Modeling chemical reactions with the Amsterdam Modeling Suite and the ReaxFF engine Chemical Vapor Deposition & Combustion

Nicolas Onofrio, Technical Sales Representative, <u>onofrio@scm.com</u>

ReaxFF

Reactive many-body interatomic potential

• The functional form

$$E_{pot} = \underbrace{E_{bond} + E_{ang} + E_{dih}}_{BO = exp \left[p_1 \left(\frac{r}{r_0} \right)^{p_2} \right] + exp \left[p_3 \left(\frac{r}{r_{0,\pi}} \right)^{p_4} \right] + exp \left[p_5 \left(\frac{r}{r_{0,\pi\pi}} \right)^{p_6} \right]$$

Learn more: https://www.scm.com/product/reaxff/

• Partial atomic charges: QEq

$$E(\{R_i\}\{Q_i\}) = \sum_{i=1}^{N} \left(\chi_i Q_i + \frac{1}{2}H_i Q_i^2\right) + \sum_{i< j=1}^{N} Q_i Q_j J(R_{ij})$$

Van Duin et al. J. Phys. Chem. A 2001, 105, 41, 9396–9409 J. Phys. Chem. A 2003, 107, 19, 3803–3811

Chemical vapor deposition

Principle of CVD

- To produce thin films in semiconductor industry
- Wafer exposed to gas/plasma which react/decompose on the substrate

https://www.scm.com/doc/Tutorials/MolecularDynamicsAndMonteCarlo/MoleculeGunSimulationCVD.html

SiO2 growth on Si substrate

Combustion reaction

Combustion of methane in oxygen

• High T MD simulation of O2 + CH4

 $CH_4[gas] + 2O_2[gas] \rightarrow CO_2[gas] + 2H_2O[steam] + \Delta E$

H, OH H, OH H, OH H, M H, M H, OH H, OH H, M OH H, OH

H.N. Najm, P.H. Paul, C.J. Mueller and P.S. Wyckoff, Comb.Flame, 113, 312-332, 1998

• ChemTraYzer2

Han = [0][DH[0] == 0=0=0 = 00 = 2000=0 == 0=000 = 0		 Reaction Conset HO2 + DHO2 == 0 HO + DHO2 == 0 	005 × H000	e Order e	Rete constant 1840an18 5074an18	a lott' (, mail, si) a	kitser bound a 1.380e-14 4.255e-14	Auguer bound in 6.475ex10 1.004ex10	Number of scents a	Reaction assort indices UNS	
Q, 003			2/9	ST menu							-
Q COS	foattate +	etisten de 14	2/1 Find Stre (h)	National States		Products	a hat	unto composition 🔹	Products composition	- Reactains atoms indices	100000
G CO3	foattate +	edartes (s) (*	2/1 Post love (h) + 4825-3	Al Isano RealTatila (DHI) + (D)CHD	R	Producto GHCHD + D	e Naci	with composition +	Robuits congointing .	Reactants atoms indices	19401010-000
Q COJ • Infortune • J 200 State	National a	entiar time (%) = +	2/1 Prod litrie (%) = 6675.0	67 mense • Reactantia DH[+ D CHD	R	Palacta Dickd+0	ie Maat HD+D	erts composition (* HEL	Products composition +	Beacherts altures Indices (INAL 410) - (INT INT JALL 177	1940010-001
G 003 • Inflations • / 206 20	fractiane e	ential time (h) (*	EVI Post time (ht) eRC6.5	Mineres Maximula (Del + popula	F	Products DVCx0+0	e Baarl HDie D	erts composition (+ HCE	Products congoother + CO2 + HOD	Reactants atoms indices (Nat 412) - (M. 83 JOL 375	maciliana.cov
9, 003 • Infia Tailes • 7 201 23	four tians (* N	ndiar tana (ha) 🕈 Marin 2	2/1 Prod-line (h) = e8/15/3	6/ menu Resolutio [DH] + JOPCHD		Producte CHCHC + D	e Baat	ents composition (e HDE	Modults consoletion +	Reacters durins indices pian etz; + (et al.) (et.) (et.)	1000
G, COS * Sofie Table (#) 206 20	Friat Tanke	entine times (the) (t+ All the B	Prod Unite (fail)	6/ menu Baananta Josej + popositi	R	Producte GeCeC + D	+ Baat	anta compositivo 🕞 🔹	Rodults congooties (COE + HOD	Reacterix dums hidres (Sec.etz) - (or at Jet Sm	reactions.com
G CO3 * Initial Trains # 3 276 20	frattane e	eutrus tone (ha) 👘	2/9 Pinal Line (fu) AKT53	6/ menu Beachanta Josej + Jopciel		Producto CHCAG + C	e Baati HD + D	anta composition 🕞 🔹	Roducts congooties DDE + HOD	Reactivette atturnes indices (1966: 4122) - (197) 183 Janii Janii 197	maciliane.com
G COS	Nutlate e	estaur tones (ha) (m) MR75.0	2/1 Prod Unit (1) BCPL3	6/ doma Reactants DHI + popositi		Products CHCACI + C	e Baaci HD+D	anta composition (+ MCC	Riskuts conposition +	Reactivette atturnes indicates (1966: 4102) - (197: 182 Jane Sam	maciliarie.cov
Q CO3	Not tank •	entrar time (ha) (e Mithua	2/1 Picel Une (NL) BCPL3	6/ Items		Products Groud + 0	e Baaci HD+D	ents composition (+)	Riskuts conposition + COE + HOD	Recters duris indices pini dag - jan at Jan Jan	reactions.cov
G COS • Secie Tarles • 3 200 20	Not tank +	entre (he) (+	2/1 Note time the exchange	6/ Items Real/antis DH(+)00CHD		Protoch Groud + 0	e Baati HD+D	ents composition (+)	Riskuts conposition +	Recters duris indices pian dog = (01 10 Jan Jan	machine and

https://www.scm.com/doc/Tutorials/MolecularDynamicsAndMonteCarlo/ChemTrayzer2.html https://www.scm.com/doc/Tutorials/MolecularDynamicsAndMonteCarlo/BurningIsooctane.html