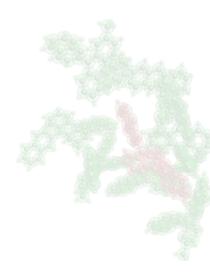


OLED tools

... the atomistic part of our multiscale toolchain

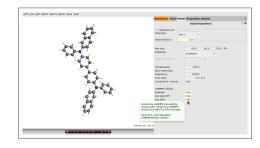

Robert Rüger <rueger@scm.com>

Webinar | June 28th, 2023

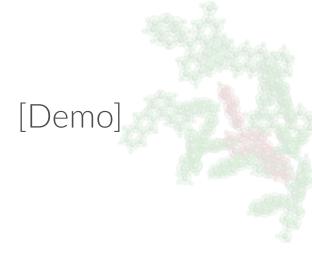
Two step process:

① Deposition workflow

2 Properties workflow



- Graphene sheet as starting substrate
- Molecules parameterized using UFF4MOF-II with CM5 charges
- Each molecule inserted 1 nm above surface (random xy position)
- After each insertion, 10k 1-fs MD steps followed by 10k fbMC steps to let molecule settle
- Periodic trimming to speed up simulation:
 - Molecules deep below surface frozen
 - Molecules below frozen layer removed
 - After reaching target thickness, all slices reassembled and whole box equilibrated under NpT, cooling down to room temperature


New in AMS2023: LAMMPS/GPU offloading

- Speedup of factor ≈ 5
- 2 weeks ⇒ 3 days (standard box of 6x6x6 nm with approx. 500 molecules)

- requires user to compile LAMMPS
 - enabling GPU and OPENMP packages highly recommended
 - can work with CUDA or OpenCL, depending on how you configure LAMMPS
- communication between AMS driver and LAMMPS via AMSPipe protocol:
 - https://www.scm.com/doc/AMS/Pipe_protocol.html

[Video]

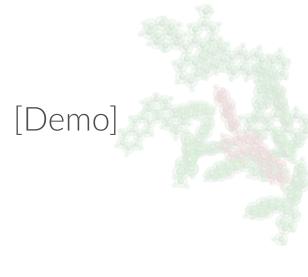
downloads.scm.com/distr/OLEDTools_videos/deposition_mCP_1080p.mp4

Validation against thin-film densities

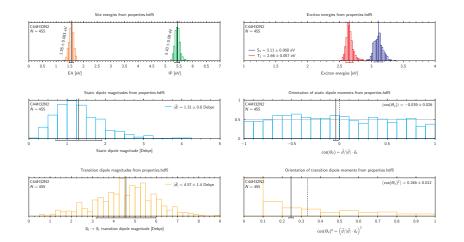
Material	$ ho_{calc.}$	$ ho_{ ext{exp.}}$ 1
ВСР	1.148	1.12 ± 0.01
CBP	1.184	1.18 ± 0.01
α -NPB	1.114	1.19 ± 0.01
α -MADN	1.142	
mer-Alq3	1.272	1.31 ± 0.01

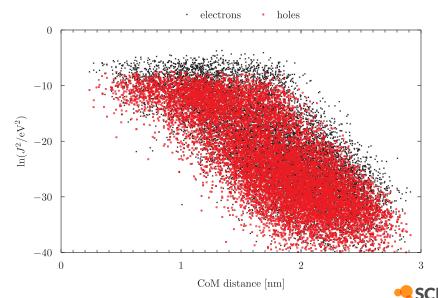
Densities do not differ much between materials ...

¹Review of Scientific Instruments 78, 034104 (2007); https://doi.org/10.1063/1.2712932


- for each molecule in the box:
 - Calculate atomic charges with cheap DFT: LDA/DZP with MDC-D charge model
- 2 For each molecule in the box:
 - Determine environment: any molecule within 15 Å (atom-atom distance)
 - For $q \in \{-1, 0, +1\}$:
 - Optimize geometry of central molecule in frozen environment: GFN1-xTB in UFF4MOF-II with electrostatic embedding
 - DFT single point on the optimized geometry: PBE/TZ2P (all-electron) with DRF environment
 - If q = 0: TD-DFT (PBEO) calculation for excitation energies.
 - Calculate (approximately adiabatic) IP and EA from total energy differences.
- Transfer integrals for all dimers within 4 Å (atom-atom) distance of each other.

[Video]


downloads.scm.com/distr/OLEDTools_videos/rotate_QMMM_ mCP.mp4

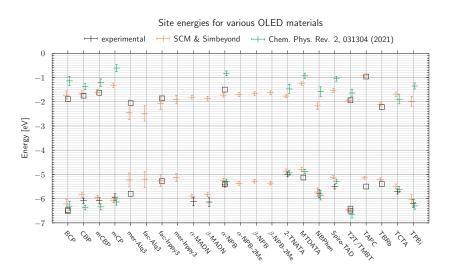


Results for α -NPB: site energies and dipole moments



Results for α -NPB: transfer integrals

Validation on IP/EA for standard materials


[distribution means]

Validation on IP/EA for standard materials

[IP/EA $\pm 2\sigma$]

Plans for AMS2024

Further improvements for deposition workflow

- 1 whole-molecule moves in the force-bias Monte-Carlo part of the deposition:
 - increased mobility = better morphologies (?)
- 2 automated conformer handling for the deposited molecules:
 - currently we deposit a single conformer by default ..
 - ... whichever one the user puts into the input
 - no major conformational changes during MD in deposition
- 3 reduce protocol overhead in AMS ↔ LAMMPS communication
 - currently there is an inefficient Python glue-layer inbetween
 - can be done directly Fortran ↔ C++
 - expected speed-up of $3x \Rightarrow$ deposition in ≈ 1 day
- 4 re-deposit all standard materials for OLED material DB 2024

Plans for AMS2024

Further improvements for the properties workflow

- GW/BSE for IP/EA and exciton energies
 - methods in AMS2023 already, but without support for DRF environment
 - equations have been derived by now, implementation in progress
- 2 more systematic validation of excition energies
- 3 more properties: (non-)radiative decay rates, intersystem crossing rates, ...
- 4 increased range for transfer integrals
- 5 recalculate properties for all standard materials in OLED material DB 2024

OLED workflows

[Tutorial]

www.scm.com/doc/Tutorials/WorkflowsAndAutomation/OLEDMaterials.html

[Manual]

www.scm.com/doc/AMS/Utilities/OLEDWorkflows.html

