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Abstract TC  "Abstract" \l 6 
This thesis has two major, related subjects, relativity and magnetic properties.  All the investigations are based on density functional theory (DFT).  


An algorithm has been developed and implemented that allows the determination of relativistic energy gradients.  This implementation enables automated geometry optimization at the relativistic level.  The scheme has been applied to the calculation of M-CO bond lengths and first bond dissociation energies in binary transition metal carbonyls.  


A unique program system has been developed that allows the calculation of NMR shieldings and EPR g-tensors.  The program is based on the use of "gauge including atomic orbitals" (GIAO).  Expressions have been derived for the extension of the program to include the frozen core approximation, a scheme in which only the valence electrons are treated explicitly, and scalar relativistic effects.  These expressions have been implemented into the DFT-GIAO program.  


The program has been applied to the chemical shift in systems ranging from small first row compounds to the metal chemical shift in transition metal carbonyls M(CO)6.  This represents the first calculation of heavy element shifts that is based on a relativistic first principle quantum mechanical method.  The calculated metal shifts of M(CO)6, taken relative to [MO4]2-, are -1,846, -1804, and -3615 ppm for M = Cr, Mo, W, respectively.  The corresponding experimental values are -1,795, -1,857, and -3,505 ppm.  The inclusion of relativity is crucial for a proper description of ligand and metal shifts in 5d complexes.  Various aspects of NMR shielding calculations are discussed in this thesis.  They comprise basis set requirements, exchange-correlation functionals, the importance of core orbitals, relativistic effects, the relation of the GIAO method to the common-gauge scheme, among others.  Certain limitations of the method and possible future directions have been considered as well.  


The DFT-GIAO NMR program has been extended to include the calculation of the EPR g-tensor.  This extension is the first GIAO and the only first principle DFT program for the g-tensor.  The program is validated by calculations of g-tensors for a comprehensive set of small radicals.  
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WIR SIND BETTLER UND WOLLN WENIG

UND REICHT UNS EINER EINST EIN WORT

SO SELBSTVERSTÄNDLICH WIE DAS WASSER

GEHN WIR IN WARME LÄNDER FORT

Aus:  Der Fehler der Pfirsiche.  Hundert Vierzeiler von Jan Skácel

Aus dem Tschechischen von Reiner Kunze

Reiner Kunze,  Die wunderbaren Jahre
CHAPTER ONE TC  "CHAPTER ONE" \l 1 
GENERAL INTRODUCTION TC  "GENERAL INTRODUCTION" \l 1 
The general theory of quantum mechanics is now almost complete, the imperfections that still remain being in connection with the exact fitting of the theory with relativity ideas.  These give rise to difficulties only when high-speed particles are involved, and are therefore of no importance in the consideration of atomic and molecular structure in which it is, indeed, usually sufficiently accurate if one neglects relativity variations of mass with velocity and assumes only Coulomb forces between the various electrons and atomic nuclei.  


The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.  It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of complex atomic systems without too much computation.




P. M. Dirac, 1929


It has become almost customary to cite "Dirac's dictum" [1], the second paragraph of the quote above, when discussing the effects of special relativity in chemistry.  The quote contains several interesting statements.  At this point, I will not discuss the question whether "the general theory of quantum mechanics" is complete or not; it is certainly complete from a practical point of view, at least as far as chemical applications are concerned [2].  Dirac himself expressed the same opinion in the second paragraph by stating, "the underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known."  At the end of the quote, Dirac refers to the development of approximate methods for the solution of the quantum mechanical equations.  This is where I hope to contribute with the present thesis.


The thesis has two major, related subjects: relativity and magnetic properties.  Special relativity [2-5] is necessary for an accurate description of heavy element compounds -- contrary to the belief of P. M. Dirac, as expressed above.  According to Pyykkö, there are two basic reasons why Dirac was wrong [2].  First, s and p electrons have a certain probability of being close to the nucleus.  In these regions of space, they will assume high instantaneous velocities and therefore experience a relativistic mass increase.  The effect is a relativistic contraction of s and p orbitals.  Second, the d and f shells experience indirect relativistic effects.  These indirect effects are a consequence of the relativistic contraction of the core orbitals.  The contraction results in a more effective screening of the nuclear potential as "seen" by the d and f electrons .  For this reason, the d and f electrons are destabilized.  


The second objective of this thesis is the first-principle calculation of magnetic resonance parameters.  In a magnetic field, any system with a net (electronic or nuclear) spin magnetic moment will experience a splitting of the energy levels.  This splitting is associated with the different possible orientations of the spin.  It is called the nuclear or electronic Zeeman effect (e.g., [6,7]).  The magnitude of the splitting is directly proportional to the applied magnetic field.  In a molecule, the externally applied field will induce currents within the electronic system.  Such currents result in induced magnetic fields that modify the external field at the position of the spin magnetic moment.  The resulting change of the local field (evident in the modification of the energy level splitting) is the subject of nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) -- or electron spin resonance (ESR) -- spectroscopies.  The NMR shieldings (or the NMR chemical shifts) describe the effect for the nuclear spin, while the EPR g-tensor is the analogue for an electronic spin.  Thus, both properties are conceptually very similar, and we will make use of this similarity.  


Magnetic properties are intimately related to relativistic theory.  It is only at the fully relativistic level that the electronic and nuclear spin magnetic moments follow directly from the theory [8,9].  It would be difficult -- if at all possible -- to obtain the perturbation operators that describe the various magnetic interactions without a relativistic theory [7,10-12].  Further, the electric potential and the magnetic vector potential combine in relativistic theory into the 4-potential of the electromagnetic fields [4,5].  For example, a system that contains exclusively electric fields in one particular inertial frame will have both electric and magnetic fields in any other frame.  In this sense, any quantum mechanical theory of magnetic properties is an approximate relativistic theory.  In the following, I will not pursue this subject any further.  


The study of static second derivatives of the total molecular energy with respect to certain perturbations is the combined theme of the thesis.  This subject is also known as double perturbation theory.  All the properties that are studied here can be expressed as derivatives of this sort.  At the beginning of each chapter, we will discuss the relevant perturbation parameters for the given property.  Double perturbation theory provides a unified approach to a wide variety of different parameters.  We will make full use of this common approach throughout the thesis.  


The remainder of this first chapter is dedicated to the fundmental principles and methods that are employed in this thesis.  These include the chosen quantum-mechanical method, density functional theory (DFT), and the particular relativistic approximation.  


Chapter 2 describes the implementation and an application of the quasi-relativistic forces.  Such force expressions are necessary for an accurate determination of molecular geometries.  Accurate geometries are the basis for the correct theoretical description of all kinds of molecular parameters, including the NMR chemical shift or the EPR g-tensor.  In chapter 2, another application of these forces is presented and used to test the present implementation.  We apply the relativistic forces to the determination of the structures and first bond dissociation energies (FBDE) of the binary transition metal carbonyls M(CO)6, M=Cr, Mo, W, and M(CO)5, M=Fe, Ru, Os.  The calculated FBDEs compare well with experiment; the inclusion of relativity is essential for a qualitative and quantitative description of the experimentally observed trends [13-15].


The remainder of the thesis is concerned with magnetic properties [16-19].  In chapter 3, our implementation of the NMR shielding tensor within the framework of DFT is presented [16].  NMR is one of the most important spectroscopic techniques in chemistry, materials sciences and beyond [20].  The theoretical description of its parameters presents, however, still a challenge -- despite the remarkable success that has been achieved during the last decade [21].  The shielding tensor (or the chemical shift) represents a major part of the information contained in a NMR spectrum.  Our implementation is based on the use of the so-called gauge-including atomic orbitals (GIAO) [22,23] -- possibly the most accurate method available to date [24].


This DFT-GIAO method is subsequently extended to include the frozen core approximation (chapter 4), a scheme in which only the valence electrons are treated variationally [17].  The frozen core approximation in turn is the basis on which we can apply a Pauli-Hamiltonian [25,26], i.e., the chosen relativistic method.  The scalar relativistic extension of the DFT-GIAO scheme is presented in chapter 5 [18].  At that point, the two major subjects of this thesis join.  The implementation which I will present here makes, for the first time, first principle calculations of heavy element chemical shifts possible (chapter 5).  Some examples of such calculations will be discussed.  


Chapter 6 extends the derivations of the preceeding chapters to the calculation of the EPR g-tensor [19].  EPR is a spectroscopic technique that relies on unpaired electrons to get any signal [27].  Thus, EPR experiments are probably as important for radicals as is NMR for closed shell molecules.  The g-tensor is the analogue to the NMR shielding [7].  It is the beauty of the unified approach that all features of the DFT-GIAO NMR approach are readily available to the g-tensor as well.  Such features include the mentioned frozen core approximation and scalar relativistic method, but also sophisticated analysis tools in terms of the occupied and virtual molecular orbitals (MO).  The new method is tested using a set of small radicals.  


Finally in chapter 7, some conclusions are presented and possible future extensions of this work are discussed.


The thesis is completed with some appendices.  The first appendix is dedicated to an investigation of the relationship between the GIAO formalism and the simpler common-gauge formulation of the shielding [28].  I prove in this appendix that both methods are equivalent in the limit of complete basis sets and exactly solved zero-order quantum-mechanical equations.  The next three appendices afford some lengthy derivations out of chapter 5.  Finally, appendix 5 contains the optimized geometries of the radicals that are used in chapter 6.


I will use atomic units (a.u.) in derivations througout the present thesis [7], unless otherwise stated.  Calculated results are normally presented in the units that are commonly used for the given physical properties.  Atomic units are defined via




.
(1-1)

Here, m and e are the electron mass and charge, respectively.  The vacuum speed of light is in these units equal to the inverse of , where  is the dimensionless fine structure constant, given as 1/137.03599 [2].  


In the immediately following section (section 1.1), I wish to give a brief introduction to density functional theory (DFT).  DFT is the basis of all the developments that will be presented in this thesis.  I will further introduce some practical details of the implementation, namely, the basis set expansion of the MOs.  Later in this same chapter (section 1.2), I wish to establish the particular relativistic approximation that will be used in chapters 2, 5, and 6.  We employ the quasi-relativistic method of Snijders et al. [29-34].  


The various properties in this thesis can be considered as second derivatives of the total energy with respect to certain perturbation parameters.  This point is worked out in more detail in section 1.3, at the end of the first chapter.  

1.1
Density Functional Theory TC  "1.1
Density Functional Theory" \l 2 
Density Functional Theory (DFT) forms the basis and framework of all the research that is presented in this thesis.  DFT has recently gained increasing recognition and acceptance as a powerful and flexible tool within chemistry.  This is evident by the growing number of papers devoted to the subject (recent reviews are contained in articles by Ziegler [35,36]; books dedicated to the subject include a textbook [37] and several volumes of conference proceedings [38-40]).  The increasing popularity of DFT is due to the combination of accuracy and efficiency which are particularly important for large systems (e.g., transition metal complexes or heavy element compounds).  Examples of its applications are the accurate calculation of molecular structures and bonding energies, the determination of transition state structures, activation energies, reaction pathways, the assignment of various kinds of spectra, as well as the computation of harmonic force fields [35,36].  This list is by no means complete; other examples will be discussed throughout this thesis.  Furthermore, the results obtained by DFT are usually in good agreement with experiment.  


In this section, I wish to outline the fundamentals of DFT.  I will use this to establish the notation and to facilitate the discussion in subsequent chapters of the thesis.  I will compare our DFT results with various other high-level theoretical methods throughout the subsequent chapters of the thesis.   

1.1.1
Total Energy;  Kohn-Sham Equations TC  "1.1.1
Total Energy;  Kohn-Sham Equations" \l 3 
Non-relativistic DFT is based on an exact expression for the total electronic energy of the n -electron system [37,41]








.
(1-2)

The energy is a functional of the electron density, .  Further, the 

 form a set of n orthonormal one-electron functions.  The density follows from these Kohn-Sham (KS) orbitals [37,42], as they are often called, by





(1-3)

with




.
(1-4)

In Eqs. 1-3 and 1-4, we have introduced the one-electron density matrix of the system; the electronic density proper is given by the diagonal elements of the density matrix, Eq. 1-3.


The first term in Eq. 1-2 contains the operator hNR,




,
(1-5)

where 

 is the electronic momentum operator (NR stands for non-relativistic).  Thus, hNR describes the interaction of the electronic density with the external nuclear potential, 

, as well as the kinetic energy of a model system with exactly the same electron density, but without electron-electron interactions [35,37,41].  The next term in Eq. 1-2 describes the interaction of the electron density with itself.  Finally, EXC[] is the exchange-correlation (XC) energy functional.  It contains the difficulties of the many-electron problem, and its exact form is unknown [35-40].  The XC energy functional can be expressed in terms of the XC energy density XC according to [42,43]




.
(1-6)

For practical purposes, some meaningful approximation has to be chosen for EXC[] [44-49].


The energy expression in Eq. 1-2 allows the derivation of effective one-electron equations for the KS orbitals.  This is achieved by requiring the total energy expression of Eq. 1-2 to be stable with respect to any variation of the total density [35,37,42].  The resulting KS equations are




,
(1-7)

where





(1-8a)

and




 .
(1-8b)

The XC potential VXC of Eq. 1-8b is the functional derivative of the XC energy with respect to the electron density.  The second term in Eq. 1-8a is the Hartree (or Coulomb) potential, i.e., the electrostatic potential of the electron density




 .
(1-8c)

Finally, the first term in Eq. 1-8a, hNR, has been defined earlier in Eq. 1-5.  The Kohn-Sham equations, Eqs. 1-7 and 1-8, have to be solved self-consistently for the Kohn-Sham orbitals.

1.1.2
Basis Set Expansion,  Frozen Core Approximation TC  "1.1.2
Basis Set Expansion,  Frozen Core Approximation" \l 3 
The Kohn-Sham equations, Eq. 1-7, are often solved by expanding the Kohn-Sham orbitals into a (finite) basis set according to




.
(1-9)

The 

 form a set of 2M basis functions*.  These basis functions are in most cases "atomic orbitals" (AO).  Each AO is centered on one particular nucleus.  The expansion Eq. 1-9 is then called the "linear combination of atomic orbitals" (LCAO) expansion.  The task of solving the KS equations, Eq. 1-7, is now transformed into finding the LCAO expansion coefficients 

.


One major problem for the theoretical description of many-particle systems is the large number of electrons involved.  It is on the other hand well-established that only valence electrons participate in chemical bonds.  Thus, it would be desirable to reduce the computational effort by treating only the valence electrons explicitly.  Probably the most common approach to achieve this is by the use of pseudopotentials [2,3,26,50-52].  Another way to make use of this fact is the so-called frozen core approximation [53-55] that is also used in some of the following chapters.  In this approximation, it is assumed that molecular orbitals (MO) describing inner-shell electrons remain unperturbed in going from a free atom to a molecule.  Consequently, these "core electrons" can be excluded from the variational procedure.  Instead, they are pre-calculated in an atomic calculation, and kept "frozen" thereafter [53-55].


However, when employing this approximation, we have to ensure orthonormality of all MOs.  In particular, the valence MOs have to be orthogonal to all core orbitals within the molecule.  An elegant way to achieve this is the following: We shall make already the valence basis orthogonal to the cores.  Thus, we modify the AO expansion of Eq. 1-9 according to




,
(1-10)

where 

 is the set of the 2Mval modified valence basis functions and i is one of the nVal valence MOs.  These basis functions are given by [53-57]




.
(1-11)

Here, 

 is one of the valence AOs that have been introduced before in Eq. 1-9.  The 

 form an auxilary set of 2Mcore core AOs.  We employ exactly one such core AO (one core type basis function) per frozen core MO.  It is thus possible to split the total density matrix 

 of Eq. 1-4 into a core and a valence part




.
(1-12)

The core-orthogonalization coefficients b, Eq. 1-11, are found from the aforementioned orthogonality requirement




.
(1-13)

The condition in Eq. 1-13 must be satisfied for all 2Mval valence basis functions  and for all 2Mcore frozen core orbitals 

 (core MOs).  This leads to the following equations for the b  [17,53-57]





(1-14)

where




,
(1-15a)




,
(1-15b)




.
(1-15c)

Thus, 

 and 

 represent the overlaps between the true core MO, 

, and the primitive AOs, 

 and 

, respectively.  Note the star in Eqs. 1-14 and 1-15a, denoting the complex conjugate of the core-orthogonalization coefficients [17].  


We wish to emphasize again that the set 

 of Eq. 1-11 is chosen to be truly auxilary in the frozen core approximation; it does not constitute any degrees of freedom within the variational space of the valence MOs [17,53-57].  The variational space is spanned by the valence MOs of Eq. 1-11.  


It is useful to rewrite the MO expansion of Eq. 1-10 to give it the same form as in the all-electron case, cf. Eq. 1-9.  Thus, we write




,
(1-16)

where




 .
(1-17)

The MO expansion of Eq. 1-16 goes now over all 2M primitive AOs, rather then over the 2MVal modified basis functions  of Eq. 1-11.  The new set of coefficients  

 is readily obtained from the definition of the  in Eq. 1-11 as





if  counts a valence AO,





if  represents a core AO.
(1-18)

We shall in this thesis use either form of the expansion for the valence MO i, Eq. 1-10 or Eq. 1-16.


If the frozen core approximation was completely correct, i.e., if the core polarization was indeed negligible, then the two sets of coefficients 

 of the frozen core approximation, Eq. 1-16, and 

 of the all-electron case, Eq. 1-9, must be identical.

1.2
Relativity TC  "1.2
Relativity" \l 2 
After having established the non-relativistic expressions, we now continue with the approximate relativistic theory.  The total energy expression of Eq. 1-2 is modified in the following way [29-33]








,
(1-19)

where constant core terms have been omitted.  The quasi-relativistic energy EQR of Eq. 1-19 is a functional of QR, the electronic density under the influence of relativity.  The aforementioned frozen core approximation [53-57] is the basis of the quasi-relativistic scheme.  The core density is obtained from a solution of the complete atomic Dirac equation [4,5,8-10] in this case.  


The first term in Eq. 1-19 depends on the valence density only.  The sum in this term runs now over occupied valence orbitals.  The other two terms contain the total, core and valence, molecular density.  The operator hNR and the potential VH have been defined before in Eqs. 1-5 and 1-8c, respectively.  The operator hQR contains relativistic effects up to first order in 2, i.e., in the square of the fine structure constant.  This operator has three contributions [4,5,10]




.
(1-20a)

The contributions are in this order the so-called mass-velocity operator




,
(1-20b)

the Darwin operator




,
(1-20c)

and the spin-orbit operator




.
(1-20d)

The spin orbit-operator hSO contains the electronic spin operator; we have called it 

 in Eq. 1-20d to avoid confusion with the NMR shielding tensor.  The different contributions to the operator hQR have a well-known physical interpretation [4,5,10,11].  Thus, hMV and hDar are corrections to the non-relativistic kinetic and potential energy operators, respectively [58,59].  Finally, hSO describes the spin-orbit coupling.


The electronic potential Vel of some electron density is given as




.
(1-21)

It depends on the total, core plus valence, electronic density .  Ziegler et al. [31] have, however, shown that it is sufficient to use the core density, C; contributions of the valence density V to the potential Vel can be neglected in both, hDar and hSO.  This approximation has the advantage that it leads to considerable savings in the self-consistent solution of the relativistic Kohn-Sham equations.  The two operators hDar and hSO are now




,
(1-22a)

and




,
(1-22b)

with




.
(1-22c)


The operator hQR of Eq. 1-20a contains all correction terms to hNR up to the order 

 (square of the fine structure constant, see above).  Therefore, it is useful to express the total energy and the density as a power series in 

 as well,





(1-23a)

and




.
(1-23b)

E0 is the non-relativistic energy ENR of Eq. 1-2; 

 is the non-relativistic density which minimizes ENR.  


Now, we require EQR of Eq. 1-19 to be stable with respect to (separate) variations of the non-relativistic valence density 

 and the first order correction 

.  This method is known as first order perturbation theory (FOPT).  We find from this variation that the first order total energy correction E1,




 ,
(1-24)

depends only on the non-relativistic (zero order) valence density.  Note that we use in Eq. 1-24 the density matrix rather then the density.  


In the quasi-relativistic (QR) method of Snijders et al. [32,33], we require EQR to be stable with respect to any variations of the (QR) valence density 

.  This density is expressed again in terms of one-electron functions, cf. Eqs. 1-3 and 1-4,




.
(1-25)

The sum in Eq. 1-25 runs again over occupied valence orbitals.  The density variation results in modified Kohn-Sham equations [32,33] for the relativistic MOs 

.  These quasi-relativistic KS equations are




,
(1-26)

where




.
(1-27)

The operator 

 in Eq. 1-27 is known as a Pauli-Hamiltonian [2,5,10,25,60].  The set of quasi-relativistic Kohn-Sham equations Eq. 1-26 has to be solved self-consistently again.  From this, the QR valence density is obtained.  We use the QR method as our relativistic approximation, unless otherwise stated.  


The self-consistent treatment of Pauli-type Hamiltonians has been criticized in the literature because this operator has been derived from perturbation theory [61].  Thus, it is known that the mass-velocity correction to the kinetic energy operator Eq. 1-20b is valid only for small electron velocities [58].  It is wrong if the instantaneous electronic velocities approach the speed of light.  In particular, core electrons have a high probability to be close to the nucleus.  Therefore, they obtain high instantaneous velocities [2], and the mass-velocity correction of Eq. 1-20b becomes invalid for heavy nuclei.  


Further a Hamiltonian containing this same mass-velocity operator has negative eigenvalues [58].  This may lead to a variational collapse.  Both problems are circumvented at once in the quasi-relativistic method by using the frozen core approximation [32,33,53-55], see above.  In this way, the highly relativistic core electrons are treated with the complete four-component Dirac equation [4,5,8-10].  The core electron density and its potential are extracted from these fully relativistic calculations.  They are used in the subsequent molecular calculations.  The remaining valence electrons are on the other hand far from the core and have small average velocities so that the quasi-relativistic energy expression should be applicable.  The variational collapse is avoided by a proper choice of valence basis functions.  The respective requirements have been discussed in more detail by van Lenthe [62]; basis sets that are employed in this thesis for relativistic calculations fulfil the requirements, and no variational collapse occurs.  The quasi-relativistic method has been employed in practical calculations, with remarkable success (cf., e.g., the literature [13-15,32-34,63-65] as well as chapters 2 and 5 of this thesis).  In chapters 2 and 5, I will discuss some advantages and shortcomings of the QR method in more detail.


It is quite common to neglect the spin-orbit operator of Eq. 1-22b completely, resulting in the so-called scalar relativistic method [2,34].  In the scalar relativistic method, only the mass-velocity and Darwin operators, Eqs. 1-20b and 1-22a, respectively, are retained in hQR of Eq. 1-20a.  I will use the additional approximation in the following chapters, unless otherwise stated.  

1.3
Double Perturbation Theory;  Minimal Coupling TC  "1.3
Double Perturbation Theory;  Minimal Coupling" \l 2 
Many spectroscopic parameters can be formulated in terms of second derivatives of the total molecular energy, E, with respect to two (external or internal) perturbation parameters,  and 



.
(1-28)
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 is, according to Eq. 1-28, the contribution to E that is linear in both  and .  The theoretical treatment of such second order parameters is sometimes called "double perturbation theory" [66], which is a special case of response theory.  Examples for such second order parameters include force constants and vibrational frequencies [56,57,67,68]; NMR parameters (for review articles, see [28,69-73]; cf. also this thesis, chapters 3 to 5); EPR parameters (chapter 6 of this thesis; for reviews, cf. [72] and [12]); among others.  


The interchange theorem of double perturbation theory [66,74-76] states that the molecular orbitals have to be calculated only up to first order in one perturbation alone:




  ,
(1-29)

where 

 is the Hamiltonian operator of the system including the perturbations that are represented by  and .  Further, 

 is the ground state wavefunction of a system that contains only the perturbation represented by .  The two perturbations  and  can be freely exchanged in Eq. 1-29 -- hence the name "interchange theorem".  The actual order of them is determined by computational convenience in any given case.


The unified approach as expressed in Eqs. 1-28 and 1-29 is unique because it allows the treatment of a wide range of effects within one single framework.  Many of the important terms as well as the general formulation are completely independent of the particular perturbations under consideration.  We will apply the formalism of double perturbation theory, Eqs. 1-28 and 1-29, to the various properties in the subsequent chapters of this thesis.  


For magnetic properties like the NMR shielding or the EPR g-tensor, we will choose one cartesian component of the constant external magnetic field as one of the two perturbation parameters [16-18,73].  This in turn requires one to introduce the magnetic field into the otherwise field-free expressions, cf. Eqs. 1-28 and 1-29.  An easy way to achieve this is the so-called "minimal coupling" [10,11,77].  In this scheme, we substitute the electronic momentum operator, 

, according to




,
(1-30)

where 

 represents the vector potential of the constant external magnetic field***.

CHAPTER TWO TC  "CHAPTER TWO" \l 1 
THE IMPLEMENTATION OF ANALYTICAL ENERGY GRADIENTS BASED ON A QUASI-RELATIVISTIC  DENSITY FUNCTIONAL METHOD.  THE APPLICATION TO METAL CARBONYLS TC  "THE IMPLEMENTATION OF ANALYTICAL ENERGY GRADIENTS BASED ON A QUASI-RELATIVISTIC  DENSITY FUNCTIONAL METHOD.  THE APPLICATION TO METAL CARBONYLS" \l 1 
2.1
Introduction TC  "2.1
Introduction" \l 2 
The importance of special relativity in structural chemistry is now very well established [2,3,31].  With Pyykkö [2], we want to define relativistic effects as anything arising from the finite speed of light, 

, as compared to 

.  Here, is the fine structure constant, 

, chapter 1.  


To determine molecular structures with automated procedures, analytical expressions for the energy gradients (first derivatives of the total energy with respect to a nuclear coordinate) are extremely useful.  The implementation of these energy gradients has recently been presented for the non-relativistic DFT (e.g., [78-80]).  This allows the calculation of molecular equilibrium geometries, among other properties.  Indeed, such geometry optimizations have become routine over the last few years.  The results are generally very good [35].


It would thus be desirable to make geometry optimizations also possible for heavy element compounds.  This requires the implementation of the gradients for the chosen relativistic energy expression.  Such an implementation for the quasi-relativistic (QR) method of Snijders et al. [29-34], cf. section 1.2, is described in this chapter.  The basis for the implementation is the Amsterdam Density Functional package (ADF) [53-55,81,82].


The QR method is maybe not the most obvious choice for relativistic calculations.  One would rather consider a fully-relativistic treatment of the many-electron system.  This is however computationally much more expensive (forbiddingly expensive for all but the simplest systems), because it requires the calculation of four components of the wave function as compared to two for the QR method.  A widely used alternative two-component method is the use of some sort of pseudopotentials [26,50,83-85]; we found our approach more straightforward to apply.  The QR method has also other advantages as compared to the fully-relativistic treatment.  Thus, we can use the same basis sets for the non-relativistic and the (quasi-) relativistic calculations.  Consequently, non-relativistic and relativistic results are readily compared -- we will make extensive use of this feature in the present chapter.  The results of QR calculations are, on the other hand, in good agreement with experiment [2,3,13-15,33,63-65]; see below.  Finally, the QR method has advantages over the pseudopotential methods when applied to the NMR chemical shift (shielding) [18], cf. chapter 5 of this thesis.  


The relativistic forces can be considered as a second order property - at least in an approximative sense (e.g., [2] and [31]).  The two perturbation parameters (section 1.3) are the square of the fine structure constant, 2, and the displacement of a nucleus along one coordinate axis.  The implementation of the forces was tested by comparison with finite difference derivatives.  We have in addition applied$ [13,14] the new method to the hexacarbonyl systems M(CO)6 (M=Cr, Mo, W) and the pentacarbonyls M(CO)5 (M=Fe, Ru,Os) for which experimental structures are available.  We shall also discuss how the first bond dissociation energy (FBDE) is influenced by relativity.  The FBDE for transition metal complexes is an important parameter in studies on organometallic kinetics [86].  However, an accurate estimate of FBDEs by theoretical or experimental techniques still presents a challenge, even for the simple binary compounds considered here.  

2.2
Formulation and Implementation TC  "2.2
Formulation and Implementation" \l 2 
In this section, I wish to derive expressions for the QR forces, based on the QR energy expression that has been discussed in section 1.2.  Further, the implementation within the framework of DFT, section 1.1, will be discussed.  


The total energy contribution of the spin-orbit operator hSO, Eqs. 1-20d and 1-22b, vanishes for closed shell molecules to first order in 

 [31] (this is obvious already from the expressions Eqs. 1-20d and 1-22b).  Only the case of closed shell molecules shall be considered in this chapter, and we can skip hSO in subsequent discussions.  This results in the scalar relativistic approach [2,34] as has been pointed out above in section 1.2.


Double perturbation theory can be applied to obtain the relativistic force contributions, section 1.3.  The two perturbations of interest are then "relativity" as well as "nuclear displacement",





(fine structure constant)






(nuclear displacement,  one component),
(2-1)

cf. Eqs. 1-28 and 1-29.  According to the interchange theorem of double perturbation theory, Eq. 1-29, we have two alternative ways to calculate the relativistic forces.  We could either calculate the wave function for the system including relativity, 

, or the wave function of the system which is perturbed by the displacement of a nucleus, 

.  For the latter choice, see, e.g., Schwarz et al. [87,88].  We chose however the former way.  This was done for two reasons: First, we are already able to calculate the QR energy E(2)  EQR (section 1.2); the calculation of 

 is still under investigation for ADF [56,57,89].  Furthermore, our choice allows a clear interpretation of the relativistic bond contraction [31].


The QR force contributions are derived and discussed in the following.  However, it should be pointed out that they are not exactly a second order property.  This is because we calculate the wave function 

 to all orders of 2 in the perturbation Hamiltonian hQR of Eq. 1-20.  Consequently, we need the gradients (i. e., the first derivative with respect to a nuclear coordinate XA) of the QR energy EQR of Eq. 1-19.  For that purpose, let us rewrite EQR as








.
(2-2)

The first two integrals in Eq. 2-2 have the same form as the non-relativistic energy expression of Eq. 1-2, however with respect to the QR density 

.  The gradient of this energy expression is already known and calculated -- no matter on which density the expression depends [78-80].  Therefore, we have only to be concerned with the remaining two terms.  They are given by





(2-3)

and




.
(2-4)

With the expressions for the operators and the density matrix, Eqs. 1-20 / 1-22 and Eqs. 1-4 / 1-25 respectively, we can reformulate these energy terms as





(2-5)

and




.
(2-6)

The potential V in ED has been defined previously in Eq. 1-22c.  Partial integration was used to remove possibly troublesome terms such as fourth derivatives of 

 from EMV as well as derivatives of the Coulomb potential VN from ED.


A common feature of most practical implementations is the expansion of the orbitals 

 into a basis set 

, Eqs. 1-9, 1-10, and 1-16,





(2-7)

(I have repeated in Eq. 2-7 the all-electron version of the LCAO expansion, Eq. 1-9, to keep the equations readable.  The following discussion applies equally to the frozen core case, Eq. 1-16.).  In the ADF program, primitive Slater type orbitals (STO) are used as basis functions.  Each STO is centered at one particular nucleus (LCAO expansion).  Therefore, it is possible to express the orbitals as a sum of single nuclear contributions








.
(2-8)

This decomposition is possible for any type of LCAO expansion.  The approximation Eq.1-22c for the potential V allows a similar decomposition of this potential




.
(2-9)

Given the LCAO expansion Eqs. 2-7 and 1-16, respectively, the derivative of the total energy with respect to some parameter y can be written as [78-80]




.
(2-10)

The indirect derivative (i.e., the second term) can be reformulated as [78-80]




.
(2-11)

Therefore, we have to be concerned with the direct derivative only, the first term of Eq. 2-10, since hQR is already included into the self-consistent determination of the 

 and the corresponding orbital energies 

, cf. Eqs. 1-26 and 1-27.


These direct derivatives can now be obtained.  We get by straightforward differentation, taken with respect to one cartesian component of a nuclear coordinate





(2-12)

and












.
(2-13)

Eqs. 2-12 and 2-13 are not yet the final form in which we can implement the gradients.  The derivatives of both, EMV and ED, contain one-center integrals.  Such integrals should be exactly zero, but might give spurious contributions due to the numerical integration (numerical noise).  It would be preferable to eliminate such terms explicitely.  Furthermore, there are again derivatives of the potential V in Eq. 2-13.


Both problems can be solved at once by applying a translational invariance condition [78-80].  Thus, any integral J depending only on the nuclear coordinates must be translational invariant; the value of J can only depend on the relative position of the nuclei within the molecule:




.
(2-14)

In this way, we get for the gradients of EMV and ED
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(2-15)

and
















.
(2-16)

The different contributions in Eqs. 2-15 and 2-16 are evaluated together, and all one-center terms cancel already under the integral.  The derivatives of EMV and ED can be used in this form.

2.3
Finite Difference Tests TC  "2.3
Finite Difference Tests" \l 2 

The calculation of the QR forces has been implemented$$ into the geometry optimization section of ADF [78-80].  The implementation was tested by ensuring that the forces calculated from the analytical expressions of Eqs. 2-15 and 2-16 were in agreement with the forces calculated by numerical differentiation (finite difference derivatives, f.d.) of EMV and ED, respectively.  The test was carried out for a sample of diatomic molecules.  Some results of it are collected in Table 2.1.

Table 2.1
Finite difference derivatives for the test of the QR forces TC  "Table 2.1
Finite difference derivatives for the test of the QR forces" \l 8 




Deviation f.d. versus analytic gradient


Molecule
Wave function
Bond distance (a.u.)
Displacement for f.d. (a.u.)
MV term, 

Eq. 2-15
Darwin term,

Eq. 2-16

  CO
non-rel.
2.00
  ± 0.001
<0.01%
<0.1%

  SnO
non-rel.
4.18
± 0.01
<10-3%
2.8%

H2
non-rel.
1.40
± 0.01
<<0.1%
<0.01%

  AgH
non-rel.
3.11
  ± 0.005
<5*10-3%
0.4%

  Au2
non-rel.
5.50
± 0.01
(derivative vanishes)
0.06%

  AgH
relativistic
2.97
± 0.01
<4*10-3%
2.4%


We included a wide range of diatomic molecules, both close to the equilibrium distance and further apart; the results are good throughout.  The ultimate test for any theoretical method is, however, the comparison of calculated values to experimental results.  Such a test is presented in the following section where the new scheme has been applied to geometries and kinetic parameters of binary carbonyl transition metal complexes.

2.4
Application to the Structure and First Bond Dissociation Energy of M(CO)6  (M =  Cr, Mo, W) and M(CO)5  (M= Fe, Ru, Os) TC  "2.4
Application to the Structure and First Bond Dissociation Energy of M(CO)6  (M =  Cr, Mo, W) and M(CO)5  (M= Fe, Ru, Os)" \l 2 
We shall in the next section give an application of the quasi-relativistic energy gradients to the molecular structure of binary metal-carbonyls.  A more detailed account of the application described here has been given elsewhere [13,14].  
2.4.1
Motivation and Previous Studies TC  "2.4.1
Motivation and Previous Studies" \l 3 
The first bond dissociation energy (FBDE) for transition metal compounds is an important parameter in studies on organometallic kinetics [86].  However, an accurate estimate of FBDEs by theoretical or experimental techniques still presents a challenge, even for simple binary compounds such as M(CO)6 with M=Cr, Mo, W and M(CO)5 with M = Fe, Ru and Os.  Earlier experimental data for M(CO)6 (M=Cr, Mo, W) were obtained in solution, based on kinetic measurements and photoacoustic calorimetry [90-97].  The only set of data in the gas phase was determined by Lewis et al. by using pulsed laser pyrolysis techniques [98].  Kinetic estimates of the FBDEs among the pentacarbonyls are available for all three members of the iron triad, whereas gas phase data is restricted to Fe(CO)5.  On the theoretical side, Sherwood and Hall [99], Moncrieff et al. [100], as well as Barnes et al. [101-103] calculated the FBDE for Cr(CO)6 at the Hartree-Fock (HF) and post-HF levels.  Similar all electron calculations have not been presented for the 4d and 5d homologues due to the large number of core electrons.  However, Ehlers and Frenking have recently published a comprehensive study on structures and FBDEs of the hexacarbonyls M(CO)6 for all three members of the chromium triad by the aid of effective core potentials (pseudopotentials) using second order Møller-Plesset theory (MP2) as well as coupled cluster schemes (CCSD(T) -- coupled-cluster singles and doubles, augmented by a perturbative correction for triple excitations) [104,105].  Their calculated results are in excellent agreement with experimental values for M = Mo and W.  Theoretical ab initio studies on the M(CO)5 systems are restricted to iron where Barnes et al. [101] as well as well as Lüthi et al. [103] have carried out post-HF calculations.


DFT has also been employed in calculations on FBDEs of organometallic compounds.  Nine years ago, Ziegler et al. [106] reported a DFT calculation on M(CO)4 (M=Ni, Pd, Pt), M(CO)5 (M=Fe, Ru, Os) and M(CO)6 (M=Cr, Mo, W), based on experimental geometries and the Local Density Approximation (LDA) [44] for the XC energy EXC, Eq. 1-6, with Becke's [46] and Stoll's [45] corrections added as a perturbation.  Since the publication of this work, great advances have been achieved in DFT [35-40].  First, it is now possible to optimize molecular geometries by methods based on analytical energy gradients [78-80], and to calculate vibrational frequencies [67] as well as intensities [107] by numerical second derivatives.  Further, new nonlocal correction terms to the LDA method have been introduced by Becke and Perdew [47-49] for exchange and correlation, respectively, and these corrections have been included self-consistently [80], NL-SCF.  Finally, relativistic effects can now be taken into account in the geometry optimization procedure via a quasi-relativistic (QR) Hamiltionian, as described earlier in this chapter [15].  Therefore, it seems timely to reexamine the FBDEs for M(CO)6 (M=Cr, Mo, W) and M(CO)5 (M = Fe, Ru, Os) by the current DFT techniques.  This study has been prompted by the recent work due to Ehlers and Frenking [104,105] as well as by the need to test the implementation of the QR forces for an important class of real systems in order further to assess the importance of relativity for periodic trends within a triad of transition metal elements [2,3,31,65].  

2.4.2
Computational Details TC  "2.4.2
Computational Details" \l 3 
All calculations were based on the density functional package ADF [82], developed by Baerends et al. [53-55,81], and vectorized by Ravenek [108].  The numerical integration scheme applied for the calculations was developed by te Velde et al. [109-111].  Uncontracted triple- STO basis sets were used for the ns, np, nd, (n+1)s and (n+1)p orbitals of the metal centers [112,113] where n  is the number of the given row in the periodic table of elements.  For the 2s and 2p orbitals of carbon and oxygen, double- basis sets were used and augmented by an extra d polarization function.  The inner cores were all treated by the frozen core approximation [53-55], section 1.1.2.  In order to fit the molecular density and to present Coulomb and exchange potentials accurately, a set of auxiliary s, p, d, f and g STO functions, centered on all nuclei, was introduced [114].  The molecular geometries were optimized based on the method implemented by Versluis and Ziegler at the LDA level and by Fan and Ziegler at the NL-SCF level [78-80].

2.4.3
Geometries of M(CO)6 and M(CO)5 TC  "2.4.3
Geometries of M(CO)6 and M(CO)5" \l 3 
The geometries of the hexacarbonyls were optimized within Oh symmetry constraints.  Table 2.2 displays M-C and C-O bond lengths obtained by DFT and correlated ab initio methods, together with the experimental values [115].  The Cr-C bond length at the LDA level is calculated to be too short, by 0.05 Å.  This error is diminished by the NL-SCF scheme to 0.01 Å.  The NL-SCF Cr-C bond length provides a better fit to experiment than the distances obtained by the CCSD(T) [101-103] and MP2 [104,105] methods.


The NL-SCF method is also seen to improve the calculated M-CO bond length for molybdenum to within 0.01 Å of experiment.  The MP2 value is in even better agreement with experiment.  The influence of nonlocal corrections on the metal-ligand bond lengths in Cr(CO)6, Mo(CO)6 and other transition metal compounds has been studied extensively by Fan and Ziegler [80].  

Table 2.2
Calculated and experimental bond lengths (Å) for M(CO)6 TC  "Table 2.2
Calculated and experimental bond lengths (Å) for M(CO)6" \l 8 


       Cr(CO)6



      Mo(CO)6



      W(CO)6 




M-C

C-O


M-C

C-O 


M-C

C-O

LDA

1.866

1.145


2.035

1.144


2.060

1.144

NL-SCF

1.910

1.153


2.077

1.152


2.116

1.154

NL-SCF+QR

1.910

1.153


2.076

1.153


2.049

1.155

MP2 a

1.883

1.168


2.066

1.164


2.054

1.166

CCSD(T) b

1.939

1.178







Exp c

1.918

1.141


2.063

1.145


2.058

1.148

a
[104,105].

b
[101-103].

c
[115].


The impact of relativity is quite apparent in the DFT calculations on W(CO)6.  The W-CO distance calculated at the non-relativistic NL-SCF level as 2.116 Å is too long by 0.06 Å.  The inclusion of relativistic effects in the NL-SCF+QR scheme affords a contraction of the W-CO bond by 0.07 Å to 2.049 Å, which is 0.01 Å shorter than experiment.  The MP2 calculations do not allow for a separate study of relativistic effects since these are included implicitly in the effective core potential.  However, the W-CO distance calculated by the MP2 method is in excellent agreement with experiment.  The C-O distances obtained by the NL-SCF scheme for the three carbonyls are in better agreement with experiment than the MP2 and CCSD(T) values, Table 2.2.


It is interesting to note that the experimental M-CO bond distance is longer for molybdenum than tungsten.  This trend is reproduced by the MP2 calculations with relativistic core potentials as well as the DFT scheme, after relativistic effects have been included according to the QR scheme described in sections 1.2 and 2.2 of this thesis.  


Experimental techniques based on X-ray and electron diffraction as well as infrared (IR) spectroscopy have established that the d8 pentacarbonyls of iron, ruthenium and osmium all have a D3h trigonal-bipyramidal structure [116-119].  We present in Table 2.3 optimized structures for the pentacarbonyls based on DFT calculations carried out within D3h symmetry constraints.  Accurate experimental [116-119] data are available for all members of the M(CO)5 family and they are included in Table 2.3 for comparison along with optimized structures for Fe(CO)5 obtained by high level ab initio techniques [101,103].  


The agreement between the Fe-CO distances determined by the NL-SCF+QR scheme and experimental estimates is excellent and nearly as good as the fit obtained by the multireference configuration-interaction (MRCI) method [103].  The Fe-CO and CO distances obtained by the modified coupled-pair functional (MCPF) scheme [101] are on the other hand too long.  We note again that the inclusion of nonlocal corrections in the geometry optimization, NL-SCF, results in a substantial improvement over the LDA structures.  The LDA metal-ligand bond distances are in general too short.  

Table 2.3
M-CO and C-O bond lengths (Å) of M(CO)5 TC  "Table 2.3
M-CO and C-O bond lengths (Å) of M(CO)5" \l 8 

Fe(CO)5




Method
M-Cax
M-Ceq
C-Oax
C-Oeq

LDA
1.769
1.789
1.145
1.149

NL-SCF
1.819
1.816
1.153
1.157

NL-SCF+QR
1.817
1.813
1.153
1.156

MRCI a
1.798
1.835



MCPF b
1.878
1.847
1.168
1.177

Exp c
1.807
1.827
1.152
1.152


Ru(CO)5




Method
M-Cax
M-Ceq
C-Oax
C-Oeq

LDA
1.934
1.931
1.142
1.147

NL-SCF
1.983
1.980
1.149
1.154

NL-SCF+QR
1.968
1.960
1.150
1.157

Exp c
1.950 d
1.969 d
1.143
1.143


Os(CO)5




Method
M-Cax
M-Ceq
C-Oax
C-Oeq

LDA
2.003
1.988
1.140
1.147

NL-SCF
2.061
2.050
1.147
1.153

NL-SCF+QR
2.000
1.975
1.147
1.156

Exp c
1.990 e 
1.943 e
1.142
1.142

a  [103].             b  [101].    

c  Fe(CO)5 from [116,117];  Ru(CO)5 from [118];  Os(CO)5 from [119].    

d  Estimated errors are 0.01 Å for Ru-CO bonds.    

e  Estimated errors are 0.02 Å for Os-CO bonds.


Hedberg et al. [118,119] have recently determined the structures of Ru(CO)5 and Os(CO)5 by gas-phase electron diffraction.  Their observed distances [118] for Ru(CO)5 of Ru-COeq = 1.969 Å and Ru-COax = 1.950 Å are in good agreement with the NL-SCF+QR estimates given by Ru-COax = 1.968 Å and Ru-COeq = 1.960 Å.  The experimental values are associated with errors of 0.01 Å.  We note that both nonlocal and relativistic corrections are important for a good agreement with experiment, although they cancel each other to some degree.  Relativistic effects are seen to contract the Ru-CO bond by 0.02 Å.  The experimental [119] bond distances for Os(CO)5 are Os-COax = 1.990 Å and Os-COeq = 1.943 Å, again in good agreement with the NL-SCF+QR estimates given by Os-COax = 2.000 Å and Os-COeq = 1.975 Å.  The error associated with the experimental estimates are 0.02 Å.  We note that the Os-CO contractions due to relativity amount to between 0.06 and 0.08 Å.  

2.4.4
First Bond Dissociation Energies TC  "2.4.4
First Bond Dissociation Energies" \l 3 
The first bond dissociation energy (FBDE) is defined as the reaction enthalpy corresponding to the process




            (n=6, 5).
(2-17)

Table 2.4 collects calculated FBDE values based on DFT and ab initio calculations, together with the experimental H298 values for the hexacarbonyls M(CO)6, M=Cr, Mo, W.


The DFT estimates represent the electronic contribution to the reaction enthalpy of Eq. 2-17.  Thus, thermal corrections and contributions due to the vibrational zero-point energy correction, ZPE, are not included.  However, it is possible to provide an estimate of these corrections.  Roughly, the vibrational degrees of freedom lost in the reaction Eq. 2-17 are one M-C stretching vibration and two M-C-O bending vibrations.  

Table 2.4
Calculated and experimental first bond dissociation energies (kcal/mol) for M(CO)6 TC  "Table 2.4
Calculated and experimental first bond dissociation energies (kcal/mol) for M(CO)6" \l 8 

Cr(CO)6
Mo(CO)6
W(CO)6

LDA
62.1
52.7
48.4

LDA/NLa
44.6
37.4
33.5

LDA/NL+FOPT b
45.1
39.8
41.8

NL-SCF
45.9
38.2
38.8

NL-SCF/FOPT c
46.8
40.6
47.2

NL-SCF+QR d
46.2
39.7
43.7

MP2 e
58.0
46.1
54.9

CCSD(T) e

CCSD(T) f
45.8

45.3
40.4

40.3
48.0

47.8

CCSD(T) g
42.7



Exp h
38.7
30.1
39.7

Exp i
37 ±5
34 ±5
38 ±5

Exp j
36.8 ±2
40.5 ±2
46.0 ±2

a
LDA geometry and density, with nonlocal corrections [47-49] included as a perturbation.

b
LDA geometry and density, including nonlocal corrections [47-49] and first order relativistic corrections  (FOPT) [31] as a perturbation.

c
NL-SCF geometry and density, including relativistic effects to first order [31] FOPT.

d
NL-SCF+QR geometry and density (this chapter and [15]). 

e
values without ZPE and thermal corrections [104,105].

f
values including ZPE and thermal correction [104,105].

g 
[101-103].  

h 
[90].  

i 
[97].  

j 
[98].

Taking Cr(CO)6 as an example, the frequencies of these three vibrations are about 380, 360 and 650 cm-1, respectively [120], corresponding to a ZPE correction of -2.0 kcal/mol.  This estimate is close to the ZPE values of -1.8 and -2.6 kcal/mol reported in [101] and [104,105], respectively, based on Hartree-Fock frequency calculations.  The thermal corrections from the pV work term as well as the translational and rotational degrees of freedom gained in the reaction Eq. 2-17 amount to 7/2RT = 2.1 kcal/mol.  According to this estimate, the net correction is less than 0.5 kcal/mol.  Our calculated FBDE values should be comparable to the experimental H298 estimate if the ZPE and thermal contributions cancel out for all three species.  Ehlers and Frenking [104,105] find, in fact, this to be the case in their ab initio study.


It follows from Table 2.4 that the FBDEs obtained by the non-relativistic LDA scheme are too high in comparison with the best experimental data [98].  The inclusion of nonlocal corrections as a perturbation, LDA/NL, improves the agreement, and an even better fit is obtained by adding relativistic effects to first order [29,30,32-34], LDA/NL+FO, in particular for M =W.  We have also carried out non-relativistic calculations in which nonlocal terms are included self-consistently, NL-SCF [80], and combined this approach with first order relativistic corrections [29,30,32-34], NL-SCF+FO, as well as a full QR treatment, NL-SCF+QR [29-34].  The NL-SCF+QR approach provides the best agreement with experiment [98] when both bond energies and M-CO bond lengths are considered.  The NL-SCF+QR and LDA/NL+FO methods afford bond energies of nearly the same accuracy, Table 2.4.  


We note, with regard to the ab initio results [104,105], that the relativistic MP2 calculations overestimate the bond energies, in particularly for Cr(CO)6 and Mo(CO)6.  The relativistic CCSD(T) approach affords on the other hand estimates of the same accuracy as the NL-SCF+QR method.


There are three sets of experimental data available for the FBDEs of M(CO)6 (M=Cr, Mo, W) [90-96].  However, only the gas-phase data obtained by Lewis et al. [98] can be compared directly to the calculated values.  The other experimental estimates [90-97] refer to solution.  


As already mentioned, CCSD(T) and NL-SCF+QR provide bond energies in excellent agreement with experiment [98] for Mo(CO)6 and W(CO)6.  In fact, the deviation is close to the experimental error range for both methods.  The situation is quite different for Cr(CO)6 were the CCSD(T) and NL-SCF+QR schemes overestimate the FBDE by nearly the same amount, Table 2.4.  Ehlers and Frenking attributed their large FBDE value to the poor MP2 geometry [90-96,104,105] for Cr(CO)6.  Using experimental Cr-C bond lengths for Cr(CO)6 and estimated Cr-C bond distances for Cr(CO)5, they were able to reduce the calculated FBDE to 33 kcal/mol at the CCSD(T) level, in much better agreement with the experimental value.  However, in another CCSD(T) study, Barnes et al. [101,102] still obtained a FBDE of 43 kcal/mol for Cr(CO)6, by using the Cr-C bond distance optimized at the CCSD(T) level.  Their Cr-CO distance obtained at the CCSD(T) level was 0.03 Å longer than the experimental value, Table 2.2.


The experimental [98] gas phase FBDE of Cr(CO)6 is based on an estimated logA value for the pre-exponential factor A in the Arrhenius equation.  The observed logA value was considered to be too large and a value obtained from studies on Mo(CO)6, W(CO)6 and Fe(CO)5 was adopted instead.  Nevertheless, if the measured logA value is used for the estimate of H298, the corresponding FBDE would be about 47 kcal/mol (Table I of [98]), which is considered to be too large, but is in better agreement with the CCSD(T) and NL-SCF+QR results, Table 2.4.  


It is also interesting to note that the gas-phase values for the FBDE of Mo(CO)6 and W(CO)6 are about 6-8 kcal/mol larger than the bond energies obtained in solution for the same systems.  However, for Cr(CO)6, the gas-phase FBDE of 36.8 kcal/mol [98] is seen to be slightly smaller than the value obtained in solution [90-96].  A gas-phase FBDE of 44 kcal/mol for Cr(CO)6 would give rise to the same uniform shift between solution and gas-phase for all three systems.  


The rates for the substitution reaction 





(2-18)

with M=Cr, Mo, and W are observed [90-96,121] to follow the order


Mo(CO)6 > Cr(CO)6 ~ W(CO)6
(2-19)
This order is consistent with the trend in the calculated FBDEs if we assume that the CO dissociation is the rate determining step.  


The order for the FBDEs obtained here is in agreement with that found in the earlier DFT study [106].  However, the absolute values from the earlier DFT study are smaller than those reported in Table 2.4.  The deviation is due to the use of different correction terms to the LDA approximation.  Also, the geometries in the earlier study were assumed rather than optimized.  The present study [13-15] based on the NL-SCF+QR scheme represents the most accurate set of DFT based calculation presented to date on the M(CO)6 systems (M= Cr, Mo, W).


Table 2.5 displays calculated and observed FBDEs for the pentacarbonyls.  The accurate experimental gas-phase FBDE for Fe(CO)5 of 42 kcal/mol was obtained by techniques based on pulsed laser pyrolysis [98], and it is assumed to correspond to a dissociation of Fe(CO)5 into singlet Fe(CO)4 and CO.  Basolo et al. [122] have provided an estimate for the FBDE of 40 kcal/mol based on solution kinetics.  We calculate a value of 45.7 kcal/mol for the dissociation of Fe(CO)5 into singlet Fe(CO)4 at the highest level of DFT theory, NL-SCF+QR.  The corresponding spin-forbidden dissociation into triplet Fe(CO)4 was determined by NL-SCF+QR to require 43.9 kcal/mol.  

Table 2.5
The first bond dissociation energy (kcal/mol) of M(CO)5 TC  "Table 2.5
The first bond dissociation energy (kcal/mol) of M(CO)5" \l 8 
Method a
Fe(CO)5
Ru(CO)5
 Os(CO)5

LDA
65.9   (69.5) b
48.6
39.9

LDA/NL
46.1   (44.4)
30.1
22.4

LDA/NL+FO
47.1   (45.4)
35.0
36.0

NL-SCF
44.8   (43.0)
29.7
25.2

NL-SCF/FO
46.3   (44.5)
35.0
36.6

NL-SCF+QR
45.7   (43.9)
33.0
34.7

MCPF c
39± 5  (23.9)



Expd
42



Expe
40 e
27.6 f
30.6f

a
See footnotes to Table 2.4.

b
Data in parenthesis correspond to a spin-forbidden dissociation to triplet Fe(CO)4 and CO.

c
[101].

d
Accurate gas-phase value based on pulsed laser pyrolysis [98]. 

e
Estimate based on solution kinetics [123].

f
Estimates based on solution kinetics [122].

Barnes et al. [101] determined a value of 24 kcal/mol for the triplet dissociation based on MCPF calculations, and inferred in addition a singlet dissociation energy of 39 kcal/mol by adopting a value of 15 kcal for the E(S)-E(T) separation in Fe(CO)4 based on an approximate singlet structure.  


Accurate gas-phase FDBEs are not available for Ru(CO)5 and Os(CO)5.  However, the FBDEs of Ru(CO)5 and Os(CO)5 have been estimated by solution kinetics.  Thus, Poe et al. [123] and Basolo et al. [122] studied the substitution reaction




,           M =Fe, Ru, Os,
(2-20a)

and established that the rate determining step involves CO dissociation




.
(2-20b)

By equating the observed activation energy, H#, for the substitution reaction of Eq. 2-20a with the bond dissociation energy of Eq. 2-20b they found the FBDE values 40, 27.6 and 30.6 kcal/mol for M =Fe, Ru, and Os, respectively.  The kinetic data for M = Ru and Os compare reasonable well with the NL-SCF+QR estimates of 33.0 (Ru) and 34.7 (Os) kcal/mol.  We note further that the calculated relativistic ordering for the FBDEs of these three compounds, Fe(CO)5 >> Os(CO)5 > Ru(CO)5, is in accordance with kinetic measurements [122,123], which indicate that Ru(CO)5 is thermally less stable and kinetically more labile than the iron and osmium congeners.  


The interesting periodic trends within the iron triad are dictated by the fact that relativity contracts the Os-CO bond by 0.06 to 0.08 Å and strengthen it by 14 (FO) to 10 (QR) kcal/mol whereas the corresponding impact on the Ru-CO bond is smaller, although not negligible.  We are not aware of any ab initio calculations on the structures and FBDEs of Ru(CO)5 and Os(CO)5.  
2.5
Quasi-Relativistic Forces.  Concluding Remarks TC  "2.5
Quasi-Relativistic Forces.  Concluding Remarks" \l 2 
We have implemented the QR forces and used the new program along with other advanced features of ADF to carry out calculations on the two homologous series of binary carbonyls, M(CO)6 (M= Cr, Mo, W) and M(CO)5 (M= Fe, Ru, Os).  The calculations were based on the NL-SCF+QR method in which nonlocal corrections and relativistic effects are included self-consistently.  


We have demonstrated that the DFT based techniques at the NL-SCF+QR level can provide a good fit to experimental M-CO bond distances and first bond dissociation energies for the homologous series of penta- and hexacarbonyls.  The deviations between calculated and observed M-CO bond lengths and FBDEs are usually within 0.01 Å and 5 kcal/mol, respectively.  Thus, the NL-SCF+QR scheme affords estimates with the same accuracy as the highly correlated CCSD(T) [104,105] and MCPF ab initio techniques [101-103].  The present investigation [15] constitutes a substantial improvement over a previous DFT study [106] on the same series of compounds by including nonlocal and relativistic effects self-consistently and performing full geometry optimizations on all species.  It should be pointed out that results of the same same quality as those presented here can be obtained by the CCSD(T) ab initio method [104,105].  

Relativistic effects are found to be essential for an accurate representation of the M-CO bond lengths and M-CO bond energies, especially for third-row compounds.  Relativity contracts M-CO bonds by 0.07 to 0.16 Å and increases FBDEs by 5 to 11 kcal/mol in the case of the tungsten and osmium carbonyls.  As a result, we find the M-CO bond of the 4d member within a triad to be the weakest and most labile.  It is shown that our findings are in-line with kinetic observation.  The way in which relativistic effects increase the M-CO bond strength has been analyzed in a more complete study elsewhere [13,14].  


The new QR geometry optimization scheme can be used as a basis for the calculation of NMR and EPR parameters of heavy element compounds.  Such calculations are the subject of the following chapters, in particular chapters 5 and 6.  

CHAPTER THREE TC  "CHAPTER THREE" \l 1 
THE CALCULATION OF NMR SHIELDING TENSORS USING GAUGE INCLUDING ATOMIC ORBITALS AND MODERN DENSITY FUNCTIONAL THEORY.  NON-RELATIVISTIC ALL-ELECTRON FORMULATION TC  "THE CALCULATION OF NMR SHIELDING TENSORS USING GAUGE INCLUDING ATOMIC ORBITALS AND MODERN DENSITY FUNCTIONAL THEORY.  NON-RELATIVISTIC ALL-ELECTRON FORMULATION" \l 1 
The aim of this chapter is to present a new method for the calculation of NMR shielding tensors [16].  The implementation relies on density functional theory (DFT), section 1.1.  It makes use of recent achievements in DFT, especially non-local exchange-correlation (XC) functionals, and of "gauge including atomic orbitals".  Only the all-electron case is the subject of this chapter; extensions to include the frozen core approximation [17], section 1.1.2, and the scalar relativistic terms [18], section 1.2, will be dealt with in the following two chapters.  


The implementation is validated by actual calculations.  The calculated shielding constants and tensors are in good agreement with experiment and with other DFT based methods.  An explanation for the strong influence of the XC functional on the results is suggested.

3.1
Introduction TC  "3.1
Introduction" \l 2 
The shielding tensor 

 of nuclear magnetic resonance (NMR) spectroscopy is one of the most important second order properties.  As a consequence, there is a large number of Hartree-Fock (HF) and post-HF calculations on 

 available in the literature [28,69,70,72].  Calculations of the NMR shielding are carefully reviewed annually [71].  A good survey of the current state of the art can be found in a recent volume of conference proceedings [21].  Much progress has been achieved in the last decade towards a correct description of the shielding based on first principle electronic structure theory.  Some of the most important developments of the last few years comprise the inclusion of electron correlation into shielding calculations [21,70,71,124-126].  


Density functional theory (DFT) [35-40] has on the other hand not yet been widely applied to the calculation of NMR properties, despite its remarkable success in other areas of computational chemistry [35,36].  The earliest attempts (e.g. [127]) don't address the so-called gauge problem (see below) at all.  Accordingly, the results are unreliable.  Friedrich et al. [128,129] were the first to combine the "gauge including atomic orbitals" (GIAO) method of Ditchfield [22-24] with DFT.  However, their method is restricted by the use of the X approximation [35,37,43] for the exchange-correlation (XC) energy functional, Eq. 1-6, and of minimal basis sets.  Very recently, Malkin and co-workers have published a series of pioneering papers on the calculation of NMR properties, including shieldings [72,130-133].  They combine modern DFT with the "individual gauge for localized orbitals" (IGLO) method [134-137].  Furthermore, they introduce somewhat ad hoc a coupling term to simulate the current dependency of the XC functional and thus to improve the agreement of the calculated shieldings with experimental results [72,131,132].


The aim of the present chapter is to present a modern GIAO-DFT implementation.  We chose the GIAO method since it is known to yield very accurate results [24,128,129].  It should -- at least in principle -- be somewhat superior as compared to the IGLO and similar methods [24].  On the other hand, the GIAO method is not more difficult to implement then the IGLO and related methods.  This is because we use numerical integration throughout (see below).  The use of GIAOs causes our method to be similar to the earlier implementation of Friedrich et al. [128,129].  However, we can make full use of the modern features of DFT [35,37], especially accurate XC functionals and bigger basis sets.  The calculated shielding tensor turns out to be especially sensitive towards these parameters [72,130-132].  Thus, the recent achievements in both areas can lead to a substantial improvement over the earlier work of Friedrich et al. [128,129].


A further aim of this chapter is to discuss the influence of some parameters, especially the choice of the XC functional, that limit the reliability of the calculated results.  A good understanding of these factors could give some hints as to how one might improve the method.


After publication of the paper [16] that is the basis for this chapter, there have been other DFT-GIAO implementations in the literature [138,139].  These implementations are very similar to the one presented here; the only differences being the actual DFT code employed, the type of basis sets used (Slater type orbitals vs. Gaussian basis sets), and sometimes the approximation for the XC functional.

3.2
Formulation of the DFT-GIAO Shielding Tensor TC  "3.2
Formulation of the DFT-GIAO Shielding Tensor" \l 2 
3.2.1
Operators TC  "3.2.1
Operators" \l 3 
Using atomic units (chapter 1, Eq. 1-1), we can define the shielding as the second derivative of the total electronic energy, E, with respect to a constant external magnetic field, 

, and a nuclear magnetic moment of nucleus N, 

 [28,69].  We have for the st tensor component





(3-1a)





(3-1b)

The second expression in Eq. 3-1b is obtained by using the interchange theorem of double perturbation theory, Eq. 1-29 [11,66,74-76].  Here, 

 is the ground state electronic eigenfunction under the influence of the external magnetic field.  We have to evaluate it up to first order in 

 only -- in line with the general approach of the interchange theorem, section 1.3.  The different operators are given by [7,11,28,69,72]





(3-2)

and




 ,
(3-3)

where 

 and 

 are the electronic position and momentum operators, respectively, and 

 is the position relative to the nuclear magnetic moment under consideration (relative to the NMR nucleus N)** .


The latter operator in Eq. 3-3 is bilinear with respect to 

 and 

, and is thus responsible for the diamagnetic shielding.  The operator 

 on the other hand yields the paramagnetic contribution to the shielding [28,69,72].

3.2.2
Magnetic Field TC  "3.2.2
Magnetic Field" \l 3 
We evaluate the expression of Eq. 3-1b using density functional theory (DFT), according to the formalism that has been outlined in section 1.1 of this thesis.  Both, the DFT total energy expression Eq. 1-2 and the Kohn-Sham (KS) equations Eq. 1-7 have to be modified to include the external magnetic field.  At the given non-relativistic level of theory, this is readily done by means of the minimal coupling, Eq. 1-30 [10,11,77],




,
(1-30)

where 

 represents again the vector potential of the constant external magnetic field (atomic units).


Furthermore, the XC energy of Eq. 1-6 will be a functional of both the electron density  (as in ordinary DFT, Eqs. 1-2 and 1-6) and the current density 

  [72,130-132,140-142]




 .
(3-4)

The approximation 




 ,
(3-5)

i.e., the neglect of this additional current dependency, leads to the so-called uncoupled density functional theory [72,128-130], see below.  I will use this approximation Eq. 3-5 throughout the present thesis.  I will discuss some of its consequences again later in this chapter.  


With the inclusion of the magnetic field, we obtain the following modified Kohn-Sham (KS) equations




,
(3-6)

where [7,28,69]



.
(3-7)

Further:




,
(3-8a)

and 




.
(3-8b)

The zero order KS operator 

 has been defined earlier (Eq. 1-8).  We have used the Coulomb gauge [10,11,77] to get the expressions Eqs. 3-6 to 3-8.  The Coulomb gauge for the vector potential 

 is defined via:




.
(3-8c)

The position vector 

 in Eq. 3-8c refers to an arbitrary coordinate origin.  Note that the first order perturbation 

 of Eq. 3-8a is purely imaginary (Eq. 3-8a).  

3.2.3
Gauge Including Atomic Orbitals TC  "3.2.3
Gauge Including Atomic Orbitals" \l 3 
When calculating magnetic properties, one has to deal with the so-called gauge problem, i.e., the dependence of the calculated results on the choice of the gauge for the vector potential 

 of the magnetic field.  This refers especially to the selection of the (arbitrary) coordinate origin, Eq. 3-8c [24,28,69,129].  The gauge dependence vanishes in the limit of complete, infinite basis sets; for finite basis sets, however, there is a real gauge-origin dependence.  In the literature, there are a number of ways to deal with this apparently unphysical feature.  We chose the "gauge including atomic orbitals" (GIAOs, also called "gauge invariant atomic orbitals" or "London orbitals") of Ditchfield [22,23].  Thus, to solve the KS equations (Eqs. 3-6 to 3-8), we express the set of one-electron functions 

 as linear combinations of GIAOs 

, cf. Eq. 1-9, 





(3-9)

with




.
(3-10)


 EMBED "Equation" \* mergeformat  

 is a set of (field free) atomic orbitals (section 1.1.2); 

 is the position vector of the atom where the orbital 

 is centered.  The field dependent phase factor in Eq. 3-10 guarantees gauge invariant expectation values.  The GIAO method gives the best results as compared to other methods [24,128,129].  It does not pose additional difficulties for the implementation.  

3.2.4
Magnetic First Order Density Matrix TC  "3.2.4
Magnetic First Order Density Matrix" \l 3 
We have to calculate the orbitals 

 only to first order with respect to the magnetic field, since the shielding is linear in 

, Eq. 3-1.  We can therefore employ first order perturbation theory (FOPT).  Pople and co-workers have presented an elegant formulation [143].  We choose a component of the magnetic field, multiplied for computational convenience by the imaginary unit, i, as the perturbation parameter.  


FOPT assumes that the zero order unperturbed KS equations Eq.1-7 have been solved already.  It is therefore convenient to introduce a set of auxiliary functions as a new basis set




.
(3-11)

The factors 

 are the expansion coefficients for the field free case (Eq. 1-9); 

 is again a GIAO, cf. Eq. 3-10.  The orbitals p are now expanded into the new basis set




,
(3-12)

and we obtain the s component of the expansion coefficients upq to first order as [56,57,143]





(3-13a)

and





for 

 and 

.
(3-13b)

Eq. 3-13b contains the eigenvalues 

 of the KS equations Eqs. 1-7 and 3-6, respectively, to zero order.  The u-components of the first order matrices S1 and F1 are given by








,
(3-14)

for the overlap matrix, and















(3-15)

for the DFT matrix$$$ .  The u-component of the magnetic field, Bu, has been multiplied with the imaginary unit i in Eqs. 3-14 and 3-15 for computational convenience.  

 is again the position vector to the center of the atomic orbital 

.  The vector





(3-16)

denotes the position of the electron relative to the atomic center .  The zero order operator 

 is the operator fNR that has been defined above in Eq. 1-8a.  Note that the leading contribution to F1 is the first term.  It contains the first order perturbation operator, Eq. 3-8a.  The other term is due to the GIAO phase factor (in first order) and is generally smaller in magnitude.  


Now, we expand the electron density  of Eq. 1-3 as well as the orbitals 

 into a Taylor series of the perturbation parameter 






(3-17a)





(3-17b)

where, e.g.,




.
(3-18)

We had seen before that the first order operator, 

 of Eq. 3-8a, is purely imaginary.  This is the reason for choosing 

 as the perturbation parameter.  It has the additional consequence that the first order corrections to the orbitals are likewise purely imaginary, and the 

 are real.  Thus, the first order change in the density vanishes




.
(3-19)

(This is easy to see by inserting the expansion for the orbitals Eq. 3-17b into the definition of the electron density, cf. Eqs. 1-3 and 1-4.).  If we utilize the usual density dependent XC functionals, i.e., the approximation Eq. 3-5, we will find that there is no first order change in the XC energy or the XC potential either.  Hence, the first order DFT matrix F1 of Eq. 3-15 lacks any indirect dependency on the first order wave function through the coefficients 

 of Eq. 3-13.  DFT methods that are based on the approximation Eq. 3-5 are often called "uncoupled DFT" methods for this reason [72,128-130,132].  Nevertheless, we find the term "uncoupled DFT" somewhat misleading.  Note that in "uncoupled Hartree-Fock theory", all correlation effects are neglected.  DFT on the other hand accounts for correlation [35-40].  In its "uncoupled" version, only the current contributions to correlation are neglected, Eq. 3-5.  The magnitude and relative importance of these terms is yet a subject of debate.  We will not discuss this point any further in the moment [72,130-132].

3.2.5
Shielding Tensor,  All-Electron Formulation TC  "3.2.5
Shielding Tensor,  All-Electron Formulation" \l 3 

At this point, it is possible to derive final analytical expressions for the shielding tensor 

.  Usually, the shielding is split up into the paramagnetic and diamagnetic contributions




.
(3-20)

Only the paramagnetic term 

 shall depend on the first order wave function.  Furthermore, we will demand that both 

 and 

 are gauge invariant by themselves and are expectation values of hermitian operators [28].  The last two requirements were set by Fukui [28].  They allow us to partition the shielding tensor in a unique way.  We obtain









(3-21)

for the st component of the diamagnetic shielding and









(3-22a)

for the paramagnetic shielding, where





(3-22b)

and




.
(3-22c)

The operator 

 has been defined above in Eq. 3-2# .  Again, we use the zero-order expansion coefficients di, cf. Eq. 3-11.  The summation indices i and j indicate occupied MOs, whereas the summation index a is used for unoccupied (virtual) MOs.  The position vectors 

, 

, and 

 had been defined earlier.  Both, 

 and 

, contain the occupation numbers ni of the occupied molecular orbital 

.  For the derivation of Eq. 3-22b, we assumed equal occupation for all n occupied molecular orbitals





for spin-polarized systems          or





for closed-shell systems;
(3-23)

Eq. 3-22b would not be valid for fractional occupation numbers.  It is possible, however, to modify this equation such that the condition Eq. 3-23 could be dropped.  This is not really important for the shielding where closed shell molecules are usually considered.  It is, however, more relevant for the EPR g-tensor that is measured and calculated for spin-polarized systems, chapter 6.  As pointed out before, 

 depends on the first order wave function through the coefficients 

 and 

 for the occupied-virtual and occupied-occupied couplings, respectively.  


I mentioned above the requirement that both the dia- and paramagnetic shielding tensors be gauge-invariant by themselves [28].  This requirement is special to the GIAO formalism; it is not true for some other formulations of the shielding, e.g., a common-gauge formulation.   The requirement is fulfilled by the DFT-GIAO shieldings of Eqs.   3-21 and 3-22.  For the diamagnetic shielding, this is immediately obvious from Eq. 3-21 since only differences of position vectors occur in this expression, and the arbitrary coordinate origin drops out.  The proof for the paramagnetic shielding is less straightforward and has been given, e.g., by Fukui [28] and by Friedrich [129].  


The shielding tensor can be calculated with the above listed formulas by numerical integration.  No iterative procedure is necessary, due to the lack of coupling terms, see above [128,129].  


The connection between the GIAO formulation of the shielding, Eqs. 3-21 and 3-22, and the simpler common gauge (c.g.) formulation [28] is the subject of appendix 1.  It turns out that both methods are equivalent in the limit of complete basis sets and exactly solved zero-order Kohn-Sham equations.  The derivations of this appendix afford, as a by-product, a better understanding of the various shielding contributions and their physical origins.  

3.3
Implementation and Computational Details TC  "3.3
Implementation and Computational Details" \l 2 
The actual implementation and all calculations were based on the Amsterdam density functional package ADF [53-55,81,82,108-114].  This program had been developed by Baerends et al. [53-55,81] and vectorized by Ravenek [108]; the vectorized version of ADF has been employed in this thesis.  To fit the molecular density and to present Coulomb and XC potentials accurately, a set of auxiliary s, p, d, f and g Slater type orbitals (STO), centered on all nuclei, was introduced [114].


The ADF program makes extensive use of numerical integration.  The integration scheme was developed by G. te Velde et al. [109-111] and is very accurate.  We made direct use of this integration scheme to evaluate both the first order coefficients, Eqs. 3-13 to 3-15, and the shielding proper, Eqs. 3-21 and 3-22.  Symmetry cannot be employed++ as the perturbations under consideration don't commute with the symmetry operations for a general case, cf. Eqs. 3-2 and 3-3.  A number of well-defined parameters determine the numerical accuracy of the integration.  Thus, we don't have to investigate the influence of the integration scheme on the calculated shieldings.  This is validated by the fair degree of agreement between individual tensor components that should be equal by symmetry## .


We used uncontracted triple- STOs as basis functions [112,113].  If not stated otherwise, then a triple- valence basis set augmented by two sets of polarization functions per atomic center (two 2p sets for hydrogen, and two d sets for heavier nuclei) was employed.  We want to call this basis set "triple- plus polarization" (tp).  


We used two different levels of approximation for the XC energy functional 

, Eq. 1-6.  The basis for the first generation DFT is the local density approximation (LDA) [35-37,44].  In the LDA, the XC energy is approximated by local exchange and local correlation functionals from the free electron gas [35-37,44]




.
(3-24)

In Eq. 3-24, the XC energy density XC of Eq. 1-6 is approximated to be a function of the density, rather than a more general functional.  The next generation of DFT improves the approximation for 

 by adding nonlocal gradient corrections to the exchange [47] and correlation [48,49] functionals (LDA/NL)




.
(3-25)

The XC energy density is now a function of both the density and its gradient.  Functionals of this form are also known as "generalized gradient approximation" (GGA) functionals.  Fan and Ziegler have implemented the LDA/NL functionals into the self-consistent procedure [80].  In this thesis, I used the more accurate LDA/NL scheme, Eq. 3-25, unless otherwise stated.  


In this chapter, we employed experimental geometries for the different molecules [129,144,145].  

3.4
Results and Discussion TC  "3.4
Results and Discussion" \l 2 
3.4.1
Shielding Constants TC  "3.4.1
Shielding Constants" \l 3 
Calculated shielding constants for a representative set of small molecules are collected in Table 3.1.  The isotropic shielding constant is the trace of theshielding tensor of Eq. 3-20  We compare our results with those obtained by the "uncoupled" DFT-IGLO method of Malkin and co-workers [130,132] as well as with experiment [69].  The agreement with experiment is generally satisfactory.  

Table 3.1
Calculated and experimental shielding constants for a number of small molecules TC  "Table 3.1
Calculated and experimental shielding constants for a number of small molecules" \l 8 



Isotropic shielding constants  (ppm)



Molecule
Atom

DFT-GIAOa
DFT-IGLOb
Experimentc

CH4
C

191.2
187.7
195.1


H

31.4
31.2
30.6

CH3F
C

111.4
101.4
116.8


F

462.3
450.7
471.6


H

27.2
26.7
26.6

H2O
O

331.5
324.3
344.0


H

31.2
31.1
30.1

N2
N

-72.9
-78.9
-61.6

C2H2
C

110.4
108.9
117.2


H

30.4
30.0
29.3

Benzene
C

50.0
   48.8 d
57.2

H2CO
C

-15.7
-26.6
-8.4


O

-418.8
-455.6
-312.1e


H

20.7
20.8
18.3

F2
F

-282.7
-250.6
-232.8

a
This work.

b
Uncoupled DFT-IGLO [130].  We cite the results for the same LDA/NL functional [47-49] as in our DFT-GIAO method.

c
Experimental results cited from [69]. 

d
[132].

e
Cited from [130].

Table 3.2
Calculated and experimental shielding constants and anisotropies TC  "Table 3.2
Calculated and experimental shielding constants and anisotropies" \l 8 



Shielding  (ppm)







Isotropic shielding


Shielding anisotropy


Molecule / atom


DFT-GIAO
Experimenta

DFT-GIAO
Experimenta

H2
H

26.46b
26.26±1.5

1.64b
2.0c

HF
F

412.5
410

104.2
108

NH3
N

262.0
264.5

-48.1
-40

CO2
C

56.1
58.8

345.9
335

HCN
C

91.5
82.1

286.1
284.6±20


N

8.4
-20.4

502.9
563.8±8

CO
C

-9.3
1.0

424.1
406


O

-68.4
-42.3

718.7
676.1

a Experimental results cited from [69].

b LDA.

c Calculated with the Coupled Hartree-Fock method [69]

The GIAO shieldings are of about the same quality as those obtained by the IGLO method, in most cases even slightly better (Table 3.1).  A direct comparison is however not possible since this would require to use exactly the same basis sets and geometries.  


The agreement with experiment is not as good for non-hydrogen shifts in molecules like H2CO or F2 (this applies to both the GIAO and the uncoupled IGLO methods).  These molecules are difficult cases for DFT in general.  We shall come back to this point later on in this chapter.

3.4.2
Shielding Anisotropies TC  "3.4.2
Shielding Anisotropies" \l 3 
The shielding anisotropy, i.e., the individual tensor components of the shielding tensor, should be even more sensitive to the quality of the quantum-chemical method used than the (averaged) shielding constant.  Here, we define the shielding anisotropy 

 as the difference between the parallel and the orthogonal principle components of, e.g., a linear molecule [69]





(3-26)


In Table 3.2, we compare shielding constants and anisotropies for another representative set of small molecules with experimental results.  We can see that the averaged shielding constant and the tensor components are of the same quality for any given molecule.  Thus, we have considerable deviations between the calculated and experimental shielding anisotropies for those molecules (notably CO out of the given list) where the calculated shielding constant isn't reliable either.

3.4.3
Basis Sets TC  "3.4.3
Basis Sets" \l 3 
It is well known that the shielding tensor is very sensitive to the quality and size of the basis set used [24,28,69,70,136].  As an example, we consider the convergence of the shielding constants with the size of the basis set for two of the more problematic cases, F2 and CO, Table 3.3.  We can see from Table 3.3 that  of CO (in particular the oxygen shielding) is essentially converged for a triple  basis set that is augmented with two sets of polarization functions (tp basis).  This is our best standard basis set.  It turns out to be sufficient for testing the present formulation of the shielding, since in most cases, convergence is reached with this basis.  An exception is the F2 molecule where we needed two additional f sets to reach convergence (Table 3.3).

Table 3.3
Convergence of the calculated shielding constants of CO and F2 with the size of the basis set used TC  "Table 3.3
Convergence of the calculated shielding constants of CO and F2 with the size of the basis set used" \l 8 



Shielding constants  (ppm)








Calculated (with different basis sets)






Molecule / atom


Double 
Triple  

+ 2 d-sets
Triple  

+ 2 d-sets

+ 2 f-sets
Triple  

+ 3 d-sets

+ 3 f-sets

Experimenta

CO
C

5.6
-9.3
-7.6


1.0


O

-47.9
-68.4
-68.6


-42.3

F2
F


-293.7
-282.7
-281.0

-232.8

a Experimental results cited from [69].


More detailed and comprehensive studies of basis set requirements are clearly necessary [70,136,137,146], cf. also chapter 5 of this thesis.  They exceed, however, the scope of the present chapter.  

3.4.4
XC Functionals TC  "3.4.4
XC Functionals" \l 3 
In Table 3.4, we look at the influence of the XC functional on the calculated shielding constants.  By comparing results of first and second generation DFT (LDA and LDA/NL, respectively) with experiment, we note a remarkable improvement for the latter method for all non-hydrogen nuclei (up to 57 ppm change for H2CO).  A similar strong influence had been observed by Malkin et al. for their DFT-IGLO method [130], Table 3.4.  

Table 3.4
The influence of the energy functional used.  1. Shielding constants TC  "Table 3.4
The influence of the energy functional used.  1. Shielding constants" \l 8 



Isotropic shieldings   (ppm)












DFT-GIAOa


DFT-IGLO






Molecule/





Uncoupledb


Coupledc,d



atom


LDA
LDA/NL

LDA
LDA/NLc

LDA/NL

Exp.e

NH3
N

267.2
262.0

259.3
253.4

253.3

264.5


H

31.2
31.6

30.8
31.2

31.2

32.43

HF
F

415.1
412.5

412.7
409.0

409.6

410


H

29.4
30.0

29.1
29.7

29.6

28.7

N2
N

-83.2
-72.9

-86.7
-78.9

-69.3

-61.6

C2H2
C

102.9
110.4

102.5
108.9

109.6

117.2

F2
F

-310.2
-293.7

-271.8
-250.6

-197.8

-232.8

H2CO
C

-31.7
-15.7

-40.4
-26.6

-12.3

-8.4


O

-475.8
-418.8

-504.7
-455.6

-362.6

-312.1

a
This work.

b
[130].

c
We cite the results for the same LDA/NL functional [47-49] as in our DFT-GIAO method.

d
[131].

e
Experimental results cited from [69].

We have also included into Table 3.4 the results of the "coupled DFT-IGLO" approach of the same authors [131].  The idea of this approach is to obtain a coupling by introducing a first order change in the XC potential.  The authors do this in a somewhat ad hoc fashion.  The influence of the new coupling is negligible in many cases.  However, it leads to a significant reduction of the absolute value of the shielding and therefore to better agreement with experiment for some molecules like F2 or H2CO, Table 3.4.  We will come back to this point once more in this chapter in section 3.5.

Table 3.5
The influence of the energy functional used.  2. Dia- and paramagnetic contributions to the shielding constants TC  "Table 3.5
The influence of the energy functional used.  2. Dia- and paramagnetic contributions to the shielding constants" \l 8 



Calculated shielding  (ppm)








Diamagnetic a


Paramagnetic b


Molecule/Atom


LDA
LDA/NL

LDA
LDA/NL

NH3
N

317.2
318.1

-50.0
-56.2


H

30.3
30.6

0.95
0.98

HF
F

474.9
476.2

-59.8
-63.7


H

26.2
26.3

32.2
36.6

N2
N

321.2
322.9

-404.4
-395.7

C2H2
C

261.6
263.1

-158.7
-152.7

F2
F

461.7
463.9

-771.9
-757.5

H2CO
C

249.6
251.8

-281.3
-267.6


O

395.9
396.9

-871.7
-815.7

a
Eq. 3-21.

b
Eq. 3-22.


We found it instructive to track down the reason of the strong influence of the XC functional on the calculated shielding constants.  This might yield some insight into why DFT fails for some molecules.  Thus, we have broken up the shielding constants into its dia- and paramagnetic contributions, Eq. 3-20.  Calculated d and p values for the same set of molecules as before are shown in Table 3.5.  It is immediately obvious from this table that it is almost exclusively the (more complicated) paramagnetic shielding contribution p that is sensitive to the XC functional.  Furthermore, we notice large paramagnetic shieldings  for those "difficult" molecules like H2CO.  They are of opposite sign to the diamagnetic part.  


Consequently, the paramagnetic shielding has been broken down even further.  We chose F2 as a representative example.  In Table 3.6, we compare the different contributions for both, LDA and LDA/NL.  First, we notice that the parallel contribution 

 to p vanishes due to symmetry.  Therefore, any discussion has to focus on 

.  In our GIAO formulation, there are contributions to 

 from both occupied-occupied and occupied-virtual couplings (Eqs. 3-22b and 3-22c, respectively).  It turns out that, while the former is not negligible, the major contribution both to 

 and to the difference between LDA and LDA/NL stems from the occupied-virtual terms, Table 3.6.  It is perhaps surprising that this large contribution is essentially due to just one single term, namely the * transition, out of a whole sum over all possible transitions, Table 3.6.


We can see where the strong coupling for this particular transition comes from by going back to our formulation.  Thus, the coupling between occupied and virtual orbitals is due to the external magnetic field; in this formulation through the first order coefficients 

, Eq. 3-13.  We had pointed out before that the leading contribution to F1, Eq. 3-15, and hence to 

, Eq. 3-13, stems from the first order operator 

 (Eq. 3-8a), i.e., from integrals of the type 

.  The operator works differently on different types of AOs [147,148].  

Table 3.6
Contributions to the Shielding of F2 for both LDA and LDA/NL TC  "Table 3.6
Contributions to the Shielding of F2 for both LDA and LDA/NL" \l 8  (ppm)




orthogonal paramagnetic shielding 







   

Eq. 3-20
d  

Eq. 3-21
p  

Eq. 3-22
total 

Eq. 

3-22a

 EMBED "Equation" \* mergeformat  

Eq. 

3-22b

 EMBED "Equation" \* mergeformat  

Eq. 

3-22c
leading contri-bution a

LDA
-310.2
461.7
-771.9
-1157.9
128.1
-1286.0
-1253.3

LDA/NL
-293.7
463.9
-757.5
-1136.3
123.8
-1260.1
-1226.9

difference LDA-LDA/NL
-16.5
-2.2
-14.4
-21.6
4.3
-25.9
-26.6

Exp. b
-232.8







a
Contribution from the 

 transition, see the text.

b
Cited from [69].

Thus, it rotates the p-type atomic orbital 

 around its position 

; e.g., the y component rotates orbitals in the imaginary xz plane, etc. (apart from constants):




.
(3-27)

This rotation results in a strong interaction between  and * for the F2 molecule.  We have shown the situation in Figure 3.1.


Now let us come back to the XC functionals.  It is well known that the NL corrections to the LDA will influence different orbitals in a different way [80].  In the given case, they increase the * energy gap, Table 3.7.  The magnetic * coupling term is in turn proportional to the inverse of this energy gap, Eq. 3-13, and the large difference in the calculated shieldings (Table 3.6) is mainly due to this increase of 

[image: image1.wmf]
Figure 3.1
Schematic representation of the magnetic  TC  "Figure 3.1
Schematic representation of the magnetic " \l 9 

 coupling
the * energy separation.  To put it differently, the NL functional will make it less favorable to perturb an electron from an occupied  orbital into a virtual * orbital.  This decreases the paramagnetic shielding in magnitude and improves the agreement with experiment, Table 3.4.

Table 3.7
Selected orbital energies of F2 for LDA and LDA/NL TC  "Table 3.7
Selected orbital energies of F2 for LDA and LDA/NL" \l 8 

 energy  (eV)
* energy  (eV)
Gap  (eV)

LDA
-13.61
-7.01
6.60

LDA/NL
-13.42
-6.67
6.75


A similar discussion could be applied to all the molecules in Tables 3.4 and 3.5.  In singly bound systems like HF, both  and * will be unoccupied, and the major contribution to 

 will be due to a * transition.  The mechanism for this coupling is the same as before.  However, the energy separations are much larger.  Hence, we find smaller paramagnetic shieldings and less sensitivity to small changes of the orbital energies.


To summarize, we need a very good description of the orbital energies (the eigenvalues of the Kohn-Sham equations Eqs. 1-7) to get accurate results for the paramagnetic shielding.  This is because p depends critically on the small differences between just a few of these eigenvalues.

3.5
DFT-GIAO Shieldings in an All-Electron Formulation.  Conclusion TC  "3.5
DFT-GIAO Shieldings in an All-Electron Formulation.  Conclusion" \l 2 
We presented in this chapter a modern implementation of the GIAO method for the calculation of the shielding tensor using DFT.  The calculated shielding constants and tensors agree well with experimental results; the quality is certainly comparable with the results of other theoretical methods.  However, the results for some strongly correlated systems are not yet satisfactory.  The paramagnetic shielding contribution of these systems is very large and is generally overestimated in magnitude.


It is well known that the calculated shielding tensors are sensitive to the quality of the basis sets used, and our implementation is no exception.  The best standard basis set (triple  augmented with two polarization sets) is however sufficient for most purposes -- but at least for the test of the present implementation.


We provided an explanation for the strong influence of the energy functional (the XC functional) used.  Even though we based this explanation on our specific scheme (first order perturbation theory), it is more generally applicable since different methods to obtain the first order change of the wave function should be equivalent.  


We found in particular that the paramagnetic shielding contribution is very sensitive to small differences in orbital energies.  This explains the XC functional dependence as well as the basis set dependence of these properties: We need good functionals and good basis sets for a proper description of the eigenvalues.  


Our discussion of the XC functional dependence was based on an analysis of the various MO-MO contributions to the (paramagnetic) shielding of Eq. 3-22.  This type of discussion is not limited to the given case.  On the contrary, the detailed analysis of the calculated shieldings in terms of occupied and virtual MOs is another strength of our GIAO implementation.  It can be used for an explanation of observed trends in the chemical shifts, based on the electronic structure of the system (for examples of such an analysis, cf. [149,150]).  Such an analysis is impossible for other methods like IGLO-based schemes [136,137,151-154].  


We conclude from the previous discussion that the current state of affairs does not yet allow to decide how to improve DFT methods for the calculation of shielding tensors.  The reason of the observed errors for some systems might be that our XC functionals are inappropriate for a precise description of the orbital energies.  If this is the case, then "next generation" XC potentials [155,156] should be able to fix the problems.  The other possibility has been proposed by Malkin et al. [72,131,132]: These authors suggested that the current dependency of the XC functional needs to be included.  Their "SOS-DFPT" ### method was constructed with this in mind.  In this scheme, a coupling term is introduced into the calculation of the first order magnetic density.  This is done in an ad hoc fashion.  The coupling leads to a considerable improvement over the "uncoupled" result for a few troublesome molecules; ozone or F2 being prime examples [132].  From these findings, Malkin et al. draw the conclusion that the current density part of the XC functional was necessary for quantitative agreement between theory and experiment.  However, another possibility could be that we would need a better description of the (density dependent) XC potential.  This is indeed still a possibility, despite the success of the "coupled" SOS-DFPT method for some particularly difficult molecules -- given the lack of theoretical foundation for the "coupling" term.  Thus, one could view the SOS-DFPT method as an "empirical" scheme where a careful and clever choice of empirical parameter(s) yields excellent agreement between theory and experiment.  Then, the accomplishments of the method would not prove anything about the necessity to incorporate current density functionals into shielding calculations.  Besides, a truly "coupled" DFT method that employs a current density functional is of course most satisfying from a theoretical point of view.  


It is well known that the currently used (density dependent) XC functionals have the wrong asymptotic behavior near the nucleus [155,156].  This core region is an important zone in space for "tight" properties like the NMR chemical shift, and any improvement here should bring calculated shieldings much closer to the observed ones.  We have seen in this chapter that the inclusion of non-local corrections (the use of GGAs) is important for accurate shielding calculations.  Recently, other authors [138,139] have expperimented with different forms of non-local XC functionals [157,158], including the hybrid functionals of Becke [159].  No clear conclusion as to which non-local functional is best or regarding the importance of uncoupled versus coupled DFT have been reched yet.  


The relative importance of the density and current terms in the XC functional will likely remain controversial until an implementation of the shielding calculation becomes available [142] that employs some approximative current density functional.

CHAPTER FOUR TC  "CHAPTER FOUR" \l 1 
THE CALCULATION OF NMR SHIELDING TENSORS BASED ON DENSITY FUNCTIONAL THEORY AND THE FROZEN CORE APPROXIMATION TC  "THE CALCULATION OF NMR SHIELDING TENSORS BASED ON DENSITY FUNCTIONAL THEORY AND THE FROZEN CORE APPROXIMATION" \l 1 
4.1
Introduction TC  "4.1
Introduction" \l 2 
The shielding tensor NMR spectroscopy has been introduced above in chapter 3.  As has been pointed out in section 3.1, it is likely one of the most important experimental properties in all of chemistry and beyond.  The range of nuclei that can be studied by NMR is steadily increasing.  Thus, the area of multinuclear NMR, i.e., the study of nuclei other than -- say -- 1,2H, 13C, 14,15N, 19F, 31P, or 33S is rapidly gaining importance [20].


The theoretical prediction of shielding tensors has a long and successful history --we have discussed some of the relevant literature in section 3.1.  However, the large majority of these investigations has concentrated on compounds of "light" elements like hydrocarbons.  Heavier element compounds have been treated only rarely by theoretical methods, on various levels of sophistication (see, e.g., [52,71,160-169]).  This is not really surprising, because heavy elements pose additional difficulties on top of the -- already challenging -- task of calculating the shielding.  These extra difficulties are in particular the very large number of electrons that have to be taken into account, and the influence of special relativity [2,3].  Relativistic effects in shielding calculations are the subject of the following chapter.  Here, we address the first problem -- the large number of core electrons in heavy element compounds.  By doing this, we will also build a basis for the subsequent inclusion of relativistic effects according to the quasi-relativistic scheme of section 1.2.  


There are two major methods to treat only the -- chemically relevant -- valence electrons variationally.  The first is the use of pseudopotentials [2,3,26,50-52,83-85].  The second is the "frozen core approximation" [53-55], section 1.1.2.  Both methods allow for relativistic extensions.  We chose the latter method since the use of pseudopotentials will most likely prohibit the accurate determination of the shielding at the heavy element itself, chapter 5.


Thus, we will approach relativistic effects by means of a quasi-relativistic method [32,33], chapter 5.  This method utilizies a Pauli-type Hamiltonian [4,5,10,11,25,60], section 1.2.  As has been discussed in section 1.2, one important precondition for this method is the use of the said frozen core approximation [53-55].  The formulation and validation of the frozen core approximation, applied to shielding calculations, at the non-relativistic level of theory is the aim of the present chapter.  We will be able to proceed to relativistic calculations, i.e., to cover the complete range of multinuclear NMR if and only if this approximation works, due to the nature of the Pauli operator: a Hamiltonian containing this operator is variationally unstable but this instability can be circumvented by the use of the frozen core approximation, section 1.2.  In other words, the success of the quasi-relativistic approach is based on the frozen core approximation.  


 The present implementation is an extension of our earlier density functional method [16] that employs "Gauge Including Atomic Orbitals" (GIAOs), chapter 3.  We chose density functional theory as it is particularly powerful in the calculation of various properties of transition metal complexes and heavy element compounds [35-40].


We shall in the following present a complete formulation of the shielding tensor calculation within DFT and the frozen core approximation [17].  This is followed by a detailed evaluation of the method.

4.2
The NMR Shielding Tensor in the Frozen Core Approximation.  Formulation TC  "4.2
The NMR Shielding Tensor in the Frozen Core Approximation.  Formulation" \l 2 
Our implementation is based on density functional theory, section 1.1.  We use the formalism of the frozen core approximation, section 1.1.2, to extend the all-electron formulation of the shielding tensor, section 3.2.  

4.2.1
Shielding Tensor TC  "4.2.1
Shielding Tensor" \l 3 
The shielding tensor 

 of NMR spectroscopy is calculated within the framework of DFT that has been established in section 1.1 -- this was the topic of chapter 3.  For the extension that is going to be the subject of this chapter, I wish to introduce the shielding tensor in a different way, based on the the electron density (x), Eq. 1-3, and the density matrix (x, x'), Eq. 1-4.  We get for the st tensor component [16,28,69,70] (cf. Eq. 3-1)








.
(4-1)

The operators were defined above in Eqs. 3-2 and 3-3, respectively [11,28,69,70].  In Eq. 4-1, 1 represents the density matrix of Eq. 1-4 to first order in the constant external magnetic field 

:




.
(4-2)

We had observed in Eq. 3-19 that the first order density vanishes for our "uncoupled DFT" approximation.  The same is, of course, not true for the first order density matrix of Eq. 4-2.  The determination of the magnetic first order density matrix 1 is the hard part of any shielding calculation [28,69,70].

4.2.2
First Order Density Matrix TC  "4.2.2
First Order Density Matrix" \l 3 
We use again a particular formulation of first order perurbation theory (an elegant formulation has, e.g., been given by Pople and co-workers [143]) in order to find the first order density.  A detailed account of this method has been given elsewhere [56,57].  Here, we restrict ourselves to stating the results.  There are four distinct contributions to the first order density matrix within the frozen core approximation.  For any perturbation parameter , we obtain [56,57]




  .
(4-3)

The different terms in Eq. 4-3 shall be discussed and defined now.




 represents the part of the first order density matrix that is due to the basis functions (AOs) to first order; the coefficients 

 are however taken in zero order:




 ,
(4-4a)

where




 .
(4-4b)

Note that we used in Eq. 4-4b the LCAO expansion according to Eqs. 1-16 and 1-18.  The precise form of the first order AO for the magnetic perturbation shall be given later.  First, however, we want to define the remaining parts of the first order density of Eq. 4-3.


It turns out [56,57] that all three contributions 

, 

, and 

 represent the first order wavefunction (first order coefficients).  They are due to, in this order, core-valence, valence-valence, and valence-virtual interactions.  Specifically, they are given as follows.  The core-valence part of the first order density is




.
(4-5)


 EMBED "Equation" \* mergeformat  

 is the part of the first order MO that contains the core-orthogonalization coefficients b of Eqs. 1-11 and 1-14 to first order:




.
(4-6)

Further,





(4-7)

and




.
(4-8)

The sums over occupied MOs in the preceeding equations are understood to run over valence MOs only.  The coefficients 

 of Eq. 4-8 are calculated according to Eq. 3-13 [56,57,143] from the first order DFT matrix and the first order overlap matrix, 

 and 

, respectively






(a ≠ i).
(4-9)

Here, i represent again the zero order orbital energies, i.e., the eigenvalues of the KS equations Eq. 1-7.  


All the expressions of this section hold for any perturbation  [56,57,143].  We shall now turn to the specific case of magnetic properties.  As we have seen in chapter 3, the perturbation parameter  is in this case one cartesian component of the constant external magnetic field, multiplied (for the sake of computational convenience) by the imaginary unit i.

4.2.3
Magnetic First Order Density TC  "4.2.3
Magnetic First Order Density" \l 3 
At this point, we want to turn to the actual expressions of the first order density for magnetic properties.  That is, we want to apply the particular perturbation to the general formalism of the previous section, specifically to the expressions for the first order AO 

 (Eq. 4-4b) as well as for the first order coefficients 

, 

, and 

.


In our implementation [17], we calculate the shielding tensor 

 of Eq. 4-1 using again Gauge Including Atomic Orbitals (GIAOs) [16,22-24,28,69,70,128,129] as basis functions, Eqs. 3-9 and 3-10.  This method is a way of dealing with the so-called gauge problem [24,28,69,70], chapter 3.  From Eq. 3-10, the first order AO is obtained to




.
(4-10)

This can be put back into Eq. 4-4, to obtain the AO contribution to the first order density.


The expression in Eq. 4-10 is, however, also useful for obtaining the first order overlap matrix, 

, and the first order DFT matrix, 

.  The respective expressions in section 3.2, Eqs. 3-14 and 3-15, were obtained in a similar fashion.  Here, we get for the overlap








.
(4-11)

Orbitals and coefficients without the upper index "(1)" are understood to be taken in zero order.  Note that we used in Eq. 4-11 both forms of the basis set expansion for the MO, Eq. 1-10 as well as Eq. 1-16.  The last two terms in Eq. 4-11 contain the core-orthogonalization coefficients b to first order.  These terms are specific to the frozen core approximation and don't appear in the all-electron case [16], chapter 3 (Eq. 3-14).


The DFT matrix is calculated in a similar fashion.  We find
















.
(4-12)

Here, 

 is again the field-free KS operator of Eq. 1-8a.  The last two terms of Eq. 4-12 are again particular to the frozen core approximation, cf. Eq. 3-15.  They are completely analogous to the respective terms in the first order overlap matrix, Eq. 4-11.  The leading contribution to 

 -- and thus to 

 of Eq. 4-9 -- is again the first term in the expression Eq. 4-12, cf. chapter 3 [16].  This term contains the first order magnetic perturbation operator.  


It remains to derive expressions for the core-orthogonalization coefficients, b, to first order in the magnetic field.  We obtain from Eq. 1-14




.
(4-13a)

The second term in Eq. 4-13a can be neglected.  To see this, let us reformulate 

.  We start from the definition of an inverse matrix, which is taken to first order.  This results in [53-57]:




.
(4-13b)

Thus, we have expressed the inverse matrix 

 in terms of the first order matrix 

 and the unperturbed matrix.  

 in turn vanishes.  This is because 

 represents overlaps between core AOs and true core MOs, Eq. 1-15c.  Hence, it is a pure one-center property.  Therefore, both orbitals are situated at the same atom, and the GIAO phase factors cancel each other, Eqs. 3-10 and 4-10.  We are now left with the following expression for the first order coefficients 

:




.
(4-13c)

Using Eq. 4-10 and the definition of the matrix, Eq. 1-15b, we get for 






(4-14a)




.
(4-14b)

Apart from taking the GIAO phase factor to first order, which results in Eq. 4-14b, we would in principle have to expand the core MO 

 into the unperturbed virtual MOs at this atom as well, Eq. 4-14a.  We neglect this expansion -- given the very large energy separation between core and virtual MOs.  This is no new approximation on top of the frozen core approximation& .

We have now completed the derivation of the first order coefficients.  These coefficients can be used in final working equations for the shielding tensor.

4.2.4
The GIAO Shielding Tensor for the Frozen Core Approximation TC  "4.2.4
The GIAO Shielding Tensor for the Frozen Core Approximation" \l 3 
Usually, the shielding tensor of Eq. 4-1 is split up into diamagnetic and paramagnetic contributions, cf. section 3.2, Eq. 3-20,





(4-15)


The diamagnetic tensor is due to the unperturbed electron density, while the paramagnetic shielding shall contain the first order density, cf. Eq. 4-1 [28,69,70].  These conditions assign a clear physical picture to each of the contributions.  The actual separation in Eq. 4-15 is --while it is well defined within each particular method -- not unique; only the total shielding is an observable quantity.  For GIAO, this separation has been set by Fukui [28], recall the discussion in section 3.2.5.  We employ Fukui's conditions in Eq. 4-15 as well [16,17].  


In this way, we obtain for the diamagnetic shielding





(4-16)

where





(4-17)

is the st component of the shielding due to the (frozen) core density core.  The sum in Eq. 4-17 runs over all the nuclei in the molecule.  The core density has been split up over the different nuclei; the part at nucleus A is called 

 in Eq. 4-17.  The electronic position operators relative to nuclei A and N are called 

 and 

, respectively.  The core density contributes exclusively to the diamagnetic shielding; this is a consequence of the frozen core approximation.  The diamagnetic shielding of the valence density (st component) is given by









(4-18)

The operator h01 in the second term of Eq. 4-18 had been defined earlier in chapter 3.2, Eq. 3-2.  Note that the expression for 

 is formally the same as in the all electron case [16], Eq. 3-21.  The sums in Eq. 4-18 go, however, again over occupied valence MOs only.


Any of the tensor components of the paramagnetic shielding 

 can be written as a sum over several terms as








,
(4-19a)

where








,
(4-19b)




,
(4-19c)

and




.
(4-19d)

The B1 contribution, 

 of Eq. 4-19b, is unique to the frozen core approximation.  The rest of 

, Eq. 4-19 [17], looks formally the same as the paramagnetic shielding in the all-electron formulation [16], Eq. 3-22 and section 3.2.  There are, however, differences.  The sums over occupied MOs in both, Eqs. 4-18 and 4-19, go again over occupied valence MOs only.  In Eq. 4-19c and 4-19d, the coefficients 

 and 

 are somewhat modified as well.  This has been discussed earlier in section 4.2.3.


We have also again introduced the occupation numbers, ni, of Eq. 3-23 into the expressions for the (valence) shielding, Eqs. 4-18 and 4-19.  Note that equal occupation numbers for all valence MOs are assumed in the derivation of 

 , Eq.4-19c.  Again, it is possible to drop the requirement of equal occupation numbers, cf. the discussion following Eq. 3-23.


We have now completed the formulation of the shielding tensor within the frozen core approximation.

4.3
Computational Details, Practical Implementation TC  "4.3
Computational Details, Practical Implementation" \l 2 
The shielding tensor can be calculated with the expressions that have been derived so far.  Our actual implementation [17] of these equations is based on the Amsterdam density functional program package ADF [53-55,80-82,108-114].  This program had been developed by Baerends et al. [53-55,81,82] and vectorized by Ravenek [108].  All the expressions for the shielding are evaluated by numerical integration.  We use the accurate integration scheme of ADF which has been developed by te Velde et al. [109-111], cf. the footnote regarding the integration scheme in the section 3.3.  


All current dependent terms [72,130-132,140-142] in the XC energy functional EXC are again neglected, resulting in the so-called uncoupled DFT, Eq. 3-5 (cf. the discussion of uncoupled DFT in section 3.2, following Eq. 3-19, and section 3.5).  We use the same non-local XC functional as before in chapter 3 [47-49].  


Uncontracted Slater type orbitals (STO) are used as basis functions [112,113].  Generally, our basis sets consist of a triple  STO basis for valence MOs which is augmented by two sets of (p or d) polarization functions per atomic center.  The core region of the basis is of double  quality.  Experience shows that this is a good basis set for the given purpose [146].  For some molecules, it is saturated with regards to shielding calculations, for others, not completely.  A detailed basis set study is beyond the scope of the present chapter, cf. sections 3.4.3 and 5.4.1 of this thesis.  


In ADF, another set of auxilary STO functions has to be used.  We employ s, p, d, f, and g functions which are centered on all nuclei [114].  Their purpose is to fit the electron density and to present the density dependant Coulomb and exchange integrals accurately&& .  


All the calculations are based on experimental geometries [13,115,144,145,163, 170,171].  

4.4
Validation of the Frozen Core Approximation, Results TC  "4.4
Validation of the Frozen Core Approximation, Results" \l 2 
The best and only way to judge the frozen core approximation is to compare to an all-electron calculation.  This requires that exactly the same system is used for the comparison.  In particular, the basis set has to be exactly the same in order to allow meaningful conclusions.  This must include in the frozen core case the auxilary core set 

, Eq. 1-11.  Let us illustrate this point by an example.  Suppose a particular all-electron basis contains two 1s STO functions.  To construct an equivalent frozen core basis requires that one of these two 1s STOs be used as auxilary core AO.  The other 1s STO remains a valence AO.  Note that it is of no importance for the results which one is which.


We shall now discuss in more detail the implications of the frozen core approximation for shielding calculations, before turning to actual calculations.  We had seen earlier in Eq. 4-1 that the shielding is a sum of contributions from the zero order density, Eqs. 1-3 and 1-4, and from the first order magnetic density matrix, Eq. 4-2.  Both of these electron densities are influenced by the frozen core approximation.  In the zero order density 0, changes due to core polarization are neglected.  This turns out to be not important, neither for the shielding nor for other properties.  (The frozen core approximation simply would not work as well as it does in field free calculations otherwise.) The picture for the first order density matrix, 1, is more complex.  We had seen that it consists of two major contributions in the all electron case.  They are due to occupied-occupied (Eqs. 4-7 and 3-22b) and occupied-virtual integrals (Eqs. 4-8 and 3-22c), respectively.  The lower occupied MOs are considered core MOs in the frozen core approximation; the remainder are valence MOs.  We can thus split up the all electron density matrix contributions 

 and 

 of Eqs. 4-7 and 4-8 further into contributions from core and valence MOs.  This is done as follows:





(4-20a)

and




.
(4-20b)

The paramagnetic shielding contributions 

 and 

, Eq. 4-19, can of course be split up accordingly.  It turns out that the core-core and core-virtual contributions of the all electron calculation are neglected in the frozen core case.  However, the core-valence contribution, 

, is not neglected.  Rather, it is represented on the frozen core side by 

, Eq. 4-6.  We have illustrated the situation for the first order density in Figure 4.1.


The next question, of course, is -- how much is really neglected by using the frozen core approximation; are these neglected terms of any significance for the shielding?


We have used all electron calculations to address these questions.  From an all electron calculation, we are able to extract the shielding contributions that would be neglected according to the previous discussion.  Thus, we can evaluate core-core and core-virtual contributions to the paramagnetic shielding of Eq. 4-19 for a given core level. 

[image: image2.wmf]
Figure 4.1
Schematic representation of the first order density,  TC  "Figure 4.1
Schematic representation of the first order density, " \l 9 

, in an all electron versus a frozen core calculation;.  See the text for details.

We have done this type of analysis for a wide range of light and heavy element compounds, and for various frozen core levels at the given nucleus.  The results are summarized in Table 4.1.  In this table, we compare the total calculated shielding with the terms that would be neglected by "freezing" the core.  Even more significant is the comparison with the paramagnetic shielding, since we neglect parts of this particular contribution only.  We have also included into Table 4.1 the total isotropic shielding as obtained by experiment [24,137,172-175].  This has only been done for such nuclei where experimental absolute shielding scales exist [176].

Table 4.1
Validation of the frozen core approximation.  Neglected terms in the paramagnetic shielding, as obtained from all electron calculations  TC  "Table 4.1
Validation of the frozen core approximation.  Neglected terms in the paramagnetic shielding, as obtained from all electron calculations " \l 8 

Shielding (ppm)



Neglected terms (from all 




Total


frozen 
electron calculations -- ppm)



Molecule / nucleus
Experi-ment
Cal-culated
Paramag-netic part
core level
occ-occ
occ-vir
total

C*O a
3.0±1.2 f
1.0 f
-9.1
-264.0
1s
<< 10-3
-0.03
-0.03

CO*
-42.3

±17.2 f
-36.7 g
-63.3
-468.3
1s
<< 10-3
0.03
0.03

C*O2 a
58.8 f
55.9
-215.3
1s
<< 10-3
-0.01
-0.01

CO2*
243.5 f
212.3
-184.3
1s
<< 10-3
0.002
0.002

Benzene b (C)
57.2 h
52.6
-196.9
C: 1s
<< 10-3
-0.01
-0.01

OCS* a
843 f
774.5
-279.0
C, O: 1s;  

S: 1s
<< 10-3
-0.02
-0.02





S: 2s
<< 10-3
0.1
0.1





S: 2p
4.4
4.0
8.4

 CS2* a
581 f
515
-540
C: 1s;  S: 1s
<< 10-3
<<10-4
<< 10-3





S: 2s
<< 10-3
0.1
0.1





S: 2p
3.3
3.2
6.5

Table 4.1
Continued (1)


Shielding (ppm)



Neglected terms (from all 




Total


frozen 
electron calculations -- ppm)



Molecule / nucleus
Experi-ment
Cal-culated
Paramag-netic part
core level
occ-occ
occ-vir
total

HCl* c
950 f
944
-202
Cl: 1s
<< 10-3
10-4
<< 10-3





Cl: 2s
<< 10-3
0.14
0.14





Cl: 2p
-4.7
-11.0
-15.7

Br2 c

1,726
-1,397
 2s
<< 0.01
0.0003
<<0.01





 2p
0.016
-0.24
-0.22





 3p
-5.0
-11.3
-16.3





 3d
-4.4
-11.7
-16.1

HBr* c

2,579
-546
Br: 2s
<< 0.01
-0.045
-0.045





Br: 2p
0.14
-1.1
-1.0





Br: 3p
-3.8
-7.9
-11.7





Br: 3d
-1.7
-9.9
-11.6

CSe2* a
1,738 f
1,448
-1,551
C: 1s;  Se: 2s
<<0.01
-0.06
-0.06





Se: 2p
1.0
-8.5
-7.5





Se: 3s
1.0
-8.5
-7.5





Se: 3p
-0.8
-13.8
-14.6





Se: 3d
11.5
-24.6
-13.1

Table 4.1
Continued (2)


Shielding (ppm)



Neglected terms (from all 




Total


frozen 
electron calculations -- ppm)



Molecule / nucleus
Experi-ment
Cal-culated
Paramag-netic part
core level
occ-occ
occ-vir
total

Se*H2 c
2,401 f
2,096
-898
C: 1s;  Se: 2s
<< 0.01
-0.02
-0.02





Se: 2p
0.8
-3.9
-3.1





Se: 3p
-2.2
2.1
0.1





Se: 3d
2.9
-3.2
-0.3

Se*F6 c
1,438 f
958
-2,016
F: 1s,  Se: 2s
<< 10-3
<< 10-4
<< 10-3





Se: 2p
2.3
3.1
5.4





Se: 3p
11.1
10.7
21.8





Se: 3d
54.2
25.3
79.5

(CH3)2Se* d
2,069 f
1,727
-1,270
C:1s, Se: 2s
<<0.1
-0.3
-0.3





Se: 2p
0.4
4.4
4.8





Se: 3p
15.8
43.4
59.3





Se: 3d
27.7
30.8
58.5

H2Te c

3,454
-1,912
Te: 2p
0.2
-0.9
-0.7





Te: 3d
-2.1
-6.9
-9.0





Te: 4p
18.6
3.1
21.7





Te: 4d
159.3
-141.8
17.5

Table 4.1
Continued (3)


Shielding (ppm)



Neglected terms (from all 




Total


frozen 
electron calculations -- ppm)



Molecule / nucleus
Experi-ment
Cal-culated
Paramag-netic part
core level
occ-occ
occ-vir
total

Te*F6 c

2,256
-3,096
F: 1s, Te: 2p
-0.9
4.4
3.5





Te: 3p
9.8
10.3
22.1





Te: 3d
10.4
15.2
25.6





Te: 4p
14.6
14.2
28.8





Te: 4d
425.1
-63.2
361.9

Cr*(CO)6 e

-550
-2,354
O: 1s, Cr: 2s
<<0.1
<<0.01
<<0.1





Cr: 2p
11.1
16.9
28.0





Cr: 3p
138.6
-83.5
55.1

[Cr*O4]2-  e

-2,384
-4,187
O: 1s, Cr: 2s
<<0.1
<<0.01
<<0.1





Cr: 2p
6.2
18.2
24.4





Cr: 3p
58.4
49.8
108.2

a
Experimental geometry from [170].

b
Experimental geometry from [171].

c
Experimental geometry from [145].

d
The experimental geometry was taken from [163].  We adapted in this table a staggered-eclipsed conformation (3) [146].

e
Experimental geometry from [13,115].

f
Experimental values cited from [172].

g
Experimental values cited from [137].

h
Experimental values cited from [24].


The first few compounds in Table 4.1 are representative for compounds of second period elements.  The core consists in this case of the 1s shell only.  The terms that are neglected due to this core are not significant at all.  


The picture becomes more complex for the third period of the periodic table.  Sulphur and chlorine are being taken as representative examples, Table 4.1.  We note first that the absolute shielding gets larger when going down in the periodic system of elements, as does the magnitude of the paramagnetic part.  The core of third period nuclei like sulphur or chlorine can go up to the 2p shell.  We see from Table 4.1 that both 1s and 2s can readily be "frozen" while the 2p shell gives notable contributions already.  These contributions amount to about 3% and 8% of the paramagnetic shielding for OCS* and HCl*, respectively.


We have included into Table 4.1 as well a number of small main group compounds of the fourth and fifth periods.  The picture here is essentially similar.  We need again to include the 3p and 3d shells (fourth period) or the 4p and 4d shells into the valence to get accurate results (125Te is chosen as an example for the fifth period).  Lower core shells contribute typically only about 0.5% or less of the total paramagnetic shielding.


We have also included two chromium compounds into Table 4.1.  This was done to test whether transition metal complexes behave differently or not.  We can see that the 3s and 3p shells are necessary for an accurate description of the 53Cr shielding, while lower shells can still be frozen.  We note in passing the relative shift between the two complexes of 1,834 ppm which compares very well with the experimental result of 1,795 ppm (this value has been obtained in solution [177]).  However, basis set studies and experimental absolute shielding scales would be required for a comprehensive judgement of this result.  Relativistic effects have not yet been included.  They are certainly important for the next period [2,3,18,52,161-164,178], chapter 5.  Chapter 5 contains a more detailed discussion of the cited 53Cr chemical shift.  


All these calculations have been carried out with the same type of basis set.  Thus, the absolute values in Table 4.1 might change somewhat when changing the basis set.  (Experience shows that the core-valence and core-virtual terms increase in magnitude with smaller basis sets.) However, it is still possible to generalize the results.  We can conclude that only the (n-1)p, (n-1)d, etc.  shells of any given nucleus have to be "thawed", while all lower shells can be kept frozen (n  represents the number of the period in the periodic table of elements).


It is also interesting to discuss the calculated 77Se shieldings in Table 4.1 a little further.  We have collected these compounds again in Table 4.2.  This table contains results from frozen core calculations as well as all electron calculations (in brackets).  The core at the selenium atom contains the 1s, 2s, and 2p  shells while the core of the second period atoms carbon and fluorine contains the 1s  shell only.  This choice was taken in accordance with the preceeding discussion.  The deviation in the calculated shielding between the frozen core results and the all electron calculations is always smaller then 10 ppm (Table 4.2).  It is thus of the order that had been predicted from all electron calculations, Table 4.1.  Any remaining differences between the predicted and the actual frozen core results can be attributed to numerical noise and a still not completely saturated fit basis in the case of the all electron calculations (cf. section 4.3).  We note also from Table 4.2 that some of the deviation between the frozen core and all electron cases cancels when relative shifts are considered; the deviation does not exceed 5 ppm in this case.  Chemical shifts  are usually defined as the difference between the absolute shieldings of a reference compound and of the molecule under study: 




.
(4-20)

Table 4.2
Calculated and experimental 77Se shieldings and chemical shifts for a few molecules TC  "Table 4.2
Calculated and experimental 77Se shieldings and chemical shifts for a few molecules" \l 8   (numbers in ppm)

Absolute shielding


Chemical shift


Molecule
Experiment
Calculated a

Experiment
Calculated a

(CH3)2Se, staggered-staggered 1
2069 b
1,670 (1,678)

0
0  (0)

(CH3)2Se, eclipsed-eclipsed  2

1,756 (1,762)


-85  (-85)

(CH3)2Se,  eclipsed-staggered   3

1,719 (1,727)


-49  (-50)

H2Se
2,401 c
2,092 (2,096)

-345 c
-226 d
-422  (-418)

SeF6
1,438 c
954  (958)

631 c
610 d
716  (720)

CSe2
1,738 c
1,441 (1,448)

331 c
299 d
229  (229)

Se42+

-170

1,923-1958 e
1,836

a
Calculated shieldings from frozen core calculations and (in brackets) from all electron calculations.

b
Liquid phase [172].

c
Gas phase [172].

d
Liquid phase [174].

e
Solution; result depending on solvent and counterion [175].


Let us now compare the calculated results to experimentally obtained values.  The deviation between theory and experiment is considerable for all of the 77Se shieldings, Table 4.2.  However, we get a much better agreement between theory and experiment when we consider relative shifts instead of absolute shieldings, Table 4.2.  The experimental accepted standard for 77Se shifts is liquid Dimethyl Selenide, (CH3)2Se.  We have therefore included this compound into our investigations, Tables 4.1 and 4.2.  This is, however, somewhat difficult since the experimental geometry is not completely known [163].  Therefore, we have included into Table 4.2 three different possible conformations.  Two of them are pseudo-Cis (staggered-staggered and eclipsed-eclipsed, respectively), 1 and 2.  Structure 3 is eclipsed-staggered (pseudo-Trans).  

[image: image3.wmf]
Figure 4.2
Possible Conformations of (CH3)2Se TC  "Figure 4.2
Possible Conformations of (CH3)2Se" \l 9 
The calculated shifts are taken relative to the C2V structure 1 [165].  Structure 1 has the lowest energy, according to our geometry optimization [146].  We used the experimental bond lengths and angles for the shielding calculations [163].  


The agreement between theory and experiment is good for 77Se chemical shifts for the few compounds that have been considered here.  The experimental uncertainty is certainly large, as are gas-to-liquid shifts and solvation effects.  The former are as big as 119 ppm for H2Se, Table 4.2.  Solvent and counterion effects can also be large [174,175].  Furthermore, calculated shieldings refer of course to a single molecule at zero temperature whereas all of the experimental data is obtained at finite temperatures and pressures; most of the experiments where carried out in solutions or neat liquids.  All these effects can yield considerable shifts, and make a direct comparison between theory and experiment difficult.  On the theoretical side, it is likely that our basis sets are not yet completely saturated [146].


A special case is the Se42+ ion.  This is a highly correlated molecule, and traditional HF-based methods are unable to predict the chemical shift of this ion [179].  DFT, however, is capable of handling these systems and the results compare well with experiment [132,146,179].


We note that the calculated absolute shieldings seem to be uniformly too small by about 300 to 400 ppm, Table 4.2.  The experimental absolute shielding scale is based on the absolute shielding of SeF6 that was found to be 1,438±64 ppm [180].  However, this value is based on a theoretically predicted (diamagnetic) shielding value of the free selenium atom.  This theoretical value has been corrected explicitly for relativistic effects, in particular the relativistic contraction of the core density distribution: It is well known that relativity contracts the (core) density distribution of heavy atoms which in turn is attributed to the relativistic mass increase of s and p electrons [2,3].  A density contraction results in an increase of the core contribution to the diamagnetic shielding, Eq. 4-17.  This effect is strongest for the inner core shells -- 1s in particular.  Therefore, it is mostly independent of the chemical enviroment of the selenium atom [176].  Other relativistic effects are probably not yet important for 77Se chemical shifts, chapter 5.  The magnitude of the necessary correction is estimated by Jameson et al. at 300 ppm [180].  Therefore, we find that our calculated shielding values are uniformly too small, Table 4.2.  The uniform error of 300 ppm cancels of course when (relative) chemical shifts are calculated.  This point illustrates the importance of absolute shielding scales [176] for the test of theoretical methods. It is obvious from our example that shifts alone are not sufficient, Table 4.2.


A more detailed and comprehensive discussion of 77Se chemical shifts as calculated by the DFT-GIAO method has been given elsewhere [146].  This paper contains also a detailed comparison with other theoretical results.

4.5
The Shielding Tensor in the Frozen Core Approximation.  Conclusion TC  "4.5
The Shielding Tensor in the Frozen Core Approximation.  Conclusion" \l 2 
We have in this chapter presented a complete derivation of the NMR shielding tensor within the frozen core approximation [17].  This derivation has been given both in general terms and for the particular case of our DFT-GIAO method of chapter 3 [16].  This new method has also been implemented [17] into the DFT program system ADF [82].


The frozen core approximation has been employed earlier by Friedrich et al. [129].  These authors concluded that this approximation is not  useful for shielding calculations.  It is difficult to analyze this statement since no details of the implementation are given.  However, it is likely that this early DFT-GIAO method simply neglects all terms that contain the core orthogonalization coefficients to first order in the magnetic field [128,129].  If this is true then this constitutes a very severe approximation on top of the frozen core approximation proper (cf. section 4.2).  It is then no real surprise that this  form of the frozen core approximation does not work.


On the other hand, if all the terms of the frozen core approximation are taken into account properly, then the picture looks different.  We were able to conclude in this investigation that the frozen core approximation is a useful model for shielding calculations -- if the valence is increased to contain at least the ns, np, (n-1)p , and (n-1)d  (fourth period and higher) shells where n is the number of the given period in the periodic table of elements.


The frozen core approximation reduces the number of electrons that are treated variationally.  Therefore, it can yield savings of computer time, in particular if heavy atoms with large cores are involved.  However, the main objective of this chapter was to open the way for shielding calculations based on a quasi-relativistic method.  This method relies on the frozen core approximation, mainly because the Pauli-Hamiltonian is not variationally stable for the highly relativistic core electrons [2,3,58,59].  The importance of special relativity for NMR shifts and shieldings of heavy elements is now well established, both theoretically and experimentally [2].  The quasi-relativistic extension of the DFT-GIAO method is the subject of the following chapter.

CHAPTER FIVE TC  "CHAPTER FIVE" \l 1 
THE CALCULATION OF NMR SHIELDING TENSORS BASED ON DENSITY FUNCTIONAL THEORY AND A SCALAR RELATIVISTIC PAULI-TYPE HAMILTONIAN.  THE APPLICATION TO TRANSITION METAL COMPLEXES TC  "THE CALCULATION OF NMR SHIELDING TENSORS BASED ON DENSITY FUNCTIONAL THEORY AND A SCALAR RELATIVISTIC PAULI-TYPE HAMILTONIAN.  THE APPLICATION TO TRANSITION METAL COMPLEXES" \l 1 
5.1
Introduction TC  "5.1
Introduction" \l 2 
This chapter is again concerned with the shielding tensor of NMR spectroscopy.  The focus is now on compounds of heavier elements.  I have pointed out in the introduction to chapter 4 that heavy element compounds pose additional difficulties on top of the already challenging task of computing the shielding.  First, there is the large number of electrons that have to be taken into account [17], chapter 4.  However, more important is the influence of special relativity [2,3].  This shall be the subject of this chapter [18].


There are two types of relativistic effects on the shielding, direct and geometric effects.  Geometric effects in this context are changes in the shielding due to relativistic changes in the geometries, in particular the relativistic bond contraction [2,31], chapter 2, while direct effects are relativistic effects at a given geometry.  In this chapter, we base our investigations on fixed, relativistic geometries, and are therefore only concerned with direct effects.  Relativity will change the electron density and orbital energies; all of this must influence the shielding.  Furthermore, some occupied-virtual transitions that are forbidden in the non-relativistic theory will become feasible due to the spin-orbit splitting [4,5,10,11,178].


So far, there have been only very few attempts to calculate NMR parameter with the inclusion of relativity.  Pyykkö has given a fully relativistic formulation of the NMR shielding tensor [181], as well as of the NMR spin-spin coupling constants [182].  Such a fully relativistic formulation is based on the complete, four-component wave function.  Furthermore, Pyykkö et al. [178] have calculated shieldings using a semi-empirical relativistic scheme.  It follows from this study that spin-orbit splitting can indeed be very important; other relativistic effects, i.e., scalar relativistic effects, are difficult to extract from semi-empirical calculations.  Very recently, Kaupp et al. [52,161] have extended the density functional theory (DFT) based "Individual Gauge for Localized Orbitals" method (DFT-IGLO) of Malkin et al. [72,130-132,183] to include scalar relativistic effects.  This is in principle a promising approach as it makes use of DFT; DFT is capable of handling electron correlation in an efficient manner [35-40].  It is therefore particularly well suited for heavy element compounds.  Kaupp et al. [52,151-154,161] apply their scheme to the ligand shielding in transition metal complexes MLn.  The results indicate the importance of scalar relativistic effects -- even for the shielding at the neighboring light elements.  The relativistic DFT-IGLO method is based on the use of relativistic pseudopotentials [2,3,26,50-52,83-85] at the metal center.  This will most likely prohibit the accurate determination of the metal shielding because the usual pseudopotentials yield (by construction) the wrong asymptotic behavior of the orbitals at the nucleus.


For this reason, we decided to use an alternative relativistic method.  Out of the various choices, we will base our investigation on the quasi-relativistic method [26,29-33], cf. section 1.2 and chapter 2.  This method employs a Pauli-type Hamiltonian [5,10,25,60].  The quasi-relativistic method might not be the most obvious choice for a relativistic scheme.  Most satisfying from a theoretical point of view is of course the use of fully relativistic methods based on four-component wave functions and the complete Dirac equation [4,5,8-10,181].  However, such methods are forbiddingly expensive in practical applications [2].  Therefore, approximate two-component methods -- such as our quasi-relativistic scheme -- are preferable in most cases.  They possess the additional advantage that the results can be directly interpreted using the sophisticated apparatus that was developed for the non-relativistic (two-component) quantum chemistry.  This is in particular true for the quasi-relativistic method since it allows to use the same type of basis sets for the non-relativistic and the (quasi-) relativistic calculations.  Therefore, the relativistic results are readily compared with their non-relativistic counterpart -- an important feature in the interpretation of the calculated values (examples of this approach can be found in chapter 2 of this thesis as well as in various references [13-15,63,64]).


We shall in the following present an implementation of the shielding tensor calculation based on the quasi-relativistic method.  It is -- to our knowledge -- the first implementation that is capable of calculating metal shieldings from first principles including relativistic effects.  The present work extends our earlier density functional method [16] that was based on the use of "Gauge Including Atomic Orbitals" (GIAO) [22-24,128,129], chapter 3.  The frozen core approximation is an essential part of the quasi-relativistic method [26,29-33].  It has already been shown to be applicable to the calculation of the shielding [17], chapter 4.  Our non-relativistic method has been applied successfully to the calculation and interpretation of ligand shieldings in transition metal complexes [149,150], as well as to 77Se chemical shifts of various selenium containing compounds [146], among other applications [73].  It seems now timely to extend the scheme to include the complete periodic table of elements.

5.2
Formulation TC  "5.2
Formulation" \l 2 
As mentioned in the introduction, this chapter makes use of the formalism of density functional theory (DFT) in its non-relativistic (section 1.1) and quasi-relativistic (section 1.2) versions.  We will further have to extend the frozen core formulation of the shielding, chapter 4.  


On this basis, we are able to develop the scalar relativistic formulation of the NMR shielding tensor.  We will do this by applying the minimal coupling scheme of Eq. 1-30 to the relativistic formulation of the total energy, Eq. 1-19, and of the MOs, Eqs. 1-26 and 1-27.


Pyykkö [2] points out that the relativistic shielding tensor can be calculated either by third order perturbation theory, or (similar to the non-relativistic case) by second order perturbation theory, Eqs. 3-1 and 4-1, but then based on the relativistic molecular orbitals.  We will follow the latter avenue, and derive the relativistic molecular orbitals up to first order in the constant external magnetic field.  Thus, we have to modify only the coefficients of the paramagnetic shielding, Eqs. 3-13 to 3-15 and Eqs. 4-9, 4-11, and 4-12, respectively, since they represent the first order magnetic orbitals.  The expressions for the shielding tensors, Eqs. 3-20 to 3-22 and Eqs. 4-15 to 4-19, respectively, remain formally unchanged.  However, they will now contain the relativistic electron density and MOs.


Indeed, it is only 

 of Eqs. 3-15 and 4-12, respectively, that is modified, since only the equation for this matrix contains the Kohn-Sham operator.  The expressions for 

 (Eqs. 3-13 and 4-9) and 

 (Eqs. 3-14 and 4-11, respectively) remain formally the same, but depend now also on the relativistic orbitals and eigenvalues, Eq. 1-26.  We must next derive the scalar relativistic expression for 

.  To achieve this, we will have to go back to its definition [16,28,129], cf. Eq. 3-15.  The s-component of the first order DFT matrix can be obtained from




,
(5-1)

where the magnetic field has been multiplied again with the imaginary unit "i" for computational convenience.  

In Eq. 5-1, 

 represents the modified Kohn-Sham operator containing the operator of the constant magnetic field, 

, see below.  Further, 

 has been defined in Eq. 3-11 [16,56,57,143].  It contains the expansion coefficients of the field-free MOs, but the field-dependent basis functions (the GIAOs of Eq. 3-10).  

We will need the GIAO only up to first order in the magnetic field, cf. Eq. 4-10,




.
(5-2)


The magnetic field can be introduced to the field-free operator f(0) using the minimal coupling of Eq. 1-30, as has been pointed out earlier.  The above presented non-relativistic expressions of the shielding (chapters 3 and 4) were obtained in this way [16,17,129] by starting from the operator fNR of Eq. 1-8a.  To get the corresponding relativistic expression, we have to introduce the magnetic field to the scalar relativistic operator fQR of Eq. 1-27.  It follows from the expression in Eq. 5-1 that we need only operators that are linear in the magnetic field.  Further, only hQR of Eqs. 1-20 and 1-22 has to be considered; all the other terms in fQR of Eq. 1-27 are formally the same as in the non-relativistic case.  Thus, we will apply the minimal coupling scheme of Eq. 1-30 to hMV (Eq. 1-20b) and hDar (Eq. 1-22a) -- recall that we neglect the spin-orbit splitting, section 1.2.  We note immediately that the Darwin operator is not altered by this procedure.  Nevertheless, it will contribute to 

 in Eq. 5-1, due to the field-dependent basis functions (the GIAOs).


Minimal coupling, as applied to the mass-velocity operator of Eq. 1-20b results in




.
(5-3)

For the vector potential, the Coulomb gauge [10,11,70,77] is usually chosen, Eq. 3-8c.  In this gauge, we obtain




.
(5-4)


Let us call the part of 

 that contains the mass-velocity operator 

.  This matrix element is then given as





(5-5a)




  ,
(5-5b)

where use has been made in Eq. 5-5b of the Hermitian properties of the operator 

.  The integral has to be taken in first order with respect to the constant external magnetic field.  We get the following result, based on the GIAO method (Eqs. 3-10, 3-11, and 5-2) and the Coulomb gauge for the vector potential (Eq. 5-4)












.
(5-6)

Appendix 2 is dedicated to the derivation of this expression from the previous equation.


We shall next define a matrix element of the Darwin operator in a completely analogous fashion.  Thus, from Eqs. 1-22a and 5-1




  .
(5-7)

The GIAO formalism of Eqs. 3-10, 3-11, and 5-2 could in principle be applied directly to Eq. 5-7.  However, this expression contains derivatives of the nuclear potential that might be troublesome for numerical integration schemes.  These derivatives are therefore removed by partial integration [15,29-33,78,79], cf. the discussion in chapter 2.  In this way, we obtain the following final DFT-GIAO result for 

:




















.
(5-8)

The derivation of this expression is contained in appendix 3.


The expressions for 

, Eq. 5-6, and for 

, Eq. 5-8, are readily extended to include the frozen core approximation [17], cf. section 1.1.2 and chapter 4.  Appendix 4 is devoted to this subject.  It contains also the working equations for the scalar relativistic contributions to the first order DFT matrix.  The resulting expressions Eqs. A4-3 and A4-4 are now ready to be used in practical calculations.

5.3
Computational Details and Implementation TC  "5.3
Computational Details and Implementation" \l 2 
The above developed formalism has been implemented into the Amsterdam density functional package ADF [53-55,81,82,108-114].  This program hads been developed originally by Baerends et al. [53-55,81].  The vectorization is due to Ravenek [108].  All the expressions of the shielding, including the newly developed scalar relativistic terms, are evaluated by numerical integration.  We employ the accurate numerical integration scheme of ADF that is due to te Velde et al. [109-111].


All current dependent terms [72,130-132,140-142] in the XC energy functional EXC of Eq. 1-6 are neglected.  This leads to the so-called uncoupled DFT [128-130], cf. the respective discussion in chapter 3.  The usual density dependent XC energy functional is modeled by the non-local approximation due to Becke [47] and Perdew [48,49].


The 1s shell of first row nuclei like carbon, oxygen, and fluorine is considered as core and kept frozen [17,53,54].  Likewise, the shells up to and including 2p, 3d, and 4f for first, second, and third transition row nuclei, respectively, is treated as core (unless otherwise stated).  Further, the core of chlorine, bromine, and iodine goes up to the 1s, 2p, and 3d shells respectively.  This choice was taken in accordance with our previous findings of chapter 4 [17]; it should guarantee reliable results.


Uncontracted Slater type orbitals (STO) are used as basis functions [112,113].  The ADF valence basis is augmented by a single  auxiliary core basis that is needed to ensure orthogonality of the valence MOs to the cores in the molecules.  We had mentioned the frozen core approximation (section 1.1.2 and chapter 4) earlier in this chapter; the (frozen) core orbitals are of course of (at least) double  quality.  


Previously, we used a triple  valence basis set that is augmented by two sets of (p or d) polarization functions.  Occasionally, very contracted "core type" polarization functions were added to this basis, cf. chapter 4.  In this way, the core region of the valence molecular orbitals could be described properly [16,17,73,146].  This basis gives very good results for NMR shieldings, often close to saturation.  However, the basis set (let's call it "tp/td (dz core)" for the purpose of this chapter) is problematic in the given context.  The additional "core type" functions will lead to a variational collapse for heavy elements, i.e., to negative eigenvalues with arbitrary large magnitude for the Kohn-Sham operator, due to the mass-velocity operator of Eq. 1-20b.  Thus, we cannot add such core polarization functions to the valence basis if we intend to perform relativistic calculations of the shielding.  Therefore, we have to use a basis that contains only the mentioned single  auxiliary core basis, and no other core type polarization functions at the heavy metal (tp/td basis).  This is a clear limitation of our method.  We will discuss its consequences later.  Additionally, we use an extended basis, tp+2d / td+f, that was derived from the tp/td basis by adding two sets of d functions to the basis at the metal center, and one set of f functions to main group basis sets.


In ADF, another auxiliary basis of STOs has to be used to fit the electron density and to present the density dependent Coulomb and XC potentials accurately.  We employ a sufficiently large fit basis of s,  p,  d,  f, and g functions that are centered at all nuclei in the molecule [114].  


We have pointed out before that the valence MOs have to be orthogonalized against all the cores in the molecule.  In our scalar-relativistic method, this is done by using the non-relativistic atomic core orbitals, again, to avoid a variational collapse [184].  This is another limitation of our method that is however much less serious in its consequences&&& .  


Our calculations in this chapter are generally based on experimental geometries  [13,145,161].

5.4
Validation of the Scalar-Relativistic Method,  Applications TC  "5.4
Validation of the Scalar-Relativistic Method,  Applications" \l 2 
5.4.1
Basis Sets TC  "5.4.1
Basis Sets" \l 3 
We had pointed out earlier that the quasi-relativistic method requires a single  core basis for the valence MOs, since otherwise a variational collapse is possible.  On the other hand, it is well known that a sufficiently large core basis is needed for an accurate description of the chemical shift [17], cf. chapter 4.  We address the importance of the core polarization basis functions for two chromium containing molecules, [CrO4]2- and Cr(CO)6, in Tables 5.1 and 5.2.  The calculated shieldings or shifts are also compared to experiment [177,185].  We have chosen chromium complexes since this element is still sufficiently light, and no variational collapse occurs in these molecules, even with extensive core sets.  The standard core of chromium contains the 1s, 2s, and 2p shells [17], chapter 4.  Tables 5.1 and 5.2 present calculated 53Cr, 13C, and 17O shieldings for single and double  cores, calculated both with and without scalar relativity.  We see from these tables that the size of the core basis has only a limited influence on the ligand shieldings.  This is not too surprising since both 13C and 17O have a small core that consists only of the 1s shell.  The picture is somewhat different for the 53Cr shielding: the difference between the basis sets with double and single  cores amounts to about 55 ppm or less in both the non-relativistic and relativistic cases.  This is a considerable number; nevertheless, it is just 3% of the relative shift between [CrO4]2- and Cr(CO)6 (1,795 ppm experimentally [177]).  The complete shift range of 53Cr is probably even bigger than 1,800 ppm.  However, not very many 53Cr chemical shifts are known experimentally, due to the unfavorable NMR properties of this nucleus [177].  We can conclude that the (smaller) single  core basis set gives meaningful results, both for metal shieldings and for the ligands.  It is interesting to note that almost all of the difference between the two basis sets cancels when relative shifts are considered, Table 5.2.  Whether this represents a general trend or is just fortuitous, cannot be decided at this point.

Table 5.1
Calculated shieldings in [CrO4]2- for different basis sets and core levels TC  "Table 5.1
Calculated shieldings in [CrO4]2- for different basis sets and core levels" \l 8  (see the text for details).  The experimental value for solution is (O) = -527 ppma ; no absolute shielding scale exists yet for 53Cr



Calculated  53Cr shielding (ppm)

Calculated  17O shielding (ppm)


Core level
Basis sets
non-rel.
relativistic
non-rel.
relativistic

Cr: 2p;  

O: 1s
td / tp;  double  cores
-2,392
-2,320
-459.3
-444.4

Cr: 2p;  

O: 1s
td / tp;  single  cores
-2,340
-2,265
-460.2
-446.0

Cr: 3p;  

O: 1s
td / tp;  double  cores
-2,406
-2,254
-480.8
-446.1

Cr: 3p;  

O: 1s
td / tp;  single  cores
-2,130
-2,058
-479.1
-467.2

Cr: 2p  

O: 1s
td+f /tp + 2d;  single  core (metal);  double  cores  (ligands)
-2,373
-2,295
-458.7
-440.0

a 
[177].  

Table 5.2
Calculated and experimental shieldings and 53Cr chemical shifts (w.r.t. [53CrO4]2-) in Cr(CO)6 for different basis sets and core levels TC  "Table 5.2
Calculated and experimental shieldings and 53Cr chemical shifts (w.r.t. [53CrO4]2-) in Cr(CO)6 for different basis sets and core levels" \l 8  -- see the text for details  (numbers in ppm).



Calculated

shieldings     and 

(in  brackets)

chemical    shifts  


Core 

53Cr 

13C shielding

17O shielding


level
Basis sets
Non-rel.
Rel.
Non-rel.
Rel.
Non-rel.
Rel.


Experimenta

(-1,795)

-26.6b

-59.1 -68.1b

Cr: 2p;

C / O: 1s
td / tp;  double  cores
-562

(-1,830)
-500

(-1,820)
-30.0
-28.8
-78.4
-76.9

Cr: 2p;

C / O: 1s
td / tp;  single  cores
-509

(-1,831)
-451

(-1,814)
-30.2
-29.6
-77.5
-76.3

Cr: 3p;

C / O: 1s
td / tp;  double  cores
-617

(-1,789)
-498

(-1,756)
-30.3
-28.7
-79.0
-76.6

Cr: 3p;

C / O: 1s
td / tp;  single  cores
-432

(-1,698)
-378

(-1,680)
-30.3
-29.9
-78.5
-78.1

Cr: 2p

C / O: 1s
td+f /tp + 2d c

-507

(-1,866)
-449

(-1,846)
-31.1
-30.0
-78.3
-76.7

a 
Experimental 53Cr chemical shift from [177].

b 
Ligand shieldings from [185].

c 
Single  core (metal);  double  cores (ligands).


Tables 5.1 and 5.2 contain also calculations for a more extended core on chromium; the core contains everything up to the 3p shell in this case.  The influence of the basis set quality in the core is felt stronger here.  This result is obvious -- given that the core is much bigger now than it was before.  We note also that the results for the 3p core are not really reliable anymore (cf. in particular the relativistic shieldings and shifts in Cr(CO)6).  This  agrees to and confirms the findings of chapter 4 [17] where we had seen that the frozen core approximation works well if and only if the valence region is extended to include at least the (n-1)p shell at the given nucleus (n represents here the number of the given period in the periodic table of elements).  


Finally, we investigate in Tables 5.1 and 5.2 the degree of saturation for the basis sets.  We have included into these tables calculations for a basis set, td+f/tp+2d, that contains one set of f polarization functions at each carbon and oxygen atom, and two sets of d polarization functions on the metal center, as has been described above.  Comparing the "td/tp" basis set to the "td+f/tp+2d" set, we note that the ligand shieldings are already close to saturation for the former.  The additional polarization functions result in changes of about 6 ppm or less in the 17O shielding of the chromium tetra oxide anion, and in much smaller changes in the ligand shielding of the chromium hexacarbonyl.  Thus, we can use the "td/tp" basis if ligand shieldings are desired; the enormous extra effort of the polarization functions is not justified by the minimal gain in accuracy.  This is also in line with our earlier investigations [16,73,146], cf. chapter 3.  

The picture is somewhat different if the metal shielding is considered.  Here, we get changes of up to 33 ppm in the shieldings due to the addition of the polarization functions.  We shall in the following use both types of basis sets when metal shieldings are concerned.  Nevertheless, we can conclude that the tp/td basis gives already useful results; the remaining error seems to be of about the same order as other errors of the method, in particular the absence of core polarization functions as has been discussed before.  

5.4.2.
17O Shieldings in Metal Oxo Complexes TC  "5.4.2.
17O Shieldings in Metal Oxo Complexes" \l 3 
As a first application, we have calculated the 17O shielding in the series of compounds [MO4]n- (M = Cr, Mo, W;  Mn, Tc, Re;  Ru, Os).  The results are collected in Table 5.3.  We compare in this table our results with the earlier DFT-IGLO results of Kaupp et al. [161] as well as with experiment [173,186].  

Table 5.3
Calculated and experimental 17O absolute shieldings in transition metal oxides [MO4]n-  TC  "Table 5.3
Calculated and experimental 17O absolute shieldings in transition metal oxides [MO4]n- " \l 8 
Compound
Absolute 17O shielding  (ppm)




Calculated:  DFT-GIAOa   (DFT-IGLOb)

Experimentc


Non-relativistic
Relativistic


[CrO4]2- 
-459  (-410)
-446  (-389)
-527

[MoO4]2-
-253  (-277)
-216  (-239)
-232

[WO4]2-
-219  (-338)
-140  (-147)
-112






[MnO4]-
-799  (-737)
-778  (-720)
-911

[TcO4]-
-450  (-420)
-405  (-388)
-411

[ReO4]-
-367  (-357)
-278  (-277)
-261






RuO4
-810  (-754)
-740  (-706)
-811

OsO4
-629  (-611)
-521  (-503)
-488

a 
This work.  

b 
Kaupp et al. [161]. 

c 
[173,186]. 

Note that we have converted all the chemical shifts [161,173,186] to absolute shieldings, based on the experimental absolute shielding scale of oxygen [187,188].  


We see from Table 5.3 that the results from both DFT methods compare to a reasonable degree.  The remaining differences must be attributed to differences in basis sets, differences between the GIAO and IGLO methods, differences in the approximation for the XC functional, and in particular to the different treatment of relativistic effects.  The DFT-IGLO scheme includes scalar relativistic effects into the calculations using relativistic pseudopotentials while our method employs an approximate two-component Hamiltonian, see above.  The direct comparison to experiment is difficult since no gas phase data is available to date.  Solvation effects (gas-to-liquid shifts) are expected to be large, in particular for the charged species.  In addition, there are certainly counterion effects and influences of the solvent.  Only qualitative agreement between theory and experiment can be expected.  


Nevertheless, both DFT methods achieve a good agreement with the experiment.  All observed trends are well reproduced.  We see from Table 5.3 that the inclusion of scalar relativistic effects is essential for a proper description of the ligand shielding in 5d and also in 4d complexes.  In both methods, the largest deviations between theory and experiment are found for the 3d complexes, [CrO4]2- and [MnO4]-.  The 3d complexes are also the case where the -- very small -- relativistic corrections seem to go into the "wrong" direction as compared to experiment.  Kaupp et al. [161] attribute the deviations between theory and experiment to shortcomings in the presently used XC functionals that are particularly visible for the compact 3d shell of these transition metals.  It is, according to Kaupp et al., particularly difficult to describe the correlation contributions to the ground state of these species.  Improved approximations for the XC functional as well as better experimental data, preferably obtained in the gas phase, are needed to further clarify this point.  We note that the DFT-GIAO shieldings are closer to experiment then the DFT-IGLO results for the two 3d complexes by about 50 to 60 ppm.  Finally, the good agreement between theory and experiment suggests that the neglected spin-orbit splitting cannot be very important for these oxo complexes.  We will come back to the spin-orbit splitting shortly.

Table 5.4
Metal shieldings and chemical shifts in transition metal carbonyls M(CO)6 (M = Cr, Mo, W) and in [WO4]2- TC  "Table 5.4
Metal shieldings and chemical shifts in transition metal carbonyls M(CO)6 (M = Cr, Mo, W) and in [WO4]2-" \l 8 .  The shifts are taken relative to the metal oxides [MO4]2- (numbers in ppm).  The basis sets used are tp/td  and (in brackets), tp+2d/td+f  -- see the text for details.





NMR chemical shift of the metal




Calculated metal shielding


Calculated



Compound
Non-relativistic
Relativistic

Non-relativistic
Relativistic
Experimenta

Cr(CO)6
-509  (-507)
-451  (-449)

-1,831

(-1,866)
-1,812

(-1,846)
-1,795

Mo(CO)6
1,431 (1,452)
1,704 (1,720)

-1,805 

(-1,814)
-1,804 

(-1,804)
-1,857

W(CO)6
4,900 (4,892)
5,834  (5,767)

-4,075

(-4,050)
-3,703

(-3,615)
-3,505









[WO4]2-
825

(841)
2,131

(2,152)

0  (0)
0  (0)
0

a 
[177].

5.4.3
Metal Chemical Shifts TC  "5.4.3
Metal Chemical Shifts" \l 3 
We have pointed out before that a particular goal of our implementation was to calculate the chemical shift of the heavy element proper.  Table 5.4 shows for metal carbonyls M(CO)6 (M=Cr, Mo, W) the calculated shielding and shift, taken relative to the experimentally accepted standards [177], [MO4]2-.  The tungsten tetra oxide anion is included as well.  The calculated shifts are compared to the experimental values.  A direct comparison of the absolute shieldings to experiment would be preferable.  However, this is not yet possible since no absolute shielding scales exist for these metals [189].  

Even the direct comparison of the calculated shifts to the experimental values is difficult, again due to expected large gas-to-liquid shifts% , solvation effects%% , etc.  To our knowledge, no gas phase data exists to date for these compounds.  


Given the uncertainties, we see from Table 5.4 that the metal shifts in M(CO)6 (M = Cr, Mo, W) can be described almost quantitatively by our scalar relativistic method.  The deviations between theory and experiment amount to less than 3% (tp+2d/td+f basis; less than 1% for the tp/td basis) of the experimental shift value for Cr(CO)6 , and to about 2.9% and 4.5% for the molybdenum and tungsten carbonyl complexes respectively.  Even more useful is a comparison with the known shift range for the given element.  Thus, the 95Mo/97Mo chemical shifts span a range of almost 5,500 ppm while the observed 183W shifts extend over about 6,200 ppm [177].  The aforementioned deviations in the calculated metal shifts amount than to less than 1% of the known molybdenum shift range, and to about 2.6% in the case of W(CO)6.  The relativistic corrections increase from about 1% of the shift for the chromium complex to 372 ppm, or 10% of the relativistically calculated shift for tungsten hexacarbonyl.  Thus, relativistic corrections can probably be neglected for the 3d complex.  However, they are necessary for the 4d member of the homologous series, and essential for the metal shielding in 5d complexes.  We conclude from Table 5.4 that spin-orbit splitting cannot be of prime importance for the metal shielding of these carbonyl complexes.


The discussion so far has mostly concentrated on the results for the standard tp / td basis.  Table 5.4 contains also calculations for the extended basis, tp+2d / td+f  (in brackets).  The qualitative trends that have been discussed above are true for this basis as well.  The influence of the polarization functions on the calculated shieldings and shifts is still considerable.  However, part of the error in the shieldings may drop out when relative shifts are considered, Table 5.4.  Whether this represents a general trend or is just fortuitous, cannot be decided in the moment.  Further studies of the requirements for metal basis sets are clearly necessary.  Better experimental data, preferably taken in the gas phase, and also absolute shielding scales would be desirable for this purpose.  Nevertheless, the remaining basis set errors are only of the same order of magnitude as the other limitations of the method -- in particular the single  core basis for valence MOs, see above.


Earlier in this chapter, we have derived the contributions to the shielding tensor 

 that are new and unique in the scalar relativistic formulation.  Besides, there are of course relativistic effects due to the relativistic change of the MOs and the corresponding one-electron energies.  

Table 5.5
Contributions of the different terms to the calculated metal shielding in metal oxides [MO4]2-,  M = Cr, Mo, W TC  "Table 5.5
Contributions of the different terms to the calculated metal shielding in metal oxides [MO4]2-,  M = Cr, Mo, W" \l 8   (ppm)


[CrO4]2-

[MoO4]2-

[WO4]2-


Isotropic contribution
Non-rel
Rel
Non-rel
Rel
Non-rel
Rel

Total shielding constant,   (Eqs. 3-20 and 4-15)
-2,340
-2,263
-374
-100
825
2,131

Diamagnetic shielding, d  (Eqs. 3-21 and 4-16)
1,801
1,824
3,992
4,124
8,722
9,693

Core contribtion to d  

(Eq. 4-17)
1,535
1,555
3,779
3,908
8,530
9,487

Paramagnetic shielding, p  (Eqs. 3-22a and 4-19a)
-4,132
-4,087
-4,370
-4,224
-7,898
-7,562

Occupied-occupied contribution 

  to 

p  (Eq. 4-19c)
-164
-193
-436
-328
-2,447
-3,891

Occupied-virtual contribution 

  to 

p  (Eq. 4-19d)
-4,068
-3,991
-4,075
-3,998
-6,287
-4,993

Relativistic mass-velocity contribution   (Eq. A4-3)

14

-54

674

Rel. contribution of the Darwin operator  (Eq. A4-4)

1

-3

7

Furthermore, the core density will be contracted due to relativity  [2].  The relative importance of the various contributions might be of interest.  Therefore, we have split up the non-relativistic and relativistic metal shieldings of the metal oxo anions [MO4]2-, M=Cr, Mo, W.  The results are summarized in Table 5.5 (for the tp/td basis).  


Table 5.5 contains the various contributions to the metal shielding  of Eqs. 3-20 and 4-15, respectively, calculated both with and without (scalar) relativity.  The diamagnetic shielding d of Eqs. 3-21 and 4-16, respectively, is positive and dominated for all three metals by the contributions from the (frozen) core density [17], chapter 4.  Relativity is seen to increase the diamagnetic shielding by 23 ppm, 132 ppm, and 971 ppm for chromium, molybdenum, and tungsten, respectively.  This change can easily be understood by the relativistic contraction of the s and p core orbitals [2], 1s in particular.  Consequently, the relativistic change of the diamagnetic shielding is almost entirely due to the change in the core contribution in all three cases, Table 5.5.  The diamagnetic shielding will therefore not contribute to relativistic changes of the chemical shifts since the changes of the core density are mostly independent of the chemical environment of the given nucleus.  Indirectly, this is also evident from Table 5.4.  The relativistic corrections in the absolute shieldings are comparatively large -- over 1,200 ppm for [WO4]2- -- and cancel partly when relative shifts are considered.


The paramagnetic shielding p of Eqs. 3-22a and 4-19a, respectively, is negative in all three cases, Table 5.5, and is dominated by the occupied-virtual contributions 

, Eq. 4-19d.  It is this term that contains direct contributions from the mass-velocity and Darwin operators.  These relativistic contributions are listed in Table 5.5 as well.  We note that these terms are small as compared to the total paramagnetic shielding.  However, they are certainly not negligible, Table 5.5.  Nevertheless, the largest part of the relativistic change in the shifts is due to changes in the field-free density and orbital energies.
5.4.4
Spin-Orbit Splitting TC  "5.4.4
Spin-Orbit Splitting" \l 3 
So far, we concluded from the rather good results that spin-orbit splitting was likely not as important as the scalar relativistic corrections to the shielding.  The picture is completely different for the hydrogen shielding in the binary hydrogen halogenides, HX (X = F, Cl, Br, I).  The "heavy atom shift" [2,137], i.e., the increase in 1H shielding due to a heavier neighboring nucleus, is well known experimentally, Table 5.6.  The same systems have also been studied by Pyykkö et al. [178] and by Kutzelnigg et al. [137].  Pyykkö et al. [178] use a relativistic semi-empirical scheme.  They were able to reproduce the observed trends qualitatively, and they attribute the heavy atom shift to spin-orbit splitting.  Kutzelnigg et al. [137] used their non-relativistic ab initio IGLO-program [134-136].  On this basis, they come to the same conclusion in attributing most of the heavy atom shift to relativity, mainly because their non-relativistic scheme proved unable to reproduce the observed trends for bromine and iodine, Table 5.6.  

Table 5.6
1H absolute shielding in HX,  X = F, Cl, Br, I TC  "Table 5.6
1H absolute shielding in HX,  X = F, Cl, Br, I" \l 8 

Absolute hydrogen shielding  (ppm)





DFT-GIAOa




X =
Non-relativistic
Scalar relativistic
IGLO-HFb
Experimentc

F
30.3
30.3
28.1
28.8

Cl
31.7
31.8
30.8
31.4

Br
32.0
32.1
30.4
35.3

I
32.4
32.6
31.4
44.2

aThis work.

bKutzelnigg et al. [137].

cCited from [137].


We found it interesting to apply our newly developed scalar relativistic method to the same series of systems.  The results are summarized in Table 5.6.  We note from this table that the scalar relativistic corrections have almost no influence on the 1H shielding constants in the halogenides.  Both the non-relativistic and scalar relativistic DFT-GIAO results are comparable to the ab initio IGLO values, Table 5.6; remaining differences between the theoretical methods can be attributed to differences in the basis sets and geometries.  Thus, the scalar relativistic DFT method fails completely in reproducing the observed trend in the hydrogen shielding.  Indirectly, we conclude that spin-orbit coupling must be the reason for the large 1H shielding values in HBr and HI.  This would also confirm the earlier results of Pyykkö et al. [178].


Very recently, the same systems were studied by Malkin et al. [72] as well as Nakatsuji et al. [191,192].  To estimate the importance of the spin-orbit splitting, Malkin et al. add the one-electron spin-orbit terms as a perturbation to the systems that are treated without relativity otherwise.  With this procedure, they are able to reproduce the heavy atom shift in the hydrogen NMR qualitatively.  


Spin-orbit effects on the shielding as well as on other properties will probably be important for molecules that possess degenerate or quasi-degenerate orbitals due to symmetry [26,30]; the linear hydride molecules that were discussed before are good examples.  In other cases, the degeneracy of the p, d, or f type orbitals is removed, and the spin-orbit splitting is quenched [26,30].  This was apparently the case for the metal complexes that we discussed earlier; the degeneracy of the metal d orbitals is removed as a consequence of a strong interaction with the ligands.  In this way, the success of the scalar relativistic scheme of this paper is understandable.  Effects of the relativistic spin-orbit splitting in molecules have been discussed, e.g., by Snijders et al. [26,30].

5.5
Relativistic Shielding Calculations.  Conclusion TC  "5.5
Relativistic Shielding Calculations.  Conclusion" \l 2 
We have given in the present chapter a complete scalar relativistic formulation of the NMR shielding tensor.  The method employs the quasi-relativistic scheme of Snijders et al. [26,29-33].  We have also presented an implementation of the method, based on our DFT-GIAO scheme of chapters 3 and 4 of this thesis [16,17,73].  


The new method has been applied successfully to ligand shieldings in metal oxides and metal oxide anions, [MO4]2-, as well as to the metal shift proper in hexacarbonyl complexes, M(CO)6.  This is -- to our knowledge -- the first time that transition metal chemical shifts have been calculated from first principles with the inclusion of relativity.  Relativity is essential to reproduce the experimentally observed chemical shifts of 4d and in particular 5d complexes.  This applies to the heavy element proper, but also to the neighboring ligands.


We have discussed in detail limitations of the method.  These limitations are mostly connected with fundamental shortcomings of the Pauli-Hamiltonian [58,59,61].  It would therefore be more satisfying to use other approximate relativistic methods that are applicable even near the nuclei.  Such a method has indeed been proposed by van Lenthe et al. [59,62,193] -- but this scheme is not yet at the point of chemical applicability.  Nevertheless, none of the restrictions was found to prohibit the application of the quasi-relativistic method to shielding calculations.  


Another readily available (and widely used) two-component relativistic method is the use of relativistic pseudopotentials.  This method and the quasi-relativistic scheme give for many properties, like geometries, results of comparable quality [2].  However, "tight" properties like the NMR shielding tensor of the heavy element are not very well described by the usual pseudopotentials, and the quasi-relativistic method will be superior in these cases.  We have compared our calculated 17O shieldings in transition metal tetra oxides to the earlier pseudopotential results of Kaupp et al. [161].


The present implementation deals with scalar relativistic effects only, giving good results for many systems.  These are generally systems where the spin-orbit contributions are quenched due to strong interactions in the molecule.  However, there are certainly cases where the dominant relativistic contribution would be the spin-orbit splitting.  As an example, we have shown that the scalar relativistic method is unable to reproduce the observed heavy-atom shift in the hydrogen NMR of HBr and HI.  Thus, we plan to extend our method by incorporating the spin-orbit splitting as well.  

CHAPTER SIX TC  "CHAPTER SIX" \l 1 
THE CALCULATION OF THE G-TENSOR OF ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY.  AN IMPLEMENTATION BASED ON DENSITY FUNCTIONAL THEORY TC  "THE CALCULATION OF THE G-TENSOR OF ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY.  AN IMPLEMENTATION BASED ON DENSITY FUNCTIONAL THEORY" \l 1 
6.1
Introduction TC  "6.1
Introduction" \l 2 
Magnetic resonance spectroscopy comprises some of the most powerful and versatile analytic tools available to date.  Nuclear magnetic resonance (NMR) spectroscopy [20,21] is mostly useful for closed shell systems with vanishing electron spin magnetic moment, while electron paramagnetic resonance (EPR) spectroscopy [7,27,194,195] is generally being applied to radicals and transition metal complexes.  


The g-tensor is an important part of any EPR spectrum.  It can provide information about the radical species present.  Further, conclusions regarding conformation, electronic structure, and other properties are often sought [7,27,194-199].  It would thus be desirable to determine the g-tensor of a given molecule from electronic structure calculations.  This would allow us to enhance our understanding of electronic factors governing the observed spectra.  Further, such calculations could be used to identify unstable radicals from their spectra and accompanying calculations of possible candidates [200].  Various other applications are easily conceivable.  


Semi-empirical calculations of the g-tensor have been around for a long time (they are summarized in textbooks like, e.g., chapter 15 in the book by A. Abragam and B. Bleaney [198]).  G. Lushington has reviewed them in chapter 1 of his Ph.D. thesis [12].  Articles on ab initio calculations exist in the literature as well.  However, these Hartree-Fock based calculations are comparatively rare and most of them are at least 15 years old.  Consequently, they are restricted by very small basis sets.  None of them accounts for all of the relevant perturbation operators.  These calculations [201-206] have been reviewed by Lushington as well [12].  


The mentioned Ph.D. thesis by Lushington [12], along with related papers [207-210], affords the first modern ab initio implementation of the g-tensor.  Lushington's work comprises the complete treatment of all relevant terms at the Hartree-Fock level of theory [12,207-210] and a correlated multi-reference configuration interaction (CI) extension [12,210].  In this chapter, I will compare our results to this pioneering and promising work.


To the best of our knowledge, there is no first principle DFT based method available for the calculation of the g-tensor.  Neither is there any formulation available that is based on the use of "gauge including atomic orbitals" (GIAO) or other distributed-origin schemes.  Given the importance of this spectroscopic property and the success of DFT for other magnetic properties [16-18,130-132,138,139], it seems timely to fill the gap.  The calculation of the g-tensor based on density functional theory (DFT) is the subject of the present chapter [19].  Recently, there has been a strong interest in the calculation of the NMR shielding tensor based on DFT [16-18,130-132,138,139], cf. chapters 3 to 5 of this thesis.  Given the close theoretical connection between the EPR g-tensor and the NMR shielding tensor (see below) it is possible to extend our existing NMR program [16-18], chapters 3 to 5, to the EPR case.  


Our DFT-NMR program [16] is based on the use of GIAOs.  Other calculations of the g-tensor are based on the use of a common gauge origin for the whole system [12].  They may thus be prone to the so-called gauge problem, i.e., the dependence of the results on the arbitrary coordinate origin [21,28,69,70].  The gauge problem is well known for the NMR shielding.  Lushington discussed the gauge-dependence of his results in detail [12].  


We have extended the DFT-GIAO-NMR scheme to include the frozen core approximation [17], chapter 4, as well as scalar relativity [18], chapter 5.  Further, a detailed analysis in terms of the molecular orbitals is available [149,150]; a simple example of this analysis has been employed in section 3.4.4 of this thesis (cf. Figure 3.1).  All of these features are readily available for the EPR g-tensor as well.  This constitutes a major advantage of the formulation that we are presenting here.  

6.2
Theory TC  "6.2
Theory" \l 2 
6.2.1
Perturbation Operators TC  "6.2.1
Perturbation Operators" \l 3 
The g-tensor of EPR spectroscopy can be considered as a second order property [11,66], cf. section 1.3 and Eqs. 1-28 and 1-29.  The perturbation parameters are in this case one Cartesian component of the constant external magnetic field, Bs, and the net electronic spin component along a given coordinate axis, St.  The st tensor component of 

 is then given by [7]




   .
(6-1)

Here, E is the total energy of the many-electron system, cf. Eqs. 1-2 and 1-19, respectively.  Further, 

 is the Bohr magneton; 

 equals /2 in atomic units (Eq. 1-1).  All the derivations in this chapter will again be based on atomic units, chapter 1.  Eq. 6-1 for the EPR g-tensor is very similar in its structure to the definition of the NMR shielding tensor, 

, Eq. 3-1 [16].  The electronic spin (Eq. 6-1) is in this case replaced by the nuclear spin at an active nucleus.  We will make extensive use of this analogy shortly.  


It follows from Eq. 6-1 and from the interchange theorem of double perturbation theory [11,66,74-76], section 1.3, that we have to calculate the electronic wave function up to first order in the magnetic field alone, cf. Eqs. 1-29 and 3-1b, respectively.  This task is the same for the case of the NMR shielding [16-18], chapters 3 to 5.  Alternatively, it would be possible to calculate the electronic wavefunction up to first order in the electronic spin -- but in this case, the analogy with our formulation of the NMR shielding would be lost.  It is further clear from Eq. 6-1 that only such perturbation operators are needed that are either linear in the electronic spin operator, yielding paramagnetic contributions, or bilinear in both, the external magnetic field and the spin operator.  The latter operators are responsible for diamagnetic contributions.  All of these perturbation operators will be given next.  


The relevant perturbation Hamiltonian can be obtained from relativistic many-body quantum mechanics.  Usually, the non-relativistic limit is taken, resulting in various perturbation operators.  These operators are listed in textbooks [7,10,11] and in review articles (e.g., [72]).  Possibly the best, most comprehensive and most accurate account is given in Harriman's book [7].  


The operators that are relevant for the EPR g-tensor include [7,10,11]: the electron spin Zeeman operator




,  
(6-2)

the kinetic energy correction to the electron spin Zeeman operator





(6-3)

the (electron-nuclear) spin-orbit operator




,
(6-4)

the electron-electron spin-orbit operator




, 
(6-5)

the spin-other-orbit operator




,
(6-6)

and finally the diamagnetic correction terms to 

, 

, and 

, respectively,










,
(6-7)










,
(6-8)

and










.
(6-9)

The last three terms are titled 'gauge correction terms' in Harriman's book [7] and other sources [12]; we chose the name 'diamagnetic terms' because of their analogy with the operators of the diamagnetic shielding of chapter 3.  In Eqs. 6-2 to 6-9, we use the following notation: 

, 

, and 

 are the momentum, spin, and position operators for electron j,




.
(6-10)

Further, ZA is the charge of nucleus A.  The total number of nuclei is NNUC while the total number of electrons is again n.  The double summations over j and k in Eqs. 6-5, 6-6, 6-8, and 6-9 exclude the case where j = k.  Finally, ge is the electronic Zeeman g-factor, and g' is the electronic spin-orbit g-factor [7].  They are given by [7,27]


ge = 2.0023192778
(6-11a)

and


g' = 2.0046385556,
(6-11b)

or [7]




,
(6-11c)

where




.
(6-11d)

Harriman points out that, although ge and g' are certainly appropriate in hZ and hSO-e, respectively, "the treatment of radiative corrections [in the derivation of these terms] has been incomplete so great significance should not be attached to the distinction between ge, g', and 2 in higher orders" (cited from [7], page 378).  Note that the spin-other-orbit operators, Eqs. 6-6 and 6-9, contain neither ge nor g'.  In the literature, there are also other values for ge that differ from the one cited in Eq. 6-11a [6,7,10,12,27].  The differences show up only in the last few digits, and have no influence on the numbers that will be cited in this chapter.  


The diamagnetic operators in Eqs. 6-7 to 6-9 contain both the electronic spin operator and the magnetic field.  According to Eq. 6-1, they have to be used with the zero order, unperturbed wave function.  Note that the diamagnetic operators follow from their field free counterparts 

, 

, and 

, respectively, by means of the so-called minimal coupling [10,11,77], cf. section 1.3 and Eq. 1-30. Recall in this connection that minimal coupling is a general procedure to introduce the magnetic field into field free expressions (see also chapters 3 and 5).  


The nuclear spin-orbit operator, 

 of Eq. 6-4, and its diamagnetic counterpart, 

 of Eq. 6-7, can be reformulated in terms of the nuclear potential, VN, of the NNUC nuclei in the system




  .
(6-12)

The nuclear potential VN of Eq. 6-12 has been used in earlier chapters, cf., e.g., sections 1.1 and 1.2.  We obtain for 

 and 





 , 
(6-13)

and




.
(6-14)

The electronic spin-orbit operator, 

 of Eq. 6-5, and its diamagnetic counterpart, 

 of Eq. 6-8, can be reformulated in a similar way, using the electrostatic potential of the other electrons in the system instead of the nuclear potential VN of Eq. 6-12.  

6.2.2
G-Shifts TC  "6.2.2
G-Shifts" \l 3 
We define the g-shift g as the deviation of the molecular g-value from the free electron value ge  [12]




.
(6-15)

Here, 

 is the unit tensor.  Note that both 

 and 

 are second rank tensors.  The isotropic g-shift, g , is the trace of 

.  There is also an alternative definition used in the literature, e.g., in Atkins' textbook [6]:




.
(6-16)

This latter definition has the advantage that 

 has the same sign convention as the NMR shielding, 

, chapter 3.  However, the former definition seems to be more common, and we employ exclusively g throughout the present chapter.  


The Zeeman operator, Eq. 6-2, results in the isotropic free electron g-value ge.  Thus, it doesn't contribute to the g-shift g, according to Eq. 6-15.  The remaining perturbations (Eqs. 6-3 to 6-9) contribute, however, to g.  We shall discuss these contributions in more detail now.

6.2.3
The G-Tensor Within Density Functional Theory TC  "6.2.3
The G-Tensor Within Density Functional Theory" \l 3 
We will evaluate the g-tensor, Eqs. 6-1 and 6-15, within the framework of DFT [35-40] that has been established in chapter 1of the thesis. 


We have seen in Eqs. 6-13 and 6-14 that the spin-orbit terms 

 and 

, respectively, can be written as the interaction of the electronic spin with the potential in which the electrons are moving, the movement being represented by the momentum operator, 

.  Further, in DFT, the electrons are thought to move in an effective potential that is due to the other electrons and the nuclei, section 1.1.  It is thus justified to replace the nuclear potential VN of Eq. 6-12 by an effective potential.  The form of this effective potential will be specified shortly.  It would be the effective potential that is experienced by the electrons; we would substitute VN in the spin-orbit operators 

 and 

:  





(6-17)

and




.
(6-18)

In this way, we incorporate the interaction of the electronic spin with both the external, nuclear potential and the potential due to the other electrons.  Thus, we have accounted for both, the nuclear and electronic spin-orbit terms by including an effective potential Veff into Eqs. 6-17 and 6-18.  As pointed out above, Veff should contain the nuclear potential, VN, Eq. 6-12, and the potential due to the other electrons in the system.  We can use the Coulomb potential VH of Eq. 1-8c for the electronic part.  However, this introduces an error, since VH is the average potential due to the total electronic density, i.e., due to all electrons in the system.  We will remove this error by including an approximate exchange potential into the effective potential.  This is possible since the exchange part of the XC potential corrects for the mentioned error [37].  The effective potential Veff is thus given by%%% 




.
(6-19)

Here, we have used the simplest possible functional form of an exchange potential, the X potential [37,43].  


In summary, we have accurately accounted for the operators 

 and 

, Eqs. 6-13 and 6-14, with the formulation that is expressed in Eqs. 6-17 to 6-19.  We have further included the electronic spin-orbit contributions of Eqs. 6-5 and 6-8 in an approximate way.  However, the spin-other-orbit contributions, Eqs. 6-6 and 6-9, respectively, have been neglected.  This deserves some further discussion.  We assume it to be a good approximation because contributions from the spin-other-orbit terms are probably small.  It can be shown that these contributions vanish exactly for a model system containing one unpaired electron together with a closed shell system of other electrons.  In real systems with one unpaired electron, there will be some spin polarization of the lower shells.  This results in small contributions to the g-tensor from the spin-other-orbit operators.  The neglect of these contributions seems to be justified.  The only case where the spin-other-orbit operators might be significant is in systems with more than one unpaired electron.  In physical terms, we consider the reference electron as moving in a static electron cloud that is due to the other electrons in the molecule.  We will briefly come back to the discussion of the spin-other-orbit terms later in this chapter in section 6.5.

6.2.4
Evaluation of the g-Tensor TC  "6.2.4
Evaluation of the g-Tensor" \l 3 
In the previous section, we have derived a form of the spin-orbit operators that can be evaluated based on double perturbation theory [66], section 1.3, and DFT.  This requires to treat the expression in Eq. 6-1 further.  This task is, however, not entirely trivial since both, the magnetic field, 

, and the electronic spin, 

 of Eq. 6-10 are quantum-mechanical operators.  The necessary procedure is called "spin-field reduction" [11,12].  Thus, an expectation value of some one-electron operator 

 that is proportional to the z-component Sz  of the spin operator can be written as 








.
(6-20)

In Eq. 6-20, we have introduced the density matrices of the  and  electrons,




,


,
(6-21)

where n and n are the numbers of electrons with  and  spins, respectively,




.
(6-22)


With this formalism, we get from Eq. 6-1 for the st component of the g-shift g:








  .
(6-23)

This expression was again based on the interchange theorem of double perturbation theory [66,74-76], cf. Eq. 1-30.  

 and 

 are the ground state electronic density matrices of Eq. 6-21 under the influence of the external magnetic field, section 3.2.  The factor 

 of Eq. 6-1 is absorbed by the operators in Eq. 6-23.  These operators are 

 and 

;  they follow from the previous section.  We find for 

 (cf. Eq. 6-17)





(6-24a)




  .
(6-24b)

Similarly, we have for the diamagnetic operator 

 :




  ,
(6-25a)

where the factor 

 has been absorbed again by the operator as mentioned above.  This operator contains terms that are bilinear in the magnetic field and the spin magnetic moment.  Such operators include the Zeeman operator proper, Eq. 6-2, the kinetic energy correction to the Zeeman operator, Eq. 6-3, and the diamagnetic spin-orbit operators.  We will use the latter in the form that has been derived in Eq. 6-18.  The diamagnetic spin-other-orbit operator, Eq. 6-9, is also of this form.  We will neglect it, however -- according to the discussion in the previous section.  The Zeeman operator of Eq. 6-2 will not contribute to 

, based on the definition of g in Eq. 6-15.  We are therefore left with the following expression for 

 :




,
(6-25b)

where





(6-25c)

and




.
(6-25d)

The expressions in Eqs. 6-23 to 6-25 can be evaluated with the apparatus that had been developed for the NMR shielding tensor, cf. chapters 3 to 5 [16-18].  This is, in more detail, the subject of the next section.

6.3
Implementation of the EPR g-Tensor into the DFT-GIAO Program TC  "6.3
Implementation of the EPR g-Tensor into the DFT-GIAO Program" \l 2 
The expressions in Eqs. 6-23 to 6-25 will be evaluated based on the DFT-GIAO program of chapters 3 to 5.  We are able to do that since g relies on the first order magnetic density matrix, Eq. 6-23, as does the NMR shielding tensor (sections 3.2.4, 4.2.3, and 5.2 [16-18,73]).  The analogy between the two properties is, however, not exhausted with the first order magnetic density matrix.  This becomes apparent by noting the similarity between the para- and diamagnetic operators of the NMR case, Eqs. 3-2 and 3-3 and the respective EPR operators, 

 and 

 of Eqs. 6-24b and 6-25d.  We had in the NMR case





(6-26)

(in Eq. 3-2) and





(6-27)

(in Eq. 3-3).  Thus, we obtain the EPR operators from 

 and 

 by the simple substitution




  . 
(6-28)

Using this analogy, we can readily calculate the EPR g-tensor using the existing program for the NMR shielding.  The only extra contribution to g is due to the Zeeman kinetic energy correction, Eq. 6-25c.  This operator is isotropic.  Its contribution to g is readily calculated from the ground state, zero-order density matrices (Eqs. 1-4 and 6-21, respectively) as




.
(6-29)


Details of the NMR-GIAO implementation into the Amsterdam Density Functional program package ADF have been given above in sections 3.3, 4.3, and 5.3.  In this chapter, we use basis sets that are of triple  quality in the valence region.  These basis sets are augmented by two sets of polarization functions per atomic center.  A detailed basis set study would be necessary, but is beyond the scope of the present chapter.  

6.4
Results and Discussion TC  "6.4
Results and Discussion" \l 2 
In this section, we will apply the formalism that has been developed thus far to actual g-tensor calculations.  We will express the calculated and experimental numbers using the g-shift g of Eq. 6-15.  Our results will be compared to experiment [12,27,195,197,212-215] and to other, ab initio based calculations [12,201-210].  We have transferred all experimental numbers to g-shifts according to Eq. 6-15.  They have been rounded to the nearest decimal according to the number of digits in the experimental g-tensor.  

6.4.1
Geometries TC  "6.4.1
Geometries" \l 3 
EPR is concerned with systems containing unpaired electrons.  Most of these systems are radicals that are usually not stable.  Experimental geometries are therefore rare [12,144,145].  For this reason, we have based all the calculations in this chapter on optimized geometries.  We used the ADF program for the optimization [78-80,82], in part with the relativistic extension that was the subject of chapter 2 of this thesis [15].  The results of these optimizations are summarized in appendix 5, Tables A5.1 to A5.5 and Figure A5.1.  


The EPR calculations were generally based on the relativistic geometry for such molecules where both non-relativistic and relativistic results are given in these tables.  We note in passing the relativistic bond contraction, chapter 2 [2,13-15,31,63].  For instance, the relativistic contraction of the lC-X bond length in CF3X-, X = Cl, Br, I, grows from an almost negligible 0.003Å for X=Cl to 0.049Å (about 2% of the bond length) for the iodine compound, Table A5.4. 


The following axis system was used: The z axis was always chosen to align with the axis of highest symmetry.  Planar molecules are placed in the yz plane.  

6.4.2
Comparison to Other Calculations TC  "6.4.2
Comparison to Other Calculations" \l 3 
We shall next consider some g-shifts that were calculated with the formalism of this chapter.  We have pointed out in the introduction, section 6.1, that ab initio calculations are surprisingly scarce.  These calculations have been reviewed by Lushington [12]; Lushington et al. [12,207-210] added their own significant contribution.  We compare in Table 6.1 our DFT-GIAO results to the results of Lushington et al. [12,207-210] as well as to other ab initio calculations [201-206] and to experiment [12,27,195,212-215].  Lushington et al. [12,207-210] present results at various levels of sophistication.  We included in Table 6.1 their "complete-to-second order" HF results and the correlated CI calculations.  We did not include the simpler calculations where only one-electron terms, i.e., the operators 

 and 

 of Eqs. 6-4 and 6-7, respectively, have been accounted for.  


It follows from Table 6.1 that our DFT-GIAO results are of better quality than any of the older HF calculations [201-206].  Lushington [12] has discussed these calculations.  He points out that none of them includes all the relevant operators.  Further, most of these calculations are hampered by the use of very small basis sets.  It is well known that other magnetic properties require extended basis sets, even more so when no gauge-invariant scheme like GIAO or IGLO is used [28,69,70,163].  The only cases where other calculations achieve better agreement with experiment then the DFT-GIAO method are NO2 [205] and possibly C3H5 [203], Table 6.1.  However, Lushington [12] points out that the excellent agreement between the calculations of Moores and McWeeny (for NO2) and experiment is due to a cancellation of errors.  


Let us now discuss our results in comparison to the complete-to-second order HF and CI calculations of Lushington et al. [12,207-210].  We can make this comparison for H2O+, CO+, NO2, and MgF, Table 6.1.  A larger range of molecules would be desirable for a more comprehensive discussion.  Gas phase data is available for the first three molecules.  The DFT-GIAO calculations are in better agreement with experiment then the HF calculations for these molecules; the best results are obtained by the expensive multi-reference CI calculations, Table 6.1.  Similar trends have been observed in NMR shielding calculations [146].  All theoretical methods seem to have problems predicting the sign of very small contributions.  

Table 6.1
Calculated DFT-GIAO g-shifts in comparison to ab initio and experimental results  TC  "Table 6.1
Calculated DFT-GIAO g-shifts in comparison to ab initio and experimental results " \l 8 


G-shifts g   (values in ppm)









Calculated




Experiment c


Mole-cule
Compo-nent
  DFT-GIAO a
HF
HF b
CI b

Gas phase
Other

H2+
g
85.4
   2.25 d

-21.06 e







g
87.8
-19.77 e






H2O+
gxx 
418

-324
-292

200



gyy 
14139

16361
16019

18800



gzz 
5441

4402
4217

4800


CO+
g
-2944

-1175
-2674

  -2400 
  -2800 f  

  -2600 f  

  -3200 g


g
47

-176
-178


  -1200 f  

  -1800 f  

  -1400 g 

CO2-
gxx 
1981
1800 h 




     880 i 

     600


gyy 
-6751
-3900




  -5070 i
  -4900


gzz 
-344
100




    -710 i  

  -1100

Table 6.1
Continued (1)



G-shifts g   (values in ppm)









Calculated




Experiment c


Mole-cule
Compo-nent
  DFT-GIAO a
HF
HF b
CI b

Gas phase
Other

O3-
gxx 
150
       00 k




   1300


gyy 
20085
28940




 16400


gzz 
11247
11540




 10000

HCO
gxx 
3153
1800 h 




   1500


gyy 
134
100




     000


gzz 
-9064
-5500




  -7500

H2CO+
gxx 
6776
6500 h 




   4600


gyy 
-675
400




   -800


gzz 
621
5600




    200

C3H5
gxx 
162
000 h 




    000 l


gyy 
1036
1000




    400


gzz 
924
800




    800

NO22-
gxx 
90
       00 k




     600 c
   1500 i 


gyy 
9644
10010




   5500 c
   7600 i 


gzz 
4881
  6970




   4800 c
   4700 i 

Table 6.1
Continued (2)


G-shifts g   (values in ppm)









Calculated




Experiment c


Mole-cule
Compo-nent
  DFT-GIAO a
HF
HF b
CI b

Gas phase
Other

NO2
gxx 
4796
  3460 m 

  4700 h 
2257
3806

 3900
  3800 c
  3200 i
  3300 g 


gyy 
-13079
-10274 m 

-11900 h 
-6597
-10322

-11300 
-11700 c
  -9100 i
-10300 g 


gzz 
-122
   -218 m 

    400 h 
-474
-235

   -300
     500 c
  -2700 i
     700 g 

NF2
gxx 
-99
 00 k




    -100


gyy 
8258
10180




   6200


gzz 
5316
  4000




   2800

NF3+
g
8855
4000 h 




   7000


g
298
400




   1000

CN
g
-2135
-789 m




  -2000


g
  224







MgF
g
-2011

-658
-1092


  -1300


g
107

-54
-59


    -300

a 
This work.

b 
G. Lushington et al. [12,207,208,210].

Table 6.1
Continued (3)
c 
Cited from G. Lushington [12], unless otherwise stated.  All experimental values have been rounded to the nearest decimal.

d 
[201].

e 
[202].

f 
Experiment cited from [213];  solid neon matrix.

g 
Neon matrix isolation experiment, cited from G. Lushington [12]. 

h 
[203].

i 
Experiment cited from [195].  The solid matrices are CaCO3 (CO2-), NaNO3 (NO2), and KCl (NO22-).

k 
[204].

l 
Argon matrix.  The experimental principal axis orientation is not entirely clear from the reference [215].

m 
[205].

Thus, we calculate the correct sign for the small xx principal component gxx of H2O+ while the CI calculations have the wrong sign.  The situation is just reversed for the parallel g-shift components g of CO+ and MgF.  No gas phase data exists for these parallel components, and none of the theoretical methods reproduces the experimental order of magnitude for g of CO+.  The parallel component of a diatomic molecule like CO+ and MgF will have no contributions from the paramagnetic operators in our formulation, due to symmetry.  This component is entirely determined by the diamagnetic contributions.  These contributions should be positive since they contain essentially only an integral over the density of the singly occupied molecular orbital (SOMO) multiplied with a positive function (Eq. 6-18).  We speculate that large negative experimental values for the parallel component of linear molecules might be due to matrix effects.  


Correlation effects, as evident from the difference between HF and MRCI calculations, can be considerable for g-shifts and their tensor components, Table 6.1.  They are comparatively small in systems with single bonds (like H2O+) that usually have large HOMO-LUMO gaps.  This agrees with the situation for the NMR shielding (section 3.4.4), again demonstrating the close connection between the two properties [16].  In other molecules like CO+, NO2, or MgF, there is a considerable difference between the results that were calculated at the HF level and at the CI level, respectively.  Correlation is necessary for a proper description of these molecules.  The influence of electron correlation is expected to be most prominent in the paramagnetic contributions that contain the first order magnetic wavefunction, section 6.2.  This is indeed the case, as is evident from the parallel component of the g-shift in the linear molecules CO+ and MgF, Table 6.1.  As has been pointed out before, the parallel component in linear molecules does not contain the first order magnetic orbitals.  It is exclusively diamagnetic, containing the unperturbed, zero-order density matrix.  The remaining changes in these molecules, 2 ppm for CO+, and -5 ppm for MgF, Table 6.1, can be attributed to slight changes in the electron density of the SOMO that are due to the introduction of correlation.  

6.4.3
Diatomic Radicals TC  "6.4.3
Diatomic Radicals" \l 3 
In Table 6.2, we have collected results for some diatomic radicals.  Two of them, CO+ and MgF, have been discussed in the previous section.


We see from Table 6.2 that the DFT-GIAO method is unable to reproduce the parallel component of the g-shift, g, in cases where this component is negative.  We have discussed the point above, speculating that these negative values might be due to matrix effects.  


The range of experimental numbers can be considerable, cf., e.g., the data for CO+ or AlO, Table 6.2.  Nevertheless, almost all experimental trends are reproduced by the DFT-GIAO method.  Gas phase experiments are available for the orthogonal components of CO+, CN, and MgF.  We obtain excellent agreement for CO+ and CN, and reasonable agreement for MgF.  


The worst case of the diatomic molecules in Table 6.2 is the AlO radical.  We miss in this case the experimental trend completely -- even though the experimental numbers differ considerably, depending on the matrix.  The reason for this apparent failure of the current theoretical method is not entirely clear at the moment; we will come back to this point later on.  


The two noble gas fluorides KrF and XeF have been treated with the scalar relativistic procedure that had been developed for shielding calculations [18], chapter 5.  We see from Table 6.2 that relativistic effects are unimportant for the diamagnetic parallel component of the g-shift.  The change in this component would mostly reflect changes in the electronic density of the SOMO; these effects are expected to be not very big [2,31].  Larger relativistic effects are observed in the paramagnetic orthogonal component, in particular for XeF.  

Table 6.2
Calculated and experimental g-shifts of diatomic molecules TC  "Table 6.2
Calculated and experimental g-shifts of diatomic molecules" \l 8   (numbers in ppm)


g



g


Molecule
Calculated
Experiment


Calculated
Experiment


CO+
47
-1200 a
-1800 a
-1400 b,c 


-2944
-2800 a
-2600 a
 -3200 b,c
  -2400 c,d 


CN
224
-800 e 


-2135
-2000 e


AlO
232
-800 e 

-900 e 

-3000 e 


153
-1900 e 

-2600 e
-8600 e


BO
120
-1100 e


-2107
-800 e


BS
134
-700 e 

-800 e 


-9756
-8100 e 

-7900 e 


MgF
107
-300 b,c 


-2011
-1300 b,c 


KrF f
535  (537)
-2000 g 


61447 (62732)
66000 g 


XeF f
528  (535)
-28000 g 


152386 (158963)
124000 g 


a 
Experiment cited from [213];  solid neon matrix.

b 
Neon matrix isolation experiment.

c 
Cited from [12].

d 
Gas phase experiment. 

e 
Cited from [195].  The different values correspond to different matrices (in this order: CN: argon matrix;  AlO: neon, argon, krypton matrix;  BO: neon matrix; BS: neon, argon matrix).

Table 6.2
Continued
f 
Calculation based on non-relativistic and (in brackets) relativistic wavefunction.

g 
Radicals embedded in KrF4 and XeF4 crystals, respectively (cited from [212]).

6.4.4
G-Shifts of AB3, AB2 and Other Radicals  TC  "6.4.4
G-Shifts of AB3, AB2 and Other Radicals " \l 3 
Calculated and experimental g-shifts for several AB3 radicals have been collected in Table 6.3.  These molecules possess a threefold symmetry axis.  The principal tensor of the g-shift components corresponds to coordinate axes that are parallel (g) and orthogonal (g) to this symmetry axis.  One of these molecules, NF3+, has already been discussed above, Table 6.1.  


The experimental numbers were generally obtained with the radical embedded in some host crystal.  This makes the comparison of calculated and experimental numbers difficult since the calculations refer to the zero-pressure and zero-temperature limit of a gas phase experiment.  Experimental values can, on the other hand, vary considerably with the host crystal.  An example of this has been given in Table 6.3 for the isotropic g-shift of CH3; another example is given in Table 6.4 for NO32-.  We see from Table 6.4 that the experimental range is enormous, making the comparison with the calculated results very difficult if not impossible.  The calculated numbers exhibit at least the right trend with the orthogonal g-shift being much larger then the parallel component.  

Table 6.3
Calculated and experimental g-shifts of AB3 molecules TC  "Table 6.3
Calculated and experimental g-shifts of AB3 molecules" \l 8  (numbers in ppm)

isotropic g



g



g


Molecule
Calculated
Experiment

Calculated
Experiment


Calculated
Experiment


CO3- 
9678
8900a

4045
4300a


12494
11200a,b

NO3 
8705
10500a

743
4300a


12685
13550a,b

NO32- 
3821
2000a,c

49
-800a,c


5706
3400a,c

NH3+
1757
1200d
900e

292
--


2490
--

NF3+ 
6003
5000f

298
1000f


8855
7000f

PO32- 
-309
-2000g
-2000a

44
-3000g  

-2900a


-486
-1000g  

-1550a,b

SO3- 
2225
 1300g

885
--


2895
--

ClO3 
5321
6000a
8700g

2252
5000a  

4300g


6855
6000a  

10900g

AsO32- 
-4460
3000a

-272
2000a


-6554
3000a

CH3 
727
-300 to 340h

116
--


1007
--

SiH3 
1805
4000i

133
1000i


2641
5000i

GeH3 
13014
10000i

288
1000i


19377
15000i

SnH3 
28860k
15000i

669k
1000i


42985k
23000i

a 
Cited from [212].  Solid matrices:  KHCO3 for CO3-;  urea nitrate for NO3;  Na2HPO3.5H2O for PO32-;  NH4Cl4 for ClO3;  Na2HAsO4.7H2O for AsO32-.  

b 
Average of the two orthogonal principal components (measured as 16100 and 6300 ppm for CO3-; 18000 and 9100 for NO3; -1200 and -1900 for PO32-).

c 
See Table 6.4 for other experimental numbers [214].  

Table 6.3
Continued
d 
Cited from [195].  

e 
Cited from [213].  

f 
Cited from [12].

g 
Cited from [27].  Solid matrices:  Na2HPO3.5H2O for PO32-;  K2CH2(SO3)2 for SO3-;  KClO4 for ClO3.  

h 
The following isotropic experimental g-shifts were found at 4.2K [195]:  -290 ppm (Ar matrix), -300 ppm (Xe matrix), 340 ppm (H2 matrix), -290 ppm (N2 matrix), 100 ppm (CH4 matrix).  The anisotropy of the g-shift is too small to be measured.  

i 
Derived values for static radicals, the radicals are thought to undergo restricted rotation -- even at 4.2K  [195].  

k 
Calculated with a scalar relativistic wavefunction.  


Given this uncertainty in the comparison of theory and experiment, we note from Table 6.3 that the agreement between theory and experiment is reasonable to good in most cases.  Experimental trends within related compounds are mostly reproduced (e.g., in the series PO32-, SO3-, ClO3).  One of these trends is the increase in the isotropic g-shift and its tensor components when going down within a column of the periodic table of elements; the example here is the series of compounds EH3, E = C, Si, Ge, Sn.  The trend is reproduced by the calculations.  The calculated g-shifts of GeH3 and in particular SnH3 are, however, too big.  The same is the case for other heavy element compounds: the calculated g-shift of AsO32- does not match the experimental results.  We will come back to this point shortly.  

Table 6.4
Experimental g-shifts of the NO32- radical in different host crystals  TC  "Table 6.4
Experimental g-shifts of the NO32- radical in different host crystals " \l 8 


Principal components of g (ppm) a




Host matrix

Isotropic
gxx
gyy
gzz b

KNO3 

2000
    3400

-800

Sr(NO3)2 

2300
    3700

-400

Ba(NO3)2 

1400
    3400

-2600

NaNO3 

1500
    2900

-1200

KCl

2900
    4500

-300

KBr 

2900
    4500

-300

KI

--
    2700

--

KN3 

100
    1600

-2900

Pb(NO3)2 

-12900
-11100

-16600

AgNO3 

700
-300
4700
-2300








Calculated c

3821
    5706

292

a 
Cited from [214].

b 
The z-axis is orthogonal to the O3 plane.

c 
This work.


It is also interesting to look at the g-shifts of symmetric AB2 radicals.  Several of them, namely H2O+, CO2-, O3-, NO2, NO22-, and NF2 have been included already into Table 6.1.  We note again the considerable range of experimental single crystal results as exemplified for these compounds by NO2, Table 6.1.  The results are essentially similar to the AB3 case.  Thus, experimental trends, both regarding the principal tensor components and trends between related molecules are reproduced for these first row compounds.  Two more AB2 radicals, ClO2 and SO2- are contained in Table 6.5.  We have included the latter two to get a more comprehensive picture.  The agreement between theory and experiment is reasonable but not perfect for these two molecules.  Part of this are probably again matrix effects.  

Table 6.5
Calculated and experimental g-shifts of some other molecules TC  "Table 6.5
Calculated and experimental g-shifts of some other molecules" \l 8  

Principal components of g  (ppm) 









gxx


gyy


gzz 


Molecule
Calculated
Exp.

Calculated
Exp.

Calculated
Exp.

ClO2 
231
1300 a

12974
16000 a

11293
6500 a

SO2- 
212
-400 a

6161
9700 a

7750
3400 a

CH4+ 
-37
600 b

-37
600 b

-37
600 b

benzene+ c
463


463


29


a 
Experiment cited from [195];  KClO4 host crystal for ClO2,  K2S2O5 for SO2-.

b 
Experiment cited from [213].

c 
Isotropic g-shift:  318 ppm, calculated;  400 ppm, experimental [213].


A few other compounds have been included into Table 6.5.  This was done to cover some other classes of compounds as well.  Thus, CH4+, together with NH3+, Table 6.3, and H2O+, Table 6.1, comprise three hydride cations of first row compounds.  The experimental isotropic g-shifts are 600 ppm, 1200/900 ppm, and 8000 ppm for CH4+, NH3+, H2O+, respectively.  The calculated numbers are -37 ppm, 1513 ppm, and 6666 ppm.  The periodic trend within this group is therefore well reproduced by the calculations.  We have also included the benzene cation into Table 6.5.  This is an example for an aromatic radical; again, the isotropic g-shift is well reproduced.  

Table 6.6
Calculated and experimental g-shifts of CF3X-, X = Cl, Br, I TC  "Table 6.6
Calculated and experimental g-shifts of CF3X-, X = Cl, Br, I" \l 8   (values in ppm)



g



g





Calculated



Calculated



Molecule

N-rel.
Rel.
Exp.a

N-rel.
Rel.
Exp.a

CF3Cl-

12
13
-200

15494
15734
4700











CF3Br-

-9
-7
1300

67900
70859
18900











CF3I-

29
44
-2100

147370
162082
46000

a 
Cited from [195].


To conclude this section, we collected in Table 6.6 calculated and experimental g-shifts for the anionic radicals CF3X-, X = Cl, Br. I.  This turns out to be a case where the current theoretical method is apparently unable to reproduce the experimentally observed trend.    We will discuss this point in the conclusions to this chapter.  

6.5
EPR G-Tensors.  Summary and Conclusions TC  "6.5
EPR G-Tensors.  Summary and Conclusions" \l 2 
In this chapter, we presented a formulation of the EPR g-tensor and the EPR g-shift based on density functional theory.  We have also implemented our formulation into the existing DFT-GIAO program system for NMR chemical shifts [16-18] that had been the subject of chapters 3 to 5 of this thesis.  Our implementation is the only first principle DFT method for the calculation of the g-tensor, even though the interest in this property seems to be growing recently [216,217].  Our method is also the first GIAO implementation of the g-tensor.  Lushington discussed the gauge dependence of his results [12]; the gauge dependence is minimized by choosing the centroid of charge as the common gauge origin for the given molecule.  In this way, the gauge dependence of the calculated results is found to be only moderate.  Nevertheless, fairly big basis sets are still necessary, and the GIAO scheme is expected to converge much faster with the basis set size than Lushington's method [24].  


We have compared our calculated results with experiment and with the HF and CI calculations of Lushington et al. [12,207,208,210].  Comparison with experimental results is preferably done based on the -- rare -- gas phase data.  We find that our method yields results of higher quality then the Hartree-Fock based schemes.  The highly expensive MRCI method gives the best results for the few molecules where a comparison is possible.  This is in line with the situation for the NMR chemical shift [146], stressing again the close connection between the two magnetic properties.  


The comparison to experimental data is more complex if that data has been obtained with the radical situated in a host crystal, due to the sometimes strong interactions of the radical with its matrix.  This is particularly (but not exclusively) true for the charged species.  Nevertheless, experimental trends for various small first and second row radicals have been reproduced with satisfying accuracy, section 6.4.  Our calculated results are generally less accurate for compounds of heavier elements -- up to what must be called complete failure.  Examples included AlO and XeF, Table 6.2, AsO32-, Table 6.3, and the molecules in Table 6.6.  


It is now the point to discuss possible reasons for these limitations of the method.  To find and judge possible reasons for the mentioned failure, we have to recall the derivation of our DFT-GIAO formulation, section 6.2.  In doing this, we note that we had neglected the spin-other-orbit operators of Eqs 6-6 and 6-9.  This could of course be a possible reason for the observed deviations.  However, contributions of these operators are expected to be small for systems with just one unpaired electron, cf. the discussion at the end of section 6.2.3.  Only systems with one unpaired electron have been considered, and we don't expect the spin-other-orbit operators to be of importance.  This is also confirmed by the success of the model for lighter element compounds.  


Another approximation is the use of the simple X scheme as the exchange contribution to the effective potential, Eq. 6-19.  Experience shows that the contribution of this term to be very small [19].  The approximation is therefore not significant, and it is an unlikely candidate for the explanation of the problems.  This is again confirmed by the success of the model for lighter elements.  


It is, however, well possible that the exchange-correlation (XC) functional [47-49] that is used in the self-consistent solution of the Kohn-Sham equations is still insufficient.  It is well known that the currently used gradient-corrected XC functionals exhibit the wrong asymptotic behavior both in the region close to the nucleus and in the limit of the coordinate going to infinity [155,156].  The latter range is expected to influence the values of the Kohn-Sham orbital energies (eigenvalues).  The first order magnetic density matrix, Eq. 27, is, in turn, extremely sensitive to small changes in these eigenvalues [16].  


The g-tensor has been treated as a second order property in our model, cf. Eqs. 6-1 and 6-23.  However, the experimental g-tensors are in general obtained by fitting the observed energy splittings E to the Zeeman energy expression with expressions like the following one [198, Wertz, 1986 #200].  We have, for instance, for systems with one unpaired electron:




.
(6-30)

To simulate the experimental procedure of Eq. 6-30 requires the inclusion of the spin-orbit operators (i.e., the perturbation due to the electronic spin) to all orders in the spin magnetic moment 

.  Our formulation is, however, based on perturbation theory, and the spin-orbit operators are included only up to first order.  This could be a reason for the mentioned failure of the method.  Spin-orbit splitting is a relativistic effect.  Effects of relativity are known to increase with increasing atomic numbers Z; they are roughly proportional to Z2 [2].  Thus, it is conceivable that perturbation theory becomes less and less accurate with growing atomic numbers.  One would have to calculate the electronic density up to all orders in the spin-orbit splitting instead of up to first order in the magnetic field.  We plan to address this point in the future in more detail.  


There are also other interesting extensions possible or necessary extensions to the work that was presented in this chapter.  Thus, we haven't investigated basis set requirements yet but rather relied on the triple  basis sets that proved useful for NMR calculations [19].  Since the operators are different in the EPR case, it is, for instance, likely that the core region of the basis is not as important for the g-tensor as it is for the shielding.  Another extension concerns the range of compounds that were included.  In this chapter, we have mainly concentrated on first and second row main group radicals.  Transition metal chemistry is another major area for EPR measurements, and we plan to extend our investigations to this area.  

CHAPTER SEVEN TC  "CHAPTER SEVEN" \l 1 
CONCLUSION AND OUTLOOK TC  "CONCLUSION AND OUTLOOK" \l 1 
We started this thesis by citing, in chapter 1, "Dirac's dictum" of 1929 [1].  In different parts of this thesis, I tried to contribute to the proposed development of new "approximate practical methods of applying quantum mechanics."  Static second order properties have been the aim of these efforts and the general theme of this thesis.  These are such properties that can be expressed as second derivatives of the total energy with respect to two perturbation parameters.  They comprised relativistic energy gradients (chapter 2), NMR shielding tensors in chapters 3 to 5, as well as EPR g-tensors, chapter 6.


Much of the work and effort of this thesis has involved the formulation and implementation of algorithms for the calculation of the mentioned properties.  The result is a program package for the calculation of NMR and EPR parameters that comprises some 14,000 lines of new FORTRAN code.  Many of the features of this program are unique.  They have been discussed in various chapters of this thesis, but I would like to stress a few of these features again at this point.  The work that was presented in chapter 3 constituted the first (modern) DFT-GIAO implementation [16-18].  To date, it is still the only method capable of calculating heavy element shifts with the inclusion of relativity [18], chapter 5.  For ligand shifts, there is one other relativistic NMR program available, the SOS-DFPT program of Malkin and Kaupp [52,72,130-132,161].  We have compared our calculated 17O shieldings to the earlier results of Kaupp et al. [161], chapter 5.  The DFT-GIAO program is certainly superior to IGLO based methods (like the SOS-DFPT program) for an analysis of calculated shifts based on the occupied and virtual MOs of the molecule [149,150].  Such an analysis is intrinsically impossible for the IGLO scheme [136,137].  In the last chapter, I presented an implementation of the EPR g-tensor based on DFT.  There is no other DFT based first-principle method available to date, although there seems to be a growing interest [216,217].  Interest in the g-tensor would not be too surprising, given the close connection to the NMR shielding, chapter 6.  Besides, our implementation is the only method capable of calculating relativistic g-tensors although the treatment of the spin-orbit operator is probably still incomplete (cf. the discussion in section 6.5).  It might be possible to use pseudopotentials for this same purpose, since the g-tensor is not as "tight" as the NMR shielding, chapter 6.  However, no implementation is available yet that would validate or disprove this assertion.  


Various extensions are conceivable to the work that was presented here.  They range from fundamental aspects to practical applications of the methods.


On the fundamental side, the question of the relative importance of current density functionals as compared to density-only functionals has not been settled.  We have discussed some aspects thereof in section 3.5.  The first and only published implementation of a current density functional is due to Handy's group [142].  The results must be called disappointing at best:  the current DFT terms seem to have the "wrong" sign as compared to the remaining error in the calculated shielding [142].  Two conclusions are possible.  First, the functional used may be either simply wrong or insufficient.  One could, for instance, speculate that non-local corrections would be necessary along with the "local current density functional" that was used by Handy et al.  Alternatively, the current density functional contribution could be not very important at all.  We would then have to attribute the remaining error, cf. chapter 3, to shortcomings in the presently used XC potentials.  We have discussed this possibility in section 3.5.  The subject remains interesting and, for the time being, controversial [16,72,73,130-132,138,142,146].  The only clear conclusion to date is the importance of non-local corrections (use of GGA functionals) on top of the simple local density approximation, chapter 3.  


We have discussed in chapter 5 and elsewhere in this thesis the fundamental shortcomings of our scalar relativistic method.  Possible extensions of this method include the spin-orbit splitting (mostly relevant only for the magnetic properties, sections 5.4.4 and 6.5, but not for geometries, section 2.2) or other, more stable relativistic methods [59,62,193].  The latter are certainly more satisfying than the quasi-relativistic method -- although none of the shortcomings of the quasi-relativistic method prevented quantitative agreement of calculated values to the experiment.  All this has been worked out in more detail in section 5.5.  


Besides fundamental questions, there are numerous possible projects for method development.  At various occasions throughout this thesis, we have pointed out the unified approach to magnetic properties.  This idea lends itself to extensions:  Other spectroscopic properties that rely on the first order magnetic wavefunction include the magnetic susceptibility and the vibrational circular dichroism intensities.  


The NMR/EPR program proper deserves further refinement.  In particular, basis set requirements for metal shielding calculations (chapter 5) and for g-tensor calculations (chapter 6) should be investigated in more detail.  Other analysis tools, e.g., visualization of the induced current density, could become useful.  Debugging and code optimization are ongoing concerns with a program of this size.  


Any NMR or EPR spectrum consists of two major components.  One aspect, the NMR shielding and the EPR g-tensor, respectively, have been the subject of a good part of this thesis.  Accurate calculations of spin-spin coupling constants (NMR) or hyperfine couplings (EPR) seem to be much more challenging, as is already evident from the large number of papers devoted to NMR shielding calculations [21,28,69-71] as compared to very few contributions on the couplings (e.g., [72,183,218]).  


Further in terms of method development, extensions of the (gas-phase) DFT-GIAO program to include condensed phases are conceivable.  We have seen in chapters 4 and 5 some examples of large gas-to-liquid shifts.  Liquid-to-solid chemical shifts seem to be smaller.  However, solid state NMR experiments are different from gas-phase and solution experiments, and the principal components of the shielding become accessible to the measurement.  There are, for instance, cases where the theoretical gas-phase approach fails because several molecules occupy the unit cell of a crystal, resulting in more than one distinct signal [219].  A solid state program system is even more useful for the EPR g-tensor.  A typical EPR experiment measures the resonance due to a radical (or even a single electron) that is embedded in a host crystal [27].  Such a system cannot be modeled realistically by gas phase calculations of single molecules, cf. chapter 6.  An alternative approach to solid state methods would be cluster calculations.  


R. Car and M. Parinello [220] opened an exciting new research area by devising an effective first-principle molecular dynamics method that is based on the formalism of DFT.  With this scheme, dynamic processes such as liquid systems at finite temperatures, reaction pathways, or lattice vibrations in solids can be simulated with a reasonable computational effort.  Consequently, much recent research activity has focused on the development and application of Car-Parinello methods.  On the other hand, NMR and EPR are experimental techniques that are ideally suited for the study of otherwise inaccessible dynamic processes.  It would thus be desirable to implement the GIAO method into one of the existing Car-Parinello codes.  This would open a completely new area of research, because for the first time, dynamic EPR and NMR spectra became accessible to a theoretical description.  This project would merge the gas-phase (molecules) and condensed phase (liquids, solids) calculations that have been discussed before -- given that the Car-Parinello approach is equally well suited for molecules and for solids.  


Finally, possibilities for applications of the new methods are numerous, and it is only possible to sketch some examples here.  


We have seen in chapter 2 that the relativistic geometry optimization is the essential basis for an accurate theoretical determination of thermodynamic parameters.  An example has been given in chapter 2; extensions are easily conceivable [13,14,63,64].  


Accurately calculated chemical shifts are increasingly being used to determine molecular structures [200].  The general procedure is to find possible conformations of the molecule of interest (or of various molecules within a certain class) from chemical intuition or from other information.  By correlating the observed and calculated spectra, it is possible to single out the proper structure [200].  This procedure is readily extended to radicals and their EPR spectra.  


Much current research has focused on an understanding of empirical structure-to-shift relationships based on the electronic structure of the molecule [21,149-154,167,168].  The theoretical investigations are expected to enhance the understanding of the observed NMR spectra and thus to increase the amount of useful information that can be gained from an NMR experiment [21].  This field is not at all exhausted -- given the wealth of experimentally accumulated data [20].  Again, an extension to the EPR case is readily possible.  


To summarize, the calculation of magnetic parameters for molecules and condensed phases provides an exciting and dynamic area of research.  This chapter tries to sketch some of the interesting possibilities in the field.  The list is not at all complete.  On the other hand, the combined effort of several research groups is required to tackle all the challenges of this research area.  
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Appendix 1
The Relation Between a Common Gauge Origin Formulation and the GIAO Formulation of the NMR Shielding Tensor TC  "Appendix 1
The Relation Between a Common Gauge Origin Formulation and the GIAO Formulation of the NMR Shielding Tensor" \l 5 
The aim of this appendix is to prove that the GIAO formulation (in its all electron version, chapter 3) and the common gauge (c.g.) formulation of the NMR shielding tensor are identical.  This is so only in the limit of complete basis sets and exactly solved (zero order) Kohn-Sham equations, Eq. 1-7, which we will assume.  A by-product shall be a better understanding of the separation of the shielding into its dia- and paramagnetic parts, Eqs. 3-20 to 3-22.

A1.1
Shielding Tensor, GIAO Scheme TC  "A1.1
Shielding Tensor, GIAO Scheme" \l 3 
I shall repeat the basic formulas of the shielding tensor here in order to facilitate the subsequent discussion.  Detailed definitions of all the variables are, however, avoided at this point.  They are given in chapters 1 and 3.


For the sake of this appendix, let us write the GIAO shielding tensor in its all electron formulation, Eqs. 3-20 to 3-22, as





(A1-1)

where  (st tensor component)





(A1-2a)

is the first term of the diamagnetic shielding tensor of Eq. 3-21 while





(A1-2b)

and





(A1-2c)

are the occupied-occupied and occupied-virtual contributions, respectively, of the paramagnetic shielding, Eqs. 3-22b and 3-22c.  The "rest", 

, is normally split up into its diamagnetic and paramagnetic parts, Eqs. 3-21 and 3-22a, respectively.  It is recombined here to




.
(A1-3)

The first order magnetic operator is given by Eq. 3-2,




 .
(A1-4)

Note that the different vectors in Eqs. A1-2b, A1-2c and A1-3 are combined by tensor products.  Throughout this appendix, we will understand such products of two vectors as tensor products; dot products and cross products will be marked explicitly (as "

" and "

", respectively).  The discussion will now mainly focus on the last term, 

 of Eq. A1-3.  Before that I wish, however, to define the coefficients of Eq. A1-2 and introduce, in the next section, the common gauge origin formulation of the shielding [28].  


The first order coefficients of Eqs. A1-2b and A1-2c have three Cartesian components each.  They are given by Eqs. 3-13 to 3-15 as




,
(A1-5)

where





(A1-6)

and








.
(A1-7)

In Eq. A1-7, 

 is the field-free Kohn-Sham operator of Eq. 1-8a.

A1.2
Shielding Tensor, Common Gauge Formulation TC  "A1.2
Shielding Tensor, Common Gauge Formulation" \l 3 
The shielding tensor





(A1-8)

is much simpler in the common gauge (c.g.) formulation [28] then in the GIAO scheme, Eq. A1-1.  Thus, we have (st tensor component)





(A1-9a)

and




,
(A1-9b)

where





(A1-10a)

and




.
(A1-10b)

Note that the c.g. paramagnetic shielding tensor, 

, has exclusively occupied-virtual terms, Eq. A1-9b.  


We wish now to show the equivalence of the two formulations, starting from the GIAO scheme.  The derivation will be based on a completeness relation for the zero order, unperturbed Kohn-Sham orbitals.

A1.3
Completeness Relation.  The "Rest" Term of the GIAO Formulation TC  "A1.3
Completeness Relation.  The \"Rest\" Term of the GIAO Formulation" \l 3 
We note that 

 of Eq. A1-3 resembles in its structure 

 of Eq. A1-2b and also 

 of Eq. A1-2c.  However, 

 consists so far of only one integral, while the said paramagnetic tensors contain products of two integrals.  Our strategy will be to insert a unity operator into 

 by means of the completeness relation.  In this way, we will change 

 to contain a sum over products of two integrals.


A completeness relation [77] for the orthonormal Kohn-Sham orbitals 

 (section 1.1) is given by




.
(A1-11)

The unity operator 

 of Eq. A1-11 contains an infinite sum that runs over "all = occupied + virtual" zero order Kohn-Sham orbitals.  The relation in Eq. A1-11 is only true in the limit of complete basis sets and exactly solved Kohn-Sham equations, Eq. 1-7.


To be able to apply this equation, we have to reformulate 

 of Eq. A1-3.  This is required to enable us to separate the "p" sum (Eq. A1-11) from the "" and "" sums of Eq. A1-3.  For this purpose, we split 

 as follows





(A1-12a)








.
(A1-12b)

It turns out that 

, the first term in Eq. A1-12, is already in a form to apply the completeness relation of Eq. A1-11.  In this term, both the vector 

 and the atomic orbital 

 would end up within the same integral after the transformation, and the sums over the molecular orbitals "p" and over the coefficients  can be separated.  However, the second term in Eq. A1-12, 

, needs further treatment first.


To reformulate 

, let us consider for the moment just one integral out of the double sum of Eq. A1-12b.  Thus, we define




,
(A1-13)

where the operator 

 has been given earlier in Eq. A1-4.  Note that this operator is antihermitian in the given form.  Then (st tensor component)









(A1-14a)




.
(A1-14b)

The array (" 

 ") in the first term of Eq. A1-14a marks where the differential operator works.  An operator without this array is thought to work on all terms to the right of it.  

A1.4
Diamagnetic Shielding TC  "A1.4
Diamagnetic Shielding" \l 3 
We shall now treat 

 of Eq. A1-14 a little further.  We note also that 

 has the same form as 

 of Eq. A1-12.  It shall turn out shortly that the part of 

 containing 

 will combine with the first part of the GIAO diamagnetic shielding tensor, Eq. A1-2, to result in the diamagnetic shielding tensor of the common gauge formulation, Eq. A1-9a.


The operator of 

  is (in components)




   .
(A1-15a)

From this, we get by brute force:



 ,


(A1-15b)

i.e.,




 .
(A1-15c)

We are now at a point to put everything back together.  Use is made of Eqs. A1-15c, A1-14, and A1-12.  We get for the diamagnetic part of the "rest" 

  (st tensor component)








 .
(A1-16)

Finally, we find (from Eqs. A1-16, A1-2a, and A1-9a) that




 .
(A1-17)

That is, we were able to show how the diamagnetic shielding tensor of the common gauge formalism relates to the GIAO scheme.  It remains to treat the paramagnetic terms.

A1.5
Paramagnetic Shielding, Occupied-Occupied Terms TC  "A1.5
Paramagnetic Shielding, Occupied-Occupied Terms" \l 3 
We need to come back to 

 of Eq. A1-3.  We shall now collect everything that is left over after the previous manipulations:








.
(A1-18a)


 EMBED "Equation" \* mergeformat  

 had been defined previously in Eq. A1-12; the paramagnetic term of 

 is given by




.
(A1-18b)

Thus (from Eqs. A1-12, A1-14, and A1-18),




.
(A1-18c)


We are now at a point where the completeness relation of Eq. A1-11 can be applied.  We insert the unity operator of Eq. A1-11 into the integrals of Eq. A1-18c above, and get




.
(A1-19)

This expression is immediately split up again into occupied-occupied and occupied-virtual terms.  We achieve the splitting by dividing the "p" sum as follows:




  ,
(A1-20)

where





(A1-21a)

and
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.
(A1-21b)

We shall delay the discussion of 

 for the moment and concentrate now only on 

.  


We can rewrite this expression in Eq. A1-21a by using the anti-Hermitian and Hermitian properties of 

 and 

, respectively.  In this way, we get









(A1-22a)


 EMBED "Equation" \* mergeformat  

.
(A1-22b)

We obtained the last expression in Eq. A1-22b by noting that the "i" and "j" sums run over the same range.  Therefore, we have exchanged i and j in the second term of Eq. A1-22a to get Eq. A1-22b.  From Eq. A1-22b, we observe





(A1-23)

(cf. Eqs. A1-2b and A1-6).  This means that the occupied-occupied contribution to 

 cancels the occupied-occupied contribution to the paramagnetic shielding tensor.  This is necessary, since the paramagnetic shielding tensor in the common gauge formulation lacks the occupied-occupied terms completely, Eq. A1-9b.  

A1.6
Paramagnetic Shielding, Occupied-Virtual Terms TC  "A1.6
Paramagnetic Shielding, Occupied-Virtual Terms" \l 3 
We are now only left with the occupied-virtual contribution to 

.  The sum of this term and the occupied-virtual paramagnetic shielding tensor 

 of Eq. A1-2c should yield the paramagnetic shielding of the common gauge formulation.  Thus, we have yet to show that




.
(A1-24)

This is indeed the case.  However, the proof requires some fairly lengthy and tedious algebra which we intend to deliver next.  For that purpose, let us repeat the relevant equations at this point.  We had




,
(A1-2c)

for the GIAO shielding, as well as


 EMBED "Equation" \* mergeformat  

,
(A1-21b)

and




.
(A1-9b)

We note that all three tensors have the same occupied-virtual sums.  Further, the second integral is the same in all three cases (apart from a minus sign in Eq. A1-21b).  Thus, it is sufficient to consider only one term out of each sum, and for this one term, only the respective coefficients in front of the 

 integrals.  


We concentrate for now only on the GIAO shielding.  Here, the coefficients are





(A1-25)

for 

 of Eq. A1-21b, as well as 

 of Eq. A1-5 for 

.  It turns out to be necessary to treat the latter first.  Recall that 

 was given as follows,




,
(A1-5)

with 

 and 

 defined in Eqs. A1-6 and A1-7, respectively.  Let us rewrite these matrices somewhat.  We write









(A1-26)

and




  ,
(A1-27)

where





(A1-28a)

and








.
(A1-28b)

The first term in Eq. A1-27, 

, has been defined earlier in Eq. A1-10b.  This is, in fact, what we are aiming for.  We use the splitting of the GIAO F1 matrix (Eq. A1-27), to further rewrite 

 .  Thus








.
(A1-29a)

"D" stands here for the difference -- between the GIAO and the common gauge formulations.  From Eqs. A1-26 to A1-28 we find for 
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.
(A1-29b)

The second term in Eq. A1-29b vanishes exactly since the i were assumed to be solutions to the Kohn-Sham equations, Eq. 1-7,




,
(A1-30)

and we are left with this expression for 

:








.
(A1-31)

From Eq. A1-24, all that is now left to show is





(A1-32)

(see Eq. A1-25 for 

, and Eqs. A1-29, A1-30 otherwise).  To prove Eq. A1-32, we mainly have to treat the "difference", 

, even further.


This is done next.  In 

, there are terms -- let's call them 

 -- as follows




.
(A1-33)

The operator 

 is Hermitian, and we can write




,
(A1-34)

where 

 is working on everything to the right of it.  We know of course that





(A1-35)

(Eq. 1-7), and that 

 does not commute with the position operator 

 in Eq. A1-34.  VKS is the total Kohn-Sham potential.  In the given context, it is only relevant that VKS commutes with 

.  Calculating the operator in Eq. A1-34, we have





(A1-36a)

(the tensor product has been shown explicitly in this equation).  We get for the operator




.
(A1-36b)

In Eq. A1-36b, 

 is again a unity tensor and the arrow ("...

") indicates that the differential operator works only on the expression to the right of the whole operator.  Thus








.
(A1-36c)

This is the result for the operator, i.e., the commutation worked out.  Putting it back into the integral 

 of Eq. A1-34, we get




.
(A1-37)

For the second integral, we can use again that the zero order orbitals are exact solutions to the Kohn-Sham equations (cf. Eq. A1-30)




.
(A1-38)

In this way, we obtain for 

 (making use of the anti-Hermitian properties of the first operator in Eq. A1-37)





(A1-39)

This can now go back into 

 of Eq. A1-31, and into Eq. A1-32 that still has to be proven.  We get
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(A1-40)

The first two terms in Eq. A1-40 cancel exactly.  The remaining third term, put into Eq. A1-32, cancels exactly the 

 term, Eq. A1-25.  This proves Eq. A1-32.  Therefore, it also proves Eq. A1-24, and completes the proof of equivalence between the common gauge and GIAO formulations of the shielding.     QED.

A1.7
Summary, Conclusion TC  "A1.7
Summary, Conclusion" \l 3 
At this point, I wish to verbally summarize the lengthy derivations done so far in this appendix.  


We started from the GIAO formulation of the NMR shielding tensor, Eqs. A1-1 to A1-7.  It is probably much more difficult to give the same proof, starting from the common gauge formulation of Eqs. A1-8 to A1-10.  All the derivations focused on the somewhat obscure "rest" term of Eq. A1-3.  Normally, this term is numerically small.  Further, it is distributed over the diamagnetic and paramagnetic shieldings such that they both are gauge invariant each by itself [16,28,129].  In the derivations of this appendix, however, we split this "rest" in a different fashion.  First, we extracted a diamagnetic contribution out of this, Eqs. A1-14 and A1-16.  This term, when added to the GIAO diamagnetic shielding, resulted in the diamagnetic shielding of the common gauge scheme.


The remainder can apparently be called paramagnetic.  This paramagnetic part of the "rest" turned out to be suitable for the insertion of an identity operator.  We use for this identity the completeness relation of Eq. A1-11.  We wish to stress again that we assume at this point a complete set of orthonormal Kohn Sham orbitals, i.e., a complete basis set, and exactly solved Kohn-Sham equations, Eq. 1-7.  The completeness relation contains a sum over all molecular orbitals.  It can be split up into a sum over occupied MOs plus an infinite sum over unoccupied MOs, Eqs. A1-20 and A1-21.  Easy manipulation shows that the occupied-occupied part cancels the occupied-occupied contribution of the GIAO paramagnetic shielding.  This was necessary and expected because the common gauge formulation lacks this type of contributions.  All that we are left with is an occupied-virtual tensor, Eq. A1-21b.  Fairly lengthy manipulations prove that the sum of this term and the respective contribution to the GIAO paramagnetic shielding result in the paramagnetic shielding tensor of the common gauge case.  These manipulations were mainly concerned with calculating commutators between the GIAO phase factors and the unperturbed Kohn-Sham operator, cf. Eqs. A1-36.  Use was made again of the assumption that the Kohn-Sham equations Eq. 1-7 had been solved exactly for the Kohn-Sham orbitals.


The dia- and paramagnetic parts of the "rest" term that are employed in this appendix, Eq. 1-18, amount in general to large contributions of opposite signs.  Consequently, they cancel almost exactly.  These terms are left out in the GIAO formulation but included into the c.g. shielding.  This is part of the reason that GIAO schemes, along with other distributed-origin methods like IGLO, are more accurate then the simple c.g. method.  


In summary, the GIAO and common gauge formulations of the shielding are identical (as they should be) in the limit of complete (infinite) basis sets.  Otherwise, they may show differences [28,69,163,164] with the GIAO scheme being the more accurate method.

Appendix 2
Mass-Velocity Contribution to the First Order DFT Matrix F1   TC  "Appendix 2
Mass-Velocity Contribution to the First Order DFT Matrix F1  " \l 5 
This appendix affords the derivation of the expression in Eq. 5-6 from Eq. 5-5.  We had in Eq. 5-5b:




.
(A2-1)

We will need the operator 

 only up to first order in the magnetic field because only first order terms are desired in the final expression.  Thus,





(A2-2a)




,
(A2-2b)

where we used that the chosen form for the vector potential, Eq. 5-4, obeys the Coulomb gauge of Eq. 3-8c [10,11,70,77].  Then, from Eq. A2-1,












,
(A2-3)

where we used that a bra-vector ("

") is the complex conjugate of a ket-vector ("

"), and that 

.  We will need the Laplacians of the GIAOs 

 for the last term of Eq. A2-3.  Thus, from the definition in Eq. 3-10,









.
(A2-4a)

This Laplacian is needed only up to first order in the magnetic field.  Therefore, the exponential pre-factor has to be expanded as well.  In this way, we find








.
(A2-4b)

This expression can be inserted into the third term of Eq. A2-3.  Taking only terms that are linear in the magnetic field, we obtain

















(A2-5)

We note that the last two terms in Eq. A2-5 combine with the first two terms; this results in the desired expression in Eq. 5-6.

Appendix 3
The Direct Contribution of the Darwin Operator to the F1 Matrix TC  "Appendix 3
The Direct Contribution of the Darwin Operator to the F1 Matrix" \l 5 
This appendix is concerned with the derivation of Eq. 5-8 from Eq. 5-7.  We start with the expression in Eq. 5-7, and take the GIAOs of Eqs. 3-10, 3-11, and 5-2 to first order in the constant external magnetic field, Eq. 5-2 (cf. chapter 3).  Thus [16], 




.
(A3-1)


We wish to remove the derivatives from the potential to avoid complications for the numerical integration [78].  This is readily achieved by partial integration of the expression in Eq. A3-1, cf. the discussion in chapter 2.  We shall work out the necessary manipulations next.  For this purpose, it is sufficient to consider only one integral out of the double sum in Eq. A3-1.  Thus, we define




.
(A3-2)

We apply partial integration to this expression and get




  ,
(A3-3a)

as well as after a second partial integration




.
(A3-3b)

We now have to work out the second derivative in Eq. A3-3b.  This is achieved by straightforward but lengthy vector algebra, keeping track carefully of all derivatives and vectors.  Let us consider for the time being only the derivatives out of the integral of Eq. A3-3b.  Thus, we define




.
(A3-4)

This can now be calculated, and we obtain for the inner derivative
















.
(A3-5)

In Eq. A3-5, we use the symbol "

" for the tensor product between two vectors.  Further, the last term contains the unit tensor, 

.  Working out the remaining gradient, we get from Eq. A3-5




,
(A3-6)

where the superscripts refer to the three different terms in the bracket of Eq. A3-5.  These terms are









(A3-7a)

for the first term, and completely analogous








.
(A3-7b)

Finally, the third term of Eq. A3-5 yields





(A3-7c)

Putting it all back together, we get for 

 of Eq. A3-5













(A3-8)

The s-vector component of this expression can be put back into J of Eq. A3-3b.  J is in turn inserted back into Eq. A3-1, and we have the desired expression of Eq. 5-8 for the matrix element of the Darwin operator, 

.

Appendix 4
The Direct Relativistic Contributions to F1 in the Frozen Core Approximation TC  "Appendix 4
The Direct Relativistic Contributions to F1 in the Frozen Core Approximation" \l 5 
We have pointed out earlier that the frozen core approximation, section 1.1.2 and chapter 4 [53-55], is central to the success of the quasi-relativistic method [32,33,62].  We have carefully discussed the details of the frozen core approximation and its application to shielding calculations in chapter 4 [17].  In this appendix, we wish to extend the working equations for 

 and 

, Eqs. 5-8 and 5-6, respectively, to include the frozen core terms as well.  This shall be based on the derivations and conclusions of chapter 4 [17], and only new terms shall be derived here.  The resulting equations for 

 and 

 are the working equations for the scalar relativistic extension of the DFT-GIAO shielding method.


We have seen in our previous investigations [17] that the valence basis has to be extended to include core orthogonalization terms as well, chapter 4.  Therefore, the first order non-relativistic DFT matrix had to be calculated according to Eq. 4-12 as follows:
















,
(A4-1)

where 2Mval is the number of valence basis functions, 2Mcore is the number of auxiliary core AOs (one auxiliary AO per frozen core MO, cf. chapter 4 and section 1.1.2).  The auxiliary core AOs are named 

 here, cf. Eq. 1-11.  Further, the first two sums in Eq. A4-1 run over all  2M = 2Mval + 2Mcore  AOs, Eqs. 1-16 and 1-17.  The calculation of the first order core-orthogonalization coefficients 

 is the subject of chapter 4 [17].  Note that 

 is proportional to the fine structure constant , Eqs. 4-13 and 4-14. Finally, 

 is the Kohn-Sham operator of Eq. 1-8a.  We realize from Eq. A4-1 that we can write the first order DFT matrix of the frozen core case formally as














  .
(A4-2)

Thus, the frozen core case (f.c.) is derived from the all electron formula (a.e., Eq. 3-15) by adding two extra terms containing the b1 coefficients.  We note from comparing Eqs. A4-1 and A4-2 that -- as a formal recipe -- we need to introduce one such term to the all electron formula wherever there is a GIAO, taken to first order (cf. Eq. 5-2).  It is the second term of Eq. A4-1 that is due to the first order GIAOs.  


We will now use this recipe to extend the expressions for the two matrix elements 

 and 

.  Starting with the latter, we note that only the last term in Eq. 5-6 contains the GIAOs to first order.  Furthermore, this term possesses the same mathematical structure as the second term in Eq. A4-1 above.  It is therefore easy to read off the desired result, and we find












 ,
(A4-3)

where 

 is the all-electron expression of Eq. 5-6.


The matrix element 

 is treated in an analogous fashion.  We note from inspection of Eq. 5-8 that there are in this case three terms that contain the first order GIAOs of Eq. 5-2.  These are the first three terms of Eq. 5-8.  Each of these three terms is again similar in structure to the second term in Eq. A4-1.  We can therefore read off the result in much the same way.  We arrive at




















,
(A4-4)

where 

 is the all-electron expression of Eq. 5-8.


Eqs. A4-3 and A4-4, together with Eqs. 5-6 and 5-8, are the final working equations for the calculation of the first order magnetic MOs within the scalar relativistic DFT-GIAO method of this study.  

Appendix 5
Optimized Geometries of Radicals TC  "Appendix 5
Optimized Geometries of Radicals" \l 5 
This appendix contains in several tables optimized geometries that are used in chapter 6 of this thesis.  We used the ADF program for the optimization [78-80,82], in part with the relativistic extension that was the subject of chapter 2 of this thesis [15].  The results of these optimizations are summarized in Tables A5.1 to A5.5.  Figure 5.1 is used to define the geometry parameters of the C3H5 radical.  The planar structure of Figure A5.1 has been used in chapter 6, cf. Table A5.5.  


Experimental bond lengths are given in Table A5.1 for the diatomic species [144].  Some other experimental geometries have been added as footnotes to the tables [12,145].

[image: image4.wmf]
Figure A5.1
Definition of geometry parameters for C3H5  TC  "Figure A5.1
Definition of geometry parameters for C3H5 " \l 9 
Table A5.1
Optimized geometries of radicals.  Diatomic molecules TC  "Table A5.1
Optimized geometries of radicals.  Diatomic molecules" \l 8 
Molecule

Bond length  (Å)




Calculated
Experimenta

H2+

1.142 
1.06

CO+

1.1214
1.150

CN

1.1747
1.1718

AlO

1.6445
1.6176

BO

1.2120


BS

1.6197
1.2049

MgF

1.8001
1.75

KrFb

2.3690  (2.3583)


XeFb

2.4086  (2.3968)


a
[144].

b
Non-relativistic and, in brackets, relativistic optimization [15].

Table A5.2
Optimized geometries of radicals.  AB2 species TC  "Table A5.2
Optimized geometries of radicals.  AB2 species" \l 8 
Molecule

Symmetry
Bond length  (Å)
Bond angle (degree)

CO2-

C2V
1.2535
133.88

NO2 a

C2V
1.2079
133.77

NO22-

C2V
1.4135
113.65

NF2

C2V
1.3817
104.17

H2O+

C2V
1.0130
108.33

O3-

C2V
1.3804
115.98

ClO2 b

C2V
1.5155
118.71

SO2- 

C2V
1.5437
115.68

CuCl2 

Dh
2.0991
180

a 
Experimental geometry of NO2:  1.194 Å,  133.8˚  (Cited from [12])  or  1.197 Å,  134.3˚  [145].

a 
Experimental geometry of ClO2:  1.473 Å,  117.6˚  [145].

Table A5.3
Optimized geometries of radicals.  AB3 species TC  "Table A5.3
Optimized geometries of radicals.  AB3 species" \l 8 
Molecule

Symmetry
Bond length  (Å)
Angle  (degree)a

NH3+

D3h
1.0307
  90

NF3+

C3V
1.3123
105.23

NO3

D3h
1.2466
  90

NO32-

C3V
1.3696
101.44

CO3-

D3h
1.2838
  90

CH3

D3h
1.0855
  90

SiH3

C3V
1.4934
107.82

GeH3

C3V
1.5475
107.68

SnH3 b

C3V
1.7451  (1.7299)
108.49  (108.98)

ClO3

C3V
1.4888
103.89

PO32-

C3V
1.5822
104.39

SO3-

C3V
1.5094
104.19

AsO32-

C3V
1.8043
106.35

a
Angle between the threefold symmetry axis and the AB bond vector.

b
Non-relativistic and, in brackets, relativistic optimization [15].

Table A5.4
Optimized geometries of radicals.  AB3X species of C3V symmetry TC  "Table A5.4
Optimized geometries of radicals.  AB3X species of C3V symmetry" \l 8 
Molecule a

A-B bond length  (Å)
A-X bond length  (Å)
BAX bond angle  (degree)

CH4+  (Td symmetry)

1.1494



CF3Cl-

1.3815  (1.3830)
2.5715  (2.5681)
112.53  (112.58)

CF3Br-

1.3823  (1.3842)
2.6920  (2.6762)
112.60  (112.69)

CF3I-

1.3826  (1.3855)
2.8828  (2.8339)
112.64  (112.82)

a 
Non-relativistic and, in brackets, relativistic optimization [15].

Table A5.5
Optimized geometries of radicals.  Others TC  "Table A5.5
Optimized geometries of radicals.  Others" \l 8 
Molecule

Symmetry
Parameter
Valuea

HCO

CS
C-O length
1.1833




C-H length
1.1339




bond angle
123.80

H2CO+

C2V (planar)
C-O length
1.1912




C-H length
1.1314




HCO angle
120.76

C3H5 b

C2V (planar)
C-C length lCC 
1.3882




Central C-H length lH1 
1.0940




Terminal C-H length lH2 
1.0896




Terminal C-H length lH3 
1.0875




CCC bond angle CCC 
125.09




CCH bond angle CCH
121.05




Terminal HCH bond angle HCH 
117.60

benzene+

D6h 
C-C bond length
1.4126




C-H bond length
1.0889

a
Lengths in Å; angles in degree.

b
See Figure A5.1 for the definition of the geometry parameters.

* 	We use 2M basis functions (i.e., an even number) because we employ the same set of basis functions for  and  electrons.  


*** 	Eq. 1-30 is in the given form only correct in atomic units where 1/c = .  More precisely, one would have to put 1/c as the pre-factor of the vector potential in Eq. 1-30 and in all subsequent equations that are based on this substitution.  


$	The calculations presented in this section were carried out by Jian Li.  A more complete account has been given in Refs. [13,14].


$$	The implementation of the mixed second MO derivatives is the work of Heiko Jacobsen [57,89].


** 	It is possible, in principle, to define the operators � EMBED "Equation" \* mergeformat  ��� and � EMBED "Equation" \* mergeformat  ��� without the prefactors of  and 2, respectively.  These factors would then be absorbed in the definition of the shielding tensor, Eq. 3-1.  Likewise, the imaginary unit "i" could be excluded from the definition of � EMBED "Equation" \* mergeformat  ��� -- the factor would then be absorbed in the expressions for the shielding tensors, see below.  


$$$	Please note that this expression in Eq. 3-15 contains a printing error in the paper that is connected with this chapter [16]. 


#	Please note that the expression for the paramagnetic shielding (Eq. 3-22) contains a printing error in the paper that is connected with this chapter [16]. 


++ 	Symmetry could, in principle, be used for the self-consistent solution of the unperturbed Kohn-Sham equations, Eqs. 1-7 and 1-26, respectively.  This has not been implemented for shielding calculations yet.  


##	The integration scheme of ADF [109-111] has a general integration accuracy parameter ACCINT [82]. We found that shielding tensor components which should agree due to symmetry did so to at least ACCINT-1 digits. Therefore, we used a value of ACCINT=5 or higher throughout. This gave us sufficient numerical precision (at least 4 digits) to justify the number of digits of precision given for the different results presented in this thesis. However, a lower general integration accuracy with more integration points near the nuclei should probably be sufficient to reach the same numerical precision. 


###	SOS-DFPT stands for Sum-over-States Density Functional Perturbation Theory.


&	A similar argument applies, of course, to � EMBED "Equation" \* mergeformat  ���.


&&	Some care has to be exercised in choosing this auxiliary fit basis when dealing with "tight" properties like the shielding. In particular, we need a sufficiently big fit basis, at least double , in the core region (1s, 2s, etc.). The influence of an inadequate fit basis is felt stronger if the respective shell is not "frozen".


&&&	The non-relativistic orbitals are employed only for the purpose of core-valence orthogonalization.  The correct relativistic density is used for all other purposes, in particular for the calculation of the relativistic Kohn-Sham operator, Eqs. 1-8 and 1-27, respectively, and for the shielding contribution of the frozen core density, Eq. 4-17.  


% 	Some known gas-to-liquid shifts of metals include:  Cd(C2H5)2: 19ppm, Cd(CH3)2: 62 ppm (both for 113Cd) [163,164];  H2Se: 119 ppm, SeF6: 21 ppm, (CH3)SeH: 29 ppm (77Se shifts; cf. chapter 4) [163,175,180].


%% 	An example of solvent effects is given by the 95Mo/97Mo chemical shift of [MoS4]2-, taken relative the tetra oxide anion. The measured molybdenum shifts span a range of almost 80 ppm [190] (1.5% of the known shift range), depending solely on the chosen solvent.


%%% 	The implementation of the gradient of this potential is partly due to D. Swerhone, A. Bérces, and H. Jacobsen [56,57,89,211].
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