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Chapter 1

General Introduction

1.1 Introduction

All materials we are surrounded by are built from atoms. Atoms are enormously small
particles, which themselves are built from a positively charged nucleus surrounded by
negatively charged electrons. The electrons are attracted by the nucleus, and move with
high speed in specific shells (also called orbitals) around the nucleus. This is understood
by first looking at Coulomb’s law,

q1q2

r2
12

∝ F. (1.1)

It tells us that the force exerted on the electron by the nucleus is inversely proportional
to the square of the distance between the electron and the nucleus. Electrons which are
closer to the nucleus are, according to Coulomb’s law, stronger bound, and thus have a
lower potential energy. However the velocity of the electrons is much higher near the nu-
cleus, and thus these electrons have a higher kinetic energy. That the electrons do not
fall onto the nucleus comes from the fact that the potential energy loss and kinetic energy
gain for the electron approaching the nucleus are balanced at a certain distance. In this
way stable orbitals are formed. In general, the closer the electrons are to the nucleus, the
lower the energy of the orbital in which the electrons are moving. It is a purely quantum
mechanical effect that such orbitals can contain at maximum two electrons, with opposite
spins according to the Pauli principle. The atoms can therefore be characterised by the
energy levels of the orbitals in which the electrons are located. This is called the electronic
structure of the atom.
In solids, the atoms are closely packed and arranged in an orderly way thereby forming
a regular lattice. The atoms are so closely packed that the outer shells of neighbouring
atoms start to overlap (See Fig. 1.1). The atomic picture of the electronic structure breaks
down and a new picture emerges, in which the electrons are no longer attached to a single
nucleus. In metals for instance, the electrons can ’jump’ from one atom to another, and
can more or less move freely through the solid. The electronic structure of a solid can, how-
ever, still be deduced from the constituent atoms. The energy levels of the atomic orbitals
combine into so-called energy bands, as can be seen in Fig. 1.1 for a metal. The highest
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Solid

nucleusorbital

Electronic Structure
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Fermi
level

Figure 1.1: Schematical view of a solid, the overlapping orbitals of neighbouring atoms
[left], and the electronic band structure [right].

energy level which is filled by electrons is called the Fermi level, which hence marks the
seperation between occupied and virtual states (See Fig. 1.1). Many properties of solids
are determined by the behaviour of the electrons in the bands that have energies close to
the Fermi level. Depending on the occupation of the energy bands a solid is called a metal,
a semiconductor, or an insulator (See Fig. 1.2).

metal semiconductor insulator

Fermi level Fermi levelFermi level

Figure 1.2: Schematical view of the occupation of the energy bands in a solid around the
Fermi level for a metal [left], semiconductor [middle], and insulator [right]. The gray bands
have lower energies and are hence occupied (filled), whereas the white bands have higher
energies and are unoccupied (empty).

In metals the Fermi level is somewhere inside an energy band, which implies that it takes
just a very small amount of energy to promote an electron to a higher energy level within
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the same band. This charaterises a metal and implies that the electrons can ’jump’ freely
from one atom to another, delocalising them over the complete metal. If the Fermi level is
somewhere between a completely occupied (valence) band and an unoccupied (conduction)
band, it takes a finite amount of energy to promote an electron from the valence band to
the conduction band. One can show that in the latter case the electrons are more or less
localised i.e., they can not easily ’jump’ from one atom to the next. If the energy difference
between the valence and the conduction band is big, the solid is called an insulator, and
when it is small the solid is called a semiconductor.
As was already mentioned before, many properties of solids are determined by the dynam-
ics of the electrons at the Fermi level. A prototypical example is the response of a solid to
an electromagnetic field. Such an external field provides the solids with the energy needed
to promote an electron to a higher energy level or band. The promoted electron leaves an
empty level behind, which is often referred to as a ’hole’. Both the excited electron and
the ’hole’ are free to move. Therefore, the response of a solid to such an external field con-
sists of the formation of electron-hole pairs, which respond to the electric field and cause
electrical currents to flow in the solid. These induced currents give rise to an induced field,
which tends to oppose, i.e., screen, the externally applied field. The perturbing field is
effectively reduced inside the solid. In metals the electrons are able to flow over very large
distances, as we already described before, they are able to completely screen the externally
applied electric field to which the solid is exposed. However, at optical frequencies the
screening can only be partial due to the inertia of the electrons. In insulators this screen-
ing is also restricted since in these materials the electronic charge can not flow over such
large distances. The charge density then merely changes by, what is called polarization of
the solid.
Many physical properties of many-particle systems have been under constant investiga-
tion during the past century. In general the description of the interacting many-particle
systems is too complicated and approximations need to be made. By now several ap-
proximate methods are available to model the interacting many-particle systems. In the
Born-Oppenheimer approximation the motion of the electrons is separated from the mo-
tion of the nuclei, which is much slower. This reduces the problem to the motion of the
electrons only, with the nuclei at fixed positions. In principle, the motion of the electrons
is described by the electronic wavefunction Ψel(r1, r2, ..., rn, t), which is the solution of the
time-dependent Schrödinger equation

Ĥ(t)Ψel(r1, r2, ..., rn, t) = i
∂

∂t
Ψel(r1, r2, ..., rn, t) , (1.2)

in which Ĥ is the many-particle Hamiltonian. Many approaches in quantum chemisty
try to find this - very complicated - electronic wavefunction Ψel(r1, r2, ..., rn, t). As a first
approximation on could model the Hamiltonian in Eq. 1.2, by replacing all the interac-
tions between the particles by some effective mean field. Still the computational effort
for evaluating the electronic wavefunction in several of such approximations is very high.
However, there exist a set of theorems (the Hohenberg-Kohn theorems), which state that
such an approach can actually be exact, at least for the stationary state of the system,
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and, as turned out, much lower computational costs. The strong and attractive point of
these theorems, called density functional theory (DFT), comes from the fact that it is not
necessary to calculate the electronic wavefunction Ψel(r1, r2, ..., rn, t) for a full description
of the system, but it is sufficient to look at the electron density ρ(r). In the Kohn-Sham
approach to DFT, one models the interacting many-particle system in terms of an effec-
tive non-interacting particle system (also called Kohn-Sham system). The external field
is hereby replaced by an effective external field, which incorporates the interparticle in-
teractions in an average way. The effective potential has to be modelled in such a way
that the density of the Kohn-Sham system ρks(r) reproduces exactly the density of the
real interacting many-particle system ρreal(r). Further, for the effective potential in such
a Kohn-Sham system, it can be shown that it is completely determined by the electron
density of the true interacting many-particle system.
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Figure 1.3: Theoretical versus experimental dielectric constant for various elementary and
binary crystals. The sodium chloride crystals (◦) of the I-VI type MX (M=Li, Na, K, Rb,
Cs; X=F, Cl, Br, I) and (+) of the II-VI type NYa (N=Mg, Ca, Sr, Ba; Y=O, S, Se, Te).
The crystals in the diamond structure (×) (C, Si, Ge) and in the zincblende structure (�)
for the III-V type LZ (L=Al, Ga, In; Z=P, As, Sb) and (•) for the II-VI type NYb (N=Zn,
Cd; Y=S, Se, Te).

In the time-dependent version of DFT, one not only needs to consider the effective scalar
potential, but also the effective vector potential of the non-interacting many-particle sys-
tem. Both these potentials have to be modelled in such a way that the density and current
density of the Kohn-Sham system, δρks(r, t) and δjks(r, t), repoduce the exact density and
current density of the real interacting many-particle system, δρreal(r, t) and δjreal(r, t).
In this thesis we describe the macroscopic optical properties of solids, by looking at the
dynamics of the moving electrons as a response to an externally applied perturbing field.
We have succesfully applied time-dependent density functional theory to calculate such
properties, as can be seen in Fig. 1.3. In Fig. 1.3 we compiled the theoretical (TDDFT)
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versus experimental results for the dielectric constant ε∞ for various elementary and binary
crystals.

1.2 Outline of this thesis

In this thesis we describe time-dependent density functional theory for periodic systems.
We hereby aim to describe if, and in which way, the theoretical concepts of time-dependent
density functional theory (TDDFT) can be applied to systems with periodicity in multiple
dimensions (polymers, surfaces and solids). Throughout the thesis we give the development
of a computer implementation to test these theoretical ideas and concepts.

In the chapter 2, a brief summary of the theoretical concepts of time-dependent den-
sity functional theory is given. We describe density functional theory (DFT), which was
first introduced in 1965 by Hohenberg and Kohn [2] (section 2.1 and 2.2). The practial
implementation of DFT was given one year later by Kohn and Sham [3], and resulted into
a self-consistent scheme (section 2.3). The time-dependent version of DFT, was not given
before the 1980s by Runge and Gross [4] (section 2.4).

In chapter 3, we address the problem of what is exactly the definition of polariza-
tion in a dielectric medium. Together with the question of how to define properly and
uniquely polarization in such dielectric media. Therefore, in this chapter, polarization in
a dielectricum is introduced as the dynamic response of the system to an externaly ap-
plied electric field. (section 3.1). The dynamic response of the system consists of electric
currents flowing through the system. Thereby an electromagnetic field is generated, which
tends to oppose this external field and effectively reduces the perturbing field inside the
dielectricum. In section 3.2 we show that if the system can be decomposed into an assem-
bly of localised elements which are all charge neutral and independently polarizable, the
macroscopic polarization can be considered in a simple discrete dipole model. For such
a discrete dipole model the Clausius-Mossotti relation is valid. In section 3.3 the proper
definition for polarization in an extended system is considered. The polarization as it was
used in a discrete dipole model is, in general, ill-defined because it depends on the par-
ticular choice of partitioning the system into the seperate elements. There is no unique
way to do this partitioning. The definition for polarization in terms of the induced current
provides a simple way to avoid this problem. Therefore, it provides a unique definition for
polarization in extended systems. The induced current which flows through the interior of
the system is also directly related to the intrinsic charge that piles up at the surface of the
system. Thus it is not necessary to consider the surface of the system explicitly, and, in
addition to the above, this makes the definition for the polarization in terms of the induced
current more attractive.

In chapter 4 we show how time-dependent density functional theory becomes feasible
in a real-space description for the calculation of the static and frequency-dependent dielec-
tric function ε(ω) of nonmetallic crystals. A combination of a lattice-periodic microscopic
scalar potential with a uniform macroscopic electric field as perturbation in a periodic
structure calculation is used (section 4.3). The induced density and microscopic potential
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can be obtained self-consistently for fixed macroscopic field by using linear response theory
in which Coulomb interactions and exchange-correlation effects are included. An iterative
scheme, in which the density and the potential are updated in every cycle, is used (section
4.4). The explicit evaluation of Kohn-Sham response kernels is avoided and their singu-
lar behavior as function of the frequency is treated analytically (section 4.8). Coulomb
integrals are evaluated efficiently using auxiliary fitfunctions (section 4.9) and a screening
technique is applied for the lattice sums (section 4.7). The dielectric functions ε(ω) for
diamond, silicon, and gallium arsenide, within the adiabatic local density approximation,
are obtained from the induced current (section 4.5). In particular in the low-frequency
range no adjustment of the local density approximation band gap seems to be necessary
to get good agreement for the static dielectric function ε∞ with experiment.

In chapter 5 the results, of the TDDFT method as introduced in chapter 4, for a wide
range of nonmetallic crystals are given for the dielectric constant ε∞ (at optical frequencies).
The crystals have the sodium chloride, the fluoride, the wurtzite, the diamond, and the
zinc-blende lattice structure (section 5.4). The frequency-dependent dielectric function
ε(ω) for the crystals in the diamond and zincblende lattice structure are also presented
(sections 5.5). The calculated results are compared with experimental data and other
theoretical investigations. For the dielectric constants ε∞ and the dielectric functions ε(ω)
the results are in good agreement with the experimental values. The average deviation is
4-5% from experiment for the group IV and III-V compounds in the wurtzite, zincblende
and diamond lattice structure, 8-9% for the II-VI and I-VII compounds in the zinc-blende
and sodium chloride lattice structure, and up to 14% deviation for the fluoride lattice
structure. The spectral features of the dielectric functions ε(ω) appear in the calculations
at somewhat too low energies compared to experiment.

In chapter 6 the effects of including relativistic effects in time-dependent density
functional theory for the optical response properties of nonmetallic crystals are investi-
gated. The dominant scalar relativistic effects have been included using the zeroth-order
regular approximation (ZORA) in the ground-state DFT calculations, as well as in the
time-dependent response calculations (section 6.3). It is derived that this theory can also
be applied to indium antimonide (InSb) and mercury selenide (HgSe) in the zinc-blende
structure, not withstanding the fact that they turn into semimetals when scalar relativis-
tic effects are included (section 6.8). Results are given for the band structure, the static
dielectric constant ε∞ and the dielectric function ε(ω) of InSb (section 6.5) and HgSe (sec-
tion 6.6), for the various levels on which relativity can be included, i.e., nonrelativistic,
only in the ground-state, or also in the response calculation. With the inclusion of scalar
relativistic effects, the band structure of InSb and HgSe become semimetallic within the
local density approximation and we find a deviation of 5% from experiment for the static
dielectric constant of InSb. Also the dielectric functions are improved and the spectra are
now in good agreement with experiment.

In chapter 7 a new approach is proposed to calculate optical spectra, which for the
first time uses a polarization dependent functional within current density functional the-
ory, as proposed by Vignale and Kohn [108] (section 7.3). This polarization dependent
functional includes exchange-correlation contributions in the effective macroscopic electric
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field. The functional is tested and used to calculate the optical absorption spectrum of
the semiconductors: silicon, diamond, gallium phosphide, gallium arsenide and zinc sulfide
(section 7.5). In all cases a better agreement with experiment is obtained than before.

In chapter 8 we demonstrate that time-dependent density-functional theory, within
the adiabatic local density approximation, describes the excitonic effects for the insulators
CaF2, SiO2, and GaN correctly. Results for the electronic band structure, the density
of states and the optical spectra (ε2) are reported for these wide band gap insulators
(section 8.4). The optical spectra calculated by TDDFT are compared directly with ex-
perimental measurements, and with the ε2’s as calculated by a Green’s function approach
(DFT/GW/BSE). In DFT/GW/BSE, these excitons are explicitly taken into account by
evaluating the two-body Green’s function G2. The features in the optical absorption spec-
tra, that are attributed to excitonic effects according to the DFT/GW/BSE results, are
also found in the TDDFT calculations. This contradicts the common assumption that
TDDFT is not able to describe these excitonic effects properly.

In chapter 9 the linear optical polarizability of several infinite conjugated polymers is
examined within the time-dependent density functional theory approach, by making use
of the periodicity in these systems. The polymeric chains examined were the model sys-
tem polyhydrogen (H), polyacetylene (PA), polydiacetylene (PDA), polybutatriene (PBT),
polythiophene (PT), polysilane (PSi) and polymethineimine (PMI). The results for the lon-
gitudinal polarizability, i.e., along the polymeric backbone αzz, were highly overestimated
by TDDFT in comparison with the more traditional calculation methods (like e.g., Hartree-
Fock and coupled cluster) for all the considered polymeric chains The overestimation is
most likely due to the incorrect description of the macroscopic exchange-correlation (xc)
electric field contribution by the LDA and GGA approximation for the xc-functional. An
estimate for this macroscopic exchange-correlation contribution Exc,mac, is given for the
polymeric chains considered.
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Chapter 2

Introduction to (TD)DFT

Over the last 35 years Density Functional Theory (DFT) has become one of the standard
methods for calculations in several branches of physics and chemistry. Among all the
other methods to electronic structure calculations, like e.g. Configuration Interaction (CI),
Coupled Cluster (CC) and Møller-Plesset (MP) Perturbation Theory [1], the rather special
place of DFT becomes directly clear from the fundaments, as it was first formulated in
1964 by Hohenberg and Kohn [2].

2.1 The (first) Hohenberg-Kohn theorem

Every observable quantity of a stationary quantum mechanical system is determined by the
ground-state density alone.

In other words, the aim of DFT is not to obtain a good approximation to the ground state
wave-function of the system, but rather to find the energy of the system as a functional of
the density, without any reference to the wavefunction. This proof, that all observables of
a many electron system are unique functionals of the electron density, provides the theo-
retical basis for DFT.

Consider a nonrelativistic N -electron system in the Born-Oppenheimer approximation.
The Hamiltonian Ĥ in the Schrödinger Equation (SE)

ĤΨ(x1,x2, ...) = EΨ(x1,x2, ...) , (2.1)

consists of the kinetic energy T̂ , the nuclear-electron interaction V̂ , and the electron-
electron interaction V̂ee . Further in Eq. 2.1, the xi denotes the space ri and spin σi

variables of the electrons.

Therefore the Hamiltonian is given by

Ĥ = T̂ + V̂ + V̂ee , (2.2)
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where

T̂ =
N∑

i=1

(−∇2
i

2
) , (2.3)

V̂ =
N∑

i=1

v(ri) = −
N∑

i=1

∑
α

Zα

riα

, (2.4)

V̂ee =
N∑

i<j

1

rij

. (2.5)

In the Hohenberg-Kohn (HK) theorem the one-to-one mapping between the electron den-
sity ρ:

ρ(r1) =
∑

σ1=↑↓
N

∫
|Ψ(x1,x2, ...,xN )|2 dx2...dxN , (2.6)

and the external potential V̂ is proved.

The mapping

V̂
Eq.2.1−→ Ψ

Eq.2.6−→ ρ , (2.7)

is rather simple and straightforward.

Each V̂ connects to a wavefunction Ψ by solving the SE (Eq. 2.1), and the corresponding
density ρ can be found by integrating the square of the wavefunction (Eq. 2.6).

The proof of the mapping in the other direction (that ρ determines V̂ )

V̂
(i)←− Ψ

(ii)←− ρ , (2.8)

is done in two steps.

(i) if V̂ and V̂
′
differ by more than a constant C, they will not lead to the same wave-

function Ψ.
(ii) if the ground state Ψ of Ĥ and Ψ

′
of Ĥ

′
are different, they cannot lead to the same

density ρ.

For a nondegenerate ground state it follows (i)

(T̂ + V̂ee + V̂ )|Ψ〉 = Egs|Ψ〉 , (2.9)

(T̂ + V̂ee + V̂
′
)|Ψ′〉 = E

′
gs|Ψ

′〉 . (2.10)

Now we assume that Ψ = Ψ
′
, and one gets

(V̂ − V̂
′
)|Ψ〉 = (Egs − E

′
gs)|Ψ〉 , (2.11)
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which immediately leads to V̂ = V̂
′
+C, in contradiction with the assumption made in (i).

Using the variational theorem, in the case for (ii) one proves that if Ψ 	= Ψ
′

this im-
plies that ρ(r) 	= ρ

′
(r).

Egs = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′
+ V̂ − V̂

′ |Ψ′〉
= E

′
gs +

∫
ρ

′
(r)[v(r) − v

′
(r)] dr . (2.12)

And similarly

E
′
gs = 〈Ψ′|Ĥ ′|Ψ′〉 < 〈Ψ|Ĥ ′|Ψ〉 = 〈Ψ|Ĥ + V̂

′ − V̂ |Ψ〉
= Egs +

∫
ρ(r)[v

′
(r) − v(r)] dr . (2.13)

Assuming that ρ(r) = ρ
′
(r), the combination of the equations 2.12 and 2.13 leads to the

following contradiction
Egs + E

′
gs < Egs + E

′
gs . (2.14)

Therefore the maps between V̂ , Ψ, and ρ are bijective (one-to-one).

V̂ ←→ Ψ ←→ ρ , (2.15)

and as a consequence of the bijective map Ψ ←→ ρ, every observable O of the system is a
unique functional of the density

〈Ψ[ρ]|Ô|Ψ[ρ]|〉 = O[ρ] . (2.16)

2.2 The (second) Hohenberg-Kohn theorem

The exact ground-state density of a system in a particular external potential can be found
by minimization of the energy functional.

As a direct consequence of Eq. 2.15, the map ρ −→ V̂ indicates that ρ determines the
external potential and thus the entire Hamiltonian. Therefore, in addition, the (first) HK
theorem tells us that for the energy functional of a system in a particular external potential
v0

Ev0 [ρ] = 〈Ψ[ρ]|T̂ + V̂ee + V̂0|Ψ[ρ]〉 , (2.17)

the exact ground-state density can be found by minimization of Ev0 [ρ]

E0 = min
ρ

Ev0 [ρ] . (2.18)

The part of the energy functional, FHK[ρ], which does not involve the external potential is
a universal density functional

EHK[ρ] = Ev0 [ρ] = FHK[ρ] +
∫

v0(r)ρ0(r) dr , (2.19)
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FHK[ρ] = 〈Ψ[ρ]|T̂ + V̂ee|Ψ[ρ]〉 . (2.20)

Unfortunately the Hohenberg-Kohn theorem does not provide us with a practical scheme
for doing calculations. It does not tell us how to perform the map ρ → Ψ in practice, and
only defines formally what FHK is. This practical scheme was given, a little later, in 1965
by Kohn and Sham [3].

2.3 The Kohn-Sham equations

The ground-state density of the interacting particle system can be calculated as the ground-
state density of an auxiliary non-interacting system.

In other words, the central assumption in the Kohn-Sham (KS) scheme is that, for each
interacting electron system with external potential v0(r), a local potential vs,0(r) (the
Kohn-Sham potential) exists such that the density ρs(r) of the non-interacting system
equals the density ρ(r) of the interacting system.

Consequently, if this is true, this KS potential vs,0(r) must, according to the (first) HK
theorem (vs(r) ↔ Ψs(r) ↔ ρs(r)) be unique, in the sense that it is an unique functional of
the density vs[ρ](r).

The SE for such a system of non-interacting electrons (V̂ee = 0), which move in an ex-
ternal potential V̂s,0 reads (

−∇2

2
+ vs,0(r)

)
φi(r) = εiφi(r) . (2.21)

And the density of such a system is determined by the N lowest energy orbitals

ρs(r) =
N∑

i=1

|φ(r)|2 . (2.22)

The kinetic energy of this non-interacting KS system is given by

Ts[ρ] =
N∑

i=1

〈φi| − ∇2

2
|φi〉 . (2.23)

In order to arrive at a useful expression for the KS potential vs,0(r), we write the total
energy expression for the interacting system in the following way

E[ρ] = Ts[ρ] +
∫

v0(r)ρ(r) dr +
1

2

∫ ∫ ρ(r)ρ(r
′
)

|r − r′ | drdr
′
+ Exc[ρ] , (2.24)

hereby introducing an xc energy functional Exc[ρ] which looks like

Exc[ρ] = FHK[ρ] − Ts[ρ] − 1

2

∫ ∫ ρ(r)ρ(r
′
)

|r − r′ | drdr
′
. (2.25)
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The HK theorem ensures that the energy functional E[ρ] is stationary for small variations
δρ(r) around the exact density ρ0(r)

δE[ρ]

δρ(r)
|ρ=ρ0 = 0 , (2.26)

this leads to
δFHK[ρ]

δρ(r)
|ρ=ρ0 = −v0(r) . (2.27)

Similarly for the non-interacting system we can find

δTs[ρ]

δρ(r)
|ρ=ρ0 = −vs,0(r) . (2.28)

Differentiating now Eq. 2.25 to ρ(r) yields

vs,0(r) = v0(r) +
∫ ρ(r

′
)

|r − r′ | dr
′
+

δExc

δρ(r)
, (2.29)

which is often shortly denoted as

vs,0(r) = v0(r) + vH(r) + vxc(r) . (2.30)

And hence with Eq. 2.21 we find[
−∇2

2
+ v0(r) +

∫ ρ(r
′
)

|r − r′| dr
′
+

δExc

δρ(r)

]
φi(r) = εiφi(r) . (2.31)

Thus the exchange-correlation potential is given by

vxc(r) =
δExc

δρ(r)
. (2.32)

Since the KS potential depends on the density, the Eqs. 2.29 and 2.31 have to be solved
self-consistently. And therefore, once an approximation for the Exc has been made, the KS
equations provide a way for calculating the density ρ(r), and from that e.g. the energy of
the system.

2.4 The time-dependent Hohenberg-Kohn-Sham for-

malism

The derivation for the time-dependent KS equations is, compared to the static case, severely
more complicated, and it was first formulated in 1984 by Runge and Gross [4]. Runge and
Gross derived the density functional formalism, comparable to the ground state DFT for-
malism of Hohenberg, Kohn and Sham [2, 3], for arbitrary time-dependent systems. For
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recent reviews on time-dependent density functional theory, see Gross [5] and van Leeuwen
[6].

Given the intial state at t0, the single particle potential v(r, t) leading to a given den-
sity ρ(r, t) is uniquely determined, so that the map v(r, t) → ρ(r, t) is invertible.

As a consequence of the bijective map v(r, t) ←→ ρ(r, t), every observable O(t) is an
unique functional of, and can be calculated from, the density ρ(r, t). In Eq. 2.33, ρt

denotes ρ at time t.
O[ρt](t) = 〈Φ[ρt](t)|Ô(t)|Φ[ρt](t)|〉 . (2.33)

In a general time-dependent situation such a proof starts from the time-dependent Schrödinger
Equation (SE):

i
∂

∂t
Ψ(t) = Ĥ(t)Ψ(t) , (2.34)

in which the Hamiltonian Ĥ(t) = T̂ +Ŵ + V̂ (t), consists of a kinetic part T̂ , some particle-
particle interaction Ŵ , and the single-particle potential V̂ (t).

If the time-dependent SE (Eq. 2.34) is solved for a fixed initial state Ψ0 and several
potentials v(r, t), we obtain the map v(r, t) → Ψ(t). From the wavefunction we get the
density by ρ(r, t) = 〈Ψ(t)|ρ̂(r)|Ψ(t)|〉, which defines the map Ψ(t) → ρ(r, t), and in which
the density operator ρ̂(r) is given by

ρ̂(r) =
N∑

k=1

δ(r − rk) . (2.35)

In order now to prove that there exists a time-dependent version of the HK theorem, one
has to show that the map v(r, t) → Ψ(t) → ρ(r, t) is invertible up to a purely time-
dependent function α(t) in the potential, which appears in the wave functions as a phase
factor: Ψ(t) = e−iα(t)Φ[ρ](t), and under the requirement that the potential is expandable
in a Taylor series around t = t0. Despite this phase factor which appears in the wave
functions, the expectation value of any observable can still be regarded as a functional of
the density alone, because the ambiguity of the phase cancels out in Eq. 2.33.

The proof is fully given in Ref. [4] and a short outline is given here. If two potentials
v(r, t) and v

′
(r, t) differ by more than a purely time-dependent function α(t), there must

exist some nonnegative integer k for which

∂k

∂tk
[v(r, t) − v

′
(r, t)]|t=t0 	= const. in r (2.36)

The thing to prove now is that the densities ρ(r, t) and ρ
′
(r, t), which correspond to the

potentials v(r, t) and v
′
(r, t) are different, if Eq. 2.36 is fulfilled for k ≥ 0.
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Since we start from the fixed initial state wave function Ψ0 it should be noted that the
particle ρ(r, t), and also current j(r, t) densities are of course identical at the initial time
t0, and start therefore to differ infinitesimally later than t0.

This proof consists of two steps:

a. The time evolution of the current density if given by the equation of motion

i
∂j(r, t)

∂t
= 〈Φ(t)|[̂j(r), Ĥ(t)]|Φ(t)〉 , (2.37)

where the current operator ĵ(r) is given by

ĵ(r) =
1

2i

N∑
k=1

(∇rk
δ(r − rk) + δ(r − rk)∇rk

) . (2.38)

Since Φ(t) and Φ
′
(t) evolve from the same initial state Φ0, Eq. 2.37 gives

i
∂

∂t
[j(r, t) − j

′
(r, t)]|t=t0 = 〈Φ0|[̂j(r), Ĥ(t0) − Ĥ

′
(t0)]|Φ0〉

= iρ(r, t0)∇[v(r, t0) − v
′
(r, t0)] . (2.39)

Working out the commutator in Eq. 2.39 (for k = 0 and k > 0 in Eq. 2.36) shows after
some ’straightforward’ algebra that j(r, t) and j

′
(r, t) will become different infinitesimally

later than t0.

b. To arrive at the corresponding densities, the continuity equation is used

∂ρ(r, t)

∂t
= −∇ · j(r, t) , (2.40)

in which the result of a. has to be inserted to finally find that also ρ(r, t) and ρ
′
(r, t) will

become different infinitesimally later than t0.

Based on the Runge and Gross theorem, we can construct a time-dependent KS scheme.

The time-dependent density ρ(r, t) of the interacting particle system can be calculated as the
density ρs(r, t) of an auxiliary non-interacting (KS) system with the local potential vs(r, t).

Thus the exact time-dependent density of the interacting system can be computed from

ρ(r, t) = ρs(r, t) =
N∑

i=1

|φi(r, t)|2 , (2.41)

where the time-dependent KS orbitals are obtained by solving the time-dependent SE of
the non-interacting particle system

i
∂

∂t
φj(r, t) =

(
−∇2

2
+ vs[ρt](r, t)

)
φj(r, t) , (2.42)
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in which the single-particle KS potential is given by

vs[ρt](r, t) = v(r, t) +
∫ ρ(r

′
, t)

|r − r′ | dr
′
+ vxc(r, t) , (2.43)

and Eqn. 2.43 formally defines the exchange-correlation potential vxc(r, t).

In the limit of an external potential v(r, t), which varies slowly in time, the local den-
sity approximation (LDA) is used to calculate this exchange-correlation potential vxc(r, t).
Just like LDA in the case of time-independent DFT, it works well beyond its domain of
justification. Therefore vxc(r, t) is approximated by the same exchange-correlation poten-
tial as in time-independent DFT, but now using the time-dependent density at a particular
time t, rather than the time-independent density.

Thus, evaluated with the density at a particular time t, the exchange-correlation potential
is approximated by

vxc[ρt](r, t) =
∂Exc[ρt]

∂ρt(r)
, (2.44)

and it should be noted that, in this approximation, all retardation effects are neglected,
and an instantaneous reaction of the self-consistent field to changes in ρ is assumed.



Chapter 3

Polarization of a dielectric medium

In this chapter we introduce the concept of polarization in dielectric media1. We will treat
the induced polarization as a dynamical response of the system to an externally applied
electric field. In this thesis we will only consider nonmetallic systems that do not possess
a static polarization. This excludes for instance ferroelectrica, which do possess a finite
polarization in the ground state due to a symmetry-breaking lattice deformation.

3.1 Electric Polarization

When a solid is placed in an externally applied electric field, the medium will adapt to this
perturbation by dynamically changing the positions of the nuclei and the electrons. We
will only consider time-varying fields of optical frequencies. At such high frequencies the
motion of the nuclei is not only effectively independent of the motion of the electrons, but
also far from resonance. Therefore we can assume the lattice to be rigid.
The reaction of the system to the external field consists of electric currents flowing through
the system. These currents generate electromagnetic fields by themselves, and thus the
motion of all constituent particles in the system is coupled. The response of the system
should therefore be considered as a collective phenomenon. The electrical currents now
determine in what way the externally applied electric field is screened. The induced field
resulting from these induced currents tends to oppose the externally applied field, effec-
tively reducing the perturbing field inside the solid. In metals the moving electrons are
able to flow over very large distances, so they are able to completely screen any static
(externally applied) electric field to which the system is exposed. For fields varying in
time, however, this screening can only be partial due to the inertia of the electrons. In
insulators this screening is also restricted since in these materials the electronic charge is
bound to the nuclei and can not flow over such large distances. The charge density then
merely changes by polarization of the dielectricum.

1Excellent background reading matertial on the polarization of a dielectric medium can be found in
Ashcroft and Mermin [7], Kittel [8], Born and Wolf [9] and Jackson [10].
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We define the induced polarization P(r, t) as the time-integral of the induced current,

P(r, t) = −
∫ t

t0
δj(r, t′) dt′ . (3.1)

This completely defines the polarization as a microscopic quantity up to an (irrelevant)
constant function of r, being the polarization of the initial state P(r, t0). Now by evaluating
the divergence of this P(r, t), we immediately get

∇ · P(r, t) = −
∫ t

t0
∇ · δj(r, t′) dt′ =

∫ t

t0

∂ρ(r, t′)
∂t′

dt′ = δρ(r, t) − δρ(r, t0) , (3.2)

in which the induced density at t0, δρ(r, t0) is zero by definition. In the second step we
have inserted the continuity equation,

∂

∂t
ρ(r, t) + ∇ · j(r, t) = 0 . (3.3)

On the other hand we get that the time-derivative of P(r, t) is equal to the induced current
density,

d

dt
P(r, t) = −δj(r, t) . (3.4)

From the Eqs. 3.2 and 3.4, we immediately see that the polarization P(r, t), uniquely
determines both the induced density and the current density. As such, the polarization is
just an auxilliary quantity, which does not contain any new information.
The above definition for the polarization is very appealing since it is exactly this polariza-
tion that is used in the macroscopic Maxwell equations. It is zero outside the dielectricum,
where no currents can exist. Moreover, it will turn out that the polarization, as defined
in this way, is also very well suited as a basis to define the induced macroscopic polar-
ization. The latter quantity is easily accessible in experiments. We obtain the (induced)
macroscopic polarization as the average value of P(r, t) by,

Pmac(r, t) =
1

|Ωr|
∫
Ωr

P(r′, t) dr′ = − 1

|Ωr|
∫ t

t0

∫
Ωr

δj(r′, t′) dr′ dt′ , (3.5)

where Ωr is a small region surrounding the point r. The diameter d of this region should
be large compared to the lattice parameter a, but small compared to the wavelength of the
perturbing field λ, thus λ  d  a.

In this thesis we want to know the induced polarization P(r, t) that occurs as the first-order
response of a dielectric medium to an externally applied electric field. We will not treat
effects that go beyond linear response. The strength of the induced current, and hence the
polarization, depends not only on the external electric field but also on the contributions
from the induced sources in the dielectric medium itself. Therefore it is better to describe
the polarization as a response of the system, not just to the externally applied electric field,
but in addition also to the induced field. This induced field is the result of the induced
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density and current density. We can write the induced polarization as linear response to
these fields, according to

P(r, t) =
∫ ∫ t

t0
χ(r, t; r′, t′) · (Eext(r

′, t′) + Eind(r′, t′)) dt′ dr′ . (3.6)

The response kernel χ(r, t; r′, t′) is a material property. This response kernel is a function
of r and r′, which is in general nonlocal, but has a short range behaviour, i.e., it decays
sufficiently fast as a function of |r− r′|, and it is causal, i.e., χ vanishes for t′ > t, which is
already made explicit in the time-integral. Furthermore, χ does not depend on the absolute
value of t and t′, but just on the time-lapse (t − t′).
Before we proceed, we define the macroscopic electric field Emac(r, t), in analogy with the
macroscopic polarization, as the average of the external plus the induced field,

Emac(r, t) =
1

|Ωr|
∫
Ωr

(Eext(r
′, t) + Eind(r′, t)) dr′. (3.7)

All contributions to the perturbing field that are due to remote sources, i.e., external sources
and remote induced sources, are contained in this macroscopic field. The microscopic part
of the perturbing field, which is due to the local structure of the induced sources, is averaged
out. This microscopic part has to be proportional to the macroscopic component due to
the short range of the response kernel. We can now give the macroscopic polarization as
response to the macroscopic field, which is also known as the constitutive equation,

Pmac(r, t) =
∫ t

t0
χe(r, t − t′) · Emac(r, t

′) dt′ . (3.8)

For homogeneous systems the χe(r, t − t′) is independent of the position r. Eq. 3.8 then
defines the material property χe(t − t′) called the electric susceptibility, from which the
macroscopic dielectric function ε(t − t′) is derived,

ε(t − t′) = 1 + 4πχe(t − t′). (3.9)

3.2 Clausius-Mossotti Relation

The relation of the macroscopic polarization to the macroscopic field in a system is often
considered in a simple discrete dipole model. Thereby, the system is decomposed into an
assembly of localised elements. If the constituent elements are all charge neutral and inde-
pendently polarizable entities, there is no fundamental problem to derive such a relation.
For simplicity we will assume the system to be homogeneous and isotropic, which implies
that we can consider the system as a regular (cubic) array of identical dipoles. For each
element we can obtain the dipole moment from the polarization P along the following lines.
Conventionally the dipole moment of such an entity can be obtained as the first moment
of the induced density,

µ(t) = −
∫

V
r δρ(r, t) dr . (3.10)
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We will now show that this dipole moment is equivalent to the integrated polarization
defined in Eq. 3.1. Consider therefore the variation in time of a Cartesian component of
this dipole moment

∂

∂t
µx(t) = −

∫
V

x

(
∂

∂t
δρ(r, t)

)
dr . (3.11)

Inserting the continuity relation (Eq. 3.3) gives

∂

∂t
µx(t) =

∫
V

x (∇ · δj(r, t)) dr . (3.12)

We can now integrate by parts, and use Gauss’ theorem, to arrive at

∂

∂t
µx(t) =

∫
V

(∇ · (xδj(r, t)) − (∇x) · δj(r, t)) dr

=
∫

S
xδj(r, t) · n ds −

∫
V

δjx(r, t) dr . (3.13)

If the current crossing the surface is zero, then the surface integral in Eq. 3.13 vanishes.
This is ensured by the assumption of independently polarizable elements. Therefore the
change in the dipole moment becomes directly related to the current flowing in the interior
of each element, and we can conclude that the induced dipole moment is given by

µ(t) = −
∫ t

t0

∫
V

δj(r, t′) dr dt′ =
∫

V
P(r, t) dr . (3.14)

We can now relate the macroscopic polarization Pmac(t) to µ(t) by using Eq. 3.5,

Pmac(t) =
µ(t)

V
. (3.15)

In the sequel we will only consider the static case. The dipole moment µ, is related to
the local electric field Eloc (i.e., the local perturbing field acting on each element), by the
polarizability α of the element,

µ = α · Eloc . (3.16)

The local electric field in such an element of the system can be decomposed into a number
of contributions, for which the general expression is given by

Eloc = Eext + Emac
ind − Econt

near + Ediscr
near . (3.17)

The various contributions to Eloc are depicted in Fig. 3.1. In this figure, Eext is the field
produced by fixed charges external to the system. Emac

ind is conventionally called the depo-
larization field, i.e., the field of a uniformly polarized medium, or equivalently the field due
to the surface charge density n̂ · P, on the boundary of the system, which in the interior
of the system tends to oppose the external applied field. We create a cavity in the sys-
tem by subtracting the contribution of a uniformly polarized sphere. The corresponding
field, Econt

near , is called the Lorentz cavity field, which is the field from this sphere that can
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Eext Eind
mac

Enear
discr

Enear
cont

Figure 3.1: Contributions to the local electric field Eloc in an element of the system. It
is the sum of the externally applied electric field Eext , and the field due to all the other
elements Emac

ind − Econt
near + Ediscr

near of the system.

be described by a polarization charge on the inside of the spherical cavity cut out of the
system, with the reference element in the center. Finally the contribution Ediscr

near is the field
produced by the elements inside this cavity.

We can now use the Lorentz relation for the local field in an element of the system,

Eloc = Eext + Emac
ind +

4π

3
Pmac , (3.18)

in which we have used that the field inside a uniformly polarized sphere is given by Econt
near =

−4πPmac/3, and that the contribution of the discrete elements in the cavity vanishes on
symmetry grounds [7, 8], Ediscr

near = 0. By combining the Eqs. 3.15, 3.16, and 3.18, we can
solve for the polarization Pmac

Pmac =
α

V

(
Eext + Emac

ind +
4π

3
Pmac

)
=

α

V

(
Emac +

4π

3
Pmac

)
, (3.19)

in this equation we have indentified: Emac = Eext + Emac
ind . Simple algebraic manipulations

reveal that Pmac = χeEmac, in which χ is given by

χe =
α/V

1 − 4πα/3V
. (3.20)

Now by using the definition ε = 1+4πχe, and rearanging Eq. 3.20, we obtain the Clausius-
Mossotti relation.

ε − 1

ε + 2
=

4πα

3V
. (3.21)

We have now related the property of the system to the response properties of the constituent
elements.
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3.3 Polarization in Extended Systems

In the previous section we have shown that for a simple discrete dipole model one can
derive an expression for the collective response of the total system to a macroscopic field,
by only using the intrinsic properties of the constituent elements. The approximations
used in that derivation break down as soon as the elements can no longer be considered
as independent. In general this is the case, since electrons do not belong to the individual
elements of the system. The electron density should be regarded as a continuous function
of the position. There is no way to uniquely partition the system into seperate elements
and derive the polarization from the dipole moments of the elements. The dipole moment
of the density is not a good measure for the polarization because currents can flow across
the borders of the elements. From Eq. 3.13, it is clear that the dipole moment in Eq.
3.10 and the polarization as derived from the current density in Eq. 3.1, become different
as soon as such currents exist. The polarization in terms of the dipole moment of the
elements is ill-defined because it depends on the particular choice how to partition the
system. However, the definition in terms of the induced current provides a simple way to
obtain a well-defined polarization, which is model independent in the sense that it does not
depend on the particular choice for the subdivision of the system into the various elements.
Only in the above mentioned extreme Clausius-Mossotti case, in which the system consists
of well-separated, independently polarizable, and charge neutral entities, the two definition
become equivalent.
There is a second, more subtle argument which makes the definition of the polarization in
terms of the induced current more attractive, if we want to consider extended systems. The
intrinsic charge that piles up at the surface is directly related to the current flowing through
the interior of the system, and therefore it is not necessary to consider the surface of the
system explicitly. The polarization is defined as being locally dependent on the induced
current and has a unique value at every position in the system. The induced dipole moment
is connected to a volume element of the system and is in general not model independent.
More over its value depends on the induced density in a very nonlocal way. If we consider
the dipole moment of the complete sample, the two alternative descriptions, based either
on the dipole strength of the charge distribution of the system, including the surface, or on
the total integrated current, are equivalent (Eq. 3.14), owing to the continuity equation.
In the following chapter we will treat the extended system in the thermodynamic limit of
infinite system size. In this limit the system is modeled using periodic boundary conditions
and consequently the knowledge of the surface is lost in the process. The charge and current
distributions then become disconnected and carry quite distinct pieces of information,
though the variations of these distributions remain connected by the continuity equation.
In periodic systems, polarization is therefore a property of the current and not of the charge
density.



Chapter 4

A TDDFT approach for periodic
systems

F. Kootstra, P. L. de Boeij and J. G. Snijders, ”Efficient real-space approach to time-
dependent density functional theory for the dielectric response of nonmetallic crystals”, J.
Chem. Phys. 112, 6517-6531 (2000).

4.1 Abstract

Time-dependent density functional theory has been used to calculate the static and frequency-
dependent dielectric function ε(ω) of nonmetallic crystals. We show that a real-space
description becomes feasible for crystals by using a combination of a lattice-periodic (mi-
croscopic) scalar potential with a uniform (macroscopic) electric field as perturbation in
a periodic structure calculation. The induced density and microscopic potential can be
obtained self-consistently for fixed macroscopic field by using linear response theory in
which Coulomb interactions and exchange-correlation effects are included. We use an it-
erative scheme, in which density and potential are updated in every cycle. The explicit
evaluation of Kohn-Sham response kernels is avoided and their singular behavior as func-
tion of the frequency is treated analytically. Coulomb integrals are evaluated efficiently
using auxiliary fitfunctions and we apply a screening technique for the lattice sums. The
dielectric function can then be obtained from the induced current. We obtained ε(ω) for
C, Si, and GaAs within the adiabatic local density approximation in good agreement with
experiment. In particular in the low-frequency range no adjustment of the local density
approximation (LDA) band gap seems to be necessary.

4.2 Introduction

In the early 1960’s Hohenberg and Kohn [2] formulated the fundamental theorems of density
functional theory (DFT) for the description of the ground state of an interacting-electron
system in an external potential. This theory proved to be very practical after Kohn and
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Sham [3] incorporated it in a one-electron self-consistent field calculation scheme (SCF).
This method has nowadays become one of the standard tools for the first-principle calcu-
lation of the properties of solids [11], and also for atoms and molecules [12, 13, 14]. The
accuracy of the results obtained with these methods is very good for a wide variety of
ground state properties of solids, atoms, and molecules. Amongst the exceptions the most
prominent is the large deviation for the energy gap and the dielectric constant in semi-
conductors and insulators. The value for the dielectric constant obtained within the local
density approximation (LDA) is usually much larger (more than 10%) [15, 16] than the
experimental data. A similar overestimation has been found for the static polarizabilities
of atoms [17]. However, inclusion of the correct asymptotic behavior of the exchange-
correlation potential [18] greatly improves the results for the atomic polarizabilities [19].
This correction, which is due to the contribution of the outer region, seems to be less im-
portant for molecules [19], so we should not expect large deviations for the LDA results in
solids either. In solids the discrepancy for the dielectric constant is often attributed to the
mismatch between the Kohn-Sham energy gap and the gap as observed in optical spectra.
LDA typically underestimates the gap by 30%-50%. Attempts to improve these results
by improving the quality of the various approximations for the exchange-correlation func-
tional have had limited success. The inclusion of gradient corrections to the LDA reduces
the error only slightly [20, 21]. The error in the Kohn-Sham energy gap can be attributed
to a discontinuity in the DFT exchange-correlation potential [22, 23] and it is commonly
believed that the gap has to be corrected by a rigid shift of the virtual states in order to get
good results for the quasiparticle energies and dielectric constant [16, 24, 25, 26]. There is
however no formal justification within DFT for this so-called scissors operator [21]. In some
materials, one has to use a different shift in order to match the excitation spectrum than
to get a correct dielectric constant [26]. Gonze, Ghosez and Godby [27] have indicated that
this scissors-operator is an approximate way to deal with the special role of macroscopic
polarization in these infinite systems. They made the remark that the original assumptions
of Hohenberg and Kohn, are no longer valid in these systems, and that in principle the
density must be supplemented with the macroscopic polarization in order to describe these
systems completely. The time-dependent extension of DFT, (TDDFT) rigorously proven
in the 1980’s by Runge and Gross [4], gave some new impetus to this field of research.
Whereas ordinary DFT was formulated originally only for the nondegenerate ground state.
Runge and Gross showed that the validity of the theorems could be extended to cover sys-
tems in time-dependent scalar potentials as well. The application of this theory to atoms
and molecules proved to be very successful, e.g., the calculated response properties and
excitation energies were greatly improved [19, 28, 29, 30]. Ghosh and Dhara [31, 32] showed
that TDDFT also applies to systems which are being subjected to general time-dependent
electromagnetic fields, in which case both the density and the current density are needed
to fully describe the system. We will follow their description and derive an expression for
the macroscopic polarization from the current density. Most implementations of TDDFT
for solids use pseudopotentials in combination with a plane-wave basis [15, 16, 24]. This
combination facilitates the description for the induced properties, like density and induced
fields in Fourier space [33, 34]. Self-consistency is achieved in a method which needs the
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construction of various response kernels as large matrix representations on this plane-wave
basis, and for which one usually has to invert these matrices [15, 35]. High accuracy can
only be achieved at the expense of huge computation costs. We will show that a real-space
description is possible, and we present a self-consistent field method, which is comparable
in efficiency to ordinary ground-state calculations. This computational scheme is simi-
lar to the density-functional perturbation scheme of Baroni et al . [36]. We extended the
full-potential linear combination of atomic orbitals (LCAO) implementation (ADF-BAND
[37, 38]) for our response calculations, in which we achieve the same spatial resolution for
the induced density as for the ground-state density. Coulomb interaction (local-field ef-
fects) and exchange-correlation effects have been fully included in this calculation scheme.
The outline of this article is as follows. First we give the derivation of the real-space
description for crystalline systems. We make use of a separation into microscopic and
macroscopic components for the potentials and fields, and we describe how they can be
used in the time-dependent Kohn-Sham scheme. Then the main aspects of the implemen-
tation are given. We show how symmetry can be used to reduce the computational effort,
and we explain the self-consistency procedure. Finally we demonstrate the method for the
crystals of C, Si, and GaAs, and discuss the results.

4.3 Theory

The theory of the dielectric properties of solids describes the linear response of crystals
to externally applied electric fields. One of the central problems in this theory is how to
model real systems that are large but nevertheless finite using idealized periodic crystals
of infinite extent. One can only make this connection by considering the proper asymp-
totic limit of finite systems to infinite size. In this section we show that it is important to
identify macroscopic and microscopic contributions to the electric field and polarization.
For the finite system we have to do this in such a way that surface and sample-shape de-
pendent contributions can be separated from the bulk-intrinsic parts. Before we formulate
our microscopic treatment, let us recall the definitions for the macroscopic electric field
Emac(r, t) and the macroscopic polarization Pmac(r, t). Without losing generality we can
consider the time-dependence to be harmonic with frequency ω. One commonly defines
the macroscopic field at a point r inside the bulk as the average field that a test charge
would experience in a region Ωr surrounding the point r. This region must have a size d
that is small compared to the wavelength λ = 2πc/ω, but it nevertheless has to contain a
large number of bulk unit cells; i.e., for λ  d  a, where a is the lattice parameter, we
can define

Emac(r, t) =
1

|Ωr|
∫
Ωr

(Eext(r
′, t) + Eind(r′, t)) dr′. (4.1)

This macroscopic field contains the externally applied electric field plus the macroscopic
part of the induced field. This induced field is the result of the reaction of the system to
the external field.
Similarly the induced macroscopic polarization can be defined as the time-integral of the
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average induced current flowing in this region Ωr,

Pmac(r, t) = − 1

|Ωr|
∫ t ∫

Ωr

δj(r′, t′) dr′ dt′, (4.2)

where δj(r, t) is the induced current density. Note that the definition for the macro-
scopic polarization of Eq. (4.2) is valid in all systems. It only becomes equivalent to
the more common notion of ‘an induced average dipole moment per unit volume,’ i.e., to
− ∫

Ωr
r′δρ(r′, t) dr′/|Ωr| when this property is properly defined. This is only the case in

systems where we can define the volume Ωr such that no currents flow across its boundary.
Inside the bulk the macroscopic polarization is related to the macroscopic electric field
rather than to the externally applied field, via what is called the constitutive equation

Pmac(r, t) =
∫ t

χe(t − t′) · Emac(r, t
′) dt′. (4.3)

This equation defines the material property χe(τ) called the electric susceptibility, from
which the macroscopic dielectric function ε(τ) is derived,

ε(τ) = 1 + 4πχe(τ). (4.4)

In general χe(τ) and ε(τ) are tensors, which, however, simplify to scalars in isotropic
systems.
In order to be able to derive these material properties, we have to give a microscopic account
of the macroscopic contributions to the electric field and polarization for an arbitrary but
fixed region Br inside the bulk. We therefore identify in the interior of the sample a large
number of identical but otherwise arbitrary bulk unit cells, each having the same volume
|V |. The cells which comprise the region Br will be enumerated using the indices i and are
denoted by Vi.
Within the long-wavelength limit we can assume that in these cells both the induced charge
and current distribution become lattice periodic. Hence the macroscopic field component
becomes uniform throughout Br. Under these conditions all relevant properties become
lattice periodic and we can model the response of the region Br by using a model system
with periodic boundary conditions.
However, we cannot obtain the electric field by simply evaluating the contributions of the
lattice-periodic sources. Only the microscopic part can be obtained using the periodic
lattice, since the macroscopic component depends also on the external field and the sample
shape, which are no longer properly defined in the periodic - hence infinite - model system.
Instead we can consider the uniform macroscopic field for the periodic model system to be
fixed. We will now construct the microscopic and macroscopic (scalar and vector) potentials
which are due to the induced sources, and we will show that they lead to microscopic and
macroscopic fields, respectively.
For any finite region Ω we can define the scalar potential δv(r, t) of the induced density
δρ(r, t) = ρ(r, t) − ρ0(r). The action is instantaneous within the Coulomb gauge, so the
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potential follows from [we will use atomic units (e = h̄ = m = 1) throughout this article]

δv(r, t) =
∫
Ω

δρ(r′, t)
|r − r′| dr′. (4.5)

It is well-established that this potential is not properly defined in the limit of |Ω| to
infinite size. In the periodic model system this ambiguity arises due to the divergent and
conditionally convergent lattice sum contributions of the monopole, dipole, and quadrupole
moments of the density in the cells Vi.
We can, however, define the microscopic component of this Coulomb potential by removing
these conditionally convergent contributions. Therefore we construct for each unit cell Vi

a uniform monopole, dipole and quadrupole density, and we subtract their contributions
δvi(r, t) from the bare Coulomb potential of Eq. (4.5) according to

δvmic(r, t) =
∑

i

(∫
Vi

δρ(r′, t)
|r − r′| dr′ − δvi(r, t)

)
. (4.6)

The summation is over all cells Vi in the region Br. The potential δvi(r, t) is defined as

δvi(r, t) =
∫

Vi

2∑
n=0

1

n!
δµ

(n)
i,j1···jn

(t) · ∂

∂r′j1
· · · ∂

∂r′jn

1

|r − r′| dr′. (4.7)

In this expression we have implied a summation over all Cartesian components j1 through
jn of the uniform multipole density of rank n, which are denoted by δµ

(n)
i (t). These

uniform densities have to be constructed carefully in order to ensure that the conditionally
convergent terms of Eq. (4.5) are exactly canceled in Eq. (4.6). Their value can be obtained
for each cell Vi by requiring that all three lowest-order terms in the multipole expansion
of the contribution of this cell to the microscopic potential of Eq. (4.6) must vanish. The
expansion can be taken with respect to an arbitrary origin Ri inside Vi. The monopole
density has to vanish in the periodic system due to the condition of charge neutrality. One
can easily check that the uniform dipole and quadrupole densities can then be obtained from
the average dipole and quadrupole moments of the unit cells. If we choose to represent these
moments with respect to the geometric centres, i.e., with respect to Ri = (1/|V |) ∫

Vi
r′ dr′,

we obtain for this particular choice

δµ
(n)
i (t) =

1

|V |
∫

Vi

δρ(r′, t)(r′ − Ri)
n dr′, (4.8)

where on the right-hand side the nth tensor product is meant. Due to the periodicity
these multipole densities are identical for each cell, so we can drop the index i in the
sequel. By removing the conditionally convergent terms in this way, the series of Eq.
(4.6) becomes nicely convergent. If we choose Br finite but nevertheless sufficiently large,
so that convergence is reached within Br, we have established a proper definition for the
microscopic potential for both periodic and finite systems.
On the other hand, the macroscopic potential can only be defined for the true, finite system.
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It forms the remainder of the bare Coulomb potential after the microscopic part has been
removed. The terms δvi(r, t) (which were not included in the microscopic contribution of
region Br) have to be included in the macroscopic part of the potential

δvmac(r, t) =
∫ ′ δρ(r′, t)

|r − r′| dr′ +
∑

i

δvi(r, t). (4.9)

Here the integration domain in the first term on the right-hand side is the whole (finite)
system, however, with the exclusion of the region Br. This is indicated by the prime on
the integral sign. The contribution of Br is given by the potential of the uniform multipole
densities. Note that the resulting macroscopic potential comprises all surface and sample-
shape dependent contributions, but excludes the microscopic contributions from the region
Br.
The uniform dipole and quadrupole sources in the region Br can equally well be represented
using surface excess monopole and dipole layers at the boundary of Br. Being remote,
these can only lead to smooth, i.e. macroscopic fields at r. A similar analyses holds for a
uniform density in Br. Although this density has to vanish in the periodic model system,
a macroscopic density fluctuation on a wavelength scale can exist in the finite system, but
it also can lead to only macroscopic fields. The microscopic potential, on the other hand,
is lattice periodic, and can only lead to microscopic fields.
The nice result of this separation into microscopic and macroscopic contributions is that
we are now able to evaluate the microscopic component of the Coulomb potential using the
periodic model system. The construction is visualized in Fig. 4.1. The summation of Eq.
(4.6) is nicely convergent, since remote cells do not contribute. For its evaluation we can
make use of a screening technique. Therefore, we introduce an envelope function which
weighs the contributions of the individual cells such that it leaves nearby cells unchanged,
but removes remote cells explicitly. This can be achieved using a spherically symmetric
function hc(r) which is a smooth function of just the distance of the origin of the cells to
the coordinate at which to evaluate the potential. This function is characterized by some
cutoff radius c for the screening. The limiting case, where this cutoff radius is infinite
automatically yields the correct (unscreened) value,

δvmic(r, t) = lim
c→∞

∑
i

hc(|r − Ri|)
(∫

Vi

δρ(r′, t)
|r − r′| dr′ − δvi(r, t)

)
. (4.10)

We can separate the two contributions into two separately converging series. The screened
potential of the periodic density can be evaluated efficiently, whereas the screened uniform
multipole densities lead to a mere (time-dependent) uniform contribution (see Chapter 4.7
Appendix A). The latter contribution can always be chosen to vanish by a suitable gauge
transformation. We obtain

δvmic(r, t) = lim
c→∞

(∑
i

hc(|r − Ri|)
∫

Vi

δρ(r′, t)
|r − r′| dr′

)
. (4.11)

In practice the convergence can be quite fast for suitably chosen screening functions such
that the numerical evaluation of it can be very efficient.
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Figure 4.1: The construction of the macroscopic electric field Emac and the microscopic
Coulomb potential vmic for a dielectric sample in an external field. The bulk region Br is
removed from the sample and replaced by a uniformly polarized medium. The difference
between the true bulk and this substitute leads to a microscopic potential. The field
produced inside the uniform medium is equivalent to the field produced by additional
excess surface charges. In combination with the surface region this yields the macroscopic
field.

The time-dependent induced density is not the only source of the electromagnetic fields.
In large systems, the induced current density also contributes considerably. Therefore,
we also have to consider the induced vector potential δA(r, t) which is defined within the
Coulomb gauge according to

δA(r, t) =
1

c

∫ δjT (r′, t − |r − r′|/c)
|r − r′| dr′. (4.12)

Here δjT (r, t) is the induced transverse current density. This vector potential accounts,
apart from the properly retarded contribution of the total induced current, also for the
retardation effects which have not been included in the instantaneous Coulomb potential
[39]. We can safely neglect the effect of retardation in the microscopic part of the scalar
potential which is due to the nearby surrounding only, but we cannot do this for the
macroscopic part. This part also contains contributions from remote regions. As we did for
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the density and the Coulomb potential, we have to distinguish microscopic and macroscopic
contributions of the induced current density to this vector potential. We can safely ignore
the microscopic part, because its electric field contribution is already a factor ω2/c2 in
order smaller than that of the microscopic Coulomb potential. We will only have to retain
the macroscopic part. This part is sample-shape dependent just like the macroscopic scalar
potential.
We obtain the total macroscopic field from

Emac(r, t) = Eext(r, t) − 1

c

∂

∂t
δAmac(r, t) + ∇δvmac(r, t). (4.13)

Here all macroscopic retardation effects are properly accounted for. The microscopic con-
tribution to the field is completely described using the instantaneous microscopic Coulomb
potential. This potential is lattice periodic and can therefore not contain any components
that represent a macroscopic electric field. The field Emac(r, t) of Eq. (4.13) is therefore
indeed the macroscopic field of Eq. (4.1).
We can now define a new gauge which we will call the microscopic Coulomb gauge. In this
gauge the new scalar potential Φ′(r, t) is given by the instantaneous microscopic potential
δvmic(r, t) of Eq. (4.11), while the associated vector potential A′(r, t) is fully retarded and
completely specified by the macroscopic electric field Emac(r, t) of Eq. (4.13)

Φ′(r, t) = −δvmic(r, t) (4.14)

A′(r, t) = −c
∫ t

Emac(r, t
′) dt′. (4.15)

In the definition of these potentials we have neglected the microscopic retardation and
microscopic magnetic effects. This is consistent with the neglect of the Breit corrections
[40] in ground-state calculations.
The problems posed by the sample-shape dependence of the macroscopic field are circum-
vented by prescribing the total macroscopic electric field in the bulk as being uniform.
We explicitly leave the surface region and sample shape undefined. We then only have to
obtain the microscopic Coulomb potential of the periodic system in order to completely
describe the fields in the bulk region. The main conclusion of this analysis is that in the
long-wavelength limit it suffices to know the induced lattice-periodic density and the in-
duced macroscopic current density in the bulk for a given uniform macroscopic electric
field in order to obtain the bulk-intrinsic induced microscopic potential and macroscopic
polarization.
We can now treat the dynamic linear response of a crystal to a fixed macroscopic field,
within the idealized periodic boundary approximation. We use the perturbation approach
to time-dependent density functional theory (TDDFT), in which both scalar and vector
potentials are used to describe the perturbation. In its most general form this theory
states that all observable quantities are functionals of both the time-dependent particle
density ρ(r, t) and the current density j(r, t). Ghosh and Dhara [32] have shown that this
time-dependent density and current density can be constructed using a generalization of the
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effective one-electron scheme of Kohn and Sham [3]. In this scheme the single-particle wave
functions ψn(r, t) are solutions of the following time-dependent Schrödinger-type equation,

i
∂

∂t
ψn(r, t) =

(
1

2

∣∣∣∣−i∇ +
1

c
Aeff (r, t)

∣∣∣∣2 + veff (r, t)

)
ψn(r, t) (4.16)

for suitably chosen initial conditions. The particles move in time-dependent effective poten-
tials {veff (r, t),Aeff (r, t)}, which are uniquely determined (apart from an arbitrary gauge
transform) by the exact time-dependent density and current density. These exact time-
dependent densities follow from the solutions ψn(r, t) via

ρ(r, t) =
N∑

n=1

|ψn(r, t)|2, (4.17)

and

j(r, t) =
N∑

n=1

�{−iψ∗
n(r, t)∇ψn(r, t)} − 1

c
ρ(r, t)Aeff (r, t). (4.18)

The first and second term on the right-hand side of Eq. (4.18) are the paramagnetic and
diamagnetic currents respectively. The initial ground-state configuration is obtained by
occupying only those one-electron states, which have evolved from the N solutions that are
lowest in energy for the stationary state.
The effective potentials are the result of the externally applied potentials supplemented
by internal contributions of the density and current density. These internal contributions
comprise the classical potentials due the density and current density, in addition to contri-
butions that account for the exchange and correlation effects. These exchange-correlation
contributions are universal functionals of the density and current density. Like in the orig-
inal Kohn-Sham scheme, these effective potentials have to be obtained self-consistently.
As we argued above, we choose to work in the microscopic Coulomb gauge, also for the
effective potentials. We then have to split the exchange-correlation contributions into mi-
croscopic and macroscopic components. We will assume that the microscopic component
of the exchange-correlation scalar potential is a functional of the periodic density alone, so
that the effective microscopic scalar potential takes the following form:

veff (r, t) = vmic(r, t) + vxc,mic[ρ](r, t). (4.19)

For the microscopic xc potential we will use the same functional dependence on the periodic
density as in the ground state calculation, which is known as the adiabatic approximation.
Again we will neglect any microscopic component of the effective vector potential. More-
over, all macroscopic components of the exchange-correlation contribution, which could
give rise to a macroscopic exchange-correlation electric field,

Exc,mac(r, t) = −1

c

∂

∂t
Axc,mac(r, t) + ∇vxc,mac(r, t), (4.20)
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will not be taken into account in the sequel. The effective vector potential becomes entirely
defined by the macroscopic electric field via Eq. (4.15),

Aeff (r, t) = A′(r, t) = −c
∫ t

Emac(r, t
′)dt′. (4.21)

With both effective potentials veff (r, t) and Aeff (r, t) now properly defined, this completes
the time-dependent self-consistency scheme.
For the calculation of linear response properties we only need to treat the time-dependent
components of the density, current density, and potentials as first-order perturbations.
First we obtain the ground-state density ρ0(r) and the ground state effective scalar poten-
tial veff ,0(r) of this generalized Kohn-Sham problem. In the absence of any time-dependent
macroscopic field this is an ordinary ground-state calculation. We then define the pertur-
bation of the ground-state density by δρ(r, t) = ρ(r, t)− ρ0(r). The change in the effective
scalar potential δveff (r, t) = veff (r, t) − veff ,0(r) comprises two contributions,

δveff (r, t) = δvmic(r, t) + δvxc[ρ](r, t). (4.22)

The classical part of this potential, i.e., the induced microscopic scalar potential δvmic(r, t),
follows directly from Eq. (4.11). The first-order correction to the exchange-correlation
potential, δvxc[ρ](r, t), is formally defined using the (universal) exchange-correlation kernel
fxc(r, t; r

′, t′),

δvxc[ρ](r, t) =
∫ t ∫

fxc[ρ0](r, t; r
′, t′)δρ(r′, t′) dr′ dt′. (4.23)

This kernel is the functional derivative of the time-dependent vxc[ρ](r, t) with respect to
the time-dependent density ρ(r′, t′). In this article we apply the adiabatic local-density
approximation (ALDA) for the exchange-correlation kernel,

fALDA
xc [ρ0](r, r

′, t − t′) = δ(t − t′)
∂vLDA

xc [ρ0](r)

∂ρ0(r′)

= δ(t − t′)δ(r − r′)
d2 (ρεhomxc (ρ))

dρ2

∣∣∣∣∣
ρ=ρ0(r)

, (4.24)

where the exchange-correlation energy density εhomxc (ρ) of the homogeneous electron gas is
modeled using the Vosko-Wilk-Nussair [41] parameterization.
The induced density has to be obtained self-consistently. We do this in an iterative way,
in which the macroscopic field Emac(t) is kept fixed while the induced effective potential
δveff (r, t) is updated in each cycle using the perturbed density of the previous cycle. This
procedure is repeated until it converged sufficiently.
The perturbation of the ground state which is due to the presence of the fixed uniform
electric field and the induced scalar potential is governed by the perturbation Hamiltonian
δĥeff , which is given by

δĥeff (Emac, r, t) = −
∫ t

ĵ · Emac(t
′) dt′ + δveff (r, t). (4.25)
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Here only terms linear in the field have been retained. This perturbation is no longer a
simple multiplicative operator like in ordinary TDDFT, since the macroscopic field couples
to the (paramagnetic) current operator. This operator is defined as ĵ = −i(∇ − ∇†)/2,
where the dagger indicates that terms to the left have to be differentiated. It is more
convenient to go to the frequency domain to obtain an expression for the perturbed density.
Using linear response theory, we get the induced density in first order,

δρ(r, ω) =
∫ (

i

ω
χρj(r, r

′, ω) · Emac(ω) + χρρ(r, r
′, ω)δveff (r′, ω)

)
dr′, (4.26)

where the Kohn-Sham response functions χρρ, χρj(r, r
′, ω) are properties of the ground

state. For periodic systems the ground-state solutions are characterized by Bloch functions
ψnk having energies εnk. They are counted by their integer band index n and continuous
Bloch vector k which is restricted to the first Brillouin zone VBZ . The various response
kernels χab(r, r

′, ω) can be obtained from the following expression:

χab(r, r
′, ω) =

1

VBZ

∑
n,n′

∫
VBZ

(fnk − fn′k)
(ψ∗

nk(r) â ψn′k(r)) (ψ∗
n′k(r

′) b̂ ψnk(r
′))

εnk − εn′k + ω + iη
dk, (4.27)

by substituting either ρ̂ = 1 or ĵ = −i(∇ − ∇†)/2 for the operators â and b̂. Here fnk

are the occupation numbers of the Bloch functions in the ground-state configuration. The
positive infinitesimal η results from the adiabatic onset of the perturbation. Note that,
since the perturbations are all lattice periodic, we only have to include those contributions
in the response kernel that conserve the Bloch vector k.
The induced current density can be obtained as soon as self-consistency is established.
Correct up to first order we obtain an expression similar to Eq. (9.15),

δj(r, ω) =
∫ (

i

ω
(χjj(r, r

′, ω) + ρ0(r)δ(r − r′)) · Emac(ω) + χjρ(r, r
′, ω)δveff (r′, ω)

)
dr′,

(4.28)
where it is important to note that the macroscopic field also contributes in first order via
the diamagnetic contribution to the current, jd(r, ω) = iρ0(r)Emac(ω)/ω. This contribution
can be related to the static Kohn-Sham current-current response function, χjj(r, r

′, 0) using
the conductivity sum rule

[χjj(r, r
′, 0)]ij + ρ0(r)δijδ(r − r′) = 0. (4.29)

Note also that

χjρ(r, r
′, 0) = 0. (4.30)

The induced current density is lattice-periodic, so that the macroscopic polarization is
uniform and can be obtained from either Eq. (4.2) or (4.3) in their fourier representations,

Pmac(ω) = χe(ω) · Emac(ω) =
i

V ω

∫
V

δj(r, ω) dr. (4.31)
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During the SCF cycles we can set the macroscopic field to Emac(ω) = −iω ej, i.e., to a field
linear in ω and directed along a unit vector ej and thus avoid the singularities at ω = 0 in
Eq. (9.15) and Eq. (4.28). Note that Emac(ω) = E∗

mac(−ω), so that this choice represents
a real-valued electric field. This particular choice is equivalent to choosing a frequency-
independent value for the vector potential, A′(ω) = ej. The diamagnetic contribution to
the total induced current density of Eq. (4.28) then becomes frequency-independent, and,
by using the special values for the static Kohn-Sham response functions of Eq. (4.29) and
(4.30), we obtain

δj(r, ω) = δjp(r, ω) + δjd(r, ω) = δjp(r, ω) + δjd(r, 0) = δjp(r, ω) − δjp(r, 0). (4.32)

The Cartesian components of the susceptibility then follow from Eq. (4.31)

[χe(ω)]ij =
{
− 1

V ω2

∫
V
[δjp(r, ω) − δjp(r, 0)]i dr

}∣∣∣∣
Emac(ω)=−iω ej

. (4.33)

There is a definite numerical advantage in rewriting the expression in this way. The
diamagnetic and paramagnetic parts are treated on equal footing, hence a proper behaviour
for the static limit ω → 0 is established.

4.4 Implementation

In this section we describe the main aspects of the implementation of the previously out-
lined method for TDDFT in crystalline systems. We will first discuss the role of symmetry
in reducing the amount of computational effort. This has some important implications for
the way the response calculations have been implemented.
The set of inhomogeneous linear transformations {α̂|tα}r = α ·r+tα that leave the crystal
invariant constitutes the space group G of the crystal. Here α is a 3 × 3 rotation matrix,
and tα a translation vector. The rotation parts α̂ separately form a finite group of order
nG, which is referred to as the point group G of the crystal. For clarity we will not consider
the consequences of time-reversal symmetry here, and we will limit the discussion to the
space-group elements only.
For a given macroscopic perturbing field E(ω) of frequency ω we get an induced density at
position r given by δρ(E, r, ω). Here we have included the field as a parameter for nota-
tional convenience. Due to linearity we can treat the response to the Cartesian components
of the field separately, and we get

δρ(E, r, ω) = δρ(
∑

i

Ei ei, r, ω) =
∑

i

Eiδρ(ei, r, ω). (4.34)

The ei are unit vectors in each of the three Cartesian directions. We can now define a vector
field δρ(r, ω) by specifying its ith Cartesian component as the response to an electric field
E(ω) = −iω ei, in the following way

δρ(r, ω) =
∑

i

δρ(−iω ei, r, ω) ei. (4.35)
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For arbitrary given field E(ω) the induced density then follows from Eq. (4.34)

δρ(E, r, ω) =
i

ω
δρ(r, ω) · E(ω). (4.36)

Under the application of a general rotation-translation {α̂|tα} this vector field transforms
by definition as

{α̂|tα}δρ(r, ω) = α · δρ({α̂|tα}−1r, ω). (4.37)

By subsequently substituting the definition of δρ(r, ω) of Eq. (4.35) and by applying the
linearity property of Eq. (4.34) we obtain

{α̂|tα}δρ(r, ω) =
∑
ij

αji δρ(−iω ei, {α̂|tα}−1r, ω) ej

=
∑
j

δρ(−iω
∑

i

αji ei, {α̂|tα}−1r, ω) ej

=
∑
j

δρ(−iω α−1 · ej, {α̂|tα}−1r, ω) ej. (4.38)

If {α̂|tα} is a symmetry operation of the crystal, then a rotated electric field α−1 · ej gives
the same response at the rotated point {α̂|tα}−1r as the original field ej did at the original
point r. Hence we have

{α̂|tα}δρ(r, ω) =
∑
j

δρ(−iω α−1 · ej, {α̂|tα}−1r, ω) ej

=
∑
j

δρ(−iω ej, r, ω) ej

= δρ(r, ω), (4.39)

which proves that δρ(r, ω) transforms as a fully symmetric vector field under the opera-
tions of the crystal space group.
A similar analysis holds for the induced effective potential δveff (E, r, ω), and we can intro-
duce the vector field δveff (r, ω) accordingly, by an equation similar to Eq. (4.35),

δveff (r, ω) =
∑

i

δveff (−iω ei, r, ω) ei, (4.40)

such that we have

δveff (E, r, ω) =
i

ω
δveff (r, ω) · E(ω). (4.41)

Note that, due to the totally-symmetric vector transformation property, we will have to
evaluate these induced vector fields only for the irreducible wedge of the Wigner-Seitz cell.
We can now inspect that our formulas for the induced density indeed reflect these symmetry
properties. By inserting the expression for the Kohn-Sham response kernels from Eq. (4.27)
into the expression for the induced density from Eq. (9.15), we obtain

δρ(E, r, ω) =
1

VBZ

∑
n,n′

∫
BZ

ψ∗
nk(r)ψn′k(r)

(fnk − fn′k)Mn′nk(E, ω)

(εnk − εn′k) + ω + iη
dk, (4.42)



36 CHAPTER 4. A TDDFT APPROACH FOR PERIODIC SYSTEMS

where the matrix elements Mn′nk are defined by

Mn′nk(E, ω) =
∫

ψ∗
n′k(r

′)
(

i

ω
ĵ · E(ω) + δveff (r′, ω)

)
ψnk(r

′) dr′. (4.43)

It immediately becomes clear that we do not have to evaluate and store the Kohn-Sham
response kernels explicitely. Instead, we can obtain the induced density directly for any
given perturbation, by evaluating these matrix elements separately.
The transformation properties of the Bloch functions enable us to limit the integration to
the irreducible wedge of the Brillouin zone only. Since we do not consider the consequences
of time-reversal symmetry here, the irreducible part is taken with respect to the crystal
point group only. In a general k-point we have the following transformation relation for
any element {α̂|tα} of the space group:

ψnα·k(r) = exp(iφnk({α̂|tα}))ψnk({α̂|tα}−1r). (4.44)

Here φnk({α̂|tα}) is a real-valued function of k which depends on the particular band
index and operator. Since ψnk(r) always occurs in Eq. (4.42) in combination with its
complex conjugate via Mn′nk(E, ω), this phase factor is irrelevant for our calculations. The
occupation numbers fnk are obtained in the ground-state configuration and are therefore
functions of just the Kohn-Sham energy εnk. Since the energy transforms as εnα·k = εnk,
we also have fnα·k = fnk. Hence both fnk and εnk are fully symmetric under the operations
of the point group.
We can split the summation over the band indices n, n′ into two parts, which involve only
combinations of occupied with virtual states. Furthermore, we split the integration domain
into equivalent wedges, which are related through the nG operators α̂ of the point group.
We obtain

δρ(E, r, ω) =
1

nGVIBZ

∑
α̂∈G

occ∑
i

virt∑
a

∫
IBZ

ψ∗
iα·k(r)ψaα·k(r)

(fik − fak)Maiα·k(E, ω)

(εik − εak) + ω + iη
dk+ c.c.(−ω).

(4.45)
The second part is the complex conjugate of the first part in which we have to replace
ω by −ω. This simple relation between the two parts is due to the fact that both E(t)
and veff (r, t) have to be real-valued, such that Miak(E, ω) = M∗

aik(E
∗,−ω). Using the

transformation rules of Eq. (4.44) for the wave functions ψnα·k(r), we can interchange the
action of the symmetry operators between the reciprocal and real space. For the matrix
elements we then get the following result:

Maiα·k(E, ω) =
∫

ψ∗
ak({α̂|tα}−1r′)

(
i

ω
ĵ · E(ω) + δveff (r′, ω)

)
ψik({α̂|tα}−1r′) dr′, (4.46)

where we have dropped the phase factor of the transformation rule, as was argued above.
By substituting r′′ = {α̂|tα}−1r′ and by making use of the vector transformation properties
of both the current operator ĵ and the potential vector δveff (r′, ω) we obtain

Maiα·k(E, ω) =
i

ω
(α · Maik(ω)) · E(ω), (4.47)
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with the vector Maik(ω) being given by

Maik(ω) =
∫

ψ∗
ak(r

′′)
(
ĵ + δveff (r′′, ω)

)
ψik(r

′′) dr′′. (4.48)

Substituting this result in Eq. (4.45) and applying again the transformation rule Eq. (4.44)
yields the final result for the induced density. This density is fully specified by the vector
density δρ(r, ω), which can be obtained as the totally-symmetric component of the auxiliary
vector field δρ̃(r, ω) following

δρ(r, ω) =
1

nG

∑
α̂∈G

{α̂|tα}δρ̃(r, ω) + c.c.(−ω), (4.49)

where we have defined δρ̃(r, ω) as

δρ̃(r, ω) =
1

VIBZ

occ∑
i

virt∑
a

∫
IBZ

ψ∗
ik(r)ψak(r)

(fik − fak)Maik(ω)

(εik − εak) + ω + iη
dk. (4.50)

The integrations over the irreducible wedge of the Brillouin zone are evaluated numerically,
by including the energy denominator into the integration weights of the quadrature

1

VIBZ

∫
IBZ

(fik − fak)

(εik − εak) + ω + iη
g(k) dk =

∑
kj

wiakj
(ω)g(kj). (4.51)

This way, the singular denominator can be handled analytically. The way these weights
are obtained is the subject of Chapter 4.8 Appendix B.
The induced density can now be used to evaluate the exchange-correlation potential using
Eq. (4.23), which reduces in the ALDA approximation to the following simple relation:

δvxc(r, ω) = fALDA
xc [ρ0](r) δρ(r, ω). (4.52)

The evaluation of the screened Coulomb potential becomes tractable by using auxiliary
fitfunctions in a procedure similar to the one which was used in the ground-state calculation
[37]. These fitfunctions have to be constructed in such a way that they reflect the symmetry
transformation properties of the induced density. We therefore construct a set of real-valued
vector functions {fi}, which transform as totally-symmetric vector fields

fi(r) = {α̂|tα}fi(r) = α · fi({α̂|tα}−1r), (4.53)

and for which the screened Coulomb integrals can be evaluated analytically. Thus we
obtain for each function fi(r) a potential function gi(r) using Eq. (4.11),

gi(r) = lim
c→∞

∑
j

hc(|r − Rj|)
∫

Vj

fi(r
′)

|r − r′|dr
′. (4.54)

The first-order density change δρ(r, ω) can then be represented on this basis of vector
functions, using frequency dependent coefficients ci(ω)

δρ(r, ω) =
∑

i

ci(ω) fi(r). (4.55)



38 CHAPTER 4. A TDDFT APPROACH FOR PERIODIC SYSTEMS

The coefficients ci(ω) are fitted under the constraint that the net charge vanishes, which
can be achieved automatically if none of the fitfunctions contains charge. This constraint
is necessary to ensure that the microscopic potential actually exists. We obtain

δveff (r, ω) =
∑

i

ci(ω)gi(r) + δvxc(r, ω). (4.56)

The way in which these fitfunctions can be constructed and the implementation of the
constraint are the subject of Chapter 4.9 Appendix C.
The self-consistent field scheme is now complete. Given a start-up value for the induced
effective potential [e.g., δveff (r, ω) = 0 for the uncoupled case], we can obtain the matrix
elements for the perturbation from Eq. (4.48), and, with them, the induced density from Eq.
(4.50) and Eq. (4.49). Using the fitting procedure, we obtain the new Coulomb contribution
to the effective potential, and, from the density itself, the exchange-correlation contribution
Eq. (4.52) and Eq. (4.56). This completes the first cycle of the SCF scheme, and we iterate
until convergence is reached. As convergence criterion we use the maximum change in the
fitting coefficients for subsequent cycles, which must become negligible in order to reach
convergence. The efficiency of this SCF procedure is increased by using the DIIS method
(direct inversion of the iterative space) of Pulay [42]. The efficiency can be improved
even further by using the converged result of a nearby frequency as start-up value for the
calculation at the frequency at hand. Typically, convergence is reached in a few cycles.
With the converged results for the induced density and potential we can use the matrix
elements of the SCF perturbation of Eq. (4.48) again to obtain the induced current density.
We will only need to consider the paramagnetic part for the evaluation of the susceptibility.
Similar to the definitions of the totally-symmetric density vector and potential vector, we
define a tensor δJp(r, ω), by

δJp(r, ω) =
∑

i

δjp(−iω ei, r, ω) ⊗ ei, (4.57)

so that we can obtain the induced paramagnetic current density from

δjp(E, r, ω) =
i

ω
δJp(r, ω) · E(ω). (4.58)

In an analogous way as was proven for vector quantities, one easily verifies that this tensor
transforms as a totally-symmetric tensor field,

δJp(r, ω) = {α̂|tα}δJp(r, ω) = α · δJp({α̂|tα}−1r, ω) · α−1. (4.59)

The paramagnetic current density is obtained as the totally-symmetric part of the auxiliary
tensor function δJ̃p(r, ω), via

δJp(r, ω) =
1

nG

∑
α̂∈G

{α̂|tα}δJ̃p(r, ω) + c.c.(−ω), (4.60)
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in which we have defined δJ̃p(r, ω) as

δJ̃p(r, ω) =
−i

2VIBZ

occ∑
i

virt∑
a

∫
IBZ

(ψ∗
ik(r)∇ψak(r) −∇ψ∗

ik(r)ψak(r))
(fik − fak)Maik(ω)

(εik − εak) + ω + iη
dk.

(4.61)
The susceptibility then follows from Eq. (4.33) as

χe(ω) =
−1

ω2V

∫
V
(δJp(r, ω) − δJp(r, 0)) dr. (4.62)

4.5 Results and Discussion

We have performed some calculations to test this method for calculating the dielectric
properties of crystals. Therefore, we obtained the static and frequency-dependent dielec-
tric function for the isotropic crystals of diamond (C), silicon (Si), and gallium arsenide
(GaAs). The first two have the diamond, and the third the zinc-blend lattice type. All
calculations were performed within the ADF-BAND (Refs. [37, 38]) program. We made
use of frozen cores and a hybrid valence basis set consisting of the numerical solutions of a
free-atom Herman-Skillman (HS) program [43], in combination with Slater-type one-center
functions (STO). The spatial resolution of this basis is equivalent to a triple-zeta STO basis
that is augmented with two polarization functions. This valence basis was orthogonalized
to the core states. The free-atom effective potential was provided by the same HS program.
For the evaluation of the Coulomb integrals we used a single auxiliary basis of STO func-
tions to represent the deformation density in the ground-state calculation and the induced
density in the response calculation.
All matrix elements were evaluated numerically using an efficient and accurate quadra-
ture scheme [37, 44]. The numerical integration scheme for the k-space integrals was
varied and used from 5 to 175 symmetry-unique sample points in the irreducible wedge
of the Brillouin zone. All results shown here were obtained using the Vosko-Wilk-Nusair
parametrization of the LDA exchange-correlation potential, which was also used to derive
the ALDA exchange-correlation kernel.
First we obtained the static value for the dielectric function for diamond, and we investi-
gated the convergence behavior as a function of the k-space sampling. In Fig. 4.2 we show
the results for diamond in the low-frequency range, which were obtained using various k-
space sampling densities, together with the experimental data as obtained from Ref. [45].
The highest sampling density with 175 points gave identical results as the calculation using
111 points. This graph clearly shows that the results depend strongly on the accuracy of
the numerical integration in k-space. Whereas in general most methods typically yield an
overestimation for the static value of about 10%, we find for diamond an underestimation
of about 5% for our most accurate result. In Table 4.1 we summarize our results for the
static values for C, Si, and GaAs, which were obtained using the k-space sampling of 111
points, and we compare them with other theoretical and experimental values. Our results
are in good agreement with the experimental data, and are comparable to other calcula-
tions.
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Figure 4.2: The dielectric function for diamond in the low frequency range, obtained for
various k-space samplings. The experimental data is taken from [46].
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Figure 4.3: The various contributions to the dielectric function of Si in the low-frequency
range.
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We have also investigated the Coulomb and exchange-correlation contributions to the self-
consistent potential. In Fig. 4.3 we plot the results for Si in the low-frequency range, which
were obtained using a k-space sampling of 34 points. The uncoupled result is obtained
by setting δveff (r, ω) = 0, which yields the bare response of the Kohn-Sham system. The
coupled results have been obtained with and without inclusion of the exchange-correlation
contribution. By including only the Coulomb contribution in the SCF procedure, the
static value drops by about 25% relative to the bare response, from 12.9 to 9.9. Similar
shifts, though smaller in magnitude, have been obtained in the dielectric matrix methods
[15, 16, 24, 35]. Including the exchange-correlation contribution in the coupled response
raises the value again, relative to the Coulomb-only value by 10%, to 10.9. We can conclude
that both the Coulomb interaction and exchange-correlation effects contribute consider-
ably to the dielectric response, and that they are in the order of about 10%-15%. We find
no major qualitative changes in the frequency dependence of the dielectric function, due
to the coupling.
In Figs. 4.4 and 4.5 we show the real and imaginary parts of the frequency-dependent
dielectric function for the three materials C, Si, and GaAs, and we compare them with
the experimental data as obtained from Refs. [45, 46]. All results have been obtained by
including the Coulomb interaction and exchange-correlation effects in the SCF procedure.
We verified numerically that the real and imaginary parts form Kramers-Kronig pairs. The
overall correspondence with experiment is quite good, in particular for the low frequency
ranges. The sharp features in the spectra are reasonably well reproduced, and can be
attributed to the van Hove-type singularities in the joint-density of states, as obtained
from the Kohn-Sham band structure. They appear at energies which are uniformly shifted
downwards with respect to the experiments by, respectively, about 1.0, 0.5, and 0.4 eV for
C, Si, and GaAs. The calculated absorption edges coincide with the vertical Kohn-Sham
energy gap of, respectively, 5.6, 2.6, and 1.0 eV.

4.6 Conclusions

We have successfully applied time-dependent density functional theory to the dielectric
response of nonmetallic crystalline systems. We used a perturbation approach to the time-
dependent self-consistent field scheme, for which we derived a real-space description. This
could only be achieved by combining a self-consistent lattice-periodic scalar potential with a
uniform electric field. This field could be identified as the macroscopic electric field. In this
description, exchange-correlation contributions and the microscopic Coulomb interactions
were included in the self-consistent effective scalar potential. The macroscopic polarization
and the electric susceptibility can then be obtained from the induced current density.
This method was implemented in a full-potential LCAO program. The coupled response
can then be obtained with an efficiency that can be compared to ordinary DFT ground-
state calculations. This high efficiency was achieved by using the space-group symmetry of
the crystals, which led to the use of fully symmetric vector functions for the representation
of the induced density and the SCF potential. The evaluation of Coulomb integrals was
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Table 4.1: Static dielectric constants for diamond (C), silicon (Si), and gallium arsenide
(GaAs).

Solid Experiment This Work Other Theory Methoda,b,c,d

C 5.67e 5.4 5.90f DM,PP,PW,XC
5.20-5.86g DM,PP,PW,QP

5.5h DM,PP,LCGO,QP

4.34i UR,FP,LCAO

5.7j UR,EP,LCAO

Si 11.4k 11.6 12.4-12.9l DFPT,PP,PW,XC
12.7m DFPT,PP,PW,XC
13.6n DFPT,PP,PW,XC
12.05o DM,FP,LMTO,QP
12.7p DM,PP,PW,XC
12.9q DM,PP,PW,XC
11.2r DM,PP,PW,QP

12.8h DM,PP,LCGO,QP

9.03i UR,FP,LCAO
11.7s UR,PP,LCGO,QP

12.0j UR,EP,LCAO

GaAs 10.8t 10.8 12.3m,n DFPT,PP,PW,XC
10.83o DM,FP,LMTO,QP
10.2u DM,PP,PW,QP

13.1h DM,PP,LCGO,QP

11.21i UR,FP,LCAO
10.9s UR,PP,LCGO,QP

10.9j UR,EP,LCAO
aDFPT: Density Function Perturbation Theory, DM: Dielectric Matrix, UR: Uncoupled Response.
bFP: Full Potential, PP: Pseudopotential, EP: Empirical Potential.
cPW: Plane Wave, LMTO: Linearized Muffin-Tin Orbitals, LCAO: Linear Combination of Atomic Or-
bitals, LCGO: Linear Combination of Gaussian Orbitals.
dXC: Exchange-Correlation Effects, QP: Quasi-Particle Energy Shift.
eRef. [49] fRef. [35] gRef. [26] hRef. [50] iRef. [51] jRef. [52] kRef. [53] lRef. [21] mRef. [36] nRef. [54]
oRef. [55] pRef. [15] qRef. [35] rRef. [16] sRef. [56] tRef. [57] uRef. [58]
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Figure 4.4: Plots of the real and imaginary part of the calculated dielectric function of
diamond (C) [left] and silicon (Si) [right] in comparison with the experimental data (Refs.
[45] and [46]).

Experiment
Theory

R
e�
�
��
��

��

��

��

��

�

�

	�

	��

Experiment
Theory

� �eV�

Im
��
��
��


������

�

��

��

��

��

�

�

Figure 4.5: Plots of the real and imaginary part of the calculated dielectric function of
gallium arsenide (GaAs) in comparison with the experimental data (Ref. [46]).
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facilitated by using an auxiliary basis of vector functions to represent the density. This basis
was constructed in such a way that the Coulomb integrals could be evaluated analytically.
The lattice sums could be evaluated efficiently using a screening technique. The expensive,
direct evaluation of the Kohn-Sham response kernels was avoided, and the singular integrals
which appear in these kernels could be treated analytically.
We applied this method to obtain the dielectric function for the crystals of C, Si, and
GaAs. The results show that Coulomb and exchange-correlation effects each contribute up
to about 10%-15% of the coupled response. We obtained the static value and low-frequency
range for the dielectric functions in good agreement with experiment. The frequency
dependent response reveals that spectral features appear at energies which coincide with
the van Hove-type singularities in the bare Kohn-Sham response. The absorption edges
can be found at the direct energy gap of the Kohn-Sham ground state band structure. The
spectral features seem to be uniformly shifted downwards in energy by several tenths of an
electron volt. However, a modification of the Kohn-Sham band structure by rigidly shifting
the energies of the virtual states, (the scissors operator) seems not to be justified here. Such
a procedure would affect the good agreement for the static value and low frequency range,
even though it would correct the positions of the spectral features.

4.7 Appendix A: Screened Potential

An essential part of the screening technique is that the screened contribution of the uniform
multipoles to the microscopic potential is uniform, i.e., not depending on the particular
coordinate r at which the potential is evaluated. The screened instantaneous Coulomb
potential δv(r, t) of the uniform moments δµ(n)(t) as needed in Eq. (4.11) is given by Eq.
(4.7),

δv(r, t) = lim
c→∞

∑
i

hc(|r − Ri|)
∫

Vi

2∑
n=0

1

n!
δµ

(n)
j1···jn

(t) · ∂n

∂r′j1 · · · ∂r′jn

1

|r − r′| dr′, (4.63)

where a summation over all Cartesian components j1 through jn of the multipoles of rank n
was implied. For notational convenience we will introduce the shorthand notation δµ(n)·∇′ n

for this contraction. This potential can only be finite if δµ(0)(t) = 0, i.e., if the uniform
density vanishes identically. In the sequel we will only consider such cases.
As a first step, we will make the scale parameter c of the envelope function hc(|r|) explicit.
Let us therefore introduce the new scaled relative coordinates x = (r − r′)/c and define
also a much denser lattice (with an r-dependent origin) by setting Xi = (r − Ri)/c.
The integration domains, i.e., the unit cells Vi map under this transformation to the r-
dependent Vi,r. These Vi,r are the unit cells of the lattice defined by the Xi. We will make
a particular choice for the shape of the envelope function by setting hc(r) = h1(r/c) for all
c. For increasing c this envelope then only grows in size, but its shape remains the same.
Application of this coordinate substitution yields the following expression

δv(r, t) = lim
c→∞

∑
i

h1(|Xi|)
∫

Vi,r

(
2∑

n=1

(−c)2−n

n!
δµ(n)(t) · ∇n 1

|x|
)

dx. (4.64)
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The singularity at x = 0 is integrable for n ≤ 2. This formula reveals that the contribution
of a multipole of rank n to the integrand scales like c2−n. Somewhat hidden, though, is the
c-dependence of the integration domain. However, naively replacing the summation and
integration in the following way,

lim
c→∞

∑
i

h1(|Xi|)
∫

Vi,r

g(x)dx =
∫

h1(|x|)g(x)dx, (4.65)

can only be justified for finite integrands g(x). We will have to show that the corrugation,
which is due to the evaluation of the envelope function at r-dependent discrete lattice
points Xi on one hand, and to the integration over the r-dependent domains Vi,r on the
other, vanishes in the limit. Let us include the x-dependent part of the envelope in the
integrand by using the following Taylor expansion around x ∈ Vi,r

h1(|Xi|) =
∞∑

m=0

1

m!
(Xi − x)m · ∇mh1(|x|). (4.66)

The order of the general term in this Taylor series scales like O(|x − Xi|m) = O(c−m).
Substitution gives

δv(r, t) = lim
c→∞

2∑
n=1

∞∑
m=0

(−c)2−n−m

n!m!

(∑
i

∫
Vi,r

cm(x − Xi)
m · ∇mh1(|x|) × δµ(n)(t) · ∇n 1

|x| dx

)
.

(4.67)
We will now show that the factor between brackets has a finite value for c → ∞, so that all
terms with n+m > 2 vanish identically. Since the spacing of the lattice points Xi and the
size of Vi,r will decrease for increasing c, the factor cm(x−Xi)

m will become an increasingly
rapid fluctuating part of the integrand. It has the shape of a saw-tooth function with fixed
extreme values. In the limit, only the average value of this fluctuating term is relevant,
which can be separated from the rest according to

lim
c→∞

∑
i

∫
Vi,r

cm(x − Xi)
m · ∇mh1(|x|) × δµ(n)(t) · ∇n 1

|x| dx

=
1

Vi

∫
Vi

(r′ − Ri)
m dr′ ·

∫
∇mh1(|x|) × δµ(n)(t) · ∇n 1

|x| dx. (4.68)

For m = 0 this separation is trivial and already valid for arbitrary - finite - c. Here the first
integral is over any one of the identical cells Vi. The second integral is over all space, and
its value is finite for all m (and not depending on the particular coordinate r), if we require
all mth derivatives of the envelope to be regular in the origin and to fall off sufficiently
fast for |x| → ∞. These demands can be met, by choosing e.g. h1(x) = [1 + exp(β[x −
1/x])]−1; β > 0, yielding a step-like function around x = 1 with step width 1/β, and a tail
that falls off exponentially. Since it obeys the symmetry rule h1(x) = 1 − h1(1/x) with
h1(0) = 1; h1(∞) = 0, it has the proper behaviour at x = 0 and x = ∞.
As argued above we have shown that all terms in Eq. (4.67) with n + m > 2 vanish in
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the limit. The terms with n = 0 do not contribute since δµ(0)(t) = 0, whereas the term
with n = 1,m = 0 can be dropped (already for finite c) since the second integral in the
right hand side of Eq. (4.68) vanishes on symmetry grounds. All remaining terms have
m = 2 − n, for which we obtain∫

∇2−nh1(|x|) ⊗∇n 1

|x| dx = −(−1)n 4π

3
1 (n = 0, 1, 2). (4.69)

This result is not depending on the particular shape of the spherically symmetric screening
function if it has the proper asymptotic behavior. These terms can merely lead to a uniform
finite potential

δv(t) =
4π

3

(
δµ(1)(t) · 1

V

∫
V
(r − R) dr − 1

2
Tr(δµ(2)(t))

)
. (4.70)

In conclusion, we get a uniform contribution δv(t) to the microscopic potential due to
the uniform multipoles if the unit cell is charge-neutral δµ(0) = 0. This contribution has a
value which does not depend on the particular shape of the spherically symmetric screening
function.

4.8 Appendix B: Quadrature for Response Kernels

The response integrals of Eq. (4.50) and Eq. (4.61) involve integrations over the irreducible
wedge of the Brillouin zone, in which the denominator can become singular. A good way
to treat these singularities is to use a Lehmann-Taut tetrahedron scheme [47], in which
the energy-dispersion relation of the denominator ε(k) = εak − εik is parametrized for each
combination of i and a. We can separate the energy dependent part from the rest according
to

Iia(ω) =
1

VIBZ

∫
VIBZ

(fik − fak)g(k)

ω − (εak − εik) + iη
dk =

∫ ε1

ε0

gia(ε)

ω − ε + iη
dε, (4.71)

where ε0 and ε1 are the minimum and maximum value of ε(k) occurring in VIBZ . Since in
non-metallic systems the bands are either completely occupied or completely virtual, we
can make the simplification fik − fak = 2 and we get

gia(ε) =
2

VIBZ

∫
VIBZ

g(k)δ(ε − (εak − εik)) dk. (4.72)

For this integration accurate quadrature schemes exist (e.g., Ref. [48]) which give us the
weights w̃iakj

(ε), such that

gia(ε) =
∑
j

w̃iakj
(ε)g(kj). (4.73)

In the linear tetrahedron scheme these weights are piecewise cubic polynomials in ε. For
the quadrature of Eq. (4.51) we can write

Iia(ω) =
∑
j

wiakj
(ω)g(kj). (4.74)
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We only have to integrate the weights w̃iakj
(ε) in the following way to obtain the new

weights wiakj
(ω) as functions of ω,

wiakj
(ω) =

∫ ε1

ε0

w̃iakj
(ε)

ω − ε + iη
dε = P

∫ ε1

ε0

w̃iakj
(ε)

ω − ε
dε + iπ w̃iakj

(ω). (4.75)

The real and imaginary parts of this weight can thus be obtained separately using the
Cauchy principle value and residual parts.

4.9 Appendix C: Symmetry Adapted Fitfunctions

For the efficient evaluation of the microscopic Coulomb potential we have to construct a
basis of vector functions, which are orthogonal in the following sense:∫

fi(r) · fj(r) dr = δij, (4.76)

and which transform as totally-symmetric vector fields according to

fi(r) = {α̂|tα}fi(r) = α · fi({α̂|tα}−1r). (4.77)

We can construct these fitfunctions as totally-symmetric Bloch sums of one-center functions
fnlm(r),

fnlm(r) = rn+l−1 exp(−ζr)Zlm(r̂). (4.78)

The Zlm(r̂) are the real-valued spherical harmonics. In the actual fitset more than one value
is used for the parameter ζ for each combination of n, l, and m. The Coulomb integrals of
these one-center functions can be evaluated analytically using the following expansion of
1/|r − r′| in these spherical harmonics,

1

|r − r′| =
∑
lm

4π

2l + 1

rl
<

rl+1
>

Zlm(r̂)Zlm(r̂′), (4.79)

where the r< and r> refer to the smaller and larger values, respectively, of the two radii r
and r′. Using the orthogonality of the Zlm functions we obtain

gnlm(r) =
∫ fnlm(r′)

|r − r′| dr
′ =

4π

2l + 1
Zlm(r̂)

∫ ∞

0

rl
<

rl+1
>

r′n+l+1
exp(−ζr′) dr′. (4.80)

This is again a one-center function of the same l and m value, but with a different radial
dependence. The remaining integration over the radial coordinate r′ can be evaluated
easily. We can now construct the totally-symmetric Bloch sums of the fitfunctions fnlm(r)
according to

fi(r) =
∑

{α̂|tα}∈G
{α̂|tα}fnlm(r − a) eµ. (4.81)
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The vectors a are the coordinates of the atoms in the irreducible wedge of the Wigner-Seitz
cell, and eµ is a unit vector in either one of the Cartesian directions µ. For notational con-
venience we introduced the compound index i = {nlm, a, µ}. Due to the operations {α̂|tα}
of the crystal space group G this series develops into a linear combination of one-center
functions with the same n and l values at equivalent atoms. The potential functions are
constructed simultaneously, by using the screened Bloch sums of the one-center potential
functions,

gi(r) =
∑

{α̂|tα}∈G
{α̂|tα}hc(|r − a|)gnlm(r − a) eµ. (4.82)

This set of functions is then orthogonalized by diagonalizing the (real and symmetric)
overlap matrix of the vector fitfunctions Sij =

∫
fi(r) · fj dr, i.e., by rewriting S in S =

ODOT with O the orthogonal transformation matrix, and D a diagonal matrix. We only
keep those elements j for which the diagonal elements dj are larger than some threshold, and

we obtain the orthogonalized set of fitfunctions f ′j(r) = d
−1/2
j

∑
i Oijfi(r) and simultaneously

we transform the potential functions accordingly to g′
j(r) = d

−1/2
j

∑
i Oijgi(r).

The microscopic potential can only be defined for a neutral unit cell. Therefore, we have
to do a constrained fit which automatically conserves charge. Using Eq. (4.55) we get

0 =
∫

δρ(r, ω) dr =
∫ ∑

i

ci(ω)f ′i(r) dr =
∑

i

ci(ω)
∫

f ′i(r) dr =
∑

i

ci(ω)ni, (4.83)

in which the vectors nµ
i are the charge content of the fitfunctions

ni =
∫

f ′i(r) dr. (4.84)

This constraint results in three linear relations between the coefficients ci(ω), one for each
Cartesian component of the ni. We can minimize the fit error and implement the constraint
by using the Lagrange multiplier technique. The set of Euler-Lagrange equations becomes

∂

∂cj


∫ ∣∣∣∣∣δρ(r, ω) − ∑

i

ci(ω)f ′i(r)

∣∣∣∣∣
2

dr + λ(ω) · ∑
i

ci(ω)ni


 = 0, (4.85)

which gives
−2vj(ω) + 2cj(ω) + λ(ω) · nj = 0, (4.86)

where the vj(ω) are obtained as the unconstrained fit coefficients

vj(ω) =
∫

δρ(r, ω) · f ′j(r) dr. (4.87)

Multiplying by nj, and summing over the indices j again, gives, after application of the
constraint

∑
j cj(ω)nj = 0, the following equation:

∑
j

nj ⊗ nj


 · λ(ω) = 2

∑
j

vj(ω)nj, (4.88)
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which can be solved for λ(ω) by inverting the 3×3 matrix A =
∑

j nj⊗nj. The coefficients
ci(ω) then follow from this solution as

ci(ω) = vi(ω) − 1

2
λ(ω) · ni. (4.89)

It is worthwhile to investigate if this constraint can be implemented during the construction
of the fitfunctions, i.e., by making new linear combinations of them. The fitted density
is obtained from Eq. (4.55) again, and, with the use of the expressions for the expansion
coefficients Eq. (4.89) and the solution for the multiplyers Eq. (4.88), it takes the form

δρ(r, ω) =
∑

i

(vi(ω) − 1

2
λ(ω) · ni)f

′
i(r) =

∑
ij

f ′i(r)(δij − ni · A−1 · nj)vj(ω). (4.90)

Substitution of the expression (4.87) for vj(ω) yields

δρ(r, ω) =
∫ ∑

ij

f ′i(r)(δij − ni · A−1 · nj)f
′
j(r

′) · δρ(r′, ω) dr′. (4.91)

It directly becomes clear that by diagonalizing the real and symmetric matrix B, which
is defined by its components Bij = δij − ni · A−1 · nj, we get a new set of orthogonal
fitfunctions. Note that B is idempotent, i.e., B2 = B, so that it can only have eigenvalues
equal to 1 or 0. With B = ODOT the reduced set of functions is then obtained by defining
f ′′i (r) = d

1/2
i

∑
j Ojif

′
j(r). In exactly the same way the corresponding potential functions

are transformed. The density can then be fitted as

δρ(r, ω) =
∑

i

c′i(ω)f ′′i (r), (4.92)

where the fitcoefficients c′i(ω) can be found as in an unconstrained fit from the relation

c′i(ω) =
∫

δρ(r, ω) · f ′′i (r) dr. (4.93)
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Chapter 5

Application of the TDDFT approach
to crystals

F. Kootstra, P. L. de Boeij, and J. G. Snijders, ”Application of time-dependent density-
functional theory to the dielectric function of various nonmetallic crystals”, Phys. Rev. B
62, 7071-7083 (2000).

5.1 Abstract

The dielectric function of a range of nonmetallic crystals of various lattice types is stud-
ied by means of a real-space and full-potential time-dependent density-functional method
within the adiabatic local-density approximation. Results for the dielectric constant ε∞ (at
optical frequencies) are given for crystals in the sodium chloride, the fluoride, the wurtzite,
the diamond, and the zinc-blende lattice structure. The frequency-dependent dielectric
function ε(ω) for the crystals in the diamond and zincblende lattice structure are also pre-
sented. We compare our calculated results with experimental data and other theoretical
investigations. Our results for the dielectric constants ε∞ and the dielectric functions ε(ω)
are in good agreement with the experimental values. The accuracy of the results is com-
parable to the one which is commonly found for time-dependent density-functional theory
calculations on molecular systems. On average we find a deviation of 4-5% from exper-
iment for the group IV and III-V compounds in the wurtzite, zincblende and diamond
lattice structure, 8-9% for the II-VI and I-VII compounds in the zinc-blende and sodium
chloride lattice structure, and up to 14% deviation for the fluoride lattice structure. The
spectral features of the dielectric functions ε(ω) appear in the calculations at somewhat
too low energies compared to experiment.

5.2 Introduction

After the introduction of the density-functional theory (DFT) (Refs. [2] and [3] in the
60’s, there have been numerous calculations on solids, predominantly in the local-density



52 CHAPTER 5. APPLICATION OF THE TDDFT APPROACH TO CRYSTALS

approximation (LDA). The accuracy of the results for many ground-state properties were
very good, typically within a few percent of the experimental values. Therefore DFT
has now become one of the standard methods in the field. Notable exceptions, however,
are the dielectric constants of crystals, which are generally believed to be overestimated
substantially by DFT-LDA. This failure is remarkable and in clear contrast with the suc-
cess of DFT calculations on molecular systems [19, 30, 59] for which polarizabilities of
molecules can be obtained typically to within 5% of the experimental values. The reason
for the overestimation of the dielectric constants by DFT-LDA is often attributed to the
underestimation of the band gap by LDA. There have been several attempts, within DFT,
to go beyond LDA [35, 60, 61, 62], but all with limited success as far as the dielectric
function is concerned. In the 1980s Runge and Gross [4] gave a sound basis for the time-
dependent version of DFT (TDDFT). Nowadays TDDFT has been used successfully in
atomic and molecular systems [30] and a lot of experience has been built up in this area.
Most of the present DFT implementations for solids use pseudopotentials in combination
with a plane-wave basis [15, 16, 24]. In this paper we present the results of our real-space
approach [63] to TDDFT, which is a full-potential linear combination of atomic orbitals
(LCAO) implementation. The calculated dielectric response functions for several crystals
of various lattice types, are compared with other theoretical investigations [15, 16, 21, 26,
35, 36, 50, 51, 52, 54, 55, 56, 58, 64, 65, 66, 67, 68, 69, 70] and with experimental data
[7, 45, 46, 49, 51, 53, 57, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]
The different crystals, which we have studied, have the sodium chloride structure (MX
with M = Li, Na, K, Rb, Cs; X = F, Cl, Br, I, and NY with N = Mg, Ca, Sr, Ba; Y = O,
S, Se, Te) the fluoride structure (MF2 with M = Ca, Sr, Cd, Ba), the wurtzite structure
(BeO, BN, SiC, AlN, GaN, InN, ZnO, ZnS, CdS, CdSe) the diamond structure (C, Si, Ge),
or the zinc-blende structure (MX with M = Al, Ga, In; X = P, As, Sb, and NY with N =
Zn, Cd; Y = S, Se, Te). The outline of this paper is as follows. First we give a brief review
of our (TD)DFT method and implementation [37, 38, 63]. Then, in the next section, we
present our results for the dielectric constants and functions, and compare them with other
theoretical calculations and (available) experimental data. Finally, in the last section, we
draw the conclusions.

5.3 Method

Our real-space approach to time-dependent density-functional theory for crystals, is based
on the Amsterdam density functional band-structure (ADF-BAND) (Refs. [37] and [38])
implementation for ground-state DFT. The Kohn-Sham equation [2, 3] reads

H ψnk(r) = [T + VC(r) + VXC(r)] ψnk(r) = εnk ψnk(r) , (5.1)

in which T is the kinetic energy operator, VC the Coulomb potential due to the nuclear
charges and the self-consistent electron density and VXC is the exchange-correlation poten-
tial for which we used the LDA approximation in the Vosko-Wilk-Nusair parameterization
[41]. The one-electron states ψnk(r) are expressed on a basis of Bloch functions ϕiαk(r).



5.3. METHOD 53

At a particular k point in the Brillouin zone (BZ) the basis functions ϕiαk(r) are obtained
by constructing the Bloch combinations of the atomic one-centered functions χi according
to

ϕiαk(r) =
∑
R

e ik·Rχi(r − R − sα) . (5.2)

Here χi can be a numerical atomic orbital (NAO) or a Slater-type exponential function
(STO) which are centered on atom α at position sα in the crystal unit cell. The sum-
mation runs over all lattice points R. The NAO’s are obtained from the fully numerical
Herman-Skillman (HS) program [43], which solves the density-functional equations for the
spherically symmetric atoms. This basis of NAO’s is extended by STO’s to a 3Z2P basis
(triple zeta basis, augmented with two polarization functions). It is possible to use the
frozen core approximation for the innermost atomic states. All matrix elements that in-
volve these functions are evaluated using an accurate numerical integration scheme [37, 91]
which uses Gauss quadrature formulas. The Coulomb potentials Vα which are due to the
spherically symmetric atomic densities ρα are provided by the HS program. The crystal
Coulomb potential is then given by

VC(r) =
∑
α

Vα(r) +
∫ ρdef(r

′)
|r − r′| dr′ , (5.3)

in which the deformation density ρdef is defined as the difference between the crystal
charge distribution and the superposition of atomic densities. The deformation density is
obtained by summing over products of basis functions, which makes the direct evaluation
of the second term in Eq. (5.3) laborious. The problem is solved by the use of a fitting
procedure [12], in which the density is expanded on a basis of fit functions

ρdef(r) ≈
∑
i

ci fi(r) . (5.4)

Here the fitfunctions fi are the totally symmetric Bloch combinations of the atomic Slater-
type exponential functions rn−1e−αrZlm(Ω), where Zlm(Ω) are the real-valued spherical
harmonics. The corresponding Coulomb potentials fC

i of these fit functions can easily be
evaluated analytically

fC
i (r) =

∫ fi(r
′)

|r − r′| dr′ . (5.5)

The Coulomb integrals can now be constructed according to

VC(r) ≈ ∑
α

Vα(r) +
∑
i

ci f C
i (r) . (5.6)

The fit coefficients ci are determined by a least-squares solution of Eq. (5.4), where the
total amount of deformation charge is constrained to vanish. The integrals over the BZ
are evaluated by using a quadratic tetrahedron method [48].

In the time-dependent extension [63] we employ a lattice periodic (microscopic) effec-
tive scalar potential veff (r, t), in combination with a uniform (macroscopic) electric field
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Emac(r, t). This macroscopic electric field can be represented by a uniform vector potential
A(r, t). In this scheme the time-dependent Kohn-Sham equation reads

i
∂

∂t
ψn(r, t) =

(
1

2

∣∣∣∣−i∇ +
1

c
Aeff (r, t)

∣∣∣∣2 + veff (r, t)

)
ψn(r, t) , (5.7)

so the particles move in time-dependent effective potentials {veff (r, t),Aeff (r, t)} which
comprise the externally applied potentials, and the Coulomb and exchange-correlation con-
tributions of the perturbed density and current distributions. For the exchange-correlation
contribution to the scalar potential we used the adiabatic local-density approximation
(ALDA). We neglected such a contribution to the vector potential. The TDDFT equa-
tions are solved in an iterative scheme, in which the macroscopic electric field is kept
fixed and the microscopic potential is updated in each cycle, until self-consistency is es-
tablished. The first-order density change δρ(r, ω) (Fourier transformed) is obtained from
the first-order potential change δveff (r′, ω) according to

δρ(r, ω) =
∫ (

i

ω
χρj(r, r

′, ω) · Emac(ω) + χρρ(r, r
′, ω)δveff (r′, ω)

)
dr′ , (5.8)

where the various response kernels χab(r, r
′, ω) can be obtained from the following expres-

sion:

χab(r, r
′, ω) =

1

VBZ

∑
n,n ′

∫
VBZ

(fnk − fn ′k)
[ψ∗

nk(r) â ψn ′k(r)][ψ
∗
n ′k(r

′) b̂ ψnk(r
′)]

εnk − εn ′k + ω + iη
dk , (5.9)

by substituting either ρ̂ = 1 or ĵ = −i(
→∇ − ←∇)/2 (the arrows indicate whether the left or

right side should be differentiated) for the operators â and b̂. Here fnk is the occupation
number and εnk the energy eigenvalue of the Bloch orbital ψnk of the ground state. They
are labeled by the band index n and wave vector k. The integrations over the Bloch vector
k in Eq. (5.9) can be restricted to the irreducible part of the Brillouin zone (IBZ) due to
the transformation properties of the Bloch functions, and they are evaluated numerically
using the following quadrature (see Appendix B of Ref. [63]):

1

VIBZ

∫
IBZ

(fnk − fn′k)

εnk − εn′k + ω + iη
g(k)dk =

∑
kj

wnn ′kj (ω)g(kj ) . (5.10)

The singular behavior of the denominator can thus be handled analytically, and is incorpo-
rated in the ω-dependent integration weights wnn ′kj (ω) . Using a fitting procedure similar
to the one used in the ground-state calculation, we can obtain the potential change δveff as
a function of the density change δρ. The induced macroscopic polarization Pmac is defined
as the time integral of the average induced current density δj,

Pmac(r, t) = − 1

V

∫ t ∫
V

δj(r′, t′) dr′ dt′. (5.11)
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The Cartesian components of the electric susceptibility can then be obtained, as soon as
self-consistency in the density change δρ is achieved. From Pmac(ω) = χe(ω) · Emac(ω) it
follows that

[χe(ω)]ij =
{
− 1

V ω2

∫
V
[δjp(r, ω) − δjp(r, 0)]i dr

}∣∣∣∣
Emac(ω)=−iω ej

, (5.12)

in which the macroscopic field Emac(ω) is directed along the unit vector ej and the induced
paramagnetic current δjp(r, ω) is given by

δjp(r, ω) =
∫ (

i

ω
χjj(r, r

′, ω) · Emac(ω) + χjρ(r, r
′, ω)δveff (r′, ω)

)
dr′ . (5.13)

5.4 Dielectric Constants

The dielectric constants were calculated for a wide variety of nonmetallic crystals to test the
accuracy of our implementation [63] and to benchmark the performance of our calculation
method. The crystals for which we calculated the dielectric constants ε∞ can be ordered
into five groups according to their lattice structures. They have either the sodium chloride,
the fluoride, the wurtzite, the diamond, or the zinc-blende lattice structure. For all lattice
structures we compared our result for ε∞ with those found by a wide variety of other
theoretical approaches [15, 16, 21, 26, 35, 36, 50, 51, 52, 54, 55, 56, 58, 64, 65, 66, 67, 68,
69, 70] This comparison is made to demonstrate the accuracy of our method, and to show
the importance of the inclusion of both Coulomb and exchange-correlation contributions
in response calculations. We can classify the other approaches according to the way they
treat these contributions. If one calculates the χ0 response directly from the ground-state
solutions, without inclusion of any Coulomb or exchange-correlation contributions in the
response part, we classify them as uncoupled response (UR). Other approaches include the
Coulomb interaction (and possibly also exchange-correlation contributions), but involve
the inversion of a large dielectric matrix (DM). Usually these methods use plane waves in
combination with pseudopotentials, and they include the macroscopic contributions to the
field in the Coulomb term, for which they need a special treatment of the long wavelenght
limit. The density-functional perturbation theory (DFPT) (Ref. [21]) closely resembles
our method [63] in the way the response calculation is performed. DFPT only treats static
perturbations, whereas we consider time-dependent perturbations. Where we use a LCAO
basis in a full-potential method, the DFPT implementation uses pseudopotentials and
plane waves. Furthermore, DFPT uses a plane-wave expansion of the density to solve the
Poisson equation and to separate microscopic and macroscopic contributions, where we use
an expansion in Slater-type fit functions, which treat the cusps correctly, in combination
with a screening technique. In the present work the time-dependent polarization is directly
related to the current density through Eq. (5.11), which is consistent with the use of
the polarization current dP/dt in the macroscopic Maxwell equations. It is exactly this
polarization that is measured in experiment. The static susceptibility can be obtained in
a gauge invariant way from the paramagnetic current [Eq. (5.12)]. This way we establish
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a proper behavior for the static limit (ω → 0). Note that in this limit the resulting
expressions become identical to those used in the static DFPT method. However, we do
not need to transform dipole matrix elements into the velocity form.

5.4.1 Sodium chloride structure

The sodium chloride lattice structure calculations were done by using a 3Z2P NAO/STO
basis (basis V in the BAND program), which consists of a triple zeta basis augmented
with two polarization functions. For integration in the reciprocal space, it turned out to
be sufficient for these materials to use 15 symmetry unique k points in the IBZ. We found
that the Kohn-Sham energy gap in the LDA approximation underestimates the optical-
absorption energies by about 40%, as is well known [64, 65]. In Table 5.1 and 5.2 we list
the lattice constants for the investigated crystals, our results for the dielectric constant
(ε∞) together with the experimental values [73], and the relative errors. We have also
included the theoretical results of Ching et al. [64], who use full-potential (FP) wave
functions but UR, and of Li et al. [65], who use an empirical potential (EP) in a linearized
augmented-plane-wave (LAPW) method. The results for ε∞ in our work are obtained
without shifting the virtual energy bands, which is known as the scissors operator ∆ or
quasiparticle (QP) energy shift. It can be seen that our results for ε∞ show an average
deviation from experiment of about 8%. The results of Ching et al. [64] (UR, FP) were
considerably less accurate. Their use of a QP shift does not systematically improve their
results for ε∞, as can be seen in Table 5.1 and 5.2. Other calculations by Li et al. [65]
(LAPW, EP) found for the alkali halides MX (M=Na, K; X=F, Cl, Br, I) results for ε∞
which deviate, without the use of a QP shift, up to 15% from experiment. A QP shift
made their results even worse, up to 33% deviation from experiment. Without using a QP
shift, we get ε∞ values for these alkali halides which are more accurate compared to those
found by the other methods [64, 65].

5.4.2 Fluoride structure

Using the same 3Z2P NAO/STO basis and k space integration accuracy as for the sodium
chloride structures, we calculated the dielectric constants ε∞ of four fluoride crystals (CaF2,
SrF2, CdF2, and BaF2). In these compounds LDA underestimates the Kohn-Sham energy
gap, compared to the optical-absorption energy, around 30%. Our results for the dielectric
constants are listed in Table 5.3 together with the experimental values of Refs. [73], [83]
and [84], and relative errors compared to these experimental values. We have also included
other theoretical results [64, 70]. The results for the dielectric constants found by Ching
et al. [64] (UR, FP) deviate, without the use of a QP shift, up to 47% from experimental
data of Lines [73]. When using a QP shift this deviation increased up to 55% (for CdF2

even more than 100%). The experimental value for CaF2 shows a large variation, from
2.04 found by Lines [73] to 1.50 found by Barth et al. [83] and Stephan et al. [84]. The
calculated ε∞ value for CaF2 by Gan et al. [70], who uses a FP method, varies from 2.02
(UR) (which agrees with the experiment by Lines [73]) to 1.80, when allowing for self
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Table 5.1: Optical dielectric constants for crystals in the sodium chloride lattice structure

Solid a (Å)a This work Experiment Error (%) Other theory Methodb,c,d,e

LiF 4.017 2.01 1.92f 5 3.60a UR,FP,OLCAO,QP
1.96g 3 4.09a UR,FP,OLCAO

LiCl 5.129 2.97 2.68f 11 3.07h DM,PP,PW,LF,XC
2.17a UR,FP,OLCAO,QP
3.50a UR,FP,OLCAO

LiBr 5.507 3.42 3.00f 14 3.03a UR,FP,OLCAO,QP
5.64a UR,FP,OLCAO

LiI 6.000 3.90 3.40f 15 2.30a UR,FP,OLCAO,QP
3.61a UR,FP,OLCAO

NaF 4.620 1.87 1.74f 7 1.74a UR,FP,OLCAO,QP
2.66a UR,FP,OLCAO

1.670i TDPT,EP,LAPW

1.317i TDPT,EP,LAPW,QP

NaCl 5.630 2.66 2.33f 14 1.88a UR,FP,OLCAO,QP
3.48a UR,FP,OLCAO

2.529i TDPT,EP,LAPW

1.819i TDPT,EP,LAPW,QP

NaBr 5.937 2.58 2.60f 1 1.91a UR,FP,OLCAO,QP
3.05a UR,FP,OLCAO

2.762i TDPT,EP,LAPW

2.194i TDPT,EP,LAPW,QP

NaI 6.473 3.39 2.98f 14 2.49a UR,FP,OLCAO,QP
2.76a UR,FP,OLCAO

3.394i TDPT,EP,LAPW

2.353i TDPT,EP,LAPW,QP

KF 5.347 1.82 1.84f 1 1.39a UR,FP,OLCAO,QP
2.15a UR,FP,OLCAO

1.588i TDPT,EP,LAPW

1.230i TDPT,EP,LAPW,QP

KCl 6.290 2.31 2.17f 6 2.43a UR,FP,OLCAO,QP
2.87a UR,FP,OLCAO

2.268i TDPT,EP,LAPW

1.493i TDPT,EP,LAPW,QP

KBr 6.600 2.51 2.35f 7 2.17a UR,FP,OLCAO,QP
2.62a UR,FP,OLCAO

2.680i TDPT,EP,LAPW

1.779i TDPT,EP,LAPW,QP

KI 7.066 3.08 2.63f 17 2.18a UR,FP,OLCAO,QP
2.81a UR,FP,OLCAO

2.842i TDPT,EP,LAPW

1.867i TDPT,EP,LAPW,QP
a,b,c,d,e,f,g,h,iSee Table 5.2
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Table 5.2: Continued Table 5.1
Solid a (Å)a This work Experiment Error (%) Other theory Methodb,c,d,e

RbF 5.640 1.87 1.93f 3 1.10a UR,FP,OLCAO,QP
1.14a UR,FP,OLCAO

RbCl 6.581 2.28 2.17f 5 1.38a UR,FP,OLCAO,QP
1.43a UR,FP,OLCAO

RbBr 6.854 2.43 2.34f 4 1.77a UR,FP,OLCAO,QP
2.00a UR,FP,OLCAO

RbI 7.342 2.65 2.59f 2 1.37a UR,FP,OLCAO,QP
1.50a UR,FP,OLCAO

CsF 6.010 1.84

CsCl 7.140 2.04 2.30f 11

CsBr 7.420 2.21 2.43f 9

CsI 7.900 2.40 2.63f 9

MgO 4.210 3.20 2.95f 8 3.10a UR,FP,OLCAO,QP
4.28a UR,FP,OLCAO

MgS 5.203 5.37 4.84f 11 4.52a UR,FP,OLCAO,QP
5.12a UR,FP,OLCAO

MgSe 5.460 6.25 5.28f 18

CaO 4.810 2.90 3.27f 11 1.66a UR,FP,OLCAO,QP
3.22a UR,FP,OLCAO

CaS 5.690 4.30 4.24f 1 3.01a UR,FP,OLCAO,QP
4.47a UR,FP,OLCAO

CaSe 5.920 4.81 4.58f 5

SrO 5.160 3.26 3.35f 3 1.90a UR,FP,OLCAO,QP
3.04a UR,FP,OLCAO

SrS 6.020 4.37 4.09f 7 2.78a UR,FP,OLCAO,QP
3.68a UR,FP,OLCAO

SrSe 6.240 4.77 4.33f 10

SrTe 6.480 5.88 4.91f 19

BaO 5.520 3.36 3.68f 9 2.90a UR,FP,OLCAO,QP
4.01a UR,FP,OLCAO

BaS 6.380 4.07 4.26f 4

BaSe 6.600 4.50 4.48f 1

BaTe 6.980 4.94 4.71f 5
aRef. [64]
bTDPT: time-dependent perturbation theory; DM: dielectric matrix; UR: uncoupled response.
cFP: full potential; PP: pseudopotential; EP: empirical potential.
dPW: plane wave; LAPW: linearized augmented plane wave; OLCAO: orthogonalized linear combination
of atomic orbitals.
eXC: exchange-correlation effects; QP: quasiparticle energy shift; LF: local field effects.
fRef. [73] gRef. [45] hRef. [35] iRef. [65]
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Table 5.3: Optical dielectric constants for crystals in the fluoride lattice structure

Solid a (Å)a This work Experiment Error (%) Other theory Methodb,c,d,e

CaF2 5.460 1.78 2.04f 13 1.49a UR,FP,OLCAO,QP
1.50g 19 2.02a UR,FP,OLCAO

1.50h 19 2.02i UR,FP,OLCAO

1.80i UR,FP,OLCAO,SIC

1.49i UR,FP,OLCAO,QP

SrF2 5.800 1.89 2.06f 8 1.12a UR,FP,OLCAO,QP
1.23a UR,FP,OLCAO

CdF2 5.388 2.48 3.14f 21 6.90a UR,FP,OLCAO,QP
8.00a UR,FP,OLCAO

BaF2 6.200 1.97 2.15f 8 1.07a UR,FP,OLCAO,QP
1.12a UR,FP,OLCAO

aRef. [64]
bUR: uncoupled response.
cFP: full potential.
dOLCAO: orthogonalized linear combination of atomic orbitals
eQP: quasiparticle energy shift; SIC: self-interaction correction.
fRef. [73] gRef. [83] hRef. [84] iRef. [70]

interacting corrections (SIC), and to 1.49, when using a QP shift (which agrees with the
experiment by Barth et al. [83] and Stephan et al. [84]). Our results for the dielectric
constants ε∞, obtained without the use of a QP shift, show an average deviation of about
14% from experiment, and they are the best values up to date, but we do not achieve the
same accuracy as for the other lattice structures. In the case of CaF2 our result for ε∞ is
in between the two experimetal ones [73, 83].

5.4.3 Wurtzite structure

As an example of anisotropic crystals, we studied several crystals of the wurtzite structure.
For these calculations the same 3Z2P NAO/STO basis and k space integration accuracy
was used as for the sodium chloride structures. The wurtzite structure is very similar to
the zinc-blende structure (see later) and only differs in the stacking of the layers along
the [111] direction. Therefore many crystals like SiC, ZnS, CdS, etc. exist in both forms.

Ideally the c/a ratio equals
√

8/3 and the internal parameter u = 3/8. In Table 5.4
we summarize the geometrical parameters, the calculated isotropic average values for the
dielectric constant ε̄∞ and the anisotropy ∆ε∞ in this dielectric constant, together with
the experimental values for ε̄∞ [85, 86, 87, 88, 89], and relative errors compared to these
experimental values. We have also included other theoretical results (UR) for ε̄∞ and ∆ε∞
found by Xu et al. [66] (FP), Chen et al. [67] (PP), Christensen et al. [68] (LMTO-ASA),
and Wang et al. [69] (PP). The isotropic average values for the dielectric constant is defined
as ε̄∞ = 1

3
(εxx +εyy +εzz) and the anisotropy as ∆ε∞ = εzz− 1

2
(εxx +εyy). Our results for ε̄∞
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showed substantial differences from the theoretical results found by others [66, 67, 68, 69],
and an average deviation of about 5% from the experimental values [85, 86, 87, 88, 89],
which is a substantial improvement over the other theoretical methods.

Table 5.4: Optical dielectric constant and anisotropy for crystals in the wurtzite lattice
structure

Latticea (Å) This work Exp.Err. Other theory Method

Crystal a c u ε̄∞b ∆ε∞c ε̄∞ % ε̄∞ ∆ε∞ d,e,f,g

BeO 2.698 4.380 0.378 2.92 0.05 2.76 0.02a UR,FP,LCAO
BN 2.536 4.199 0.375 4.17 0.38 4.07 0.25a UR,FP,LCAO

4.57 0.18h UR,PP,PW,LF

4.14 0.13i UR,ASA,LMTO
SiC 3.076 5.048 0.375 6.93 0.75 8.09 1.17a UR,FP,LCAO

AlN 3.110 4.980 0.382 4.56 -0.01 4.84j 6 4.27 1.19a UR,FP,LCAO

4.68k 3 4.51 0.28h UR,PP,PW,LF

3.86 0.14i UR,ASA,LMTO

GaN 3.190 5.189 0.375 5.31 0.30 5.2l 2 9.53 2.44a UR,FP,LCAO

5.7m 7 5.56 0.06h UR,PP,PW,LF

4.68 0.09i UR,ASA,LMTO
5.47 0.22n UR,PP

InN 3.533 5.692 0.375 8.78 -1.13 8.4o 5 7.39 1.01a UR,FP,LCAO

7.16 0.33i UR,ASA,LMTO
ZnO 3.249 5.207 0.375 4.26 -0.03 8.62 0.86a UR,FP,LCAO
ZnS 3.811 6.234 0.375 5.71 0.30 6.81 1.58a UR,FP,LCAO
CdS 4.137 6.714 0.375 5.22 0.30 5.07 -0.03a UR,FP,LCAO
CdSe 4.299 7.015 0.375 6.11 0.21 4.94 -0.03a UR,FP,LCAO

aRef. [66]
bε̄∞ = 1

3 (εxx + εyy + εzz)
c∆ε∞ = εzz − 1

2 (εxx + εyy)
dUR: uncoupled response.
eFP: full potential; PP: pseudopotential; ASA: atomic-sphere approximation.
fPW: plane wave; LMTO: linearized muffin-tin orbitals; LCAO: linear combination of atomic orbitals.
gLF: local-field effects.
hRef. [67] iRef. [68] jRef. [85] kRef. [86] lRef. [87] mRef. [88] nRef. [69] oRef. [89]

5.4.4 Diamond structure

The calculations for the diamond structures were performed by using 175 symmetry unique
k points in the IBZ for the (numerical) integrations in the reciprocal space, and using the
standard 3Z2P NAO/STO basis. In Table 5.5 we list for carbon (C), silicon (Si), and
germanium (Ge) the lattice constants, the calculated dielectric constants ε∞ of this work
together with the experimental values [7, 49, 53, 74, 75], and relative errors compared to
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these experimental values. Other theoretical results of Refs. [15, 16, 21, 26, 35, 36, 50, 51,
52, 54, 55, 56] are also included. Our results for ε∞ show an average deviation of about
5% from the experimental values [7], and compared to other theoretical investigations, it
can be seen from Table 5.5 that our results are again of better quality.

Table 5.5: Optical dielectric constants for crystals in the diamond lattice structure

Solid a (Å)a This work Exp. Error (%) Other theory Methodb,c,d,e

C 3.57 5.62 5.7a 1 5.90f DM,PP,PW,LF,XC

5.7g 1 4.34h UR,FP,LCAO

5.67i 1 5.20 - 5.86j DM,PP,PW,LF,QP

5.5k DM,PP,LCGO,LF,QP

5.7l UR,EP,LCAO

Si 5.43 12.78 12.0a 7 12.9f DM,PP,PW,LF,XC

11.4m 12 9.03h UR,FP,LCAO
12.7n DM,PP,PW,LF,XC
11.2o DM,PP,PW,LF,QP

12.4 - 12.9p DFPT,PP,PW,LF,XC
12.7q DFPT,PP,PW,LF,XC
12.05r DM,FP,LMTO,LF,QP

12.8k DM,PP,LCGO,LF,QP
11.7s UR,PP,LCGO,QP

12.0l UR,EP,LCAO
13.6t DFPT,PP,PW,LF,XC

Ge 5.66 16.22 16.0a 1 20.7f DM,PP,PW,LF,XC

15.3m 6 12.31h UR,FP,LCAO
15.3u 6 16.5o DM,PP,PW,LF,QP

15.58r DM,FP,LMTO,LF,QP

21.8k DM,PP,LCGO,LF,QP
16.0s UR,PP,LCGO,QP

16.0l UR,EP,LCAO
18.7t DFPT,PP,PW,LF,XC

aRef. [7]
bDFPT: density-function perturbation theory; DM: dielectric matrix; UR: uncoupled response.
cFP: full potential; PP: pseudopotential; EP: empirical potential.
dPW: plane wave; LMTO: linearized muffin-tin orbitals; LCAO: linear combination of atomic orbitals;
LCGO: linear combination of Gaussian orbitals.
eXC: exchange-correlation effects; QP: quasiparticle energy shift; LF: local-field effects.
fRef. [35] gRef. [74] hRef. [51] iRef. [49] jRef. [26] kRef. [50] lRef. [52] mRef. [53] nRef. [15] oRef. [16]
pRef. [21] qRef. [36] rRef. [55] sRef. [56] tRef. [54] uRef. [75]
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5.4.5 Zinc-blende structure

The zinc-blende structures we studied can be grouped into the III-V (AlP, AlAs, AlSb,
GaP, GaAs, GaSb, InP, InAs, InSb) and the II-VI (ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe)
compounds. These calculations were done using the same 3Z2P NAO/STO basis and k
space integration accuracy as for the diamond structures.

III-V compounds

The calculated dielectric constants for these compounds are collected in Table 5.6, together
with the lattice constants, the experimental values for ε∞ [57, 75, 76, 77, 78], the errors
compared to these experimental values, and other theoretical results [36, 50, 51, 52, 54,
55, 56, 58]. We find that our results for ε∞ are closer to experiment than those found by
others [51, 52, 54], with the exception of InSb, for which we find an underestimation of
about 40%. At the same time we find a considerable overestimation of the experimental
band gap for this small-gap semiconductor, as can be seen in Table 5.8. In this calculation
we have included the 4d atomic states in the valence basis, as these give rise to shallow
core states, which can affect the position of the valence-band maximum [71, 72]. The
overestimation of the band gap is in clear contrast with the general trend observed in
LDA-DFT band-structure calculations, i.e., that the band gap tends to be underestimated
in semiconductors. However, inclusion of scalar relativistic corrections stabilizes the s-like
conduction-band minimum considerably. In the LDA this causes the gap even to vanish,
thus incorrectly predicting the InSb crystal to be a semimetal, as was found in full-potential
scalar relativistic LAPW calculations [72], and as we have checked in our ground-state
calculations. We are not yet able to include these scalar relativistic corrections in the
time-dependent calculations. Nevertheless, with the exception of the InSb crystal, we find
an average deviation of about 4% from experiment for the III-V compounds.

II-VI compounds

Our results for the calculated dielectric constants ε∞ are collected in Table 5.7, together
with experimental values [78, 79, 80, 81, 82] and other theoretical investigations [51, 56].
We find that our results for ε∞ show an average deviation of about 9% from experiment,
and are comparable to those found by Huang et al. [51] (UR, FP) and Wang et al. [56]
(UR, PP), except for the Te compounds, where our results are substantially better.

5.5 Dielectric Functions

The dielectric functions ε(ω) for all zinc-blende structures (which reduces to the diamond
structure in case of group IV elementary solids) were calculated using the same 3Z2P
NAO/STO basis and k space integration accuracy as mentioned before for calculating the
dielectric constants of the diamond and zinc-blende structures. We report the dielectric
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Table 5.6: Optical dielectric constants for crystals in the III-V zinc-blende lattice structure

Solid a (Å)a This work Exp. Error (%) Other theory Methodb,c,d,e

AlP 5.45 8.16 8.0f 2 5.63g UR,FP,LCAO

AlAs 5.62 8.83 8.16h 8 6.81g UR,FP,LCAO

9.2i DFPT,PP,PW,LF,XC

AlSb 6.13 10.22 10.2j 1 7.21g UR,FP,LCAO

12.2i DFPT,PP,PW,LF,XC

GaP 5.45 9.59 9.1k 5 9.29g UR,FP,LCAO

9.4l UR,PP,LCGO,QP
9.1m UR,EP,LCAO

GaAs 5.65 11.33 10.9j 4 11.21g UR,FP,LCAO
10.8n 5 12.3o DFPT,PP,PW,LF,XC

10.83p DM,FP,LMTO,LF,QP
13.1q DM,PP,LCGO,LF,QP

10.9l UR,PP,LCGO,QP
10.9m UR,EP,LCAO

12.3i DFPT,PP,PW,LF,XC
10.2r DM,PP,PW,LF,QP

GaSb 6.12 13.54 14.4j 6 11.42g UR,FP,LCAO
14.4m UR,EP,LCAO

18.1i DFPT,PP,PW,LF,XC

InP 5.87 9.60 9.6j 0 7.92g UR,FP,LCAO
9.6m UR,EP,LCAO

InAs 6.04 11.40 12.3j 7 10.02g UR,FP,LCAO
12.3m UR,EP,LCAO

InSb 6.48 9.15 15.7j 42 13.51g UR,FP,LCAO
15.7m UR,EP,LCAO

aRef. [7]
bDFPT: density-function perturbation theory; DM: dielectric matrix; UR: uncoupled response.
cFP: full potential; PP: pseudopotential; EP: empirical potential.
dPW: plane wave; LMTO: linearized muffin-tin orbitals; LCAO: linear combination of atomic orbitals;
LCGO: linear combination of Gaussian orbitals.
eXC: exchange-correlation effects; QP: quasiparticle energy Shift; LF: local-field effects.
fRef. [75] gRef. [51] hRef. [76] iRef. [54] jRef. [77] kRef. [78] lRef. [56] mRef. [52] nRef. [57] oRef. [36]
pRef. [55] qRef. [50] rRef. [58]
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Table 5.7: Optical dielectric constants for crystals in the II-VI zinc-blende lattice structure

Solid a (Å)a This work Exp. Error (%) Other theory Methodb,c,d,e

ZnS 5.41 5.71 5.2f 10 5.63g UR,FP,LCAO

5.50h UR,PP,LCGO,QP

ZnSe 5.67 6.74 5.9i 14 5.56g UR,FP,LCAO

6.60h UR,PP,LCGO,QP

ZnTe 6.09 7.99 7.3j 9 5.24g UR,FP,LCAO

CdS 5.82 4.89 5.2k 6 5.05g UR,FP,LCAO

CdSe 6.08 6.26 5.8i 8 5.68g UR,FP,LCAO

CdTe 6.48 6.70 7.2j 7 9.02g UR,FP,LCAO
aRef. [7]
bUR: uncoupled response.
cFP: full potential; PP: pseudopotential.
dLCAO: linear combination of atomic orbitals; LCGO: linear combination of Gaussian orbitals.
eQP: quasiparticle energy shift.
fRef. [79] gRef. [51] hRef. [56] iRef. [80] jRef. [81] kRef. [82]

functions ε(ω) for a selected range of compounds, for which experimental data was avail-
able. The calculated dielectric functions for the remaining compounds are available on
request. When comparing our calculated dielectric functions with the experiment ones, we
found all features uniformly shifted to lower energies. Therefore, in order to facilitate the
comparison with experiment, we shifted the calculated results for the dielectric functions to
higher energies, in such a way that the zero crossings in the calculated Re[ε(ω)] coincided
with the experimental zero crossings. The values for the applied shifts to the calculated
dielectric functions are compared in Table 5.8 with the LDA and the experimental band
gap (Eg) [92].
As can be seen from Table 5.8, there is no direct relation between the applied shifts and
the error in the LDA band gap for these compounds. The calculated (shifted) dielectric
functions ε(ω) for C, Si, and Ge are depicted in Figs. 5.1 and 5.2, together with the ex-
perimental data of Palik [45] and Aspnes et al. [46].
These spectra are in very good agreement with the experimental spectra, there are, how-
ever, features that need improvement. The E2 peak [93] for C, Si, and Ge (high-energy
peak in Im[ε(ω)]) is too sharp, and its magnitude is overestimated compared to experi-
ment. Looking at the E1 peak in Si and Ge (low-energy peak in Im[ε(ω)]), we see that it is
underestimated in amplitude and appears as a shoulder, which can be ascribed to a failure
in the description of excitonic effects (screened Coulomb attraction between electron and
hole). The sharp structures which were found in the calculated spectra at energies higher
than the E2 peak, were much less pronounced in experiment.
The calculated (shifted) dielectric functions ε(ω) for the Ga and In series are depicted in
Figs. 5.2-5.5, together with the experimental data of Aspnes et al. [46]. The ε(ω) for
the Zn series and CdTe are depicted in Figs. 5.5-5.7, together with the experimental data
of Freelouf [90]. The experimental data of Freelouf [90] for the imaginary parts of the
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Table 5.8: The calculated LDA band gaps and the experimental values, in comparison with
the applied energy shifts to the dielectric functions for the crystals in Figs. 5.1-5.7. All
values are given in electron volts (eV).

Solid Eg(Experiment)a Eg(LDA) ∆b Applied shift
C 5.47 4.14 1.33 0.60
Si 1.11 0.55 0.56 0.40
Ge 0.67 0.39 0.28 0.30
GaP 2.24 1.50 0.74 0.50
GaAs 1.35 1.02 0.33 0.45
GaSb 0.67 0.79 -0.12 0.30
InP 1.27 1.00 0.27 0.40
InAs 0.36 0.47 -0.11 0.35
InSb 0.17 0.99 -0.82 0.15
ZnS 3.54 2.06 1.48 0.90
ZnSe 2.58 1.52 1.06 1.05
ZnTe 2.26 1.99 0.27 0.70
CdTe 1.44 1.70 -0.26 0.65

aRef. [92]
b ∆ = Eg(experiment) − Eg(LDA)

dielectric functions ε(ω) have been obtained by digitizing the data in their plots. The real
parts have been obtained as the Kramers-Kronig transform of these imaginary parts. The
result of applying a shift to our calculated dielectric functions for these compounds is that
we find an overall agreement between our spectra and the experimental spectra which is
quite good. However, when looking in more detail, we find that the E2 peaks coincide
with experiment, but are (also in these compounds) too sharp and their magnitudes are
still overestimated compared to experiment. Looking at the E1 peaks, we see that they
are underestimated in amplitude and in general too close to the E2 peak. Further, the
calculated E1 peaks do not reproduce the experimental double peak structure for the As,
Sb, Se, and Te compounds. The sharp structures in the calculated dielectric functions at
energies higher than the E2 peak are less pronounced in experiment.

5.6 Conclusions

The dielectric function of a large range of nonmetallic crystals, of various lattice types, is
calculated by using an efficient, accurate, and rapidly converging real-space implementation
of time-dependent density-functional theory. In this method we employ a lattice periodic
(microscopic) effective scalar potential in combination with a uniform (macroscopic) elec-
tric field. Our results for the dielectric constants ε∞ (at optical frequencies) were obtained
without the use of a scissors operator. They are in good agreement with experiment and
in general more accurate than those found by others. The accuracy of our calculated ε∞
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Figure 5.1: Plots of the real and imaginary part of the calculated dielectric function of
diamond (C) [left] and silicon (Si) [right] in comparison with the experimental data (Refs.
[45] and [46]).
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Figure 5.2: Plots of the real and imaginary part of the calculated dielectric function of
germanium (Ge) [left] and gallium phosphide (GaP) [right] in comparison with the exper-
imental data (Ref. [46]).
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Figure 5.3: Plots of the real and imaginary part of the calculated dielectric function of
gallium arsenide (GaAs) [left] and gallium antimonide (GaSb) [right] in comparison with
the experimental data (Ref. [46]).
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Figure 5.4: Plots of the real and imaginary part of the calculated dielectric function of
indium phosphide (InP) [left] and indium arsenide (InAs) [right] in comparison with the
experimental data (Ref. [46]).
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Figure 5.5: Plots of the real and imaginary part of the calculated dielectric function of
indium antimonide (InSb) [left] and zinc sulfide (ZnS) [right] in comparison with the ex-
perimental data (Refs. [46] and [90]).
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Figure 5.6: Plots of the real and imaginary part of the calculated dielectric function of zinc
selenide (ZnSe) [left] and zinc telluride (ZnTe) [right] in comparison with the experimental
data (Ref. [90]).
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Figure 5.7: Plots of the real and imaginary part of the calculated dielectric function of
cadmium telluride (CdTe) in comparison with the experimental data (Ref. [90]).

values for crystals is comparable with the TDDFT results for polarizabilities in molecular
systems. On average we find a deviation of 4-5% from experiment for the group IV and
III-V compounds in the wurtzite, zinc-blende, and diamond lattice structure, 8-9% for the
II-VI and I-VII compounds in the zinc-blende and sodium chloride lattice structure, and up
to 14% deviation for the fluoride lattice structure. Therefore we observe a trend that the
accuracy of the results is reduced in the strongly ionic compounds. The calculated dielec-
tric functions ε(ω) reproduce the experimental spectral features quite accurately, although
there is a more or less uniform shift necessary between the experimental and theoretical
spectra.
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Chapter 6

Relativistic effects in TDDFT
calculations

F. Kootstra, P. L. de Boeij, H. Aissa, and J. G. Snijders, ”Relativistic effects on the op-
tical response of InSb by time-dependent density-functional theory”, J. Chem. Phys. 114,
1860-1865 (2001).

P. L. de Boeij, F. Kootstra, and J. G. Snijders, ”Relativistic effects in the optical response
of HgSe by time-dependent density-functional theory”, Int. J. Quant. Chem. accepted.

6.1 Abstract

We show how relativistic effects can be included in the time-dependent density-functional
theory (DFT) for the optical response properties of nonmetallic crystals. The dominant
scalar relativistic effects have been included using the zeroth-order regular approximation
(ZORA) in the ground-state DFT calculations, as well as in the time-dependent response
calculations. We show that this theory can also be applied to indium antimonide and
mercury selenide in the zinc-blende structure, not withstanding the fact that they turn
into semimetals when scalar relativistic effects are included. Results are given for the band
structure, the static dielectric constant ε∞ and the dielectric function ε(ω), for the various
levels on which relativity can be included, i.e., nonrelativistic, only in the ground-state,
or also in the response calculation. Comparisons of our calculated results are made with
experiment and other theoretical investigations. With the inclusion of scalar relativistic
effects, the band structure of InSb and HgSe become semimetallic within the local density
approximation and we find a deviation of 5% from experiment for the static dielectric
constant of InSb. Also the dielectric functions are improved and the spectra are in good
agreement with experiment, althought the spectral features are shifted to somewhat lower
energies compared to experiment.
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6.2 Introduction

In a recent paper [94] we found that time-dependent density-functional theory (TDDFT)
[63] in the adiabatic local density approximation (ALDA) works very well for a large range
of nonmetallic crystals, for which we achieved, on average, an accuracy of about 5% com-
pared with experiment. A clear exception, however, was found for InSb in the zinc-blende
structure (a=6.48 Å), for which the predicted static dielectric constant was underestimated
by about 40% compared with experiment [77]. Simultaneously we found a considerable
overestimation of the experimental bandgap, 0.99 eV DFT-LDA, in comparison with ex-
perimental bandgaps of 0.17 eV [92] (T=300 K) and 0.23 eV [7] (T=0 K) for this small-gap
semiconductor. This overestimation of the bandgap is in clear contrast with the general
trend which is observed in LDA band structure calculations, i.e., that the bandgaps are
generally underestimated by about 50%. The inclusion of scalar relativistic effects within
the zeroth-order regular approximation in our full-potential ground-state DFT-LDA band
structure calculation causes the lowest s-like conduction band to be stabilized considerably
more than the upper p-like valence bands. The band order is changed in the centre of the
Brillioun Zone (BZ), which results in a vanishing bandgap, and consequently the incorrect
prediction of the InSb crystal being a semimetal. A simular result was found in the fully
relativistic linear-muffin-tin-orbital method (LMTO) of Cardona et al. [71] and in the full-
potential scalar relativistic linear augmented plane-wave (FLAPW) calculation of Guo et al.
[72]. Recently, the nature of the material HgSe was also debated, whether it is a small-gap
semiconductor or a semimetal in the zinc-blende structure. Experimentally, as determined
using photoemission spectroscopy [103], there seemed to be no evidence of a bulk-like con-
duction band that either crosses or touches the valence-band maximum, hence favoring it
to be a small-gap (0.42 eV) semiconductor. On the other hand, conductivity, optical and
magneto-optical measurements, compiled in Ref. [104], favored an inverted bandstructure
with zero fundamental gap, and thus a semimetallic nature. The seemingly contradicting
experimental results have been brought into accordance with an ab-initio quasiparticle
bandstructure calculation [105]. This GW calculation (like the DFT-LDA calculation on
which it was based) predicts an inverted semimetallic bandstructure. The experimentally
observed very low photoemission intensity just above the valence band maximum could be
attributed to the enhanced dispersion, and hence very light effective mass and low density
of states, of the lowest conduction band. We investigate the effects on the optical response
properties of InSb and HgSe after including scalar relativistic ZORA in the ground-state
DFT, as well as in the time-dependent response calculations. The outline of this paper is
as follows. First we show the way in which scalar relativistic ZORA is incorporated in the
present TDDFT calculations, and validate the use of the TDDFT equations in this special
case of semimetals. This is followed by a section about the method and implementation.
Then, in the next sections, we present the results for the band structure, the dielectric con-
stant and function for InSb and HgSe, and compare these with experimental data. Finally,
in the last section, we draw the conclusions.
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6.3 Theory

Scalar relativistic (SR) effects can be included in the ground-state DFT calculation as
described by van Lenthe et al. in Refs. [95] and [96] and Philipsen et al. in Ref. [97], by
replacing the kinetic-energy operator by the ZORA term

T SR
ZORA = p · c2

2c2 − veff (r)
p, (6.1)

in which p = −i∇, c the velocity of light, and veff (r) the self-consistent effective potential.
This results in a semi-metallic band structure for InSb and HgSe, the bottom s-like conduc-
tion band is lowered in energy, below the top p-like valence band in the centre of the BZ.
The Fermi energy coincides with the three degenerate energy bands of p-character at Γ.
Two of these are completely occupied and one is unoccupied, hence there is no Kohn-Sham
bandgap. However, the Fermi-surface reduces to a point (Γ), and more importantly, the
density of states vanishes at the Fermi energy. In this special case we expect no intraband
contributions so we can use our TDDFT formulas [94] as before. The susceptibility of this
isotropic material follows as one-third of the trace of the susceptibility tensor according to
[63]

χe(ω) =
1

3

∑
i

{ −1

ω2V
[δJp(ω) − δJp(0)]i

∣∣∣
E=−iωei

}
, (6.2)

in which the macroscopic paramagnetic current δJp(ω) that is induced by a macroscopic
electric field E(ω) is obtained from

δJp(ω) =
∫ ∫ (

i

ω
χjj(r, r

′, ω) · Emac(ω) + χjρ(r, r
′, ω)δveff (r′, ω)

)
dr′dr. (6.3)

Here the induced effective potential δveff (r′, ω) is lattice periodic and comprises the induced
microscopic part of the Coulomb and exchange-correlation contributions. It is a functional
of the induced density and in linear response it can be given in the adiabatic approximation
by

δveff (r, ω) =
∫ ∂veff [ρ](r)

∂ρ(r′)
δρ(r′, ω)dr′, (6.4)

where the ground-state expression is used for the functional dependence of the veff [ρ](r).
The induced density is obtained by solving the following equation self-consistently:

δρ(r, ω) =
∫ (

i

ω
χρj(r, r

′, ω) · Emac(ω) + χρρ(r, r
′, ω)δveff (r′, ω)

)
dr′. (6.5)

In these equations the various response kernels follow from the expression:

χab(r, r
′, ω) =

V

4π3

∑
i,a

∫ (ψ∗
ik(r)âψak(r))(ψ

∗
ak(r

′)b̂ψik(r
′))

εik − εak + ω + iη
dk + c.c.(−ω), (6.6)

in which i runs over all occupied and a over all virtual band indices. The operator â and b̂
are either the density or the current operator. The acronym c.c.(−ω) denotes the complex
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conjugate expression at negative frequency. The Bloch functions ψnk(r) are the solutions
of the ground-state ZORA equation with eigenvalues εnk[

−∇ · c2

2c2 − veff (r)
∇ + veff (r)

]
ψnk(r) = εnkψnk(r). (6.7)

The four appearing kernels are obtained by substituting for â and b̂ either ρ̂ = 1 or the
relativistic velocity operator ĵ, which is given by,

ĵ = −i[r, ĤZORA] = −i
c2

2c2 − veff (r)
∇ + h.a., (6.8)

where h.a. is the hermitian adjoint expression. As can be seen by inspecting Eqs. (6.3) and
(6.5), the factors involving the operator ĵ are always integrated, so that only the values of
the matrix elements matter. The absence of an energy gap, and the quadratic dispersion
of the valence and conduction bands make it nescessary to investigate the small-frequency
behaviour of the response kernels. In Chapter 6.8 Appendix, we show that all off-diagonal
matrix elements are of the order O(|k|2), thus falling-off sufficiently fast to smooth any
singular behaviour near ω = 0, such that the electrical susceptibility has the asymptotic
behavior χe(ω) ≈ χe(0) + O(

√
ω).

6.4 Method and Implementation

The ground-state DFT calculations are performed by using the Amsterdam Density Func-
tional BAND-structure program (ADF-BAND) [37, 38]. The general characteristics of this
implementation are described in Ref. [94] and more specific details can be found, e.g.,
about the accurate numerical integration scheme, for evaluating matrix elements between
basisfunctions which are either numerical atomic orbitals (NAO) or Slater type exponential
functions (STO) in Refs. [37] and [91], the density fitting procedure, for evaluating the
Coulomb potential, in Ref. [12], and the quadratic tetrahedron method, for evaluating
the integrals over the BZ, in Ref. [48]. In the time-dependent extension [63] on this DFT
implementation we employ a lattice periodic (microscopic) effective scalar potential, in
combination with a uniform (macroscopic) transverse electric field Emac(r, t). For solving
the TDDFT equations, an iterative scheme is used, with a fixed macroscopic electric field
and in which the microscopic potential is updated in each cycle, until self-consistency in
the first order density change [δρ(r, ω)] is established. The evaluation of the integrals over
the irreducible Brillouin zone (IBZ) in the Kohn-Sham response kernels, χab(r, r

′, ω) (which
show up in the first order density change) are done numerically with integration weights as
described in Ref. [94], so singularities in the response kernels, at resonance frequencies, are
handled analytically. Finally, after establishing self-consistency in the density change, we
obtain the electric susceptibility χe(ω) and thus the dielectric function ε(ω) from the (para-
magnetic) induced current δjp(r, ω), hereby using the conductivity sumrule. Results for
the dielectric function of various nonmetallic crystals using this TDDFT implementation
can be found in Ref. [94].
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6.5 Results for Indium Antimonide

6.5.1 Band structure

In Fig. 6.1 we show the band structure of InSb, with and without the inclusion of scalar
relativistic effects in the ground-state DFT calculation.
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Figure 6.1: Band structure of indium antimonide (InSb), the solid line is the scalar rela-
tivistic (SR), and the dashed line is the nonrelativistic (NR) ground-state calculation.

In order to facilitate the comparison between the two band structure calculations we made
the Fermi energy levels coincide. The calculations were done by using a 3Z2P NAO/STO
basis (basis V in the BAND program), which is a triple zeta basis augmented with two
polarization functions and frozen core. In the calculations, the 4d atomic states of In
and Sb were included in the valence basis. These states give rise to shallow core bands,
which can affect the position of the valence band maximum [71, 72]. As can be seen
from the band structure in Fig. 6.1 and the blowup of the band structure around the
center (Γ) of the BZ in Fig. 6.2, the inclusion of scalar relativistic effects stabilizes the
lowest s-like conduction band considerably more than the highest valence bands [98, 99].
Consequently the conduction band is lowered in energy below the top valence bands, and
this causes an avoided crossing between the s-like conduction band and one of the valence
bands. These bands change in character from s-like to p-like near Γ and vice versa, as
indicated in Fig. 6.2. The ordering of the energy bands is changed and the bandgap
vanishes at the Γ point. Thus LDA-ZORA predicts InSb to be a semimetal, as was also
found in Ref. [100] and in the full-potential scalar relativistic LAPW calculations of Ref.
[72]. The inclusion of spin-orbit coupling in the relativistic calculation will only cause a
splitting of the top p-like valence bands into an occupied p1/2 band and a half occupied p3/2
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Figure 6.2: Blowup of the band structure around the centre (Γ) of the Brillioun zone, as
indicated in Fig. 6.1. The solid line is the SR and the dashed line is the NR ground-state
calculation.

band, thereby leaving InSb to be a semimetal, as was confirmed by earlier fully relativistic
LMTO calculations in Ref. [71]. Experimentally InSb is found to be a semiconductor
with a narrow bandgap of 0.23 eV [7]. In our SR band structure we find the generally
accepted trend for DFT-LDA band structure calculations, that the bandgaps are normally
underestimated for semiconductors, and in the case of InSb predicting this crystal even to
be a semimetal. Nevertheless the scalar relativistic calculated band structure is in good
agreement with experiment [101], e.g. comparing the valence band width of 10.8 eV in our
SR band structure with experiment [101] of 11.2 eV [ultraviolet photoemission spectroscopy
(UPS)] and 11.7 eV [x-ray photoemission spectroscopy (XPS)]. The valence band energies
for L3, X3, and X1 [see Fig. 6.1] are -1.0, -6.0, and -8.8 eV, respectively, which is also in
good agreement with the UPS experimental values of -1.1, -6.5, and -9.0 eV respectively.

6.5.2 Static dielectric constant

In Table 6.1 we give the values for the calculated static dielectric constant (ε∞) for InSb
with and without including scalar relativistic effects in the ground-state and also the time-
dependent DFT calculation.
For the integration in reciprocal space we used several accuracies, in which we varied the
number of k-points in the irreducible part of the Brillouin zone (IBZ). The improvement
upon the static value for the dielectric constant with the inclusion of SR effects in the
ground-state DFT calculation is very clear from Table 6.1. Looking at the relative errors
compared to the experimental value (ε∞ = 15.7) of Ref. [77], it can be seen that the
error is 42% in the non-relativistic calculation, and 8% when scalar relativistic effects were
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Table 6.1: Static dielectric constant of InSb including non/scalar relativistic (NR/SR)
effects in the ground-state/time-dependent DFT calculation, and error compared to the
experimental value of 15.7 [77].
k-space / # k-points NR/NR Error (%) SR/NR Error (%) SR/SR Error (%)

3/15 11.91 24 18.13 15 18.12 15
4/34 11.22 29 16.63 6 16.61 6
5/65 9.15 42 16.91 8 16.42 5

included in the ground-state calculation. From Table 6.1 it can be seen that for the value of
ε∞ the inclusion of SR effects in the ground-state DFT calculation is most significant, and
that the improvement becomes even more evident when SR effects are also included in the
response calculation. Now, after including SR effects for InSb, we find the same accuracy
for ε∞, about 5% deviation from experiment, as we found earlier for the III-V compounds
in the zinc-blende structure of Ref. [94]. Other theoretical calculations for the ε∞ of InSb
by Huang et al. [51] were less accurate, their value of 13.51 underestimates experiment [77]
by 14%. This nonrelativistic value was obtained from an uncoupled response calculation
in which the χ0 response is directly calculated from the ground-state DFT solutions, and
therefore, this value does not include the Coulomb or exchange-correlation contributions.

6.5.3 Dielectric function

In Fig. 6.3 we show the dielectric function ε(ω) of InSb, with and without the inclusion
of scalar relativistic effects in the ground-state DFT calculation, in comparison with the
experimental data of Ref. [46].
The result for ε(ω) with SR effects also included in the response calculation did not deviate
by more than a few percent from the one in which SR effects were only included in the
ground-state calculation. The calculated spectra for ε(ω) were shifted to higher energies in
order to facilitate the comparison with experiment in such a way that the zero crossings in
the calculated Re[ε(ω)] coincided with the experimental zero crossings. The shifts needed
to accomplish this were 0.15 eV for the NR and 0.3 eV for the SR spectra. LDA calculated
the bandgaps to be 0.99 and � 0 eV in the NR and SR case, respectively, and these
values should be compared to the experimental gap of 0.23 eV [7]. Therefore, we find, in
agreement with earlier findings [94], that there is no direct relation between the necessary
shifts of the spectra, and the error in the calculated LDA bandgaps. The improvement
upon the calculated (shifted) dielectric function ε(ω) after the inclusion of scalar relativistic
effects in the ground-state DFT calculation is clear from Fig. 6.3. The overall agreement
of the ε(ω) with the inclusion of SR effects and experiment [46] is very good, even thought
there are still some features to be improved. E.g., the position of the E2 peak [93] (high-
energy peak in Im[ε(ω)]) coincides with experiment, but it is too sharp and the magnitude
is overestimated compared to experiment. Althought we do find the right magnitude for
the E1 peak (low-energy peak in Im[ε(ω)]), the double peak structure found in experiment
is not reproduced.
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Figure 6.3: Plots of the real and imaginary part of the calculated dielectric function of
InSb including non/scalar relativistic (NR/SR) effects in the ground-state/time-dependent
DFT calculation, in comparison with the experimental data [46]. The calculated spectra
are shifted 0.15 eV NR, and 0.3 eV in the SR case.
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6.6 Results for Mercury Selenide

The optical response calculations on HgSe were performed using the full-potential ADF-
BAND package [37, 38]. For both the ground state and the response calculations we used
the free-atom core and valence orbitals, which were supplemented with Slater-type func-
tions to form a triple-zeta valence basis. The free atom orbitals were obtained numerically
using a Herman-Skillman type program [43] employing the same ZORA approximation in
the relativistic case. We kept the deepest core levels frozen and orthogonalized the va-
lence basis to these cores, but the shallow 5d quasi-core states of Hg were included in the
valence set. This basis was then further augmented using a double-zeta polarization set.
All matrix elements were evaluated numerically with a relative accuracy of 1e-3. For the
numerical evaluation of k-space integrals, 175 symmetry-unique points were used to sample
the irreducible wedge of the Brillouin zone. As lattice parameter of the HgSe zinc-blende
structure we used a = 6.08 Å.

6.6.1 Bandstructure, static dielectric constant and the dielectric
function

The experimental optical data compiled in Ref. [104] have been used to derive the low
frequency behavior for the dielectric function of HgSe. The room temperature refractive
index data, which show a large scatter, were used in the frequency range above 0.2 eV
to fit a quadratic polynomial in a least squares procedure (Fig. 6.5). In this range both
the temperature dependence and the intraband contributions due to impurity carriers are
small [104]. This refractive index measurements together with the absorption coefficients
obtained at 5K [104], provided the data to derive the experimental dielectric function in
the infrared frequency range from 0.2 to 0.55 eV. We thus find an extrapolated value of
11.7 for the dielectric constant ε∞. For the optical and ultraviolet frequencies we used
ellipsometric data [106] in the range from 1.75 to 5.35 eV.
In Fig. 6.4 we have depicted the energy dispersion of the highest valence and lowest con-
duction bands of HgSe. These bandstructures are shown for the two cases where we either
included or excluded the relativistic effects. We can clearly see that the small direct gap
at the center of the Brillouin zone Γ is reduced, and even inverted, upon inclusion of the
scalar relativistic effects. The s-like (6s Hg) states at the conduction band minimum are
stabilized with respect to the p-like (4p Se) states at the valence band maximum mainly
due to the relativistic mass-velocity effect near the nucleus of Hg. This inversion of the
typical band order [71] of zinc-blende type semiconductors results in an avoided crossing,
even at high symmetry directions, since the s-like band hybridizes with one of these p-like
bands into Γ6v. This results in an inverted gap of about -1.16 eV, which overestimates the
experimental value of -0.45 eV by about 0.8 eV [104]. A further inclusion of spin-orbit
coupling will split the p-like Se bands into an occupied p 1

2
band (Γ7v) about 0.3 eV [105]

below a half-occupied p 3
2

degenerate pair of bands (Γ8cv), hence preserving the semimetallic
nature of the bandstructure.
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Figure 6.4: The inverted band structure of HgSe. The solid line is the result with scalar
relativistic effects included. The dashed line is the nonrelativistic ground-state calculation.
Critical points E0 and E1 and the band character (s or p) are indicated near the zone
center Γ.

This splitting will cause the Γ8cv bands to be raised by about 0.1 eV (and the Γ7v band to
be lowered by about 0.2 eV), thus further increasing the inverted LDA gap to about -1.26
eV. This is in good agreement with the relativistic pseudopotential/LDA result (-1.27 eV)
of Rohlfing and Louie [105], in which spin-orbit splitting was included. They found that
quasiparticle (QP) corrections (within the GW approximation) mainly affect the s-like
states, moving them upward rigidly by about 0.8 eV, thus reducing the gap Γ6v − Γ8cv

to about -0.51 eV. In the experimental optical spectra of HgSe, shown in Fig. 6.5, this
inverted gap appears as the critical point labelled E0 at about 0.5 eV [104]. However,
the absorption edge visible in the experiment at about 0.3 eV is most likely due to the
transition between the bands connecting to Γ8v and Γ8c, which is symmetry forbidden at
Γ, but becomes allowed outside this point since there Γ8c changes character rapidly from p-
to s-like. Simultaneous with the changing of Γ8c the band connecting to Γ6v changes from
s- to p-character, while the bands connecting to Γ8v and Γ7v remain of p-character. The
quasiparticle shift of the s-like states will bring the s- and p-like bands closer together at
Γ which will further enhance the steepness of the transition in character. This will allow
for optical transitions of lower frequency, with a steeper edge in the absorption spectrum.
The gap of about 1.95 eV between the nearly parallel top valence and lowest conduction
band along the line Λ and at the point L at the zone boundary gives rise to the critical
point E1. This gap is again increased by about 0.80 eV when QP corrections are included.
The top valence states Λ4,5 along this line Λ will split by about 0.8 eV upon inclusion of
spin-orbit coupling [71], but the bottom conduction band Λ6 will not. This will give rise to
a doublet structure in the dielectric function [104], which is however not clearly resolved
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experimentally at room temperature [106].
The TDDFT result for the dielectric function, depicted in Fig. 6.5, shows a drastic change
with the inclusion of the scalar relativistic corrections. We observe an almost fourfold
increase in the absorption in the range from 1 to 3 ev, with a prominent E1-feature just
above 2.2 eV. The experimental E1-peak appears around 3 eV. This shift is consistent
with the underestimation of the energy gap along the line Λ in our ground state DFT-
LDA calculation. Due to the Kramers-Kronig relation, the too low position of this peak
will give rise to a too high calculated value for the dielectric constant ε∞ = 14.4, vs. 11.7
experimentally.
It is clear that with the removal of the energy gap, also the absorption onset has disap-
peared, although we do not reproduce the steep increase at the absorption edge Γ8v → Γ8c.
The E0 critical point shows up as a knee in the calculation at around 1.25 eV (experi-
mentally 0.45 eV), where again the relative shift of about 0.8 eV is in agreement with the
overestimation of the Γ6v − Γ8c gap in the ground-state calculation.
These findings are quite similar to the results we obtained previously for the InSb crys-
tal [102]. For comparison, the relativistic and non-relativistic bandstructures of InSb are
shown in Fig. 6.1. Here again the order of the energy bands is inverted at the point Γ within
the local density approximation upon inclusion of relativistic effects. The interchanged s-
and p-like character of the upper valence bands and the lowest conduction band switches
back to the usual ordering just outside the zone center, along the same lines as in the
analyses given above for HgSe. The inverted bandgap is much smaller than in HgSe, in
InSb it is -0.42 eV, whereas in HgSe it is -1.26 eV. Experimentally, however, InSb is not
found to be a semimetal but a narrow-gap semiconductor, with a direct gap of 0.23 eV [7].
A QP-correction of 0.65 eV for the s-like band, similar to the rigid 0.8 eV energy shift for
the s-like band in HgSe would revert the LDA-band ordering in InSb again, resulting in
a semiconducting bandstructure. In our LDA calculation for InSb, unlike the dispersion
of the HgSe bands, both the lowest conduction band and the band connecting to Γ6v have
very strong dispersions, which hence corresponds to very low densities of states. We can
therefore expect a very small contribution to the absorption at the E0 critical point. We
get a good overall agreement in the low energy range, with a value of 16.4 for ε∞ (15.7
experimentally [77]), which can be inferred by comparing the calculated dielectric function
with the available experimental data [46] as depicted in Fig. 6.3. To facilitate the compar-
ison, the calculated spectra have been shifted 0.30 eV to higher energy in the relativistic
case and 0.15 eV for the nonrelativistic case. These shifts have been determined, such that
the frequencies at which the respective real parts become negative coincide, effectively fix-
ing the position of the very sharp E2 at the experimental value. We do not reproduce the
double peak feature at the critical point E1 which requires inclusion of spin-orbit effects in
the calculation. The spin-orbit splitting of the upper valence bands along the line Λ varies
from about 0.8 eV at Γ [71, 107] to about 0.5 eV at the zone boundary L [71]. This results
in the experimentally clearly resolved doublet structure at about 2 and 2.5 eV.
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Figure 6.5: Plots of the real (top) and imaginary part (bottom) of the calculated dielectric
function of HgSe with (SR, dash-dotted line) or without (NR, dotted line) including scalar
relativistic effects. The experimental data have been compiled from the Refs. [104] and
[106] (dots and solid line, for discussion see text).

6.7 Conclusions

We show how to include scalar relativistic effect within the zeroth-order regular approxi-
mation in time-dependent density-functional theory for the optical response properties of
nonmetallic crystals. These TDDFT equations can also be applied to calculate the optical
response properties of semimetals, because they do not show any singular behavior even
though the Kohn-Sham bandgap vanishes. The band structure of InSb and HgSe show a
considerable stabilization of the s-like conduction band minimum with the inclusion of SR
effects in the ground-state DFT calculation. LDA predicts the bandgap in the Γ point even
to vanish, and therefore predicting them to be a semimetals. The relative error in the static
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value of the dielectric constant for InSb becomes 5% compared to experiment when SR
effects are included in the ground-state DFT calculation as well as in the time-dependent
response calculation. The same accuracy as was found earlier with our TDDFT implemen-
tation for the III-V compounds in the zinc-blende structure. The dielectric functions for
InSb and HgSe, with inclusion of SR effects are clearly improved over the NR ones, and
are quite good compared to experiment, althought the spectral features are still somewhat
shifted to too low energies compared to experiment.

6.8 Appendix: Small-Frequency Response

As we argued before, it is instructive to investigate the k-dependence of the off-diagonal
ĵ-matrix elements for the critical bands and region around Γ. Therefore, let us consider
the following k · p analytic continuation of the Bloch, respectively, eigenfunctions near a
special k-point. The Bloch theorem allows for the following expansion:

ψnk+h(r) = exp(ih · r) ∑
s

cs
nk(h)φsk(r), (6.9)

where the particular choice of eigenfunctions φsk(r) constitutes a complete orthogonal basis
at k. In order to establish the orthogonality also for the ψnk+h(r) functions the expansion
coefficients have to satisfy ∑

s

cs∗
nk(h)cs

mk(h) = δnm. (6.10)

These coefficients can be found by substituting the expansion in the scalar relativistic Kohn-
Sham equation and by calculating the inner products with respect to exp(ih·r)ψsk(r). This
yields the set of equations∑

t

[
h · 〈φsk|̂j|φtk〉 +

(
γskh

2 − εnk+h + εsk

)
δst

]
ct
nk(h) = 0, (6.11)

in which the factor γsk = 〈φsk|γ(r)|φsk〉, where we introduced the shorthand notation
γ(r) = c2/(2c2−veff (r)). In the limit of h → 0 the expression reduces to the simple relation
(εsk − εnk)c

s
nk(0) = 0. Thus the coefficients cs

nk(h) have to vanish asymptotically unless
εsk = εnk and hence they constitute an ordinary unitary transformation that mixes merely
degenerate states. Using these relations we can now evaluate the analytic continuation of
the (vertical) ĵ-matrix elements near k. First consider

〈ψnk+h| − iγ(r)∇|ψmk+h〉 =
∑
s,t

cs∗
nk(h)〈φsk|γ(r)(h − i∇)|φtk〉ct

mk(h). (6.12)

The current matrices follow directly by adding the hermitian adjoint to this expression.
Note that γ(r) = c2/(2c2−veff (r)) involves only the fully symmetric ground-state potential.
The orthogonality of degenerate φsk(r) eigenfunctions is due to symmetry, which is not
affected by this totally symmetric factor. The orthogonality involving nondegenerate states
with εsk 	= εnk can be affected, but here the expansion coefficients behave asymptotically
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as cs
nk(h) ∝ h, i.e., they vanish in zeroth order as argued above. Since the factor γsk =

〈φsk|γ(r)|φsk〉 is identical for each partner of the set of degenerate states εsk = εnk, we can
apply Eq. (6.10) and thus get

jnm(k + h) = 2γnkδnmh + O(h2) +
∑
s,t

cs∗
nk(h)〈φsk|̂j|φtk〉ct

mk(h). (6.13)

By taking the derivative with respect to h of the k · p equation (6.11), one can readily
deduce that ∑

s,t

cs∗
nk(h)〈φsk|̂j|φtk〉ct

mk(h) =

[∇hεnk+h − 2γnkh]δnm + [εnk+h − εmk+h]
∑
s

cs∗
nk(h)∇hcs

mk(h). (6.14)

In the limit h → 0 we thus get for the diagonal terms n = m

∇kεnk =
∑
s,t

cs∗
nk(0)〈φsk|̂j|φtk〉ct

nk(0) = 〈ψnk|̂j|ψnk〉, (6.15)

a well-known result. In this particular case, i.e., for the critical states εsk = εtk = εFermi at
k = Γ, all diagonal ĵ-matrix elements vanish due to symmetry, so that we get a quadratic
energy dispersion relation εnk − εn0 ∝ k2. The leading order terms are then given by

jnm(k) ≈ O(k)δnm + O(k2), (6.16)

so we get a quadratic leading order in the off-diagonal ĵ-matrix elements in the case of
εnk = εmk = εFermi with n 	= m.
In the subsequent analysis we can neglect any anisotropy in the energy dispersion, as well
as the angular dependence of the ĵ-matrix elements, without invalidating the arguments. In
the evaluation of the small frequency behaviour of the critical contributions to the various
response kernels χab(ω), we encounter integrals of the following general form:

∆χab(ω) ∝
∫
Ω

(an(k) + (−1)na∗
n(k))k2n

k2 − ω + iη
dk + c.c.(−ω), (6.17)

where Ω is a small sphere surrounding Γ and n is the number of times the off-diagonal
ĵ-matrix elements appear in the numerator, i.e., n=0 for χρρ(ω), n=1 for χρj, χjρ(ω), and
n=2 for χjj(ω). Note that the diagonal elements do not contribute at all. The functions
an(k) ≈ an(0)+O(k) are regular functions of k. The contributions of ψnk and ψn−k = ψ∗

nk

are related due to time-reversal symmetry, which has been made explicit in the combination
of an(k) and a∗

n(k) in the numerator. These integrals can be evaluated directly, with a
general structure given by

∆χab(ω) ∝ pn(ω) + ωn
√
|ω| · [q(ω) − 2iπ2θ(ω)] + O(hn+2), (6.18)

in which the polynomial part pn(ω) of order n contains only even(odd) powers of ω for
even(odd) n, just like the regular contributions to the response functions which result from
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the nondegenerate bands. The additional terms [in which θ(ω) is the unit stepfunction

and q(ω) a regular function of ω] scale like ωn
√
|ω| which is just one-half an order higher.

We can conclude that the absence of a band gap does not lead to irregular contributions
to the response functions, and that we can expect a small frequency behaviour of χe(ω) ≈
χe(0) + O(

√
ω).
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Chapter 7

A polarization dependent functional

P. L. de Boeij, F. Kootstra, J. A. Berger, R. van Leeuwen, and J. G. Snijders, ”Current
density functional theory for optical spectra, a polarization functional”, J. Chem. Phys.
115, 1995-1999 (2001).

7.1 Abstract

We present a new approach to calculate optical spectra, which for the first time uses a
polarization dependent functional within current density functional theory (CDFT), which
was proposed by Vignale and Kohn [108]. This polarization dependent functional includes
exchange-correlation (xc) contributions in the effective macroscopic electric field. This
functional is used to calculate the optical absorption spectrum of several common semi-
conductors. We achieved in all cases good agreement with experiment.

7.2 Introduction

Time-dependent density functional theory (TDDFT), as formulated by Runge and Gross
[4], makes it in principle possible to study the dynamical properties of interacting many-
particle systems. The formulation of a local dynamical approximation for the xc potential
turns out to be extremely difficult, because such an xc potential in TDDFT is an intrinsi-
cally nonlocal functional of the density (i.e., there does not exist a gradient expansion for
the frequency-dependent xc potential in terms of the density alone). Vignale and Kohn
[108] were the first who formulated a local gradient expansion in terms of the current den-
sity. In a time-dependent current density functional approach to linear response theory,
they derived an expression for the linearized xc vector potential axc(r, ω) for a system of
slowly varying density, subject to a spatially slowly varying external potential at a finite
frequency ω.
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7.3 Theory

Let us first recall our definitions for the macroscopic electric field and polarization, before
we derive an expression in which the macroscopic xc potential contributions of Vignale
and Kohn [108] are incorporated. If we apply a time-dependent electric field of frequency
ω, we will induce a macroscopic polarization Pmac(ω) which will be proportional to the
macroscopic field Emac(ω), i.e., the applied field plus the average electric field caused by
induced charges in the solid. The constant of proportionality is known as the electric
susceptibity and is a material property,

Pmac(ω) = χ(ω) · Emac(ω). (7.1)

The macroscopic polarization is defined by the induced current density,

Pmac(ω) =
i

ωV

∫
V

δj(r, ω)dr. (7.2)

We see that if we want to calculate the susceptibility and the related dielectric function
we need to calculate the induced current. The induced current δj and induced density
δρ can, in principle, be calculated from the current-current and density-current response
functions of the solid in the following way, where we use a shortened notation which implies
integration over spatial coordinates [63]:

δj =
i

ω
χjj · Emac, (7.3)

δρ =
i

ω
χρj · Emac. (7.4)

This requires, however, knowledge of the exact response functions of the system. Within
a Kohn-Sham formulation the exact density and current response are calculated as the
response of an auxiliary noninteracting system to an effective electric field and potential,

δj =
i

ω
χs

jj · Eeff + χs
jρδveff , (7.5)

δρ =
i

ω
χs

ρj · Eeff + χs
ρρδveff , (7.6)

where the superscript s indicates that we are dealing with the response functions of the
noninteracting Kohn-Sham system. The equations above are our basic equations of time-
dependent current-density functional theory (TDCDFT). The effective fields have the prop-
erty that they produce the exact density and current when applied to the Kohn-Sham
system. Hence they are functionals of δj and δρ, and have to be obtained self consistently.
If we neglect the microscopic contributions to the transverse components, we can split up
these fields as follows

Eeff(ω) = Emac(ω) + Exc,mac(ω), (7.7)

δveff(r, ω) = δvmic(r, ω) + δvxc,mic(r, ω), (7.8)
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where vmic is the microscopic part of the Hartree potential and vxc,mic is the microscopic
part of the exchange-correlation potential. The term Exc,mac denotes the macroscopic xc-
electric field. The gauge is chosen in such a way that the microscopic parts of the external
field are included in the scalar potential and the macroscopic part of the fields are included
in the vector potential. Our goal is to derive an expression for Exc,mac. Let us first look at
the consequences of such a term. With Kohn-Sham theory the macroscopic polarizability
is proportional to the effective field Eeff . This defines a Kohn-Sham susceptibility χ̃ by the
equation,

Pmac(ω) = χ̃(ω) · Eeff(ω). (7.9)

We are, however, interested in the actual susceptibility χ. With the Eqs. 7.1, 7.7, and 7.9
we obtain

(χ̃−1(ω) − χ−1(ω)) · Pmac(ω) = Exc,mac(ω). (7.10)

We see that we can calculate the susceptibility χ once we know how to calculate Exc,mac.
In previous calculations [63, 94], Exc,mac was simply put to zero, which yields the approx-
imation χ = χ̃. Here we want to improve upon this approximation and derive an explicit
expression for Exc,mac. The starting point is the current-density functional derived by Vig-
nale and Kohn [108, 109] which we write in the compact form derived by Vignale, Ullrich
and Conti [ Exc1(r, ω) ≡ iω

c
axc(r, ω) ] [110],

−Exc1,i(r, ω) = −∂iv
ALDA
xc1 +

1

ρ0(r)

∑
j

∂jσxc,ij(r, ω). (7.11)

Here Exc1,i is the induced xc-electric field in linear response and vALDA
xc1 is the first order

change in the xc-potential in the adiabatic local density approximation (ALDA). The last
term contains the ground state density ρ0 of the system and the viscoelastic stress tensor,

σxc,ij = η̃xc

(
∂jui + ∂iuj − 2

3
δij(

∑
k

∂kuk)

)
+ ζ̃xcδij(

∑
k

∂kuk). (7.12)

Here u(r, ω) = δj(r, ω)/ρ0(r) is the induced velocity field and the constants η̃xc(ρ0, ω) and
ζ̃xc(ρ0, ω) are coefficients, which can be expressed in terms of the transverse and longitudinal
xc-kernels of the electron gas [110]. In order to isolate the macroscopic component of the
xc-electric field we take the average over a unit cell of the solid and obtain

Exc,mac(ω) =
i

ω

∑
k

1

Ω

∫
Ω

dr yik(r, ω)δjk(r, ω), (7.13)

where Ω denotes the unit cell volume and we defined the matrix

yik(r, ω) = −δik
∇ · (fxcT∇ρ0)

ρ0

− ∂k(hxc∂iρ0)

ρ0

. (7.14)

Here fxcT (ρ0, ω) is the tranverse xc-kernel of the electron gas and hxc(ρ0, ω) is given as

hxc(ρ0, ω) = fxcL(ρ0, ω) − fxcT (ρ0, ω) − d2exc

dρ2
0

. (7.15)
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Here fxcL(ρ0, ω) is the longitudinal part of the electron gas xc-kernel and exc the xc-energy
per volume unit of the electron gas. The equation for the macroscopic part of the xc-
electric field can be simplified if we replace δj by its macroscopic value, i.e., its average
over the unit cell. In that case we obtain

Exc,mac(ω) =
i

ω
Y([ρ0], ω) · δj(ω) = Y([ρ0], ω) · Pmac(ω). (7.16)

Here the tensor Y is given by

Y([ρ0], ω) =
1

Ω

∫
Ω

dr
(∇ρ0)

2

ρ2
0

fxcT (ρ0, ω) +
1

Ω

∫
Ω

dr
∇ρ0 ⊗∇ρ0

ρ2
0

hxc(ρ0, ω). (7.17)

Equation (7.16) represents the first explicit example of the often discussed density-polarization
functional [27, 111, 112]. With this functional and the Eqs. 7.1, 7.7, and 7.9, we see that
the susceptibility becomes equal to

χ(ω) = (1 − χ̃(ω)Y([ρ0], ω))−1χ̃(ω). (7.18)

This equation clearly displays the influence of the macroscopic xc-electric field on the
susceptibility. It remains to find an appropriate approximation for the functions fxcT and
fxcL. These functions have been investigated in detail for the electron gas [113, 114, 115,
116]. In these works it has been shown that they are smooth functions of the frequency,
except at twice the plasma frequency. For the optical spectra we are, however, interested
in much smaller frequencies. In the limit ω → 0 the function hxc(ρ0, ω) becomes equal
to fxcT (ρ0, 0)/3 [110]. In that limit the tensor Y([ρ0], 0) is completely determined by
fxcT (ρ0, 0).

7.4 Calculations

We have tested this new functional for silicon as an example of a group IV semiconductor
in the diamond structure. We used Eq. 19 (and the values of µxc in Table I) of Ref. [115],
to obtain values for fxcT (ρ0, 0) at arbitrary ρ0, thereby using a cubic spline interpolation in
the range 0-5 for the rs values, in which we take into account the exactly known small rs

behavior [116]. The macroscopic dielectric function ε(ω) can be obtained directly from the
electric susceptibility χ(ω) through ε(ω) = 1 + 4πχ(ω). The optical absorption spectrum
ε2 for Si, shows two major peaks in the range from 3-6 eV [45, 46]. The first peak (E1)
is attributed to an M0- or M1-type critical point transition, and the second (E2) one
to an M2 type [56, 93]. All previous ”one-electron” approximations, ranging from the
early pseudopotential approaches in the 1970s [118, 119], to the ab initio DFT-LDA of
the end 1990s [120], showed the same features for ε2. However, the E1 peak is usually
underestimated, and appeares just as a shoulder, whereas the E2 is overestimated and
appears at too high energies compared to experiment [45, 46]. The underestimation of
the E1 peak was attributed to excitonic effects (the attractive interaction between the
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virtual hole and the excited electron). In the recent calculations [121], these excitations
are explicitly taken into account by solving the Bethe-Salpeter equation (BSE) for the
coupled electron-hole excitations, and in these spectra the E1 peak is clearly resolved and
in good agreement with experiment [45, 46]. The ratio of the E1-E2 peak heights in the ε2

of Si proved to be rather sensitive to the numerical value of Y([ρ0], 0). However, it turned
out that the theoretical value that we list in Table 7.1, is too high by about a factor of
2. In view of the uncertainty in the published values of fxcT (ρ0, 0) [116], we introduce a
prefactor of 0.4 in front of the matrix Y([ρ0], 0) in Eq. 7.18, which was determined in order
to get an optimal agreement with experiment for the ratio of the E1-E2 peak heights. This
prefactor is used in all the subsequent cases.

7.5 Results

7.5.1 Silicon

In Fig. 7.1, we show the effect of this polarization functional on the ε(ω) of Si in comparison
with experiment [45, 46]. In order to facilitate the comparison with experiment, the spectra
have been shifted to higher energies, see Table 7.1.

Table 7.1: The calculated values for Y([ρ0], 0), and the applied energy shifts to the dielectric
functions, for the crystals in the Figs. 7.1 - 7.5.

Applied shift (eV.)a

Solid Y([ρ0], 0) (a.u.) Without Y([ρ0], 0) With Y([ρ0], 0)
C 0.367 0.60 0.70
Si 0.355 0.40 0.58
GaP 0.409 0.50 0.60
GaAs 0.416 0.45 0.50
ZnS 0.489 0.90 0.90

aSpectra have been shifted such that the calculated and experimental zero-crossings of ε1 coincide.

It is clear that without the Exc,mac contributions, the E1 peak appears as a shoulder and
is underestimated in amplitude, the E2 peak is too sharp, and therefore overestimated in
magnitude. When including the macroscopic xc-contributions, the E1 peak is now clearly
resolved. As can be seen in Fig. 7.1, for both the real and imaginary part of ε(ω), the
whole dielectric function is improved considerably. Therefore it should be concluded that
it is necessary to include the Exc,mac contributions to get the E1 peak in the ε2 of Si in good
agreement with experiment [45, 46]. In addition, we have calculated the optical absorption
spectra ε2 for C, also a group IV element, GaP and GaAs (III-V), and ZnS (II-VI) using
the same polarization functional. We checked that the used prefactor led to uniformly
improved spectra, and hence we have obtained a new polarization functional that in all
cases improves our previous ALDA results [94].
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Figure 7.1: The dielectric function for Silicon (Si), with and without the inclusion of the
polarization dependent functional, in comparison with the experimental data [45, 46]. The
applied energy shifts to the TDDFT calculated dielectric function were 0.60 eV without,
and 0.70 eV with the inclusion of Y([ρ0], 0).
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7.5.2 Diamond

The experimental [46] absorption spectrum ε2 for diamond shows an E2 peak around 12 eV.
In all previous calculations of ε2 for C this E2 peak is overestimated, just like in our recently
performed time-dependent DFT calculations [63, 94], as well as in the BSE calculations
[117], which include in detail the electron-hole interactions. In Fig. 7.2 we show the effect of
including the polarization functional on the ε2 of diamond, in comparison with experiment
[46]. Clearly there is a very small effect on ε2 when using the polarization functional.
Therefore it can be concluded that the xc-contributions to the effective macroscopic electric
field in diamond are negligible.
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Figure 7.2: The optical absorption spectrum for Diamond (C), with and without the
inclusion of the polarization dependent functional, in comparison with the experimental
data [46]. The applied energy shifts to the TDDFT calculated dielectric function were 0.40
eV without, and 0.58 eV with the inclusion of Y([ρ0], 0).
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7.5.3 Gallium phosphide

The experimental [46] absorption spectrum ε2 of GaP in the zincblende structure, also
shows a double peak structure in the range from 3 to 6 eV, just like Si. In Fig. 7.3, the effect
of the polarization functional on the ε2 of GaP is shown and compared with experiment
[46]. Upon inclusion of the scaled Y([ρ0], 0) term, the originally underestimated E1 peak
is now found in full agreement with experiment [46], but the E2 peak is still overestimated
and too sharp.
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Figure 7.3: The optical absorption spectrum for Gallium Phosphide (GaP), with and
without the inclusion of the polarization dependent functional, in comparison with the
experimental data [46]. The applied energy shifts to the TDDFT calculated dielectric
function were 0.50 eV without, and 0.60 eV with the inclusion of Y([ρ0], 0).
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7.5.4 Gallium arsenide

The experimental absorption spectrum for GaAs (Ref. [46]) shows the same features as
for GaP. In Fig. 7.4 the effect of the polarization functional is shown on the ε2 of GaAs.
Including Y([ρ0], 0) gives an increase in the oscillator strenght for the E1 peak, just like in
GaP, and it is now also in good agreement with experiment [46].
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Figure 7.4: The optical absorption spectrum for Gallium Arsenide (GaAs), with and with-
out the inclusion of the polarization dependent functional, in comparison with the exper-
imental data [46]. The applied energy shifts to the TDDFT calculated dielectric function
were 0.45 eV without, and 0.50 eV with the inclusion of Y([ρ0], 0).
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7.5.5 Zinc sulfide

In the II-VI semiconductor ZnS the E1 peak is also underestimated in our previous cal-
culations [94], compared to experiment [90]. In Fig. 7.5, it can be seen that also for ZnS
the osillator strenght for the E1 peak increases after inclusion of the Y([ρ0], 0) term, and
is now in better agreement with experiment [90].
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Figure 7.5: The optical absorption spectrum for Zinc Sulfide (ZnS), with and without the
inclusion of the polarization dependent functional, in comparison with the experimental
data [90]. The applied energy shifts to the TDDFT calculated dielectric function were 0.90
eV without and with the inclusion of Y([ρ0], 0).

7.6 Conclusions

In conclusion, we presented the first successful computational approach of a polarization
dependent functional within current density functional theory, as it was suggested in 1996
by Vignale and Kohn [108]. The calculated optical absorption spectra of several semi-
conductors clearly improved considerably with the inclusion of the exchange-correlation
contributions to the effective macroscopic electric field.



Chapter 8

Excitons in crystalline insulators,
described by TDDFT

F. Kootstra, P. L. de Boeij, and J. G. Snijders, J. Chem. Phys. to be submitted.

8.1 Abstract

In this chapter we demonstrate that time-dependent density-functional theory (TDDFT),
within the adiabatic local density approximation (ALDA), describes the excitonic effects
for the insulators CaF2, SiO2, and GaN correctly. Results for the electronic band structure,
the density of states (DOS) and the optical spectra (ε2) are reported for these wide band
gap insulators. The optical spectra calculated by TDDFT are compared directly with ex-
perimental measurements, and with the ε2’s as calculated by a Green’s function approach
(DFT/GW/BSE). In DFT/GW/BSE, these excitons are explicitly taken into account by
evaluating the two-body Green’s function G2. The features in the optical absorption spec-
tra, that are attributed to excitonic effects according to the DFT/GW/BSE results, are
also found in the TDDFT calculations. This contradicts the common assumption that
TDDFT is not able to describe these excitonic effects properly.

8.2 Introduction

When a solid in its ground state is perturbed by an electromagnetic field, an electron
can be promoted from the valence band to the conduction band, thereby leaving a hole
behind. In the case of a Coulombic interaction between this excited electron and the
remaining hole, a bound state is formed. Such bound states of electron-hole pairs are
called excitons [8]. The optical excitations, e.g., in semiconductors, can be described in
terms of very weakly bound electron-hole pairs. On average, the electron-hole distance is
large in comparison with the lattice constant of the corresponding semiconductor. Such
excitons are called Mott-Wannier excitons. Excitons are called Frenkel excitons, when the
correlation between the electron and the hole is strong. In these excitions, the electrons
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are always found very close to the holes. Recently, in several groups [122, 123, 124, 125],
it has been claimed that the description of optical electron-hole excitations requires an
effective two-body approach, which goes beyond the single-particle picture. In the rest
of this chapter the single-particle Green’s function approach will be abbreviated as the
GW approach1, in which G stands for the the one-particle Green’s function G1 and the
W for the screened Coulomb interaction. In the past, the GW approach has been shown
to be highly succesful for the prediction of quasiparticle spectra [25, 133]. In the effective
two-body approach2 the coupled electron-hole excitations are calculated by solving the
Bethe-Salpeter equation (BSE), which enables the evaluation of the optical absorption
spectra. The effect of such a two-body approach becomes directly clear when comparing
the corresponding optical spectra, ’GW’ vs. ’BSE’. The differences between these spectra
are defined, in the DFT/GW/BSE theory, as features of excitonic nature. The explicit
inclusion of these electron-hole excitations can be quite substantial, e.g., a large influence
is observed in the optical absorption of α-quartz. The question arises to what extent
excitonic effects are also included in time-dependent density-functional theory. Therefore
it is interesting to investigate if these excitonic features in the optical absorption spectra
are also found in a TDDFT calculation.
In this chapter we investigate three wide band gap insulators: CaF2, SiO2, and GaN. In
these insulators, the optical spectra were all substantially improved upon the inclusion
of the electron-hole excitations (i.e., after solving the Bethe-Salpeter equation). In those
calculations, the spectra are found in excellent agreement with the experimentally measured
spectra. The rest of this chapter is arranged in the following way. In the theory section,
we briefly outline the DFT/GW/BSE theory, and we show the similarity between the
DFT/GW/BSE equations and the TDDFT equations. In the subsequent section we give
the results and analyses for the three wide band gap insulators.

8.3 Theory

8.3.1 Green’s function approach

The following outline of the Green’s function approach is based upon the Refs. [125, 126].
The key concept of the Green’s function approach is to describe the excitations of the elec-
tronic system by the corresponding one- and two-particle Green’s function. The formalism
is fully described and discussed in the Refs. [127, 128, 129, 130, 131, 132]. In practice
three computational techniques are combined: (1) The ground state of the electronic sys-
tem is descibed by density-functional theory (DFT) within the local density approximation
(LDA), (2) The quasiparticle (QP) excitation spectrum of the electrons and holes is ob-
tained within the GW approximation to the electron self-energy operator, (3) The coupled
electron-hole excitations are calculated by solving the Bethe-Salpeter equation (BSE), to
evaluate the optical spectrum.

1’GW’ in the Figures
2’BSE’ in the Figures
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Quasiparticle excitation spectrum

The process of removing and adding an electron to the N -particle system is described by
the one-electron Green’s function

G1(1, 2) = −i〈N, 0|T [ψ(1)ψ†(2)]|N, 0〉 , (8.1)

in which we have used the abbreviated notation (i) = (ri, ti). The ground state configura-
tion of the N electron system is given by |N, 0〉, and in second quantization notation, ψ†(i)
and ψ(i) are the creation and annihilation operators. In Eq. 8.1, T is Wick’s time-ordering
operator, which is given by:

T [ψ(1)ψ†(2)] =

{
ψ(1)ψ†(2) if t1 > t2,

−ψ†(2)ψ(1) if t1 < t2.
(8.2)

For an interacting N -electron system the Hamiltonian is given by,

Ĥ = T̂ + V̂ + Û , (8.3)

in which T̂ is the kinetic term, V̂ the interaction with the external field, and Û the Coulomb
interaction between the electrons: 1/|r − r′|. Similarly, for a fictitious non-interacting
system the Hamiltonian is given by,

Ĥ0 = T̂ + V̂0 , (8.4)

in which V̂0 is an external potential, which, in addition to the interaction with the external
field, also takes into account the electron-electron interaction in an effective way. Therefore
this V̂0 is often denoted by V̂eff , which includes in addition to the external potential V̂ also
the electrostatic electron-electron interaction and the exchange-correlation potential.

The equation of motion for the one-particle Green’s function G(1, 2) can be derived by
using the following commutation rules in second quantization[

ψ†(r, t), ψ†(r′, t)
]
+

= [ψ(r, t), ψ(r′, t)]+ = 0 , (8.5)[
ψ(r, t), ψ†(r′, t)

]
+

= δ(r − r′) , (8.6)

and the Heisenberg equations of motion

i
∂ψ(r, t)

∂t
=

[
ψ(r, t), Ĥ

]
, (8.7)

−i
∂ψ†(r, t)

∂t
=

[
ψ†(r, t), Ĥ

]
. (8.8)

For the non-interacting system this results in:[
i

∂

∂t1
+

1

2
∇2

1 − Veff(1)

]
G0(1, 2) = δ(1, 2) . (8.9)
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In a similar way, for the interacting N -electron system, one can derive the equation of
motion for interacting Green’s function G(1, 2)[

i
∂

∂t1
+

1

2
∇2

1 − Veff(1)

]
G(1, 2) −

∫
d3Σ(1, 3)G(3, 2) = δ(1, 2) , (8.10)

which defines the self-energy operator Σ(1, 3) by∫
d3Σ(1, 3)G(3, 2) = 〈N, 0|T

[
[ψ†(1), Û + V̂ − V̂eff ]ψ†(2)

]
|N, 0〉 . (8.11)

One now arrives at the Dyson’s equation by combining the Eqs. 8.9 and 8.10

G(1, 2) = G0(1, 2) +
∫

d3d4G0(1, 3)Σ(3, 4)G(4, 2) , (8.12)

which can be written symbolically as: G = G0 + G0ΣG.

In principle the self-energy operator Σ should be calculated self-consistenlty. This is most
easily done by solving the Hedin equations [127] using linear response theory. The Hedin
equations are a set of four coupled integral equations, for the self-energy Σ, the screened
interaction W , the polarizability P , and the vertex function Γ.

In the GW approximation the vertex function Γ(1, 2, 3) is approximated by δ(1, 2)δ(1, 3),
leading to the following reduced set of equations:

P (1, 2) = −2iG(1, 2)G(2, 1+) , (8.13)

W (1, 2) = v(1, 2) +
∫

d3d4v(1+, 3)P (3, 4)W (4, 2) , (8.14)

Σ(1, 2) = iG(1, 2)W (1+, 2) . (8.15)

Starting from the zeroth-order approximation: Σ = 0 and G = G0, where G0 can be calcu-
lated using DFT-LDA, one first obtains the polarizability P as the response of the system
to a change in the effective potential. From P , the interaction between the quasiparticles
W is calculated, and finally the self-energy operator Σ is obtained.

The quasiparticle energies are then calculated by inserting this self-energy operator Σ
in the quasiparticle equation (i.e., the Dyson’s equation 8.12 in disguise)[

−∇2

2
+ Veff(r)

]
φnk(r) +

∫
dr′Σ(r, r′, Enk)φnk(r

′) = Enkφnk(r) . (8.16)

In practice, only one GW iteration is performed to update the DFT-LDA eigenvalues. In
this way many band structures and electronic spectra have been calculated within the GW
approximation [127, 128]. The GW spectrum, of the individual electron and hole states,
serves as input for the Bethe-Salpeter equation, which results in the coupled electron-hole
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excitations and the optical absorption spectrum, ε2(ω) (Eq. 8.25).
From the GW spectrum one can also directly calculate the optical absorption spectrum
(’one-electron’ spectrum, ε

(0)
2 (ω)). This spectrum does not include the electron-hole inter-

action, and in this case the excitations are calculated by the vertical transitions between
the independent electron and hole states, according to

ε
(0)
2 (ω) =

16π2

ω2

∑
cvk

∣∣∣〈ck|̂j · ê|vk〉
∣∣∣2 δ(ω − (Eck − Evk)) , (8.17)

in which ĵ and ê are the current operator and the polarization unit vector of the electric
field respectively.

Electron-hole excitations

The two-particle Green’s function can be defined, in analogy with the one-electron Green’s
function of Eq. 8.1, as

G2(1, 2, 1
′, 2′) = −〈N, 0|T [ψ(1)ψ(2)ψ†(2′)ψ†(1′)]|N, 0〉 . (8.18)

The two-particle correlation function is introduced as

L(1, 2, 1′, 2′) = G1(1, 2
′)G1(2, 1

′) − G2(1, 2, 1
′, 2′) ,

= L0(1, 2, 2
′, 1′) − G2(1, 2, 1

′, 2′) , (8.19)

in which L0 is the propagator for the free electron-hole pair.

The Bethe-Salpeter equation is found as the equation of motion for L(1, 2, 1′, 2′). The
derivation is similar to the one for the Dyson’s equation 8.12, as the equation of motion
for G(1, 2).

L(1, 2, 1′, 2′) = L0(1, 2, 2
′, 1′) +

∫
d3d4d5d6L0(1, 4, 1

′, 3)K(3, 5, 4, 6)L(6, 2, 5, 2′) , (8.20)

where the effective two-particle interaction kernel K is given by

K(3, 5, 4, 6) =
δΣ(3, 4)

δG1(6, 5)
. (8.21)

If again the GW approximation is used for the self-energy operator Σ, and if we further
neglect the derivative of the screened interaction W with respect to the one-particle Green
function G1, one obtains:

K(3, 5, 4, 6) = −iδ(3, 4)δ(5, 6)v(3, 6) + iδ(3, 6)δ(4, 5)W (3, 4) ,

= Kx(3, 5, 4, 6) + Kd(3, 5, 4, 6) . (8.22)

The term Kx contains the bare Coulomb interaction v, and is called the exchange term,
while Kd results from the screened Coulomb interaction W , and has the form of a so-called
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direct term. It is the Kx term which is responsible for the attractive nature of the electron-
hole interaction and the formation of bound electron-hole states.

The BSE (Eq. 8.20) can be transformed into a generalized eigenvalue problem, if we
expand L0 and L in the quasiparticle functions and energies. This results in

(Eck − Evk)A
S
cvk +

∑
c′v′k′

Kc′v′k′
cvk (ΩS)AS

c′v′k′ = ΩSAS
cvk . (8.23)

The indices c, v and k denote the conduction bands, valence bands and the k-vectors of
the quasiparticle states. The electron-hole amplitudes AS

cvk, contain information about the
electron-hole correlation and the spatial nature of the excited states |S〉, having excita-
tion energies ΩS. Kc′v′k′

cvk (ΩS) is the electron-hole interaction kernel. The evaluation of
Kc′v′k′

cvk (ΩS) forms the bottleneck in the BSE calculation, because the screened interaction
part Kd contains an energy convolution, depending on the excitation energy ΩS.

After solving the Bethe-Salpeter equation (Eq. 8.23), the electron-hole amplitudes AS
cvk

and the coupled electron-hole excitation energies ΩS can be used to calculate the excitonic
wave functions ΨS(re, rh), belonging to the excitations |S〉.

ΨS(re, rh) =
∑
cvk

AS
cvkφck(re)φ

∗
vk(rh) . (8.24)

The optical absorption spectrum ε2(ω) now follows from:

ε2(ω) =
16π2

ω2

∑
S

∣∣∣∣∣∑
cvk

AS
cvk〈ck|̂j · ê|vk〉

∣∣∣∣∣
2

δ(ω − ΩS) . (8.25)

8.3.2 TDDFT approach

In this section we focus on the similarity between the DFT/GW/BSE equations of the
previous section and the corresponding TDDFT equations. A full description of this real-
space formulation to time-dependent density-functional theory can be found in Ref. [63],
and results for the dielectric function for a large number of nonmetallic crystals in Ref.
[94, 102, 136].

For simplicity we will only consider isotropic systems. The key quantity is the induced
density

δρ(r, ω) = 2
∑
cvk

ψ∗
vk(r)ψck(r)

∫
V dr′ ψ∗

ck(r
′)

(
ĵ · ê + δveff (r′, ω)

)
ψvk(r

′)

(εvk − εck) + ω + iη
+ c.c.(−ω) , (8.26)

in which ê is the direction of the electric field, E(ω) = −iω · ê, the summation is over
the conduction (c) and valence (v) states, the (paramagnetic) current operator is given by
ĵ = −i(∇ − ∇†)/2, and the effective potential δveff (r′, ω) is the result of the microscopic
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Coulomb potential and the exchange-correlation contribution.

The similarity between the DFT/GW/BSE and TDDFT equations becomes evident if
we introduce the density matrix Pcvk(ω) and write the induced density δρ(r, ω) in Eq. 8.26
as

δρ(r, ω) = 2
∑
cvk

ψ∗
vk(r)ψck(r) Pcvk(ω) + c.c.(−ω) . (8.27)

From the Eqs. 8.26 and 8.27, we see that Pcvk(ω) has to satisfy the following inhomo-
geneous eigenvalue equation

[(εck − εvk) − ω] Pcvk(ω) +
∑

c′v′k′
Kcvk

c′v′k′(ω) Pc′v′k′(ω)

= −2
∫

V
dr

(
ψ∗

ck(r)
[̂
j · ê

]
ψvk(r)

)
, (8.28)

in which the couplings matrix Kcvk
c′v′k′(ω) is given by

Kcvk
c′v′k′(ω) = 2

∫
V

dr
∫

V
dr′ × (8.29)(

ψ∗
ck(r)ψvk(r)

[
1

|r − r′| + fxc(r, r
′, ω)

]
ψ∗

v′k′(r′)ψc′k′(r′)

)
.

Let us first look for the eigenvalues ΩS and eigenstates P S
cvk(ω) of the following eigenvalue

equation, i.e., the homogeneous part of Eq. 8.28:

[(εck − εvk)] P S
cvk +

∑
c′v′k′

Kcvk
c′v′k′(ω) P S

c′v′k′ = ΩS P S
cvk . (8.30)

The solution of the inhomogeneous equation (Eq. 8.28) can be expressed in terms of these
eigenvalues and eigenstates, in the following way

Pcvk(ω) = −2
∑
S

P S∗
cvk〈ψck|̂j · ê|ψvk〉
ΩS − ω − iη

P S
cvk . (8.31)

We can now get the induced macroscopic current according to the expressions in the Eqs.
4.58 ff., which is very similar to the induced density of Eq. 8.27

δj(ω) · ê = 2
∑
cvk

〈ψvk|̂j · ê|ψck〉Pcvk(ω) + c.c.(−ω) . (8.32)

For isotropic systems, we now get the imaginary part of the electric susceptibility and
dielectric function, ε2(ω), according to

ε2(ω) = 4πIm χe(ω) =
16π2

ω2

∑
S

∣∣∣∣∣∑
cvk

P S
cvk〈ψck|̂j · ê|ψvk〉

∣∣∣∣∣
2

δ(ω − ΩS) . (8.33)
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When we neglect the Coulomb and exchange-correlation interactions in the TDDFT cal-
culations, by setting the couplings matrix Kcvk

c′v′k′(ω) to zero, it immediately becomes clear
from Eq. 8.30, that the ΩS reduce to the Kohn-Sham energy differences (ΩS = εck − εvk),
and that the P S

cvk become the unit vectors. The optical absorption spectrum is then ob-
tained according to

ε
(0)
2 (ω) =

16π2

ω2

∑
cvk

∣∣∣〈ψck|̂j · ê|ψvk〉
∣∣∣2 δ(ω − (εck − εvk)) . (8.34)

This is completely equivalent to Eq. 8.17, with the obvious difference that there the ΩS

are the quasiparticle energy differences (ΩS = Eck − Evk).

Now the similarities have become evident. If we identify the density matrix elements P S
cvk

with the electron-hole amplitudes AS
cvk, then Eq. 8.30 can be interpreted as the Bethe-

Salpeter equation (Eq. 8.23), with the quasiparticle eigenvalues replaced by the Kohn-
Sham eigenvalues (and a different coupling matrix, in which the self-energy operator, Σ
has been replaced by the exchange-correlation kernel, fxc). With the same identification,
the resulting expression for the electric susceptibility (Eq. 8.33) yields exaclty the same
expression for the optical absorption spectrum ε2(ω) as was obtained in the BSE derivation
(Eq. 8.25).

8.4 Calculations on insulators

8.4.1 Calcium fluoride

CaF2 is a highly ionic (wide band gap) insulator, which has been examined extensively for
many years as well experimentally [83, 84, 137, 138, 139, 140] as theoretically [64, 70, 122,
141, 142]. The CaF2 crystal has the fluoride structure with a lattice constant a=5.46 Å
[64].

Bandstructure

The calculated band structure for CaF2 is shown in Fig. 8.1.
The bottom of the conduction-band (CB) is found at Γ, whereas the top of the valence-
band (VB) is found at X. Therefore we get an indirect band gap of 6.93 eV, which is an
underestimation by LDA of 43% compared to the experimental value of 12.1 eV found by
Rubloff [139]. Other theoretical bandstructures are given in the Refs. [70, 141, 142]. Albert
[141] used the tight-binding method for the VB and a pseudopotential method for the
CB. The experimental band gap was reproduced by using a Slater exchange parameter of
α=0.795 in their overlapping-atomic-potential model. Heaton [142] used the self-consistent
linear combination of atomic orbitals (LCAO) method, for as well the CB as the VB, and
found, when using the full exchange parameter (α=1), an indirect band gap of 9.8 eV in
their overlapping-atomic-charge model. Gan [70] found an indirect band gap of 6.53 eV,
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Figure 8.1: The bandstructure and the density of states (DOS) of CaF2

when using their self-consistent orthogonalised LCAO method in the LDA approximation.
Looking at the complete bandstructures of Refs. [70, 141, 142], we see a clear resemblance
of our structure and that of Albert [141], which is, however, different (for example at the
point L in the Brillouin zone) from the structures found by Gan [70] and Heaton [142].

Density of states

The Density of States (DOS) for CaF2, as calculated from the bandstructure, is also de-
picted in Fig. 8.1. We find for the upper VB two peaks at -5.35 and -3.80 eV respectively
(zero energy is centered between VB and CB). The same two peak structure in the DOS
for the VB was found by others [70, 142]. The total width of this upper VB is 2.84 eV,
which is in good agreement with the experimental value of 3.0 eV by Pool [140]. Others
calculated the width of the VB to be 3.1 [70], 2.7 [141], and 2.0 eV [142] respectively. The
DOS for the CB is rather complicated, and shows peaks at 6.25, 8.90, 9.75, 12.35, 13.10,
13.55, 13.95 and 15.58 eV (as indicated in Fig. 8.1.). A very similar structure for the
DOS for the CB was found by Gan [70], which was rather different from the one found by
Heaton [142].

Optical spectrum

The earliest experimental reflectance and optical spectra of CaF2 [84, 137, 138, 139, 140]
showed interesting and substantial differences from the most recent one by Barth [83].
The early measurements (photographic photometry, ultraviolet photoelectron spectroscopy
(UPS) and x-ray photoelectron spectroscopy (XPS)) all revealed the presence of an exciton
peak around 11 eV. In the most recent spectroscopic ellipsometric synchrotron measur-
ments of ε1 and ε2 however, this exciton could not be resolved clearly, because the peak
is in the energy range that is contaminated by second-order diffracted light. Furthermore,
the intensity of the ε2 of the early measurements [84, 137, 138, 139, 140] differed by a factor
of 2 from the one measured by Barth [83]. Despite the fact that Barth claimed to be con-
vinced that their spectroscopic ellipsometry measurments are significantly more accurate
than all the previous ones [84, 137, 138, 139, 140], from a simple Kramers-Kronig (KK)
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transformation of their directly measured ε1 and ε2, it can be seen that these components
do not form a KK-couple.
The first calculated optical spectra of CaF2 by Gan et al. [64, 70], were obtained using
uncoupled response calculations, i.e., without the inclusion of Coulomb and exchange-
correlation contributions in the response calculation. Therefore these spectra can not
show the exciton peak, and the overall comparison with the experimental data available
[83, 84, 137, 138, 139, 140], was very poor. Recently this exciton peak was calculated by
explicitly including the electron-hole interaction in the Green’s function (DFT/GW/BSE)
approach by Benedict [122].
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Figure 8.2: Comparison of the calculated ε2(ω) for CaF2; DFT-LDA vs. GW (left), and
TDDFT vs. BSE (right).

In Fig. 8.2, the GW and BSE results of Benedict [122] are compared with the DFT-LDA
and TDDFT results respectively. By comparing the GW vs. BSE results, and the DFT-
LDA vs. TDDFT results in Fig. 8.2, it is clear that the electron-hole interaction in CaF2

is very strong. The calculated BSE spectrum,which does include the electron-hole interac-
tion, were obtained by evaluating Eq. 8.25. The GW spectrum, which does not include the
electron-hole interaction, were obtained by evaluating Eq. 8.17. In GW the excitations are
calculated using only the vertical transitions between the independent hole and electron
states. The DFT-LDA spectrum was calculated by setting the couplings matrix Kcvk

c′v′k′(ω)
in Eq. 8.28 to zero. Therefore it should give ’in principle’ the same result as the GW
spectrum as calculated by Eq. 8.17, apart from a shift to lower energies, which accounts
for the differences in energies (∼4 eV) between the GW and DFT-LDA wavefunctions.
This shift between the DFT-LDA and GW spectra is exactly found, as can be seen in Fig.
8.2. The εTDDFT

2 clearly resembles εBSE
2 in Fig. 8.2, in particular in the region from 10-15

eV, and thus it should be concluded that the excitonic effects, that are obtained in CaF2

using the BSE, are also properly handled in the TDDFT calculation, already within the
ALDA. In the region above 15 eV, εTDDFT

2 still differs from εBSE
2 , because there the correct

description of the higher conduction bands becomes important and depends heavily on the
method and accuracy of the calculation.
In Fig. 8.3 the εTDDFT

2 is compared with several experiments [83, 84, 137]. The double
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Figure 8.3: Comparison of the TDDFT calculated ε2(ω) for CaF2 with experimentally
measured ε2(ω) by Tousey (Ref. [137]), Stephan (Ref. [84]), and Barth (Ref. [83])

peak structure around 13-14 eV, which was not found in the εBSE
2 , agrees well with the

experimental findings of Stephan et al. [84].

8.4.2 α-Quartz

α-quartz has a hexagonal structure with the lattice constants a=4.9134 and c=5.4052 Å.
The basisfunctions used in the SiO2 calculation, are a combination of numerical atomic
and Slater type orbitals. The 3Z2P NAO/STO basis (basis V in the ADF-BAND program
[37, 38]) consists of a triple zeta set augmented with two polarization functions. For the
integration in reciprocal space, only 4 symmetry unique k points (kspace 2 in the BAND
program) were used, which was sufficient due to the large unit cell size, and consequently
the small Irreducible Brillouin Zone (IBZ), and hence very small energy dispersion.

Bandstructure

The bandstructure for α-quartz, as obtained in our DFT-LDA calculation, is shown in
Fig. 8.4. The indirect band gap, as found in our LDA calculation, is ELDA

g =5.92 eV
(A → Γ). This is considered to be an LDA underestimation, because the GW correction
opens up the band gap to EGW

g =10.1 eV [143]. In the current literature available the
experimental band gap of SiO2 is reported to be 9.0 eV [145, 146, 147], 8.9 eV [148]. The
question of the exact experimental band gap of SiO2 is still an issue which is not fully
agreed on. The reason for this is that the optical absorption spectrum (ε2) is still not
completely understood for several reasons. First of all, SiO2 is a structurally quite com-
plex material, it appears in many polycrystalline forms under different thermodynamical
conditions (α-quartz, β-quartz, β-tridymite, α-cristobalite, β-cristobalite, keatite, coesite,
and stishovite). Therefore it is experimentally hard to grow specific crystals. Secondly,
SiO2 has an excitonic resonance peak in the absorption spectrum very close to the absorp-
tion edge, which consequently makes the determination of the absorption edge very hard
from experimental measurements. The absorption edge of SiO2 is further influenced by
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low absorption levels near the absorption treshold originating from direct transitions near
Γ, which are formally symmetry forbidden [144].
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Figure 8.4: The bandstructure of SiO2

Density of states

The experimetal DOS for the valence bands obtained using ultraviolet-photoemission spec-
troscopy (UPS) and x-ray photoemission spectroscopy (XPS) can be found in the Refs.
[147] and [149]. The complete DOS, as measured by x-ray emission spectroscopy, is given
in Ref. [150]. The density of states resulting from our DFT calculation (Fig. 8.5) showed
a similar structure as was found in the self-consistent pseudopotential calculation of Che-
likowsky [151].
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Figure 8.5: Density of States (DOS) of SiO2

The features in the region −0.81 ↔ −0.72 a.u. (not shown in the Figs. 8.4 and 8.5)
originate from the oxygen (2s) nonbonding state. The contributions in the energy region
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−0.45 ↔ −0.28 (shown in Fig. 8.4, but not in Fig. 8.5) result from bonding states between
the oxygen (2p) and silicon (3s, 3p) atomic orbitals. The nonbonding states on the oxygen
(2p) are found in the energy region −0.23 ↔ −0.11 (as shown in the Figs. 8.4 and 8.5).
The DOS for the conduction bands [the energy range starting from 0.11 a.u and higher] (as
shown in Fig. 8.5) consisted of bonding states between the oxygen and the silicon atomic
orbitals. These DFT results for the DOS of α-quartz were very similar to the self-consistent
pseudopotential results as calculated by Chelikowsky [151], and in good agreement with
the experimentally found UPS and XPS [147, 149] results.

Optical spectrum

The static dielectric constant for electric fields with a polarization direction within the
hexagonal plane, is determined in experiment, and found to be εExp

∞ =2.38 [135]. In our
TDDFT calculation we found εTDDFT

∞ =2.03, the same value which was found by Chang et
al. [143] in their RPA calculation, where they took local field effects into account. This
value of εRPA

∞ =2.0, was greatly enhanced, after taking the electron-hole interactions (the
excitons) into account, to εBSE

∞ =2.44. The experimental optical spectrum [146] of α-quartz
shows four peaks, located at 10.3, 11.7, 14.0 and 17.3 eV. The first two are, according
to the BSE calculations of Chang [143] clearly excitonic in nature, and are consequently
only found in the BSE calculation. The TDDFT ε2 for α-quartz is shown in Fig. 8.6 up
to ∼10.5 eV (because of convergence problems in the SCF procedure at higher photon
energies), together with the GW and BSE results of Chang [143].
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Figure 8.6: Comparison of the calculated ε2(ω) for SiO2 within TDDFT (solid line), BSE
(dashed line), the GW theory (dotted line) and Experiment (dash-dotted line).

As can be seen from Fig. 8.6, by comparing the GW with the BSE results, the first two
peaks in the ε2 for α-quartz are excitonic in nature, although they appear to be shifted
a little to lower energy when compared to experiment. It is also clear that, looking at
the TDDFT results, the first excitonic peak in the absorption spectum is found exactly at
the experimental value of 10.3 eV, although much sharper and overestimated compared to
experiment [146].
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8.4.3 Gallium nitride

In the last few years also many theoretical [67, 68, 69, 122, 152, 153, 154, 155] and ex-
perimental [152, 154, 155, 156, 157] studies have been performed on GaN. This nitride
occurs in the wurtzite (WZ) as well as in the zincblende (ZB) structrure, and is a very in-
teresting and challenging compound. First of all, it has a high ionicity like CaF2 and short
bond lengths. GaN may therefore find application in the blue-light-emitting diodes and
lasers which operate in the blue and ultraviolet regime, or in high temperature transistors.
Measurements of the optical properties of GaN have always been difficult, in reflectivity
measurements, as well as in spectroscopic ellipsometry performed with synchrotron radia-
tion. In the reflectivity measurements [155] there is an ambiguity in the Kramers-Kronig
transformation between ε1 and ε2, and in the spectroscopic ellipsometry measurements
[156, 157] the synchrotron light is contaminated by second-order radiation in certain en-
ergy regions. Futhermore, it is extremely difficult to grow high-quality GaN crystals, and
due to the surface roughness the intensity is decreased in reflectivity and ellipsometry mea-
surements. We used the experimental lattice constants in the calculations, which, for the
WZ structure are: a = 3.19, c = 5.189 and u = 0.375Å [66], while for the ZB structure the
parameter is: a = 4.54Å [159].

Bandstructure

The LDA band structures for GaN are depicted in Fig. 8.7 for in the WZ and the ZB
structure. They have direct (Γ1v → Γ1c) band gaps of ELDA

g =2.24 and 1.89 eV respectively,
which is an underestimation of the experimental values, respectively EExp

g (WZ)=3.5 [49]
and EExp

g (ZB)=3.2 [158] / 3.3 [159] eV.
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Figure 8.7: The bandstructures of GaN in the ZB (left) and the WZ structure (right).

The bandstructures for both structures resembled those found in other calculations [68,
152, 153, 154, 155] apart from the LDA band gap mismatch.
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Density of states

The DOS for GaN in the ZB and WZ structure are depicted in Fig. 8.8. The similarity
between both DOS spectra is high.
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Figure 8.8: Density of States for GaN in the ZB (left) and the WZ (right) structure.

Optical spectrum

The static dielectric constants ε∞ for GaN calculated for both structures have been collected
in Table 8.1, together with the lattice constants [66, 159], the experimental values [49,
87, 88] for ε∞ and other theoretical results [66, 67, 68, 69]. Our result for the ε∞ of
GaN in the wurzite structure is found in better agreement with experiment than other
theoretical calculations. For the zincblende structure, our calculated ε∞ matches exactly
the experimental value.
The dielectric function of GaN in the WZ structure can be resolved into two components,
with the polarization field either parallel to the z direction (c axis) [E‖c], or perpendicular
to the z direction [E⊥c].
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Figure 8.9: Comparison of the calculated ε2(ω) for GaN in the WZ structure [E‖c (left)
and E⊥c (right)]. TDDFT (solid line), BSE (dashed line) and the GW theory (dotted
line).

In Fig. 8.9, the TDDFT results for E‖c are compared to the BSE and GW results of
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Table 8.1: Optical dielectric constants for GaN in the wurtzite and the zincblende lattice
structure
GaN Lattice (Å) This work Exp. Error Other theory Method

Structure a ε∞a ∆ε∞b ε∞ % ε∞ ∆ε∞ c,d,e,f

Wurtzite 3.190g 5.31 0.30 5.2h 2 9.53 2.44g UR,FP,LCAO

(c=5.189) 5.7i 7 5.56 0.06j UR,PP,PW,LF

(u=0.375) 4.68 0.09k UR,ASA,LMTO

5.47 0.22l UR,PP

Zincblende 4.54m 5.51 5.5n 0 5.74j UR,PP,PW,LF

4.78k UR,ASA,LMTO

5.16l UR,PP
aIn case of the wurtzite structure: ε∞ = ε̄∞ = 1

3 (εxx + εyy + εzz)
b∆ε∞ = εzz − 1

2 (εxx + εyy)
cUR: uncoupled response.
dFP: full potential; PP: pseudopotential; ASA: atomic-sphere approximation.
ePW: plane wave; LMTO: linearized muffin-tin orbitals; LCAO: linear combination of atomic orbitals.
fLF: local-field effects.
gRef. [66] hRef. [87] iRef. [88] jRef. [67] kRef. [68] lRef. [69] mRef. [159] nRef. [49]

Benedict [122]. The same comparisons are made in Fig. 8.10 for the ε2 of GaN in the
ZB structure. Inspection of the Figs. 8.9 and 8.10 reveals the three major peaks in the
absorption spectra for both structures of GaN. It can be seen from the absorption spectra,
that the TDDFT results are more similar to the BSE results [122] than the GW results
[68, 122, 155]. In particular the intensity and position of the first absorption peak fully
agrees with the BSE results for both components (E⊥c and E‖c) of the WZ structure. So,
again, we find that the excitonic effects, for both structures of GaN, are also obtained in
the TDDFT calculations.
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Figure 8.10: Comparison of the calculated ε2(ω) for GaN in the ZB structure. TDDFT
(solid line), BSE (dashed line) and the GW theory (dotted line).
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8.5 Conclusions

In this chapter we investigated to what extent excitonic effects are included in time-
dependent density-functional theory (TDDFT) within the adiabatic local density approxi-
mation (ALDA). First we briefly outlined the Green’s function approach (DFT/GW/BSE),
and we showed the similarity between the Bethe-Salpeter equation and the corresponding
TDDFT equations. Three wide band gap insulators, CaF2, SiO2 and GaN, were examined.
We compared the calculated TDDFT optical spectra for these insulators with the exper-
imental measurements, and also with the ε2(ω)’s as calculated by DFT/GW/BSE. The
optical absorption spectra calculated using TDDFT showed all the excitonic features that
were obtained using BSE, and agreed very well with experiment. In conclusion we can say
that, contrary to the the general assumption, TDDFT is quite capable of describing these
excitonic effects, at least in the systems investigated here.
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Chapter 9

Infinite conjugated polymeric chains

F. Kootstra, P. L. de Boeij, R. van Leeuwen, and J. G. Snijders, to be submitted.

9.1 Abstract

The linear optical polarizability of several infinite conjugated polymers is examined within
the time-dependent density functional theory approach, by making use of the periodicity
in these systems. The polymeric chains studied were the model system polyhydrogen (H),
polyacetylene (PA), polydiacetylene (PDA), polybutatriene (PBT), polythiophene (PT),
polysilane (PSi) and polymethineimine (PMI). The results for the longitudinal polariz-
ability, i.e., along the polymeric backbone αzz, were highly overestimated by TDDFT in
comparison with the more traditional calculation methods (like e.g., Hartree-Fock and cou-
pled cluster) for all the considered polymeric chains The overestimation is most likely due
to the incorrect description of the macroscopic exchange-correlation (xc) electric field con-
tribution by the LDA and GGA approximation for the xc-functional. An estimate for this
macroscopic exchange-correlation contribution Exc,mac, is given for the polymeric chains
considered.

9.2 Introduction

There is currently a lot of interest in the linear and nonlinear optical (NLO) properties of
large polymeric systems due to the application of these systems in optical and photonic
devices. The polarizability component along the backbone of the polymeric chains, and in
general also the big NLO response, increases with the chain length and with the degree
of π-conjungation, which are well known phenomena caused by the electron delocalization
along the backbone in these polymeric chains. The calculations of several properties of
these π-conjugated chains, requires the inclusion of electron correlation effects to achieve
accurate results. The correlation effects are known to be large in these systems with
multiple and single bonds. Over the years many techniques have been developed, which
are able to deal succesfully with the electron correlation effects like, Møller-Plesset (MP),
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configuration interaction (CI), coupled cluster (CC) and multiconfiguration self-consistent
field (MCSCF). These approaches become too time consuming when considering the more
interesting (longer) systems in material science, because of their high and unfavourable
computational needs. Another method, which scales much more favourable in computa-
tional costs than the more conventional methods is density functional theory (DFT), which,
in principle, also handles the electron correlation effects correctly. Therefore the methods
based on DFT have gained much in popularity in ab initio quantum chemistry over the last
years [13, 14]. As mentioned before, the NLO properties are currently under intense study,
and, when using DFT, calculations are now feasible on the more interesting longer conju-
gated polymeric systems as well. In such systems the polarizability grows non-linearly with
increasing chain length. The polarizability per unit cell, increases rapidly for the shortest
chain lengths, then saturates and becomes near-constant for the longest chains.
For the determination of the asymptotic polarizability per unit cell, two different ap-
proaches can be followed. In the first one, one repeats the calculations to determine the
characteristics and properties of the polymeric systems of varying length. The calculated
polymers thereby consist of an increasing number of the same monomeric units. The in-
finite polymeric chain limit is obtained by extrapolating these results. This approach has
the disadvantage that the onset of the saturation can be slow in the more conjugated and
more interesting systems, and that the asymptotic values for the polarizability are often
highly sensitive to the extrapolation model, which is always needed in this approach (See
Section 9.4).
The alternative approach is to apply the methods of polymer quantum chemisty which
make use of the periodicity in these polymeric systems, and perform a band structure cal-
culation. In recent years only uncoupled and coupled Hartree-Fock (UHF/CHF) methods
have been developed to calculate the polarizabilities per unit cell of the infinite polymeric
chains.
In this chapter we apply the second approach and investigate the suitability of the first
approach for determining the polarizability of several π-conjugated systems by employing
conventional DFT schemes, while using different exchange-correlation functionals. The
pionering work in this area by others [160, 161], resulted in a number of conclusions con-
sidering DFT; (i) the correlation correction obtained in such systems is either much too
small or even in the wrong direction, causing α to be overestimated; (ii) the chain length
dependence is excessively large, in particular for the more alternating systems. These fail-
ures by DFT were attributed to the short-sighteness of the xc potentials, causing them to
be insensitive to the polarization charge at the ends of the polymeric chain. After some
further analysing [162], the failure was traced back to originate from an incorrect electric
field dependence of the ’response part’ of the xc potential in both the local, and the gra-
dient corrected density approximations. The xc-approximations do not correctly predict a
linear term counteracting the applied electric field.
We compare in this chapter the above (overestimated) DFT results (first approach) for
the asymptotic longitudinal polarizability of the π-conjugated polymeric chains with the
ones as obtained directly by our recently implemented periodic band structure TDDFT
approach (second approach) [63, 94].
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9.3 DFT versus other calculation methods

Nowadays several methods exist for calculating the polarizabilities of molecular systems.
Some of these methods include correlation effects, others do not. In general, when a
centrosymmetric molecule is placed in a static homogeneous electric field F 0, the energy
E of the molecule is stabilized according to

E = E0 − 1

2!
αijF

0
i F 0

j − 1

4!
γijklF

0
i F 0

j F 0
k F 0

l − ... , (9.1)

in which the summation over repeated indices is implied, α, and γ are the polarizability,
and second hyperpolarizability tensors, and E0 is the energy of the free molecule. The i-th
component of the dipole moment of the molecule, which is induced by this electric field, is
given by

µi = αijF
0
j +

1

3!
γijklF

0
j F 0

k F 0
l + ... . (9.2)

Among the available calculation methods the molecular polarizability is obtained in differ-
ent ways. The polarizability is defined, either as the linear response of the dipole moment
to an external electric field, or as the second-order derivative in the perturbation expansion
of the elecronic energy with respect to the electric field. These definitions are equivalent
due to the Hellmann-Feymann theorem, and we can write

α = −
(

∂2E

∂F 2

)
F=F 0

=

(
∂µ

∂F

)
F=F 0

. (9.3)

Therefore, by using these techniques one needs to know the wave functions and energies
of the system in the presence of the perturbation by the electric field, or equivalently, the
derivatives of the wave functions and energies with respect to this electric field. These
methods, which take the field-induced electron reorganization effects into account in a self
consistent way, are said to be coupled methods. Examples are the coupled Hartree-Fock
(CHF), the Møller-Plesset (MP), and the Configuration Cluster (CC) methods. In other
uncoupled methods, which do not include field-induced electron reorganization effects, like
e.g. uncoupled Hartree-Fock (UCHF), the polarizability tensor is obtained by a summation
over states (SOS) procedure:

α = 2
∑
n	=0

|〈ψ0|r|ψn〉|2
En − E0

, (9.4)

in which the sum runs over all the excited states of the system. Here ψ0 and ψn are the
ground- and the excited state wave functions with corresponding energies E0 and En, re-
spectively.
In Density Functional Theory (DFT), the electron density ρ(r) is the central quantity
which determines all the properties of the system [13, 14]. The density ρ(r) is evalu-
ated self-consistently by solving the Kohn-Sham equation [3] which involves the evaluation
of the exchange and correlation terms. The calculated results, depend on the particu-
lar approximations for the exchange-correlation functional. Several studies have already
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demonstrated how accurate and useful DFT calculations can be, e.g., for the prediction of
ground state geometries, atomization energies, vibrational frequencies and the energies of
reactions. The results are of comparable quality as MP2 calculations, but at much lower
computational costs.

9.4 Extrapolation procedures

As was already mentioned in the introduction of this chapter, the calculations to determine
the characteristics and properties of the infinite polymeric chains consisted of studying the
asymptotic behaviour of oligomers increasing in length, i.e., by successive addition of the
same monomer unit. The extrapolations of these results to the infinite polymeric chain
limit, which is necessary to determine the asymptotic longitudinal polarizability per unit
cell, are often highly sensitive to the extrapolation model used, and an extrapolation scheme
always has the disadvantage that the onset of the saturation can be very slow in the more
conjugated and interesting systems. For the CHF, MP4, and CCSD results, given in the
Tables 9.1 and 9.2, one of the following extrapolation procedures was used.
For evaluating and finding the variation in the longitudinal polarizability between consec-
utive oligomers, the first (most simple and fundamental) formula is

∆αzz(N) = αzz(N)/N , (9.5)

in which N is the unit cell number. Comparing Eq. 9.5 with the differential approach

∆αzz(N) = αzz(N) − αzz(N − 1) , (9.6)

shows that Eq. 9.6 has the advantage that it eliminates, the chain-end effects of the oligomer
in the polarizability increase.
In addition to the above two extrapolation fomulas, there are several ad-hoc model func-
tions used, for finding the asymptotic value of the polarizabilty [174] of the polymer.
Namely,

∆αzz(N) = a +
b

N
+

c

N2
, (9.7)

∆αzz(N) = a + be−cN , (9.8)

∆αzz(N) =
a

1 + be−cN
. (9.9)

The advantage of the function in Eq. 9.7 is, that it can be systematically improved by
adding higher terms in 1/N . The model function in Eq. 9.8 has been used to predict the
polymeric ∆αzz(N) of polyacetylene chains (Ref. [172]), and the last one (Eq. 9.9) is called
the logistic equation.
Untill now there is no reason to prefer one of the above model functions, since the correct
analytic form of the equation which describes the evolution of ∆αzz(N) with chain length
is not known. A complete discussion on extrapolation techniques can be found in the Refs.
[163] and [164].
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9.5 Theory

When a system is perturbed by applying a time-dependent external electric field Eext(r, t),
the density will become time-dependent and currents will be induced, so the system will
become polarized. In the time-dependent (TD) version of density functional theory (DFT),
one adds time-dependent vector and scalar contributions to the effective ground state po-
tential. These additional potentials, respectively Aeff (r, t) and δveff (r, t), have the property
that they produce the exact time-dependent density and current of the true system, when
applied to the Kohn-Sham system of non-interacting particles. According to the Runge-
Gross theorem [4], the time-dependent extension of the Hohenberg-Kohn theory [2, 3],
these potentials are, apart from the usual freedom of choice for the gauge, functionals
of the density and the current, and should therefore be obtained self-consistently. The
time-dependent Kohn-Sham system is now obtained by replacing both the ground state
momentum operator by

p → −i∇ + 1/cAeff (r, t) , (9.10)

and the effective scalar potential by the time-dependent version

veff (r) → veff ,0(r) + δveff (r, t) . (9.11)

When one neglects the small microscopic contributions to the transverse vector potential
(such as the Breit term [40]), we can make a special choice for the gauge, which we will call
the microscopic Coulomb gauge [63]. In this gauge both the scalar and vector potential
are lattice periodic, and have the property that all microscopic components are included
in the scalar potential, whereas all macroscopic components are described by the vector
potential. The perturbing potentials can be given in this gauge as,

Aeff (r, t) = A(r, t) = −c
∫ t

dt′ Emac(r, t
′) , (9.12)

δveff (r, t) = δvmic(r, t) +
∫

dr′
∂vxc[ρ](r)

∂ρ(r′)

∣∣∣∣∣
ρ0

δρ(r′, t). (9.13)

Here δvmic(r, t) is the microscopic part of the Hartree potential of the induced density
δρ(r, t). In these relations we have neglected any macroscopic contributions of the exchange-
correlation (xc) in the vector potential [108], and we used the adiabatic local density
approximation (ALDA) for the first order xc-contribution to the scalar potential. The
macroscopic electric field Emac(r, t) is the average field in a region around r inside the
solid, and hence it comprises both the externally applied field Eext(r, t) plus the macro-
scopic part of the induced field. This latter field is in addition to the induced charge density
also due to the induced current density δj(r, t). We will treat this macroscopic field as the
perturbing field. The quantity of interest (written in the frequency domain) is the induced
macroscopic polarization Pmac(ω), which will be proportional to the macroscopic electric
field Emac(r, t), and also to the average induced current density δj(r, ω), according to,

Pmac(ω) = χe(ω) · Emac(ω) =
i

ωV

∫
V

dr δj(r, ω) . (9.14)



120 CHAPTER 9. INFINITE CONJUGATED POLYMERIC CHAINS

Within time-dependent linear response theory, we obtain the following relation for the
induced density,

δρ(r, ω) =
∫ (

i

ω
χρj(r, r

′, ω) · Emac(ω) + χρρ(r, r
′, ω)δveff (r′, ω)

)
dr′. (9.15)

The various Kohn-Sham response functions can be obtained from the occupied (i) and
virtual (a) states of the ground-state system. They can be evaluated using the general
form,

χab(r, r
′, ω) =

V

4π3

∑
i,a

∫
dk

aiak(r)b
∗
iak(r

′)
εik − εak + ω + iη

+ c.c.(−ω), (9.16)

by substituting for aiak(r) and biak(r) either the transition density,

ρiak(r) = ψ∗
ik(r)ψak(r) , (9.17)

or the transition current,

jiak(r) = ψ∗
ik(r)∇ψak(r) − (∇ψ∗

ik(r))ψak(r) . (9.18)

The Brillouin zone integrations in Eq. 9.16 are evaluated numerically, by including the
energy denominator in the integration weights. The way these integration weights are
obtained is subject of the Appendix (See Section 9.9).
Now, by keeping the macroscopic field fixed, and noting that within the ALDA the effective
potential is a functional of the density alone, we can solve the set of response equations,
Eqns. 9.13 and 9.15, self-consistently. With the perturbing effective potentials now fully
determined, the induced paramagnetic current density δjp(r, ω) follows from

δjp(r, ω) =
∫ (

i

ω
χjj(r, r

′, ω) · Emac(ω) + χjρ(r, r
′, ω)δveff (r′, ω)

)
dr′. (9.19)

The total induced current contains, apart from this paramagnetic term, also the diamag-
netic contribution,

δjd(r, ω) =
1

c
ρ0(r)A(r, ω) . (9.20)

In the special case in which we choose the macroscopic field along one of the Cartesian
directions j, and with a frequency dependence according to Emac(ω) = −iωej, the diamag-
netic contribution to the current density reduces to δjd(r, ω) = −δjp(r, 0), i.e. to minus the
static paramagnetic value [63]. The paramagnetic and diamagnetic components together
form the total current, of which the average value yields the macroscopic polarization. The
Cartesian components of the susceptibility follow from the Eq. 9.14,

[χe(ω)]ij =
{ −1

V ω2

∫
V

[δjp(r, ω) − δjp(r, 0)]i dr
}

Emac(ω)=−iωej

. (9.21)

Under the assumption that in linear polymeric chains there is no macroscopic screening,
i.e., the induced electric field in the chains is not of macroscopic nature, the macroscopic
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electric field equals the externally applied electric field (Emac ≡ Eext). The longitudinal
polarizability, along the backbone of the polymer αzz, can be obtained as the integrated
susceptibility χe(r, ω) over the unit cell

µ =
∫

P(r, ω) dr =
(∫

χe(r, ω) dr
)

︸ ︷︷ ︸
α

·Eext(ω) = α · Eext(ω) . (9.22)

9.6 Basis sets and parameters in the calculations

For the time-dependent density functional theory (TDDFT) calculations, we used the Am-
sterdam Density Functional (ADF) program [38] for the molecular calculations, and the
periodic band structure calculations were performed with the Amsterdam Density Func-
tional BAND-structure program (ADF-BAND) [37]. The basis sets in the molecular ADF
and the periodic ADF-BAND calculations were triple zeta s, p Slater-type basisfunctions
(STO’s) plus a polarization function, which we denote as 3Z2P∗. For the integration in
the 1-dimensional reciprocal space we used 7 symmetry unique k-points for all oligomers.
The geometries for all the polymeric chains examined are depicted in Fig. 9.4, as they were
found in the Refs. [161, 167, 168, 169, 170, 171, 172, 173, 174, 176].

9.7 Results

9.7.1 The model system polyhydrogen

The infinite molecular hydrogen chain model (H2)n has been studied extensively by Cham-
pagne and co-workers [165, 166]. The main objectives of these studies were to determine
the electron-electon interaction and the size of atomic basis set needed to correctly esti-
mate the asymptotic static longitudinal polarizability per unit cell of a polymeric system.
Their results already pointed out the importance of developing direct techniques, which
are able to deal with the periodicity in such systems to get the asymptotic values for the
polarizability directly.
We extended our time-dependent periodic band structure DFT approach [63], which had
already proven to be very succesfull for crystals [94, 102, 136, 180], to handle also systems
which possess only periodicity in one dimension. This periodic TDDFT approach is used
to get the asymptotic values for the longitudinal polarizability directly for the polymeric
chains without the use of an extrapolation model, as is always necessary in the molecular
programs.
The periodic implementation was first used for calculations on the model system polyhy-
drogen. We considered chains in which the unit cell lenght (a) (See Fig. 9.4) was varied
from 4.5 to 22.0 a.u. and the intramolecular distance (H-H) was fixed at 2.0 a.u. Resulting
in a bond length alternation (BLA) from 0.5 to 18.0 a.u. (See Table. 9.1)
In Table. 9.1, the asymptotic longitudinal polarizabilities (αzz) per unit cell (containing one
H2-unit) of different alternating model hydrogen chains are given. The polarizabilities were
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calculated by using several different calculation methods, all with different (comparible)
basissets. The basis used in the coupled Hartree-Fock (CHF), the Møller-Plesset (MP4)
and coupled cluster (CCSD(T))) calculations [165] and in the G92/DMol calculations [160]
were Gaussian triple-ζ plus polarization (6)-311G(*)* atomic basis sets. Basis sets, which
are comparable to the STO 3Z2P∗ used in the TDDFT calculations by the ADF [38] and
the BAND [37] program.

Table 9.1: Asymptotic longitudinal polarizabilities (αzz) per H2 unit of the model system
polyhydrogen with different bond length alternation, as calculated at the CHF, MP4 and
CCSD(T) level in comparison with several TDDFT (ADF/BAND/G92/DMol) calculations
(all values in atomic units).

BLA CHFa MP4a CCSD(T)a ADFb BAND G92/DMolc

0.5 55.079 53.564 50.632 162.00 121.9 139.087
1.0 28.602 26.508 25.666 47.02 46.2 48.338
2.0 17.682 15.826 15.511 22.14 22.2 21.753
6.0 12.57 12.4

10.0 12.06 11.7
14.0 11.94 11.6
18.0 11.92 11.6
∞ 11.84

aRef. [165] bRef. [38] cRef. [160]

The results in Table 9.1, for the asymptotic longitudinal polarizabilities of the model sys-
tem polyhydrogen with different BLA, are also depicted in Fig. 9.1.
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Figure 9.1: Comparison of the asymptotic longitudinal polarizabilities αzz of the model
(H2)n-chains with different BLA. The TDDFT based methods in comparison with others,
as given in Table 9.1 (all values in atomic units).

As can be seen from Fig 9.1, the shorter the BLA in the model hydrogen chain the higher
the overestimation of the polarizability in the TDDFT based methods in comparison to
the other methods. Further we see from Table 9.1 that the molecular based ADF program
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and the periodic BAND implementation gave approximately the same overestimated re-
sults, which converged in the chains with the longest BLA to the polarizability of a single
H2-molecule. The different extrapolation procedures used in the molecular programs for
evaluating the asymptotic value of the longitudinal polarizability are plotted in Fig. 9.2,
for the model system polyhydrogen (H2)n with a BLA of 0.5 Å. This was done by repeating
the polarizability calculations of succesive polyhydrogen chains, by increasing the length of
the chain through the addition of more monomeric H2-units. The extrapolation procedures
used, are given in Eqs. 9.5 and 9.6, respectively. The polarizability values αzz are plotted
against the number of H2-units (Fig. 9.2).

�

��

���

���

���

� �� �� �

��
zz

�H��units

TDDFT �

�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
���

�

CHF �

�
�
��
��
���

�����
���

�

CCSD�T� �

�
�
��
��
���

�

�

��

���

���

���

� �� �� �

��
zz

�H��units

TDDFT �

�

�

�

�

�

�

�

�
�
�
�
��
��
����

�����
�

CHF �

�

�
�
��
�����

������� �

CCSD�T� �

�

�
�
��
����

�

Figure 9.2: Evaluation of the asymptotic longitudinal polarizability ∆αzz per H2-unit for
the model hydrogen chain (H2)n, with a bond length alternation of 0.5 Å, and as calculated
by TDDFT, CHF, and CCSD(T). The extrapolation procedures used are given in Eq. 9.5
[left], and to Eq. 9.6[right]. These values were plotted against the number of H2-units.

As can be seen in Fig. 9.2, the value for the by TDDFT calculated value of the longitudinal
polarizability of an infinite model (H2)n-chain with a BLA of 0.5 Å, as found directly by
our periodic ADF-BAND implementation, is consistent with the extrapolated asymptotic
molecular ADF result. The use of the periodic ADF-BAND implementation is therefore
much more convenient, because 1. the polarizability value is found in a single calculation,
2. the extrapolation step, for finding αzz, is not necessary, and 3. no choice for a particular
extrapolation model is needed. Looking at Fig. 9.2, it should also be concluded, that
the extrapolation models as given by Eq. 9.5 and 9.6 are reasonably reliable, but that the
differential approach (Eq. 9.6), which eliminates the chain-end effects in the oligomers,
converges much faster.
Earlier, van Gisbergen et al.[162] attributed the overestimation of the longitudinal po-
larizability in the model system polyhydrogen (H2)n-chain to an incorrect electric field
dependence of the xc-potential. The LDA potential lacks a linear term, which is counter-
acting the externally applied electric field. From Fig. 2 in Ref. [162] it can be deduced
that, when an externally applied electric field with a strength of 10−3 a.u. (Eext = 0.001
a.u.) is applied to a model (H2)n-chain with a BLA of ∼3 a.u., the strength of the counter-
acting field of which LDA lacks has a strength of 10−4 a.u. In Chapter 7, we introduced an
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approximate xc-functional for the macroscopic xc-electric field. We can now estimate the
value for the Y-functional needed to correct the differences between the HF and TDDFT
results. Using the expression

P = χ̃ (Eext − Y · P) , (9.23)

and requiring the corrected longitudinal polarizability per H2 unit to be equal to the HF
value for the model (H2)n-chain with a BLA of ∼3 a.u., as it was deduced from the HF
results in Table 9.1. We find an Y-value of 0.01. This value of 10−2 for Y is also found in
the periodic ADF-BAND calculations. Current density functional theory gives an explicit
expression for Y (See Chapter 7), and we are currently investigating if this functional
indeed reproduces this value of 10−2 for Y.

9.7.2 Other polymeric chains

After using the periodic TDDFT approach to get the asymptotic values for the longitudi-
nal polarizability for the model system polyhydrogen (H2)n, we also calculated the αzz for
several real polymeric systems, and compared our TDDFT results to the (extrapolated)
CHF results. The investigated polymeric chains were polyyne (PY, C2nH2), polyacetylene
(PA, C2nH2n+2), polydiacetylene (PDA, C4nH2n+2), polybutatriene (PBT, C4nH2n+2), poly-
thiophene (PT, C8nS2nH4n+2), polysilane (PSi, Si2nH4n+2), and polymethineimine (PMI,
CnNnHn+2, trans-transöıd). The structures and geometries of the polymers examined are
depicted in Fig. 9.4. The results for the longitudinal polarizability have been collected in
Table 9.2, for the polymers examined, as calculated by CHF and by our periodic TDDFT
implementation (BAND). From the ratio’s of the BAND and CHF values listed in Table
9.2, it can be seen that TDDFT in the ALDA gives longitudinal polarizability for these
polymers, which are overestimated by a factor of 2 to 5 compared to the CHF results. The
overestimation by TDDFT is also depicted in Fig. 9.3.

��

���

���

���

���

����

����

�� ��� ��� ��� ��� ��� ��� ���

TDDFT

Other

PY

PA

PDA

PT

PSi

PMI
�

�

�

�

�

�

Figure 9.3: TDDFT versus CHF results for the asymptotic longitudinal polarizability of
the polymers: PY, PA, PDA, PT, PSi, and PMI.

As was already discussed in Section 9.7.1 for the model system polyhydrogen (H2)n, the
overestimation of αzz by TDDFT is due to an incorrect electric field dependence of the
xc-potential, which lacks a linear term counteracting this externally applied electric field.
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In the same way as was done for the (H2)n-chains, we can calculate and give a numerical
value of this linear counteracting term, which is given in Table 9.2 for the investigated
polymeric chains, showing that an Y-value in the order of 10−3 is needed. This value of
Y, for the real polymeric systems, is in the same order as found for the model system
polyhydrogen, but again it remains to be seen if this value can be reproduced by current
density functional theory.

Table 9.2: Comparison of the asymptotic longitudinal polarizabilities of polyyne (PY),
polyactelene (PA), polydiacetylene (PDA), polybutatriene (PBT), polythiophene (PT),
polysilane (PSi) and polymethineimine (PMI), as calculated by CHF and TDDFT (all
values in atomic units).

Geometry BLA TDDFT Ratio
Polymer unit cell (Å) CHF BAND BAND/CHF Y

PY −[C2n]− 0.166j 151±2j 412.2 2.73 0.004

0.220a 113.5±1.5i

PA −[C2nH2n]− 0.112b,n 160.5±1.5k 493.9 3.08 0.004

0.082c 220.7f

PDA −[C4nH2n]− 0.225;0.088e 226±2e 1138.2 5.04 0.004

0.230;0.100d 203±4l

PBT −[C4nH2n]− 0.194;0.128e 1060±14e 2498.6 2.36 0.001

PT −[C8nS2nH4n]− 0.064f 380.0f 914.8 2.41 0.002
PSi −[Si2nH4n]− 0.0g 131.4±0.2m 182.1 1.39 0.002

PMI −[CnNnHn]− 0.100h 122.6±0.9h 572.3 4.67 0.006
aRef. [167] bRef. [168] cRef. [169] dRef. [170] eRef. [171] fRef. [172] gRef. [173] hRef. [174] iRef. [175]
jRef. [176] kRef. [177] lRef. [178] mRef. [179] nRef. [161]
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9.8 Conclusions

In this chapter we investigated the longitudinal polarizability of several infinite conjugated
polymers, as calculated by time-dependent density functional theory. Our TDDFT imple-
mentation makes direct use of the periodicity in these systems. The TDDFT polarizabilities
for the model H2-chains, as found by our periodic BAND implementation, were close to
the molecular ADF results, found after extrapolation. Both, BAND as well as ADF, over-
estimated the αzz in the model system polyhydorgen, and the overestimation is largest for
the smallest BLA. The extrapolation procedures which are used in the molecular programs
for calculating the static longitudinal polarizability are reasonably reliable, but it is much
more convenient to do a periodic BAND calculation, in which the extrapolation step is
superfluous. The same polarizability overestimation was also found for all the polymeric
chains considered. This overestimation is caused by an incorrect electric field dependence
of the xc potential. The LDA and GGA potentials lack a linear term, the macroscopic
exchange-correlation electric field, which counteracts the externally applied electric field.
The macroscopic exchange-correlation contribution Exc,mac is estimated by the value of the
polarization functional Y. The Y-value is found to be in the order of 10−2/10−3 a.u. for
the model system polyhyrogen and for the other polymeric chains.

9.9 Appendix: Periodic implementation

Our succesful implementation of TDDFT for solids can be found in Chapter 4. The bench-
marking results of this method for a large range of nonmetallic crystals, together with the
incorporation, and results, of relativistic effects in TDDFT are compiled in the Chapters
5-8. Here we very briefly reconsider the the integration over the Irreducible wedge of the
Brillouin zone (IBZ), to which the intergration can be reduced because the wedges are re-
lated by symmetry, and in particular consider the implications for polymers, e.g., periodic
systems with periodicity in one dimension.

9.9.1 Quadrature for the response kernels

The Kohn-Sham response functions, as given in Eq. 9.16, involve integrations over the
irreducible Brillouin zone, in which the denominator can become singular. The energy
dependent part is therefore separated from the rest according to

Iia(ω) =
∫

VIBZ

gia(k)

ω − (εak − εik) + iη
dk =

∫ ε1

ε0

gia(ε)

ω − ε + iη
dε, (9.24)

in which gia(ε) =
∫

dk gia(k)δ(ε − (εak − εik)), and ε0, ε1 are the minimum and maximum
value of ε(k) occurring in VIBZ . For the integration in Eq. 9.24 accurate quadrature schemes
exist (Ref. [48]) which give us the weights w̃iakj

(ε), such that

gia(ε) =
∑
j

w̃iakj
(ε)gia(kj). (9.25)
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In the linear tetrahedron scheme these weights are piecewise cubic polynomials in ε.
For the quadrature of Eqn. 9.24 we can write

Iia(ω) =
∫ ε1

ε0

gia(ε)

ω − ε + iη
dε =

∑
j

wiakj
(ω)gia(kj). (9.26)

We only have to integrate the weights w̃iakj
(ε) in the following way to obtain the new

weights wiakj
(ω) as functions of ω,

wiakj
(ω) =

∫ ε1

ε0

w̃iakj
(ε)

ω − ε + iη
dε = P

∫ ε1

ε0

w̃iakj
(ε)

ω − ε
dε + iπ w̃iakj

(ω). (9.27)

The real and imaginary parts of this weight can thus be obtained separately using the
Cauchy principle value and residual parts.

9.9.2 Integrations in the IBZ

Two algorithms are generally used (depending on the energy dispersion in the energybands)
for the calculation of the integration weights, wiakj

(ω), as given in Eqn. 9.27.

1. Energybands with dispersion

For the integration of Eq. 9.26, the parameterization inside the tetrahedrons (3D) or tri-
angles (2D), in which the IBZ is divided, is the same as given in Ref. [48]. In the general
(3D case), gia(k) is found by linear interpolation inside the tetrahedron by

gia(k) = gia(kx, ky, kz) = g1 + g2kx + g3ky + g4kz . (9.28)

Thus the contributions from a simplex S become

∫
S

gia(k)

ω − ε + iη
dk =

4∑
i=1

giIi , (9.29)

in which the coördinate transformation from Cartesian (kx, ky, kz) to internal coördinates,
parametrizing the constant energy surface, (e, u, v) is made, and when writing µi = 1, kx, ky, kz

and e = ω − ε ; Ii in Eqn. 9.29. is calculated from

Ii =
∫ e1

e0
de

∫ 1

0
du

∫ 1−u

0
dv

[
µi

e + iη
· δ(kx, ky, kz)

δ(e, u, v)

]
. (9.30)

The numerical integration weights wiakj
(ω) are than directly calculated from Ii as described

in Appendix 2. from Ref. [48].
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2. Energybands without dispersion

The term
1

ω − (εak − εik) + iη
, (9.31)

in Eqn. 9.24. becomes k independent, and can be placed outside the integral over k. When
writing ∆ = ω − (εak − εik) as the average value in the tetrahedron, the integral of Eqn.
9.29. takes the form

1

∆ + iη

∫
S
gia(k) dk . (9.32)

Also using linear interpolation for gia(k) in this case, but now making the coördinate
transformation δ(kx, ky, kz)/δ(kx, u, v) (in the 3D case again). Results for the integrals Ii

of Eqn. 9.29 in

Ii =
1

∆ + iη

∫ kxmax

kxmin

dkx

∫ 1

0
du

∫ 1−u

0
dv

[
µi

δ(kx, ky, kz)

δ(kx, u, v)

]
(9.33)

9.9.3 Crystals, surfaces, and polymers

The irreducible Brillouin zone is subdivided into tetrahedrons in the three dimensional
case (crystals). The tetrahedrons are indentified by 4 k-points in the reciprocal space. For
the two dimensional case (surfaces), the IBZ reduces to triangles which can be indentified
by 3 k-points. For polymers, the one dimensional case, the IBZ is subdivided into lines.
The lines are indentified by 2 k-points in the reciprocal space. In these 2 k-points, the
x-coördinates and also the energy εnk of the n energy bands are known from the DFT
groundstate calculation. The integral in Eq. 9.30, in case the energybands show dispersion,
reduces in the one dimension case to

Ii =
∫ e1

e0
de

[
µi

e + iη
· ∂kx

∂e

]
, (9.34)

in which ε1 = ω− (εak1 − εik1) for that specific occupied (i), virtual (a) combination in k1.
The k-points have been ordered on the values of ε. Only one case needs to be considered
in which ε1 < e < ε2. The intersection of e with the line is just a point for which

k = k1 +
e − ε1

ε2 − ε1

(k2 − k1) , (9.35)

and
∂kx

∂e
=

1

(ε2 − ε1)
[k2x − k1x] . (9.36)

At most, this parameterization for evaluating the integrals Ii in Eq. 9.34 gives us a linear
term in ε. In case the energybands show no dispersion the intergral in Eq. 9.33 reduces to

Ii =
1

∆ + iη

∫ kxmax

kxmin

dkx [µi] (9.37)
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The integration over ε is not necessary, and is just over the x-coördinate of the k-points.
These integrals become extremely simple, as can be seen directly from Eqn. 9.37.



Summary

In this thesis the time-dependent version of density functional theory is described, which
has been developed for crystalline non-metallic systems with periodicity in one to three
dimensions. The application of this theory to the calculation of the optical reponse prop-
erties of a wide range of materials proved to be very successful.
The description of an interacting many-particle systems is, in general, very complicated
and approximations need to be made. Many methods in quantum chemisty try to de-
scribe the motion of the electrons in such systems by the electronic wavefunction, the
solution of the time-dependent Schrödinger equation. The computational effort involved
in these methods, for the evaluation of the electronic wavefunction, is very high, contrary
to density functional theory (DFT), in which the computational costs are much lower. In
DFT, not the electronic wavefunction is evaluated for a full description of the interacting
many-particle system, but it is sufficient to look at the electron density. The fundamen-
tal theorems for this theory were first formulated in the early 1960s by Hohenberg and
Kohn, and, for practical use, incorporated, shortly after, in a one-electron self-consistent
field calculation scheme by Kohn and Sham. In this Kohn-Sham approach to density
functional theory, the interacting many-particle system is modelled in terms of an effective
non-interacting particle system, called the Kohn-Sham system. The effective external field,
to which this Kohn-Sham system is subjected, incorporates the true external field and, in
an effective way, the interparticle interactions. The modelling of the effective potential,
which is called the Kohn-Sham potential, is done in such a way that the electron density of
the non-interacting Kohn-Sham system exactly reproduces the electron density of the true
interacting many-particle system. The Kohn-Sham potential is thus a functional of the
electron density, however, this density can only be obtained if this Kohn-Sham potential
is known. Both the electron density and the Kohn-Sham potential can be obtained in a
self-consistent field scheme in which self-consistentcy is achieved for the electron density.
The electron density and the Kohn-Sham potential are hereby updated in an iterative way.
In the time-dependent extension of DFT, the external potential varies in time, and conse-
quently also the electron density and effective potential become time-dependent.
After a brief and short introduction of the concepts behind time-dependent density func-
tional theory in Chapter 2, we discuss in Chapter 3 the polarization of a dielectric medium.
We show that, when polarization in such a dielectric medium is introduced as the dynamic
response of the system to an externally applied electric field, the definition of polariza-
tion in terms of the induced current flowing through the system provides an elegant way
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to avoid the problems as faced in the description of polarization in terms of the electron
density. Such definitions of polarization are always ill-defined, because they depend on the
particular choice of partitioning the system into seperate elements. When the concept of
polarization in a dielectricum is defined in terms of the induced current flowing through the
system, these problems are circumvented. The definition in terms of the induced current
is also more attractive because in this way it is not necessary to consider the surface of the
system explicitly. The charge that piles up at the surface of the system is after all directly
related to the induced current flowing through the interior of the system.
Our approach to time-dependent density functional theory (TDDFT) for the description
of the dielectric properties of crystalline solids is described in Chapter 4. The solids,
modelled as ideal lattice periodic systems, are treated in the presence of time-dependent
electromagnetic fields. This description requires the combination of uniform electric fields
with lattice periodic effective potentials. A perturbative approach to the time-dependent
self-consistend field scheme is used, involving both the density and the current density in
a real space description, in contrast with many other approaches that use a description in
reciprocal space. Advantage is the high spatial resolution achieved, and the flexibility to
use various potentially very complicated functionals of the density and the current density.
The electric susceptibility can then be obtained if the macroscopic polarization is derived
from the induced current density. The elegant and efficient iterative calculation scheme,
as implemented in the state of the art full-potential periodic version of the Amsterdam
Density Functional (ADF-BAND) code, is described. Some features of the implementation
are, the use of a linear combination of atomic orbitals as a basis and linear response theory
in which Coulomb interactions and exchange-correlation effects are included. Further, the
explicit evaluation of the Kohn-Sham response kernels is avoided by treating these kernels
analytically and the Coulomb integrals are evaluated by the use of auxiliary fitfunctions,
and also a screening technique is used to evaluate the lattice sums.
The success of our TDDFT approach, as introduced in Chapter 4, becomes clear when
looking at the results presented in Chapter 5. There the dielectric constants and functions
for a variety of elemental and binary crystals are presented. Already within the adiabatic
local density approximation for the exchange-correlation functional, we get good agreement
with experiment. The accuracy of the dielectric constants is about 5%, and the spectral
features in the dielectric functions are well reproduced, but appear at energies that are
rigidly shifted towards lower energies.
The only exceptions, however, were found for InSb and HgSe in the zincblende structure.
Their static dielectric constants were underestimated by about 40% when compared with
experiment. A further analysis, presented in Chapter 6, showed that these deviations are
caused by relativistic effects. We demonstrated that our TDDFT approach can also be
applied succesfully for the description of these zincblende materials when relativistic effects
are included in TDDFT within the so-called zeroth order regular approximation (ZORA).
Thereby drastic effects on the dielectric properties for these materials were observed. The
materials InSb and HgSe turn into semimetals due to relativistic effects, because, within
the local density approximation, their bandstructures were inverted. Now, with the in-
clusion of scalar relativistic effects, the same order of accuracy of about 5% relative to
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experiment was achieved for the static dielectric constants. The dielectric functions were
greatly improved, and are now also found in good agreement with experiment.
In a first attempt to go beyond the adiabatic local density approximation we investigated
in Chapter 7 a polarization functional. The effects on the absorption spectra of various
semiconductors are presented. This polarization functional, as derived by Vignale and
Kohn, includes the exchange-correlation contributions in the effective macroscopic electric
field. For all the semiconductors for which we tested this polarization functional, the opti-
cal absorption spectra showed a better agreement with experiment than when the spectra
were calculated within the adiabatic local density approximation.
In Chapter 8 we demonstrate that TDDFT describes the excitonic effects correctly in some
solids. Perturbing a solid by an electromagnetic field can cause the formation of bound
electron-hole pairs which are called excitons. Such an exciton is usually understood as
an additional two-particle interaction in the effective one-particle picture, namely as the
Coulombic interaction between an excited electron in the conduction band, and the hole
which this electron leaves behind in the valence band. For the investigated systems: CaF2,
SiO2 and GaN, it is shown that TDDFT, in the adiabatic local density approximation, is
already capable to describe such excitonic effects, within an effective one-particle picture,
contrary to common belief. For being able to describe the optical electron-hole excitations
one invariably assumes that an effective two-body approach is required, and therefore, in
principle, TDDFT should not be able to resolve the excitonic features in the calculated
optical absorption spectra.
In the last chapter, the longitudinal polarizability of several infinite conjugated polymers
is investigated using the periodicity of these systems. The results as calculated by our
TDDFT implementation overestimated the polarizability for all the polymers considered,
when compared to the results as found by more traditional calculation methods. The over-
estimation is caused by an incorrect description of the macroscopic exchange-correlation
electric field contribution in the local density approximation for the exchange-correlation
functional. An estimate for the value of this counteracting macroscopic exchange-correlation
contribution is given for all the considered polymers. This contribution is calculated in the
form of a polarization functional, as was introduced in Chapter 7. It remains to be demon-
strated whether such a polarization functional exists, which is indeed able to reproduce
correctly these values.
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Samenvatting

In dit proefschrift is de tijdsafhankelijke versie van dichtheidsfunctionaaltheorie beschreven
die ontwikkeld is voor kristallijne niet-metallische systemen met periodiciteit in één tot drie
dimensies. De toepassing van deze theorie voor de berekening van de optische responseigen-
schappen voor een grote reeks van materialen is erg succesvol gebleken.
De beschrijving van een wisselwerkend veel-deeltjes systeem is, in het algemeen, erg in-
gewikkeld, waardoor het maken van benaderingen nodig is. Veel methodes in de quantum-
chemie proberen de beweging van de elektronen in zulke systemen te beschrijven met behulp
van de elektronengolffunctie: de oplossing van de tijdsafhankelijke Schrödinger vergelijk-
ing. De inspanning qua computertijd die gepaard gaat met de rekenmethoden voor de
berekening van deze elektronengolffunctie zijn erg hoog, in tegenstelling tot dichtheids-
functionaaltheorie (DFT) waarin de kosten in termen van computertijd veel lager zijn.
In DFT wordt de elektronengolffunctie namelijk niet berekend voor de volledige beschrij-
ving van het wisselwerkende veel-deeltjes systeem, maar is het voldoende om slechts de
elektronendichtheid te bekijken. De fundamentele theorema’s voor deze theorie werden
beginjaren ’60 voor het eerst geformuleerd door Hohenberg en Kohn. Kort daarna is deze
theorie door Kohn en Sham voor praktisch gebruik gevat in een één-deeltjes zelfconsis-
tente berekeningsmethode. In die Kohn-Sham aanpak van dichtheidsfunctionaaltheorie
wordt het wisselwerkende veel-deeltjes systeem gemodelleerd met behulp van een niet-
wisselwerkend veel-deeltjes systeem, het zogenaamde Kohn-Sham systeem. Het effectieve
externe veld, waaraan dit Kohn-Sham systeem is blootgesteld, bevat het ware externe veld
en, op een effectieve wijze, de wisselwerking tussen de deeltjes. De modellering van de effec-
tieve potentiaal, de zogenaamde Kohn-Sham potentiaal, is op dusdanige wijze gedaan, dat
de elektronendichtheid van het niet-wisselwerkende systeem precies de elektronendichtheid
van het ware wisselwerkende veel-deeltjes systeem oplevert. De Kohn-Sham potentiaal is
dus een functionaal van de elektronendichtheid. Deze dichtheid kan echter alleen worden
verkregen als de Kohn-Sham potentiaal reeds bekend is. Zowel de elektronendichtheid als
de Kohn-Sham potentiaal kunnen worden verkregen op zelfconsistente wijze, waarbij de
elektronendichtheid wordt berekend die met zichzelf in overeenstemming is. De elektronen-
dichtheid en de Kohn-Sham potentiaal worden daarbij op iteratieve wijze aangepast. In de
tijdsafhankelijke uitbreiding van DFT varieert de externe potentiaal in de loop van de tijd,
met als gevolg dat ook de elektronendichtheid en de effectieve potentiaal tijdsafhankelijk
worden.
Na een kort en bondige introductie van de ideeën achter tijdsafhankelijke dichtheidsfunc-
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tionaaltheorie in Hoofdstuk 2, bediscussiëren we in Hoofdstuk 3 het verschijnsel van po-
larisatie in een dielektrisch medium. Polarisatie in zo’n dielektrisch medium wordt gein-
troduceerd als de dynamische respons van het systeem op een extern aangelegd elektrisch
veld. We laten zien dat de definitie van polarisatie in termen van de gëınduceerde stroom
die door het systeem stroomt, een elegante oplossing biedt om de problemen te omzeilen die
altijd optreden bij de beschrijving in termen van de elektronendichtheid. Zulke definities
van polarisatie zijn onhoudbaar, omdat ze afhankelijk zijn van de specifieke keuze van de
opdeling van het systeem in afzonderlijke elementen. Als polarisatie in een dielektricum
wordt gedefinieerd in termen van de gëınduceerde stroom binnenin het systeem, dan wor-
den deze problemen omzeild. De definitie met behulp van de gëınduceerde stroom is ook
aanlokkelijker, want op deze wijze is het niet nodig om het oppervlak van het systeem
expliciet te beschouwen. De lading die zich ophoopt aan het oppervlak van het systeem
is immers direct gerelateerd aan de gëınduceerde lading die door het binnenste van het
systeem is gestroomd.
Onze aanpak van tijdsafhankelijke dichtheidsfunctionaaltheorie (TDDFT) voor de beschrij-
ving van de dielektrische eigenschappen van kristallijne (vaste) stoffen is beschreven in
Hoofdstuk 4. De vaste stoffen, gemodelleerd als ideale roosterperiodieke systemen, wor-
den beschouwd in de aanwezigheid van tijdsafhankelijke elektromagnetische velden. Deze
beschrijving vereist de combinatie van uniforme elektrische velden met roosterperiodieke
(effectieve) potentialen. Een aangepaste aanpak voor de tijdsafhankelijke zelfconsistente
berekeningswijze wordt gebruikt, waarin zowel de dichtheid als de stroomdichtheid be-
trokken zijn. We gebruiken een beschrijving in de directe ruimte, in tegenstelling tot vele
andere aanpakken die een beschrijving in de reciproke ruimte gebruiken. Voordeel hiervan is
de hoge ruimtelijke resolutie die bereikt wordt en de flexibiliteit om verschillende, mogelijke
erg gecompliceerde, functionalen van de dichtheid en de stroomdichtheid te gebruiken. De
elektrische susceptibiliteit kan dan worden verkregen zodra de macroscopische polarisatie
is afgeleid van de gëınduceerde stroomdichtheid. De efficiënte iteratieve berekeningswijze
wordt beschreven zoals die is geimplementeerd in de moderne ’volledige potentiaal’ peri-
odieke versie van de Amsterdam Density Functional (ADF-BAND) computercode. Enkele
kenmerken van de implementatie zijn het gebruik van een lineaire combinatie van atomaire
orbitalen als basis en de lineaire respons theorie waarin Coulomb interacties en de zoge-
naamde exchange-correlatie effecten inbegrepen zijn. Verder is de expliciete berekening van
de Kohn-Sham respons kernen omzeild door deze kernen analytisch te behandelen, worden
de Coulomb integralen berekend met behulp van fitfuncties en wordt voor de berekening
van de roostersommaties van een afschermingstechniek gebruik gemaakt.
Het succes van onze TDDFT aanpak, zoals geintroduceerd in Hoofdstuk 4, wordt duidelijk
als naar de resultaten zoals gepresenteerd in Hoofdstuk 5 gekeken wordt. Daar worden
de diëlektrische constanten en functies voor allerlei elementaire en binaire vaste stoffen
gepresenteerd. Reeds in de adiabatische lokale dichtheidsbenadering voor de exchange-
correlatie functionaal krijgen we goede overeenstemming tussen theorie en experiment.
De nauwkeurigheid van de berekende diëlektrische constanten is ongeveer 5%, terwijl de
spectrale kenmerken in de diëlektrische functies goed worden gereproduceerd. Wel zijn de
diëlektrische functies daarbij verschoven over een vaste afstand naar lagere energieën.
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De enige uitzonderingen hierop werden gevonden voor de InSb en HgSe kristallen in de
zinkblende structuur. Hun statische diëlektrische constanten werden ongeveer 40% on-
derschat in vergelijking met de experimentele waarden. Analyse, zoals gepresenteerd in
Hoofdstuk 6, laat zien dat deze afwijkingen veroorzaakt worden door relativistische ef-
fecten. We hebben gedemonstreerd dat onze TDDFT aanpak ook succesvol kan wor-
den toegepast voor de beschrijving van deze zinkblende materialen wanneer relativistis-
che effecten meegenomen worden in de zogenaamde ’zeroth order regular approximation’
(ZORA) binnen TDDFT. Daarbij worden drastische effecten waargenomen op de berekende
diëlektrische eigenschappen voor deze materialen. De materialen InSb en HgSe veranderen
in halfmetalen ten gevolge van relativistische effecten, want in de lokale dichtheidsbenade-
ring worden hun bandenstructuren geinverteerd. Met de scalaire relativistische effecten
meegenomen wordt de gebruikelijke nauwkeurigheid bereikt voor de statische diëlektrische
constanten. De diëlektrische functies worden enorm verbeterd en zijn nu ook in goede
overeenstemming met experiment.
In een eerste poging om verder te gaan dan de adiabatische lokale dichtheidsbenadering,
hebben we in Hoofdstuk 7 een polarisatiefunctionaal onderzocht. De effecten op de ab-
sorptiespectra van verscheidene halfgeleiders worden in dit hoofdstuk getoond. Deze po-
larisatiefunctionaal, zoals afgeleid door Vignale en Kohn, neemt de exchange-correlatie bij-
dragen in het effectieve macroscopische elektrische veld mee. De optische absorptiespectra
van alle halfgeleiders waarvoor we deze polarisatiefunctionaal getest hebben, vertoonden
een betere overeenstemming met experiment dan wanneer de spectra werden berekend in
de adiabatische lokale dichtheidsbenadering.
In Hoofdstuk 8 hebben we aangetoond dat TDDFT voor sommige vaste stoffen de exciton
effecten correct beschrijft. Verstoring van een vaste stof door een elektromagnetisch veld
kan de vorming van gebonden ’elektron-gat’ paren veroorzaken, welke excitonen worden
genoemd. Zo’n exciton wordt normaal gesproken begrepen als een extra twee-deeltjes in-
teractie in een effectief één-deeltjes beeld, namelijk als de Coulomb interactie tussen een
geëxciteerd elektron in de geleidingsband en het gat dat dit elektron achterlaat in de valen-
tie band. Voor de onderzochte systemen: CaF2, SiO2 en GaN, is aangetoond dat TDDFT
binnen de adiabatische lokale dichtheidsbenadering reeds in staat is om zulke exciton ef-
fecten te beschrijven binnen het effectieve één-deeltjes beeld, in tegenstelling tot datgene
dat gewoonlijk wordt verondersteld. Om in staat te zijn de optische elektron-gat excitaties
te beschrijven, neemt men steeds aan dat een effectieve twee-deeltjes aanpak nodig is, en
dus TDDFT in principe niet in staat zou moeten zijn om de exciton kenmerken in de
berekende optische absorptie spectra te vinden.
In het laatste hoofdstuk is de polariseerbaarheid langs de lengterichting van verscheidene
oneindig geconjugeerde polymeren onderzocht, waarbij gebruik gemaakt is van de periodi-
citeit in deze systemen. De resultaten zoals die berekend zijn met onze TDDFT implemen-
tatie, overschatten de polariseerbaarheid voor alle beschouwde polymeren in vergelijking
met de resultaten zoals die worden gevonden door meer traditionele berekeningsmethoden.
De overschatting wordt veroorzaakt door een incorrecte beschrijving van de exchange-
correlatie bijdrage aan het macroscopische elektrische veld in de lokale dichtheidsbenader-
ing voor de exchange-correlatie functionaal. Een schatting voor de waarde van deze tegen-
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werkende macroscopische exchange-correlatie bijdrage wordt gegeven voor alle beschouwde
polymeren. Deze bijdrage is berekend in de vorm van een polarisatie functionaal, zoals
geintroduceerd in Hoofdstuk 7. Het moet nog aangetoond worden of zo’n polarisatie func-
tionaal, die in staat is om deze waarden correct te reproduceren, inderdaad bestaat.
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[50] M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B 48, 17791 (1993).

[51] M. Z. Huang and W. Y. Ching, Phys. Rev. B 47, 9449 (1993).

[52] D. J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, Phys. Rev. B 34, 8758
(1986).

[53] H. H. Li, J. Chem. Phys. Ref. Data 9, 561 (1980).

[54] P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B 43, 7231 (1991).

[55] M. Alouani and J. Wills, Phys. Rev. B 54, 2480 (1996).

[56] C. S. Wang and B. M. Klein, Phys. Rev. B 24, 3417 (1981).



142 BIBLIOGRAPHY

[57] K. B. Kahen and J. P. Leburton, Phys. Rev. B 32, 5177 (1985).

[58] O. Pulci, G. Onida, A. I. Shkrebtii. R. Del Sole, and B. Adolph, Phys. Rev. B 55,
6685 (1997).

[59] S. J. A. van Gisbergen, F. Kootstra, P. R. T. Schipper, O. V. Gritsenko, J. G. Snijders,
and E. J. Baerends, Phys. Rev. A 57, 2556 (1998).

[60] O. Gunnarsson and R. O. Jones, Phys. Scr. 21, 394 (1980).

[61] Z. H. Levine and S. G. Louie, Phys. Rev. B 25, 6310 (1982).

[62] Y. T. Shen, D. M. Bylander, and L. Kleinman, Phys. Rev. B 36, 3465 (1987).

[63] F. Kootstra, P. L. de Boeij, and J. G. Snijders, J. Chem. Phys. 112, 6517 (2000).

[64] W. Y. Ching, F. Gan, and M. Z. Huang, Phys. Rev. B 52, 1596 (1995).

[65] J. Li, C. Duan, Z. Gu, and D. Wang, Phys. Rev. B 57, 2222 (1998).

[66] Y. N. Xu and W. Y. Ching, Phys. Rev. B 48, 4335 (1993).

[67] J. Chen, Z. H. Levine, and J. W. Wilkins, Appl. Phys. Lett. 66, 1129 (1995).

[68] N. E. Christensen and I. Gorczyca, Phys. Rev. B 50, 4397 (1994).

[69] R. Wang, P. P. Ruden, J. Kolnik, I. Oguzman, and K. F. Brennan, J. Phys. Chem.
Solids 58, 913 (1997).

[70] F. Gan, Y. Xu, M. Huang, W. Y. Ching, and J. G. Harrison, Phys. Rev. B 45, 8248
(1992).

[71] M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev. B 38, 1806 (1988).

[72] G. Y. Guo, J. Crain, P. Blaha, and W. M. Temmerman, Phys. Rev. B 47, 4841 (1993).

[73] M. E. Lines, Phys. Rev. B 41, 3372 (1990).

[74] N. A. Goryuneva, in Chemistry of Diamond-like Semiconductors (Chapman and Hall,
London, 1965), p. 115.

[75] As listed in W. A. Harrison, Electronic Structure and the Properties of Solids, (Free-
man, San Francisco, 1980).

[76] R. E. Fern and A. Onton, J. Appl. Phys. 42, 3499 (1971).

[77] E. Burstein, H. Brodsky, and G. Lucousky, Int. J. Quantum Chem. 1, 756 (1967).

[78] A. S. Barker, Jr. , Phys. Rev. 165, 917 (1968).



BIBLIOGRAPHY 143

[79] S. J. Czyzak, W. M. Barker, R. C. Crane, and J. B. Howe, J. Opt. Soc. Am. 47, 240
(1957).

[80] A. Manabe, A. Mitsuishi, and H. Yoshinaga, Jpn. J. Appl. Phys. 6, 593 (1967).

[81] D. T. F. Marple, J. Appl. Phys. 35, 539 (1964).

[82] T. M. Bieniewski and S. J. Czyzak, J. Opt. Soc. Am. 53, 496 (1963).

[83] J. Barth, R. L. Johnson, M. Cardona, D. Fuchs, and A. M. Bradshaw, Phys. Rev. B
41, 3291 (1990).

[84] G. Stephan, Y. le Calvez, J. C. Lemonier, and S. Robin, J. Phys. Chem. Solids 30,
601 (1969).

[85] A. T. Collins, E. C. Lightowlers, and P. J. Dean, Phys. Rev. 158, 833 (1967).

[86] L. Akasaki and M. Hashimoto, Solid State Commun. 5, 851 (1967).

[87] E. Ejder, Phys. Status Solidi A 5, 445 (1971).

[88] P. Perlin, I. Gorczyca, N. E. Christensen, I. Grzegory, H. Teisseyre and T. Suski,
Phys. Rev. B 45, 13 307 (1992); P. Perlin, I. Gorczyca, S. Porowski, T. Suski, N. E.
Christensen and A. Polian, Jpn. J. Appl. Phys. , Part 1 32, 334 (1993).

[89] J. Misek and F. Srobar, Elektrotech. Cas. 30, 690 (1979).

[90] J. L. Freelouf, Phys. Rev. B 7, 3810 (1973).

[91] G. te Velde, Ph.D. thesis, Free University, Amsterdam,1990.

[92] CRC Handbook of Chemistry and Physics, 80th Edition (CRC Press, Boca Raton,
1999).

[93] cf. nomenclature, e.g., M. Cardona, Modulation Spectroscopy (Academic, New York,
1969).

[94] F. Kootstra, P. L. de Boeij, and J. G. Snijders, Phys. Rev. B 62, 7071 (2000).

[95] E. van Lenthe, E. J. Baerends, and J. G. Snijders, J. Chem. Phys. 101, 9783 (1994).

[96] E. van Lenthe, R. van Leeuwen, E. J. Baerends, and J. G. Snijders, Int. J. Quantum
Chem. 57, 281 (1996).

[97] P. H. T. Philipsen, E. van Lenthe, J. G. Snijders, and E. J. Baerends, Phys. Rev. B
56, 13556 (1997).

[98] F. Bassani and G. Pastori Parravicini, Electronic states and optical properties of solids,
edited by R. A. Ballinger (Pergamon Press, Oxford, 1975).



144 BIBLIOGRAPHY

[99] R. K. Willardson and A. C. Beer, Semiconductors and semimetals (Academic, New
York, 1966).

[100] A. Svane and E. Antoncik, J. Phys. C 20, 2683 (1987).

[101] L. Leij. R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, Phys. Rev.
B 9, 600 (1974).

[102] F. Kootstra, P. L. de Boeij, H. Aissa, and J. G. Snijders, J. Chem. Phys. 114, 1860
(2001).

[103] K. U. Gawlik, L. Kipp, M. Skibowski, N. Orlowski, and R. Manzke, Phys. Rev. Lett.
78, 3165 (1997); T. Dietl et al . Phys. Rev. Lett. 81, 1535 (1998); K. U. Gawlik et al .
Phys. Rev. Lett. 81, 1536 (1998).

[104] S. Einfeldt, F. Goschenhofer, C. R. Becker, and G. Landwehr, Phys. Rev. B 51, 4915
(1995).

[105] M. Rohlfing and S. G. Louie, Phys. Rev. B 57, R9392 (1998).

[106] K. Kumazaki, L. Viña, C. Umbach, and M. Cardona, Solid State Commun. 68, 591
(1988).

[107] Ch. Jung and P. R. Bressler, J. Electr. Spectr. Rel. Phen. 78, 503 (1996).

[108] G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996).

[109] G. Vignale and W. Kohn, in Electronic Density Functional Theory: Recent Progress
and New Directions, edited by Dobson et al. (Plenum Press, New York, 1998).

[110] G. Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. Lett. 79, 4878 (1997).

[111] X. Gonze, P. Ghosez, and R. Godby, Phys. Rev. Lett. 78, 294 (1997).

[112] R. M. Martin and G. Ortiz, Phys. Rev. B 56, 1124 (1997).
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(1995).
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Dankwoord

Het proefschrift dat voor u ligt, is het resultaat van bijna vier jaar werk binnen de Ba-
siseenheid Theoretische Chemie (TC) van de Faculteit der Wis- en Natuurwetenschappen
(FWN) aan de Rijksuniversiteit Groningen (RuG). Deze periode is het beste te omschrijven
als: fijn, aangenaam en onvergetelijk. Ik wil dan ook op deze plaats veel mensen bedanken
voor de geweldige tijd in Groningen, vooral de mensen die op directe wijze hebben bijge-
dragen aan het tot stand komen van dit proefschrift.
Allereerst wil ik natuurlijk mijn promotor Jaap Snijders heel hartelijk danken. Hij was het
die me de mogelijkheid gaf om mijn promotieonderzoek in Groningen te doen. Het onder-
zoeksvoorstel lag direct in het verlengde van mijn afstudeeropdracht en vormde dus een
mooie aansluiting daarop. Deze promotieplaats impliceerde ook dat we beiden vertrokken
uit de Vakgroep Theoretische Chemie van de Vrije Universteit (VU) te Amsterdam; de
gezamenlijke autorit naar het sollicitatiegesprek in Groningen zal me zeker nog lang bij-
blijven en heugen. Jaap, je gaf me veel vrijheid tijdens het onderzoek en je was altijd
bereid te discussiëren, samen met Paul, mij en later ook Robert, over nieuwe ideeën en
opvattingen. Telkens weer wist je me te verrassen met je enorm brede kennis over de meest
uiteenlopende onderwerpen binnen de quantumchemie.
Verder wil ik natuurlijk mijn referent Paul de Boeij bedanken. Paultje, na je komst als
post-doc in februari 1998 te Groningen is het onderzoek in een grote stroomversnelling
terechtgekomen, wat de laatste tijd zeker zijn vruchten heeft afgeworpen. Maar bovenal
is onze persoonlijke vriendschap me dierbaar. Ik kon altijd met alle zinnige en meestal
onzinnige dingen bij je terecht. Veel van die dingen zullen me eeuwig heugen. Het is te
veel om hier nu op te noemen, maar de laatste vakantie in Sicilië was erg mooi. Paultje,
bedankt voor alles en blijf uitkijken voor al die -met name Duitse- vrouwen hè :-) .
Prof. dr. E. J. Baerends, prof. dr. K. Duppen en prof. dr. J. Knoester wil ik danken voor
het zitting nemen in de leescommissie, en het bestuderen van het manuscript.
Van de vaste staf binnen de Basiseenheid Theoretische Chemie wil ik de volgende mensen
bedanken: Ria Broer, Piet van Duijnen, Johan Heijnen, Robert van Leeuwen en Alex de
Vries. Alle aio’s en oio’s in de groep dank ik voor de goede sfeer: Marcel Swart, Thomas
la Cour Jansen, Rosanna Telesca, Liviu Hozoi, Meta van Faassen en Lasse Jensen.
De studenten, Hedi Aissa en Arjan Berger, die ervoor kozen om af te studeren bij de Ba-
siseenheid Theoretische Chemie, wil ik hartelijk danken voor de vruchtbare samenwerking
en hun bijdrage aan dit proefschrift. De resultaten van jullie afstudeeropdrachten over rel-
ativistische effecten en polarisatiefunctionalen binnen de tijdsafhankelijke dichtheidsfunc-
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tionaaltheorie zijn gedeeltelijk opgenomen in de hoofdstukken 6 en 7 van dit proefschrift,
en al in publicaties tot uitdrukking gekomen.
Ook de studente Nienke Boeijenga wil ik bedanken voor de gezellige sfeer die ze altijd bij
Paul en mij, direct bij binnenkomst, op de kamer bracht.
I would also like to thank several foreign guests, who visited our Theoretical Chemisty
group in Groningen: Mrinalini Puranik, Markus Pernpointer and Kechen Wu. Thanks for
all the funny moments and especially the stories about the customs in their homelands
India, Germany and China.
De (ex-)bestuursleden van het Groninger Aio Overleg (Gaioo): Joanneke Prenger, Rad-
boud van Trigt, Peter Ebbes, Laura Sabourin, Paul van Zomeren, Bart van der Aa, Heidi
Stiegelis, Jolanda Smit, Gerhard Sjobbema en Anne Keirse, bedank ik voor de vele gezellige
(eet-)vergaderingen waarin we -naast veel lol- zeer nuttige en waardevolle dingen hebben
bereikt voor, met name, de Groningse promovendi.
Ook mogen de beide Hennie’s, Henriette van Ingen en Henriette van Mil-Boddeveld, niet
ongenoemd blijven. Bedankt voor alle nuttige secretaressewerkzaamheden in de afgelopen
vier jaren. Jullie brede glimlach leverde altijd een gezellig praatje op, met veel gelach in
de wandelgang.
Op deze plaats wil ik ook graag al mijn zeer dierbare vriend(inn)en in het Groningse be-
danken. Zonder daarbij volledig te kunnen zijn wil ik er nog enkele noemen die ik hierboven
nog niet ergens heb bedankt: Diana Alfons, Fenna Marinus, Jaap Oudman, Linda Ger-
ritsen, Anthony Hams, Gerard Smeenk, Marjolein Prenger, Jeroen Blomesath en Maaike
Pulles. Bedankt voor de vele leuke dingen die we samen hebben gedaan en ondernomen,
van het vliegeren op Schier tot de gezellige spelletjesavonden, en natuurlijk niet te vergeten
voor het genieten van de stad Groningen zelf met al zijn gezellig eet- en drinkgelegenheden.
Ook wil ik nog twee mensen uit mijn Amsterdamse studententijd noemen: Vincent Osinga
en Anouk Rijs. Vinnie, het samen bestuderen van TC-tentamens en de vele voetbalavonden
hebben die tijd overgetelijk gemaakt. Anouk, ondanks alles wat er is gebeurd en misge-
gaan, toch bedankt.
In het bijzonder wil ik alvast mijn ’zussie’ Saskia en ’buurvrouw’ Rosie bedanken. Zij
zullen me als paranimfen bijstaan tijdens de verdediging van mijn proefschrift.
En Jenny Ros, zo plots als je in mijn leven bent gekomen. Het geweldige gevoel dat je me
in de afgelopen maanden hebt gegeven is zo mooi en werkelijk onbeschrijfelijk. Ik hoop
echt nog heel lang zo met je door te kunnen gaan.
Tenslotte wil ik mijn ouders Jurjen en Gezina en mijn zusje Saskia bedanken voor het feit
dat ze, ondanks alles in de afgelopen jaren, altijd in me zijn blijven geloven. Bedankt voor
alle hulp en steun die jullie me altijd weer gegeven.

Freddie Kootstra, september 2001
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STELLINGEN
behorend bij het proefschrift

Time-dependent density functional theory for periodic systems
Freddie Kootstra

1. Voor de complete beschrijving van zowel de grondtoestand als de responseigen-
schappen van periodieke systemen moet niet slechts de periodieke dichtheid als
onafhankelijk vrijheidsgraad worden beschouwd, maar tevens de macroscopische
polarisatie.
X. Gonze, Ph. Ghosez, and R. W. Godby, Phys. Rev. Lett. 74, 4035 (1995).

2. De formulering van dichtheidsfunctionaaltheorie voor periodieke systemen die
op natuurlijke wijze macroscopische polarisatie bevat, heeft niet de deeltjes-
dichtheid maar de stroomdichtheid als kerngrootheid.

3. Voor niet-metallische kristallen in de zinkblende structuur is er geen directe
relatie tussen de onderschatting van de bandgap door DFT-LDA en de uni-
forme verschuiving naar lagere energieën van de met TDDFT-ALDA berekende
diëlektrische functies.

4a. De bewering van Rohlfing and Louie dat exciton effecten alleen kunnen wor-
den beschreven binnen een twee-deeltjes model is uitsluitend het gevolg van hun
definitie van excitonen.
M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000).

4b. Bovenstaande exciton effecten kunnen niet alleen in theorie maar ook in prak-
tijk worden beschreven met behulp van het één-deeltjes formalisme van TDDFT.

5. De conclusie van Kirtman dat ”berekeningen aan eindige oligomeren het effec-
tiefst zijn voor de beschrijving van lokale eigenschappen, terwijl de berekeningen
aan oneindige polymeren het beste zijn voor de gedelokaliseerde eigenschappen”
en dat ”deze twee berekeningswijzen in nauwkeurigheid competitief en derhalve
als complementair kunnen worden beschouwd” is onjuist.
B. Kirtman, Int. J. Quant. Chem. 43, 147 (1992).

6. De discussie over de aard van het materiaal HgSe in de zinkblende struc-
tuur, of het een halfgeleider met een kleine gap of een halfmetaal is, kan worden
beëindigd. HgSe is een halfmetaal.
K. U. Gawlik, L. Kipp, M. Skibowski, N. Orlowski, and R. Manzke, Phys. Rev. Lett. 78, 3165 (1997).

K. U. Gawlik et al., Phys. Rev. Lett. 81, 1536 (1998).

M. von Truchseß, A. Pfeuffer-Jeschke, C. R. Becker, G. Landwehr, and E. Barke, Phys. Rev. B 61, 1666 (2000).

S. Einfeldt, F. Goschenhofer, C. R. Becker, and G. Landwehr, Phys. Rev. B 51, 4915 (1995).

M. Rohlfing and S. G. Louie, Phys. Rev. B 57, R9392 (1998).



7. Zij die een belangrijke bijdrage leveren aan de begeleiding van promotieon-
derzoek zouden daarvoor meer krediet moeten krijgen, ook in materiële vorm,
zodat het niet blijft bij de vermelding als referent of co-promotor in een proef-
schrift.
D. F. J. Bosscher, Rector Magnificus Rijksuniversiteit Groningen, De Groninger Gezinsbode, 06-09-2000.

8. Een uitdaging ter uitdaging is een uitdaging om te weerstaan.

9. Theoretici hebben het grote voordeel dat iedere vorm van normaal gedrag
als bonus wordt beschouwd.
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