Molecule Metal Molecule Metal Molecule Metal Molecule Metal Molecule Metal Molecule Metal Molecule Simulating Simulating Surface-Enhanced Raman Scattering Lumo with ADF

Lasse Jensen

HOMO

a) Ground state chemical enhancement

HOMO

Metal

EF

Department of Chemistry Pennsylvania State University University Park

HOMO

jensen@chem.psu.edu

Surface-Enhanced Spectroscopy

SERS: The EM mechanism

Raman intensities given by change in polarizability as the molecule vibrates

$$I_{\parallel}^{R} \propto \left| \frac{\partial \alpha_{\parallel}}{\partial Q_{M}} \right|^{2} = \left(\frac{\partial \alpha_{M}}{\partial Q_{m}} \right)^{2} \times \frac{(1 + 2\alpha_{NP}/R^{3})^{4}}{(1 - 4\alpha_{NP}\alpha_{M}/R^{6})^{4}} = \left(\frac{\partial \alpha_{M}}{\partial Q_{m}} \right)^{2} \times \left| E_{\parallel}^{loc} \right|^{4}$$

SERS depends on the local field to the fourth power.

Lasse Jensen - ADF webinar - February -2014

DIM/QM for Molecular Plasmonics

Developing new tools for describing optical properties of molecules near metal nanoparticles by combining Quantum Chemistry and Atomistic Electrodynamics Models

$$\frac{\partial}{\partial t}\phi_i(\boldsymbol{r},t) = h_{\rm KS}[\rho(\boldsymbol{r},t)]\phi_i(\boldsymbol{r},t) \quad \rho(\boldsymbol{r},t) = \sum_{i=1}^{occ} n_i |\phi_i(\boldsymbol{r},t)|^2$$

$$h_{\rm KS}[\rho(\boldsymbol{r},t)] = -\frac{1}{2}\nabla^2 - \sum_{m} \frac{Z_m}{|\boldsymbol{r} - R_m|} + \int \frac{\rho(\boldsymbol{r},t)}{|\boldsymbol{r} - \boldsymbol{r}'|} dr' + \frac{\delta E^{XC}}{\delta\rho(\boldsymbol{r},t)} + \hat{V}^{\rm DIM}(\boldsymbol{r},t)$$

Applications

- Surface-enhanced Molecular Absorption
- Surface-enhanced Spectroscopy
- Metal-molecule Energy Transfer

PENNSTATE

Lasse Jensen - ADF webinar - February -2014

Atomistic model for Large Nanoparticles

Self-consistent solution can be found by solving a set of linear equations

$$egin{pmatrix} oldsymbol{A}(\omega) & -oldsymbol{M} & 0 \ -oldsymbol{M}^T & -oldsymbol{C}(\omega) & 1 \ 0 & 1 & 0 \end{pmatrix} egin{pmatrix} oldsymbol{\mu}^{\mathrm{ind}}(\omega) \ oldsymbol{\mu}^{\mathrm{ind}}(\omega) \ \lambda \end{pmatrix} = egin{pmatrix} oldsymbol{E}^{\mathrm{SCF}}(\omega) \ oldsymbol{V}^{\mathrm{SCF}}(\omega) \ oldsymbol{q}^{\mathrm{cluster}} \end{pmatrix}$$

Jensen, Jensen J. Phys. Chem. C, 2008, 112,15697, J. Phys. Chem. C, 113, 15182, 2009

DIM/QM Energy

DIM/QM Energy functional

 $U^{\text{TOT}}[\rho] = U^{\text{QM}}[\rho] + U^{\text{DIM}/\text{QM}}[\rho] = U^{\text{QM}}[\rho] + U^{\text{POL}}[\rho] + U^{\text{VDW}}$

Polarization Energy

$$U^{\rm POL}[\rho] = -\frac{1}{2} \sum_{m}^{N} \mu_{m,\alpha}^{\rm ind} E_{m,\alpha}^{\rm SCF} + \frac{1}{2} \sum_{m}^{N} q_m^{\rm ind} V_m^{\rm SCF}$$

Variational minimization of total energy leads to effective Kohn-Sham equations

$$h_{ ext{KS}}[
ho(oldsymbol{r}_j)] = -rac{1}{2}
abla^2 - \sum_J rac{Z_J}{|oldsymbol{r}_j - oldsymbol{R}_J|} + \int rac{
ho(oldsymbol{r}_j)}{|oldsymbol{r}_j - oldsymbol{r}_i|} doldsymbol{r}_i + rac{\delta E^{XC}}{\delta
ho(oldsymbol{r}_j)} + \hat{V}^{ ext{DIM}}(oldsymbol{r}_j)$$

PENNSTATE

Payton, Morton, Moore, Jensen, JCP , 136, 214103, 2012, ACR, 47, 88-99, 2014

Coordination dependent VDW Energy

Standard AMBER LJ 6-12 potential

$$U^{\text{VDW}} = \sum_{Jm} \varepsilon_{Jm} \left[\left(\frac{r_{e,Jm}}{|\boldsymbol{r}_{Jm}|} \right)^{12} - 2 \left(\frac{r_{e,Jm}}{|\boldsymbol{r}_{Jm}|} \right)^{6} \right]$$

With coordination dependent parameters

$$\begin{aligned} r_{e,m} &= r_{e,0} + (r_{e,1} - r_{e,0}) \, \frac{\text{MIN}(CN_m, CN_{\text{max}})}{CN_{\text{max}}} \\ \varepsilon_m &= \varepsilon_0 + (\varepsilon_1 - \varepsilon_0) \, \frac{\text{MIN}(CN_m, CN_{\text{max}})}{CN_{\text{max}}} \end{aligned}$$

Payton, Morton, Moore, Jensen, JCP , 136, 214103, 2012, ACR, 47, 88-99, 2014

Lasse Jensen - ADF webinar - February -2014

The DIM/QM model

Time-dependent density functional theory

$$i\frac{\partial}{\partial t}\phi_i(\boldsymbol{r},t) = h_{\rm KS}[\rho(\boldsymbol{r},t)]\phi_i(\boldsymbol{r},t) \qquad \rho(\boldsymbol{r},t) = \sum_{i=1}^{occ} n_i |\phi_i(\boldsymbol{r},t)|^2$$

Effective Kohn-Sham operator

$$h_{\rm KS}[\rho(\boldsymbol{r},t)] = -\frac{1}{2}\nabla^2 - \sum_m \frac{Z_m}{|\boldsymbol{r} - R_m|} + \int \frac{\rho(\boldsymbol{r},t)}{|\boldsymbol{r} - \boldsymbol{r}'|} d\boldsymbol{r}' + \frac{\delta E^{XC}}{\delta\rho(\boldsymbol{r},t)} + \hat{V}^{\rm pert}(\boldsymbol{r},t) + \hat{V}^{\rm DIM}(\boldsymbol{r},t)$$

Embedding Operator

$$\hat{V}^{ ext{DIM}}(m{r},\omega) = \sum_{j} \hat{V}^{ ext{el}}(r_j,\omega) + \sum_{j} \hat{V}^{ ext{pol}}(r_j,\omega), \quad \text{Image Field}$$

External perturbation

$$\hat{V}^{\mathrm{pert}}(\boldsymbol{r},\omega) = \sum_{j} \hat{V}^{\mathrm{ext}}(r_{j},\omega) + \sum_{j} \hat{V}^{\mathrm{loc}}(r_{j},\omega),$$

Morton, Jensen, J. Chem. Phys., 135, 134103, 2011, J. Chem. Phys., 133, 074103, 2010

Lasse Jensen - ADF webinar - February -2014

Local Field

DIM/QM - Polarizability

The total interacting polarizability can formally be written as

$$\alpha^{tot} = \alpha^{mol} + \alpha^{NP} + \alpha^{mol-NP} + \alpha^{NP-mol}$$

In DIM/QM all interactions between the molecule and the nanoparticle are included in the polarizability

$$\alpha^{DIM/QM} = \alpha^{mol} + \alpha^{mol-NP} + \alpha^{NP-mol}$$

PENNSTATE

All local field effects are contained in the polarizability!

Morton, Jensen, J. Chem. Phys., 135, 134103, 2011, J. Chem. Phys., 133, 074103, 2010

DIM/QM - Damped response theory

First-order change in the density given by

$$ho^{\prime}(oldsymbol{r},\omega) = \sum_{i,a} P^{\prime}_{ia}(\omega) \phi_i(oldsymbol{r}) \phi^*_a(oldsymbol{r}) + P^{\prime}_{ai}(\omega) \phi_a(oldsymbol{r}) \phi^*_i(oldsymbol{r}).$$

where the first-order density matrix is given by

$$\begin{split} P_{st}'(\omega) &= \frac{\Delta n_{st}}{\omega - \omega_{st} + i\Gamma} \begin{bmatrix} V_{st}^{'\text{pert}}(\omega) + \sum_{u,v} K_{st,uv} P_{uv}'(\omega) \end{bmatrix}. \\ \text{the polarizability can then} \\ \text{be obtained as} \\ \alpha_{\alpha\beta}(\omega) &= -\text{Tr}[\mathbf{H}^{\alpha}(\omega)\mathbf{P}^{\beta}(\omega)] \\ \text{where the matrix elements of the dipole} \\ \text{operator is given by} \\ H_{st}^{\alpha} &= \langle s | \hat{\mu}_{\alpha}(\omega) + \hat{V}_{\alpha}^{\text{loc}}(\omega) | t \rangle \end{split}$$

PENNSTATE

Morton, Jensen, J. Chem. Phys., 135, 134103, 2011, J. Chem. Phys., 133, 074103, 2010

Lasse Jensen - ADF webinar - February -2014

DIM/QM - Input setup

As an example we will consider N2 - Ag68

\$ADFHOME/examples/adf/DIMQM_Raman

To run a DIM/QM Raman calculation three block keys needs to be set:

- I. DIMQM
- 2. DIMPAR
- 3. AOREPONSE

Larger nanoparticles?

DIM/QM for large nanoparticles

Fast Solver using Cartesian Cell Multipole Method

Larger nanoparticles

$R = 20 \text{ nm} \sim \text{one million atoms!}$

Payton, Morton, Moore, Jensen, ACR, 47, 88-99, 2014

Distance Effect in SERS

Enhancement reduced at the surface due to overlapping charge-distributions of the molecule and the metal

Payton, Morton, Moore, Jensen, ACR, 47, 88-99, 2014

Inhomogeneous Electric Fields in SERS

Moskovits et al. J. Chem. Phys., 1980, 73, 6068

Plasmon-Induced Electronic Excitation

Murakoshi et al. Nature Photonics, 2013

Lasse Jensen - ADF webinar - February -2014

Electric dipole,

quadrupole, and magnetic dipole scattering observed

Apkarian et al., ACS Nano, 2012

"A molecule GPS"

Inhomogeneous electric fields lead to breakdown of dipole selection rules PENNSTATE

Inhomogeneous fields in SERS: Theory

The induced dipole moment in an inhomogeneous field is given by

$$\mu_{\alpha} = \alpha_{\alpha\beta} E_{\beta} + \frac{1}{3} A_{\alpha\beta\gamma} E_{\beta\gamma} + G_{\alpha\beta} B_{\beta} + \cdots$$

Raman scattering in an inhomogeneous field

$$\begin{aligned} \alpha_{\alpha\beta}^{\prime\prime} &= \left[\delta_{\alpha\gamma} + F_{\gamma}^{\mathrm{loc},\alpha}(\omega_{S}) \right] \alpha_{\gamma\delta} \left[\delta_{\beta\delta} + F_{\delta}^{\mathrm{loc},\beta}(\omega_{L}) \right] \mathsf{Electric \ dipole} \\ &+ \frac{1}{3} \left[\delta_{\alpha\gamma} + F_{\gamma}^{\mathrm{loc},\alpha}(\omega_{S}) \right] A_{\gamma\delta\epsilon} F_{\delta\epsilon}^{\mathrm{loc},\beta}(\omega_{L}) \qquad \mathsf{Quadrupole} \\ &- \frac{i}{\omega} \left[\delta_{\alpha\gamma} + F_{\gamma}^{\mathrm{loc},\alpha}(\omega_{S}) \right] G_{\gamma\delta} \epsilon_{\delta\epsilon\zeta} F_{\epsilon\zeta}^{\mathrm{loc},\beta}(\omega_{L}) \qquad \mathsf{Magnetic \ dipole} \end{aligned}$$

Dressed polarizability formalism - QM + ED

Chulahi, Jensen, J Phys. Chem. C. 117, 19622-19631, 2013

Inhomogeneous fields in SERS: Benzene

Experimental observed bands reproduced assuming "atomic roughness" and 10 degree angle

Chulahi, Jensen, J Phys. Chem. C. 117, 19622-19631, 2013

Inhomogeneous fields in SERS: DIM/QM

DIM/QM simulations contains the local fieldgradient effects.

Chulahi, Jensen, J Phys. Chem. C. 117, 19622-19631, 2013

Conclusions

- Essential to describe the detailed atomistic structure of the nanoparticle and the specific orientation of the molecule relative to the nanoparticle
- SERS enhancements depend strongly on the adsorption site and molecular electronic and geometric structure
- |E|⁴ approximation to SERS works well a little away from the surface but needs to be corrected at the surface of the nanoparticle
- Field gradient effects are important and can provide specific information about molecular orientations using SERS
- Hybrid methods like DIM/QM that combine electronic structure theory with electrodynamics simulations are promising avenues for obtaining detailed insights into plasmon-molecule coupling

Acknowledgement

Current Group: -Dr. Linlin Jensen -Dr. Daniel Silverstein -Justin Moore -Phillip Weiss -Dhabih Chulhai -Zhongwei Hu

Past members -Dr. John Payton -Dr. Seth Morton (Ph.D '12) -Dr. Bala K. Juluri (Ph.D. '11) -Ebo Ewusi-Annan (M.S. '10) -Krista A. Kane (M.S. '09) -Shannon Fusina* -Victoria Henderson* -John Rinaldi* Funding: -Ishita Trivedi* -Phil Salant*

*undergraduate student

- Start-up funds Penn State
- MRSEC Penn State Center for Nanoscale Science - NSF
- CaSTL, Chemistry at the Space-Time Limit

Collaborators:

- Tony Huang (PSU)
- Amar Flood (IU)
- Jon Camden (UT)
- Paul Weiss (UCLA)
- Niri Govind (PNNL)
- Ray Schaak (PSU)
- Ben Lear (PSU)
- Ayusman Sen (PSU)
- Scott Phillips (PSU)

