Predictive computational spectroscopy with BSE@GW

Arno Förster - 26.10.2022

Luuk Visscher

Erik van Lenthe

Funding: Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Pier Phillipsen

Edoardo Spadetto

Theoretical Spectroscopy

- Common idea: System of non-interacting renormalised electrons (quasiparticles)
- Direct Photoemission: $\left(\Psi_0^{(N)}, E_0^{(N)}\right) \rightarrow \left(\Psi_S^{(N-1)}, E^{(N-1)}\right), \quad E^{(N-1)} = E^{(N)} \epsilon_N$
 - Excited electron leaves the system
- Photoabsorption: $\left(\Psi_0^{(N)}, E_0\right) \rightarrow \left(\Psi_S^{(N)}, E_S\right), \quad E_S = E_0 + \Omega_S$
 - Excited electron stays in the system
 - Excited electron is bound to other electron in system by Coulomb interactions

Onida, Reining, Rubio, Rev. Mod. Phys. (2002) 74 (2)

Some details: TD-DFT vs. BSE

- Such processes are typically studied using response theory:
- Leads to the concept of Dyson equation (Dyson, PR, 1949, 75(11), 1736)
 - kernel : Correlation function⁽⁰⁾ \mapsto Correlation function

Examples:

- Green's function perturbation theory (Landau ~1957):
 - Solve Dyson equation for 2-particle Green's function G_2

•
$$K: G_2^{(0)} \mapsto G_2$$
 $K(1,2,3,4) = \frac{\delta \Sigma_{Hxc}(1,4)}{\delta n(3,2)}$

- Called Bethe-Salpeter equation (BSE) (~1950) (Salpeter, Bethe, 1951, 84(6), 1951)
- Time-dependent density-functional theory:
 - Solve Dyson equation for density-density response χ

•
$$K: \chi^{(0)} \mapsto \chi$$
 $K(1,2) = \frac{\delta v_{Hxc}(1)}{\delta n(2)}$

Some issues of DFT

- Wrong asymptotic behaviour of xc potential
- Incorrect description of Charge transfer states
- Underestimated fundamental gaps

The GW approximation (and beyond)

- $\Sigma = \Sigma_H + iGW GWGWG + O(W^3)$ W = screened interaction
- $W = v_c + v_c PW$
- P = -iGG
- $G = G^{(0)} + G^{(0)} \Sigma G$

Self-consistency: In practice, we simplify the last equation

Solving the Quasiparticle equations

3) *qsGW*: Iterate **eigenvalues and orbitals** until self-consistency:

- 1) Faleev, S.; van Schilfgaarde, M.; Kotani, T., PRL, 2004, 93, 126406
- 2) van Schilfgaarde, M.; Kotani, T.; Faleev, S., PRL, **2006**, 96, 226402
- 3) van Schilfgaarde, M.; Kotani, T.; Faleev, S., PRB, 2007, 76, 165106

What can you calculate?

- QP energies (GW)
 - Ionization potentials, Electron affinities, HOMO-LUMO gaps
 - Redox potentials (Belić et al., PCCP (2022), 24, 197)
- Excited states (BSE@GW)
 - Excitation energies, Oscillator strength, Life times
 - Spectra
- Ground state energies
 - RPA, RPA+SOSEX etc.
- Additional functionality with quasi-particle self-consistent GW:
 - Population analysis, Mulliken population analysis,
 - Symmetry adapted fragment orbital analysis
- All supported at all levels of self-consistency: G_0W_0 , evGW, qsGW
- 2-Component implementation available —> spin-orbit coupling (upcoming release)

QP energies of Organic Acceptor Molecules

Comparison to experiment and CCSD(T) reference data¹ (all calculations complete basis set limit extrapolated)

1)

2)

Excited states of Chlorophyll monomers and dimers

	Q_y	Q_x	В	$\Delta_{Q_y - Q_x}$			
$\exp.$ (VEE)	1.99	2.30	3.12	0.31			
exp. (band max)	1.94	2.23	3.08	0.29			
CAM-B3LYP-D3(BJ)/def2-TZVP optimized structure							
DLPNO-STEOM-CCSD	1.75	2.24	3.17	0.49			
qsGW	1.97	2.29	3.15	0.32			
evGW@PBEH40	1.98	2.29	3.15	0.31			
evGW@LDA	1.94	2.20	3.01	0.26			
CAMY-B3LYP	1.94	2.23	3.08	0.29			
ω B97-X	2.10	2.71	3.57	0.61			

kernel	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6		
exp. $(VEE)^{178}$	1.95 (estimated)							
exp. (band max) ¹⁷⁸	1.90							
CAM-B3LYP-D3(BJ)/TZP optimized structure ^{c}								
evGW@LDA	1.98	1.99	2.16	2.22	2.51	2.64		
evGW@PBEH40	1.97	2.02	2.24	2.27	2.58	2.67		
qsGW	1.94	1.98	2.25	2.28	2.56	2.68		
CAMY-B3LYP	2.12	2.16	2.38	2.43	2.51	2.61		
$\omega B97-X$	2.05	2.10	2.63	2.68	3.10	3.27		

Chemistry &

Materials

Förster and Visscher, JCTC, 2022, (in press)

BSE@GW: Performance

 Calculation of Low-lying Excited states of six-chromophore model of photosystem II reaction centre (~ 2000 electrons/5 days on 1 node) Förster and Visscher, JCTC, 2022, (in press)

				Iterations		CPU time		
Method	Basis	$N_{\rm bas}$	N_{Ω}	qsGW	BSE	GW	BSE	total
qsGW-BSE	TZ3P	11116	12	6	10	3401	3447	7283
	TZP	6256	24	6	8	1074	1729	2924
evGW-BSE	TZP	6256	24	5	8	826	1969	2917
$\omega B97-X$	TZP	6256	12	_	21	—	2675	2846

Accurate Ground state energies - RPA and beyond

Different variants to RPA + second-order screened exchange MP2 like effort, but no divergences, higher accuracy

Förster A., JCTC (2022), 18(10), 5948

Example: The singlet-triplet gap of Benzene

Exp. : **3.66** eV Adiabatic DLPNO-CCSD(T) + ZPE: **3.76** eV BSE@GW?

Bruno, et al., PCCP, 2022, 24, 14228-14241

Practical considerations

$G_0 W_0$ Choose the right starting point:

- Hybrid functional with 40-50 % of exact exchange, for instance BHandHLYP, PBE0(40%exx), or RSH
- PBE, LDA are **not** suitable

Self-consistency reduces this issue (6-8 iterations typically):

- qsGW: best method for high precision. Higher requirements on numerical settings
- evGW is a useful alternative

Large basis sets are required:

- Individual QP energies converge very slowly to the CBL
- Best is to use (T,Q) extrapolation scheme, T= Corr/TZ3P, Q = Corr/QZ6P
- BSE: less pronounced, TZ(2P,3P) is typically sufficient

Use good or VeryGood numerical quality

• **BSE** converge best when only a subset of transitions is used (ModifyExcitations key)

Example: The singlet-triplet gap of Benzene

- BSE@G₀W₀@PBE : 3.29 eV
- BSE@evGW@PBE: 3.45 eV
- BSE@qsGW@PBE0(40ex): 3.66 eV
- BSE@qsGW@PBE: 3.66 eV

Implementation in AMS

- Space-time method: switch between time and frequency domains
- We work on the imaginary axes since quantities are smoother
- Analytical continuation to real frequency axis in the very end

Implemented with N^4 scaling using global density fitting $-> N^3 - N^2$ using local density fitting approximations

Caruso et al. *Phys. Rev. B*, **2013**, 88(7), 1-18
Wilhelm et al., *J. Phys. Chem. Let.* **2018**, 9, 306-312
Wilhelm et al., *J. Them. Theory. Comput.*, **2021**, 17, 1662-1677
Duchemin et al., *J. Them. Theory. Comput.*, **2021**, 17(4), 2383-2393

Chemistrv &

Materials

Special in ADF: Full self-energy $\Sigma(i\omega)$ is calculated in AO basis