

Molecular Dynamics: Tips, Tricks, and the Properties of Matter

Tomáš Trnka trnka@scm.com

May 3, 2022

Introduction

- ► Doing MD is easy!
 - ▶ Open AMSinput, create system, select "Molecular Dynamics", click Run, done!
- ► Doing MD correctly is less easy!
 - How do I set all these knobs?
 - Are my results reliable?
 - ► How do I calculate property X efficiently?

The Heart of MD: The Integrator

- ► Molecular dynamics: Numerical integration of the equations of motion
 - Propagating positions x and velocities x in time based on accelerations x (forces from chosen potential)
- Unlike general ODE integration methods (Runge-Kutta, ...), MD prefers integrators with special properties (time reversibility = energy conservation)
- ► AMS: velocity Verlet integrator
 - ► Symplectic method: exactly conserves a perturbed "shadow Hamiltonian"
 - Difference between real and shadow Hamiltonian proportional to $O(h^2)$
 - Global error in positions (over a given time interval) also $O(h^2)$

Integration Stability and Accuracy

300 flexible TIP3P water molecules, 298.15 K

- ▶ 0.5 and 1 fs close to each other
- ▶ 2 fs already far off and much noisier, but no obvious drift
- ▶ 2.5 fs unstable

Integration Stability and Accuracy

 Verlet integrator doesn't produce obvious energy drift even with an excessive timestep

- Some drift due to roundoff errors only observable on >100 ps timescales
- ► Any drift observed in simulations is typically due to inaccurate (noisy) forces
- Symplectic methods become unstable when timestep $h > 0.225T_p$, where T_p is the period of the fastest motion¹:
 - ▶ O H bond: 10 fs
 - C C bond: 16 fs (triple) 20 fs (double)

• Reasonable accuracy requires $h \leq 0.1 T_p$

¹Schlick, T., Molecular Modeling and Simulation: An Interdisciplinary Guide, 2nd Ed., Springer 2010, DOI: 10.1007/978-1-4419-6351-2, sect. 14.2.5

Ergodicity

- Ergodic hypothesis: Ensemble average of a property is the same as its time average
 - One long simulation equivalent to many independent short simulations
- An ergodic system spends equal time in equal volumes of the phase space (combinations of positions and momenta)
 - Given enough time, all possible states will be visited
 - There should be no isolated "islands" of phase space disconnected from the rest, no short exactly periodic trajectories

Common Statistical Ensembles

- ► Microcanonical ensemble reliable and accurate but not very realistic
- ► Real-world systems typically in a known temperature and volume/pressure
- ► Grand canonical MD not in AMS (but GCMC is)

²© User:Nzjacobmartin, Wikimedia Commons, CC BY-SA 4.0

Berendsen Thermostat

• Emulates the effect of a heat bath by rescaling velocities

► Heat transferred per timestep proportional to

$$\frac{h}{\tau}\left(T_{0}-T\right)$$

► Advantages:

- ► Stable, able to cope with systems arbitrarily far from equilibrium
- \blacktriangleright Exponential relaxation (quickly approaches target temperature) with time constant τ
- Disadvantages:
 - Does not generate correct canonical ensemble (fluctuations strongly suppressed)
 - ► Fundamentally incompatible with temperature replica exchange MD
 - Does not conserve energy
 - Causes severe artifacts when au is too short ("flying ice cube effect")

Nosé(-Hoover) Thermostat

 Explicitly simulates heat bath as an additional degree of freedom (3N+1 DoFs: atomic positions plus heat bath energy)

- Original idea by Nosé, reformulated to be more practical by Hoover
- AMS uses "Nosé-Hoover chains" (Martyna, Klein, Tuckerman): set of nested heat baths thermostatting each other (multiple additional DoFs)
- Advantages:
 - ► Correct canonical ensemble, conserves energy of system + heat bath
 - Relatively safe (artifact-free) across a range of time constants
- ► Disadvantages:
 - Only works well for systems relatively close to equilibrium
 - Original NH strongly oscillates when disturbed
 - Potentially non-ergodic when τ is too short (real issue for original NH, unlikely to matter with chains for typical systems)
 - Characteristic timescale au only approximate

Response to Disturbance

Graphite crystal, 512 atoms, UFF

- Exponential relaxation of Berendsen brings temperature faster to target
- Total energy stays nearly constant in equilibrium with Berendsen, oscillates under NHC

Response to Disturbance

Graphite crystal, 512 atoms, UFF

- Exponential relaxation of Berendsen brings temperature faster to target
- Total energy stays nearly constant in equilibrium with Berendsen, oscillates under NHC

Setting Time Constant

• Aggressive thermostatting (low τ) leads to artifacts:

- ▶ Berendsen: flying ice cube effect (energy pumped into low-frequency modes)
- Nosé-Hoover: potential non-ergodicity, inaccurate integration of heat bath DoFs
- Time constant of 100 fs a reasonable lower bound if strong thermostatting is required
- ► Any strong thermostatting can disturb natural dynamics (viscosity, diffusivity, ...)
- For equilibrium production simulations, use high enough τ , comparable with natural relaxation timescales:
 - Liquids: correlation time (2-3 ps for water)
 - Solids: phonon lifetimes (typically > 0.5 ps)

Thermostatting Heterogeneous Systems

- Thermostatting a heterogeneous system as a whole can create temperature gradients
- Typical example: "hot solvent cold solute problem"
 - Big protein in water: force errors on water molecules higher than on protein chain
 - Unequal heating of both parts
 - Shared thermostat drains heat from both components at the same rate, undercooling the protein
- ► Solution: use separate thermostats for individual components
 - AMS: define a Region for solute and one for solvent, apply a dedicated thermostat to each region

Berendsen Barostat

- Similar to Berendsen thermostat
 - Instead of scaling velocities according to temperature, scales volume according to pressure:

$$\frac{h}{K\tau_p}\left(p_0-p\right)$$

- Exponential relaxation, does not generate correct ensemble (wrong fluctuations), no conserved energy
- Time constant τ_p only valid if the system has the configured bulk modulus K (AMS default: 2.2 GPa for water)
 - \blacktriangleright For other systems, adjust BulkModulus on Expert AMS panel or rescale τ_p accordingly

Extended Ensemble Barostats

- Like Nosé-Hoover, simulate a piston instead of a heat bath
- AMS uses the Martyna-Tobias-Klein method (derived from Andersen-Hoover and Parrinello-Rahman-Hoover)
- Correct ensemble with conserved energy
- Can work on any combination of cell dimensions and keep any subset equally scaled
- Special mode to change cell shape while keeping volume constant

Density Fluctuations

300 flexible TIP3P water molecules, 298.15 K

- Magnitude of fluctuations independent of τ_p
- Period roughly comparable to τ_p
- ► Berendsen does not fluctuate

Density Fluctuations

300 flexible TIP3P water molecules, 298.15 K

- Magnitude of fluctuations independent of τ_p
- Period roughly comparable to τ_p
- Berendsen does not fluctuate

Barostat Time Constant

- Like for thermostats, use high enough τ_p to minimize disturbance to system
- ► Barostat should work on a several times slower timescale than thermostat
 - Otherwise barostat will compress/expand system to heat/cool it
- During initial equilibration of a newly prepared system, run NVT first (no barostat) and only add a barostat once temperature is sufficiently close to target

Example Equilibration Protocol

- 1. Prepare starting geometry (load from file, generate using Edit \rightarrow Builder for fluids or Edit \rightarrow Crystal)
- 2. Optionally run a geometry optimization if starting geometry is very suboptimal
- 3. Pre-equilibrate near target temperature using NVT with Berendsen and strong coupling (100-500 fs time constant) for 10 ps or more
- 4. Relax to near equilibrium density in NpT with Berendsen thermostat (τ 1–2 ps) and barostat (τ_p 5 ps for water) for several tens of ps
- 5. Equilibrate using NHC thermostat and MTK barostat until key properties converge (total and potential energy, density)
- 6. Alternatively, if preparing for NVT production simulation, equilibrate with Berendsen barostat with a long time constant to reach average density

Restarting or Continuing MD Simulations

AMS provides two ways to run a follow-up simulation

- Exact restart: "Restart" keyword, "Restart from" option on MD input panel
 - Guaranteed seamless continuation of an interrupted trajectory
 - No input settings should be changed apart from number of steps (and possibly trajectory writing options)
 - ► Good for recovering from crashes or extending a simulation to more steps
- ► New simulation starting from final geometry and velocities
 - AMSinput will offer to update geometry and set up InitialVelocities FromFile on MD input panel
 - ▶ New simulation independent from original, any input settings may be changed

Trajectory Writing Options

- Most quantities written to trajectory by default
 - Big ams.rkf for long simulations with frequent sampling
- Can be customized on "MD Trajectory Writing" panel:
 - Velocities (if not needed for VACF analysis)
 - Atomic charges (unnecessary for non-polarizable potentials)
 - Bonding tables and molecule analysis (unnecessary for nonreactive FFs)
- Velocity snapshot for restarting/continuation always written every CheckpointFrequency steps

Basic Equilibrium Properties

- Energies, temperature, volume, density: AMSmovie
- Energy + temperature statistics in text output
- Everything on ams.rkf in section "MDHistory" (Python scripting, KFbrowser, dmpkf)
- ► Backwards compatibility scripts for old ReaxFF text file formats
 - scripting/standalone/reaxff-ams/
 - Completely general, not just for ReaxFF

Structure

- ► Radial distribution function
 - Calculated by **analysis** or plotted in AMSmovie (MD Properties \rightarrow RDF)
 - Doesn't require long simulations or frequent sampling (few 10s of ps enough)
 - Range limited to half the box thickness

Diffusivity

- Can be calculated in two different ways:
- Green-Kubo approach
 - Integral of the velocity autocorrelation function
 - Requires frequent sampling (tens of fs between samples at most)
 - Many frames needed for converged results (large trajectory with full velocity data)
- ► Stokes-Einstein-Sutherland approach
 - ► Linear fit to MSD(t)
 - Frequent sampling not needed (hundreds of fs between samples enough), 50–100 ps often enough for basic accuracy
 - MSD data for $t < \tau_c$ (correlation time, 2-3 ps in water) must be discarded (correlated motion instead of random diffusion)
- Significant box size effects
 - ► Calculated D is underestimated due to interaction of PBC images
 - ▶ Roughly 10–15% error for r.t. water in a 20 Å box
 - Correction formula by Dünweg and Kremer³:

$$D = D_{\text{sim}} + \frac{2.837 \text{k}_{\text{B}}\text{T}}{6\pi\eta\text{L}}$$

³Dünweg, B.; Kremer, K. J. Chem. Phys. 1993, 99, 6983-6997

Viscosity

► Significantly more demanding than diffusivity

- Green-Kubo approach
 - ► Integral of the ACF of off-diagonal pressure tensor components
 - ► AMSmovie: MD Properties → ACF, "Pressure tensor", vector elements 4/5/6 (Voigt order: P_{yz}, P_{xz}, P_{xy})
 - ACF very noisy (>1 ns needed for reliable results), most information at very short times (tens of fs), sampling every <10 fs required (large trajectory)
 - ACF drops to zero at correlation time τ_c , only noise remains for $t > \tau_c$, integral becomes useless (random walk)
 - Picking τ_c subjective, comparing the components can help
- ► Tutorial available
- ► Coming soon: NEMD method for viscosity (steady state shearing)

Mechanical Properties

- ► Young's and shear moduli, Poisson ratio, yield behavior, ...
- ► Fit to measured stress tensor vs applied strain via MD Deformations feature
 - Tutorial available (includes analysis scripts)
 - ► Coming soon: Built-in analysis/fitting in AMSmovie
- Many options on MD Deformations panel
 - ► TargetLength (drive lattice vector lengths to given values, keeping cell shape)
 - LengthVelocity (add an increment to vector lengths every timestep)
 - TargetLattice (drive entire lattice matrix to target matrix)
 - Advanced: StrainRate (apply arbitrary strain on every timestep)
 - Deformation can be once only or oscillatory (sine modulation of lengths/lattice parameters)

Summary

Use thermostats and barostats with care

- Berendsen methods good for equilibration
- Prefer NHC and MTK for production NpT simulations
- \blacktriangleright Do not use short time constants unnecessarily, avoid au < 100 fs
- ► Use Restart feature for exact continuation, InitialVelocities otherwise
- ► Monitor basic properties to check for equilibration/convergence
 - AMSmovie can plot time evolution of most parameters, RDF...
 - Alternatives: Python scripting, ReaxFF compatibility scripts
- Check out our tutorials for common properties
 - ▶ Diffusion (prefer Stokes-Einstein-Sutherland method, correct for box size)
 - Viscosity (Green-Kubo: long simulations, frequent sampling)
 - Mechanical properties

