Getting started with AMS!

Getting started with the GUI, TU Delft, 21 January 2021 SCM support: support@scm.com

Getting started with the GUI

Starting AMSjobs: job bookkeeping

- Win: dbl-click desktop item
- Mac: open Application
- Linux: run \$AMSBIN/adfjobs
- AMSInput: <u>define system</u> + properties + settings
- Other: (View, Levels, Movie, Spectra, Band Structure, AMSTrain, Microkinetics, COSMO-RS, KF Browser...)
 - Open from result file, SCM menu or e.g. by dbl-clicking 'amsinput.exe' (Win) or running '\$AMSBIN/amsinput'

AMS hands-on workshop: GUI 21 January 2021 © SCM

🔍 AI	MSjob	s 2020	.102: 0	C:/ADF_D	ATA							_	\times
SCM	File	Edit	Job	Queue	Sort	Filter	View	Tools	Help				
F													
6													
		tructu	res										
	Т	empla	tes										
ML	•	nitro	glycer	ine-wate	er					Sequential			0
AD	•	PAH-	g0w0							Ivy	1		•
Hybr	d 🕨	wate	r-grap	hene						Sequential			•
Hybr	₀ →	tryhy	brid							Sequential			•
AD	•	pento	0w0							Ivv	1		•
TE		UFE-	120-01	raphene						Sequential			-
DET		echt-	TB-b2	o-graph	ene					Sequential			
		echi-	-	.o-grapn	ene					Sequencial			
DFT		xtB-ł	120-gr	aphene						Sequential			•
MOI		dabn	a2-mo	opac						Sequential			•
DFT	•	dabn	a2-sc	cdftb						Sequential			•
	C	L											

reports & templates

job status

 \times

change default, e.g. cores, nodes, walltime

- queue
 - Sequential
 - Ivy
 - Sequential
 - Sequential
 - Ivy
 - Sequential
 - Sequential
 - Sequential
 - Sequential
 - Sequential

	Ø	
1	•	
	•	
	•	
1	•	
	•	
	۲	
	•	
	•	
		•

all jobs / folder view 3

k set	tting	S	
del Properties De	Set up	search	
Single Point Yes 0.0 0.0	•		
LDA Scalar	▼	•	
DZ Large Normal	▼ ▼ ▼	•	
	> =	more deta	<mark>ils</mark>

GUI input editor controls

- Free rotation left mouse button (LMB) & drag In-plane rotation ctrl + LMB & drag **right mouse button** (**RMB**) & drag In-plane shift mouse wheel / alt & drag Zoom Area selection shift + LMB**LMB** on drawing space Deselect Undo ctrl + ZRedo shift + ctrl + Z
- View along x- / y- / z-axis

SCM

AMS hands-on workshop: GUI 21 January 2021 © SCM

ctrl + 1 / ctrl + 2 / ctrl + 3

GUI input editor controls

Selection free rotation	LMB & drag f
Selection in-plane rotation	ctrl + LMB
Selection in-plane shift	(shift +) RN
Select all atoms	ctrl + A
Add hydrogen atoms	$\mathtt{ctrl} + \mathtt{E}$
Link selected atoms	$\mathtt{ctrl} + \mathtt{L}$
Delete selected atoms	del / backs

► More shortcuts: **Help** → **Shortcuts**

AMS hands-on workshop: GUI 21 January 2021 © SCM

from a selected atom & drag from atom **MB** & drag from atom

6

space

Using the GUI more efficiently

- Chained jobs 1.
 - Model -> coordinates use Job results Ο
 - E.g. first do pre / partial optimization Ο
 - Can not be used to also read in Hessian 0
 - Python scripting could work (do check on nimag e.g.)

Preset 2.

- If you always use same XC, basis set, relativity & quality, etc. you can save it:
 - File -> Save as preset (all fields different from default)
 - File -> Save as full preset (all input options)
- Load this: File -> Preset -> 'Your preset' on future jobs with the same setting 0
- AMSprepare (& report) 3.
 - In amsjobs select a job, tools -> prepare 0
 - Now you can run the same job but with different settings (e.g. basis set, xc, ...) 0
 - With adfreport you can <u>build a report to visualize results</u> (e.g. distances) Ο
 - (also consider Python scripting with PLAMS) Ο

01		_					
ADF	Main	Model	Properties	Details	MultiLevel		Q
Coordinates						0	
Use:			Job Result		•		Ð
Mole	cule from	:					

Building molecules (tutorials)

- Search molecules in GUI
- Import: InChI, SMILES, xyz, cif, pdb, ...
- Included structure library + building •
- **Excercise:** Build diacetyl $(C_4H_6O_2)$ •
 - By searching for it in the GUI 0
 - By starting from the builder tools use '2' for double bonds, Ctrl+E adds H's
 - By importing SMILES (e.g. from Wikipedia)
 - Select multiple atoms to change bond, angle, dihedral
- Symmetrize (C_{2h}), pre-optimize (UFF, MOPAC, DFTB, MLPotential)
- Think about conformers!

CM File Edit Select Atoms

N C O

ds View Help			_	×
	ADF Main Model	Properties Details	lultiLevel	Q
				θ
	Task:	Single Point	*	Ø
	Frequencies:	T Yes		-
	Total charge:	0.0		
	Spin polarization:	0.0		
T	Unrestricted:	□ Yes		
	XC functional:			0
	Relativity:			~
	residently i	Scalar	•	•
	Basis set:	DZ	-	Ø
	Froze core:	Large	•	
	Numerical quality:	Normal	·	Ø
<u> </u>		The second second		-
O(5)-C(4)-C(6)-H(10) (°): 360.0				
	K			
+ ci x , o ★ ९ ¢				
			<u>.</u>	2
	· · · ·		_	
S	lide o	r type	value	

Spectra: IR, other vibrational

Excercise: Calculate & visualize frequencies

- Optimize geometry at same level as frequency calc.
- Task = Geometry Opt + Frequencies = Yes
- Try a few different methods:
 - ADF: PBE-D4/DZP
 - DFTB: DFTB3-D3-BJ/3ob-3-1
 - MOPAC
- Visualize: AMSSpectra, animate some modes
- Axes-> Molar Absorption Coefficient
- Tweak broadening
- Compare to <u>NIST</u>
- Play with Spectra-> PVDOS

ŀ	1	D	F	
	Т	а	s	k

Spectra: UV/VIS

Exercise:

- With ADF: calculate 10 allowed excitations
 - use SAOP model potential, DZP (or TZP), no core
 - See also <u>UV/VIS FAQ for tips</u>
- Go to spectra, change x-axis to nm Ο
- Increase the line width to ~10
- Visualize the pi-pi* NTOs at ~205nm (click on NTO1) Ο
- Visualize the MOs strongest Single Orbital Transition Ο
- Compare to <u>NIST data</u> which peaks are missing? Ο
 - Forbidden transitions? <u>Spin-orbit coupling</u>? <u>Vibronic</u>?
 - Check out
- More exercises \cap
 - Rerun with method 'sTDA' and tick TDA
 - Also try TD-DFT+TB (ADF)
 - and TDDFTB (DFTB3/3ob-3-1, GFN-xTB)
 - (can use the same PBE-D4 optimized geometry)

Task:	Single Point	•	
XC functional:	Model:SAOP	•	
Relativity:	Scalar	•	
Basis set:	DZP	•	
Frozen core:	None	•	
ADF Main Model Propert	ties Details MultiLevel		Q
ADF Main Model Propert	ties Details MultiLevel itations (UV/Vis), CD		Q ()
ADF Main Model Propert Exc Type of excitations:	ties Details MultiLevel itations (UV/Vis), CD AllowedOnly	•	Q. ()
ADF Main Model Propert Type of excitations: Exc Method: Image: Compare the second secon	ties Details MultiLevel itations (UV/Vis), CD AllowedOnly Davidson	•	Q ()
ADF Main Model Propert Type of excitations: Exc Method: TDA:	ties Details MultiLevel itations (UV/Vis), CD AllowedOnly Davidson Yes	v	Q ()

Spectra: NMR

Exercise: •

- See also <u>NMR FAQ for tips + advanced tutorials</u>
- Use PBE0 + TZP, Scalar, no core Ο
- Select Properties -> NMR 0
 - select shielding for all H
- Spectrum, NMR-> Chem. Equivalent regions 0
 - Note all H are equivalent (rotation), no coupling
- Note the internal ref. uses different settings! Ο
 - Recalculate TMS with same set up

AMS hands-on workshop: GUI 21 January 2021 © SCM

PES: conformers, scan dihedral

Exercises:

- Switch the engine to Conformers, run, visualize -> AMSMovie 0
 - Does it find all conformers :) ? Maybe try a larger molecule?
 - Switch to, e.g. DFTB, and from Model -> Coordinates, Use: Selected File, select your.sdf
 - Do a frequency run on all geometries and visualize a <u>Boltzmann-averaged spectrum</u>
- Take a DFTB input, set task to PES Scan, click > 0
 - Select dihedral and scan in 19 points from 180-0
 - Wait for calculation to finish -> AMSMovie
 - One can save geometries to start TS search (see later)

AMS hands-on workshop: GUI 21 January 2021 © SCM

DFTB	Main	Model	Properties	Details					Q
		Geor	netry Const	raints and	PES Sca	n		₿	8
Conve Restra	rgence de ints	etails							0
Numbe Results	er of scan s for all PE	points fo ES points	r coordinate : 🗆 Save				SC-1:	19	
<u> </u>	(3) C(2) C(4	4) O(5)		180.0	0.0	۰		sc-1	L ÷

Quick thermodynamic properties

Exercise:

- Open SCM -> COSMO-RS 0
- In the SMILES input, put CC(=O)C(=O)C and Add Ο
- Properties -> Pure compound Ο
- Compare some properties (density, boiling point) (e.g. Wikipedia) Ο

Property		U
Boiling point	346.746	
Critical pressure	51.21	k
Critical temperature	524.603	
Critical volume	0.195	L/n
Liquid density	0.816	kg
Dielectric constant	10.985	
Absolute entropy (ideal gas)	309.848	J/(mol
Flash point	270.523	
Gibbs energy of formation (ideal gas)	-111.468	kJ/n
Net enthalpy of combustion	-1652.692	kJ/n
Std. state enthalpy of formation	-188.906	kJ/n
Enthalpy of fusion	17.129	kJ/n
Enthalpy of formation (ideal gas)	-157.71	kJ/n
Enthalpy of sublimation	49.534	kJ/n
Melting point	213.82	
Liquid molar volume	0.069	L/n
Parachor	161.085	
Solubility parameter	10.098	√(MI
Triple point temperature	213.778	
Van der Waals area	91.576	
Van der Waals volume	63.229	

AMS hands-on workshop: GUI 21 January 2021 © SCM

nit K bar K nol g/L I K) K nol nol nol nol K nol <u>Ра)</u> К Ų ų