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SERS: The EM mechanism

Consider the molecule - nanoparticle systems as two 
interacting polarizable objects
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SERS depends on the local field to the fourth power.

Raman intensities given by change in polarizability as the molecule vibrates
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DIM/QM for Molecular Plasmonics

i
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φi(r, t) = hKS[ρ(r, t)]φi(r, t) (1)ρ(r, t) =

occ∑

i=1

ni|φi(r, t)|2

hKS[ρ(r, t)] = −1

2
∇2 −

∑

m

Zm

|r − Rm|
+

∫
ρ(r, t)

|r − r′|
dr′ +

δEXC

δρ(r, t)
+ V̂ DIM(r, t) (3)

Developing new tools for describing 
optical properties of molecules near 

metal nanoparticles by combining 
Quantum Chemistry and Atomistic 

Electrodynamics Models

Applications	


- Surface-enhanced Molecular Absorption	


- Surface-enhanced Spectroscopy	


- Metal-molecule Energy Transfer 	


- .....	
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Atomistic model for Large Nanoparticles

Discrete Interaction Model

E-field 
Eext (ω)

System with N 
atoms

capacitance

polarizability

For each atom:

Jensen, Jensen J. Phys. Chem. C, 2008, 112 ,15697, 	


J. Phys. Chem. C, 113, 15182, 2009

Self-consistent solution can be found by solving a set of linear equations
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DIM/QM Energy

UTOT[⇢] = UQM[⇢] + UDIM/QM[⇢] = UQM[⇢] + UPOL[⇢] + UVDW

DIM/QM Energy functional

UPOL[⇢] = �1

2
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Polarization Energy

Variational minimization of total energy leads to effective 
Kohn-Sham equations

Payton, Morton, Moore, Jensen, JCP , 136, 214103, 2012, ACR,47, 88-99, 2014	
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Coordination dependent VDW Energy

Standard AMBER LJ 6-12 potential

With coordination dependent parameters

Payton, Morton, Moore, Jensen, JCP , 136, 214103, 2012, ACR,47, 88-99, 2014	
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The DIM/QM model

metal nanoparticle is described by intrinsic atomic properties which enable us to retain the

detailed atomistic structure of the nanoparticle. Since the metal nanoparticle as a whole is

characterized by its static polarizability it behaves similarly to a perfect conductor, which

is expected to be a reasonable approximation for frequencies away from the plasmon re-

sponse of the nanoparticle.37,39 Here we will use the combined DIM/QM method to study

excitation energies of rhodamine-6G (R6G) and crystal violet (CV) interacting with quasi

spherical silver and gold nanoparticles, respectively. These two systems have been chosen

since they represent typical SM-SERS experiments.13,14

II. THEORY

We seek to solve the time-dependent Kohn-Sham (TD-KS) equations50–54 of a molecule

in proximity to a metal nanostructure. For such a hybrid system we can write the effective

TD-KS equations as

i
∂

∂t
φi(r, t) = hKS[ρ(r, t)]φi(r, t) (1)

where the time-dependent density is given by

ρ(r, t) =
occ∑

i=1

ni|φi(r, t)|2 (2)

and ni is the occupation number of the ith time-dependent orbital φi. The effective time-

dependent Kohn-Sham operator, hKS[ρ(r, t)], is given by

hKS[ρ(r, t)] = −1

2
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δρ(r, t)
+ V̂ DIM(r, t) (3)

with the individual terms being the kinetic energy, the nuclear potential, the Coulomb po-

tential, the XC-potential, and the embedding operator V̂ DIM(r, ω) describing the molecule–

metal interactions. The embedding operator is given by

V̂ DIM(r, ω) =
∑

j

V̂ el(rj, ω) +
∑
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V̂ pol(rj, ω). (4)
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Morton, Jensen, J. Chem. Phys., 135, 134103, 2011, J. Chem. Phys., 133, 074103, 2010

Time-dependent density functional theory 

Effective Kohn-Sham operator

Embedding Operator

Image Field

External perturbation

Local Field
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DIM/QM - Polarizability

Morton, Jensen, J. Chem. Phys., 135, 134103, 2011, J. Chem. Phys., 133, 074103, 2010

The total interacting polarizability can formally 
be written as

↵tot = ↵mol + ↵NP + ↵mol�NP + ↵NP�mol

In DIM/QM all interactions between the 
molecule and the nanoparticle are included in 
the polarizability

↵DIM/QM = ↵mol + ↵mol�NP + ↵NP�mol

All local field effects are contained in the 
polarizability!
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DIM/QM - Damped response theory

First-order change in the density given by

where the first-order density matrix is given by

the polarizability can then 
be obtained as

where the matrix elements of the dipole 
operator is given by
Morton, Jensen, J. Chem. Phys., 135, 134103, 2011, J. Chem. Phys., 133, 074103, 2010
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DIM/QM - Input setup

As an example we will consider N2 - Ag68

$ADFHOME/examples/adf/DIMQM_Raman

1. DIMQM	


2. DIMPAR	


3. AOREPONSE 

To run a DIM/QM Raman calculation three 
block keys needs to be set:  
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Larger nanoparticles?
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Need to do a multiple 
nanoparticles of size 10-100nm!
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DIM/QM for large nanoparticles

Fast Solver using Cartesian Cell Multipole Method
121
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Figure 7.6. A timing study of the various solving methods that have been implemented into the DIM

code. The plot is for the number of hours to solve for the static polarizability (which requires solving
in the x, y, and z directions) versus the number of atoms in the system. The method that is associated
with each data set is given in Table 7.1. These calculations were performed on the workstation that is
described in the beginning of Section 7.3.

The direct solver is unique from the other methods in that the matrix is kept in memory, which

is the cause for the relatively low upper size limit of the systems studied. The memory usage

scales roughly as N2; Ag12431 used 5.6 GB, Ag100000 would use roughly 300 GB, and Ag1000000
would use roughly 25 TB! Clearly the direct solver is not well suited for large systems. The

scaling of the timing is also prohibative for large systems. If one were to use the direct solver to

solve a 1,000,000 atom system, it would take 6.32 years according to the functional form given in

Table 7.1. This method has been implemented to use a LAPACK routine that is optimized for

the processor architecture, and this results in remarkably fast code. The relative speed of a code

can qualitatively be measured by the prefactor of the functional fit. The prefactor for the direct

solver is on the order of 10�13, which is 103 times lower than the next lowest prefactor. This

means for small N (.4000 atoms) this method is much faster than any of the iterative solvers,

and in this regime the memory footprint is quite low for the direct solver. We note that the

functional form for the scaling (N2.83) is slightly better than the theoretical complexity of solving

a system of linear equations (O(N3)), and this is likely due to processor-specific optimizations

made in the proprietary library used to implement the direct solver.

The brute-force solver and single-level solver both have a functional form of ⇠N2, in very

good agreement with the theoretical complexity, which makes them much more e�cient than the

direct solver for large systems as is clearly seen in Figure 7.6. Even though both of these methods

are much more e�cient than the direct solver, they are still not e�cient enough for large systems;

the calculation of a 1,000,000 atom nanoparticle would take 35.93 days with the brute-force solver

and 7.64 days with the single-level solver. At &4000 atoms the single-level solver is more e�cient

than the direct solver; interestingly, at no size is the brute-force method more e�cient. Note

120

Algorithm 7.2 Algorithm to convert relative position to decimal cell number. In this algorithm,
a cell’s relative position is converted to binary, and the binary representation is used to directly
convert to a decimal number. For example, a cell whose relative position is (5, 1, 3), or 5 cells
from the 0th cell in the x-direction, 1 in the y-direction, and 3 in the z-direction, becomes the
binary number 100 001 111, which is converted to decimal cell number 271.

quotient[1 : 3] xyz[1 : 3] . Initiate the quotient with relative xyz position
iCell  0 . The cell’s decimal number
for iLevel = 0! l do

remainder[1 : 3] MOD(quotient[1 : 3], 2)
quotient[1 : 3] quotient[1 : 3]/2

iCell  iCell + remainder[1] ⇤ 23⇤i
Level�3

iCell  iCell + remainder[2] ⇤ 23⇤i
Level�2

iCell  iCell + remainder[3] ⇤ 23⇤i
Level�1

end for
iCell = iCell + 1 . Add one to turn from 0-based to 1-based

Table 7.1. The functional form of the scaling behavior for the di↵erent methods that are plotted in
Figure 7.6. Given with the functional form is the corresponding symbol in Figure 7.6 and the theoretical
complexity of the method.

Solver Symbol Functional Form Complexity

Direct N 5.8⇥ 10�13N2.83 O(N3)
Brute-Force ⌅ 9.9⇥ 10�10N1.99 O(N2)

Single-Level (Medium Grid) ⌥ 4.2⇥ 10�10N1.94 O
⇣

N

2

N

2

f

⌘

Multi-Level (Medium Grid) • 3.0⇥ 10�6N log(1.8⇥ 10�4N) O(N log(N))
Multi-Level (Coarse Grid) H 7.5⇥ 10�7N log(7.2⇥ 10�4N) O(N log(N))

L3 in 2-D space should have a total of 6 digits, so 1110! 001110. The algorithm that is used to

calculate this in 3-D is given in Algorithm 7.2.

7.4 Benchmarking of the DIM Code

As a way to compare the di↵erent solving methods, we have performed calculations on the same

data set on the same computer for each di↵erent solver. The data set is a series of Ag icosahedra

ranging in size from Ag55 to as large as Ag12431 for the direct solver, Ag104223 for the brute-

force solver, Ag190267 for the single-level solver, and Ag1071477 for the multi-level solver. As a

demonstration that DIM is usable even without access to a supercomputer, these timing tests were

performed on the workstation described at the beginning of Section 7.3.

In Figure 7.6, the time to solve for the static polarizability (which requires solving Eq. 7.5

for all three Cartesian directions) is plotted versus the number of atoms in the system for the

various solvers that are implemented. For each of these data sets, the corresponding symbol and

functional form of the scaling is given in Table 7.1, along with the theoretical complexity that

is associated with the method. Please note that because we could only solve a system up to

12,431 atoms with the direct solver, there are not enough black triangles to be visible on the plot;

however, the functional form can still be seen.
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Larger nanoparticles

Fast Solver using Cartesian Cell Multipole Method

Payton, Morton, Moore, Jensen, ACR, 47, 88-99, 2014

R = 20 nm ~ one million atoms!
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Distance Effect in SERS

Enhancement reduced at the surface due to overlapping 
charge-distributions of the molecule and the metal

Pyridine on the vertex of a 8 nm icosahedron @ 3.6 eV

Ag10179 Au10179

Payton, Morton, Moore, Jensen, ACR, 47, 88-99, 2014
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Inhomogeneous Electric Fields in SERS
Benzene on rough silver surface

Inhomogeneous electric fields 
lead to breakdown of dipole 

selection rules

β"

γ"
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Electric dipole, 
quadrupole, and magnetic 
dipole scattering observed

“A molecule GPS”

Apkarian et al., ACS Nano, 2012 

Murakoshi	
  et	
  al.	
  Nature	
  Photonics,	
  2013

Plasmon-Induced Electronic Excitation

NATURE PHOTONICS | VOL 7 | JULY 2013 | www.nature.com/naturephotonics 509

news & views

perturbation2. As an alternative to this 
chemical interaction picture, Moskovits 
et al. suggested that the field gradient 
near the surface might make it possible 
for the dipole–quadrupole term in the 
polarizability derivative to activate the 
observed modes3, 4. Polubotko5 also 
interpreted the appearance of forbidden 
modes in terms of the dipole–quadrupole 
SERS mechanism. It has been suggested that 
‘gradient-field Raman’ becomes important 
when the electric field varies rapidly over 
a given normal mode, leading to bands 
that can be observed by SERS and near-
field optical microscopy6. Furthermore, 
it has been argued that field gradient 
effects are important in observations of 
surface-enhanced Raman optical activity7. 
However, the field-gradient mechanism 
does not seem to be important for large 
molecules physisorbed (that is, physically 
adsorbed with minimal perturbations to 
their electronic structure) on a flat surface, 
because the intensity ratio of forbidden 
to allowed modes has been found to be 
independent of the excitation wavelength8. 
Electronic structure calculations indicate 
that the ratio of the field to the field 
gradient would have to have to be of the 
order of 1 Å (about 1,000 times smaller than 
for light in free space) for the field-gradient 
term to be comparable to the field term for 
nonresonant SERS9.

In Raman spectroscopy, the incident 
light induces an oscillating polarization 
in the molecule being observed. This 
oscillating polarization is modulated by 
the vibrational modes of the molecule, 
leading to oscillations at frequencies that are 
shifted higher (anti-Stokes scattering) and 
lower (Stokes scattering) than the incident 
frequency. Emission by these shifted dipoles 
leads to Raman (inelastic) light scattering, 
where the intensity is proportional to 
the square of the polarizability derivative 
with respect to the vibrational coordinate. 
The field generally couples to the dipole 
transition moment in electronic excitation 
of a molecule, so that the dipole–dipole 
polarizability derivative tends to govern 
Raman scattering; however, in the presence 
of a field gradient, light excites states 
through the quadrupole transition moment, 
and Raman scattering can arise from the 
dipole–quadrupole and quadrupole–
quadrupole polarizability derivatives. 
Figure 1 schematically depicts the coupling 
for the dipole–dipole and quadrupole–
quadrupole terms for electronic states 
associated with a particle-in-ring problem 
that has the same electronic quantum 
numbers as in the experiment by Takase 
and colleagues. In this experiment, because 
surface-enhanced resonance Raman 

scattering is observed for totally symmetric 
modes when the only significant excited 
state available is quadrupole allowed, 
presumably the quadrupole–quadrupole 
term is responsible for the observations. 
This contrasts with the above-mentioned 
field-gradient experiments for which 
Raman-forbidden lines were observed, as in 
those cases the dipole–quadrupole matrix 
element can be nonzero. 

How large are the field gradients 
generated by metal nanoparticle structures 
used in SERS? This issue has become much 
better defined in the past ten years as a 
result of several advances in theory and 
experiment. In particular, many studies 
have indicated the importance of high 
gradients in SERS of particle dimers with 
small gaps (~1 nm)10. It is therefore not 
surprising that the experiments by Takase 
and co-workers involve a dimer structure 
with a gap of 1–2 nm.

Electrodynamics calculations predict 
that the ratio of the field to the field gradient 
is of the order of 1 nm for a 1-nm-gap 
structure, but this ratio may be larger if 

quantum effects are included. If the ratio is 
1 nm, dipole–quadrupole polarizabilities 
will contribute less than 10% to the SERS 
results when both dipole and quadrupole 
transition moments are large. This is the 
same conclusion that Kedziora and Schatz 
reached in 1999; however, the importance 
of small gaps and the sizes of fields and field 
gradients has subsequently been clarified. 
Thus, it is only when the dipole–dipole 
term is small or zero due to symmetry that 
the dipole–quadrupole and quadrupole–
quadrupole terms become dominant. This 
appears to be the situation that Takase and 
co-workers have explored.

Raman spectroscopy is already an 
important technique for characterizing 
carbon nanotubes and many other 
molecules. The demonstration of the 
importance of field-gradient effects by 
Takase and co-workers will lead to new 
directions in using SERS for these systems. ❒

Christine M. Aikens is at the Department of Chemistry, 
Kansas State University, Manhattan, Kansas 66506, 
USA. Lindsey R. Madison and George C. Schatz 

Figure 1 | Important electronic transitions for resonance Raman spectroscopy. a, For the particle-in-ring 
model, the Δn = ±1 transition has a nonzero dipole transition moment µ, which couples to the field E to 
give resonance Raman scattering. b, The Δn = ±2 transition has a nonzero quadrupole transition moment 
Θ, which couples to the field gradient to give resonance Raman scattering. At the bottom of each panel, 
representative wavefunctions associated with the particle-in-ring model for n = 0, ±1, ±2 are depicted. 
Multiplying these by μ 5 sin ϕ and Θ 5 sin 2ϕ shows why the ±1 transition is dipole allowed, whereas the 
±2 transition is quadrupole allowed.

Dipole forbidden; quadrupole allowed

a
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Moskovits	
  et	
  al.	
  J.	
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  Phys.,	
  1980,	
  73,	
  6068



Lasse Jensen - ADF webinar - February -2014

Inhomogeneous fields in SERS: Theory

Field gradient

Dhabih V. Chulhai Lasse Jensen

January 4, 2013

Abstract

1 Introduction

Commonly used accronyms: electric dipole-dipole polarizability (↵) tensor, electric dipole-quadrupole po-

larizability (A) tensor, electric dipole-magnetic dipole polarizability (G) tensor, surface-enhanced Raman

spectroscopy (SERS), surface-enhanced Raman optical activity (SEROA), quadrupolar SERS (SEQRS),

2 Theory

2.1 Field-gradient SERS

The calssical derivation of the Raman equations by Barron1 has been extended to include the local field

(and gradient) near the surface of a metal nanoparticle. The fields that induce multipole moments in a

molecule may be written as a sum of the fields from the incident light and the local field:

E
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where E

(0) and n

i are the intensity and vector describing the incident light. The Einstein summation

convention is employed for repeated indices. E
↵

, E
↵�

, and B

↵

are the electric field, electric field gradient,

and magnetic field perturbing the molecule which induce multipole moments according to:

µ
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where µ, ✓, and m are the induced dipole, quadrupole, and magnetic dipole and ↵, A, and G are

the electric dipole-dipole, electric dipole-quadrupole, and electric dipole-magnetic dipole polarizabilities

respectively.

The scattered electric field due to these oscillating multipole moments may now be written as:

1

The induced dipole moment in an inhomogeneous field 
is given by

Dressed polarizability formalism - QM + ED

↵00
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⇥
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Electric dipole

Quadrupole

Magnetic dipole

Raman scattering in an inhomogeneous field

Chulahi, Jensen, J Phys. Chem. C. 117, 19622-19631 , 2013
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Inhomogeneous fields in SERS: Benzene

Figure 5: Simulated SERS of benzene titled at 10◦ with respect to the surface (orientation
shown in inset). The radius of the substrate was taken to be 6 bohrs to reproduce the
intensities seen in Figure 2.

guments one can deduce, for the experimental spectrum in Figure 2,22 an averaged ensemble

orientation where benzene is tilted at some small angle. Indeed, we are able to reproduce

the relative intensities of the FG modes in Figure 2 by assuming a tilt of ∼ 10◦ of the plane

with respect to the surface, shown in Figure 5. We are able to correctly reproduce the

experimental spectrum seen in Figure 2 with the exception of ν10 (∼ 850 cm−1) and with

the modes in the region of 1100-1600 cm−1 being weaker than those in the experimental

spectrum. ν10 is an out-of-plane CH bending mode that is enhanced by a homogeneous local

field. Such a mode may be affected by physisorption onto the metal surface, which is not

captured in the effective polarizability presented here. The modes in the region 1100-1600

cm−1 may be weaker by comparison due to an over-estimation of the enhancement of ν1. We

have therefore confirmed that lowering of molecular symmetry is not required in order to

observe Raman-inactive modes. Indeed, the intensity of modes that become Raman-active as

a result of symmetry relaxation is generally very weak, and therefore a symmetry relaxation

argument is usually insufficient to describe the intensities seen for Raman-inactive modes in

experimental SERS.

12

Experimental observed bands reproduced assuming 
“atomic roughness” and 10 degree angle 

EXP.	
  Moskovits,	
  M.,	
  DiLella,	
  D.P.,	
  J.	
  Chem.	
  Phys.,	
  1980,	
  73,	
  6068-­‐6075.

Chulahi, Jensen, J Phys. Chem. C. 117, 19622-19631 , 2013



Lasse Jensen - ADF webinar - February -2014

Inhomogeneous fields in SERS: DIM/QM

Figure 9: SERS spectrum of benzene sitting flat on the vertex of an Ag2057 icosahedron
(inset) simulated with a) the DIM/QM method, b) local field from the DIM system, and c)
local field and gradient from the DIM system. The systems were excited at 488 nm which is
far from the plasmon resonance of the Ag2057 cluster and results in enhancement of the NRS
spectrum by a factor of 6.

19

DIM/QM

SERS$(EDIM)$

SERS$(EDIM, 
�EDIM)$

DIM/QM	
  simulaFons	
  
contains	
  the	
  local	
  field-­‐
gradient	
  effects.

Chulahi, Jensen, J Phys. Chem. C. 117, 19622-19631 , 2013
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Conclusions

!
!

• Essential to describe the detailed atomistic structure of the nanoparticle 
and the specific orientation of the molecule relative to the nanoparticle 

!
• SERS enhancements depend strongly on the adsorption site and 

molecular electronic and geometric structure 
!

• |E|4 approximation to SERS works well a little away from the surface 
but needs to be corrected at the surface of the nanoparticle 
!

• Field gradient effects are important and can provide specific information 
about molecular orientations using SERS 

!
• Hybrid methods like DIM/QM that combine electronic structure theory 

with electrodynamics simulations are promising avenues for obtaining 
detailed insights into plasmon-molecule coupling



Lasse Jensen - ADF webinar - February -2014

Acknowledgement

- Tony Huang (PSU)	


- Amar Flood (IU)	


- Jon Camden (UT)	


- Paul Weiss (UCLA)	


- Niri Govind (PNNL)	


- Ray Schaak (PSU)	


- Ben Lear (PSU)	


- Ayusman Sen (PSU)	


- Scott Phillips (PSU)

Current Group:	


-Dr. Linlin Jensen	


-Dr. Daniel Silverstein	


-Justin Moore	


-Phillip Weiss	


-Dhabih Chulhai 
-Zhongwei Hu

Collaborators:

Funding:	


- Start-up funds Penn State	


- MRSEC Penn State Center for Nanoscale Science	


- NSF	


- CaSTL, Chemistry at the Space-Time Limit	



Past members	


-Dr. John Payton 
-Dr. Seth Morton (Ph.D ’12) 
-Dr. Bala K. Juluri (Ph.D. ’11)	


-Ebo Ewusi-Annan (M.S. ’10)	


-Krista A. Kane (M.S. ’09)	


-Shannon Fusina*	


-Victoria Henderson*	


-John Rinaldi*	


-Ishita Trivedi*	


-Phil Salant*

*undergraduate student


