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Thermochemical energy storage
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Energy storage density of thermochemical materials is about 10 times
higher than that of water.



2/1
Thermochemical energy storage

MgSO
4
.xH

2
O +Q MgSO

4
+xH

2
O MgSO

4
+xH

2
O MgSO

4
.xH

2
O +Q

Dehydration

Hydration

Problem: Changes in the crystallinity of the material, Slow kinetics,
Reusability etc.
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◮ Aim:
• To study hydration and dehydration reactions
• To characterize the structural changes
• To understand the mechanism of water release during dehydration
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Molecular dynamics

◮ Atoms are assumed to be point mass particles which obey Newton’s
laws of motion

◮ All particles interact with each other through some potential,
U(r1, r2, · · · rN)

◮ Force acting on any particle at any time is calculated as,
F = −∇U(r1, r2, · · · rN)

◮ Positions are updated by integrating the equation of motion, F = ma

Force Field

Energy ,E = E (r1, r2, · · · rN)

Force,F = −∇E (r1, r2, · · · rN)
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Condensed water between two Pt slabs

Details: NVT ensemble, ρwater = 1001.22kg/m3
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Two phase water between platinum slabs

Details: NVT ensemble, ρwater = 385.08kg/m3
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ReaxFF force field

Esystem =EvdWaals + ECoulomb + Ebond + Eval + Etors

+ Eover + Eunder + EH−bond + Elp

+ Econj + Epen + Ecoa + EC2 + Etriple

Characteristics of ReaxFF

◮ Dynamic charges are calculated using EEM

◮ van Der Waal’s interaction is calculated using a Morse-type potential

◮ Energy surface is made continuous
◮ Connected interactions include

• Bonded interaction (two body)
• Valence angle interaction (three body)
• Torsion interaction (four body)
• Hydrogen bond interaction
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What makes ReaxFF reactive?

◮ ReaxFF calculates bond order between every pair of atoms

◮ Bond order is a function of distance of separation

◮ Every connected interaction is made a function of this bond order

◮ Thus all the bonds become dynamic
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Bond energy in Reax force field

Esystem =EvdWaals + ECoulomb + Ebond + Eval + Etors

+ Eover + Eunder + EH−bond + Elp

+ Econj + Epen + Ecoa + EC2 + Etriple

Bond energy

Ebond =−D
σ
e · BO

σ
ij · exp

[

Pbe1

(

1 −
(

BO
σ
ij

)Pbe2

)]

−D
π
e · BO

π
ij − D

ππ
e · BO

ππ
ij



9/1
Econj and Ecoa in ReaxFF
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Epen for valence angle in ReaxFF
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EC2 for valence angle in ReaxFF
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DFT introduction

First Hohenberg-Kohn Theorem

vext(r) ⇔| Ψ0〉 ⇔ n0(r) = 〈Ψ0 | n̂(r) | Ψ0〉

The theorem states that, one has a one-to-one correspondence between
the external potential Vext in the Hamiltonian, the (non-degenerate)
ground state | Ψ0〉 resulting from the Schrödinger equation and the
associated ground state (electron) density n0.



12/1
DFT introduction

First Hohenberg-Kohn Theorem

vext(r) ⇔| Ψ0〉 ⇔ n0(r) = 〈Ψ0 | n̂(r) | Ψ0〉

The theorem states that, one has a one-to-one correspondence between
the external potential Vext in the Hamiltonian, the (non-degenerate)
ground state | Ψ0〉 resulting from the Schrödinger equation and the
associated ground state (electron) density n0.



13/1
DFT introduction

E [n] = 〈Ψ[n] | Ĥ | Ψ[n]〉

◮ Thus, the many-body problem of N electrons with 3N spatial
coordinates is reduced to a problem involving only 3 spatial
coordinates.

◮ The second theorem states that the ground state correponds to the
density which minimizes the total energy of the system.

E0 < E [n]
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Parameterization of ReaxFF force field

◮ Quantum Chemical (DFT) data is used to parameterize the force
field

◮ A training data set is prepared which contains the following
informations

• Atomic charges (Mulliken)
• Equilibrium bond lengths
• Equilibrium bond angles
• Torsion angles
• Energies of the DFT optimized geometries
• Heat of formation

◮ Error in the force field is then calculated

Err(p1, p2, · · · pn) =

n
∑

i=1

[

xi ,QM − xi ,ReaxFF

σi

]2
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Parabolic search algorithm

Err(p1, p2, · · · pn) =

n
∑

i=1

[

xi ,QM − xi ,ReaxFF

σi

]2
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Drawbacks of parabolic search algorithm

◮ Only one parameter is searched at a time
◮ The procedure has to repeated over several rounds
◮ It will only find a local minimum
◮ Needs a good starting point

Shapes of typical ReaxFF Error surface
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A double well potential with a linear term

U(x) = x4 − 0.75x2 + 0.01x
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Equilibrium distribution of states

The distribution has a global maximum near the left well.
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Metropolis Monte Carlo (MMC) method

◮ Calculate the error of the starting force field, Errold

◮ Make a new proposition (move) for the parameters

◮ Calculate the error of the new force field, Errnew

◮ Calculate the difference in the Error, i.e.

∆Err = Errnew − Errold

◮ Accept the move with a probability given by,

P = min [1, exp (−β∆Error)] ,where, β =
1

kBT

◮ Repeat the algorithm
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Error vs β for a Simulated Annealing run
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Comparison between MMC and ParSearch

For five random starting force fields
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Comparison of the error values

Table : Initial and final errors of the five simulations. The average < Error >

and the coefficient of variation, std(sigma)
<Error>

, of the final errors are shown.

Trial Errorinitial × 1E − 6 Errorfinal × 1E − 6

ParSearch MMC
1 4.3 0.9 0.31
2 1.1 0.4 0.44
3 8.1 2.5 0.31
4 2.0 1.4 0.26
5 4.3 1.3 0.42

< Error > 1.3 0.35
std(Error)
<Error>

0.6 0.21



21/1
Energies of the hydrates of MgSO4.xH2O

x ranging from 0 to 6
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Equation of state for MgSO4
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Equation of state for MgSO4.7H2O
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Binding energy

Binding energy of one water molecule on the (100) surface of MgSO4
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Hydrogen bonds in MgSO4 hydrates
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The hydrogen bonds slows down the kinetics of dehydration as can be seen from

the two sets of dehydration curves (one with hydrogen bonds and the other

without hydrogen bonds) in the figure.
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Dissaperance of step-edge sites

The movement of step-edge sites in Co-nanoparticles are studied using ReaxFF.
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Conclusion

◮ Metropolis MC algorithm is used to parameterize the ReaxFF force
field.

◮ The method shows good improvement over the traditional
optimization scheme.

◮ The stochastic nature of the method allows one to arrive at the
global minima in the parameter space.
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Thank You!!
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