

force-bias Monte-Carlo/MD NSCCS ADF/ReaxFF Workshop

Ole Carstensen Fedor Goumans Anna Shchygol

Imperial College London 27-28 September 2016

Intro: uniform acceptance force-bias Monte-Carlo (fbMC) The idea...

Sampling structural Phase Space

according to *one* well known ensemble distribution function (e.g. NVT)

Sampling the Dynamics

- each change driven by "instantaneous" and "local" Probability Distributions
- irrespective from distance to equilibrium
- Limits of P(r,F)
 T >> F → completely random movement
 T << F → Particle moves exactly in direction of force

Derivation.....Timonova *et al.*, Phys. Rev. B **81**, 144107 (2010); http://dx.doi.org/10.1103/PhysRevB.81.144107 Applicability...Bal and Neyts, J. Chem. Phys. **141**, 204104 (2014); http://dx.doi.org/10.1063/1.4902136 Application.....Mees *et al.*, Phys. Rev. B **85**, 134301; http://dx.doi.org/10.1103/PhysRevB.85.134301

Intro: fbMC

under the hood...

During a single fbMC step each atom is displaced by $\xi_{i,j} \cdot \Delta_i$ in every cartesian direction, with $\xi_{i,j}$ stochastically distributed as follows:

$$p(\xi_{i,j}) = \begin{cases} \frac{e^{\gamma_{i,j}(2\xi_{i,j}+1)} - e^{-\gamma_{i,j}}}{e^{\gamma_{i,j}} - e^{-\gamma_{i,j}}} & \text{if } \xi_{i,j} \in [-1,0[\\ \frac{e^{\gamma_{i,j}} - e^{\gamma_{i,j}(2\xi_{i,j}-1)}}{e^{\gamma_{i,j}} - e^{-\gamma_{i,j}}} & \text{if } \xi_{i,j} \in]0,1] \end{cases}$$

$$\gamma_{i,j} = \frac{F_{i,j}\Delta_i}{2k_BT}, \ \Delta_i = \Delta \sqrt{\frac{m_{\min}}{m_i}},$$

 F_{i,j}: Force along component j acting on atom i
 m_i: mass of atom i
 m_{min}: smallest mass in the system
 Δ : system wide parameter

*** required input: T, Δ ***

The choice of Δ is crucial:

- large $\Delta \rightarrow$ faster system evolution & larger violation of detailed balance
- formally correct only for infinitesimal small Δ
- recent finding: diffusion coefficients and reaction rate coefficients scale as m^{-1/2}

$$\Delta_i = \Delta \left(\frac{m_{\min}}{m_i}\right)^{1/4}$$

flexible mass scaling is supported by ADF/ReaxFF but needs to be explicitly specified in the control file: imcroo=4

Bal and Neyts, J. Chem. Phys. 141, 204104 (2014);http://dx.doi.org/10.1063/1.4902136

Intro: fbMC + MD

Within ADF/ReaxFF fbMC and MD will alternate at a specified rate following the strategy described in the study of carbon nanotube growth on Ni-catalysts^[1]

(X): "Frequency of fbMC steps" = start fbMC from last MD structure after (X) steps(Y): "Number of fbMC steps" = make (Y) fbMC steps before restarting the MD

[1] Neyts et al., J. Am. Chem. Soc. 133, 17225 (2011); http://dx.doi.org/10.1021/ja204023c

Intro: fbMC + MD using the GUI

Hands-on: Simulate Graphene Healing

Learn how to:

- use the GUI to create a graphene sheet
- use the structure with ReaxFF
- run fBMC + MD
- use Python for custom analysis of trajectories
- choose the Δ (look at the influence of various Δ)

Graphene holes 'heal themselves'

By Jason Palmer Science and technology reporter, BBC News

I1 July 2012 Science & Environment

< Share

Graphene - the "wonder material" made of sheets of carbon just one atom thick - undergoes a selfrepairing process to correct holes, researchers report.

COMMUNITY CHOICE

The most viewed papers in science

MATERIALS

Graphene, heal thyself

HIGHLY READ on pubs.acs.org in July Graphene, atom-thick sheets of carbon, has a multitude of unusual properties, and selfhealing can now be added to the list. Quentin Ramasse of the SuperSTEM

Laboratory in Daresbury, UK, and his colleagues deposited metals on sheets of graphene and then scanned the sheets using an electron microscope. The metals catalysed the breaking of carbon bonds, making holes in the carbon's honeycomb structure. When the supply of catalysts had been exhausted, the graphene healed itself. In the presence of other hydrocarbons, the graphene sheet filled its gaps with variably sized rings of additional carbon atoms. However, if no hydrocarbons were present, the carbon atoms rearranged themselves into their original two-dimensional hexagonal structure.

Researchers hope that the 'reknitting' process can be used to help control nanometre-scale etching of graphene. *Nano. Lett.* 12, **3936–3940 (2012)**

RESEARCH HIGHLIGHTS THIS WEEK

Exercise 1: Create a Graphene sheet

create a graphene sheet

(A	DFinput 2016.102							- +
<u>File Edit Select Atoms Bonds</u>	<u>V</u> iew <u>H</u> elp								
<u>U</u> ndo Ctrl Z			ADF	Main	Model	Properties	Details	MultiLevel	
Redo Shift Ctrl Z									
<u>C</u> ut Ctrl X			Title:						
Copy Ctrl C			Preset	:		Single Point		•	
Paste Ctri V Clear			Task:			SinglePoint			
Set Center Of Mass			Total	charge:		0.0	D		
Symmetry			Spin p	olarizati	on:	0.0	D		
Mirror			Unres	tricted:		Tes Yes			
Rotate 90			-						
Aigi			XC fur	nctional:		LDA		•	· · ·
Crystal	Cubic	~	Relativ	vity (ZOF	(A):	None		•	
Builder Ctri B Solvent Molecules	Hexagonal	P AIB2							
	Orthorhombic	Corundum	Basis	set:		DZ		-	<u></u>
New Molecule Delete Molecule	Tetragonal	Graphite	Frozer	n core:		Large		*	
	Triclinic	Hcp 13	Nume	rical qua	l <mark>ity</mark> :	Normal		•	<u> </u>
	Ingonai	MoS2							
	From Space Group	NiAs							
	Generate Slab	Wurtzite							
	Generate Super Cell								
	Map Atoms To Unit Cell								
	Map Atoms To Coll								
		out -> Edi	+	Crv	stal -	- Hova	aona	$ \rightarrow Gran$	hita

create a graphene sheet

- ADFinp	ut 2016.102		- + ×
🔩 <u>F</u> ile <u>E</u> dit <u>S</u> elect <u>A</u> toms <u>B</u> onds <u>V</u> iew <u>H</u> elp			
	BAND Main M	odel Properties Details Multil	evel Q
	Title:		
	Preset:	Single Point 🔹	
	Task:	SinglePoint 🔻	
	Periodicity:	Bulk	
	Unrestricted:	T Yes	
	XC functional:	LDA	
	Relativity:	None	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Basis set:	DZ 🔹	
	Frozen core:	Large 🔹	
	Numerical quality	Normal	
	Relativity: Basis set: Frozen core: Numerical quality: Switch off "Persp	None DZ Large Normal Dective" and "Period	
			. ,

create a graphene sheet

 ✓ ADFin <u> <u> </u><u> </u></u>	 ADFin Bonds <u>View Help</u> Hold down SHIFT + LEFT MOUSE BUTTON draw a rectangle and select the upper layer Press DEL to remove it 						
	litie:						
	Preset:	Single Point	•				
	Task:	SinglePoint	•				
	Periodicity:	Bulk	•				
	Unrestricted:	T Yes					
	XC functional:	LDA	-				
	Relativity:	None	•				
	Basis set:	DZ	•				
	Frozen core:	Large	•				
	Numerical quality:	Normal	•				
C(2)-C(4) (pm): 1	42.0						
►СОNНX- 卷□ _ • • 🖂 🕄							

create a graphene sheet

- ADFinput 201	16.102 - + ×
File Edit Select Atoms Bonds View Help	
	ReaxFF Main Model Details Q
▼ Dialog Windor + Super Cell 15 0 0 0 15 0 0 0 1 Cancel Of	Task: Energy Minimization Force field: Number of iterations: 40000 Start with: 0 non-reactive iterations Time step: 0.25 Method: Velocity Verlet + Berend *
	Temperature: 298.0 K Damping constant: 100.0 fs Pressure: 0.0 MPa
	Damping constant: 500.0 fs
	 Select "ReaxFF" Edit → Crystal → Generate super cell Enter 15-15-1 on the diagonal on click OK

adjust the lattice vectors for your graphene sheet

creating the defects

relaxing the structure

✓ ADFinput 2016.102: test.adf –						
File Edit Select Atoms Bonds View Help						
	ReaxFF Main Model Details	Q				
	Task: Molecular Dynamics Force field: Image: CHONSSiPtZrNiCuCo.ff Number of iterations: 1000 Start with: 0 non-reactive iterations					
	Time step: 0.1 fs					
'Equilibrate' your structure by running low T dynamics (NVT) with the following settings:	Method: Velocity Verlet + Berend: Temperature: 50 K Damping constant: 100.0 fs					
 1000 steps Timestep 0.1 fs T = 50K Force field: CHONSSiPtZrNiCuCo.ff (Do you know why?) 	Pressure: 0.0 MPa Damping constant: 500.0 fs					
new coordinates when asked and save.						

Exercise 2: Running MD and fbMC/MD

-15-

Hands-on: Simulate Graphene Healing

Set up the following *fbMC* calculation, save and run it

ReaxFF Main Mod	lel Details Q	ReaxFF Main Model Details Q
Task: Force field: Number of iterations: Start with: Time step:	Molecular Dynamics CHONSSiPtZrNiCuCo.ff CHONSSiPtZrNiCuCo.ff 1 200 0 0 0 0 1 5 1 1 1 1 1 1 1 1	Force Biased Monte Carlo i Frequency of fbMC steps: 1 Number of fbMC steps: 50 Max atom displacement:: 0.11
Method:	Velocity Verlet + Berend: •	ReaxFF Main Model Details Q
Temperature: Damping constant: Pressure: Damping constant:	800 K 100.0 fs 0.0 MPa 500.0 fs	Molecular Dynamics i Fix cell parameters (NPT only): None In NPT Output frequencies I In NPT KF result file: I In NPT Energies, temperatures and more: 50 In NPT Coordinates: In NPT In NPT
		Remove Rot/Trans every: 25 iterations
→ 10 000 fB	3MC steps @ 800K, ∆ = 0.11	

Hands-on: Simulate Graphene Healing

Set up the following MD calculation, save and run it

ReaxFF Main Model	Details	Q	ReaxFF Main	Model	Details			Q
Task: Force field: Number of iterations: Start with: Time step:	Molecular Dynamics Molecular Dynamics CHONSSiPtZrNiCuCo.ff 10000 0 non-reactive iterations 0.2 fs	i	Frequency of fbMC s Number of fbMC ste Max atom displacem	Forc steps: eps: nent::	e Biased	Monte Carlo	om	i
Method:	Velocity Verlet + Berend: •		ReaxFF Main	Model	Details			Q
Temperature: Damping constant: Pressure:	800 K 100.0 fs		Fix cell parameters Output frequencies	M (NPT only	lolecular y):	Dynamics None	•	i in NPT
Damping constant:	500.0 fs		KF result file:			50]	
			Energies, temperati Coordinates:	ures and	more:	50 1000000		
ightarrow 10 000 MD s	teps @ 800K, ∆t = 0.2 fs		Remove Rot/Trans e	every:		25	iterations	

Hands-on: Simulate Graphene Healing Look at both trajectories with ADFmovie

Can you already spot a difference?

Exercise 3: Take a closer look with Python

Hands-on: Analyze Graphene Healing Analyzing the defects

Task: Get the number of defects per frame Ansatz: Count every carbon atom not bonded to three other carbons as 'defect'

Note:

A (way) more detailed analysis would be possible, i.e. looking at the distribution of ring sizes, but this takes longer to setup. Consider it a quick way to get at least some insight :-)

-20-

Hands-on: Analyze Graphene Healing Write a PYTHON script

Use the PLAMS template in the scripts folder and turn the following pseudo code into a PYTHON script:

```
Steps = "Read steps from RXKF"
```

for step in Steps:

```
NumNeighbors = Read Num Neighbors of current step from RXKF
Defects = 0.0
```

for neighb in NumNeighbors:

```
if neighb != 3:
Defects += 1
```

print step and Defects

Note: If you don't feel comfortable writing PYTHON or time is short, you can just ask Ole for the finished script

Hands-on: Analyze Graphene Healing

Use Gnuplot (or other) for visualizing your results

Exercise 4: Examine the limits of Δ

Hands-on: Analyze fbMC, Different settings of Δ

Bal & Neyts (2014) [1]:

[...] displacement lengths (Δ) between 0.1 and 0.15 Å (about 5%–10% of a typical nearest neighbor distance) lead to physically meaningful results, in agreement with either MD simulations or the experiment, and can be considered "conservative" choices.

Try it yourself:

- Run fbMC dynamics with above settings except:
- Number of Steps (in Main window): 100
- Δ = 0.01 (small) and Δ = 0.25 (large) or try your own

Use ADFMovie and your PYTHON script to investigate the resulting dynamics

[1] Bal and Neyts, J. Chem. Phys. **141**, 204104 (2014); http://dx.doi.org/10.1103/PhysRevB.81.144107

contact us:

Licenses General information Support license@scm.com info@scm.com support@scm.com