Understanding hydrogen bonding with Kohn-Sham MO theory and Energy Decomposition Analysis.

Célia Fonseca Guerra

TCCM ADF Tutorial

Importance of Resonance-Assistance

In Watson-Crick Base Pair AT

Outline

- 1. B-DNA: Hydrogen bonds in Watson Crick base pairs
- 2. G-DNA: Cooperativity in Guanine Quartets
- 3. Importance of aromaticity for hydrogen bonds

Kohn-Sham DFT Approach

DFT with **ADF**:

- Accuracy ca. kcal/mol, trends better

Adenine - Thymine

Method	N6-H···O4 (Å)	N1…H-N3 (Å)	∆H ₂₉₈ (kcal/mol)
HF/6-31G**	3.09	2.99	-10.5
HF/cc-pVTZ(-f)	3.06	2.92	-10.5
B3LYP/6-31G**	2.94	2.84	-10.9
BP86/TZ2P	2.85	2.81	-11.8
experiment	2.95	2.82	-12.0

Guanine - Cytosine

Method	N2-HO2 (Å)	N1-H…N3 (Å)	06…H-N4 (Å)	∆H ₂₉₈ (kcal/mol)
	-			
HF/6-31G**	3.02	3.04	2.92	-21.9
HF/cc-pVTZ(-f)	2.92	2.95	2.83	-21.2
B3LYP/6-31G**	2.92	2.93	2.79	-24.0
BP86/TZ2P	2.87	2.88	2.73	-23.8
experiment	2.86	2.95	2.91	-21.0

Adenine-Thymine with H_2O and Na^+

Experimental values: 2.95 Å 2.82 Å

Adenine-Thymine with H₂O and Na⁺

Experimental values: 2.95 Å 2.82 Å

Guanine-Cytosine with H₂O and Na⁺

Experimental values: 2.91 Å 2.95 Å 2.86 Å

Energy Decomposition Analysis: Closed-Shell Fragments

$$Q_A^{VDD} = -\int_{\substack{\text{Voronoi}\\\text{cell of A}}} \left(\rho^{molecule}(\mathbf{r}) - \sum_B \rho_B(\mathbf{r}) \right) d\mathbf{r}$$

J. Comput. Chem **2004**, 25, 189

I. Watson-Crick Base Pairs

Adenine – Thymine

Guanine – Cytosine

donor-acceptor interactions as important as electrostatic interactions

C. Fonseca Guerra et al., *Chem. Eur. J* **1999**, *5*, 3581 and *Angew. Chem. Int. Ed.* **1999**, *38*, 2942

I. B-DNA: Energy Decomposition Analysis

	AT	GC
ΔE_{Bond}	-13.0	-26.5
$\Delta E_{\rm prep}$	2.3	4.1
ΔE_{int}	-15.3	-30.6
$\Delta E_{\rm Pauli}$	39.2	52.1
ΔV_{elstat}	-32.1	-48.6
ΔE _{oi}	-22.4	-34.1

I. B-DNA: Energy Decomposition Analysis

	AT	GC
ΔE_{Bond}	-13.0	-26.5
$\Delta E_{\rm prep}$	2.3	4.1
$\Delta E_{\rm int}$	-15.3	-30.6
$\Delta E_{\rm Pauli}$	39.2	52.1
ΔV_{elstat}	-32.1	-48.6
ΔE _{oi}	-22.4	-34.1
ΔE_{σ}	-20.7	-29.3
ΔE_{π}	-1.7	-4.8

I. B-DNA: MO diagrams of AT and GC

Voronoi Deformation Density Method

$$\Delta Q_{\rm A} = - \int_{\substack{\text{Voronoi}\\\text{cell of A}}} \left[\rho_{\text{pair}}(\mathbf{r}) - \rho_{\text{base1}}(\mathbf{r}) - \rho_{\text{base2}}(\mathbf{r}) \right] d\mathbf{r}$$

Separation of VDD in σ and π :

*

$$\Delta Q_{\rm A} = \Delta Q_{\rm A}^{\,\sigma} + \Delta Q_{\rm A}^{\,\pi}$$

For each irreducible representation:

$$\Delta Q_{\rm A}^{\Gamma} = -\int_{\substack{\text{Voronoi}\\\text{cell of A}}} \left[\rho_{\rm pair}^{\Gamma}(\mathbf{r}) - \rho_{\rm base1}^{\Gamma}(\mathbf{r}) - \rho_{\rm base2}^{\Gamma}(\mathbf{r}) \right] d\mathbf{r}$$

where
$$\rho^{\Gamma} = \sum_{i \in \Gamma}^{\text{occ}} |\psi_i^{\Gamma}|^2$$

Charge rearrangements with VDD

AdenineThymine $\Delta Q_{\rm Base}$.03-.03electron

Charge rearrangements

$$\Delta Q_{\text{Pauli,A}} = -\int_{\text{Voronoi cell}} \left(\rho_{\text{complex}}^0(\mathbf{r}) - \sum_{\text{subsystems}} \rho_i(\mathbf{r}) \right) d\mathbf{r}$$

$$\Delta Q_{\text{oi},A} = - \int \left(\rho_{\text{complex}}(\mathbf{r}) - \rho_{\text{complex}}^{0}(\mathbf{r}) \right) d\mathbf{r}$$

Voronoi cell
of A in molecule

 $\Delta QPauli, A \text{ and } \Delta Qoi, A \text{ can also be decomposed into contributions of different irreducible representations } \Gamma$

I. B-DNA: charge flow due to Pauli repulsion from VDD

I. B-DNA: charge flow due to orbital interactions from VDD

I. B-DNA: Synergy in hydrogen bonds

RemoveFragOrbitals

I. B-DNA: Synergy in hydrogen bonds $A(\sigma, -)T(-, -) \longrightarrow$ charge flow from **T** to **A** $A(-,-)T(\sigma,-) \longrightarrow$ charge flow from A to T $A(-,\pi)T(-,-) \longrightarrow polarization on A$ $A(-,-)T(-,\pi) \longrightarrow polarization on T$ $A(\sigma, -)T(\sigma, -) \longrightarrow$ only charge transfer $A(-,\pi)T(-,\pi) \longrightarrow$ only polarization

I. B-DNA: Role of π electrons

Base pairs calculated with and without π -virtuals

I. B-DNA: Conclusions on RAHB

- Electrostatic interaction
- Orbital interaction
 - Charge transfer in σ system
 - Some assistance by π delocalisation

But also in G-DNA

2. G-DNA: Guanine quartet

2. G-DNA: In Telomeres

Nobel Prize in Medicine 2009

for the discovery of how chromosomes are protected by telomeres and the enzyme telomerase

Blackburn

Greider

Szostak

2. G-DNA: In Telomeres

 $4^*\Delta E(\mathsf{G}_2) < \Delta E(\mathsf{G}_4)$

2. G-DNA: Guanine and Xanthine

2. G-DNA: Guanine and Xanthine

 $4 \bullet \Delta E(G_2) < \Delta E(G_4) \qquad 4 \bullet \Delta E(X_4)$

 $4 \bullet \Delta E(Xan_2) = \Delta E(Xan_4)$

Chem. Eur. J. 2011, 17, 12612
2. G-DNA: Guanine and Xanthine

Chem. Eur. J. 2011, 17, 12612

2. G-DNA: Guanine and Xanthine

Quartet	Symmetry	L	E _{bond}
G ₄	S ₄		-79.8
	C _{4h}		-79.1
X ₄	C ₄		-66.5
	C _{4h}		-65.5

- *G*₄ stronger bound than *X*₄
- C_{4h} symmetry applicable

Chem. Eur. J. 2011, 17, 12612

2. G-DNA: Cooperativity

Synergy = $\Delta E_{int} - (4^* \Delta E_{pair} + 2^* \Delta E_{diag})$

2. G-DNA: Cooperativity

Quartet	$\Delta E_{\rm int}$	ΔE_{sum}	$\Delta E_{\rm int} - \Delta E_{\rm sum}$
G ₄	-89.1	-68.3	
G_4 no π	-75.4	-61.2	
X ₄	-72.6	-71.1	
X ₄ no π	-64.6	-62.2	

2. G-DNA: Cooperativity

Quartet	$\Delta E_{\rm int}$	ΔE_{sum}	$\Delta E_{\rm int}$ –	ΔE _{sum}
G ₄	-89.1	-68.3		-20.8
G_4 no π	-75.4	-61.2		-14.3
X ₄	-72.6	-71.1		-1.5
X ₄ no π	-64.6	-62.2		-2.4

- cooperativity

- even when π electrons do **NOT** cooperate!

2. G-DNA: $G_4 - [B_4] - G_4$

$$\Delta E_{int} = \left[\Delta E(G_{12}) - \Delta E(G_8)\right] - 4^* \left[\Delta E(G_9) - \Delta E(G_8)\right]$$
Quartet
Base

2. G-**DNA**: $G_4 - [B_4] - G_4$

Quartet	$\Delta E_{\rm int}$	ΔE_{sum}	$\Delta E_{\rm int} - \Delta E_{\rm sum}$
G ₄	-87.0	-71.6	
X ₄	-73.4	-72.3	

2. G-DNA: $G_4 - [B_4] - G_4$

Quartet	$\Delta E_{\rm int}$	ΔE_{sum}	$\Delta E_{\rm int} - E_{\rm int}$	∆E _{sum}
G ₄	-87.0	-71.6		-15.3
X ₄	-73.4	-72.3		-1.1

Cooperativity between H-bonds in stack!

2. G-DNA: $G_4 - K^+ - [B_4] - K^+ - G_4$

 $\Delta E_{int} = [\Delta E(G_{12}K_2^{2+}) - \Delta E(G_8K_2^{2+})] - 4*[\Delta E(G_9K_2^{2+}) - \Delta E(G_8K_2^{2+})]$ Quartet
Base

2. G-DNA: $G_4 - K^+ - [B_4] - K^+ - G_4$

 Quartet
 ΔE_{int} ΔE_{sum} Synergy

 $G_A - K^+ - [G_A] - K^+ - G_A$ G_A -72.7
 -54.8
 -17.9

Cooperativity under "natural" conditions

Ņ

Q

 G_4

	G ₂	G ₃
	(G+G)	(G ₂ +G)
ΔE _{oi}	-16.4	-18.3
ΔE_{Pauli}	30.7	30.0
ΔV_{elstat}	-26.2	-29.9
$\Delta E_{\rm disp}$	-4.2	-4.4
$\Delta E_{\rm int}$	-16.1	-22.7

	G ₂	G ₃	G ₄
	(G+G)	(G ₂ +G)	(G ₃ +G)
ΔE _{oi}	-16.4	-18.3	-42.1
ΔE_{Pauli}	30.7	30.0	60.9
ΔV_{elstat}	-26.2	-29.9	-60.6
$\Delta E_{\rm disp}$	-4.2	-4.4	-8.6
$\Delta E_{\rm int}$	-16.1	-22.7	-50.3

Ņ

Ó NH NH

	G ₂ (G+G)	G ₃ (G ₂ +G)	G ₄ (G ₃ +G)	[G ₂ + G -4G ₂ -2	₃ + G ₄] 2G _{2diag}
ΔE _{oi}	-16.4	-18.3	-42.1		-10.8
ΔE_{Pauli}	30.7	30.0	60.9		-1.4
ΔV_{elstat}	-26.2	-29.9	-60.6		-8.6
$\Delta E_{\rm disp}$	-4.2	-4.4	-8.6		0.0
$\Delta E_{\rm int}$	-16.1	-22.7	-50.3		-20.8

-NH

-NH

-O--HN--

-N---HN--

 G_3

O N

	G ₂ (G+G)	G ₃ (G ₂ +G)	G ₄ (G ₃ +G)	[G ₂ + G -4G ₂ -2	₃ + G ₄] 2G _{2diag}
ΔE _{oi}	-16.4	-18.3	-42.1		-10.8
ΔE_{Pauli}	30.7	30.0	60.9		-1.4
$\Delta V_{\rm elstat}$	-26.2	-29.9	-60.6		-8.6
$\Delta E_{\rm disp}$	-4.2	-4.4	-8.6		0.0
$\Delta E_{\rm int}$	-16.1	-22.7	-50.3		-20.8
ΔE_{σ}	-14.6	-16.0	-35.9		-7.8
ΔE_{π}	-1.8	-2.3	-6.2		-3.0

2. G-DNA: Electrostatic interaction

In mili-electrons

2. G-DNA: MO-diagram

Stronger

Weaker

$$\frac{\left<\sigma_{\text{LP}}\left|\sigma_{\text{N-H}}^{*}\right>^{2}\right.}{E_{\sigma_{\text{LP}}}-E_{\sigma_{\text{N-H}}^{*}}}$$

2. G-DNA: Donor orbitals G_4 (eV)

2. G-DNA: Acceptor orbitals G_4 (eV)

2. G-DNA: Cooperativity G₄

- about 20 kcal/mol
- in gas phase, stack and telomere
- not due to RAHB!
- due charge separation in σ system

due to covalent component in hydrogen bonds

3. Aromaticity: Why *sp*² beats *sp*³?

-17.9 kcal/mol

-8.9 kcal/mol

3. Aromaticity: Resonance-Assisted Hydrogen Bonding

In Watson-Crick Base Pair AT

 π electrons "assist" the hydrogen bonds

3. Aromaticity: Importance

3. Aromaticity: H-bond distances and energies

3. Aromaticity: Electronic structure of A, T & mimics

3. Aromaticity: MO diagram for AT

3. Aromaticity: Occupied orbitals of A

A A' A"

-5.7

-5.6

-5.8

-10.9

 $\sigma_{\text{HOMO-1}}$

*σ*HOMO

3. Aromaticity: Unoccupied orbitals of A

A A' A"

-0.1

0.4

 σ_{LUMO+1}

 σ_{LUMO}

3. Aromaticity: Occupied orbitals of T

 σ_{HOMO}

 $\sigma_{\text{HOMO-1}}$

-7.3

-9.8

		ΔΕ	$\Delta E_{\rm prep}$	$\Delta E_{\rm int}$	ΔE_{elstat}	ΔE_{Pauli}	ΔE_{σ}	ΔE_{π}	$\Delta E_{\rm disp}$
А	т	-16.7							
А	T'	-16.4							
А	Τ"	-15.2							
A'	Т	-16.4							
A'	T'	-16.0							
A'	Τ"	-15.2							
Α"	Т	-16.2							
Α"	T'	-16.8							
Α"	Τ"	-16.1							

		ΔΕ	$\Delta E_{\rm prep}$	$\Delta E_{\rm int}$	ΔE_{elstat}	ΔE_{Pauli}	ΔE_{σ}	ΔE_{π}	$\Delta E_{\rm disp}$
А	т	-16.7	1.8	-18.5					
А	T'	-16.4	2.0	-18.4					
А	Τ"	-15.2	1.4	-16.7					
A'	т	-16.4	1.8	-18.3					
A'	T'	-16.0	1.9	-17.9					
A'	Τ"	-15.2	1.5	-16.7					
Α"	Т	-16.2	2.3	-18.5					
Α"	T'	-16.8	2.5	-19.4					
Α"	Τ"	-16.1	1.8	-17.9					

		ΔΕ	$\Delta E_{\rm prep}$	$\Delta E_{\rm int}$	ΔE_{elstat}	ΔE_{Pauli}	ΔE_{σ}	ΔE_{π}	$\Delta E_{\rm disp}$
А	т	-16.7	1.8	-18.5	-31.9	39.9			
А	T'	-16.4	2.0	-18.4	-31.2	39.4			
А	Τ"	-15.2	1.4	-16.7	-27.3	32.0			
A'	Т	-16.4	1.8	-18.3	-31.0	38.6			
A'	T'	-16.0	1.9	-17.9	-30.0	37.9			
A'	Τ"	-15.2	1.5	-16.7	-26.8	31.3			
Α"	Т	-16.2	2.3	-18.5	-31.2	38.2			
Α"	T'	-16.8	2.5	-19.4	-31.5	38.2			
Α"	Τ"	-16.1	1.8	-17.9	-28.4	32.3			

		ΔE	$\Delta E_{\rm prep}$	$\Delta E_{\rm int}$	ΔE_{elstat}	ΔE_{Pauli}	ΔE_{σ}	ΔE_{π}	$\Delta E_{\rm disp}$
А	Т	-16.7	1.8	-18.5	-31.9	39.9	-19.5	-1.6	
А	Τ'	-16.4	2.0	-18.4	-31.2	39.4	-20.0	-1.6	
А	Τ"	-15.2	1.4	-16.7	-27.3	32.0	-15.9	-1.6	
A'	Т	-16.4	1.8	-18.3	-31.0	38.6	-19.0	-1.5	
A'	Τ'	-16.0	1.9	-17.9	-30.0	37.9	-19.3	-1.6	
A'	Τ"	-15.2	1.5	-16.7	-26.8	31.3	-15.6	-1.6	
Α"	Т	-16.2	2.3	-18.5	-31.2	38.2	-19.7	-1.8	
Α"	T'	-16.8	2.5	-19.4	-31.5	38.2	-20.4	-1.9	
Α"	Τ"	-16.1	1.8	-17.9	-28.4	32.3	-16.6	-1.9	

		ΔΕ	$\Delta E_{\rm prep}$	$\Delta E_{\rm int}$	ΔE_{elstat}	ΔE_{Pauli}	ΔE_{σ}	ΔE_{π}	$\Delta E_{\rm disp}$
А	т	-16.7	1.8	-18.5	-31.9	39.9	-19.5	-1.6	-5.4
А	T'	-16.4	2.0	-18.4	-31.2	39.4	-20.0	-1.6	-5.0
А	Τ"	-15.2	1.4	-16.7	-27.3	32.0	-15.9	-1.6	-3.9
A'	Т	-16.4	1.8	-18.3	-31.0	38.6	-19.0	-1.5	-5.3
A'	T'	-16.0	1.9	-17.9	-30.0	37.9	-19.3	-1.6	-4.9
A'	Τ"	-15.2	1.5	-16.7	-26.8	31.3	-15.6	-1.6	-3.9
Α"	Т	-16.2	2.3	-18.5	-31.2	38.2	-19.7	-1.8	-4.1
Α"	T'	-16.8	2.5	-19.4	-31.5	38.2	-20.4	-1.9	-3.8
Α"	Τ"	-16.1	1.8	-17.9	-28.4	32.3	-16.6	-1.9	-3.4

3. Aromaticity: Donor-acceptor interactions

-19.4

-16.3
3. Aromaticity: σ component of $\Delta Q_{A,oi}$

3. Aromaticity: π component of $\Delta Q_{A,oi}$

-17.9 kcal/mol

-8.9 kcal/mol

3. sp^2 versus sp^3 : electrostatics

A''T''

a"t"

3. Energy Decomposition Analysis

Overlap <A" |T"> increases more than overlap <a" |t">

3. Energy Decomposition Analysis

Overlap <A" |T"> increases more than overlap <a" |t">

3. Energy Decomposition Analysis

3. MO analysis at $R(sp^2)$

Gross populations: N–H•••O	A″T″		a"t" at R(<i>sp</i> ²)
$\sigma_{ m LUMO+1}$ of A"	0.02	LUMO+1 of a"	0.01
$\sigma_{ m LUMO}$ of A"	0.01	LUMO of a"	0.02
σ _{HOMO} of T"	1.95	HOMO of t"	2.00
$\sigma_{ m HOMO-1}$ of T"	2.00	HOMO-1 of t"	1.96
σ _{HOMO} of T"	-5.85 eV	HOMO-1 of t"	-6.54 eV

3. MO analysis at $R(sp^2)$

Gross populations: N•••H–N	Α″Τ″		a"t" at R(<i>sp</i> ²)
$\sigma_{ m LUMO+1}$ of T"	0.04	LUMO+1 of t"	0.02
$\sigma_{ m LUMO}$ of T"	0.03	LUMO of t"	0.01
σ _{HOMO} of A"	1.91	HOMO of a"	1.93
$\sigma_{ m HOMO-1}$ of A"	2.00	HOMO-1 of a"	1.99
$\sigma_{\rm HOMO}$ of A"	-5.80 eV	HOMO of a"	-6.31 eV
$< \sigma_{\rm HOMO} \sigma_{\rm LUMO} >$	0.23	< HOMO LUMO >	0.10

3. sp^2 and sp^3 : Conclusions

- π assistance is not exclusively due to aromaticity
- sp² systems have stronger hydrogen bonds than sp³: due to enhanced electrostatic interactions and also better covalent interactions.

Acknowledgements

G. Paragi

H. Zijlstra

N. Smits

L. Wolters

L. Guillaumes

S. Simon

Further reading on RAHB

- CEJ 1999, 5, 3581
- JACS 2000, 17, 12612
- CEJ 2011, 17, 12612
- CEJ 2014, 20, 9494
- PCCP, 2015, 17, 1585
- ChemOpen, 2015, 4, 318

http://www.few.vu.nl/~guerra/

Open Access