gives a Scalar Relativistic description of the 

electronic structure.  

The STOs of the basis set used in ADF code have exponents which have been 

optimized for the use in Scalar Relativistic Zeroth-Order Regular Approximated (SR-

ZORA) equations [2.20]. 

Excitation energies based on the scalar-ZORA TDDFT method has, in fact, shown to 

afford accurate results [2.21]. The ZORA method is obtained by rewriting the energy 

expression and expanding in the term 𝐸
(2𝑚𝑐2 − 𝑉)⁄ , which remains small even close 

to the nucleus.  

Retaining only the zeroth order term one gets:  

 𝐸 =
𝑝2𝑐2

2𝑚𝑐2 − 𝑉
+ 𝑉 (2.8.1) 

which gives the following Hamiltonian:  



50 

 

 𝐻𝑍𝑂𝑅𝐴 = 𝜎 ∙ 𝑝
𝑐2

2𝑐2 − 𝑉
𝜎 ∙ 𝑝 + 𝑉 (2.8.2) 

where 𝜎 is the Pauli spin matrix vector, 𝑐 is the speed of light, 𝑝 is the moment 

operator and 𝑉 is the total potential that equals the sum of the nuclear-attraction 

potential, the electronic repulsion potential and the XC potential.  

Spin-Orbit coupling affects the electronic structure when the two component 𝐻𝑍𝑂𝑅𝐴 

is employed, which has an additional term: the spin-orbit 𝐻𝑆𝑂. Employing the SO 

coupling should provide all the most relevant physical effects involved in the 

photoabsorption, ranging from the configuration mixing of TDDFT to the SO coupling 

itself, which can be applied to the cluster of moderate size and high symmetry with 

reasonable efforts.  

SO coupling results from the interaction of the electron magnetic moments with the 

magnetic field generated by its own orbital motion. The computation becomes more 

involved with respect to the SR term because the spin-orbit term reduces and makes 

more involved the treatment of the molecular symmetry.  

In practice, when the SO is included in the calculation, both the electronic structure 

and the electronic excitation undergo more or less pronounced complications, because 

now the non-s molecular orbitals (𝑙 ≠ 0) generate doubly-split states.  

The electronic structure is therefore described in term of spinors: this induces a 

reduction of the degeneracy going from molecular orbitals to SO spinors. The latter are 

one electron functions as well and are expressed as the sum of two products between a 

spatial and a spin function: 

 𝜒(𝑟, 𝜔) = 𝜑𝛼(𝑟)𝛼(𝜔) + 𝜑𝛽(𝑟)𝛽(𝜔) (2.8.3) 

𝑟 corresponds to the electron spatial coordinates and 𝜔 to the spin coordinate.  
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2.9 The exchange-correlation potential 𝑽𝒙𝒄 

The 𝑉𝑋𝐶 potential is the only unknown term in the KS equations therefore to find the 

solutions to the equations, an approximated form of this potential has to be employed. 

Since there are many different 𝑉𝑋𝐶  models available in literature, here will be presented 

the main properties of the exact exchange-correlation potential to have a better 

understanding of the different levels of approximation. 

Considering the equation (2.2.14) it can possible write: 

 𝐸𝑥𝑐[𝜌] = ∆𝑇[𝜌] + ∆𝐸𝑛𝑐𝑙[𝜌] (2.9.1) 

Since the potential is derived from the functional, its different contributions will be 

analyzed individually: 

 Correlation term of the kinetic energy ∆𝑇 

 𝐸𝑛𝑐𝑙 incorporates all the non-classic electron-electron interaction, that are: 

Exchange energy ℎ𝑥 (antisymmetric or Pauli exclusion principle), Coulomb 

correlation energy ℎ𝑐, Self Interaction Correction (SIC) 

The correlation effects condition the probability to find one electron in 𝑟2 while 

another is already in 𝑟1: 

- In case there isn’t any interaction  

 𝛾2(𝑥1, 𝑥2) =
𝑁 − 1

𝑁
𝛾1(𝑥1)𝛾1(𝑥2) (2.9.2) 

- With the electronic interaction  
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 𝛾2(𝑥1, 𝑥2) = 𝛾1(𝑥1)𝛾1(𝑥2)[1 + 𝑓(𝑥1, 𝑥2)] (2.9.3) 

where 𝛾1(𝑥1) and 𝛾1(𝑥2) are the individual probabilities for the electrons to be found 

in 𝑥1, 𝑥2 respectively and 𝛾2(𝑥1, 𝑥2) is the joint probability. The (2.9.3) expression, 

when the electrons aren’t correlated and 𝑓(𝑥1, 𝑥2) = 0, gives back the (2.9.2) 

expression but it doesn’t normalize to the correct number of electron pairs and includes 

the unphysical self-interaction. 𝑓(𝑥1, 𝑥2) = 0 strictly for the non interacting system for 

2 electrons of opposite spin, when the spin is parallel the motion is correlated due to the 

“exchange-correlation” as a consequence of the antisymmetry or Pauli exclusion 

principle.  

For the non-interacting system, the joint density is the simple product of the 

individual probabilities; in the real system instead, the electrons are charged and 

therefore are affected by a repulsive potential, furthermore they are also fermions and 

must obey the Pauli exclusion principle.  

To consider the correlation effects, the conditioned probability can be defined: 

 𝑔(𝑥1, 𝑥2) =
𝛾2(𝑥1, 𝑥2)

𝛾1(𝑥1)
 (2.9.4) 

 
∫ 𝑔(𝑥1, 𝑥2)𝑑𝑥2 = 𝑁 − 1 

(2.9.5) 

The difference between 𝑔(𝑥1, 𝑥2) and the unconditioned probability 𝛾1 is the 

exchange-correlation hole: 

 ℎ𝑥𝑐(𝑥1, 𝑥2) =
𝛾2(𝑥1, 𝑥2)

𝛾1(𝑥1)
− 𝛾1(𝑥2) (2.9.6) 
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so this term contains all the correlation effects due to both exchange and Coulomb 

repulsion, plus the SIC. It’s important to notice that the expression integrated gives −1 

as result: the hole contains the exact charge of one electron.  

With this new considerations and identifying the individual probabilities 𝛾1 with the 

electron density 𝜌, the electron-electron repulsive potential con be re-written: 

 〈𝑉𝑒𝑒〉 =
1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

𝑟12
𝑑𝑟1𝑑𝑟2 +

1

2
∬

𝜌(𝑟1)ℎ𝑥𝑐(𝑟1, 𝑟2)

𝑟12
𝑑𝑟1𝑑𝑟2 (2.9.7) 

where the first term is the classic interaction between two electronic densities, which 

contains also a self-interacting term which can cause some issues in case of one-electron 

systems. The second term instead, concerns the interaction between the electron density 

and the XC hole, introducing the correlation effects and the correction to the self-

interaction. 

The exchange-correlation hole can be divided in two parts: 

 ℎ𝑥𝑐(𝑟1, 𝑟2) = ℎ𝑋
𝑆1,𝑆2(𝑟1, 𝑟2) + ℎ𝐶

𝑆1,𝑆2(𝑟1, 𝑟2) (2.9.8) 

the first term is the Fermi hole which states the Pauli exclusion principle, and affects 

electrons with the same spin value; the second term is the Coulomb hole and is due to 

electrostatic effects and all electrons are affected independently from their spin value. 

Anyway only the overall expression of the hole has a physical meaning. 

The effective potential that acts on the system in the Kohn-Sham approach is 

therefore: 

 𝜈𝑒𝑓𝑓(𝑟𝑖) = − ∑
𝑍𝐴

𝑟𝑖𝐴
𝐴

+ ∫
𝜌(𝑟𝑗)

𝑟𝑖𝑗
𝑑𝑟𝑗 + 𝜈𝑥𝑐(𝜌, 𝑟𝑖) (2.9.9) 
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where 𝜈𝑥𝑐(𝜌, 𝑟𝑖) explicitly counts for the exchange-correlation effects. It is a local 

potential and therefore is different from the ab-initio exchange operator of the method 

of Hartree-Fock where the operator 𝑘̂ is non-local. 

  𝑘̂𝑏𝜒𝑎(𝑥̅1) = ∫
𝜒𝑏

∗(𝑥̅2)𝜒𝑎(𝑥̅2)

𝑟12
𝑑𝑥̅2𝜒𝑏(𝑥̅1) (2.9.10) 

From the potential expression it is possible to infer one of the most important 

characteristic of the 𝑉𝑥𝑐. 

In fact, for a neutral molecule (∑ 𝑍𝑎𝐴 = 𝑁), referring to expression (2.9.9), when the 

system is far from the center of the atom or molecule which correspond to the limit 

lim
|𝑟|→∞

𝜈𝑒𝑓𝑓(𝑟), it is apparent that 𝜈𝑁𝑒 → −
𝑁

𝑟
 and 𝜈𝐶 = ∫

𝜌(𝑟)

𝑟𝑖𝑗
𝑑𝑟𝑖 →

𝑁

𝑟
; which cancel 

mutually.  

The limit of the 𝑉𝑥𝑐 when 𝑟 tends to infinite can be easily shown from the expression 

of the Fock operator: 

 𝑓 = ℎ̂ + ∑(𝑗𝑏̂ − 𝑘̂𝑏)

𝑁

𝑏

 (2.9.11) 

 

⟨𝑎|𝑓|𝑎⟩ = ⟨𝑎|ℎ̂|𝑎⟩ + ∑⟨𝑎𝑏|𝑎𝑏⟩ − ⟨𝑎𝑏|𝑏𝑎⟩

𝑁

𝑏

 

(2.9.12) 

the bi-electronic operators run all over the occupied spin-orbitals. In fact when 𝑎 = 𝑏 

the two terms in the last expression are identical: there are no self-interacting 

contributions. Therefore the electron in the a orbital feels the Coulomb repulsion of the 

other 𝑁 − 1 electrons, since the self-interaction is exactly cancelled by the exchange 

term.  
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So it should be that lim
|𝑟|→∞

𝑉𝑥𝑐(𝑟) = −
1

𝑟
, and since the other terms cancel mutually for 

neutral systems the limit of the whole effective potential (2.9.9) is:  

 lim
|𝑟|→∞

𝜈𝑒𝑓𝑓(𝑟) = −
1

𝑟
 (2.9.13) 

The 𝑉𝑥𝑐 potential in the KS approach replaces the role of the exchange operator in the 

HF method.[2.22] 

Aside the correct asymptotic behavior, there are other requirements that an 

approximate exchange-correlation potential must satisfy. 

 

2.10  Computational Details of new TDDFT algorithm 

The new TDDFT algorithm is based on the resolution of the system of linear 

algebraic equations: 

 [𝑺 − 𝑴(𝝎)]𝒃 = 𝒅 (2.10.1) 

Now the construction for the all terms of equation (2.10.1) will be outlined. 

This algorithm has been developed starting from the Amsterdam Density Functional 

(ADF) code [2.17][2.18], in fact many integrals are already calculated by ADF, so the 

code has been only modified to save these integrals on an external file which will be 

read by a different program which will complete the calculations. 

The ADF code calculates and saves the following analytic integrals: 

 The fitting function overlapping integrals matrix S: 

 𝑆𝜇𝜈 = ⟨𝑓𝜇|𝑓𝜈⟩ (2.10.2) 
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 Coulomb integrals between fitting functions F: 

 𝐹𝜇𝜈 = ⟨𝑓𝜇|
1

|𝑟̅′ − 𝑟̅′′|
|𝑓𝜈⟩ (2.10.3) 

 The integrals between two basis functions and one fitting functions (pair 

fitting): 

 ⟨𝑓𝜇|𝜎𝜏⟩ (2.10.4) 

 Dipole integrals between basis functions: 

 ⟨𝜎|𝑧|𝜏⟩ (2.10.5) 

It also saves the eigenvalues of the molecular orbitals and the molecular orbital 

expansion coefficients. 

Finally we had to implement in ADF also the calculation of new integrals, between 

fitting functions and the ALDA exchange correlation Kernel: 

 𝑍𝜇𝜈 = ⟨𝑓𝜇|
𝜕𝑉𝑋𝐶

𝜕𝜌
|𝑓𝜈⟩ (2.10.6) 

The new program (independent by ADF) reads the files, selects the fitting functions, 

builds all the needed matrices and solves the TDDFT equation (2.10.1), calculates the 

spectrum and performs the analysis. 

The new program first builds the energy grid, distributes the difference of 

eigenvalues between occupied and virtual molecular orbitals, and selects the fitting 

functions. Then it builds the matrix 𝐴𝑘: 

 𝐴𝜇,𝑖𝑎
𝑘 = ⟨𝑓𝜇|𝜑𝑖𝜑𝑎⟩ = ∑ ⟨𝑓𝜇|𝜎𝜏⟩𝑐𝜎𝑖𝑐𝜏𝑎

𝑏𝑎𝑠𝑖𝑠

𝜎𝜏

 (2.10.7) 
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  The complete calculation of (2.10.7) would be far prohibitive, but in ADF a very 

efficient “pair fitting” technique has been already developed so the run of the basis 

indexes is not free but limited such that at least one basis function lies on the same 

center of the fit function. This step will be the most expensive in the matrix 

construction. The similar procedure is used to calculate the matrix 𝐵𝑘. 

 𝐵𝑖𝑎,𝜈
𝑘 = ⟨𝜑𝑖𝜑𝑎|

1
|𝑟̅′ − 𝑟̅′′|

|𝑓𝜈⟩ + ⟨𝜑𝑖𝜑𝑎|
𝜕𝑉𝑋𝐶

𝜕𝜌
|𝑓𝜈⟩ (2.10.8) 

Now it considers the first term of equation (2.10.8): 

 

⟨𝜑𝑖𝜑𝑎|
1

|𝑟̅′ − 𝑟̅′′|
|𝑓𝜈⟩ = ∑⟨𝜑𝑖𝜑𝑎|𝑓𝛾⟩𝑆𝛾𝜂

−1 ⟨𝑓𝜂|
1

|𝑟̅′ − 𝑟̅′′|
|𝑓𝜈⟩

𝛾𝜂

= ((𝐴𝑘)+𝑆−1𝐹)𝑖𝑎,𝜈 

(2.10.9) 

 The second term in (2.10.8) can be calculated in a similar fashion: 

 ⟨𝜑𝑖𝜑𝑎|
𝜕𝑉𝑋𝐶

𝜕𝜌
|𝑓𝜈⟩ = ∑⟨𝜑𝑖𝜑𝑎|𝑓𝛾⟩𝑆𝛾𝜂

−1 ⟨𝑓𝜂|
𝜕𝑉𝑋𝐶

𝜕𝜌
|𝑓𝜈⟩

𝛾𝜂

= ((𝐴𝑘)+𝑆−1𝑍)𝑖𝑎,𝜈 (2.10.10) 

Therefore from (2.10.8), (2.10.9), and (2.10.10) we get: 

 𝐵𝑖𝑎,𝜈
𝑘 = ((𝐴𝑘)+𝑆−1(𝐹 + 𝑍))𝑖𝑎,𝜈 (2.10.11) 

In Theory chapter we define matrix 𝐺𝑘 in this way: 

 𝐺𝑘 = 𝐴𝑘𝐵𝑘 (2.10.12) 
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In fact we don’t directly calculate 𝐵𝑘, but we determine matrices 𝐷𝑘 and L that are 

defined: 

 𝐷𝑘 = 𝐴𝑘(𝐴𝑘)+ (2.10.13) 

 𝐿 = 𝑆−1(𝐹 + 𝑍) (2.10.14) 

It possible observe that matrix L is independent from k index (interval energy), so 

now 𝐺𝑘 is defined in this way: 

 𝐺𝑘 = 𝐷𝑘𝐿 (2.10.15) 

Also in this case the matrix 𝐺𝑘 isn’t directly calculated, because it isn’t 

computational convenient, because matrix 𝑀(𝜔) is defined: 

 𝑀(𝜔) = ∑ 𝑠𝑘(𝜔)𝐺𝑘

𝑃

𝑘=1

= ∑ 𝑠𝑘(𝜔)𝐷𝑘𝐿

𝑃

𝑘=1

= (∑ 𝑠𝑘(𝜔)𝐷𝑘

𝑃

𝑘=1

) 𝐿 (2.10.16) 

Where the coefficients 𝑠𝑘 corresponds to: 

 𝑠𝑘(𝜔) =
4𝐸̅𝑘

𝜔2 − 𝐸̅𝑘
2 (2.10.17) 

We have still to calculate the d vector of equation (2.10.1), i.e. the non-homogeneous 

term, taking advantage of previously describes technique, it is straightforward: 

 𝑑𝜇 = ⟨𝑓𝜇|𝜒𝐾𝑆(𝜔)|𝑧⟩ = ∑ 𝑠𝑘(𝜔) ∑ 𝐴𝜇,𝑖𝑎
𝑘 ⟨𝜑𝑖|𝑧|𝜑𝑎⟩

𝜀𝑖𝑎∈𝐼𝑘

𝑃

𝑘=1

 (2.10.18) 
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The dipole moment integrals are calculated with linear combination from integrals 

(2.10.5) 

 ⟨𝜑𝑖|𝑧|𝜑𝑎⟩ = ∑ ⟨𝜎|𝑧|𝜏⟩𝑐𝜎𝑖𝑐𝜏𝑎

𝑏𝑎𝑠𝑖𝑠

𝜎𝜏

 (2.10.19) 

 So vector d is easily calculated at each frequency as a linear combination of 

frequency independent vectors, accessible from A matrix and conventional dipole 

matrix elements. 

Finally the complex dynamic polarizability components are calculated: 

 𝛼𝑧𝑧(𝜔) = ∫ 𝜌𝑧
(1)(𝜔, 𝑟̅)𝑧𝑑𝑟̅ = ∑ 𝑏𝜇 ∫ 𝑓𝜇𝑧𝑑𝑟̅

𝜇

= ∑ 𝑏𝜇𝑛𝜇

𝜇

 (2.10.20) 

Where the vector 𝑏 in (2.10.20) is the solution of equation (2.10.1) and the elements 

of the n vector are integrals which are easily calculated analytically. 

This step concludes the calculation of the dynamic polarizability, and therefore of the 

spectrum, and furnished the first order TD density which can be used to analyze and 

rationalize the results. However our goal is to get also a more complete analysis of the 

spectrum, namely in terms of linear combination of one-electron excited configurations 

or in terms of Transition Contribution Maps (TCM) [2.23]. To obtain this, it is 

convenient adopt the Modified Sternheimer Approach (MSA) formulation [2.24] of 

linear response, which furnished the first order perturbation of the KS orbitals: 

 

 

[𝐻𝐾𝑆
0 − 𝜀𝑖 − 𝜔]𝜑𝑖

(1,−)
= −𝑉𝑆𝐶𝐹𝜑𝑖 

[𝐻𝐾𝑆
0 − 𝜀𝑖 + 𝜔]𝜑𝑖

(1,+)∗

= −𝑉𝑆𝐶𝐹𝜑𝑖 

(2.10.21) 
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And from the perturbed orbitals the perturbed density is obtained: 

 𝜌(1) = 2 ∑ 𝜑𝑖 (𝜑𝑖
(1,−)

+ 𝜑𝑖
(1,+)∗

)

𝑜𝑐𝑐

𝑖

 (2.10.22) 

It is worth noting that, for convenience, the second inhomogeneous equations 

(2.10.21) is actually the complex conjugate with respect to that reported in ref. [2.24] 

for 𝜑𝑖
(1,+)

. Equations (2.10.21) and (2.10.22) in the past were used to calculate self-

consistently the 𝑉𝑆𝐶𝐹 (see the theory chapter) in old TDDFT implementations 

[2.25][2.26], but in the present context they are useful to easily get the analysis in terms 

of one-electron configurations once the TDDFT equations have been already solved. In 

fact if the perturbed orbitals are expanded in terms of virtual KS orbitals the term in 

brackets is diagonal: 

 

[𝜀𝑎 − 𝜀𝑖 − 𝜔]𝑐𝑖
𝑎− = −⟨𝜑𝑎|𝑉𝑆𝐶𝐹|𝜑𝑖⟩ 

[𝜀𝑎 − 𝜀𝑖 + 𝜔]𝑐𝑖
𝑎+∗

= −⟨𝜑𝑎|𝑉𝑆𝐶𝐹|𝜑𝑖⟩ 

(2.10.23) 

The polarizability is then expressed by: 

 𝛼𝑧𝑧(𝜔) = 2 ∑ ∑⟨𝜑𝑖|𝑧|𝜑𝑎⟩(𝑐𝑖
𝑎+∗

+ 𝑐𝑖
𝑎−)

𝑣𝑖𝑟𝑡

𝑎

𝑜𝑐𝑐

𝑖

= ∑ ∑⟨𝜑𝑖|𝑧|𝜑𝑎⟩𝑃𝑖
𝑎

𝑣𝑖𝑟𝑡

𝑎

𝑜𝑐𝑐

𝑖

 (2.10.24) 

Where in equation (2.10.24), the density matrix (dipole amplitudes) 𝑃𝑖
𝑎 is introduced. 

From equation (2.10.23) and using the definition of 𝑠𝑘(𝜔), we obtain: 

 𝑃𝑖
𝑎 = 𝑠𝑘(𝜔)⟨𝜑𝑖|𝑉𝑆𝐶𝐹|𝜑𝑎⟩ (2.10.25) 
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In practice from imaginary part of equation (2.10.24) the absorption spectrum is 

obtained and therefore from imaginary part of expression (2.10.25) the analysis in term 

of one-electron excited configurations and TCM is obtained. 

The dipole amplitudes are actually calculated as follows: 

 𝑃𝑖
𝑎 = 𝑠𝑘(𝜔) [⟨𝜑𝑖|𝑧|𝜑𝑎⟩ + ∑(𝐴𝑘)𝑖𝑎,𝜇

+ 𝐿𝜇𝜏𝑏𝜏

𝑓𝑖𝑡

𝜇𝜏

] (2.10.26) 

We have decided to implement the new code in a separate program independent by 

ADF in order to exploit more easily the parallelization, with the goal to obtain a code 

which were massively parallel and easily portable on different architectures. For this 

reasons we have used standard Message Passing Interface (MPI), BLACS and 

ScaLAPACK libraries. The general scheme of the parallel calculation consists of four 

points: first is the initialization the BLACS grid, second the distribution of the matrix 

among the grid processes (typically cyclic block distribution), third the call to 

ScaLAPACK routines (matrix product, matrices sum, etc.), fourth the harvest of the 

results. However, the inclusion of the complete program within the ADF suite is under 

consideration and will be available in a future release of ADF. 

The new program allows a simple choice of a subset of the ADF fitting functions, in 

order to save computer time when some fitting functions are not necessary for an 

accurate description of the photoabsorption spectrum. The strategy to choose a properly 

reduced fitting subset consists to perform some preliminary TDDFT test calculations on 

simple systems (typically biatomic molecules) increasing gradually the number of fit 

functions. Typically this procedure converges rather rapidly, giving calculated spectra 

that match better and better with those obtained with a standard TDDFT calculation by 

ADF. When a good match is obtained, the fitting subset of the corresponding atoms can 

be used for more complicated or larger system. 
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Equation (2.10.1) must be solved for each non-equivalent dipole component, and the 

induced density 𝜌(1) must integrate to zero over space due to orthogonally of occupied-

virtual orbitals. This condition is naturally satisfied when the dipole component is not 

totally symmetric, on the other hand when the symmetry is low and one or more dipole 

components are totally symmetric, such constrain must be imposed this is easily done 

by Lagrange multipliers technique after equation (2.10.1) is solved. So to rewrite the 

equation in matrix form 

 (
𝑆 − 𝑀 ⋯ 𝑛̅

⋮ ⋱ ⋮
𝑛̅ ⋯ 0

) (
𝑏
⋮

−𝜆
) = (

𝑑
⋮
0

) (2.10.27) 

Where 𝑛̅ is the vector of the integrals of fitting functions: 

 𝑛̅ = ∫ 𝑓𝜇𝑑𝑟̅ (2.10.28) 

In practice the vector of expansion coefficients 𝑏 of 𝜌(1) is calculated in this way: 

 𝑏̅ = 𝑡̅ −
⟨𝑛|𝑡⟩

⟨𝑛|𝑞⟩
𝑞̅ (2.10.29) 

Where 𝑡̅ is the solution of the linear equation (2.10.1) without constrain, instead 𝑞̅ is 

defined: 

 𝑞̅ = (𝑆 − 𝑀)−1𝑛̅ (2.10.30) 

While ADF employ the fully symmetry in both SCF and TDDFT parts, in the present 

method the symmetry is only partially exploited: the density fitting basis functions are 

not symmetrized by now, however only the pairs of occupied (𝜑𝑖) and virtual (𝜑𝑎) 

orbitals involved in allowed dipole selection rules are actually considered. 
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We have implemented in the present method also the plasmon analysis according to 

Jacob et al.[2.27]: they suggested to study the evolution of the TDDFT photoabsorption 

spectra by changing a scaling factor 0 ≤ 𝜆 ≤ 1 used to “turn on” the coupling matrix K. 

In present implementation this can be easily done multiplying the matrix L (equation 

(2.10.14)) by the scaling factor 𝜆. This scaling factor analysis has proven successful in 

previous studies on silver chains[2.28] and polyacenes[2.29]. 
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3 Vibrationally resolved high-resolution NEXAFS and 

XPS spectra of phenanthrene and coronene 

G. Fronzoni, O. Baseggio, M. Stener, W. Hua, G. Tian, Y. Luo, B. Apicella, M. Alfé, 

M. de Simone, A. Kivimäki, and M. Coreno, The Journal of Chemical Physics 141, 

044313 (2014); 

 

 We performed a combined experimental and theoretical study of the C1s Near-Edge 

X-ray Absorption Fine-Structure (NEXAFS) spectroscopy and X-ray Photoelectron 

Spectroscopy in the gas phase of two polycyclic aromatic hydrocarbons (phenanthrene 

and coronene), typically formed in combustion reactions. In the NEXAFS of both 

molecules, a double-peak structure appears in the C1s → LUMO region, which differ 

by less than 1 eV in transition energies. The vibronic coupling is found to play an 

important role in such systems. It leads to weakening of the lower-energy peak and 

strengthening of the higher-energy one because the 0 − 𝑛 (𝑛 > 0) vibrational 

progressions of the lower-energy peak appear in nearly the same region of the higher-

energy peak. Vibrationally resolved theoretical spectra computed within the Frank-

Condon (FC) approximation and linear coupling model agree well with the high-

resolution experimental results. We find that FC-active normal modes all correspond to 

in-plane vibrations.  

 

3.1 Introduction 

Spectroscopic techniques related to core electron excitations are very appealing to 

study complex systems, because the localization of the core hole on a specific atomic 

site allows one to obtain precious information on the electronic structure at that site, in 

particular on the contribution of the atomic functions to the virtual molecular orbitals 

involved in the excitation. In this respect Near Edge X-ray Absorption Spectroscopy 
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(NEXAFS)[3.1] represents the spectral interval of absorption near the inner-shell (or 

core) threshold (within 30–40 eV) where the transitions from the core orbitals to 

valence virtual orbitals give rise to distinct spectral features. These features are strictly 

related to the electronic structure of the system under study; however, their 

interpretation is usually not straightforward. Therefore it is very useful to employ 

theoretical calculations to rationalize and assign the experimental spectra. Up to now, 

many theoretical schemes have been proposed and widely employed to simulate 

NEXAFS spectra of large systems, in particular with ab initio methods such as static-

exchange [3.2], Density Functional Theory (DFT) [3.3][3.4], and Time Dependent DFT 

(TDDFT)[3.5][3.6]. In these approaches, the simplest way to obtain the intensity is to 

calculate it from electric dipole transition moments between the initial and final bound 

states. 

On the other hand, with the continuous improvement of spectral resolution in 

synchrotron facilities, it is now routinely possible to identify vibrational features in 

NEXAFS spectra. Such vibrational fine structures are well known since long ago, with 

the pioneering studies of ethylene by electron yield [3.7] and by energy loss spectra 

[3.8]. Vibrational features present in high resolution NEXAFS have proven very useful 

also to gain important information on the geometrical structure of the excited state [3.9]. 

The theoretical description of the vibrational structure in NEXAFS has been developed 

by Ågren and co-workers [3.10], and is usually performed at the linear coupling level, 

which assumes only linear terms in the expansion of the final state potential around the 

equilibrium geometry of the initial state. 

Closely related with NEXAFS is X-ray Photoelectron Spectroscopy (XPS), which 

furnishes the Binding Energies (BE) of the core electrons. BE are very sensitive to the 

chemical environment of the ionized atomic site, in terms of electron density (initial 

state effect) or relaxation (final state effect) which are the two main contributions to the 

BE chemical shifts and which can also be very well reproduced by ab initio [3.11] and 

DFT calculations [3.12]. At variance with NEXAFS, in XPS it is difficult to calculate 

the intensity of the primary lines since in the final ionic state the unbound photoelectron 
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wavefunction obeys boundary conditions which are not supported by conventional basis 

sets employed in quantum chemistry like Gaussian or Slater functions. Therefore, if the 

photoelectron energy is not too low, the relative intensity among different primary lines 

is simply assumed to be proportional to the number of equivalent atoms of the same 

type. 

The first photoelectron spectra which showed vibrational excitation in molecular 

inner shell photoionization (CH4, CO, and N2) were recorded by excitation with an Al 

Kα x-ray tube, and collecting the electrons with a spherical sector-type analyser [3.13], 

while starting in the 1990s synchrotron radiation started to be employed to study 

vibrational fine structure in core photoionization [3.14]. At present, the instrumental 

resolution is usually limited by the lifetime broadening (around 100 meV) and not by 

apparatus factors, so the vibrational spacing related, for example, to C-H stretching 

(3200 cm-1 corresponding to 400 meV) are accessible. 

The present work consists of a combined experimental and theoretical analysis of the 

NEXAFS and XPS spectra of two Polycyclic Aromatic Hydrocarbons (PAH), namely 

phenanthrene and coronene. For these systems vibrational effects have been found to 

play an important role in the description of the spectra, so that a theoretical study is 

necessary for a robust assessment of the observed features. 

In general, PAH are of concern as they are formed from incomplete combustion of a 

wide range of combustion sources for heating, transportation and energy production. 

They are believed to be hazardous to human health and to be soot precursors. However, 

their role in the soot formation process is not fully understood even though soot 

inception has a rich literature [3.15][3.16][3.17][3.18] and contributes significantly in 

round-table discussions [3.19]. 

The current European legislation provides PAH monitoring from exhaust through 

time-consuming sampling by condensation, washing by solvent, filtration and off-line 

mass spectrometric analysis. Continuous on-line measurement of PAH inside and at the 

exhaust of combustion systems is still challenging. This is due to the small 



67 

 

concentrations and limited selectivity of available measurement methods. Therefore a 

deeper analysis of their electronic structure and spectra in gas phase may be helpful for 

developing new analytical methods and to understand better chemical reactions that are 

involved, for example, in the production of atmospheric soot. 

 

3.2 Computational model 

3.2.1  Electronic spectra 

Within the dipole approximation for soft X-ray photon, the oscillator strength for 

excitation from the ground state (GS) |Ψ𝑔⟩ to excited state |Ψ𝑒⟩ is given by (atomic 

units used),  

 𝑓𝑔→𝑒 =
2∆𝐸𝑔→𝑒

3
|𝑀𝑔→𝑒|

2
 (3.2.1) 

 𝑀𝑔→𝑒 = ⟨Ψ𝑔|𝜇̂|Ψ𝑒⟩ (3.2.2) 

Where 𝑀𝑔→𝑒 denotes the transition dipole moment with 𝜇̂ = ∑ 𝑟𝑖𝑖  being the dipole 

operator. ∆𝐸𝑔→𝑒 = 𝐸𝑒 − 𝐸𝑔 is the total energy difference. According to the final-state 

rule [3.20][3.21][3.22][3.23]] and the sudden approximation [3.1], Eq. (3.2.1) is further 

approximated in a single-particle fashion and the oscillator strength is estimated in 

terms of two molecular orbitals (MOs) 𝜓1𝑠 and 𝜓𝑎 of the final state, 

 𝑓𝑔→𝑒 =
2∆𝜀1𝑠→𝑎

3
|⟨ψ1𝑠(1)|𝑟1|ψ𝑎(1)⟩|2 (3.2.3) 
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Where ∆𝜀1𝑠→𝑎 = 𝜀𝑎 − 𝜀1𝑠 denotes the 

orbital energy difference. Structures of all 

hydrocarbons are first relaxed at the density 

functional theory (DFT) level with the 

B3LYP functional [3.24][3.25][3.26] and 

the 6-311G** basis set by using the 

Gaussian 09 package [3.27]. The C1s 

NEXAFS spectra are then computed at the 

spin-restricted DFT level with the BP86 

functional [3.24][3.28] by a locally modified 

version of the ADF program 

[3.29][3.30][3.31]. The core hole at each 

non-equivalent carbon center is modeled by 

the half core hole (HCH, also referred as the 

transition potential) approximation [3.4]. 

Taking phenanthrene (Figure 3.1) as an 

example, the influence of DFT functionals 

and core hole methods have been verified, 

employing two functionals (BP86 and 

B3LYP) in conjunction with two 

approximations [HCH and the full core hole 

(FCH)]. 

The basis functions employed consist of Slater Type Orbitals (STO). A very 

extended basis set is chosen for the core-excited carbon atom, consisting of an even 

tempered Quadruple Zeta with 3 polarization and 3 diffuse functions (designated as ET-

QZ3P-3DIFFUSE in the ADF database) while the DZP basis set has been employed for 

the remaining ones. No symmetry is enforced. Fine integration grid of 5.0 is used. The 

raw spectra are calibrated by aligning the first transition energy ∆𝜀1𝑠→𝐿𝑈𝑀𝑂 (LUMO: 

lowest unoccupied MO) to that obtained from the ΔKohn-Sham (ΔKS) scheme 

[3.32][3.33], as difference between the total energy of the excited state (𝐸𝑒1
) and the 

Figure 3.1 Schematic illustration of 

phenanthrene and coronene with 

nonequivalent carbon atoms labeled. 
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total energy of the GS (𝐸𝑔): ∆𝐸𝑔→𝑒1
= 𝐸𝑒1

− 𝐸𝑔. In order to get a pure singlet first core-

excited state, 𝐸𝑒1
 is computed as [3.34] 

 𝐸𝑒1
= 2𝐸(|1𝑠𝛼1 … 𝐿𝑈𝑀𝑂𝛽1|) − 𝐸(|1𝑠𝛼1 … 𝐿𝑈𝑀𝑂𝛼1|) (3.2.4) 

Here 𝐸(|1𝑠𝛼1 … 𝐿𝑈𝑀𝑂𝛽1|) and 𝐸(|1𝑠𝛼1 … 𝐿𝑈𝑀𝑂𝛼1|) denote the total energies of 

two spin-polarized single-determinants with unpaired electrons in the 1s and LUMO 

orbitals (antiparallel and parallel, respectively). In addition, we also calculate the core 

ionization potential (IP) in the following way: 

 𝐼𝑃1𝑠 = 𝐸(|1𝑠𝛼1 … |) − 𝐸𝑔 (3.2.5) 

where 𝐸(|1𝑠𝛼1 … |) represents the total energy of a spin-polarized FCH state.  

The NEXAFS transition energies and IPs reported in Figure 3.3 and Figure 3.4 are 

further shifted by +0.2 eV to account for the relativistic effects [3.4]. The stick spectra 

are broadened by using a Gaussian lineshape 𝛷(𝜔; ∆𝜀1𝑠→𝑎 , 𝛾) with half-width-at-half-

maximum (hwhm) 𝛾 = 0.1 eV. Finally, the atom-specific spectrum of each 

nonequivalent carbon center is weighted by their relative abundance and summed to get 

the total spectrum. 

The simulation of the XPS spectra reported in Figure 3.7 and Figure 3.8 has been 

performed calculating the BE at ΔSCF level with Eq. (3.2.5), employing the BP86 

functional and a TZ2P basis set without any energy shift. As stated in the introduction, 

it is rather difficult to calculate the intensity of the XPS lines since the unbound 

photoelectron wavefunction should be employed in the dipole transition moment. 

Therefore we simply assumed that the intensity of each C1s line is proportional to the 

number of equivalent carbon atoms. For a better comparison with the experiment, each 

line has been broadened with a Gaussian function with FWHM = 150 meV, in line with 

experimental resolution. 
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3.2.2 Vibrational Structure 

Vibrational structure is studied for both phenanthrene (C14H10) and coronene 

(C24H10) (Figure 3.1). They have a C2v/D6h symmetry in the ground state respectively 

and contain totally 7/3 non-equivalent carbons. Vibrational frequencies are first 

computed at the same level as for geometrical optimization by using Gaussian 09. Then 

the vibrationally-resolved C1s NEXAFS spectra are computed within the Condon 

approximation and the linear coupling model (LCM) [3.35] by using our Dynavib 

package [3.36]. The absorption cross section at photon energy  is given by: 

 𝜎𝑎𝑏𝑠(𝜔) = ∑ ∑ [𝑓𝑔→𝑒 ∑ (⟨0|𝑛⟩2Φ(𝜔; Δ𝐸𝑔0→𝑒𝑛, 𝛾))

𝑛

]

𝑒𝑁

 (3.2.6) 

Here N represents the summation over all carbon centers, e is the summation over 

electronic excited states. Δ𝐸𝑔0→𝑒𝑛 = Δ𝐸𝑔→𝑒 + ∑ 𝑛𝑘𝜈𝑘𝑘  denotes the energy difference 

between the excited state |𝑒, 𝑛⟩ and the ground state |𝑔, 0⟩, where 𝑘 denotes the index of 

normal mode, 𝑛𝑘 is the vibrational quantum number and 𝜈𝑘 the vibrational frequency 

(the same frequency is assumed for the ground and core-excited states within the LCM 

model). ⟨0|𝑛⟩ = ∏ ⟨0|𝑛𝑘⟩𝑘  stands for the nuclear overlap integral (also often referred as 

the Frank-Condon (FC) amplitude) with the integral of each mode given by [3.37]: 

 ⟨0|𝑛𝑘⟩ =
(−1)𝑛𝑘

√𝑛𝑘!
𝑒𝑥𝑝 (−

𝑆𝑘

2
) 𝑆𝑘

𝑛𝑘 2⁄
 (3.2.7) 

 
𝑆𝑘 =

1

2
𝜈𝑘𝑑𝑘

2 
(3.2.8) 



71 

 

Here 𝑆𝑘 is the Huang-Rhys factor and 𝑑𝑘 the displacement of the two sets of normal 

coordinates. 𝑑𝑘’s are computed numerically by fitting the core-excited Potential Energy 

Surfaces (PESs) to quadratic equation [3.38][3.39] 

 𝑈(𝑄𝑘) =
1

2
𝑎𝑘(𝑄𝑘 − 𝑑𝑘)2 + 𝑏𝑘 (3.2.9) 

The advantage of such a procedure is that it allows us to validate the harmonicity of 

the PESs. Five different structures shifted by 0, ±𝛿𝑘 and ±2𝛿𝑘 in the direction of the 

GS normal coordinates are sampled. Different 𝛿𝑘 (between 0.1 and 4.0a.u.) are 

employed for different vibrational modes aiming to get a balance between the numerical 

accuracy (requiring larger 𝛿𝑘) and the harmonicity of the oscillator (requiring smaller 

𝛿𝑘). 𝛾 in Eq. (3.2.6) is set to 0.05 eV to broaden the stick spectra. Other alternative 

schemes to calculate the displacements from numerical or analytical gradients are given 

in, e.g., Refs [3.37][3.40][3.41][3.42] 

 

3.3 Experimental setup 

The core-level photoelectron spectroscopy measurements were performed at the GAs 

PHase (GAPH) beamline of the Elettra synchrotron, in Trieste [3.43]. The electron 

spectrometer used to obtain the spectra has been described in detail in Ref. [3.44]. 

Briefly, it consists of a four-element electrostatic lens system and a VG 150 mm 

hemispherical electrostatic analyzer, equipped with six channel electron multipliers. The 

analyzer was mounted at 54.7◦ with respect to the electric vector of the linearly 

polarized light, making the measurements insensitive to the β asymmetry parameter. 

Samples were purchased from Fluka, with declared 95% minimum purity 

(phenanthrene) and from Sigma-Aldrich, with declared minimum purity of 99% 

(coronene), and introduced in experimental chamber without further purification. 

Samples were sublimated using a custom built resistively heated furnace, based on a 
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stainless steel crucible, a Thermocoax® heating element and a type K thermocouple. 

The evaporation temperature for phenanthrene was 45 ◦C, while for coronene it was 

about 180–190 ◦C. During the experiment the quality of vaporization was monitored by 

measuring the valence photoelectron spectrum of the heated sample at 120 eV photon 

energy and by comparing it with the reference He(I) photoelectron spectra known from 

literature [3.45][3.46][3.47][3.48]. During the whole experiment, the pressure in the 

ionization region remained constant and no evidence of contamination or thermal 

decomposition was found. 

The Core-level photoelectron spectrum of phenanthrene was measured with a total 

resolution (photon + analyzer) of 100 meV at 338 eV photon energy. For coronene, the 

carbon 1s photoelectron spectrum was recorded at the photon energy of 353 eV, with an 

overall experimental resolution of 150 meV. The binding energy scale of the C 1s 

photoelectron spectra was calibrated by admitting into the ionization chamber a small 

amount of CO2 whose C1s BE is 297.7 eV [3.49].  

The photoabsorption spectra at the C K-edges of the two samples were acquired by 

measuring the total ion yield with a channel electron multiplier placed near the 

ionization region, with a photon energy resolution of 50 meV. Spectra were calibrated 

using CO2 as calibration gas [3.50][3.51]. 

 

3.4 Results and discussion 

3.4.1 Influence of the DFT functionals and the core hole methods for 

NEXAFS  

Figure 3.2 shows the C1s NEXAFS spectra of phenanthrene measured in the gas 

phase and calculated with different methods. The theoretical spectra roughly reproduce 

the main features of experiment but differ in details. In order to have a key for the 

interpretation of the spectra, it is very useful to give a brief description of the virtual 
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molecular orbitals involved in the dipole allowed core electron excitations. As expected, 

at lower energy only empty 𝜋∗ orbitals are found, more precisely all the four spectral 

features up to 287 eV in the calculated BP86-HCH spectrum are ascribed to empty 𝜋∗ 

orbitals. In particular the first two features (denoted by the letters a and b in the 

experiment) both correspond to 𝐶1𝑠 → 𝐿𝑈𝑀𝑂 transitions, peak a from 𝐶1𝑠 belonging 

to carbon atoms directly bound to H atoms (C1, C3, C4, C5, and C6), while peak b 

comes from C1s belonging to carbon atoms which are not bound to H (C2 and C7). The 

next feature at 286 eV in the BP86-HCH spectrum is ascribed to 𝐶1𝑠 → 𝐿𝑈𝑀𝑂 + 2 

transitions (experimental peak c) and the next one at 286.7 eV (experimental peak d) to 

𝐶1𝑠 → 𝐿𝑈𝑀𝑂 + 4 transitions. Only beyond this point (starting with LUMO + 5), the 𝜎∗ 

orbitals start to play a role in the absorption spectrum. It is interesting to observe that 

the LUMO + 1 orbital always has a very low C2p contribution on the C1s excitation 

site, therefore we do not find any line of appreciable intensity ascribable to transitions to 

the LUMO + 1 orbital. 
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In the experimental curve, the two peaks a (284.8 eV) and b (285.2 eV) (𝐶1𝑠 →

𝐿𝑈𝑀𝑂 𝜋∗) have almost identical intensities and additionally contain two (284.6 and 

285.0 eV) or one (285.4 eV) shoulders, respectively (shoulders labelled by daggers). In 

the region beyond, the two peaks c and d appear at 286.5 and 287.1 eV, respectively. On 

Figure 3.2 Phenanthrene C1s NEXAFS spectra. Top: Experimental result (black 

line) with main features labelled. Middle: Calculated total electronic spectra (green 

lines) by using the B3LYP and BP86 DFT functionals as well as the FCH and HCH 

models. The calculated 1s ionization potentials of all carbons are around 290 eV. 
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the other hand, all theoretical spectra also produce two 𝐶1𝑠 → 𝐿𝑈𝑀𝑂 𝜋∗ peaks but with 

different intensity ratios: the peak b at a higher energy is always much weaker than peak 

a. Shoulder structures are also lost. FCH and HCH methods present similar spectra in 

the C1s→LUMO 𝜋∗ region but differ in the 𝐶1𝑠 → 𝐿𝑈𝑀𝑂 + 2 𝜋∗ and 𝐶1𝑠 →

(𝐿𝑈𝑀𝑂 + 3) 𝜋∗ regions. The spectra are less sensitive to different DFT functionals, in 

agreement with previous findings in other systems [3.52][3.53]. In summary the 

disagreement between theory and experiment cannot be removed by changing the DFT 

exchange-correlation energy functional or the core-hole scheme. This suggests that such 

disagreement is not related to a deficiency in the description of the electronic structure 

but rather to effects not included in the computational model, such as those related to 

the nuclear motion. 

 

3.4.2 Vibrational effects in NEXAFS 

Incorporation of the vibronic coupling al LCM level in the BP86-HCH electronic 

spectrum significantly improves the theoretical photoabsorption of phenanthrene and 

bridges the gap with experiment, as illustrated in Figure 3.3. Not only does the intensity 

ratio of the 𝐶1𝑠 → 𝐿𝑈𝑀𝑂 𝜋∗ features a and b agree well with the experiment, but the 

three shoulder fine-structures (labelled by daggers) are also clearly reproduced with 

almost the same absolute transition energies. Results show that the vibronic coupling 

plays an important role for core-hole excitations of this molecule. Furthermore, the 

atomic-specific spectra show that the first two π∗ peaks originate from the 𝐶1𝑠 →

𝐿𝑈𝑀𝑂 electronic transitions: more precisely, C2 and C7 contribute to peak b (as already 

found in the pure electronic spectra) and the remaining carbon atoms to peak a. 

Although Frank-Condon vibrational progressions are dominated by the 0-0 transitions, 

the 0-1 and 0-2 transitions (and even 0-3 transitions for some carbons) also have 

significant contributions which leads to the redistribution of the oscillator strengths and 

tends to average the intensity of the two 𝐶1𝑠 → 𝐿𝑈𝑀𝑂 𝜋∗ peaks. The vibronic coupling 

also shows considerable effects in the 𝐶1𝑠 → 𝐿𝑈𝑀𝑂 + 2 and 𝐶1𝑠 → 𝐿𝑈𝑀𝑂 + 3 

regions. The peaks c and d are also better reproduced except a red shift of 0.2–0.5 eV.  
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Figure 3.4 shows the C1s NEXAFS spectra of coronene measured in the gas phase 

and calculated with and without vibronic coupling. In the experimental profile two 

𝐶1𝑠 → 𝐿𝑈𝑀𝑂 𝜋∗ peaks a and b appear at 284.5 and 285.2 eV, respectively, where the 

latter displays a much stronger intensity. Similarly to phenanthrene, the calculated 

electronic spectra do not reproduce properly the intensity ratio between the two 𝐶1𝑠 →

𝐿𝑈𝑀𝑂 𝜋∗ peaks a and b of the experiment. Such a discrepancy is effectively reduced 

when the vibronic coupling is turned on. Also in this case the peak a is ascribed to the 

𝐶1𝑠 → 𝐿𝑈𝑀𝑂 transition from the C atom bound to H (C3), while peak b is ascribed to 

the 𝐶1𝑠 → 𝐿𝑈𝑀𝑂 excitation from the C atom not bound to H (C1 and C2). This finding 

shows that very tiny inductive effects (like the electron donation of H) produce energy 

shifts on C1s excitation energies which are important for a proper assessment of the 

spectrum. 
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Figure 3.3 Phenanthrene C1s NEXAFS spectra. Top: Experimental result (black 

line) with main features labelled. Middle: Calculated total spectra with (red) and 

without (green) considering the vibronic coupling. Bottom: Atomspecific contributions 

of each non-equivalent carbon with (red) and without (green) the vibronic coupling. IP 

positions are denoted by arrows. Theoretical spectra are calculated with the BP86-

HCH method. 
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The vibronic coupling is also responsible for the two shoulder structures at ∼284.7 

and 285.0 eV, respectively (daggers). In the higher energy region, theory reproduces the 

three peaks c, d, e except for a red shift of ∼0.4 eV in energy. 

From the analysis of the virtual orbitals involved in the excitations, experimental 

peak c is assigned to 𝐶1𝑠 → (𝐿𝑈𝑀𝑂 + 2) 𝜋∗ transitions and the next peak d to 𝐶1𝑠 →

Figure 3.4 The same as in Fig. 3 for coronene. Here the sticks and curves denoted by 

“C1,” “C2,” “C3” have already included the weights (6:6:12) of non-equivalent 

atoms. 
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(𝐿𝑈𝑀𝑂 + 4) 𝜋∗ and 𝐶1𝑠 → (𝐿𝑈𝑀𝑂 + 5) 𝜋∗ transitions. Beyond this point (starting 

with peak e and with LUMO + 6), the 𝜎∗ orbitals start to play a role in the absorption 

spectrum. It is interesting to observe that the LUMO + 2 and LUMO + 4 orbitals always 

have a very low C2p contribution on the C1s excitation site, therefore we do not find 

any lines of appreciable intensity ascribable to transitions to the these two orbitals. 

To further understand the individual modes that govern the vibronic coupling effects 

in phenanthrene and coronene, we take the 1s → LUMO transition of each carbon as an 

example, and analyze mode-specific contributions. In Figure 3.5, the vibronic coupling 

strength (𝜆𝑘 ≡ √𝑆𝑘) of each mode k is visualized versus the corresponding vibrational 

frequency. The number of modes that make considerable contributions (with a threshold 

of 𝜆𝑘 ≥ 0.1) vary among different carbon sites, and range from 14–34 (17–27) for 

coronene (phenanthrene) out of the total number of 102 (66). All these modes 

correspond to in-plane vibrations. For each carbon excitation, a wide frequency range 

and different mode types are covered. For instance, in coronene, 34 modes make 

considerable contributions to the first core-excited state of C3. They cover from the 

low-frequency fingerprint modes of ∼400 cm-1 to the C-H stretching of ∼3200 cm-1; 

selected vibrational modes among these 34 ones are also illustrated in Figure 3.6. 

 

3.4.3 XPS 

In Figure 3.7 and Table 3.1 the experimental C1s XPS of phenanthrene is reported, 

together with a simulation produced using the calculated BE and assuming intensity 

proportional to the multiplicity of the carbon atom, in the present case seven atoms have 

all the same multiplicity of 2. From the calculation, it is possible to define two different 

groups of carbon atoms: the first one give rise to lines at lower binding energy and 

statistical weight equal to 10, which correspond to external carbons bound to hydrogen 

atoms, while the second group of carbons are those not bound to any hydrogen atom 

and give rise to lines at higher binding energy and statistical weight equal to 4. So, 

theoretical statistical ratio is equal to 5/2 = 2.5 and the energy difference between the 
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two groups is around 0.26 eV. The features of the C 1s experimental spectrum have 

been fitted by fixed Voigt functions with the Gaussian component of FWHM = 100 

meV, for the photon energy of 338 eV, and Lorentzian component of FWHM = 95 

meV. The energies and intensities were allowed to change freely in the fit. In Table 3.1 

and Table 3.2 experimental relative energies are given with three decimal digits, while 

only one decimal digit is given for the absolute energy of the lowest peak, in order to be 

consistent with the accuracy of the calibration energy (that is ±0.1 eV). 

Figure 3.5 left: Normal mode analysis of the first core-excited state of each 

nonequivalent carbon for (a) phenanthrene and (b) coronene: vibronic coupling 

strengths λk versus the corresponding vibrational frequencies νk. For each electronic 

state, only those modes with considerable contributions (with a threshold of λk ≥ 0.1) are 

plotted. 

Figure 3.6 right: Selected normal modes of coronene that have considerable 

vibronic coupling effect to the first core-excited state of C3. Vibrational frequencies (in 

cm-1) and corresponding vibronic coupling strengths are also listed below each mode 

index. Cartoons have been generated by Gabedit [3.55]. 
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Figure 3.8 Coronene C1s XPS spectra. Left: Experimental data and results of the 

fitting procedure. Peak numbers 1–6, running from left to right, are referred to in Table 

3.2. Right: Simulated spectra taking one line for each BE calculated at the ΔKS level 

(BP86 functional and TZ2P basis set) with intensity proportional to multiplicity of C 

atom. 

Figure 3.7 Phenanthrene C1s XPS spectra. Left: Experimental data and results of 

the fitting procedure. Peak numbers 1–8, running from left to right, are referred to in 

Table 3.1 Right: Simulated spectra taking one line for each BE calculated at the ΔKS 

level (BP86 functional and TZ2P basis set) with intensity proportional to multiplicity of 

C atom. 
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Carbon site Calculated BE (eV) Relative weight 

C1 289.29 2 

C3 289.30 2 

C6 289.31 2 

C5 289.33 2 

C4 289.33 2 

C2 289.57 2 

C7 289.57 2 

Peak Experimental BE (eV) Assignment 

1 0 (289.9) CI (= C1,C3-C6) 1s 

2 +0.122 CI 1s + vib(C-C) 

3 +0.272 CII (=C2,C7) 1s 

4 +0.398 CI 1s +vib(C-H), CII 1s + vib(C-C) 

5 +0.519 CI 1s +vib(C-C)+vib(C-H) 

6 +0.667 CII 1s +vib(C-H) 

7 +0.84  

8 +1.04  

Table 3.1 Calculated (upper data, TZ2P basis set) BE with corresponding carbon 

site and relative weight. Experimental (lower data) relative BE with respect to the 

lowest peak (absolute energy in parentheses) from deconvolution of experimental data 

for phenanthrene and tentative assignment. 
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Carbon site Calculated BE (eV) Relative weight 

C3 289.02 12 

C2 289.26 6 

C1 289.30 6 

Peak Experimental BE (eV) Assignment 

1 0 (289.6)  CI (= C3) 1s 

2 +0.154  CI 1s + vib(C-C) 

3 +0.345  CII (=C1,C2) 1s 

4 +0.497  CII 1s + vib(C-C) 

5 +0.70  

6 +1.01  

Table 3.2 Calculated (upper data, TZ2P basis set) BE with corresponding carbon 

site and relative weight. Experimental (lower data) relative BE with respect to the 

lowest peak (absolute energy in parentheses) from deconvolution of experimental data 

for coronene and tentative assignment. 

In order to give an interpretation of the phenanthrene XPS, it is useful to recall 

briefly the analysis of Myrseth et al. on C1s XPS of C6H6 [3.54], whose vibrational 

structure may be expected, to some extent, to resemble those of phenanthrene and 

coronene. In C6H6 it was found that the adiabatic primary line was followed by a 

manifold of rather strong vibrational states, the intensity of the strongest line being the 

48% of the adiabatic line, in the energy range 125–150 meV, ascribed to C-C stretching 

and CCH bending modes. Then a rather intense line was predicted around 264 meV 

ascribed to an overtone transition relative to a C-C stretching and CCH bending mode. 
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Finally at 417 meV the C-H stretching was found. With this scheme in mind, we 

consider the Voigt fit of the phenanthrene spectrum (Figure 3.7) which gives an energy 

difference of 122 meV between peaks 1 and 2. Peak 2 should therefore be assigned to a 

vibrational excitation (probably a mostly C-C stretch-like vibration). The energy 

difference between peaks 1 and 3, on the other hand, was fitted to be 0.27 eV, which is 

very close to the splitting calculated (0.26 eV) between the groups (C2, C7) and all the 

other C atoms. Peak 4 should then be a combination of C-H stretch vibration related to 

peak 1 (about 400 meV) and a lower energy vibration ascribed to C-C stretching (about 

120 meV) of the peak 3. Peak 5 could be a composite vibration of C-H stretch (~400 

meV) + the lower energy vibration (~120 meV) related to peak 1. Peak 6 may 

tentatively be attributed to the C-H stretch related to the atoms C2, C7 (i.e., to peak 3). 

For coronene, the experimental XPS spectrum fitted with Voigt curves performed 

over the experimental data points together with the calculated results are shown in 

Figure 3.8 and Table 3.2. In this case, fixed Voigt functions with the Gaussian 

component of FWHM = 150 meV for the photon energy of 353 eV and Lorentzian 

component of FWHM = 99 meV have been employed. The energies and intensities 

were allowed to change freely in the fit. 

The interpretation of the C1 PES of coronene is less clear than that of phenanthrene, 

which may also be due to the worse experimental resolution. A tentative assignment is 

given in the following; it should be taken with caution. Peak 1 is due to the adiabatic 

transition from the C3 atoms (weight 12); this assumption is based on present 

calculations. The most intense peak 3 should then be the analogous transition for the C1 

and C2 atoms, giving the splitting of 0.345 eV between C3 and (C1, C2), which is 

slightly larger than the calculated splitting (~0.26 eV). The energy difference between 

peaks 1 and 2 is ~154 meV, which is larger than in phenanthrene but could still be due 

to similar vibrations (mostly C-C stretch). This would also mean that the intensity of the 

vibrational line (peak 2) is larger than the vibrationless transition (peak 1): a different 

behaviour with respect to benzene which could suggest a strong structural relaxation of 

coronene upon core hole formation. The difference between the peaks 3 and 4 is again 
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about 150 meV, attributable to the C-C stretch-like vibrations. The intensity of the C-H 

vibrations may be smaller than in phenanthrene, this is not surprising since there are 

proportionally less C-H bonds than C-C bonds in coronene than in phenanthrene. 

 

3.5 Conclusion 

We have carried out a combined experimental and theoretical study of C1s NEXAFS 

and XPS spectra of phenanthrene and coronene in the gas phase. Vibrationally resolved 

spectra are calculated for phenanthrene and coronene within the Condon approximation 

and the linear coupling model. When the vibrational effects are included in the 

calculations, a good agreement between theory and experiment is obtained. In both 

molecules, strong vibronic coupling is responsible for the peak intensity redistribution 

among the two main 𝜋∗
 peaks and the shoulder structures. Only in-plane vibrational 

modes make effective contributions. For the out-of-plane modes, the potential energy 

surfaces of the ground and core-excited states have almost no displacement. Our high-

resolution study offers an in-depth understanding of the electronic structure of the PAHs 

as well as the interplay of the electronic and vibrational transitions. 

In XPS it is possible to discriminate the different carbon sites according to whether 

they are bound to hydrogen or not. In fact carbons bound to hydrogen have lower BE 

and displays a chemical shift of about 0.3–0.4 eV with respect to C not bound to 

hydrogen, which can be resolved by the experiment and are nicely reproduced by 

theory. The inclusion of vibrational structures is mandatory to properly fit the 

experimental spectral shape. Low energy vibrations in the range of 120–150 meV 

appear particularly strongly excited – they are probably mostly due to C-C vibrations – 

whereas C-H stretching modes are less intense. 

  



86 

 

4 Experimental and theoretical NEXAFS and XPS 

spectra for Thiophene, Bithiophene and 

Terthiophene 

 

4.1 Introduction 

Five-membered heterocyclic compounds show promising technological applications 

especially for their high electrical conductivity, environmental stability, and redox 

properties which make them good organic electronic systems for electronic devices 

[4.1][4.2][4.3]. Although inorganic materials are more popular for such applications, 

organic electronics are more attractive for their lightweight, low cost manufacture, ease 

of synthesis and mechanically flexibility [4.4]. 

Oligomers consist of covalently linked monomer units giving small chain length 

polymers which are highly appealing because of further potential applications in 

electronic and optoelectronic devices. These have been extensively studied in order to 

provide insights of the more complex polythiophene systems' properties. In particular, 

there is a considerable interest in the basic electronic structure of thiophene-based 

oligomers since these have been demonstrated to be among the most active components 

on optoelectronics due to their charge generating and charge transporting properties 

[4.5]. As a consequence, they have been widely used in photovoltaic cells, light-emitting 

diodes and field-effect transistors. The extent of their charge delocalization depends 

either on the size of the overlap between the π orbitals of neighbouring carbon atoms or 

any hindrance to this conjugation which can affect the properties. With this regard, 

thiophene-based polymers have received a great deal of attention because of their highly 

π-conjugated bonding systems, chemical stability and tunable electronic properties 

[4.6][4.7]. The band gap of a polymer is one of the most important features which can 
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enhance the efficiency of optoelectronic devices. For instance, molecular conductivity 

depends on the HOMO-LUMO band gap and this value is determined by factors such as 

the polymer substituents, the torsion angles among species and the length of conjugation 

of the chain. So far, thiophene-based oligomers and polymers have been considered in 

many theoretical studies [4.8]-[4.12], due to their chemical stability and large number of 

already available experimental data. 

The gas phase electronic structure of thiophene (T), 2,2'-bithiophene (2T) and 

2,2′:5′,2′′-terthiophene (3T), which represent, respectively, the monomer, dimer and 

trimer of polythiophene, have been here characterized. The chemical structures of these 

three molecules (Figure 4.1) has been therefore reported. In particular X-ray 

Photoelectron Spectroscopy (XPS) at the C1s core-level and valence band (VB) spectra 

together with X-ray Absorption Near Edge Structure (XANES) at the carbon K-edge 

have been performed together with theoretical calculations of their most stable 

computed conformation. 

 

4.2 Experimental section 

The photoemission measurements on the gas-phase sample were performed at the 

GAs-PHase (GAPH) beamline of the Elettra synchrotron in Trieste [4.13] and 2T are 

liquid at room temperature and after several freeze-pump-thaw cycles of purification 

they were inserted in vacuum and dosed via a stainless steel variable leak valve. 3T 

Figure 4.1 Schematic illustration of thiophene (T), bithiophene (2T) and 

terthiophene with nonequivalent carbon atoms labeled. 
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sample was sublimated in vacuum using a custom built resistively heated furnace after a 

purification treatment at 30°C for 12 hours. Electron spectra were measured using a 

Scienta SES-200 electron analyzer [4.14], mounted at 54.7 deg with respect to the 

electric vector of the linearly polarized incident light, and in the same plane as the beam 

propagation direction. In this geometry the electron analyzer is set at the (pseudo) magic 

angle, so measurements are almost insensitive to the photoelectron asymmetry 

parameter. XANES spectra at the C K-edge were acquired by measuring the total ion 

yield (TIY) with an electron multiplier placed near the ionization region. The photon 

flux was measured simultaneously with a calibrated Si photodiode for the spectra 

normalization. The energy scale of the spectra was calibrated by taking simultaneous 

spectra of the samples and of CO2, with the characteristic transition at 290.77 eV (C 1s 

→ π*, CO2) [4.15][4.16]. The photon energy resolution was 70 meV. 1T and 2T are 

liquid at room temperature and after several freeze-pump-thaw cycles of purification 

they were inserted in vacuum and dosed via a stainless steel variable leak valve. 3T 

sample was sublimated in vacuum using a custom built resistively heated furnace set at 

T=66° degrees after a purification treatment at 30°C for 12 hours. 

 

4.3 Computational details 

The geometrical structures of thiophene, bithiophene and terthiophene have been 

optimized at the density functional theory (DFT) level whit the LDA VWN functional 

[4.1] and the Triple Zeta Polarized (TZP) basis set of Slater type orbitals (STO) by the 

using ADF package [4.18][4.19][4.20]. Bithiophene and terthiophene have been 

considered in the all-trans conformations with a planar structure (with C2h and C2V 

symmetry in the GS, respectively).  

The C1s NEXAFS spectra have been then calculated at the spin-restricted DFT level 

with the GGA PW86xPerdew functional [4.21] by the ADF program. The core hole at 

each non-equivalent carbon center is modeled by the half core hole (HCH) also referred 

as the Transition Potential (TP) approximation [4.22]. In the TP computational 
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technique half an electron is removed from the 1s orbital of the excited C atom, relaxing 

all the orbitals until self-consistency is obtained. This scheme includes most of the 

relaxation effects following the core hole formation and provides a single set of 

orthogonal orbitals useful for the calculation of the transition moments. The basis 

functions employed in the DFT-TP calculations consist of a very extended STO set for 

the core-excited carbon atom, in particular an even tempered Quadruple Zeta with three 

polarization and three diffuse functions (designed as ET-QZ3P-3DIFFUSE set in the 

ADF database), while the TZP basis set has been employed for the remaining atoms. 

Symmetry is properly reduced allowing core-hole localization.  

The raw spectra are so calculated: the excitation energies are obtained as the 

differences between the eigenvalue of the virtual orbital and that of the 1s orbital 

calculated with TP configuration: 

 ∆𝜀1𝑠→𝑎 = 𝜀𝑎 − 𝜀1𝑠 (4.3.1) 

The excitation intensity is calculated with the oscillator strength that, within the 

dipole approximation, for excitation from the ground state (GS) |Ψ𝑔⟩ to excited state 

|Ψ𝑒⟩, is given by (atomic units used), 

 𝑓𝑔→𝑒 =
2∆𝐸𝑔→𝑒

3
|𝑀𝑔→𝑒|

2
 (4.3.2) 

 𝑀𝑔→𝑒 = ⟨Ψ𝑔|𝜇̂|Ψ𝑒⟩ (4.3.3) 

where 𝑀𝑔→𝑒 is the transition dipole moment with 𝜇̂ = ∑ 𝑟𝑖𝑖  being the dipole operator, 

and ∆𝐸𝑔→𝑒 =  𝐸𝑒 − 𝐸𝑔 is the total energy difference. Taking into account the final-state 

rule [4.23][4.24] and the sudden approximation [4.25], Equation(4.3.2) can be 

formulated at one-electron level, so that the oscillator strength is evaluated in terms of 

two molecular orbitals (MOs) 𝜓1𝑠(core) and 𝜓𝑎 of the final state, obtained with the 

DFT-TP scheme: 
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 𝑓𝑔→𝑒 =
2∆𝜀1𝑠→𝑎

3
|⟨𝜓1𝑠(1)|𝑟1|𝜓𝑎(1)⟩|2 (4.3.4) 

The TP approach leads to a less attractive potential and the absolute transition 

energies are generally too large. In order to correct the NEXAFS energies, the raw 

spectra are calibrated by aligning the first transition energy Δ𝜀1𝑠→𝐿𝑈𝑀𝑂 (LUMO: lowest 

unoccupied MO) to that obtained from ΔKohn-Sham (ΔKS) scheme [4.26], as 

difference between the total energy of the excited state (𝐸𝑒1
) and the total energy of the 

ground state(𝐸𝑔): ∆𝐸𝑔→𝑒1
=  𝐸𝑒1

− 𝐸𝑔. In order to get a pure singlet first core excited 

state, 𝐸𝑒1
 is calculated as [4.26]: 

 𝐸𝑒1
= 2𝐸(|1𝑠𝛼1 … 𝐿𝑈𝑀𝑂𝛽1|) − 𝐸(|1𝑠𝛼1 … 𝐿𝑈𝑀𝑂𝛼1|) (4.3.5) 

where 𝐸(|1𝑠𝛼1 … 𝐿𝑈𝑀𝑂𝛽1|) and 𝐸(|1𝑠𝛼1 … 𝐿𝑈𝑀𝑂𝛼1|) are the total energies of two 

spin-polarized single-determinants with unpaired electrons in the 1s and LUMO orbitals 

(antiparallel and parallel, respectively). Moreover, the core Ionization Potential (IP) is 

determined in the following way: 

 𝐼𝑃1𝑠 = 𝐸(|1𝑠𝛼1 … |) − 𝐸𝑔 (4.3.6) 

Where 𝐸(|1𝑠𝛼1 … |) represents the total energy of a spin-polarized Full Core-

Hole(FCH) state. 

The excitation spectrum at each non-equivalent Carbon site of the molecule is obtained 

as a single calculation, then it is weighted by relative abundance and finally the total 

C1s NEXAFS spectrum is obtained by summing up the different contributions. In order 

to facilitate the comparison with the experiment, the raw spectra have been broadened 

by using a Gaussian lineshape with Full-Width-at-Half-Maximum (FWHM) of 0.4eV 

for thiophene and terthiophene and of 0.3eV for bithiophene. 
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4.4 Results and discussion 

4.4.1 C1s NEXAFS 

The thiophene (T), bithiophene (2T) and terthiophene (3T) molecules are shown 

schematically in Figure 4.1 with our labeling of the non equivalent C atoms. 

 

 

The results of the computed C 1s NEXAFS spectra are collected in Table 4.1 and 

reported in Figure 4.2 where the calculated lines and profile of the total spectrum are 

shown in black while the colored profiles refer to the partial contributions of the Carbon 

non-equivalent sites. Figure 4.3 reports the comparison of the calculated total C1s 

spectra with the experimental ones. The theoretical C1s ionization thresholds are also 

reported in the figures; they are useful to distinguish the below-edge region of the 

spectrum, where the present discrete orbital description is adequate, from the above-

edge region, where such an approach determines a discretization of the non-resonant 

continuum that is in part an artifact of the calculation, so that only qualitative 

information could be extracted above the ionization threshold. The site-resolved 

excitation spectra showed in Figure 4.2 substantially represent a deconvolution of the 

experimental spectrum into components which allow a great flexibility in analysis of the 

Table 4.1 Calculated excitation energies (eV) and oscillator strengths of Thiophene. 

Only the main transitions are reported. 

Peak Site E (eV) fx102 Assignment 

 
A 
 
 

B 
 
 
 

C 
 
 
 

D 

C1 285.64 5.86  

LUMO (1*) C2 285.65 3.50 

    

C1 286.93 3.12 *(S-C) 

C2 287.11 4.73 2*(C=C) 

    

C1 287.73 0.89 2*(C=C) 

C2 287.88 0.97  

Rydberg C1 288.13 0.79 

    

C2 288.53 1.15  

Rydberg + *(CH) C1 288.68 2.17 

C1 288.84 1.05 
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transitions and facilitate the attribution of the spectral features to specific portions of the 

molecule. 

 

Figure 4.2 Calculated C 1s NEXAFS spectra of thiophene (upper panel), bithiophene 

(central panel) and terthiophene (lower panel): total spectra (black line), and partial 

contributions (colored lines). The ΔKS C 1s ionization thresholds are also shown. 
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Figure 4.3 C 1s NEXAFS spectra of thiophene (upper panel), bithiophene (central 

panel) and terthiophene (lower panel): experimental data (circles) and calculated DFT-

TP results (solid line and vertical bars). Experimental energy scale of thiophene has 

been shifted of +0.3 eV in order to match the first calculated peak. The ΔKS C 1s 

ionization thresholds are also reported. 
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The calculated total C1s spectrum of the thiophene molecule (Table 4.1 and upper 

panel of Figure 4.2) is characterized by a first sharp peak (A, at 285.65eV) which is 

assigned to the two C1s → LUMO transitions from both C1 and C2 carbon sites. The 

LUMO orbital (1π*) is appreciably localized at the Sulphur atom, because of the 

considerable aromatic character of thiophene, and this is reflected in the lower intensity 

of the C2 1s→1π* compared to the C1 1s→1π* transition. These two calculated 1π* 

transitions are degenerate therefore do not reproduce the relative binding energy (BE) of 

the core orbitals, for which the calculations provide the C1 binding energy higher 

compared to C2 due to the higher electronegativity of the sulfur, close to C1, compared 

to carbon. The calculated BE shift is 0.28 eV, in good agreement with the value 

extracted from the experimental spectrum (0.3 eV). The degeneracy of the two 1π* 

transitions is therefore due to a final state effect, in particular a differential relaxation 

effect on the LUMO virtual orbital: when the half-hole is created on C1 the relaxation 

of the LUMO is stronger compared to C2. The second calculated peak B is a 

superposition of two excitations: from C1 (at 286.93 eV) towards a σ* (S-C) virtual 

orbital, which is largely contributed by the S lone pairs with a smaller 2px in plane (x) 

component of C1, and from C2 into the 2π* orbital (at 287.11 eV), which is localized on 

the four carbon atoms. The analogous 1s→2π* transition from C1 is weaker and lies at 

287.7 eV, therefore above the corresponding transition from C2, and contributes to the 

small peak C. The lower intensity of C1 1s→2π* compared to C2 1s→2π* transition is 

due to the higher localization of the 2π* final orbital on the C atoms not directly bonded 

to the Sulphur. The other two weak transitions contributing to peak C derive from two 

equivalent C1 and C2 transitions into diffuse orbitals. The last peak before threshold 

(peak D at 288.7 eV) corresponds to transitions to final C3p Rydberg MOs with some 

*(C-H) contribution; the mixed valence-Rydberg nature of these transitions is 

consistent with their significant intensity. The assignment of the features substantially 

agrees with that previously published [4.27][4.28]. 

The bithiophene spectrum (Table 4.2 and middle panel of Figure 4.2) shows an 

increased complexity due to the presence of four carbon non-equivalent sites as well as 

of the increased number of low-lying virtual π* orbitals. The first structure (A, around 
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285.5 eV) is assigned to transitions from the four C1s non equivalent carbon atoms into 

the LUMO orbital, which is contributed by the valence C 2pz and S3pz components and 

therefore  comparable in nature to the LUMO orbital of thiophene. These transitions 

cover an energy range of about 0.6 eV due to the splitting of the C1s binding energies 

and their convolution gives rise to a double-peak shape. The relative excitation energies 

reflect only partly the relative energy of the core orbitals; in particular, each C1s -

carbon atom (C4), connecting the two thiophene rings, feels the proximity of the S atom 

and of two C atoms with a stronger depletion of electron density than the other C atoms 

of the rings. The C4-1s orbitals are therefore less shielded and a larger excitation energy 

is predicted for them which contribute to the higher energy side of peak A. The two C2-

1s and C1-1s LUMO excitations are very close in energy and give rise to the lower 

energy side of peak A together with the C3-1s LUMO excitation, which is the lowest in 

energy and accounts for the most shielded C1s orbital compared to other carbon atoms, 

in agreement with the calculated binding energies. The C1 and C4 C1s→LUMO 

transitions are the most intense partial contributions of the A peak: this is a consequence 

of the localization of the LUMO on C1 and C4 atoms which are directly bonded to the 

sulfur atom.  

The second calculated feature (B), around 287 eV, has a three peaked shape (denoted 

as B’, B” and B”’) as a result of the convolution of the many intense transitions falling 

in this energy range. The nature of these transitions roughly corresponds to those 

contributing to the thiophene B peak, namely towards the second π*(2π*) and the σ* (S-

C) antibonding orbitals. The 2π* orbital resembles the LUMO composition maintaining 

a significant S 3pz component consistent with an increased aromatic character 

compared to thiophene. In particular, the B’ component of the peak B derives from the 

second π* transition from the C2 site (at 286.42 eV) while analogous transitions from 

the C1 and C3 sites (at 286.77 eV and 287.43 eV) contribute to the B” and B”’ 

components respectively. The strongest π* transitions still involve the C atoms not 

directly bonded to the Sulphur atom, as in the thiophene. The excitations to the σ* (S-C) 

antibonding orbitals contribute significantly to B” component and derive from the 

C1and C4 carbon sites directly bonded with sulphur atom (at 286.77 eV and 287.06 eV 
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respectively). The assignment of the main features substantially agrees with that 

proposed in ref. [4.28]. 

 

 

 

Peak C and D should be characterized as superposition of valence and Rydberg 

excitations. The most intense transitions are towards final orbitals of π* character (from 

C2 site at 287.88 eV, peak C and from C4 site at 288.33 eV, peak D), their reduced 

intensity compared to the lower energy π* transitions reflects the decrease of the 

valence C2pz contribution of the C1s excited site in the higher π* virtual MO. The less 

intense lines are assigned to transitions into diffuse orbitals of mainly C3p-Rydberg 

character.  

 

Table 4.2 Calculated excitation energies (eV) and oscillator strengths of 

Bithiophene. Only the main transitions are reported. 

Peak Site E (eV) f x102 Assignment 

 
 

A 

C3 285.00 2.68 
 
 

LUMO (1*) 

C1 285.27 4.03 

C2 285.36 1.42 

C4 285.61 4.00 

     
B’ C2 286.42 5.52 * 

 
B” 

C1 286.78 2.86 *(S-C) 

C1 286.82 1.94 * 

C4 287.06 4.05 *(S-C) 

B”’ C3 287.43 3.69 * 

     

 
C 

C2 287.81 0.80 Rydberg 

C2 287.88 1.24 * 

C1 287.99 0.71 Rydberg 

     

 
D 

C4 288.33 2.34 * 

C1 288.50 2.23 Rydberg + *(CH) 
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The complexity further increases in the terthiophene spectrum (lowest panel of 

Figure 4.2 and Table 4.3); in this molecule there are six non equivalent C atoms and 

even greater number of low-lying π* orbitals. The peak A arises from the C1sLUMO 

transitions from all the six carbon sites whose contributions are highlighted in Figure 

4.2. The larger excitation energies are predicted for the C4 and C5 carbon sites which 

are less shielded being directly bounded to the sulfur atoms and connecting two rings, as 

already found for the 2T molecule, and in agreement with the energy position of the 

calculated IPs. However, the differential relaxation effects on the π* low-lying orbitals, 

Table 4.3 Calculated excitation energies (eV) and oscillator strengths of 

Terthiophene. Only the main transitions are reported. 

 Peak Site E (eV) f x102 Assignment 

 
 
 
 A 

C3 284.87 2.26  
 
 

LUMO (1*) 

C6 284.88 1.77 

C1 285.18 3.38 

C2 285.28 0.92 

C5 285.37 3.27 

C4 285.55 3.29 

     

 
 A’ 

C6 285.94 2.39  

2* C2 286.13 4.27 

C1 286.32 1.70 

     

 
 
 
 
 B 

C1 286.77 2.80 *(S-C) 

C4 286.79 1.56 2* 

C3 286.90 2.96 * 

C5 286.96 3.81 *(S-C) 

C2 287.05 2.44. * 

C4 287.06 3.99 *(S-C) 

C6 287.15 0.97 * 

C1 287.34 1.01 * 

     

 
 C 

C3 287.67 1.75 * 

C5 287.70 2.05 * 

C6 287.80 1.88 * 

     

 
 
 D 

C1 288.41 2.03 Rydberg 

C4 288.42 2.52 * 

C5 288.53 1.11 * 

C5 288.87 1.07 * 
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depending on the localization of the carbon core hole, prevent an analysis of the 

following features based on a regular energy shift of the site-resolved excitation spectra 

following the energy position of the IPs. The feature A’ corresponds to transitions to the 

second π* orbital (2π*) from C6, C2 and C1 sites while the transition from C4 site is 

shifted at higher energy (286.79 eV, peak B). We do not observe analogous transitions 

from C3 and C5 sites because the 2π* relative final orbitals have a negligible C2pz 

contribution of the carbon excited site. The B peak arises from several transitions to π* 

orbitals overlapped on the stronger σ* (S-C) transitions from the C1, C4 and C5 sites; 

this attribution confirms the mixed nature of peak B found also for thiophene and 

bithiophene. The C and D peaks are still contributed by transitions to virtual orbitals 

with π* character; the calculations indicate that these higher energy π* orbitals are 

mostly localized on carbon atoms with a reduction of the S3pz contribution as well as of 

the conjugation among the rings. The progressive intensity decrease of these transitions 

reflects the general reduction of the C2pz valence character of the final MOs; in the 

region of peak D also transitions to diffuse MOs with Rydberg C3p components are 

present with lower intensity. 

In Figure 4.3 the C 1s NEXAFS spectra computed by the TP-DFT scheme are 

compared with the gas phase experiments. The thiophene experimental profile (upper 

panel) has been shifted on the energy scale (+0.3eV) to match the first peak of the 

calculation. In this way, the relative energy shift among the calculated transitions, which 

actually represents the most significant observables, is preserved. A general good 

agreement is reached between experiment and theory, in particular the theoretical results 

correctly describe the main features of the experiment curves and the energy separation 

among the peaks. A clear correspondence between calculated and experimental peaks is 

apparent in the thiophene spectrum; the major discrepancy concerns the broad shape of 

the second experimental feature, assigned to the calculated B and C peaks, which is not 

reproduced by the calculations. Such disagreement should be caused by vibronic effects, 

which have been found to influence also the XPS C1s profile in the thiophene [4.29] but 

are not included in the present computational model. Such effects could be also 

responsible also for other discrepancies between theory and experiment in the 
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bithiophene and terthiophene spectra, in particular as concerns the first peak. The 

intensity distribution of the experimental double-peak feature of the bithiophene 

spectrum is not properly reproduced by the calculation while in the terthiophene 

spectrum the theory underestimates the first peak intensity with respect to the second 

peak. We would underline that also the conformational flexibility of bithiophene [4.30] 

and terthiophene [4.31] should be kept in mind when comparing theoretical results and 

experimental spectroscopic data, due to possible contaminations of the conformers 

employed in the experimental measurements. 

In summary, a comparison between the TP-DFT electronic calculations and 

experiment is fully satisfactory as far as the relative excitation energies are concerned, 

while the intensity distribution is less quantitative. We tend to ascribe this problem to 

the neglect of vibrational effects in the computational approach, also on the basis of our 

previous vibrationally resolved studies on NEXAFS C1s spectra of both simple 

aromatic molecules [4.32] and polycyclic aromatic hydrocarbons [4.33]. It is worth 

noting that the present electronic calculations are suitable for an unambiguous 

assignment of the experimental features despite the vibrational effects can play a role in 

the intensity distribution. 

We finally address the evolution of the spectral features of the oligothiophenes when 

increasing the number of thiophene rings. The lower energy features (A and B) maintain 

their nature along the series, despite the increasing complexity and the enlargement of 

the peaks. The first π* peak (C 1s transitions to the LUMO) shifts to lower energy 

(about 0.5 eV) from thiophene to bithiophene while it does not change anymore from 

bithiophene to terthiophene: this trend can explain a stabilizing effect due to the 

aromaticity, which is stronger in passing from one to two rings than in adding a third 

ring. The σ* (S-C) transitions maintain their energy almost constant along the series 

because the involvement of a single bond is not influenced by aromaticity and always 

falls in the region of peak B together with the π* transitions. The number of overlapping 

transitions increases at higher energies (peaks C and D) preventing a strict 

correspondence along the series. 
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4.4.2 C 1s XPS 

In Figure 4.4 and Table 4.4 the calculated ΔKS binding energies (BE) of thiophene, 

bithiophene and terthiophene are reported together with the experimental C 1s XPS 

spectra. It would be too difficult to calculate the absolute intensity of the XPS lines 

since the unbound photoelectron wavefunction should be employed in the dipole 

transition moment. Therefore we simply assumed that the intensity of each C1s line is 

proportional to the number of equivalent carbon atoms (in each of the present molecules 

all the C atoms have the same multiplicity of 2). Note that the experimental profiles of 

thiophene and bithiophene are shifted in energy (+0.2eV) to facilitate the comparison. 

Following the calculated BE, it is possible to define two different groups of carbon 

atoms: the first one at lower binding energies corresponds to the carbon atoms not 

bonded with sulfur atom, while the second group at higher energies identifies the 

carbons adjacent to the sulfur. We can also note that in bithiophene and terthiophene the 

highest BE are relative to carbons bound to S atom and connecting two rings.  

The higher BE of the carbons neighbouring the S atom is consistent with the higher 

electronegativity of sulfur compared to carbon as well as charge transfer from sulfur to 

C atom not bonded with it through resonance in the  system. The further BE increase 

for the C atom connecting the rings reproduces a trend already observed in polycyclic 

aromatic hydrocarbons for which the calculations provides higher BE for C atoms non 

bound to any hydrogen atom compared to external carbons bound to hydrogen atoms 

[4.33]. Starting from the thiophene spectrum, the measured spectrum can be obviously 

interpreted as derived from the two chemically shifted carbon lines: the part at higher 

energy assigned to C1, atom close to sulfur, separated by 279 meV from the C2 

subspectrum. The theoretical statistical ratio of the carbon atoms (2:2) is not able to 

account for the intensity distribution between the two observed peaks which is affected 

by complex vibrational effects not included in the present computational scheme. The 

most pronounced vibrational components, in particular deriving from the S-C1 bond 
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stretching, are present in the C1 1s spectrum compared to C2, as analyzed by Giertz et 

al. [4.29]. 

For bithiophene, the calculation assign the higher energy peak to the C1s -carbon 

atom (C4), connecting the two thiophene rings; the energy shift with the other C atom 

(C1), bound to sulfur and also to an hydrogen atom, is quite significative (583 meV) so 

the calculated C1 line contributes to the lower energy peak together with the lower 

energy lines relative to the C atom not bonded to sulfur (C2 and C3). The lowest 

binding energy of C3 compared to C2 can be ascribed to an addition of valence electron 

charge on the C3 site as a result of changes in bonding for the aromaticity induced by 

the second ring. The theoretical statistical ratio of these two groups of C atoms is equal 

2:6 and qualitatively accounts for the relative height of the two experimental peaks. We 

note also the significant decrease of the energy shift between C1 and C2, 74 meV to be 

compared with 279 meV of thiophene. A similar trend is found also for the calculated 

BE of terthiophene : the higher BE refer to the two C atoms (C4, C5) which connect the 

Table 4.4 Calculated BE with corresponding carbon site and relative weight.  

 Thiophene 
 Carbon Site BE (eV) 

C1 290.862 

C2 290.583 

  

Bithiophene 

 Carbon Site BE (eV) 

C4 290.987 

C1 290.404 

C2 290.330 

C3 290.078 

  

Terthiophene 

 Carbon Site BE (eV) 

C4 290.781 

C5 290.633 

C1 290.167 

C2 290.166 

C6 289.929 

C3 289.828 
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rings and lose their equivalence in this molecule, while the lowest BE are found for the 

C atoms not bonded to S atom (C2, C3 and C6 respectively). The energy separation 

between C1 and C2 reduces to such an extent that the two BE are almost degenerate 

while the energy shift between the (C4, C5) group and the (C1, C2) one (540 meV) is 

similar to that found in bithiophene as well as the lowest BE calculated for the C3 and 

C6 sites. The presence of second and third rings introduces slight different aromaticity 

effects so that the C1 and C3 sites are destabilized by an increase of charge density, in 

line with the calculated decrease of C1 and C2 binding energies along the series. The 

first peak is therefore assigned to the binding energies of C4, C5 sites while all the other 

carbon lines contribute to the lowest energy experimental peak. The statistical ratio is 

therefore 4: 8 which apparently does not match the relative heights of the experimental 

peaks. Also in this case the complex vibrational structures affecting the spectral peaks 

prevent therefore a correct description of the XPS spectral shape. 
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Figure 4.4 C 1s XPS spectra of thiophene (upper panel), dithiophene (central panel) 

and terthiophene (lower panel): experimental data (solid line) and BE calculated at the 

ΔKS level (vertical colored lines). The line intensity is proportional to the multiplicity of 

the C atom. Experimental energy scale of thiophene and bithiophene has been shifted by 

+0.2 eV. 



104 

 

5 A new time dependent density functional algorithm 

for large systems and plasmons in metal clusters 

O. Baseggio, G. Fronzoni, M. Stener, The Journal of Chemical Physics 143, 024106 

(2015); 

 

A new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) 

equations in the space of the density fitting auxiliary basis set has been developed and 

implemented. The method extracts the spectrum from the imaginary part of the 

polarizability at any given photon energy, avoiding the bottleneck of Davidson 

diagonalization. The original idea which made the present scheme very efficient 

consists in the simplification of the double sum over occupied-virtual pairs in the 

definition of the dielectric susceptibility, allowing an easy calculation of such matrix as 

a linear combination of constant matrices with photon energy dependent coefficients. 

The method has been applied to very different systems in nature and size (from H2 to 

[Au147]
-). In all cases, the maximum deviations found for the excitation energies with 

respect to the Amsterdam density functional code are below 0.2 eV. The new algorithm 

has the merit not only to calculate the spectrum at whichever photon energy but also to 

allow a deep analysis of the results, in terms of transition contribution maps, Jacob 

plasmon scaling factor, and induced density analysis, which have been all implemented. 

 

5.1 Introduction 

The calculation of optical spectra for large molecules has become a routine task, 

thanks to efficient implementations of the Time Dependent Density Functional Theory 

(TDDFT) method. More specifically, various approaches are available in computer 

codes which allow the treatment of large molecular systems. 
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In particular, it is worth mentioning the “standard” quantum chemistry approach, 

where molecular Kohn-Sham (KS) orbitals are expanded as linear combination of 

atomic functions, and the TDDFT equations are recast to a diagonalization of a matrix 

Ω according to the density matrix formulation of Casida [5.1]. The problem consists in 

extracting a set of eigenvalues and eigenvectors ofΩ, whose dimension is Nocc × 

Nvirt. Such method is efficiently implemented in many quantum chemistry codes, like, 

for example, Amsterdam Density Functional(ADF) code [5.2][5.3][5.4], which takes 

advantages of the molecular symmetry (employing the Wigner-Eckart theorem for the 

TDDFT part), of the Davidson diagonalization algorithm, of efficient fitting techniques 

of the first order density through the use of auxiliary basis functions to improve matrix-

vector multiplication within the Davidson algorithm, and finally of the parallelization of 

the code which can exploit modern supercomputer architectures. Despite all these 

efforts, it is very difficult to calculate valence photoabsorption spectra over a wide 

excitation energy range when very large systems are considered. In fact, the Davidson 

iterative algorithm is very efficient on largeΩmatrices, but it is limited to the extraction 

of a relatively small number of lowest eigenvalues and eigenvectors; such 

diagonalization algorithm is generally employed in all the TDDFT codes which use the 

Casida method, like, for example, TURBOMOLE [5.5]. 

Therefore, the Casida TDDFT algorithm remains very efficient on large systems only 

when few low energy transitions are extracted but cannot be employed in practice to 

calculate a photoabsorption spectrum over a wide energy range, often necessary for a 

complete simulation of an experiment. Of course as the molecule/cluster size increases 

such problem will become more and more pathological, preventing any calculation of 

the spectrum. Moving from this practical consideration, it would be very appealing to 

find an alternative TDDFT algorithm to avoid the bottleneck of the Davidson 

diagonalization, capable to calculate the spectrum without limitations on the value of 

the maximum excitation energy. 

Before describing the new algorithm, it is worth mentioning other recent alternative 

TDDFT strategies, which are promising for applications to large systems. 
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The first one is based on the explicit time-propagation technique. This scheme was 

introduced in the seminal work of Yabana and Bertsch [5.6] and is now implemented 

usually over real space grids, like in the OCTOPUS program [5.7], which has been 

recently applied to study the photoabsorption of large biomolecules [5.8] and large 

metal clusters, clusters up to 147 atoms [5.9] and 263 atoms [5.10]. 

The second one consists in a superoperator formulation of the TDDFT, which allows 

the calculation of the dynamical polarizability by means of a very efficient Lanczos 

method, implemented with plane waves basis set [5.11]; it has been applied to systems 

like C60, C70, zinc tetraphenylporphyrin, and chlorophyll a [5.12][5.13][5.14]. The 

Lanczos method is quite appealing for large systems since it furnishes the whole 

excitation spectrum, at variance with Davidson diagonalization which is limited to the 

lower part of the spectrum. A third very recent scheme has been developed by Grimme 

and consists in a simplified Tamm Dancoff Approximation (TDA) [5.15] and TDDFT 

[5.16], while a linear-scaling TDDFT has been developed by Zuehlsdorff [5.17]. 

A very promising recent method for large systems is the TDDFT time-propagation 

with Transition Contribution Map (TCM) by Hakkinen [5.18], which has been 

employed to calculate the spectrum of clusters containing up to 314 gold atoms 

protected by ligands. Very recently, Nobusada has developed a massively parallel 

implementation of TDDFT based on real-time and real-space [5.19], which allowed to 

consider clusters containing up to 1414 gold atoms [5.20]. It is worth noting that each of 

these algorithms has its different pros and cons which must be taken into account. In 

particular, the Casida algorithm suffers for the already mentioned problem of extracting 

of a large number of eigenvalues, but it has the great advantage to allow a very detailed 

assignment of the spectral features in terms of one-electron (1h1p) excited 

configurations. On the other hand, the TDDFT algorithms based on the time-evolution 

allow the calculation of the spectrum on a wide energy range without any problem; 

however, they do not give information regarding the nature of the transitions involved 

in the spectral feature. The only possibility is the inspection of the first order perturbed 

density whose nature is useful for a qualitative description but the information gained is 
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too limited to allow a detailed assignment in terms of electronic transitions. At the 

moment, to the best of our knowledge, the only method which does not suffer energy 

limitation and is able to give a detailed assignment is the TDDFT time-propagation with 

TCM by Hakkinen [5.18]. 

Despite already Linear Response (LR) TDDFT implemented codes, it is worth 

mentioning also the subsystem formulation of LR-TDDFT [5.21][5.22], which is a very 

promising new idea for future applications on very large systems. 

Finally, it must be considered that also the development of highly parallel ab initio 

and density functional theory (DFT) codes like NWCHEM [5.23] is an alternative way 

to describe large systems with respect to the proposal of new TDDFT algorithms. This 

way appears very practical, thanks to availability of massively parallel supercomputers. 

In the present work, we propose a new TDDFT algorithm for the efficient calculation 

of photoabsorption spectra without the need of the diagonalization and therefore at any 

given energy. The necessary approximations introduced in the scheme can be safely 

kept under control. Moreover, the present algorithm allows a detailed analysis of the 

spectrum both in terms of 1h1p excited configuration which can be represented by TCM 

as well as in terms of the first order perturbed density. The method has been 

implemented within the ADF suite of codes and has been parallelized with standard 

Message Passing Interface (MPI); therefore, it is suitable to run on very large 

supercomputers. 

 

5.2 Theoretical method and implementation 

The first requirement of the new algorithm must be to avoid the diagonalization of 

the large 𝛺 matrix, which is the main bottleneck of most implementations. This can be 

formally obtained if the photoabsorption spectrum 𝜎(𝜔) is calculated point by point, 

from the imaginary part of the dynamical polarizability 𝛼(𝜔), 
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 𝜎(𝜔) =
4𝜋𝜔

𝑐
𝐼𝑚[𝛼(𝜔)] (5.2.1) 

This expression is of practical interest when the polarizability is calculated for 

complex frequency, i.e., 𝜔 = 𝜔𝑟 +  𝑖𝜔𝑖, where the real part 𝜔𝑟  is the scanned photon 

frequency (energy) and 𝜔𝑖  is the imaginary part which corresponds to a broadening of 

the discrete lines and can be interpreted as a pragmatic inclusion of the excited states 

finite lifetime. The introduction of a small imaginary part in the frequency is well 

established, for example, in the Lanczos method [5.11] and, more recently, in the 

damped response [5.24] formalism. This procedure introduces the arbitrary quantity 𝜔𝑖  

and prevents the analysis of the spectrum by discrete lines. This is not a problem when 

the excited state density is so high that the analysis state-by-state would be impractical. 

It will be shown in the following that it is possible to calculate efficiently the 

complex dynamical polarizability 𝛼(𝜔) introducing some approximations. First, let us 

start with the definition 

 𝛼𝑧𝑧(𝜔) = ∫ 𝜌𝑧
(1)

(𝜔, 𝑟̅)𝑧𝑑𝑟̅ (5.2.2) 

of the z-th diagonal term of the polarizability tensor, where 𝜌𝑧
(1)

(𝜔, 𝑟̅) stands for the 

Fourier component of the given frequency of the first order time dependent induced 

density by the external time dependent scalar potential. For the calculation of the 

spectrum, the isotropic part of the tensor is actually extracted from the trace: 𝛼(𝜔) =

1

3
∑ 𝛼𝑖𝑖(𝜔)3

𝑖=1 , where the index 𝑖 runs on the three components x, y, and z. 

Following the TDDFT theory, the induced density can be calculated from the 

dielectric susceptibility 𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′) of a reference system of non-interacting electrons 

under the effect of an effective perturbing potential 𝑉𝑆𝐶𝐹
𝑧 (𝜔, 𝑟̅) sum of the external 

potential plus the Coulomb and the exchange-correlation (XC) response potential. 
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This is summarized by the following coupled linear equations: 

 𝜌𝑧
(1)(𝜔, 𝑟̅) = ∫ 𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′)𝑉𝑆𝐶𝐹

𝑧 (𝜔, 𝑟̅′)𝑑𝑟̅′ (5.2.3) 

 
𝑉𝑆𝐶𝐹

𝑧 (𝜔, 𝑟̅) = 𝑉𝐸𝑋𝑇
𝑧 (𝜔, 𝑟̅) + ∫

𝜌𝑧
(1)(𝜔, 𝑟̅′)𝑑𝑟̅′

|𝑟̅ − 𝑟̅′|
+

𝜕𝑉𝑋𝐶

𝜕𝜌
|

𝜌0

𝜌𝑧
(1)(𝜔, 𝑟̅) (5.2.4) 

The Adiabatic Local Density Approximation (ALDA) [5.25] has been employed in 

expression (5.2.4) (XC kernel local in time and additionally also in space) and 

𝑉𝑆𝐶𝐹
𝑧 (𝜔, 𝑟̅) corresponds in practice to the z dipole component. The present 

implementation is limited to ALDA and possible extensions to gradient corrected 

kernels are not expected to give any problem; on the other hand, in the present 

formulation, it is not possible to employ non-local kernels from hybrid functionals, as 

also specified after Equation (5.2.24). 

Now, expressions (5.2.3) and (5.2.4) can be written in operatorial form 

 𝜌𝑧
(1)

= 𝜒𝐾𝑆𝑉𝑆𝐶𝐹
𝑧  (5.2.5) 

 𝑉𝑆𝐶𝐹
𝑧 = 𝑉𝐸𝑋𝑇

𝑧 + 𝐾𝜌𝑧
(1)

 (5.2.6) 

where in expression (5.2.6), K stands for the sum of the Coulomb and the XC 

kernels, 

 𝐾(𝑟̅, 𝑟̅′) = 𝐾𝐶(𝑟̅, 𝑟̅′) + 𝐾𝑋𝐶(𝑟̅, 𝑟̅′) =
1

|𝑟 − 𝑟′|
+ 𝛿(𝑟 − 𝑟′)

𝜕𝑉𝑋𝐶

𝜕𝜌
|

𝜌0

 (5.2.7) 
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Due to the linearity of (5.2.5) and (5.2.6), it is possible to eliminate 𝑉𝑆𝐶𝐹
𝑧  and to 

obtain an equation for 𝜌𝑧
(1)

, which reads as 

 [1 − 𝜒𝐾𝑆𝐾]𝜌𝑧
(1)

= 𝜒𝐾𝑆𝑉𝐸𝑋𝑇
𝑧  (5.2.8) 

Now, it is convenient to represent Equation (5.2.8) over a basis set and since the 

unknown term corresponds to the induced density, it is natural to choose the auxiliary 

density fitting functions 𝑓𝜇 as basis set. More precisely, it is even better to choose such 

basis as a subset of the fitting set, since the induced density will be affected mainly by 

valence orbitals so all the functions needed to fit the core density should be excluded 

without losing accuracy. This is true only when valence excitations are considered (like 

in the present work); if core electron excitations are considered, the algorithm remains 

valid, but the fitting functions must be selected in a different way, allowing flexibility in 

order to properly describe products between a core and a virtual orbital. With this 

representation 𝜌𝑧
(1)(𝜔, 𝑟̅) = ∑ 𝑓𝜇(𝑟̅)𝑏𝜇(𝜔)𝐾

𝜇 , the following non-homogeneous system of 

linear algebraic equations is obtained, which written in matrix formulation reads as 

 [𝑺 − 𝑴(𝝎)]𝒃 = 𝒅 (5.2.9) 

In Equation (5.2.9), 𝑺 is the overlap matrix between fitting functions, 𝒃 is the 

unknown vector with the expansion coefficients 𝑏𝜇(𝜔) of 𝜌𝑧
(1)

 , and 𝒅 is the frequency 

dependent vector corresponding to the known non-homogeneous term, whose 

components are 

 𝑑𝜇 = ⟨𝑓𝜇|𝜒𝐾𝑆(𝜔)|𝑧⟩ (5.2.10) 

and finally, the elements of the frequency dependent matrix 𝑴 are 
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 𝑀𝜇𝜈 = ⟨𝑓𝜇|𝜒𝐾𝑆(𝜔)𝐾|𝑓𝜈⟩ (5.2.11) 

Now, let us consider the computational effort needed to solve Equation (5.2.9): (i) 

the construction of the matrices 𝑺, 𝑴, and vector 𝒅 and (ii) the resolution of linear 

system (5.2.9). First, consider the resolution of the linear system: it will scale with N3 

where N is the dimension of the matrix corresponding to the number of the fitting 

functions. Although this part scales with the third power, it will be shown that the 

dimension N can be kept in practice rather low, for example, for Au atom, 44 functions 

are enough to give accurate results, so a cluster of 1000 Au atoms will give a matrix of 

dimension 44000, which is tractable with moderate efforts on a medium size computer 

cluster. This simple observation shows that as it concerns the linear system, the 

approach is competitive since it would allow to calculate much larger systems without 

the limitation of the Davidson algorithm, if a proper selection of the fit set is performed. 

Let us now analyse the effort needed to build the frequency dependent 𝑴(𝝎) matrix: 

apparently, this is a prohibitive task, since it should be repeated for each frequency. The 

original characteristic of the present new method is the introduction of a simple 

approximation which should enable the construction of 𝑴(𝝎) as a linear combination 

of frequency independent matrices 𝐺𝑘 with frequency dependent coefficients 𝑠𝑘(𝜔), 

with this expression, 

 𝑴(𝜔) = ∑ 𝑠𝑘(𝜔)𝑮𝑘

𝑘

 (5.2.12) 

with this idea, a set of matrices {𝑮𝑘} is calculated and stored only once at the 

beginning; then, the matrix 𝑴(𝜔) is calculated very rapidly at each photon energy ω. 

To justify expression (5.2.12), we start with the expression of the KS dielectric 

susceptibility [5.26], 
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𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′) = ∑ ∑ 𝜑𝑖(𝑟̅)𝜑𝑎(𝑟̅)
4𝜀𝑖𝑎

𝜔2 − 𝜀𝑖𝑎
2 𝜑𝑖(𝑟̅′)𝜑𝑎(𝑟̅′)

𝑁𝑣𝑖𝑟𝑡

𝑎

𝑁𝑜𝑐𝑐

𝑖

= ∑ ∑ Θ𝑖𝑎(𝑟̅)λ𝑖𝑎(𝜔)Θ𝑖𝑎(𝑟̅′)

𝑁𝑣𝑖𝑟𝑡

𝑎

𝑁𝑜𝑐𝑐

𝑖

 

(5.2.13) 

In (5.2.13) we have assumed real KS occupied (𝜑𝑖) and virtual (𝜑𝑎) orbitals while 

𝜀𝑖𝑎 = 𝜀𝑎 − 𝜀𝑖 are differences between virtual and occupied KS eigenvalues. Let us 

consider now carefully the right hand side of expression (5.2.13): the frequency 

dependence enters only in the λ𝑖𝑎(𝜔) factor, which is “almost” constant for all the 

pairs of index 𝑖 − and 𝑎 − for which 𝜀𝑎 − 𝜀𝑖 is almost constant. This happens when 

many 𝜀𝑖𝑎 are close together, that is, when the density of “zero order” excitation energies 

is high. This important observation allows to profitably change the double sum in 

expression (5.2.13). In fact, let us consider the distribution of all the 𝜀𝑖𝑎 on the 

excitation energy axis, like in Figure 5.1, and define an energy grid over this axis, 

starting from the minimum 𝜀𝑖𝑎 which corresponds to 𝜀𝐿𝑈𝑀𝑂 − 𝜀𝐻𝑂𝑀𝑂. The energy grid 

consists of P + 1 knots {𝐸𝑘}𝑘=1,…,𝑃+1 and P intervals are defined as 𝐼𝑘 = [𝐸𝑘, 𝐸𝑘+1), 𝑘 =

1, . . . , 𝑃. 
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Figure 5.1 Discretization of the energy axis to accommodate eigenvalue differences 

for the efficient calculation of the dielectric susceptibility. See text for details. 
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It is possible to change the double sum of previous Equation (5.2.13) as follows: 

 𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′) = ∑ ∑ Θ𝑖𝑎(𝑟̅)λ𝑖𝑎(𝜔)Θ𝑖𝑎(𝑟̅′)

𝜀𝑖𝑎∈𝐼𝑘

𝑃

𝑘=1

 (5.2.14) 

The advantage of this new double sum is that, if the energy knots are dense enough, 

the values of 𝜀𝑖𝑎  within each interval can be considered, with good approximation, 

almost constant and equal to the average 𝐸̅𝑖 =
𝐸𝑖+𝐸𝑖+1

2
: this allows to bring the λ𝑖𝑎(𝜔) 

factor outside the inner sum,  

 𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′) = ∑
4𝐸̅𝑘

𝜔2 − 𝐸̅𝑘
2 ∑ Θ𝑖𝑎(𝑟̅)Θ𝑖𝑎(𝑟̅′)

𝜀𝑖𝑎∈𝐼𝑘

𝑃

𝑘=1

 (5.2.15) 

so in expression (5.2.15), the frequency dependent dielectric susceptibility is a linear 

combination of frequency independent objects (the inner sum) while only the 

coefficients are frequency dependent. Moreover, if one is interested in the lowest part of 

the spectrum as it usually happens, the sum in (5.2.15) can be safely truncated at a 

maximum energy cutoff, which can be chosen checking the convergence of the results 

with respect to such energy cutoff. This re-summation is the central idea of the present 

algorithm and is quite general irrespective to the introduction of the auxiliary basis set 

for the density fitting. We will now use this approach to build the matrix 𝑴(𝜔). From 

Equation (5.2.11) and using expression (5.2.15), we get 

 𝑀𝜇𝜈 = ∑ 𝑠𝑘(𝜔) ∑ ⟨𝑓𝜇|Θ𝑖𝑎(𝑟̅)⟩⟨Θ𝑖𝑎(𝑟̅′)|𝐾|𝑓𝜈⟩

𝜀𝑖𝑎∈𝐼𝑘

𝑃

𝑘=1

= ∑ 𝑠𝑘(𝜔)𝐺𝜇𝜈
𝑘

𝑃

𝑘=1

 (5.2.16) 

Which, now justifies previous expression (5.2.12), defines the matrix 𝐺𝑘 and the 

coefficients, 
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 𝑠𝑘(𝜔) =
4𝐸̅𝑘

𝜔2 − 𝐸̅𝑘
2 (5.2.17) 

The construction of each 𝐺𝑘 matrix corresponds to a matrix-matrix product, 

 𝐺𝜇𝜈
𝑘 = ∑ ⟨𝑓𝜇|Θ𝑖𝑎(𝑟̅)⟩⟨Θ𝑖𝑎(𝑟̅′)|𝐾|𝑓𝜈⟩

𝜀𝑖𝑎∈𝐼𝑘

= ∑ 𝐴𝜇,𝑖𝑎
𝑘 𝐵𝑖𝑎,𝜈

𝑘

𝜀𝑖𝑎∈𝐼𝑘

  𝑮𝒌 = 𝑨𝒌𝑩𝒌 (5.2.18) 

The matrices 𝑨 and 𝑩 must be built, formally with the following expansions: 

 𝐴𝜇,𝑖𝑎
𝑘 = ⟨𝑓𝜇|𝜑𝑖𝜑𝑎⟩ = ∑ ⟨𝑓𝜇|𝜎𝜏⟩𝑐𝜎𝑖𝑐𝜏𝑎

𝑏𝑎𝑠𝑖𝑠

𝜎𝜏

 (5.2.19) 

in expression (5.2.19), 𝜎 and 𝜏 refer to orbital basis functions and 𝑐 are the molecular 

orbital expansion coefficients (KS eigenvectors). 

The calculation of (5.2.19) would be far prohibitive, but in ADF, a very efficient 

“pair fitting” technique has been already developed, so the run of the basis indexes is 

not free but limited so that at least one basis function lies on the same center of the fit 

function. This step is the most expensive in the matrix construction. In expression 

(5.2.19), the integrals between a fit function and two basis functions are already 

available in ADF between primitive (not symmetrized) functions. Actually, we have 

also implemented the calculation of the ⟨𝑓𝜇|𝜎𝜏⟩ integrals when the functions lie on three 

different centres. Since Slater type orbitals (STOs) functions are employed, these 

integrals are not analytical but can be easily calculated by fitting the products of two 

basis functions with the auxiliary density fitting functions. This does not change the 

dimension of Equation (5.2.9) but increases the computational effort to build matrix 𝑨𝒌 

(Equation (5.2.19)). However, we have noticed in preliminary test calculations that this 

does not change the results appreciably, and therefore, we have always neglected the 

⟨𝑓𝜇|𝜎𝜏⟩ integrals when the functions are on three different centres. 
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For the matrix 𝑩, the procedure is the same 

 
𝐵𝑖𝑎,𝜈

𝑘 = ⟨𝜑𝑖𝜑𝑎|
1

|𝑟̅′ − 𝑟̅′′|
|𝑓𝜈⟩ + ⟨𝜑𝑖𝜑𝑎|

𝜕𝑉𝑋𝐶

𝜕𝜌
|𝑓𝜈⟩ (5.2.20) 

The first term in (5.2.20) can be calculated using the Resolution of the Identity (RI), 

 

⟨𝜑𝑖𝜑𝑎|
1

|𝑟̅′ − 𝑟̅′′|
|𝑓𝜈⟩ = ∑⟨𝜑𝑖𝜑𝑎|𝑓𝛾⟩𝑆𝛾𝜂

−1 ⟨𝑓𝜂|
1

|𝑟̅′ − 𝑟̅′′|
|𝑓𝜈⟩

𝛾𝜂

= ((𝐴𝑘)+𝑆−1𝐹)𝑖𝑎,𝜈 

(5.2.21) 

where in (5.2.21), the matrix 𝐹 is defined as follows:  

 𝐹𝜇𝜈 = ⟨𝑓𝜇|
1

|𝑟̅′ − 𝑟̅′′|
|𝑓𝜈⟩ (5.2.22) 

The second term in (5.2.20) can be calculated in a similar fashion: 

 ⟨𝜑𝑖𝜑𝑎|
𝜕𝑉𝑋𝐶

𝜕𝜌
|𝑓𝜈⟩ = ∑⟨𝜑𝑖𝜑𝑎|𝑓𝛾⟩𝑆𝛾𝜂

−1 ⟨𝑓𝜂|
𝜕𝑉𝑋𝐶

𝜕𝜌
|𝑓𝜈⟩

𝛾𝜂

= ((𝐴𝑘)+𝑆−1𝑍)𝑖𝑎,𝜈 (5.2.23) 

and the matrix 𝑍 in (5.2.23) is defined as follows: 

 𝑍𝜇𝜈 = ⟨𝑓𝜇|
𝜕𝑉𝑋𝐶

𝜕𝜌
|𝑓𝜈⟩ (5.2.24) 

Equations (5.2.20), (5.2.23) and (5.2.24) are limited to ALDA and cannot be used in 

the present formulation for non-local kernels.  

Therefore, from (5.2.20),(5.2.21) and (5.2.23), we get 
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 𝐵𝑘 = (𝐴𝑘)+𝑆−1(𝐹 + 𝑍) (5.2.25) 

Finally, from Equations (5.2.18) and (5.2.25), 

 𝐺𝑘 = 𝐷𝑘𝐿 (5.2.26) 

where the following two new matrices are introduced: 

 𝐷𝑘 = 𝐴𝑘(𝐴𝑘)+ (5.2.27) 

 𝐿 = 𝑆−1(𝐹 + 𝑍) (5.2.28) 

In practice, all the integrals (Equations (5.2.20)-(5.2.23)) needed to calculate the 𝐺𝑘
 

matrices are already available in ADF, except the matrix 𝒁 (Eq. (5.2.24)) which has 

been implemented numerically. Then, each 𝐺𝑘
 matrix is calculated by expression 

(5.2.26). 

We have still to calculate the 𝒅 vector of Equation (5.2.10), i.e., the non-

homogeneous term of Equation (5.2.9). Taking advantage of previously described 

technique, it is straightforward that 

 

𝑑𝜇 = ⟨𝑓𝜇|𝜒𝐾𝑆(𝜔)|𝑧⟩ = ∑ 𝑠𝑘(𝜔) ∑ ⟨𝑓𝜇|Θ𝑖𝑎(𝑟̅)⟩⟨Θ𝑖𝑎(𝑟̅)|𝑧⟩

𝜀𝑖𝑎∈𝐼𝑘

𝑃

𝑘=1

= ∑ 𝑠𝑘(𝜔) ∑ 𝐴𝜇,𝑖𝑎
𝑘 ⟨𝜑𝑖|𝑧|𝜑𝑎⟩

𝜀𝑖𝑎∈𝐼𝑘

𝑃

𝑘=1

 

(5.2.29) 
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so vector 𝒅 is easily calculated at each frequency as a linear combination of 

frequency independent vectors, accessible from 𝑨 matrix and conventional dipole 

matrix elements. 

Finally, the complex dynamic polarizability components are calculated as 

 𝛼𝑧𝑧(𝜔) = ∫ 𝜌𝑧
(1)(𝜔, 𝑟̅)𝑧𝑑𝑟̅ = ∑ 𝑏𝜇 ∫ 𝑓𝜇𝑧𝑑𝑟̅

𝜇

= ∑ 𝑏𝜇𝑛𝜇

𝜇

 (5.2.30) 

the vector 𝑏 in (5.2.30) is the solution of Equation (5.2.9), and the elements of the n 

vector are integrals which are easily calculated analytically. 

This step concludes the calculation of the dynamic polarizability and therefore of the 

spectrum and furnished the first order TD density which can be used to analyze and 

rationalize the results. However, our goal is to get also a more complete analysis of the 

spectrum, namely, in terms of linear combination of one-electron excited configurations 

or in terms of Transition Contribution Maps (TCM) [5.18]. To obtain this, it is 

convenient adopt the Modified Sternheimer Approach (MSA) formulation [5.27] of 

linear response, which furnished the first order perturbation of the KS orbitals: 

 

[𝐻𝐾𝑆
0 − 𝜀𝑖 − 𝜔]𝜑𝑖

(1,−)
= −𝑉𝑆𝐶𝐹𝜑𝑖 

[𝐻𝐾𝑆
0 − 𝜀𝑖 + 𝜔]𝜑𝑖

(1,+)∗

= −𝑉𝑆𝐶𝐹𝜑𝑖 

(5.2.31) 

From the perturbed orbitals, the perturbed density is obtained as 

 𝜌(1) = 2 ∑ 𝜑𝑖 (𝜑𝑖
(1,−)

+ 𝜑𝑖
(1,+)∗

)

𝑜𝑐𝑐

𝑖

 (5.2.32) 

It is worth noting that, for convenience, the second inhomogeneous equations in 

(5.2.31) is actually the complex conjugate with respect to that reported in ref. [5.27] for 
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𝜑𝑖
(1,+)

. Equations (5.2.31) and (5.2.32) were used in the past to calculate self-

consistently the 𝑉𝑆𝐶𝐹 via Equation (5.2.6) in old TDDFT implementations 

[5.28][5.29][5.30], but in the present context, they are useful to easily get the analysis in 

terms of one-electron configurations. In fact, if the perturbed orbitals are expanded in 

terms of virtual KS orbitals, the term in brackets in Equation (5.2.31) is diagonal. 

Moreover, the 𝑉𝑆𝐶𝐹 is already available from Equations (5.2.9) and (5.2.6), so the 

following equations are obtained: 

 

[𝜀𝑎 − 𝜀𝑖 − 𝜔]𝑐𝑖
𝑎− = −⟨𝜑𝑎|𝑉𝑆𝐶𝐹|𝜑𝑖⟩ 

[𝜀𝑎 − 𝜀𝑖 + 𝜔]𝑐𝑖
𝑎+∗

= −⟨𝜑𝑎|𝑉𝑆𝐶𝐹|𝜑𝑖⟩ 

(5.2.33) 

The polarizability is then expressed by: 

 𝛼𝑧𝑧(𝜔) = 2 ∑ ∑⟨𝜑𝑖|𝑧|𝜑𝑎⟩(𝑐𝑖
𝑎+∗

+ 𝑐𝑖
𝑎−)

𝑣𝑖𝑟𝑡

𝑎

𝑜𝑐𝑐

𝑖

= ∑ ∑⟨𝜑𝑖|𝑧|𝜑𝑎⟩𝑃𝑖
𝑎

𝑣𝑖𝑟𝑡

𝑎

𝑜𝑐𝑐

𝑖

 (5.2.34) 

the density matrix (dipole amplitudes) 𝑃𝑖
𝑎 is introduced in (5.2.34). From equation 

(5.2.33) and using the definition of 𝑠𝑘(𝜔) (Equation (5.2.18)), we obtain: 

 𝑃𝑖
𝑎 = 𝑠𝑘(𝜔)⟨𝜑𝑖|𝑉𝑆𝐶𝐹|𝜑𝑎⟩ (5.2.35) 

In practice, the absorption spectrum is obtained from imaginary part of Equation 

(5.2.34) (like in expression (5.2.30)), and therefore, the analysis in term of one-electron 

excited configurations and TCM is obtained from imaginary part of expression (5.2.35). 

Using Equations (5.2.6) and (5.2.28), dipole amplitudes are actually calculated as 

follows: 
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 𝑃𝑖
𝑎 = 𝑠𝑘(𝜔) [⟨𝜑𝑖|𝑧|𝜑𝑎⟩ + ∑(𝐴𝑘)𝑖𝑎,𝜇

+ 𝐿𝜇𝜏𝑏𝜏

𝑓𝑖𝑡

𝜇𝜏

] (5.2.36) 

 

5.3 Computational Details 

The method has been implemented in a local version of the ADF code, and more 

precisely, ADF has been modified in order to save on external files, all the needed 

integrals, and matrix elements, which were already calculated by ADF with the only 

exception of matrix Z (Equation (5.2.24)); this matrix has been implemented by the 

Gaussian numerical integration scheme of ADF. Then, a new program (independent by 

ADF) reads the files, builds all the needed matrices, solves TDDFT equation (5.2.9), 

calculates the spectrum, and performs the analysis. We have decided to implement the 

new code in a separate program independent by ADF in order to exploit more easily the 

parallelization, with the goal to obtain a code which was massively parallel and easily 

portable on different architectures. For this reason, we have used standard MPI and 

ScaLAPACK libraries. However, the inclusion of the complete program within ADF is 

under consideration and will be available in a future release of ADF. 

In all calculations, we have employed the LB94 exchange-correlation model 

potential [5.31] to obtain the KS orbitals and eigenvalues from the KS equations, while 

the exchange-correlation kernel is approximated by ALDA [5.25] in the TDDFT part 

taking the derivative of the Vosko Wilk Nusair (VWN) [5.32] LDA XC potential. The 

basis sets employed consist of STOs included in the ADF database, as well as the 

auxiliary density fitting functions. The new program allows a simple choice of a subset 

of the ADF fitting functions, in order to save computer time when some fitting functions 

are not necessary for an accurate description of the photoabsorption spectrum. The 

strategy to choose a properly reduced fitting subset consists to perform some 

preliminary TDDFT test calculations on simple systems (for example, diatomic 
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molecules) increasing gradually the number of fit functions. Typically, this procedure 

converges rather rapidly, giving calculated spectra that match better and better with that 

obtained with a standard TDDFT calculation by ADF. When a good match is obtained, 

the fitting subset of the corresponding atoms can be used for more complex or larger 

systems, as it will be shown in details in Sec. 5.4. 

Equation (5.2.9) must be solved for each non-equivalent dipole component with the 

constraint that the integral of the induced density 𝜌(1) must be zero over space due to 

the orthogonality of occupied-virtual orbitals. This condition is naturally satisfied when 

the dipole component is not totally symmetric; on the other hand, when the system 

symmetry is low and one or more dipole components are totally symmetric, such 

constraint can be easily imposed by Lagrange multipliers after Equation (5.2.9) is 

solved. Most of the computational effort is spent in the resolution of complex algebraic 

linear system (5.2.9), which is managed by ScaLAPACK parallel library and should be 

portable on very large supercomputers. 

While the ADF code fully exploits symmetry, this is only partially done in the 

present method: the density fitting basis functions are not symmetrised by now; 

however, only the pairs of occupied (𝜑𝑖) and virtual (𝜑𝑎) orbitals involved in allowed 

dipole selection rules are actually considered. 

We have implemented the plasmon analysis in the present method according to Jacob 

et al. [5.33]: they suggested to study the evolution of the TDDFT photoabsorption 

spectra by changing a scaling factor 0 ≤  𝜆 ≤  1 used to “turn on” the coupling matrix 

𝐾. This can be easily done in present implementation multiplying the matrix 𝐿 

(Equation (5.2.28)) by the scaling factor 𝜆. This scaling factor analysis has proven 

successful in previous studies on silver chains [5.34] and polyacenes [5.35]. 

It is worth noting that the dynamic polarizability and therefore the spectrum can be in 

principle calculated equivalently by expression (5.2.30) or (5.2.34); however, we have 

found that expression (5.2.34) is much more accurate and less demanding in terms of 

density fitting size. This is not surprising since the dipole integrals in expression 
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(5.2.34) are analytical while expression (5.2.30) requires a fitting able to accurately fit 

the occupied-virtual orbital product. For this reason, all the spectra reported in this work 

have been calculated with expression (5.2.34). 

 

5.4 Results and Discussion 

We have tested the performance of the new TDDFT algorithm implemented in this 

work, on a series of small but rather different systems (diatomic H2, Na2 Au2, and 

triatomic H2O) and finally on two rather large gold clusters Au86 [5.36] and [Au147]
- 

[5.37]. The goal is to achieve a firm assessment of the accuracy of the method on small 

systems as well as of an accurate choice of the density fitting set. Finally, the large 

metal clusters have been selected since they have been already treated by standard 

TDDFT and offer therefore a good chance to compare the performances of the new 

method and test its numerical economy. It must be considered that the program is now 

installed only on a small HP ProLiant ML350p Gen8 server (with 16 cores Intel® Xeon® 

CPU E5-2650 2 GHz), on which the present calculations were run. The porting to a 

supercomputer and therefore the applications to much larger systems will be considered 

as the next step of a future work. 

 

5.4.1 H2 

In Figure 5.2, we have reported the TDDFT photoabsorption spectrum of H2 with 

the polarization along the bond, calculated by ADF and by present method employing a 

DZ basis set. An interatomic distance of 0.7414Å has been used. The photoabsorption 

corresponds to the 1𝜎𝑔 → 1𝜎𝑢 valence transition. In order to have an easier comparison 

between the results of the two algorithms, the discrete lines obtained by ADF have been 

convoluted by Lorentzian functions with Half-Width Half Maximum (HWHM) η = 

0.3eV according to the following expression: 
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 𝑓(𝜔) = ∑
𝜂2𝑓𝐼

(𝜔 − 𝜔𝐼)2 + 𝜂2

𝑁

𝐼

 (5.4.1) 

𝜔𝐼  and 𝑓𝐼  in (5.4.1) are the excitation energies and oscillator strengths, respectively, 

while the presence of 𝜂2
 in the numerator guarantees that the maximum of the 

Lorentzian for 𝜔 = 𝜔𝐼  corresponds to the value of 𝑓𝐼  when only one line is present. For 

the new algorithm, the imaginary part of the polarizability is calculated by Equation 

(5.2.34) for complex photon energy and in Figure 5.2, the plotted curves correspond to 

 𝑓(𝜔𝑟) =
2𝜔𝑟𝜔𝑖

3
𝐼𝑚[𝛼(𝜔)] (5.4.2) 

𝜔𝑟  and 𝜔𝑖 in (5.4.2) are the real and the imaginary part of the photon energy, 

respectively, and it must also be 𝜔𝑖 = 𝜂 in order to have the same convolution as in 

ADF. 

An excellent agreement between the two methods emerges from the figure. Four 

different curves have been obtained with the new algorithm employing different 

reduced density fitting sets in the TDDFT part. The ADF DZ density fitting set of H 

consists of 4s, 3p, 2d, 1f, and 1g Slater functions (39 in total), which is much larger than 

needed; in fact, the absorption is well described already with only 2 s fitting functions, 

with an error in the energy of the maximum of only 0.12 eV. The match is excellent 

with 4 s fitting functions both for energy and intensity. Already at this level, it is evident 

that fitting set can be strongly reduced with respect to the original one. 

To check the algorithm performance also for the real part of the dynamic 

polarizability, the comparison with ADF is reported in Figure 5.3. The agreement is 

excellent and the new algorithm is very accurate to reproduce quantitatively the 

behaviour of the polarizability with only 4 s density fitting functions. 
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Figure 5.2 Calculated TDDFT valence photoabsorption spectra of H2 for 

polarization along the bond (Z direction). ADF results compared with present 

algorithm with various choices for the auxiliary basis for the density fitting. 

Figure 5.3 Calculated TDDFT real part of the dynamical polarizability of H2 for 

polarization along the bond (Z direction). ADF results (circles) compared with present 

algorithm (solid line). 
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5.4.2 Na2 

H2 is a very simple molecule, so it is important to test the algorithm on systems 

which become more and more complex in order to gradually identify possible pitfalls of 

the method and to get acquainted with its performances. In this respect, Na2 is 

interesting because both s and p atomic functions are important to describe valence 

molecular orbitals; moreover, we have employed a DZP basis set in order to include 

also d functions in the calculation. An interatomic distance of 2.9997Å has been used. 

The original density fitting set of ADF for Na consists of 88 functions (14s 7p 6d 2f 1g); 

after some preliminary test calculations, we have identified a much smaller set (7s 5p) 

containing only 22 functions which has been employed in the TDDFT calculation for 

Na2 with the new algorithm. 

The photoabsorption of Na2 is considered in Figure 5.4, with convolution 𝜔𝑖 = 𝜂 =

0.15eV and bond direction along the Z axis: the upper panel considers the 

photoabsorption with parallel polarization (along Z) and the lower panel with 

perpendicular polarization (along X). Taking into account, the electronic structure of 

Na2, 

 (1𝜎𝑔)2(1𝜎𝑢)2(2𝜎𝑔)2(2𝜎𝑢)2(3𝜎𝑔)2(3𝜎𝑢)2(1𝜋𝑢)4(1𝜋𝑔)4(4𝜎𝑔)2(4𝜎𝑢)0(2𝜋𝑢)0  

the absorption with X polarization at 3.38 eV is ascribed to the 4𝜎𝑔 → 2𝜋𝑢 transition 

while the other one with Z polarization at 2.35 eV is ascribed to the 4𝜎𝑔 → 4𝜎𝑢 

transition. The match of the new algorithm with ADF is quantitative even with a fitting 

set which is 4 times smaller than the original one. 

 

 

 

 



125 

 

  

Na
2
 x 

E (eV)

0 1 2 3 4 5 6

f

0.0

0.2

0.4

0.6

Fig. 4

1 2 3 4 5

f

0.0

0.2

0.4

0.6 Na
2
 z

Figure 5.4 Calculated TDDFT valence photoabsorption spectra of Na2 for 

polarization along the bond (Z direction, upper panel) and perpendicular to the bond (X 

direction, lower panel). ADF results (black lines) compared with present algorithm 

(blue line). 
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5.4.3 Au2 

We have considered gold dimer for two reasons: first its spectrum is quite 

complicated, with many transitions involving mixing of several one-electron excited 

configurations. The valence molecular orbitals are contributed by functions up to 4f and 

the density fitting set is quite rich, so its reduction must be carefully tested. Second, 

gold clusters are expected to be one of the most important applications of the present 

method in future works; therefore, it is very important to properly assess and to validate 

a robust choice of the density fitting for Au atom to be employed on larger systems. 

The calculations have been performed at scalar relativistic level with Zero Order 

Relativistic Approximation (ZORA). The interatomic distance of 2.47Å has been 

employed, and both DZ and TZ2P basis sets (with frozen core up to Au 4f) have been 

tested. The photoabsorption of Au2 calculated with the DZ basis set is considered in 

Figure 5.5, with convolution 𝜔𝑖 = 𝜂 = 0.30𝑒𝑉: the upper panel shows the 

photoabsorption with polarization parallel (Z) to the bond direction and the lower panel 

with perpendicular (X) polarization. The corresponding transitions calculated by ADF 

have been reported in Table 5.1, together with their nature in terms of one-electron 

excited configurations. For the new algorithm, the density fitting set has been reduced to 

5s 4p 4d 1f for a total of 44 functions, with respect to the original set of 25s 15p 12d 8f 

7g for a total of 249 functions, with a reduction of almost a factor of 6. Starting with the 

Z dipole absorption spectrum (𝛴𝑢 transitions), the most intense line is found at 8.50 eV; 

its nature consists in a mixing of two configurations: 62% 8𝜋𝑔 → 9𝜋𝑢 and 17% 14𝜎𝑔 →

9𝜋𝑢, and the molecular orbitals involved are contributed by Au 5d and Au 6p for the 

initial and final states, respectively. The new algorithm simulates very well the ADF 

results in terms of intensity, although the excitation energy is underestimated by 0.2 eV. 

The other two transitions at lower energy are very well described in terms of excitation 

energy; the only observed discrepancy is a slight intensity overestimate of the band at 

3.23 eV. Similar agreement is found for the X dipole component (subspecies of 𝛱𝑢 

transitions), with only minor discrepancies in the intensity for the weaker transition at 
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7.30 eV and in the excitation energy of the transition at 11.40 eV an error of only 0.1 

eV. 
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Fig. 5
Figure 5.5 Calculated TDDFT valence photoabsorption spectra of Au2 for 

polarization along the bond (Z direction, upper panel) and perpendicular to the bond (X 

direction, lower panel) with DZ basis set. ADF results (black lines) compared with 

present algorithm (blue line). 
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Table 5.1 Relevant TDDFT dipole allowed excitations of Au2 (DZ basis set, LB94 

potential, and ZORA scalar relativistic) calculated by ADF. 

In Figure 5.6, the Z component has been calculated with the TZ2P basis set; a 

reduced density fitting set of 5s 4p 4d 1f 2g functions has been employed for the new 

algorithm. The quality of the agreement is comparable with that obtained with the DZ 

basis set, and it is worth noting that the main effect of an enlarged basis set in the ADF 

calculations consists in a shift to lower energy (by 0.5 eV at most) and a moderate 

intensity reduction. Both of them are very well reproduced by the new algorithm as 

well. 

As a general statement, we can say that the new TDDFT complex polarizability 

algorithm performs very well on Au2 if compared with the standard TDDFT Casida 

implementation of ADF, with expected deviations limited to few tenths of eV for the 

    

Transition E (eV) f assignment 

    

    

1u 3.23 0.157 100% 14g  (86% 6s 14% 5dz2 )  14u (78% 6s 18% 6pz) 

3u 6.21 0.165 78% 13g (85% 5dz2 14% 6s)  14u  

7u 8.50 1.299 62% 8g (100% 5dxz)   9u (100% 6px,y ) 

17% 13u (99% 5dz2 )  15g (95% 6pz ) 

    

2u 7.30 0.097 69% 14g   9u  

28% 4g (100% 5dxy,x2-y2) 9u 

4u 8.22 0.174 62% 4g (100% 5dxy,x2-y2) 9u  

17% 14g   9u  

9u 11.40 1.241 44% 4u (100% 5dxy,x2-y2) 9g (98% 6px,y ) 

20% 13u 99z2 (99% 5dz2) 9g (98% 6px,y )  

12u 15.87 0.204 98% 8g    16u (84% 6pz ) 
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excitation energies and robust intensity reproduction and with modest deviations found 

for the weaker transitions. 

 

5.4.4 H2O 

Water molecule has been calculated at DZP level. The absorption spectrum for both 

Y direction (in the molecular plane) and Z direction (C2 axis) is considered in Figure 

5.7, with convolution 𝜔𝑖 = 𝜂 = 0.30 𝑒𝑉. The original density fitting auxiliary basis set 

for O atom, consisting of 68 functions (10s 5p 4d 2f 1g), has been reduced to 24 

functions (2s 4p 2d) while for H atom; the original set of 39 functions (4s 3p 2d 1f 1g) 

has been reduced to 5 functions (2s 1p). Two transitions are found when the polarization 

is along Y (𝑏2), a weaker one at 12.63 eV ascribed to a 100% 3𝑎1 → 2𝑏2 transition, and 

Figure 5.6 Calculated TDDFT valence photoabsorption spectra of Au2 for 

polarization along the bond (Z direction) with TZ2P basis set. ADF results (black lines) 

compared with present algorithm (blue line). 
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a stronger one at 14.08 eV (100% 1𝑏2 → 4𝑎1). The spectrum calculated by complex 

polarizability algorithm is in good agreement with ADF for both transition energy (with 

deviations around 0.1 eV) and intensity; only for the weaker transition, the intensity 

appears slightly overestimated. When the Z dipole component is considered, a single 

transition is found at 10.24 eV assigned as a 100% 3𝑎1 → 4𝑎1 excitation; this time the 

new algorithm overestimates the transition energy by 0.15 eV and the intensity by 10%. 

The discrepancies with respect to ADF are limited to 0.15 eV also for H2O, and 

therefore, they are of the same size as found for previous biatomic systems. 

 

 

 

H
2
O z 

E (eV)

8 9 10 11 12

f

0.00

0.05

0.10

H
2
O y 

13 14 15

f

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 7

Figure 5.7 Calculated TDDFT valence photoabsorption spectra of H2O for 

polarization along the Y (upper panel) and Z (lower panel) directions. ADF results 

(black lines) compared with present algorithm (blue line). 
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5.4.5 Au86 

Since, up to now, the complex polarizability algorithm has been validated on simple 

small systems of different nature comparing individual transitions with respect to ADF, 

it is now necessary to assess its performances in terms of accuracy and computational 

economy also on larger systems, which we expect should represent the target of its 

future applications. We have taken into account first the Au86 gold nanowire, which has 

been already considered in our previous work, employing a DZ basis set and LB94 

exchange correlation potential and displays a strong longitudinal plasmon around 2.35 

eV [5.37]. Plasmons are photoabsorption features which start to appear when the metal 

(typically gold or silver) cluster size is beyond 2 nm for gold and are associated to free 

(collective) oscillations of the conduction band electrons and give rise to the so-called 

Surface Plasmon Resonance (SPR). Note that the longitudinal size of Au86 is 2.59 nm. 

In Figure 5.8, the calculated spectra with both ADF and complex polarizability 

methods are compared: the new algorithm performs very well and the maximum 

absorbance at 2.35 eV is quantitatively reproduced. Moreover, it allows to calculate the 

spectrum at higher energy. In the figure, we have reported the photoabsorption up to 5 

eV calculated truncating the expression of Equation (5.2.15) with an energy cutoff of 7 

eV, a value which is high enough to display the opening of the deeper excitations 

arising from the Au 5d band, which start to show up around 4.5 eV. In the inset of the 

upper panel, we reported a sketch of an isosurface of the imaginary part of the perturbed 

density, calculated from the 𝒃 vector solution of Equation (5.2.8) at 2.35 eV: the dipolar 

shape is indicative of a typical plasmonic behaviour. Its nature can be further analysed 

by means of the TCM plot reported in the lower panel of Figure 5.8: the “spots” are 

indicative of contribution from one-electron configuration associated with a pair of 

orbital energies (occupied on the X axis (𝜀𝑖) and virtual on the Y axis(𝜀𝑎)). The solid 

black diagonal line corresponds to an eigenvalue difference equal to the excitation 

energy (2.35 eV) while the dashed black diagonal line corresponds to the maximum 

(cutoff) energy of 7 eV presently considered in sum (5.2.15), corresponding to the EP+1 

knot in Figure 5.1. In order to properly discuss TCM and extract maximum information 

from it, it is useful to analyze the KS electronic structure of such cluster: the Fermi 
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energy is at -10.02 eV, and the s band lies in the interval from -11 to -10 eV, while the d 

band is mainly located below -12 eV for occupied orbitals, while virtual orbitals are all 

mixed 6s-6p, with 6p contribution gradually increasing with energy. The maximum 

contribution to the absorption is given by intra-band 6s → 6s 6p transitions, in line with 

strong plasmonic behaviour, while the 5d → 6s 6p contribution is very low. It is well 

known that the plasmon intensity of gold is screened by intra-band 5d → 6s 6p response 

[5.18], such screening is weak in present case, and therefore, the plasmon gains 

intensity and appears rather strong. The TCM analysis is also very useful since it shows 

that the contributions from energy configurations decrease rapidly as the difference 

between the occupied-virtual eigenvalues moves away from the excitation energy (solid 

line), so the cutoff at 7 eV is justified a posteriori. Of course, if one would be interested 

to analyse the spectrum also above the plasmon, such cutoff should be shifted at higher 

and higher energy. However, the TCM analysis allows easily to check if the cutoff has 

been properly chosen or needs to be further shifted at higher energy. It is worth noting 

that if very high excitation energy were considered, a lower cutoff would be chosen as 

well, for example, in the case of core electron excitations [5.38].  
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Figure 5.8 Calculated TDDFT valence photoabsorption spectra of Au86 for 

polarization along the longitudinal direction (upper panel). ADF results (black lines) 

compared with present algorithm (blue line), inset: imaginary induced density at 2.35 

eV. Lower panel: TCM analysis at 2.35 eV, x and y axes refer to occupied and virtual 

eigenvalues, respectively. 
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5.4.6 [Au147]- 

In Au86, the plasmon is very strong because the long longitudinal cluster size (2.59 

nm) allows the collective effects to be prevailing with respect to the screening of the Au 

5d band. However, if the cluster is larger but more spherical, the plasmon is less easy to 

be identified, due to its lower intensity and also because it is overwhelmed by the very 

intense 5d → 6s 6p interband transitions. For this reason, we have considered the 

[Au147]
- cluster in a previous study [5.37], whose structure was optimized starting by 

from an icosahedral symmetry with a D5d symmetry constraint, the relaxed structure 

was only slightly distorted with respect to Ih. The negative charge is chosen in order to 

have a closed-shell electronic structure. Due to the relaxed reduced D5d symmetry 

constraint, the dipole allowed symmetries are A2u and E1u and the absorption spectrum 

is their sum. Since we are interested to compare the present complex polarizability 

algorithm with respect to ADF, we have limited the analysis to the A2u symmetry alone; 

since for such representation, it is possible to extract safely 300 roots up to 3.78 eV, 

while for the E1u one, it has proven impossible to reach such excitation energy due to 

the already mentioned problems of the Davidson algorithm. The results concerning the 

only A2u dipole component are reported in Figure 5.9; it is worth noting that all the 

spectral features calculated by ADF (in particular the maximum at 3.45 eV) are very 

well reproduced by the new algorithm in terms of excitation energy, while the intensity 

is overestimated by a factor of two. It is worth noting, however, that the complex 

polarizability includes excitations up to 7 eV, so we attribute the disagreement to a kind 

of “background” intensity deriving from the “tail” of the higher energy excitations, 

which is correctly included in the complex polarizability but is missing in ADF. In this 

case, we have also tested if the calculation of the ⟨𝑓𝜇|𝜎𝜏⟩ three centres integrals of 

Equation (5.2.19) would have improved the agreement between ADF and the new 

complex polarizability algorithm. However, also in this case, the contribution of the 

three centres integrals has proven irrelevant, so this approximation is not the origin of 

the found disagreement. The inset in the upper panel refers to the induced density 

calculated at the photon energy of the maximum. Also in this case, a typical dipolar 

shape is obtained, as expected for a SPR. In general, it is not easy to identify, with other 
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computational schemes, a weak spectral feature like the present one at 3.45 eV over a 

monotonic increasing background, since it may happen that the resonant intensity is 

washed up and becomes confused with the background. For example, the truncated 

octahedral Au140 cluster did not show any feature at TDDFT level calculated with a 

time-evolution algorithm, although a weak plasmon would have been expected [5.9]. 

In the lower panel of Figure 5.9, the TCM analysis is reported, performed at a 

photon energy of 3.45 eV which corresponds to the maximum of absorption. In this 

case, the Fermi energy is at -7.90 eV, the Au 6s band lies between -9 and -8 eV, and the 

Au 5d lies between -10 eV and -12 eV for occupied orbitals while virtual orbitals are all 

of mixed 6s-6p nature. This time, the leading contributions come from the intra-band 

Au 5d → Au 6s 6p configurations (around -11 eV in the occupied eigenvalues scale) 

and from the Au 6s → Au 6s 6p ones (around -8 eV in the occupied orbital scale), both 

of them are placed very near to the diagonal corresponding to the eigenvalue difference 

equal to 3.45 eV. At variance with Au86, in [Au147]
-, the plasmon appears damped by the 

strong screening from the intra-band Au 5d → Au 6s 6p response. Such TCM analysis 

is consistent with the ADF one: such comparison is relatively easy in this case because 

in ADF there are two lines at 3.37 eV and 3.47 eV which are much more intense than 

the other ones, so analysis can be restricted only to these lines. In other circumstances, 

namely, when one band corresponds to the convolution of many transitions of 

comparable intensity, TCM is much more convenient, since it can be performed by just 

taking the excitation energy of the maximum. On the other hand, in ADF, such situation 

would be almost impracticable, since one should analyse one by one, all the transitions 

which lie in the energy interval centred on the band maximum with wideness 

comparable to the FWHM employed for the convolution.  
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Figure 5.9 Calculated TDDFT valence photoabsorption spectra of D5d [Au147]
- for 

polarization along the C5 axis (A2u dipole component). ADF results (black lines) 

compared with present algorithm (blue line), inset: imaginary induced density at 3.45 

eV. Lower panel: TCM analysis at 3.45 eV, x and y axes refer to occupied and virtual 

eigenvalues, respectively. 
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The plasmonic nature of the absorption can be also investigated by means of the 

scaling factor method suggested by Jacob [5.33], which consists to follow the excitation 

energies evolution with respect to the scaling factor λ (as outlined in previous Sec. 5.3): 

plasmonic excitations are characterized by a strong sensitivity of the excitation energy 

with respect to λ. In Figure 5.10, we have reported such analysis for both Au86 and 

[Au147]
-, calculating the spectra with λ from 0 to 1 with step 0.2. The position of the 

maximum changes dramatically with respect to λ, in particular the maximum shifts to 

higher energy by 0.6 eV in [Au147]
- and by 0.4 eV in Au86 on going from λ = 0 to λ = 

0.2. Interestingly, the energy shift is followed by a strong intensity reduction for the 

former and by a substantial intensity conservation for the latter. Due to the Thomas-

Reiche-Kuhn (TRK) sum rule which states that the integral of oscillator strengths over 

the whole electronic spectrum must be equal to the number of electrons, we expect that 

the intensity for [Au147]
- will show up at higher energy. 
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Figure 5.10 Plasmon analysis according to Jacob. Upper panel: D5d [Au147]

- (A2u 

dipole component) and lower panel: Au86 longitudinal dipole component. Spectra 

calculated with present complex polarizability algorithm with different values of scaling 

factor parameter λ. 
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5.5 Conclusions 

In this work, we have developed and implemented a new algorithm within the ADF 

code, to solve the TDDFT equations in the space of the density fitting auxiliary basis 

set. The method extracts the spectrum from the imaginary part of the polarizability at 

any given photon energy, so the numerical part consists to solve a non-homogeneous 

system of linear algebraic equations, which can be managed by ScaLAPACK parallel 

library, avoiding the bottleneck of Davidson diagonalization. The original idea, which 

makes the present scheme very efficient, consists in the simplification of the double 

sum over occupied-virtual pairs in the definition of the dielectric susceptibility, 

allowing an easy calculation of such matrix as a linear combination of constant matrices 

with photon energy dependent coefficients. The method has been applied to very 

different systems in nature and size (from H2 to [Au147]
-) in order to gain a global 

sensitivity about its accuracy and efficiency. In all cases, the maximum deviations 

observed with respect to ADF are below 0.2 eV, making the present algorithm a well 

balanced compromise, sacrificing some accuracy in favour of the efficiency and the 

capability to calculate the spectrum up to high energy together with wide analysis 

possibilities. In fact, the new algorithm has the merit not only to calculate the spectrum 

at whichever photon energy (at variance with the Casida formulation) but also to allow a 

deep analysis of the results, in terms of TCM, Jacob plasmon scaling factor, and 

induced perturbation analysis, which have been all implemented. Further applications to 

large non symmetric metal clusters are under study. 

A possible extension of the method may include an automatic selection of the fitting 

functions, which must be done by the user at the moment. 

It is worth noting that, although the point symmetry group is only partially exploited 

in the present implementation, the computational effort needed to treat large gold 

clusters has proven to be even lower than by ADF, which exploits instead the full 

symmetry. Therefore, we expect that the present scheme would be very efficient to treat 

also large systems with low symmetry, a typical situation met for metal clusters 
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protected by ligands. In summary, we believe that the present method can represent a 

general and efficient way to apply TDDFT to very large systems, allowing specific 

applications on large metal clusters protected by ligands, which represents a rapidly 

developing field where theory can help to simulate optical properties of new materials 

and rationalize them in terms of electronic structure. 
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 We report the complete X-ray crystallographic structure as determined through 

single crystal X-ray diffraction and a thorough theoretical analysis of the green gold 

Au30(S-tBu)18. While the structure of Au30S(S-tBu)18 with 19 sulfur atoms has been 

reported, the crystal structure of Au30(S-tBu)18 without the μ3-sulfur has remained 

elusive until now, though matrix-assisted laser desorption ionization mass spectrometry 

(MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) data 

unequivocally shows its presence in abundance. The Au30(S-tBu)18 nanomolecule is not 

only distinct in its crystal structure but has unique temperature dependent optical 

properties. Structure determination allows a rigorous comparison and an excellent 

agreement with theoretical predictions of structure, stability, and optical response. 

 

6.1 Introduction 

 Gold-thiolate nanomolecules, Aun(SR)m are compounds with a fixed number n of 

gold atoms which are stabilized by passivating organic thiolate ligands m [6.1]. For 
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instance, Au25(SR)18
−1,0, Au38(SR)24, and Au144(SR)60, are some of the most commonly 

studied nanomolecules, with size dependent and unique chemical and physical 

characteristics [6.2][6.3][6.4][6.5]. Griffin and coworkers and others showed that self-

assembled monolayers on a Au (111) substrate with mixed tert-butanethiol and n-

octadecanethiol ligands were prepared, revealed less-densly packed monolayers (SAMs) 

with increasing amount of tert-butanethiol, demonstrating that the bulkiness of the 

thiolate ligand modifies the packings of the SAMs [6.6]. Less common nanomolecules 

such as Au30, Au39, Au41, Au65 and other clusters, have in fact been reported 

[6.7][6.8][6.9][6.10][6.11][6.12], synthesized using sterically hindered bulky ligands. 

Aromatic thiolate ligands have also been shown to lead to uncommon altered cluster 

sizes [6.13][6.14][6.15][6.16]. Aromatic thiols introduce an additional complication as 

aromaticity and bulkiness are coupled in an intricate way, so that it is not possible to 

attribute the changes in geometric and electronic structure to bulkiness only. Because of 

this complex panorama, structural and geometric studies are highly reliant on the 

identification of crystallographic structure of the nanomolecules. 

 In this study we follow this line of research. We focus on a specific compound: 

Au30(S-tBu)18, which had been identified so far only through mass spectrometry 

(MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) [6.9] but whose 

crystallographic structure had remained elusive until now, and determine its 

crystallographic data. Its properties can so be thoroughly compared with that of a 

homologous Au30S(S-tBu)18 compound, whose structure had been previously reported 

[6.10], thus providing an in-depth analysis on the composition, electronic, optical, and 

chiroptical properties. In addition to reporting the first crystallographic structure of the 

Au30(S-tBu)18 nanomolecule in two distinct packing structures, (space groups P21/n and 

P-1), determined through the use of single crystal X-ray diffraction, we detail the unique 

temperature-dependent optical properties of Au30(S-tBu)18 and compare these optical 

properties with theoretical predictions obtained using time-dependent density-functional 

theory (TDDFT). 
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Figure 6.1 Single crystal XRD structure of Au30(S-tBu)18. (a) Total structure of 

Au30(S-tBu)18 (hydrogen atoms are omitted for clarity); (b) Au30 skeleton showing an 

interpenetrating bicuboctahedral core geometry; (c) Au30S18 geometry showing the two 

trimeric [-SR-Au-SR-Au-SR-Au-SR-] units, highlighted in the red boxes inset; (d) 

Au30S18 geometry showing the two monomeric [-SR-Au-SR-] units, highlighted in the 

red box as inset (carbon atoms are omitted in (c) and (d) for clarity); (e and f) the 

positions of the rest of the SR groups on the Au22 bicuboctahedral substructure. 
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6.2 Results and Discussion 

Au30(S-tBu)18 was synthesized in a one-pot THF method (see Experimental Section 

for details), and crystallization was performed via vapor / vapor diffusion of hexane into 

a toluene solution of Au30(S-tBu)18. Small green needle-like crystals were obtained after 

4-7 days. These needle-like crystals are different than the rhombic shaped plate-like 

crystals of Au30S(S-tBu)18.  

 

6.2.1 Experiment: Structure 

Figure 6.1.a presents the total structure of the bicuboctahedron Au30(S-tBu)18 

cluster, which crystallizes in the space group P21/n. The structure was refined to a 

resolution of 1.06 Å, and to value of R1 = 10.93%. Figure 6.1.b shows the Au30 

skeleton with an interpenetrating bicuboctahedral core. The geometry, shown in Figure 

6.1.c represents the Au-SR staples and bond structures of Au3(SR)4. Figure 6.1.d 

represents the Au30S18 geometry highlighting the two monomeric [-SR-Au-SR-] units. 

The structure of Au30(S-tBu)18 is an oblate configuration composed of a Au20 

polytetrahedral core with its tips symmetrically capped by two Au3(S-tBu)4 units and its 

central body wrapped by four Au(S-tBu)2 units and two S-tBu groups in bridge sites 

between two Au atoms, see Figure 6.1. A second synthesis resulted in a different 

crystal structure containing the same bicuboctahedron Au30(S-tBu)18 cluster. It 

crystallizes in the space group P-1 and refined to a resolution of 0.81 Å, and to a value 

of R1 = 5.26%. The local structure in the cluster is the same between the two structures; 

however, the P-1 structure contains more pronounced terminal S-Au-S disorder. The 

poor quality of the P21/n structure did not allow for anisotropic refinement of the carbon 

atoms in the t-butyl thiol groups. In both structures, the external solvent contents could 

not be identified and were removed utilizing the SQUEEZE [6.17] program as 

implemented in the program PLATON [6.18].  
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6.2.2 Experiment: optical spectroscopy 

UV-vis-NIR absorption response of Au30(S-tBu)18 is measured in 2-

metyltetrahydrofuran at predetermined temperatures upon equilibrating at each 

temperature for 3-5 minutes as shown in Figure 6.2.a. Temperature dependent optical 

absorption spectra of the nanomolecules showed increased absorption features, with no 

shift of absorption maxima, and well resolved new vibronic peaks at lower wavelengths 

(~300 to ~550) nm. Figure 6.2.b, absorption intensity spectra plotted against photon 

energy, shows ~ five distinct peaks in between 2.25 eV and 3.75 eV range and two new 

peaks in low energy region.  

 

6.2.3 Theory: structural analysis 

Local geometry relaxation employing density-functional theory (DFT) and the 

Perdew–Burke–Ernzerhof (PBE) exchange-correlation (xc-) functional [6.19] were 

performed on the crystallographic determined structural model of Au30(S-tBu)18, 

reporting the full Cartesian coordinates in the Supplementary Information. It is 

interesting to compare the Au30(S-tBu)18 atomistic arrangement here determined for the 

Figure 6.2 (a) Temperature-dependent UV-vis-NIR absorption spectra of Au30(S-

tBu)18 nanomolecules in 3-methyl-tetrahydrofuran solvent. (b) Temperature-dependent 

UV-vis-NIR Au30(S-tBu)18 nanomolecules plotted as photon energy where peaks marked 

by asterisk shows an instrumental artifact. 
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first time with that of the homologous Au30S(S-tBu)18 compound whose stoichiometry 

differs only by addition of a S atom, determined in previous work [6.10]. We recall that 

in the Au30(S-tBu)18 structure a Au20 oblate core is protected by two Au3(S-tBu)4 and 

four Au(S-tBu)2 units and two bridge S-tBu groups, see Figure 6.1. The insertion of an 

S anion on a hollow site of a Au3 facet provokes a local swelling of the coordination 

environment, with the added S anion-like species pushing away the S atoms of one 

Au3(S-tBu)4 unit, while the other atoms approximately preserve their configuration, as 

can be appreciated by comparing Figure 6.4.a and Figure 6.4.c (see especially the top 

part of the cluster). A previously proposed structural model of Au30(S-tBu)18 was 

obtained by erasing the added S atom in Au30S(S-tBu)18 and performing a local 

geometry relaxation [6.10], a procedure which has been reproduced here and leads to 

the structure shown in Figure 6.4.b. The local geometry relaxation maintains the 

swelling caused by the added S anion, so that in the structural model of Figure 6.4.b, 

one of the Au3(S-tBu)4 units is somewhat detached from the rest of the cluster. A more 

compact and thus energetically more favorable coordination (lower in energy by 0.39 

eV) is restored in the Au30(S-tBu)18 crystal structure illustrated in Figure 6.4.c, proving 

Figure 6.3 Theoretical UV-vis-NIR of Au30(S-tBu)18 and Au30S(S-tBu)18 

nanomolecules plotted as photon energy. 
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the structural fluxionality of these monolayer-protected systems. Knowledge of the 

correct structure improves the comparison of experimental and simulated optical 

absorption spectrum, vide infra.  

6.2.4 Theory: optical spectroscopy 

The optical absorption spectrum of Au30(S-tBu)18 was simulated via time-dependent 

DFT (TDDFT) using two different xc-functionals: B3LYP [6.20][6.21] and SAOP 

[6.22], see the Method section for more details. This allows us to compare the result of a 

hybrid (B3LYP) xc-functional and a semi-local Coulomb-corrected (SAOP) one, where 

a hybrid xc-functional is here employed to the best of our knowledge for the first time 

to predict the optical response of monolayer-protected clusters. In Figure 6.2.b the 

TDDFT/B3LYP spectrum is reported together with the experimental one. The 

agreement between experimental and simulated optical absorption spectra is excellent, 

and is here improved by the use of the correct structural model with respect to previous 

work, see Figure 6.4.a of ref. [6.10]. The intense peak at 2 eV in the experiment is 

predicted at 2.04 eV by theory, while minor features between 2.45 and 3 eV are also 

present which parallel the experimental ones in the same energy range. The 

TDDFT/SAOP spectrum is also reported in the Supplementary Information and 

compares well with both the TDDFT/B3LYP and experimental spectra. As the 

Figure 6.4 Schematic depiction of the clusters investigated in the present work: (a) 

Au30S(S-tBu)18 with an arrow highlighting the additional S atom; (b) Au30S(S-tBu)18 as 

obtained by a local relaxation of Au30S(S-tBu)18 after erasing the additional S atom; (c) 

Au30(S-tBu)18;. The methyl atoms are not shown for clarity of illustration. 
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TDDFT/B3LYP simulation is obtained by a real time propagation of the electronic 

density, an analysis of the excitation components is not possible. This is instead readily 

available via the TDDFT/SAOP approach. Focusing on the band around 2 eV, which is 

the counterpart of the experimental peak at 620 nm in Figure 6.2.a, we find that is 

contributed by many discrete transitions (see Figure S5 in the Supplementary 

Information), of which two are the most prominent:  

 one at 1.92 eV with main single-particle components: 42% 

HOMO→LUMO+2; 18% HOMO-3→LUMO ; 14% HOMO-4→LUMO 

 one at 1.98 eV with main single-particle components: 43% 

HOMO→LUMO+4; 22% HOMO-5→LUMO ; 12% HOMO→LUMO+2 

where HOMO is the Highest-Occupied Molecular Orbital and LUMO is the Lowest-

Unoccupied Molecular Orbital. The molecular orbitals involved in such transition are 

illustrated in Figure 6.5. It is interesting to note that : (i) the occupied orbitals display 

contribution from both gold and sulfur, while in the virtual orbitals the sulfur 

contribution is marginal (i.e., both excitations can be classified as transitions from the 

Au-S bonds to the Au 6s-6p conduction band), and (ii) the HOMO belongs essentially 

to the metal Au 6s band and therefore is very delocalized, whereas the other occupied 

orbitals are more located on the Au-S bonds, with the 5d contribution the largest one on 

the gold atom. 

 

6.3 Conclusions 

Determination of crystal structure of monolayer-protected gold clusters is a crucial 

step to achieve in-depth understanding and control of the properties and functionalities 

of this class of materials. In the present work we were able to determine the 

crystallographic structure of Au30(S-tBu)18, a compound exhibiting peculiar optical 

absorption in the visible region of the spectrum conferring it a characteristic color and 

making it a unique "green gold" species, whose structure had remained elusive until 
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now despite its presence in massive form had been demonstrated via mass spectrometric 

Figure 6.5 Plot of the orbitals mainly involved in the peak around 2 eV: (a) HOMO-

5; (b) HOMO-4; (c) HOMO-3; (d) HOMO; (e) LUMO; (f) LUMO+2; (g) LUMO+4. 

Red/orange and blue/light-blue, respectively, correspond to opposite signs of the wave 

function. Red/blue and orange/light-blue correspond to occupied and virtual orbitals, 

respectively. 
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techniques. Structure determination then allows us to pursue a stringent comparison 

between theory and experiment for this species, from which three major conclusions can 

be drawn: (i) a great structural fluxionality with the existence of low-energy, subtly 

different isomers, (ii) an extreme sensitivity of optical response to geometrical details, 

(iii) the possibility of achieving, through advanced computational tools, an excellent 

agreement between simulated and observed quantities. The present achievement opens 

the way to further investigations aimed at exploiting the unique optical features of this 

compound and tuning them to e.g. biochemical and opto-electronic applications. 

 

6.4 Experimental Section 

6.4.1 Materials 

Sodium borohydride (Acros, 99%), tertiary butylthiol (Acros, 99%), and trans-2-

[3[(4-tertbutyl-phenyl)-2-methyl-2-propenylidene] malononitrile (DCTB matrix) 

(Fluka≥99%) were purchased and used as received. HPLC grade solvents such as 

tetrahydrofuran, toluene, methanol, butylated hydroxytoluene stabilized tetrahydrofuran 

and acetonitrile were obtained from Fisher Scientific. 

 

6.4.2 Synthesis 

Au30(S-t-C4H9)18 nanomolecules were synthesized by reacting 0.1 g HAuCl4.3H2O to 

15 mL of HPLC grade THF. Followed by addition of 87 μL of HS-tBu (1:3 molar ratio) 

which was stirred at 450 rpm for 15 minutes. An excess of 12 mmols of NaBH4 0.113 g 

in 10 mL cold H2O was added. The reaction was stopped after 1 h then washed with a 

combination of 5 mL water and 40 mL MeOH, 3 times. ~The crude product 200 mg was 

combined with 1mL toluene and 1 mL HS-tBu. The mixture of excess thiol and crude 

nanomaterial were etched at 70 °C for 4 hrs. After etching the product, it was washed 

again with a combination of 5 mL water and 40 mL MeOH, 3 times. SEC (size 

exclusion chromatography) was performed in order to separate Au30(S-t-C4H9)18 from 
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the etched mixture SEC was repeated 3-4 times to achieve ~20 mg of pure Au30(S-t-

C4H9)18. 

 

6.4.3 Instrumentation 

Matrix assisted laser desorption time-of-flight (MALDI-TOF) mass spectrometer 

was used to acquire mass spectra with DCTB matrix on a Voyager DE PRO mass 

spectrometer. Compositional analysis was performed with electrospray ionization mass 

spectra (ESI-MS), collected from Waters Synapt HDMS using THF as the solvent. 

Temperature dependent UV-vis-NIR absorption measurements were collected with UV-

vis-NIR Cary 5000 and JANIS VNF-100 low temperature cryostat using 1-

methyltetrahydrofuran as the solvent and Lakeshore Cyotronics temperature controller 

was used for temperature-dependent absorption measurements. 

 

6.4.4 Single Crystal X-ray Diffraction 

Data for both Au30(S-t-Bu)18 structures (P21/n and P-1) were collected on beamline 

11.3.1 at the Advanced Light Source, Lawrence Berkeley National Laboratory. Samples 

were mounted on MiTeGen® kapton loops and placed in a 100(2) K nitrogen cold 

stream provided by an Oxford Cryostream 800 Plus low temperature apparatus on the 

goniometer head of a Bruker D8 diffractometer equipped with a PHOTON 100 CMOS 

detector operating in shutterless mode. Diffraction data were collected using 

synchrotron radiation monochromated using silicon(111) to wavelengths of 0.7293 and 

0.7749 Å, respectively. An approximate full sphere of data was collected using a 

combination of phi and omega scans with scan speeds of 1 second per 4 degrees for the 

phi scans, and 3 and 5 second per degree for the omega scans at 2theta = 0 and -45, 

respectively. Additional crystallographic information has been summarized in the SI. 

Full details can be found in the crystallographic information files provided in the 

Supplementary Information. 
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6.4.5 DFT calculations 

The optimized structure of the Au30(S-t-C4H9)18 complex was obtained starting from 

the experimentally determined geometry and performing a local relaxation. The Plane-

Wave QuantumEspresso software [6.23] was adopted in conjunction with ultra-soft 

pseudopotentials [6.24] and the PBE xc-functional. Values of 30 and 300 Rydberg were 

used as the cutoffs for the selection of the plane wave basis sets for describing the 

kinetic energy and the electronic density, respectively. One-electron levels were 

broadened using a Gaussian distribution with σ=0.002 Rydberg. 

 

6.4.6 TDDFT simulations 

The TDDFT/B3LYP absorption spectra are the result of a real-time time dependent 

DFT (RT-TDDFT) simulation, carried out with the CP2K package [6.25]. To reduce the 

computational effort, the CH3 groups of the tert-butyl moieties were replaced with 

hydrogen atoms. DVZP primary basis set [6.26], GTH pseudopotentials [6.27] and an 

auxiliary cpFIT3 basis set as described in Ref. [6.28] were employed in the calculations. 

Starting from a ground-state calculation, optical response is obtained by subjecting the 

system to electrical pulses (with a strength of 0.0005 a.u.) in each of the three Cartesian 

directions and using the time-evolution formalism to follow the electron dynamics. A 

total of 16.5 femtosec were sampled using a time step of 0.012 femtosec. A time 

damping of 7.3 femtosec was chosen to broaden the predicted spectrum. The 

TDDFT/SAOP spectra were calculated at the scalar relativistic ZORA [6.29]level, with 

the Amsterdam Density Functional (ADF) code [6.30][6.31] which solves the TDDFT 

equations with the Casida approach [6.32]. The basis set consists of all-electron Slater 

Type Orbitals (STO) of Triple Zeta plus Polarization (TZP) size for all the atoms, taken 

from the ADF ZORA database. SAOP exchange-correlation potential [6.22] was used, 

exhibiting a correct Coulombic asymptotic behavior. 200 lowest eigenvalues of the 

Casida matrix were extracted. The discrete transitions have been convoluted with 

Lorentzian functions of 0.15 eV of FWHM. 
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7 Efficient TDDFT photoabsorption of icosahedral 

silver and gold bare clusters containing up to 309 

atoms 

Oscar Baseggio, Martina De Vetta, Giovanna Fronzoni, Mauro Stener, Luca 

Sementa, Alessandro Fortunelli, Arrigo Calzolari 

 

We apply a recently developed time-dependent density-functional theory (TDDFT) 

algorithm based on the complex dynamical polarizability to calculate the 

photoabsorption spectrum of the following series of closed shell icosahedral clusters of 

increasing size (namely [M13]
5+, [M55]

3-, [M147]
- and [M309]

3+ with M = Ag, Au), 

focusing in particular on their plasmonic response. The new method is shown to be 

computationally very efficient: it simultaneously retains information on excited state 

wave function and provides a detailed analysis of the optical resonances, employing the 

Transition Contribution Map scheme. For silver clusters, a very intense plasmon 

resonance is found already for [Ag55]
3-, with a strong coupling among low-energy 

single-particle configurations. At variance, for gold clusters we do not find a single 

strong plasmonic peak, but rather many features of comparable intensity, with a partial 

plasmonic behavior present only for the lowest-energy transitions. Notably, we also find 

a much greater sensitivity of the optical response of Ag clusters with respect to Au 

clusters to cluster charge, exchange-correlation (xc-)functional, and basis set, as 

demonstrated via a detailed comparison between [Ag55]
q and [Au55]

q. The results of the 

TDDFT algorithm obtained with the complex dynamical polarizability are finally 

compared with those produced by alternative (real-time evolution or Lanczos) 

approaches, showing that – upon a proper choice of numerical parameters – an overall 

nearly quantitative agreement is achieved among all the considered approaches, in 

keeping with their fundamental equivalence. 
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7.1 Introduction 

The calculation of photoabsorption spectra for large molecules is nowadays 

considered as a standard task for quantum chemistry, and this has become possible 

thanks to the accuracy of the Time Dependent Density Functional Theory (TDDFT) 

formalism, which includes most of the physics of linear optical response phenomenon, 

as well as its efficient implementations in publicly available quantum chemistry codes. 

The most common way to tackle this problem in quantum chemistry consists firstly 

in solving the Kohn-Sham (KS) equations of Density Functional Theory (DFT) by 

expanding the molecular KS orbitals as linear combinations of atomic functions, and 

secondly to recast the TDDFT equations in a form involving the diagonalization of a 

matrix  according to the density matrix formulation of Casida [7.1]. In this scheme the 

TDDFT problem is reduced to the extraction of the lowest eigenvalues and eigenvectors 

of , a matrix whose dimension is the product of the number of occupied and virtual 

orbitals (Nocc  Nvirt) which can thus be huge for large systems. Such an approach has 

been implemented in many codes, like for example ADF [7.2][7.3][7.4], and can be 

made efficient by taking advantages of: (a) the point group molecular symmetry, (b) the 

Davidson diagonalization iterative algorithm which is well suited for very large 

matrices, (c) electron density fitting techniques through the use of auxiliary basis 

functions, and finally (d) massive parallelization. This scheme can be computationally 

feasible even on very large molecules (up to hundreds of atoms) provided one is 

interested only in the lowest part of the absorption spectrum. However, due to the 

intrinsic limitation of the Davidson algorithm, which becomes numerically unstable 

when too many eigenvalues are requested, the higher-energy part of the spectrum of 

large molecules is basically inaccessible. This situation is encountered for example in 

the calculation of the photoabsorption spectra of metal clusters which exhibit plasmonic 

behaviour, since the clusters are quite large and the plasmons lie at moderately high 

energy, so that the number of eigenvalues requested is too high to be practicable using 
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the Davidson algorithm. For this reason alternative approaches, based for example on 

real-time propagation of the wave function [7.5] or on Lanczos chains [7.6] have been 

considered as possible alternatives to the Casida scheme. These alternative schemes do 

not suffer of energy limitation issues in the calculation of the spectrum, but loose 

information on the excited state wave function and therefore cannot support very useful 

analysis tools which are naturally included in the Casida scheme. Such an analysis 

allows one to describe electron excitations as a linear combination of one-electron 

excited configurations and therefore gives a complete description of the photoabsorption 

spectrum in terms of electronic structure. To avoid the diagonalization bottleneck and 

simultaneously keep the useful analysis of excitations, recently a new TDDFT 

algorithm has been proposed [7.7] which extracts the spectrum from the calculation of 

the complex dynamical polarizability. In this approach the TDDFT equations are 

projected onto the density fitting auxiliary basis set and therefore the associated 

numerical problem is recast into the resolution of a non-homogeneous linear system 

with a dimension much smaller with respect to the Casida approach. The matrix 

dimension of such linear system is k  (Nocc + Nvirt) instead of Nocc  Nvirt of the Casida 

 matrix, with k =1.91 or 1.6 for Au and Ag respectively. Moreover, in this new 

scheme the spectrum at each frequency is obtained as an independent calculation, which 

makes that the algorithm is easily parallelizable and is feasible essentially for all 

systems for which a DFT calculation is affordable. The potentialities of this approach 

are demonstrated in the present work by studying two series of noble metals (Ag and 

Au) clusters containing up to 309 atoms. It is first shown that the new algorithm is very 

efficient, especially for the larger clusters that, on the contrary, could not be treated by 

means standard Casida’s approaches. For example in [Au309]
3+ the linear system 

dimension is 13596, while the dimension of the Casida  matrix would have been 

around 12 millions. To validate the new approach and to firmly assess the equivalence 

of different TDDFT schemes, the photoabsorption spectra of Ag55 and Au55 clusters are 

also predicted and compared by using CP2K [7.8] and turboTDDFT codes [7.9], which 

relay on real-time propagation of the wave function and Lanczos chain approaches, 

respectively.  
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Finally comparison between the optical response of Ag and Au clusters shows the 

much greater sensitivity of Ag optical response to both physical and numerical 

parameters such as the charge state, the exchange-correlation (xc-)functional, and the 

basis set, due to the intrinsically more free-electron character of Ag and the absence of 

strong s/d coupling with respect to Au. The availability of an efficient method to treat 

photoabsorption in large systems opens the way to study the behaviour of Surface 

Plasmon Resonance (SPR), a typical optical properties of noble metal nanoclusters with 

many potential applications. 

 

7.2 Theoretical method 

The theoretical method as well as its implementation have been described in details 

previously [7.7], so here we only give a brief description of the salient features and refer 

the reader to the original work for more information about the algorithm and how to 

calculate the corresponding matrix elements. 

The photoabsorption spectrum 𝜎(𝜔) is calculated for each value of the photon 

energy , from the imaginary part of the isotropic dynamical polarizability 𝛼(𝜔): 

 𝜎(𝜔) =
4𝜋𝜔

𝑐
𝐼𝑚[𝛼(𝜔)] (7.2.1) 

The isotropic dynamical polarizability is calculated for complex frequency, i.e. 𝜔 =

𝜔𝑟 + 𝑖𝜔𝑖, where the real part 𝜔𝑟 corresponds to the actual photon frequency (energy) 

and 𝜔𝑖 is the imaginary part which refers to a broadening of the discrete lines and is 

interpreted as the excited states finite lifetime [7.10]. For the calculation of the 

spectrum, the isotropic part of the tensor is actually extracted from its trace: 𝛼(𝜔) =

1

3
∑ 𝛼𝑖𝑖(𝜔)3

𝑖=1  where the index 𝑖 runs on the three components x, y and z. The 

polarizability tensor is obtained from the following expression: 
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 𝛼𝑧𝑧(𝜔) = ∫ 𝜌𝑧
(1)

(𝜔, 𝑟̅)𝑧𝑑𝑟̅ 
 

(7.2.2) 

where 𝜌𝑧
(1)

(𝜔, 𝑟̅) is the Fourier component of the given frequency of the first order 

time dependent density, induced by the external time dependent scalar potential. 

According to TDDFT, the induced density can be obtained from the dielectric 

susceptibility 𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′) of a reference system of non-interacting electrons under the 

effect of an effective potential 𝑉𝑆𝐶𝐹
𝑧 (𝜔, 𝑟̅) sum of the external potential plus the 

Coulomb and the response xc-potentials. 

This is summarized by the following coupled linear equations: 

 𝜌𝑧
(1)(𝜔, 𝑟̅) = ∫ 𝜒𝐾𝑆(𝜔, 𝑟̅, 𝑟̅′)𝑉𝑆𝐶𝐹

𝑧 (𝜔, 𝑟̅′)𝑑𝑟̅′ (7.2.3) 

 
𝑉𝑆𝐶𝐹

𝑧 (𝜔, 𝑟̅) = 𝑉𝐸𝑋𝑇
𝑧 (𝜔, 𝑟̅) + ∫

𝜌𝑧
(1)(𝜔, 𝑟̅′)𝑑𝑟̅′

|𝑟̅ − 𝑟̅′|
+

𝜕𝑉𝑋𝐶

𝜕𝜌
|

𝜌0

𝜌𝑧
(1)(𝜔, 𝑟̅) (7.2.4) 

The Adiabatic Local Density Approximation (ALDA) [7.11] is assumed in 

expression (7.2.4) and 𝑉𝐸𝑋𝑇
𝑧 (𝜔, 𝑟̅) corresponds in practice to the z dipole component. 

Now expressions (7.2.3) and (7.2.4) can be written in operatorial form: 

 𝜌𝑧
(1)

= 𝜒𝐾𝑆𝑉𝑆𝐶𝐹
𝑧  (7.2.5) 

 𝑉𝑆𝐶𝐹
𝑧 = 𝑉𝐸𝑋𝑇

𝑧 + 𝐾𝜌𝑧
(1)

 (7.2.6) 

where in expression (7.2.6) K stands for the sum of the Coulomb and the XC kernels. 
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Due to the linearity of (7.2.5) and (7.2.6) it is possible to eliminate 𝑉𝑆𝐶𝐹
𝑧  and to obtain 

an equation for 𝜌𝑧
(1)

, which reads: 

 [1 − 𝜒𝐾𝑆𝐾]𝜌𝑧
(1)

= 𝜒𝐾𝑆𝑉𝐸𝑋𝑇
𝑧  (7.2.7) 

Equation (7.2.7) is then represented over the basis set of the auxiliary density fitting 

functions 𝑓𝜇. More precisely only a subset of the fitting set is enough to obtain 

convergent results. Within this representation, the induced density assumes this 

expression: 𝜌𝑧
(1)(𝜔, 𝑟̅) = ∑ 𝑓𝜇(𝑟̅)𝑏𝜇(𝜔)𝐾

𝜇  and the following non-homogeneous system of 

linear algebraic equations can be written in the matrix formulation form: 

 [𝑺 − 𝑴(𝝎)]𝒃 = 𝒅 (7.2.8) 

In equation (7.2.8) 𝑺 is the overlap matrix between fitting functions, 𝒃 is the 

unknown vector with the expansion coefficients 𝑏𝜇(𝜔) of 𝜌𝑧
(1)

, 𝒅 is the frequency 

dependent vector corresponding to the known non-homogeneous term, whose 

components are: 

 𝑑𝜇 = ⟨𝑓𝜇|𝜒𝐾𝑆(𝜔)|𝑧⟩ (7.2.9) 

and finally the elements of the frequency dependent matrix 𝑴 are: 

 𝑀𝜇𝜈 = ⟨𝑓𝜇|𝜒𝐾𝑆(𝜔)𝐾|𝑓𝜈⟩ (7.2.10) 

In practice, equation (7.2.8) is solved for each value of the photon energy.  

For comparison, in the case of the [Ag55]
5+ and [Au55]

5+ clusters the photoabsorption 

spectrum has been calculated with CP2K and QE codes as well.  



159 

 

In the CP2K code [7.8], the time-dependent Kohn-Sham (TDKS) equations are 

explicitly integrated in time (see next section for computational details), and from the 

so-produced time-resolved TDKS solution the TDDFT spectrum is obtained via Fourier 

transform of the time-dependent dipole moment resulting from a small instantaneous 

electric field perturbation of the system wave function. 

In the turboTDDFT code [7.6][7.12], the frequency dependent polarizability is 

obtained as the trace of the product between the dipole operator and the response 

density matrix, where the latter is expressed as the solution of the linearized quantum 

Liouville equation. The specific Lanczos implementation does not require the explicit 

evaluation of empty (virtual) states, thus reducing the computational cost and allowing 

for the calculation of extended portions of the spectrum in systems comprising several 

hundred atoms. 

 

7.3 Computational details 

The complex polarizability method has been implemented in a local version of the 

ADF code. The LB94 [7.13] or the PBE [7.14] exchange-correlation xc-functionals 

were employed to obtain the KS orbitals and eigenvalues from the KS equations, while 

the exchange-correlation kernel is approximated by ALDA [7.11] in the TDDFT part 

taking the derivative of the VWN [7.15] LDA xc-potential. The basis sets as well as the 

auxiliary density fitting functions employed consist of Slater Type Orbitals (STO) 

included in the ADF database. The new program allows a simple choice of a subset of 

the ADF fitting functions, in order to save computer time when some fitting functions 

are not necessary for an accurate description of the photoabsorption spectrum. Such 

choice was made with preliminary test calculations on Ag2 and Au2. The calculations 

have been performed at scalar relativistic level with Zero Order Relativistic 

Approximation (ZORA) [7.16]. 

In order to give a quantitative idea about the computational efforts and the efficiency 

of the spectrum calculation from the complex polarizability, for [Au309]
3+ the SCF 
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procedure employed 10 hours using 16 cores on a Linux Infiniband Cluster with 8-cores 

Intel Haswell 2.40 GHz processors, while the resolution of the TDDFT inhomogeneous 

linear system (dim = 13596) employed only 145 seconds using 16 cores for each energy 

point. Since about one hundred of energy points are enough for a complete description 

of the spectrum, the TDDFT linear system resolution is comparable to the SCF effort. In 

addition also matrix elements calculation time should be considered, so in general a 

TDDFT calculation will be comparable to a geometry optimization in terms of 

computational cost. 

In the CP2K package [7.8], DVZP basis set [7.17], GTH pseudopotentials [7.18] 

were employed in the calculations. The PBE xc-functional was used in the KS equations 

and dynamics. Starting from a ground-state calculation, optical response is obtained by 

subjecting the system to electrical pulses (with a strength of 0.0005 a.u) in each of the 

three Cartesian directions and using the time-evolution formalism to follow the electron 

dynamics. A total of 19.3 femtosec were sampled using a time step of 0.012 femtosec. 

A time damping of 7.3 femtosec was chosen to broaden the predicted spectrum. 

TurboTDDFT code is part of the Quantum-ESPRESSO (QE) package [7.9], for the 

simulation of the ground and excited states of solid state systems, based on (TD)DFT 

approaches. In the present case, the [Ag55]
5+ and [Au55]

5+ clusters have been simulated 

by using periodically repeated supercells, each including the metallic cluster (i.e. 55 

atoms) and a thick layer of vacuum (~18 Å) in the three spatial directions, in order to 

avoid spurious interactions between adjacent replica. PBE xc-functional was used in 

solution of both DFT and TDDFT problems. The single particle wavefunctions (charge) 

were expanded in plane waves up to an energy cutoff of 25 Ry (250 Ry). Atomic 

potentials were described by using ab initio ultrasoft pseudopotentials of the Vanderbilt 

type [7.19]. The 4d (5d) electrons of Ag (Au) have been explicitly included in the 

valence shell. The Brillouin zone of the reciprocal lattice was sampled at the  point. A 

jellium background is inserted to remove divergences in the charged cells, and the 

Martyna-Tuckerman correction [7.20] to both total energy and self-consistent potential 

is applied to consider the system as isolated. Optical spectra were obtained by 
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evaluating 10000 Lanczos cycles for each incoming light polarization, and then 

averaged over the three spatial directions.  

 

7.4 Results and discussions 

The behaviour of Surface Plasmon Resonance (SPR), a typical optical properties of 

noble metal nanoclusters, has been the subject of many studies. SPR starts to appear in 

systems whose size is beyond about 2 nm, therefore containing more than 150-200 

atoms. The size and shape effects are quite important factors which have strong 

influence on the energy position and the intensity of the SPR. Shape can also be 

profitably exploited to study SPR behaviour in systems which are elongated in only one 

dimension (nanowires), thus enabling plasmon-like optical response in clusters 

containing less than 100 atoms [7.21]. Small size noble metal clusters do not arrange 

with bulk fcc-structure, since surface tension effects tend to destabilize such 

configurations, instead they prefer to assume more spherical shapes, like icosahedral or 

decahedral ones. In this work we have considered only the most symmetric icosahedral 

structures.  

Contrary to bulk systems, where plasmons can be excited only by longitudinal 

external electric field, in the case of nanoparticles and clusters SPRs can be excited also 

by transversal incoming fields, i.e. light. Thus, plasmonic features of nanostructures can 

be easily characterized starting from their optical absorption spectra. Several previous 

TDDFT studies are available for both silver and gold nanoclusters [7.22]-[7.30], but 

more specific works on series of icosahedral noble metal clusters are available for silver 

up to Ag55 [7.31] and Ag561 atoms [7.32], while for gold up to Au55 [7.33] and Au1414 

[7.34] atoms. Unfortunately in these studies different methods have been employed to 

treat the largest systems with respect to the smaller ones, in terms of both the exchange-

correlation functional and the numerical implementation (Casida like or real time 

propagation), so that a precise assessment of size-dependence effects is not readily 

available. The present work consists, instead, in a fully coherent study of metal clusters 
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of both Ag and Au, by using the same method and the same level of accuracy for all the 

considered sizes. This investigation is also supplemented with an analysis of the 

electron transitions in terms of one-electron excited configurations, which will be 

conveniently presented in graphical compact form, according to the bi-dimensional 

Transition Contribution Map (TCM) plots [7.35]. 

 

7.4.1 Clusters geometry 

The icosahedral clusters have been built starting with the simple M13 system, adding 

further shells according to MacKay protocol. Cluster structure has not been optimized, 

but is kept fixed imposing that average interatomic distance is equal to its experiment 

bulk value – indeed, it has been shown that structural relaxation has only a minor 

impact on the optical properties of gold clusters [7.36]. In the regular icosahedron two 

different interatomic distances are defined, the inter-shell (R) and the intra-shell (D) 

ones, which are connected by the following geometric relation: 
𝑅

𝐷
= √5+√5

8
. Therefore 

we have taken 
𝑅+𝐷

2
 equal to 2.89 Å and 2.88 Å for Ag and Au clusters respectively. 

 

7.4.2 Photoabsorption of the [Agn]q series 

We have considered the first fourth members of the series of icosahedral silver 

clusters [Ag13]
5+, [Ag55]

3-, [Ag147]
- and [Ag309]

3+, the charges have been chosen in order 

to have closed shell electronic structure, since the complex polarizability method at the 

moment cannot treat open shells. 

The photoabsorption spectra of this series, calculated at the TDDFT level with LB94 

[7.13] xc-functional and DZ basis set, are reported in Figure 7.1. Apart from the 

smallest cluster [Ag13]
5+, all the other ones are characterized by a very strong peak 

which grows and is red-shifted with increasing cluster size, a behaviour which is typical 

of plasmon resonance [7.37]. In [Ag55]
3- the peak is actually split in two very close 
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contributions. The energy of the maxima are 4.70 eV, 4.30 eV and 3.95 eV for [Ag55]
3-, 

[Ag147]
- and [Ag309]

3+ respectively, so it seems that the energy of the plasmon resonance 

is still decreasing and has not yet reached its limit value. It is interesting to compare this 

finding with a previous TDDFT study [7.32] on the same icosahedral silver clusters 

which had employed a very accurate real-time propagation method and the adiabatic 

GLLBSC potential [7.38][7.39]. In such a study all the peaks were calculated at lower 

energies with respect to present work by 0.5-0.2 eV and, more interestingly, a red shift 

of 0.4 eV was actually found going from Ag55
 to Ag147 which is in good agreement with 

present calculation, while a very small red shift of only 0.1 eV was found going from 

Ag147 to Ag309. The difference for the energy of the maxima between the two 

calculations are not surprising and can be assigned to the different xc-functional 

employed. In the previous work [7.32] the energy position of the resonance for Ag147 
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Figure 7.1 Photoabsorption profiles of [Ag13]
5+, [Ag55]

3-, [Ag147]
- and [Ag309]

3+ 

calculated by complex polarizability TDDFT DZ LB94. Imaginary broadening ωi = 

0.15 eV. 
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calculated with PBE functional was found at about 3.2 eV, i.e. shifted by 0.6 eV with 

respect the value calculated at the GLLBSC level (3.8 eV). The calculated spectrum of 

[Ag55]
3- is in good agreement with that calculated by ADF with DZ basis set and LB94 

xc-functional reported in ref. [7.31], showing the same double peak shape, although the 

present spectrum is shifted by about 0.1-0.2 eV to higher energy. To check this point, 

we have calculated the spectrum (not shown) for [Ag55]
3- with the ADF program 

employing the Casida approach with the geometry of present work and have obtained a 

perfect agreement with the results produced by the complex polarizability algorithm 

reported in Figure 7.1. We can conclude that this discrepancy is not due to the 

computational method but rather is an effect of the cluster geometry, which in ref. 

[7.31] was relaxed in the C5v symmetry. 

Besides the strong plasmonic resonance, the calculated spectra do not show other 

important features, only a weak intensity modulation is apparent for all the clusters 

above 5 eV. Although in this case the plasmonic behaviour is clear-cut, in general it is 

very difficult to distinguish between a molecular-like resonance and a plasmon: a 

general analysis has been suggested by Jacob [7.40] but requires to re-calculate the 

spectra many times with different values of a coupling parameter , so that such 

procedure can be impractical for very large systems like present ones. For this reason, in 

order to gain a better insight into the physics that governs the plasmonic features in 

metal clusters, here we have performed a TCM analysis [7.35] of the spectrum, in 

correspondence of the maximum of the intensity as reported in Figure 7.2. The TCM 

plots are very convenient 2D representations of the one-electron excited configurations 

coefficients which contribute to the excited state: each excited determinant corresponds 

to a point in the plane, the value on the X axis corresponds to the occupied orbital 

energy while the value on the Y axis corresponds to the unoccupied orbital energy. For 

each excited determinant a 2D Gaussian function is added, with a weight proportional to 

its coefficient in the excited state expansion.  

 

 



165 

 

 

Figure 7.2 TCM plots for [Ag55]
3-, [Ag147]

- and [Ag309]
3+ taken at plasmon energies 

E. εi (X axis) and εa (Y axis) refer to occupied and virtual orbital energies. White line 

corresponds to εa - εi = E. 
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We start the analysis with the [Ag55]
3- plasmon at 4.70 eV (upper panel in Figure 

7.2), in the TCM plot we have also added a white line which corresponds to the 

unoccupied-occupied orbital eigenvalue difference equal to the excitation energy. In 

order to read properly the TCM plots, it must be remembered that for Ag clusters the sp 

band covers all occupied and unoccupied orbitals, while the d band is confined well 

below the Fermi level (F), see for example the DOS plots of Figure 7.3 of Ref. [7.32]. 

In the present case the upper limit of the d band is at -6.2 eV (X axis) that is about 4.7 

eV below F. So in the TCM plot of [Ag55]
3- all the spots correspond to intraband sp → 

sp configurations, with the only exception of the region around -7 eV in the X axis 

which instead corresponds to interband d → sp configurations. Therefore the plasmon 

consists essentially in an intraband sp → sp excitation. The collective nature of the 

plasmon can be inferred by the presence of many spots in the TCM, moreover, it is 

worth noting that three strong spots lie on the white line, which correspond to electron 

promotion between orbitals whose energy difference matches almost exactly the 

plasmon energy. On the other hand, there are important contributions coming from 

configurations having energies well below the plasmon, in particular between -4 eV and 

-2 eV in the occupied orbitals (X axis) and between -1 eV and 1 eV in the virtual 

orbitals (Y axis). On the contrary, the configurations having energies above the plasmon 

excitation play only a minor role: the only important contribution comes from the 

already identified interband d → sp configurations, along with a few weak ones coming 

from the sp → sp around 2 eV – 3 eV in the virtual orbitals (Y axis). It is important to 

discriminate the contributions accordingly to their energy: the presence of contributions 

with eigenvalue energy difference different with respect to plasmon resonance indicates 

a strong coupling among them, on the other hand if the eigenvalue energy difference 

matches the plasmon energy it means that the contributions are almost degenerate with 

plasmon but not necessarily coupled to it. 
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The TCM plots for the plasmons of [Ag147]
- and [Ag309]

3+ at 4.30 eV and 3.95 eV 

respectively are also reported in Figure 7.2, displaying very similar patterns as in 

[Ag55]
3-. In both cases the interband d → sp “island” is observed at ca -12 eV in [Ag147]

- 

and ca -18 eV in [Ag309]
3+ as the occupied orbital energy, is concerned. All the other 

contributions are pertaining to the sp → sp intraband. Some of them are detected along 

the white line, indicating quasi-degeneracy between excited configuration and plasmon, 

ones come from lower energy configurations, indicating strong configuration coupling 

and therefore a collective behaviour. By comparing the present TCM analysis with 

previous one on Au86 gold nanowire [7.21] and [Au147]
- icosahedral clusters [7.7] we 

notice that the Au86 gold nanowire displayed a very strong plasmon peak and the most 

intense TCM contributions derived from lower energy configurations, indicating strong 

configuration coupling. On the other hand in [Au147]
- cluster the plasmon was much 
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Figure 7.3 Photoabsorption profiles of [Au13]
5+, [Au55]

3-, [Au147]
- and [Au309]

3+ 

calculated by complex polarizability TDDFT DZ LB94. Imaginary broadening ωi = 

0.15 eV. 
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weaker, and only minor contributions were found from low energy configurations. All 

this is consistent with present analysis. 

In addition to the TCM analysis, we have also inspected the resonant part of the first 

order time dependent perturbed density, that is the imaginary part of the solution of 

previous equation (7.2.7), calculated at the plasmon energy for the three largest silver 

clusters. Results are reported in Figure S1 of the Supporting Information. As expected, 

all the plots display a typical dipolar character, consistent with the classical 

interpretation of the SPR as density oscillations, this confirms the plasmonic nature of 

the resonance given above. However, it is worth noticing that it is not possible to extract 

from the simple perturbed density plots the same amount of information derived from 

the TMC ones that confirm to be a more powerful analysis tool. 

 

7.4.3 Photoabsorption of the [Aun]q series 

In parallel to the silver clusters, we have considered the analogue series of 

icosahedral gold clusters [Au13]
5+, [Au55]

3-, [Au147]
- and [Au309]

3+, with the same charge 

states as in the silver case, so to obtain a closed shell electronic structure for all four 

clusters. The photoabsorption spectra of the cluster series, calculated at the TDDFT 

level with LB94 [7.13] xc-functional and DZ basis set, is reported in Figure 7.3. The 

spectra look very different with respect to silver: there is no a leading peak to be easily 

attributed to a plasmon resonance, but rather a smoothly growing intensity starting 

around 2 – 3 eV depending on the cluster, followed by a wide modulation displaying 

maxima at 3.50 eV, 4.40 eV and 5.50 eV for [Au309]
3+ and 3.50 eV, 4.10 eV and 5.50 

eV for [Au147]
-. For all the three largest gold clusters, the intensity is still growing up to 

7 eV, while the absolute intensity is much weaker than for silver cluster by a factor of 

three. The absence of strong plasmons is not surprising: in a previous work on gold 

nanowires [7.21] it has been shown that a clear plasmon emerges only when cluster size 

exceeds 2 nm. In the case of Au68 with length 2.02 nm only an incipient weak plasmon 

was observed, while for Au86 with length 2.59 nm a very intense plasmon was found.  
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Figure 7.4 TCM plots for [Au147]
- and [Au309]

3+ taken at energies corresponding to 

photoabsorption maxima E. εi (X axis) and εa (Y axis) refer to occupied and virtual 

orbital energies. White line corresponds to εa - εi = E. 
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In the present work the distance between the two most distant atoms of [Au309]
3+ and 

[Au147]
- are 2.25 nm and 1.68 nm respectively, so only a weak plasmon should be 

expected even for the largest cluster. It is worth noting that [Au147]
- has been considered 

as well in a previous work [7.36], exhibiting a first plasmonic peak found at 2.95 eV, 

which is consistent with a shoulder found in the present work around 3 eV. In that work 

it was not possible to go beyond 3.2 eV because the Davidson algorithm implemented in 

ADF was not practicable to extract a higher number of eigenvalues. Interestingly, the 

absorption profile of the [Au309]
3+ cluster also displays a shoulder around 3.2 eV, which 

is very likely the evolution of the shoulder of [Au147]
- at 3 eV.  

In order to identify possible plasmonic behaviours, in Figure 7.4 we have considered 

the TCM analysis of the three most intense features of [Au147]
- and [Au309]

3+. We start 

with [Au147]
- at 3.50 eV: taking into account (i) that the Au 5d band lies between -10 eV 

and -12 eV on the occupied orbital energy scale (X axis) and (ii) that the remaining 

states belong to the 6s6p band, we find that the leading contribution is a d → sp 

interband transition, with important intraband sp → sp contributions even from lower 

energies. This suggests that coupling is present and indicates a collective behaviour 

typical of plasmons, at least to some extent. Going to the next maximum at 4.10 eV, we 

notice a drastic decrease in the role played by the lower energy configurations and a 

concomitant increase in the d → sp interband transition character, so in this case the 

plasmonic behaviour is almost disappeared. Finally at 5.50 eV the coupling is 

negligible, so this feature does not carry any plasmonic character and can be classified 

as a pure d → sp interband transition. 

Moving to the next cluster [Au309]
3+ at 3.50 eV, we find again a clear coupling with 

lower energy configurations, confirming the plasmonic nature of this feature. The next 

peak at 4.40 eV displays only a very weak coupling that disappears completely at 5.50 

eV. We can summarize all these findings saying that the feature at 3.50 eV in both 

clusters has a definite plasmonic-like nature, which is not pure but hybridized with d → 

sp interband excitations. Such hybridization is present also in the feature at 4.10 eV of 

[Au147]
-.  
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Figure 7.5 Photoabsorption profiles of [Ag55]
q calculated by complex polarizability 

TDDFT DZ and imaginary broadening ωi = 0.15 eV. Charge and XC are shown in 

insets. 
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We can expect that as the cluster size increases this hybridization should decrease, 

giving rise to a strong pure plasmon at low energy followed by pure d → sp interband 

excitations at higher energy. 

Moreover we have considered the induced density, reported in Fig. S2 of the 

Supporting Information. As in the previous case, all of them display the typical dipolar 

shape, consistent with the plasmon. The only noteworthy features in the perturbed 

density are a kind of fringes which reduce the dipolar distribution of the density, well 

apparent in the equatorial faces of [Au309]
3+ at 4.4 eV and 5.5 eV and to some extent in 

[Au147]
- at 5.5 eV. They might be an indication of a reduced or absent plasmon 

character. Also in this case the TCM analysis has proven much more informative than 

the induced density to assess the nature of the spectral features in terms of electronic 

structure. 

 

7.4.4 Analysis of photoabsorption for [Ag55]q 

Among the series of silver clusters, we have selected Ag55 as an example of a 

relatively small cluster to be further analysed with other methods and with different 

schemes in order to assess the importance of the various computational approaches. In 

Figure 7.5 we consider the effect of the charge and of the xc-functional. In the upper 

panel of Figure 7.5, the photoabsorption is calculated with the LB94 xc-functional with 

two different charges: -3 and +5, both of them give a closed shell electronic structure. 

The charge effect is quite dramatic: while with charge -3 a clear-cut plasmon is 

observed, the charge +5 destroys the sharp plasmon peak and a broader structure is 

obtained, whose maximum is red-shifted by about 0.7 eV. A very similar and equally 

strong charge effect in which the plasmon is quenched was observed in the icosahedral 

silver cage [7.41] [Ag92]
2+ when passing from LB94 to the LDA xc-functional [7.15]. 

This behaviour indicates that the plasmon is not yet ‘stable’, and that an external 

perturbation is enough to quench it. Nevertheless it should be noted that a change of 

eight electrons is significant for a cluster containing only 55 atoms.  
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Figure 7.6 Photoabsorption profiles of [Ag55]
5+ calculated by TDDFT PBE. Upper 

panel: complex polarizability with imaginary broadening ωi = 0.15 eV. Lower panel: 

QE, CP2K and complex polarizability with imaginary broadening ωi = 0.075 eV. Basis 

sets and methods are shown in insets. 



174 

 

 

Figure 7.7 Photoabsorption profiles of [Au55]
q calculated by complex polarizability 

TDDFT DZ and imaginary broadening ωi = 0.15 eV. Charge and XC are shown in 

insets. 
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The effect of the xc-functional on [Ag55]
5+ is quite modest (central panel) as well as 

the charge effect using the PBE functional (lower panel). In the upper panel of Figure 

7.6 we considered the effect of the basis set in the case of PBE functional. Only rather 

modest differences are evident going from DZ to TZ2P set: the most important one 

being the shift of the maximum of about 0.2 eV to lower energy, as expected due to the 

greater variational freedom assured by the larger basis set on the excited state wave 

function. Finally in the lower panel of Figure 7.6, the spectra calculated with QE and 

CP2K have been reported together with that calculated from complex polarizability. The 

agreement between QE and CP2K is excellent, while the complex polarizability 

approach slightly overestimates the position of the peak at around 3.9 eV. This 

disagreement is likely an effect of the basis set: indeed as discussed above a basis set 

enlargement tends to decrease the peak energy (upper panel) thus going in the direction 

of the QE and CP2K results.  

 

7.4.5 Analysis of photoabsorption for [Au55]q 

In Figure 7.7 we have performed the same analysis as concerns the charge and the 

xc-effects for [Au55]
q clusters. At variance with respect to silver, the effects for [Au55]

q 

are not relevant: the general shape of the profiles does not change qualitatively if the 

charge or the xc-functional are varied. It is curious that for both LB94 and PBE the 

change of charge state from -3 to +5 causes a red-shift at low energy and a blue-shift for 

energies above 6 eV, so the charge effect cannot be simplified as a rigid translation on 

the energy scale.  

In Figure 7.8 the role of the basis set (upper panel) is considered. Going from DZ to 

TZ2P a slight intensity decrease is observed for energies below 5 eV, while above 8 eV 

the profiles look rather different, suggesting that the high energy part of the spectrum is 

more demanding in terms of basis set requirements (as expected since we enter the 

continuum part of the spectrum). The comparison among the three methods (QE, CP2K 
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and complex polarizability) is fair good: for the feature at 2.8 eV the three methods are 

in excellent agreement with each other, only above 3.2 eV some discrepancies appear, 

which however do not alter the qualitative shape of the profile. In conclusion we can say 

that Ag55 is much more sensitive than Au55 to charge, xc-functional and basis set, due to 
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Figure 7.8 Photoabsorption profiles of [Au55]
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panel: complex polarizability with imaginary broadening ωi = 0.15 eV. Lower panel: 
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the plasmon which is present only when LB94 xc-functional with charge -3 are 

employed. On the other hand for Au55 the plasmon is not yet present in full and 

therefore the spectral differences are consequences of subtle modifications of the 

electronic structure.  

 

7.5 Conclusions 

In this work we have applied a recently developed new TDDFT algorithm [7.7] to a 

series of closed shell icosahedral Ag and Au clusters, containing from 13 to 309 atoms. 

The photoabsorption spectrum is extracted from the imaginary part of the complex 

dynamical polarizability, solving a non-homogeneous linear system and avoiding the 

diagonalization of the Casida matrix, which represents a problematic step when too 

many eigenvalues need to be calculated to cover the energy interval of interest. The new 

method has proven not only to be very efficient, but also very powerful in terms of 

analysis of the excited state wave function, which has been done employing the 2D 

TCM scheme. For silver clusters, a very intense plasmon resonance has been found 

already for [Ag55]
3-. When cluster size increases the feature gains intensity and is red-

shifted, a behaviour typical of plasmon resonances. The TCM analysis identified strong 

coupling among low energy excited configurations with intraband sp → sp character, 

while d → sp interband excitations play a minor role. For gold clusters the situation is 

quite different, as we did not identify a single strong plasmon like in silver clusters, but 

rather many features of comparable intensity. The TCM analysis revealed that only for 

the lowest energy features a partial plasmonic behaviour can be singled out, with 

moderate coupling of low energy excitations together with important interband d → sp 

excitations. As the energy increases, the coupling with low energy excitations 

disappears and the features become pure interband d → sp excitations. 

The analysis of the spectral features revealed that the photoabsorption in the [Ag55]
q 

cluster is very sensitive to the cluster charge and choice of xc-functional and basis set. 

In particular the strong plasmon calculated with LB94 xc-functional and q=3- is 
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suppressed if charge is changed to q=5+ or if the PBE xc-functional is employed. The 

PBE results obtained with the complex dynamical polarizability compare fairly well 

with those calculated by using real-time evolution or Lanczos approaches via the QE 

and CP2K codes. However being so sensitive to physical and computational choices, 

when using localized basis functions attention needs to be paid to basis set completeness 

issues as shown by the fact that using the new algorithm only a basis set enlargement 

from DZ to TZ2P produced a nearly quantitative agreement with both QE and CP2K. 

The same analysis for the [Au55]
q cluster shows that in this case the results are much 

less sensitive to charge, xc-functional and basis set, due to the marginal role played by 

plasmonic features which do not dominate the spectrum any more. In this case the 

match among the complex dynamical polarizability, QE and CP2K methods is even 

better than for the silver homologue. 

The efficiency of the complex dynamical polarizability method together with the 

power of the TCM analysis suggests that further applications to more complex and 

realistic systems, like for example metal clusters protected by ligands and therefore with 

reduced symmetry, are feasible and should be able to give an important contribution to 

rationalize and clarify the many questions still existing in the field and trigger further 

technological applications. 
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8 Theoretical photoabsorption spectra of Au144(SH)60 

at TDDFT level 

 

8.1 Introduction 

The Au144(SH)60 model cluster has attracted a considerable interest in literature, for 

the study of the analogue Au144(SCH2CH2Ph)60 cluster [8.1], such cluster is very stable 

and robust [8.2], but is not yet characterized by X-ray diffraction, so its structure is 

simulated with theoretical models, and the simplest corresponds to the Au144(SH)60 

[8.1]. 

 The theoretical method employed to calculate the photoabsorption spectra has been 

described in details in chapter 5 [8.3], this cluster has been selected to test the new 

TDDFT complex polarizability algorithm with a very large system (~200 atoms). In fact 

with ADF code is possible extract only up to ~3eV of excitation energy in the spectra 

without introducing numerical errors during the iterative procedure of the Davidson 

diagonalization (Figure 8.2).  

 

8.2 Computational details 

The structure employed in the present work is reported in Figure 8.1, it has been 

symmetrised to D5 point group symmetry by Barcaro et al. [8.4] employing the LDA 

Vxc potential in the geometry optimization. 
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The complex polarizability method has been implemented in a local version of the 

ADF code. The LB94 [8.5] or the PBE [8.6] exchange-correlation xc-functionals were 

employed to obtain the KS orbitals and eigenvalues from the KS equations, while the 

exchange-correlation kernel is approximated by ALDA [8.7] in the TDDFT part taking 

the derivative of the VWN [8.8] LDA xc-potential. The basis sets as well as the 

auxiliary density fitting functions employed consist of Slater Type Orbitals (STO) 

included in the ADF database. The new program allows a simple choice of a subset of 

the ADF fitting functions, in order to save computer time when some fitting functions 

are not necessary for an accurate description of the photoabsorption spectrum. The 

Figure 8.1 Structure of the Au144(SH)60 employed in the calculations. 
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calculations have been performed at scalar relativistic level with Zero Order Relativistic 

Approximation (ZORA) [8.9]. 

 

8.3 Results and discussion 

In Figure 8.2 is reported the comparison of the calculated spectra at the TDDFT 

level of Au144(SH)60 between ADF code and complex polarizability algorithm, and can 

be observed the good accord for the low energy interval of the spectra, and the 

limitation of the Davidson diagonalization. 
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Figure 8.2 Comparison between the TDDFT calculated spectra of Au144(SH)60 with 

ADF and the complex polarizability algorithm; DZ basis set, PBE VXC potential, z 

component.  
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From Figure 8.3 it is apparent that the equivalent x and y components of the 

absorption spectrum resemble closely z-th dipole component. This happens because the 

ligands affect the geometry of the cluster, lowering the symmetry group from the 

icosahedral shape to a less symmetry one, D5 in this case. The difference between the 

components is more pronounced at higher energy, where ligands play a more important 

role, while at low energy the spectrum is governed by absorption of the gold core, 

which retains largely its icosahedral symmetry. Also the experimental data [8.1] for 

Au144(SC6H13)60 at 77 K is reported for a qualitative comparison. 

Both xc-functionals with DZ basis set (Figure 8.3) give only a qualitative agreement 

with the experiment. In particular PBE displays a large jump around 3eV which is not 

supported by the experimental data. At lower energies both functionals displays weak 

features which seem to reproduce correctly the experiment. However the latter is 

characterized by a sudden increase around 1.7eV which is much more broadened in the 

calculation. The oversimplification of the SC6H13 ligand to the SH one and the 

uncertainty in the cluster geometry prevent for a more detailed analysis and comparison 

between theory and experiment. 

Finally the calculated spectrum with TZP basis set and LB94 VXC potential simulates 

very well the experimental data. It presents two weak signals at 1.3 and 1.5eV like the 

experiment (1.36 and 1.50eV); the theoretical data display a large jump around 1.8eV 

which is present in experimental data at 1.86 eV. At higher energies the calculated 

spectrum gives only small differences in intensity distribution and energy with respect 

to the experiment. 
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Figure 8.3 components and total absorption spectra of Au144(SH)60 calculated with 

the new TDDFT complex polarizability algorithm. Experimental data of 

Au144(SC6H13)60 are reported [8.1]. Upper panel: DZ basis set and PBE XC potential, 

Central panel: DZ basis set and LB94 XC potential, Lower panel: TZP basis set and 

LB94 XC potential 
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9 Circular dichroism from complex polarizability 

TDDFT 

Oscar Baseggio, Giovanna Fronzoni, Daniele Toffoli, Mauro Stener, work in 

progress 

 

9.1 Theoretical Method 

For a molecule with fixed orientation in the laboratory frame, the Circular Dichroism 

(CD) of an electronic transition from the ground state |0⟩ to the n-th excited state |𝑛⟩ is 

defined as the difference between the absorbance of left and right circulary polarized 

light which propagates along the X direction as follows [9.1]: 

 𝐶𝐷 = 𝐴𝐿 − 𝐴𝑅 = 2𝑘 Im(⟨0|𝜇𝑌|𝑛⟩⟨𝑛|𝑚𝑌|0⟩ + ⟨0|𝜇𝑍|𝑛⟩⟨𝑛|𝑚𝑍|0⟩) (9.1.1) 

Where in (9.1.1)  and m are the electric dipole and magnetic dipole moment 

operators. 

When the molecules are randomly oriented, as in usual solution or gas-phase 

experiments, expression (9.1.1) must be rotationally averaged, and the Rosenfeld 

equation is obtained: 

 𝐶𝐷 =
4

3
𝑘 Im(⟨0|𝝁|𝑛⟩ ∙ ⟨𝑛|𝒎|0⟩) (9.1.2) 

The Rotatory Strength is therefore defined as follows: 

 𝑅0𝑛 = Im(⟨0|𝝁|𝑛⟩ ∙ ⟨𝑛|𝒎|0⟩) (9.1.3) 



185 

 

Our goal is to calculate (9.1.3) with the complex polarizability algorithm [9.2], so it 

is convenient to consider the dipole moment induced by an electromagnetic field 

[9.3][9.4]: 

 𝜇𝑢
′ = ∑ 𝛼𝑢𝜈𝐸𝜈

𝜈

− ∑
𝛽𝑢𝜈

𝑐
𝜈

𝜕𝐵𝜈

𝜕𝑡
 (9.1.4) 

In (9.1.4)  is the optical rotation tensor which is related to the rotatory strength by 

the following Sum Over States (SOS) expression: 

 𝛽̅ =
1

3
∑ 𝛽𝑢𝑢

𝑢

=
2𝑐

3
∑

𝑅0𝑛

𝜔0𝑛
2 − 𝜔2

𝑛

 (9.1.5) 

Therefore we will calculate  and extract R0n from its imaginary part as in 

conventional photoabsorption.  consists in the electric dipole moment induced by a 

Time Dependent (TD) magnetic field, so the perturbing Hamiltonian can be written as: 

 𝐻(1) =
1

2
[𝑚𝑍𝑒−𝑖𝜔𝑡 + 𝑚𝑍

+𝑒𝑖𝜔𝑡]𝐵𝑍
0 (9.1.6) 

Now we can invoke standard Linear Response (LR) theory [9.5] and write down the 

electric dipole induce by (9.1.6): 

 Π(𝜇𝑍𝑚𝑍|𝜔) = lim
𝜀→0+

∑ (
⟨0|𝜇𝑍|𝑛⟩⟨𝑛|𝑚𝑍|0⟩

𝜔 − 𝜔0𝑛 + 𝑖𝜀
−

⟨0|𝑚𝑍|𝑛⟩⟨𝑛|𝜇𝑍|0⟩

𝜔 + 𝜔0𝑛 + 𝑖𝜀
)

𝑛≠0

 (9.1.7) 

Now consider that the self-adjoint magnetic dipole operator is pure imaginary and 

assume real wavefunctions: 
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 ⟨0|𝑚𝑍|𝑛⟩ = ⟨𝑛|𝑚𝑍|0⟩∗ = −⟨𝑛|𝑚𝑍|0⟩ (9.1.8) 

In this way equation (9.1.7) becomes: 

Π(𝜇𝑍𝑚𝑍|𝜔) = lim
𝜀→0+

∑⟨0|𝜇𝑍|𝑛⟩⟨𝑛|𝑚𝑍|0⟩ (
1

𝜔 − 𝜔0𝑛 + 𝑖𝜀
+

1

𝜔 + 𝜔0𝑛 + 𝑖𝜀
)

𝑛≠0

 (9.1.9) 

So finally: 

 Π(𝜇𝑍𝑚𝑍|𝜔) = − ∫ 𝑧𝜌𝑍
(1)

(𝑟)𝑑𝑟 (9.1.10) 

Up to now the approach is only formal, since it is not possible to do in practice the 

infinite sum over all the excited states, but TDDFT can be invoked so the induced 

density can be calculated with the response of the Kohn-Sham non-interacting systems 

to the external magnetic perturbation plus the conventional potential generated by the 

response kernel: 

 

𝜌𝑍
(1)

(𝜔, 𝑟̅) = ∑ 𝜑𝑖𝜑𝑎

𝑖,𝑎

⟨𝑎|𝑚𝑍|𝑖⟩ (
1

𝜔 − 𝜔𝑖𝑎 + 𝑖𝜀
+

1

𝜔 + 𝜔𝑖𝑎 + 𝑖𝜀
)

+ ∫ 𝜒𝐾𝑆 (𝜔, 𝑟̅, 𝑟̅′) 𝑉𝐼𝑁𝐷
𝑍 (𝜔, 𝑟̅′)𝑑𝑟̅′ 

(9.1.11) 

 
𝑉𝐼𝑁𝐷

𝑍 (𝜔, 𝑟̅′) = ∫
𝜌𝑍

(1)
(𝜔, 𝑟̅′)𝑑𝑟̅′

|𝑟̅ − 𝑟̅′|
+

𝜕𝑉𝑋𝐶

𝜕𝜌
|

𝜌(0)

𝜌𝑍
(1)

(𝜔, 𝑟̅) 
(9.1.12) 

Now equations (9.1.11) and (9.1.12) can be solved with respect to the induced 

density and represented over the density fitting set, the following complex linear system 

must be solved: 
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 [𝑺 − 𝑴(𝜔)]𝒒 = 𝒈 (9.1.13) 

Where in (9.1.13) g is a new vector whose elements are: 

 𝑔𝜇 = ∑ 𝑡𝑘(𝜔) ∑ 𝐴𝜇,𝑖𝑎
𝑘 ⟨𝜑𝑖|𝑚𝑍|𝜑𝑎⟩

𝜀𝑖𝑎∈𝐼𝑘

𝑃

𝑘=1

 (9.1.14) 

and 

 𝑡𝑘 =
1

𝜔 − 𝜔0𝑛 + 𝑖𝜀
+

1

𝜔 + 𝜔0𝑛 + 𝑖𝜀
 (9.1.15) 

This is quite simple from the computational point of view, since we have already 

performed the LU decomposition of left hand side of (9.1.13), so we just need only to 

perform the back-substitution for another column vector, which is computationally 

irrelevant, only new angular momentum matrix elements must be calculated, which are 

already available in the debye.f90 routine of ADF. 

Once the vector q is obtained solving system (9.1.13), accurate polarizability (9.1.10) 

is calculated, preferably with the MSA [9.2]. 

Now let’s compare (9.1.4) with (9.1.10): 

 −
𝛽𝑍𝑍

𝑐

𝜕𝐵𝑍

𝜕𝑡
=

1

2
(Π(𝜇𝑍𝑚𝑍|𝜔)𝑒−𝑖𝜔𝑡 + Π(𝜇𝑍𝑚𝑍|−𝜔)𝑒𝑖𝜔𝑡) (9.1.16) 

consider a monochromatic radiation of frequency  so that the magnetic field is: 

 𝐵𝑍 =
𝐵𝑍

0

2
(𝑒−𝑖𝜔𝑡 + 𝑒𝑖𝜔𝑡) (9.1.17) 
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𝜕𝐵𝑍

𝜕𝑡
=

𝐵𝑍
0

2
(−𝑖𝜔𝑒−𝑖𝜔𝑡 + 𝑖𝜔𝑒𝑖𝜔𝑡) (9.1.18) 

Therefore we finally find: 

 𝛽𝑍𝑍 = −
𝑖𝑐

𝜔
Π(𝜇𝑍𝑚𝑍|𝜔) (9.1.19) 

If we analyse the behaviour of 𝛽𝑍𝑍 (9.1.19) as a function of , we find it is real (mz 

operator is pure imaginary), while at resonances it has poles from whose residual the 

rotatory strength can be extracted, consider one single resonance: 

 𝛽𝑍𝑍 = −
𝑖𝑐

𝜔
∙

⟨0|𝜇𝑍|𝑛⟩⟨𝑛|𝑚𝑍|0⟩

𝑖𝜀
 (9.1.20) 

 𝛽̅ = −
2𝑖𝑐𝑅

3𝜔𝜀
 (9.1.21) 

The factor 2 in (9.1.21) derives from an assumed closed shell configuration, so the 

sum is assumed over spatial orbitals, finally: 

 𝑅 =
3𝜔𝜀

2𝑐
Im(𝛽̅) (9.1.22) 

For finite  equation (9.1.22) can be directly compared with discrete R spectra 

calculation smoothed with Lorentzian functions with the same width. 

 

9.2 Implementation 

The linear system (9.1.13) is built with one more column (vectors q and g). g is 

calculated by expression (9.1.14), magnetic moment matrix elements are stored in array 

rxpij in debye.f90. From q with expression (9.1.10) the rotation strength R can be 
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calculated in principle. However it is more convenient and accurate to calculate R with 

the MSA approach according to the following expression for an electric dipole 

perturbing field: 

 𝛽𝑍𝑍(𝜔) = (−
𝑖𝑐

𝜔
) ∑ ∑⟨𝜑𝑖|𝑚𝑍|𝜑𝑎⟩

𝑣𝑖𝑟𝑡

𝑎

𝑜𝑐𝑐

𝑖

𝑃̿𝑖
𝑎 (9.2.1) 

 𝑃̿𝑖
𝑎 = 𝑡𝑘(𝜔) [⟨𝜑𝑖|𝑧|𝜑𝑎⟩ − ∑(𝐴𝑘)𝑖𝑎,𝜇

+ 𝐿𝜇𝜏𝑏𝜏

𝑓𝑖𝑡

𝜇𝜏

] (9.2.2) 

If instead a magnetic dipole is considered as a perturbation the following expression 

is employed: 

 𝛽𝑍𝑍(𝜔) = (−
𝑖𝑐

𝜔
) ∑ ∑⟨𝜑𝑖|𝑧|𝜑𝑎⟩

𝑣𝑖𝑟𝑡

𝑎

𝑜𝑐𝑐

𝑖

𝑃̅𝑖
𝑎 (9.2.3) 

 𝑃̅𝑖
𝑎 = 𝑡𝑘(𝜔)⟨𝜑𝑖|𝑚𝑍|𝜑𝑎⟩ + 𝑠𝑘(𝜔) ∑(𝐴𝑘)𝑖𝑎,𝜇

+ 𝐿𝜇𝜏𝑞𝜏

𝑓𝑖𝑡

𝜇𝜏

 (9.2.4) 

Finally, also the electric dipole ‘velocity gauge’ is been implemented, which consists 

to employ the following expression, which holds for local potential and complete basis, 

to evaluate electric dipole integrals from linear momentum (derivative) matrix elements: 

 ⟨𝜑𝑎|𝑥|𝜑𝑖⟩ =
⟨𝜑𝑎|

𝑑
𝑑𝑥

|𝜑𝑖⟩

𝜀𝑎 − 𝜀𝑖
 

(9.2.5) 

So in summary three columns should be employed in linear system (9.1.13), the third 

is like b but calculated in velocity gauge.  

The matrix element of the derivative (gradient or nabla) correspond to the array pij in 

debye.f90 
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So finally we will have 4 different possibilities to calculate CD spectra: with 

expression (9.2.1) and (9.2.3) each with length or velocity gauge. 

Also the normal photoabsorption calculation has been extended allowing the 

calculation in both length and velocity gauges. 

 

9.3 Results and Discussion 

At the moment we have completed all the implementation as described above, and 

we have some preliminary results for the chiral helical chain of silver atoms Ag8. We 

have taken this system from a previous work [9.6], in particular we have chosen the 

chain with the bond angle of 150º, the dihedral angle of 10º and interatomic distance of 

2.7 Å since it displayed one of the stronger rotation strength among the other chains 

considered in ref. [9.6]. In Figure 9.1 we have reported the conventional 

photoabsorption spectrum, calculated with TZP basis set and LB94 xc-functional, with 

both ADF program and present complex polarizability algorithm. The chain belongs to 

the C2 point group symmetry, so there are two different active dipole components: A (z 

component) and B (y and z components). The two insets of Figure 9.1 report the chain 

from two different view directions, underlying the global shape (left inset from x 

direction) or the helicity (right inset from z direction, which corresponds to the C2 

binary rotation axis). The agreement between the two methods is fairly nice, only very 

modest energy shifts around one tenth of eV and intensity deviations for the weak 

features is apparent, while the most prominent spectral features are very well 

reproduced. 
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Fig. 1

Figure 9.1 The photoabsorption (f) of Ag8 calculated with ADF and from the 

complex polarizability. 
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In Figure 9.2 the rotation strength (R) is reported for both A and B components, also 

in this case calculated from the ADF program and from the present new 

implementation, extracting R from the imaginary part of the optical rotation tensor . 

Also in this case the agreement between the two methods is in practice quantitative: the 

deviations are of the same size as already found for absorption in Figure 9.1. It is worth 

noting that we have calculated R employing both previous expressions (9.2.1)(9.2.2) 

and (9.2.3)(9.2.4) which furnished the same results, confirming the fundamental 

equivalence of the expressions. Moreover, since (9.2.1)(9.2.2) and (9.2.3)(9.2.4) are 

independently calculated each other, this is a safe proof that the new code has been 

properly debugged. All the results reported in Figure 9.1 and Figure 9.2 have been 

calculated with the length gauge of the dipole operator, we have recalculated them with 

the velocity gauge but the results were in practice the same so we did not report them in 

the figure. The match between the two gauges can be expected to worsen in case the 

basis set quality would be reduced, for example going to DZ which is usually employed 

when very large clusters are considered. This point will be explored in a further study. 

Finally it is worth noting that the calculation of R is origin dependent when length 

gauge is employed, while it is strictly origin invariant for the velocity gauge even for 

not complete basis set. So the gauge choice will be an important issue which needs to be 

properly assessed for the calculation of R in large systems with small basis set. 
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Figure 9.2 The rotation strength (R) of Ag8 calculated with ADF and from the 

complex optical rotation tensor. 
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