Amsterdam Modeling Suite Accelerating Chemistry & Materials Research

Fedor Goumans, Chief Customer Officer, goumans@scm.com Seminar / workshop with T&J, Seoul, 19 October 2023

www.scm.com/Korea23

Program

- Motivation, history, background SCM & intro Amsterdam Modeling Suite
- Parametrization of ReaxFF and DFTB with ParAMS
- Modeling OLED materials
 - accurate ionization potentials, electron affinities, and UV/VIS with GW+BSE Ο
 - multiscale device-level modeling
- Modeling battery materials
 - Redox potentials with DFTB, ADF & COSMO-RS Ο
 - Diffusion barriers with the new M3GNet universal ML potential
- Reaction discovery tools
- Other new and upcoming developments in AMS • Active learning (on-the-fly ML potentials)
- Files, slides, available to download from: www.scm.com/Korea23

© SCM

2

New materials discovery too slow

- 8-19 years to develop materials solutions in new markets
- 80-85% R&D programs fail
- >50% R&D spending only incremental improvement
- **Catch 22**: slow discovery \Leftrightarrow few new materials

https://www.mckinsey.com/industries/chemicals/ourinsights/chemical-innovation-an-investment-for-the-ages

Simulations -> predict new materials Robots -> make new materials AI -> improve simulations and DOE

the Matter Lab - Aspuru-Guzik

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM

Automated **Chemical Synthesis** System

Automated Characterization Platform

AI-aided Experiment Planning and Optimization System

High-performance computing for quantum-based simulations

Bottom up Property Prediction

Properties are determined at the atomistic level => predict, understand & improve through modeling

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Batteries: fast recharge, high capacity

4

Background: SCM, ADF & AMS

- ADF: first DFT code to understand chemistry (1970s) Baerends@VU (>'73), Ziegler@Calgary(+) (>'75)
- . 1980s: support from Mitsui, Shell, Akzo, Unilever
- . SCM: Spin-off company 1995
- 2010s: DFTB, ReaxFF, COSMO-RS (Albemarle, DSM)
- 2019: Multi-scale: ReaxPro (BASF, Dow, Shell, JM)
- 29 people (21 senior PhD's) + 2 EU fellows
- Many academic collaborators & EU networks
- . SCM: development, debug, port, optimize, & support

2015

The SCM team in Amsterdam

Prof. Evert Jan Baerends Founder and Scientific Adviser

Dr. Stan van Gisbergen CEO

Mrs. Kitty Kleinlein Office Manager

Mrs. Sorana Burcusel Custom Support Officer

Dr. Fedor Goumans Chief Customer Officer

Dr. Matti Hellström

Dr. Alexei Yakovlev

Software Developer

Product Manager

M. Sc. Hans van Schoot Software Developer

M. Sc. Laurens Groot Software Developer

Dr. Sergio López López Scientific Partner Manager

Dr. Erik van Lenthe Software Developer

Dr. Nestor Aguirre Software Developer

M. Sc. Giulio Benedini EU Fellow

Technical Sales Representative

M. Sc. Mirko Franchini

Software Developer

Dr. Paul Spiering

Software Developer

Dr. Franco Egidi Software Developer

Dr. Maria Aliaga

Dr. Olivier Visser Software Developer

Dr. Pier Philipsen Software Developer

Dr. Bas Rustenburg Software Developer

Dr. Tomáš Trnka

Software Developer

M. Sc. Edoardo Spadetto EU Fellow

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Dr. Robert Rüger Software Architect

Dr. Nick Austin Software Developer

Dr. Wei-Lin Chen Software Developer

Amsterdam Modeling Suite

• ADF: powerful molecular DFT

- Reactivity, spectroscopy
- Spectroscopy: NMR, EPR, VCD, UV, XAS
- BAND: periodic DFT
 - (2D) Materials, spectroscopy, analysis
 - Interface with QE, VASP
- DFTB, MOPAC: fast electronic structure
- ReaxFF: Reactive MD
 - Dynamics of large complicated systems
- MLPotential, force fields
 - Several backends, ANI-2x, M3GNet
- COSMO-RS: fluid thermodynamics
 VLE, LLE, logP, solubility
- AMSdriver: PES exploration, MD, MC
 - Hybrid: multi-layer, QM/MM, QM/QM'
- Integrated GUI, python scripting

SCM

• ParAMS: parametrize ReaxFF & xTB

Fluid Thermodynamics

COSMO-RS COSMO-SAC UNIFAC

Kinetics

Kinetic Monte Carlo Microkinetics

Force Fields

ReaxFF, GFN-FF Machine Learning Potentials Apple & P

QM/MM FDE, Hybrid Engine

Tight binding GFN-xTB, DFTB

Periodic DFT BAND, Quantum Espresso

Molecular DFT ADF

7

The graphical user interface (GUI)

Setup & analyze calculations

- AMSjobs
 - manage jobs, locally or remotely 0
 - extract summaries
- AMSinput
 - build molecules, periodic systems, surfaces, Ο polymers, etc.
 - import structures from many formats Ο
- AMSview, AMSlevels, AMSspectra, etc.
 - analyze results Ο
 - visualize trajectories, structures, transition states, Ο orbital densities, DOS, band structure, spectra, etc.

AMS driver: MD with 'anything' A unified driver to explore the Potential Energy Surface (PES)

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

- Molecular dynamics \odot
- Frequencies & phonons \odot
- Stress & elastic tensors
- Scan coordinates & constraints

Tasks

125-

- Monte Carlo, etc. \odot
- **Reaction discovery** \odot

PLAMS: python scripting

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Links all modules + various tools → workflows & screening \rightarrow (custom) post-processing \rightarrow rapid prototyping

ADF: Molecular DFT

SCM

NMR calculations locate ¹³C di-Rh carbene catalyst intermediate, Science, 342, 351 (2013)

Strong & unique points

- - 0

 - 0

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

• All-electron Slaters, H-Og

• Relativity: ZORA (SR, **SOC**)

• Spectroscopy EPR, NMR, IR (VCD), UVVIS, XAS qsGW+BSE Phosphorescence

• Bonding analysis: Fragment-based approach ETS-NOCV, QTAIM, MO diagrams, NCI, Transfer integrals (charge mobility)

Environments Subsystem DFT (FDE), DIM/QM, QM/MM, QM/FQ, 3D-RISM, COSMO, SM12

Periodic DFT: BAND vs Plane Waves

- Atom centered basis functions, STO or NAO
 - Compare cluster with periodic 0
 - No pseudopotentials, all elements 0
 - Core spectroscopy (core holes) Ο
 - Dielectric function, refractive index, susceptibility Ο
 - Easy orbital analysis: pDOS, COOP, EDA Ο
 - xc: r2SCAN, MN15-L, HSE06, GLLB-sc, D3(BJ), D4, DFT-1/2 Ο
 - Self-consistent NEGF: Gate & bias potential, spin transport Ο
- True 2D surfaces, 1D polymers
 - Catalysts: polarization, solvation
 - 2D electronics (homogeneous E field)
 - Easy access to Work function Ο
 - QM/MM and QM/QM' for 2D Ο
- **Integrated Graphical Interface:**
 - Easy set up & analysis 0
 - Switch: ADF, BAND & Quantum Espresso, VASP

Position plane with atoms File -0.01 0.01 Log Ba

periodic energy decomposition analysis (tutorial) L. Pecher and R. Tonner

WIREs CMS, (2018)

COOP in perovskites (tutorial) Goesten & Hoffmann **JACS (2018)**

Polarizing 2D semiconductor (tutorial) N. Zibouche et al. PCCP (2014)

DFTB: 'fast DFT' for molecules & periodic

Approximated DFT

Capabilities & Features • UV/VIS (fast!) MOs, band structures, DOS

Through AMS • Geometries, frequencies, phonons • Stress tensors (optimize under p) • Advanced MD, PES scans • GCMC, molecule gun Multi-layer, QM/MM, QM/QM' • Reparametrize xTB

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

• Nearest neighbor & minimal basis • Tabulated elec & rep. parameters: \circ Grimme GFN-xTB (Z = 1-86) QuasiNaNo & DFTB.org

ReaxFF – reactive molecular dynamics

- No discontinuities in energy or forces
- No pre-defined reaction sites or types
 - Dynamic bond orders, charge equilibration
 - Only 1 atom type per element

$$\begin{split} E_{\text{system}} = & E_{\text{bond}} + E_{\text{lp}} + E_{\text{over}} + E_{\text{under}} + E_{\text{val}} + E_{\text{pen}} + \\ & E_{\text{coa}} + E_{\text{C}_2} + E_{\text{tors}} + E_{\text{conj}} + E_{\text{H-bond}} + E_{\text{vdWaals}} + E_{\text{Coulomb}} \end{split}$$

Li battery discharge: J. Electrochem. Soc. **161**, E3009 (2014); PCCP, **17**, 3383 (2015), <u>tutorial</u>

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

eReaxFF to study electron mobility & Li ion reduction, explicit electrons & electric field, J. Electrochem. Soc. **169**,110540 (2022)

9 October 2023, Seoul © SCM 14

Reactive MD tools Amsterdam Modeling Suite

SCM

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM 16

GCMC: speed up thermo

Kinetics

Machine Learning Potentials

- Automatically install popular ML Backends
 - Pre-parametrized
 - **i**) ANI-1x and 2x (H, C, N, O, F, S, CI)
 - ii) M3GNet ("Universal")
 - Backends, via ASE
 - iii) NEquIP, FLARE (on-the-fly)
 - sGDML iv)
 - SchNet V)

SCM

- vi) CHGNet
- Use MLP with all the tasks in the AMS driver
 - PES scans, reaction discovery, conformers, IR, phonons, MD, MC etc.
 - Hybrid (multi-layer): combine with other methods Ο
- **CUDA-enabled PyTorch and Tensorflow**

×									AM	Spack	ages										к ^и
Reposito	ory: 🔛 h	ttps://	downl	oads.s	scm.c	om/Do	wnloa	ids/pa	ackag	es/AN	IS202	2.1.ym	I					- 6	Loca	l mirro	•
Install lo	cation: /h	ome/b	as/.sc	m/pac	kage	s/AMS	2022.	1.pacl	kages												
			Packa	age				Versio	on	Dis	k Usa	ge	U	odate	s ł	las lic	ense?	?	Req.	license	S
\checkmark	ADFCRS	5-2018	Data	oase			2	018-1	I	2 3	18.90	MiB	Up	to dat	te.	Yes		CR	S 202	2.1	
 ✓ 	LFDFT a	atomic	datab	ase			1	.0-0		= 1	42 Gi	В	Up	to dat	te.	Yes	ADF 2022.1				
	All ML P	otenti	al bac	kends	1		1	.0.0-0)							Yes		ML	POT 2	2022.1	
	OLED m	ateria	datat	base			2	022.1	-0							Yes		OL	EDTO	OLS 20)22.1
	PiNN M	L back	end				C	.3.1-0) ML Potent	ial Mair	Model	Properties	s Details			Yes		ML	POT 2	2022.1	
						/	/									0					
									Task:	,	Molecular D	ynamics	v			Ø		ML	POT 2	2022.1	
	1965	2.00	00						Frequenci	es:	Yes							ML	POT 2	2022.1	
65	Jane 1	28)				Periodicity	/: E	Bulk		•			۲		ML	POT 2	2022.1	
		o ' %	.		8				Model:		//3GNet-U	-2022	T			0	R	lemov	e		
8		28			8						Custom ANI-1ccx ANI-1x										
	2.				HB B						ANI-2x M3GNet-U	P-2022									
See.				00	88																
			, e	Ž	8																
a de la compañía de		200	900																		
	000	969																			
							_														- 6
	н						Ŀ	ler	nen	t co	unt	S						Не		1	Jo
	Li	Be											В	С	Ν	0	F	Ne			5
(Na	Mg											AI	Si	Р	S	CI	Ar			J ²
	к	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		1	h 4
	Ph	Cr.	V	7r	Nb	Mo	То	Du	Dh	Dd	٨a	Cd	In	Sn	Sh	То		Ya		'	un ,
	KU	51	1	21		IVIO	TC	Ru	RII.	Fu	Ay	Cu		511	30	Te	1	ve		-1	ງ³ Ö
	Cs	Ba		Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi						
																				1) ²
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu				
			Ac	Th	Pa	U	Nn	Pu												1	C
			, (0		, u	Ŭ															

i) O. Isayev et al. Chem. Sci., 2017, 8, 3192–3203 ii) C. Chen, S.P. Ong., Nature Comp. Sci. 2, 718-728 (2022) *iii) S. Batzner et al. Nature Comm. 13: 2453 (2022)* iv) S. Chmiela et al. Comp. Phys. Commun. 240 (2019) 38-45 v) K. T. Schütt et al., J. Chem. Theory Comput. 15 (2019) 448-455

COSMO-RS/SAC: thermodynamic properties of fluids

Quantum Chemistry & QSPR for quick property predictions

COntinuum Solvation MOdel + RS (Klamt), SAC (Sandler) chemical potential => activity coefficients => instantaneous properties

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM

Parametrizing fast methods with ParAMS DFTB, ReaxFF (ML)

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM 19

ReaxFF and DFTB problems

- ReaxFF force field may not exist for your application
- Not always accurate enough for "unseen" structures or molecules
- Example AMS industry customer: lithium bis(fluorosulfonyl)imide in organic solvent
- Published ReaxFF force field predicts that a fluorine atom dissociates from the anion

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

General ReaxFF rules

- No discontinuities in energy or forces
- No pre-defined reaction sites or types ullet
- Only 1 atom type per element

$$\begin{split} E_{\text{system}} &= E_{\text{bond}} + E_{\text{lp}} + E_{\text{over}} + E_{\text{under}} + E_{\text{val}} + E_{\text{pen}} + \\ E_{\text{coa}} + E_{\text{C}_2} + E_{\text{tors}} + E_{\text{conj}} + E_{\text{H-bond}} + E_{\text{vdWaals}} + E_{\text{vdWaals}} + E_{\text{system}} \\ &= \exp\left[p_{\text{bo,1}} \cdot \left(\frac{r_{ij}}{r_{\text{o}}}\right)^{p_{\text{bo2}}}\right] + \exp\left[p_{\text{bo3}} \cdot \left(\frac{r_{ij}}{r_{\text{o,\pi}}}\right)^{p_{\text{bo,4}}}\right] + \exp\left[p_{\text{bo,5}} \cdot \left(\frac{r_{ij}}{r_{\text{o,\pi\pi}}}\right)^{p_{\text{bo,5}}}\right] \\ &\text{In: distance between atoms, } r_{ij} \\ &\text{Out: } 1, 2, 1.42, \text{ etc...} \\ &\text{Correction terms } f_1, f_2, f_3: \mathbf{BO}_{ij}(\mathbf{r}_{ij}) = \mathbf{BO}_{ij}'(\mathbf{r}_{ij}) \cdot f_1(\mathbf{BO}_{ij}') \cdot f_2(\mathbf{BO}_{ij}') \cdot f_3(\mathbf{BO}_{ij}') \cdot f_3(\mathbf{BO}_{ij$$

Review NPJ Comp. Materials (2016): The ReaxFF reactive force field: development, applications and future directions

SCM

The Optimization Challenge

-	7.014	17 3	.499	1 1	1.0564	- 4	.0000	2	.968	0 0	0.000	00	0.000	0 0	0.0000.0	
	0.664	16 1	.000	0	1.0080	1	.6030	0	.060	0 0	0.762	- 25	0.100	00 1	L.0000	
1	9.395	51 5	.303	6 :	1.0000	0	.0000	121	.125	0 3	3.819	96	9.883	32 1	.0000	
-	0.100	00 0	.000	0 - (9.1339	1	.3343	1	.315	4 2	2.282	24	1.069	8 6	0.0000	
-1	1.631	9 3	.062	6 :	1.0338	1	.0000	2	.879	3 (0.000	00	0.000	00 0	0.0000	
	1.269	9 2	.000	0 1	5.9990	1	.9741	0	.088	0 1	.080	94	1.062	24 6	5.0000	
1	0.218	36 7	.771	9 4	4.0000	27	.3264	116	.076	8 8	3.500	00	7.838	36 2	2.0000	
	0.944	16 8	.617	0 -:	1.2371	17	.0845	3	.708	2 0	.53	50	0.974	15 0	0.0000	
-	3.145	6 2	.665	6	1.0493	4	.0000	2	.922	5 6	0.000	00	0.000	00 0	0.0000	
	1.672	5 2	.000	0 3	2.0600	1	8920	0	407	9 1	.03	36 -	0.100	00 6	5.0000	
	9 756	in 4	922	2	1 0000	30	3552	112	141	6 6	5.00	90	8 254	15	0000	
	0 100		717	7 -	2 3700	15	8730	19	051	6 16	55	26	0.23	15 6	0.0000	
	5 737	72 2	720	0	1 0220	10	0000	20	017	7 6	0.000	0	0.000	0 0	0.0000	
	J. 151	ofh	. 120	• Edi		-	.0000	2 abo1	.01/	F . 12		obo6	0.000	0 0		
	: NI	01 0	onas	; EU	LSI;LP	pen;	1.0.;	pber	; pbo	5;150	.011	, pb00				
		4070	100	0.004	pbez;p	003;	pD04;1	n.u.	; pbo	1;000	02;01	COLL		44.67	0.00	
1	145.	4070	103.	0681	13.1	841	0.2	1/6	-0.	7816	1	.0000	28.	.4107	0.34	21
	0.	1111	-0.	1940	8.6	733	1.00	000	-0.	0994	5	.9724	1.	.0000	0.00	900
2	167.	1752	0.	0000	0.0	0000	-0.44	421	0.	0000	1	.0000	6.	.0000	0.59	96
	17.	4194	1.	0000	0.0	0000	1.00	000	-0.	0099	8	. 5445	0.	.0000	0.00	906
3	171.	0470	67.	2480	130.3	792	0.30	600	-0.	1696	1	.0000	12.	.0338	0.37	790
	0.	3647	-0.	2660	7.4	396	1.00	000	-0.	1661	5	.0637	0.	0000	0.00	900
4	123.	3159	0.	0000	0.0	000	1.04	464	0.	0000	1	.0000	6.	0000	0.34	130
	6.	1557	1.	0000	0.0	000	1.00	000	-0.	1907	4	6655	1.	.0000	0.00	900
2	188.	1606	0.	0000	0.0	000	-0.3	140	0.	0000	1	.0000	6.	.0000	0.68	310
	8.	6247	1.	0000	0.0	000	1.00	000	-0.	0183	5	7082	0.	.0000	0.00	000
3	216.	6018	0.	0000	0.0	000	-0.4	201	0.	0000	1	.0000	6.	.0000	0.91	14
	4.	7737	1.	0000	0.0	000	1.00	000	-0.	0591	5	9451	0	.0000	0.00	006
4	143.	5209	0.	0000	0.0	000	0.9	244	0.	0000	1	0000	6	0000	0.48	39
	3.	7612	1.	0000	0.0	000	1.0	000	-0.	1511	5	3134	1	0000	0.00	006
3	90	2465	160	9645	40.0	000	0.9	950	-0	2435	1	0000	28	1614	0.97	70
5	0	8145	-0	1850	7 5	281	1 0	999	-0	1283	6	2396	1	0000	0.00	100
1	0.	0000	0.	0000	0.0	000	0.5	562	0.	0000	1	0000	6	0000	0.00	200
4	0.	4250	0.	4577	12.7	560	1 0	202	0.	1100	7	1145	1	0000	0.00	
	0.	4259	-0.	45//	12.7	509	1.00	200	-0.	1100	1	. 1145	1.	.0000	0.00	
4	110.	9903	U.	0000	0.0	0000	0.2	123	0.	0000	1	.0000	0.	.0000	0.04	200
	1.	2513	1.	0000	0.0	0000	1.00	000	-0.	1969	. 0	.5238	1.	.0000	0.00	900
	! Nr	of c	b-tt-d	lagor	nal te	rms;	Edis	s;Ro	;gam	ma;rs	sigma	a;rpı	; []]	2		
2	0.	0455	1.	7218	10.4	236	1.0	379	-1.	0000	-1	.0000				
3	0.	1186	1.	9820	9.5	927	1.2	936	1.	1203	1	.0805				
4	0.	5076	1.	9364	10.1	175	1.4	125	-1.	0000	-1	.0000				
3	0.	0469	1.	9185	10.3	707	0.94	406	-1.	0000	-1	.0000				
4	0.	2412	1.	5000	9.1	407	1.3	138	-1.	0000	-1	.0000				
4	0.	1359	2.	0203	10.1	000	1.60	050	1.	3050	-1	.0000				
	! Nr	ofa	Ingle	s;at:	1;at2;	at3;	Theta	0,0;	ka;k	b;pv1	;pv2	2				
1	1	70.02	65	13.63	338	2.18	84 (0.00	00	0.16	576	26.3	587	1.04	100	
1	2	69.77	86	10.3	544	8.43	26 (0.00	00	0.11	153	0.0	000	1.04	100	
1	3	72.95	88	16.7:	105	3.524	44 (0.00	00	1.11	127	0.0	000	1.18	880	
1	4	81.70	78	19.9	130	7.15	52 (9.14	63	2.44	164	0.0	000	1.70	29	
2	1	0.00	000	3.4	110	7.73	50 (9.00	00	0.00	000	0.0	000	1.04	100	
3	1	79.10	91	45.00	000	0.70	67 (0.00	00	0.61	42	0.0	000	1.07	783	
3	2	78.15	33	44.7	226	1.31	36 (0.00	00	0.12	18	0.0	000	1.0	500	
3	3	83 71	51	42 65	867	0.96	99 (0.00	00	0.61	42	0.0	000	1.07	783	
2	4	85 36	44	36 00	051	2 00	93 (0.00	63	0.01	50	0.0	000	1.0/	100	
1	1	70 71	22	22.20	000	6 11	10	0.14	62	2 10	50	0.0	000	1 00	75	
4	2	06 17	22	36 0	051	2 004	02	0.14	00	0.00	000	0.0	000	1.00	100	
4	2	00.1/	91	30.9	100	2.090	03 (0.00	60	0.00	000	0.0	000	1.04	100	
4	3	05.30	44	30.99	100	2.090	03 (0.14	03	0.05	222	0.0	000	1.04	100	
4	4	70.21	50	21.0	147	2.590	08 (0.14	03	1.98	399	0.0	000	1.84	100	
1	2	14.60	20	11.80	529	2.929	94 (0.00	00	0.13	367	0.0	000	1.04	100	
1	3	66.61	50	13.64	403	3.82	12 (0.00	00	0.07	55	0.0	000	1.05	00	
1	4	74.93	97	25.0	560	1.878	87 (0.00	00	0.00	000	0.0	000	1.04	100	
3	2	79.29	54	26.38	838	2.204	44 (0.00	00	0.12	218	0.0	000	1.05	500	
3	3	84.10	57	9.64	413	7.500	00 00	0.00	00	0.12	218	0.0	000	1.05	500	
3	4	84.10	57	9.64	413	7.500	90 (0.00	00	0.12	218	0.0	000	1.05	500	
4	2	66.77	04	22.1	733	3,620	03 (0.00	00	2,39	97	0.0	000	1.04	100	

ParAMS: GUI + scripts for Parametrization GloMPO: Global parallel optimizations

- Build training sets with AMS ulletADF, BAND, (+VASP, QE, Gaussian) \bigcirc
- Define references & loss function
- Choose & optimize parameters
 - Lennard-Jones \bigcirc
 - ReaxFF \bigcirc
 - DFTB \bigcirc
 - AMS2024: ML Potentials (active learning) 0

• Validate (& iterate)

- Komissarov, L.; Rüger, R.; Hellström, M.; Verstraelen, T. ParAMS: • Parameter Optimization for Atomistic and Molecular Simulations J. Chem. Inf. Model. 2021, 61, 8, 3737-3743
- Freitas Gustavo, M., Verstraelen, T. GloMPO (Globally Managed Parallel Optimization): a tool for expensive, black-box optimizations, application to ReaxFF reparameterizations. J. Cheminform. 2022, 14, 7.

New parameters for every evaluation

- "Anything" that can be extracted from
 a job can be used as a reference value
- Forces, atomic charges

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul© SCM24

- "Anything" that can be extracted from
 a job can be used as a reference value
- (optimized) Bond distances, angles

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul© SCM25

"Anything" that can be extracted from
 a job can be used as a reference value

PES Scans: Energy vs. bond length, angle, or cell volume

26

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM

Values from **multiple jobs**: Reaction energies (adsorption energy, surface energy, formation energy, ...)

 $C_3H_6(g) + (9/2) O_2(g) \rightarrow 3 CO_2(g) + 3 H_2O(g)$

 $\Delta H_{r}^{0} = -491.8 \text{ kcal/mol}$

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM 27

"Anything" that can be extracted from **jobs** can be used as a reference value

Forces, atomic charges

Optimized bond lengths or angles

PES Scans: Energy vs. bond length, angle, or cell volume

Reaction energies (adsorption energy, surface energy, formation energy, ...)

Example reference values: Charges and forces of chloromethane

ParAMS 2022.101

weight.	+1.000000000			
Value:	-0.016768241	+0.018544396	-0.018888589	
	+0.043055409	-0.109488031	-0.015582138	
	-0.022345467	+0.073456592	+0.026842484	
	-0.002046089	+0.011289727	+0.017385490	
	-0.001895612	+0.006197316	-0.009757247	

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Example reference values: Optimized bond lengths and angles

For bond lengths and angles, add **geometry optimization** jobs!

All	Jobs	Training Set Validation Set Engines						
Тур	e 🔻	Detail						
Engin	ie	Engine lennardjones EndEngine						
Job		Geometry Optimization + gradients +						
Engin	ie	Engine adf xc gga PBE End EndEngine						
Geo: distanc		chloromethane-geometryoptimization, 0, 1 (C-Cl)						
Geo:	distanc	chloromethane-geometryoptimization, 0, 2 (C-H)						
Geo:	angle	chloromethane-geometryoptimization, 1, 0, 2 (Cl-C-H)						
Geo:	angle	chloromethane-geometryoptimization, 2, 0, 3 (H-C-H)						

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

I

Example reference values: Bond scan, angle scan, lattice scan

For PES scans, add **PES Scan** jobs!

,		
I	All Jobs	Training Set Validation Set Engines
	Туре 🔻	Detail
	Engine	Engine lennardjones EndEngine
	Job	PES Scan + gradients +
	PES	chloromethane-bondscan, relative_to=3
Job chloromethane-bondscan	Engine	Engine adf xc gga PBE End EndEngine
	Q	
Parameters Settings Info Graphs Results		
W-S-FF (1. 00000000		

Weight:	+1.000000000				
Value:	+9.607422193 +1.763552064	+4.075588043 +3.960264837	+1.082804509	+0.00000000	+0.348957323

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

T	JobID	W 🔻	Value / Engines	
			ParAMS	
	chloromethane-bondscar		adf;;xc;;gga;PBE;	
	chloromethane-bondscar	1.0	[0.0000, 9.6074] (7)	kcal/mol
			adf;;xc;;gga;PBE;	

Example reference values: Reaction energy

▶ Propene combustion: $C_3H_6(g) + (9/2)O_2(g) \rightarrow 3CO_2(g) + 3H_2O(g)$

Automatically balanced stoichiometric coefficients!

All Jobs	Training Set Validation Set Engines
Туре 🔻	Detail
Engine	Engine lennardjones EndEngine
Job	Geometry Optimization +
Engine	Engine adf xc gga PBE End EndEngine
Job	Geometry Optimization +
Job	Geometry Optimization +
Job	Geometry Optimization +
Engine	Engine adf spinpolarization 2 unrestricted yes xc gga
Energy	+3.0*co2+3.0*water-1.0*propene-4.5*o2

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Ŧ	JobID	• W •	Value / Engines	
			ParAMS	
	water		adf;;xc;;gga;PBE;	
			adf;;xc;;gga;PBE;	
	propene		adf;;xc;;gga;PBE;	
	co2		adf;;xc;;gga;PBE;	
	o2		adf;;spinpolarization;2;unr	
PBE			adf;;spinpolarization;2;unr	
	propene	1.0	-358.85844881	kcal/mol

ParAMS settings

- Which parameters to optimize?
- Choose as **few** as possible
- First try parameters in the "**standard**" category
- If a parameter value is close to min/max, change the range and continue
- Which optimization algorithm?
- We recommend **CMA-ES** for most optimization problems
- Webinar about this algorithm: https://youtu.be/lcv7kWUaoTl

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Pi bond order parameter (eq. 2) Pi bond order parameter (eq. 2) Sigma bond order (eq. 2) Sigma bond order (eq. 2) Uncorrected BO overcoordination (eq. 3a) eReaxFF param for adjusting number of electr

Tutorial: reparametrize xTB for LiF

Reparametrize repulsive xTB parameters against DFT EOS + exp H_{f} https://www.scm.com/doc/params/examples/xtb_lif/xtb_lif.html

Example: reparametrize xTB for TiO₂

Diagonal stress tensor

Example: reparametrize xTB for perovskites

S. Raaijmakers, M. Pols, J. M. Vicent-Luna, S. Tao, *Refined GFN1-xTB Parameters for* Engineering Phase-Stable CsPbX3 Perovskites, J. Phys. Chem. C, 126, 9587-9596 (2022)

SCM

Demo: fix CO₂ bond scan

S	= Settings()
p p	<pre>arameter_interface = ReaxFFParameters(settings=s,ffieldfile='AgZnO.ff') arameter_interface.yaml_store(os.path.join(params_folder,'parameter_interface.ya</pre>
p	arameter_interface.header['head'] = "Reparametrization of AgZnO.ff"
f	or p in parameter_interface:
	<pre>if p.name in ['C.O:D_e^pipi','C.O:r_0^pipi']:</pre>
	p.is_active = True
p	arameter_interface.yaml_store(os.path.join(params_folder,'parameter_interface.ya

Energy (eV)

2

0.

JuPyter Notebook: CO2-reparam.ipynb GUI files in CO2-reparam directory

(Multi-scale) modeling OLED materials

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Integrated OLED multi-level modeling

- Maximize luminescence
- Optimize color
- Minimize destructive processes
- **Optimize charge & exciton transport**

same properties

Predict, understand & improve with atomistic modeling

Interactions between materials determine device-level behavior

Predict, understand & improve with meso- & macroscale modeling (with Simbeyond)

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM 39

Atom & electrons determine single material properties

Optimize OLED emitter lifetimes

ADF 2005: Spin-orbit TDDFT => phosphorescence lifetimes

- BASF: efficient blue emitter (Adv. Mater. 2010), patent 2016 (=> UDC)
- **DuPont:** protocol for screening lifetimes (JPCC 2013)

SCM

Optimize OLED emitter color / emission width

- Excellent agreement vibrational progression FCF T_1 - S_0 \bullet
- 0-0 well reproduced by Delta SCF calculation (22,000 cm⁻¹)

SCM

Optimize TADF emission rate

S1

Spin-orbit TDDFT => Intersystem crossing

- Min. S_1 - T_1 gap & Max. SOC
- Min. emission width
- Max. k_{phos} & k_{TADF}

SCM

- Z.-M. Su et al Dyes & Pigments 2017, Bredas et al. J. Am. Chem. Soc. 2017
- OSRAM: patent 2018, Cynora: patent 2019
- blue TADF emitter: Nanomat. 2019; Organic Electronics 2020

Emission width TADF emitters: faster calculations

quicker screening vibronic spectrum **DABNA** & related TADF emitters

Protocol + modify -> python workflow-> cluster/cloud

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM

Optimize charge mobility (OLED, OFET)

- 2003: easy to get transfer integrals from ADF (fragment-based)
- 2007: organic semiconductors (BASF): hole and electron mobility

• Solubility / miscibility: COSMO-RS

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM 44

From adiabatic states (FDE)

- **Environment polarization**
- Charge generation
- Charge recombination
- **Exciton transfer**

Ionization Potentials & Electron Affinities: <u>qsGW</u>

- Quasiparticle self-consistent GW: can use a GGA
- Spin-orbit coupling and excitations with BSE possible (<u>qsGW-BSE</u>)
- In progress: qsGW embedding, alternative: COSMO corr. with DFT

 A. Förster, L. Visscher, Low-Order Scaling Quasiparticle Self-Consistent GW for Molecules, <u>Frontiers in Chemistry, 2021,</u> <u>9: 736591</u>; A. Förster, L. Visscher, Quasiparticle Self-Consistent GW-Bethe-Salpeter equation calculations for large chromophoric systems, <u>J. Chem. Theory Comput. 2022, 18, 11, 6779–6793</u>

<u>Webinar</u>

Recommended:qsGWTZ2P or larger

IP = -HOMO EA = -LUMO

iA ossible (<u>qsGW-BSE</u>) SMO corr. with DFT

Accurate predictions, IP, EA, S1, T1

- Gas phase HOMO/LUMO can be well trained with NN
- Environment effects important!
- Fast GW + BSE (webinar)
- Bottleneck: deposition

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Deposition: sequential = slow

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Ionization Potentials & Electron Affinities: workflow

1) deposit (UFF4MOF-II) Video

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM

48

OLEDs: Optimize many materials & properties

- Molecular level:
 - Electron affinity(EA)/LUMO 0
 - Ionization potential(IP)/HOMO 0
 - Decay rates 0

SCM

- **Exciton energies**
- **Transfer integrals** 0

Predict promising materials + stacks

Simulation Material experiments Device experiments New product

material database

Device level: kMC, OL-ME + scaling (x10)

- Material combinations
- Layer thickness
- Material concentrations

Multi-scale OLED workflow

Webinar

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Pilot project: hyperfluorescent devices

. Experimental^{**} and computed^{*} IP in OK agreement . Experimental J(V) trends well captured by simulations . Speed vs accuracy

> * Calculated values from multiscale toolchain *Experimental values Cynora

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM 51

Demo: qsGW+BSE (tutorial)

AMSinput 2023.103			
SCM File Edit Select Atoms Bonds View Help			
	ADF	Main Model Propert	Details Mi
			GW
	Calcula	te GW quasi-particle e	nergies: <mark>= Yes</mark>
	Print a	l solutions:	□ Yes
	Self en	ergy:	GW
$\mathbf{\Psi}$	N state	es:	
	Self co	nsistency:	QSGW
	QPHan	niltonian:	KSF2
	Numbe	er of iterations:	
	номо	energy convergence:	
there with	Density	/:	1
	Linear	mixing:	
	DIIS:		
	Fixed	jrids:	□ Yes
J			
/mmol: D(6H) symmetry enforced	C6 H6		
► CONHCIX, O ★			
		A11 ST	IGLET-TR
		ALC DI	INCLUE IN
		no.	E/a.u.
		1:	0.136
		2:	0.181

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

	- 0	×			
ItiLevel		Q			
	(0			
	•				
5	- Anna fa				
(-				
	•				
10					
0.003 eV •					
.e-08	1e-05				
10					
10					
	ADF Main	Model Propert	ties Details MultiLe	vel O	2
		EXCI	tations (UV/Vis), CD	99	
	Type of excit	ations:			
	Type of excit		TripletOnly	•	
	Method:		PCE	-	
			BSE	•	
	TDA:		Yes		
	Number of ex	xcitations:	2		
IPLET (excitatio	n energies			
		_			
	E/eV	f	tau/s	Symmetry	
28	3.70847	0.000		B1.u	
39	4.93582	0.000		B2.u	

Modeling battery materials

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Properties for battery materials

- Charge mobility, diffusion, viscosity
 - ReaxFF, APPLE&P, DFTB-MD 0
 - **NEGF:** I-V curves, mobility across interface Ο
 - Electrolyte solubility & electrochemistry
 - Accurate redox potentials (ADF+COSMO-RS), ionization potentials Ο
 - Solubility: COSMO-RS Ο
 - (e)ReaxFF: electrolyte degradation Ο
 - ReaxFF, DFTB, BAND, polymer properties (band gaps) Ο
 - **BAND:** include solvation, E field 0
 - (Dis)charge processes

SCM

- **GCMC** with ReaxFF, or DFT(B)
- Understand battery 'operando'
 - ADF Spectroscopy: NMR, NEXAFS

Solvation energies, redox potentials, NMR spectra

Developing non-flammable electrolytes: DFT + Continuum Solvation (COSMO) aids experiments

A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries, Nature Energy 3, 508-514 (2018) Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries, Nature Energy 3, 674–681 (2018)

Solvation energies, redox potentials, NMR spectra

(python) workflow screening redox potentials: $E^{\circ} = -\Delta G (A + e^{-} \rightarrow A^{-})/F$ (reduction)

DFTB + solvation (first pass) -> ADF + solvation (more accurate) Use directly with COSMO, or through thermodynamic cycle with COSMO-RS

J. Belić, A. Förster, J. P. Menzel, F. Buda, and L. Visscher, Automated assessment of redox potentials for dyes in dye-sensitized photoelectrochemical cells, Phys. Chem. Chem. Phys. 24, 197-210 (2022)

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Screening polymers for Lithium Ion Batteries

Screening band gaps and lithiation energies with 1D periodic DFT + COSMO

H. Lu, J. Yu, G. Chen, and S. Sun, Theoretical screening of novel electrode materials for lithium-ion batteries from industrial polymers, lonics (2019)

SCM

Discharge process Li-S batteries

- Cathode expansion
- Voltage reduction

SCM

Diffusion induced stress

 $S_8 \longrightarrow Li_2S_8 \longrightarrow Li_2S_6 \longrightarrow Li_2S_4 \longrightarrow Li_2S_3 \longrightarrow Li_2S_2 \longrightarrow Li_2S$

Tutorials: <u>Battery discharge</u> (GCMC) & <u>Li ion diffusion</u>

Battery discharge video

M. M. Islam, A. Ostadhossein, O. Borodin, A. T. Yeates, W. W. Tipton, R. G. Hennig, N. Kumar, and A. C. T. van Duin, *ReaxFF* molecular dynamics simulations on lithiated sulfur cathode materials, <u>Phys. Chem. Chem. Phys. 17</u>, 3383-3393 (2015)

October 2023, Seoul © SCM 58

Teflon protects electrolyte in Li battery

Teflon layer on anode-electrolyte interface significantly reduces lithium reactivity and diffusion through the electrolyte phase

~ 450ps

Li discharge

J. Electrochem. Soc. 161, E3009-E3014 (2014).

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM 59

~ 1ns

Solid electrolyte interface formation Lithium Ion Batteries

ReaxFF protocol to study the initial formation stages of SEI formation

Wang J, Liun Y, Tu Y, Wang Q, Reductive **Decomposition of Solvents and Additives** toward Solid-Electrolyte Interphase Formation in Lithium-Ion Battery, J. Phys. Chem. (2020).

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM

SEI

60

eReaxFF – explicit electrons

Reductive decomposition of ethylene carbonate in Li ion batteries

•

Setup: Li-atom \rightarrow

(Li⁺/e⁻ -pair)

eReaxFF video

M. M. Islam and A. C. T. van Duin, J. Phys. Chem. C 2016, 120 (48), 27128-27134.

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM 61

eReaxFF – Li on graphitic anodes

eReaxFF to study electron mobility & Li ion reduction, including (video) - explicit electrons

- electric fields

Md Jamil Hossain *et al. J. Electrochem. Soc.* **169**,110540 (2022)

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM 62

MLPotentials for (battery) materials

M3GNet, trained to Materials Project 1000x faster than DFT

C. Chen, S.P. Ong., Nature Comp. Sci. 2, 718–728 (2022)

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

• Li intercalation potentials accurately predicted with DFT (~100 atoms) M3GNet reproduces DFT really well

- Li potential
- Mechanical properties of electrode (volume change upon lithiation)

Diffusion, Conductivity with APPLE&P

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul© SCM64

Polarizable force field for batteries, ionic liquids, fuel cells

APPLE&P MD simulations: ion dynamics within 15-20% from experiment

More transferable than non-polarizable force fields with rescaled ion charges

Chem. Rev. 2019, 119, 7940

Kinetic Monte Carlo: SEI dendrite formation

Modified (py)Zacros kMC to study dendrite formation

Inspired by Surface diffusion manifestation in electrodeposition of metal anodes, PCCP 2020 (22), 11286

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM

3 Processes (rates can be computed with AMS):

65

Demo: Li diffusion (tutorial)

M3GNet, trained to Materials Project 1000x faster than DFT

M3GNet: C. Chen, S.P. Ong., Nature Comp. Sci. 2, 718-728 (2022)

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

Reaction discovery

1st expedition with 3 explorers

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

AutoCheMo: Automatic generation of Chemical Models

4 PhD projects, in collaboration with Universities of Gent and Aachen:

Molecular Graph

- Complex reaction networks, automatic rates \bullet
- Semi-automatic ReaxFF force field parameterization
- Efficient methods to estimate and optimize ReaxFF parameters lacksquare
- Large amplitude motions

87 parameter Disulfide ReaxFF reparameterization

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

ChemTraYzer2

ParAMS

GIOMPO

CIMCI

Grant #814143, Finished Sept. 2022 with Verstraelen, Leonhard

ReaxPro: Multi-Scale Reactive Process Design

PES exploration

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

PES exploration

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

AutoReactPro: Automated Prediction **Side Reactions for Process Design**

+ hundreds more ...

SCM

This project has received funding from the Eurostars-2 joint programme with co-funding from the European Union Horizon 2020 research and innovation programme

with Hafnium Labs

Thermodynamics (calc + exp)

Nanoreactor

External Force

Discovering chemistry with an *ab initio* nanoreactor

Lee-Ping Wang, Alexey Titov, Robert McGibbon, Fang Liu, Vijay S. Pande & Todd J. Martínez

Nature Chemistry 6, 1044–1048 (2014) Cite this article

Coordinate Rescaling

ACE-Reaction: Automatic Reaction Discovery

Y. Kim, J. W. Kim, Z. Kim and W. Y. Kim, Chem. Sci. 2018, 9, 825; JPCA 2019, 123, 4796.

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM 73
Demo reactivity exploration: oxirane

<u>NEB</u>

PES exploration

Files in Reactions-oxirane directory

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul

ACE-Reaction

Nanoreactor

Ongoing developments in AMS

- OLEDs: faster deposition, exciton couplings, GW + polarizable embedding
- Machine learning potentials
 - Reactive potentials: CHGNet, ANI-xnr, Open Catalyst Project Ο
 - **On-the-fly learning: NEquIP, FLARE** Ο
- Further integration Quantum ESPRESSO (phonons, Raman(?), ParAMS, ...)
- Charged periodic systems (defects, electrochemistry??)

Training MLP with ParAMS Active learning workflow Initial Use ML to **Train ML** dataset generate new data Geometry Training 1.1 optimization 9 training ~10 steps 5 validation -1146.1 -1146.15-1146.25 -1146.3-46.35-1146.4-1146.45 -1146.5 1146.55--1146.6--1146.65--1146.7 1146.75 -1146.8 4 6 Frame numbe

Training MLP with ParAMS

Active learning workflow

Training MLP with ParAMS Active learning workflow

Amsterdam Modeling Suite seminar, 19 October 2023, Seoul © SCM 79

MAE = 1.83 eV/A

Active learning workflow No **Replay with** Initial Use ML to Accurate? **Train ML** dataset generate new data DFT Geometry 12.5 fs NVT 100 K Forces Training 1.2 optimization 25 fs NVT 100 K 13 training DFT references (eV/Å) ~10 steps 6 validation 50 fs NVT 100 K y = xetc. -5 --1146.1 -1146.15-1146.2 -0.05 0.00 0.05 0.10 -0.15 -0.10 0.15 0.20 146.25 Predictions (eV/Å) 46.35 1146.4-1146.45--1146.5 1146.55--1146.6--1146.65 -1146.7 1146.75 MAE = 1.83 eV/A

Active learning workflow No **Replay with** Initial Use ML to Accurate? **Train ML** dataset DFT generate new data Geometry Forces 12.5 fs NVT 100 K Training 1.3 optimization 25 fs NVT 100 K 17 training references (eV/Å) ~10 steps 7 validation 50 fs NVT 100 K etc. DFT -1146.15--2 -3 -10 Predictions (eV/Å) 1146.4-1146.45 -1146.5 1146.55 -1146.6-1146.65 -1146. 1146.75 MAE = 1.32 eV/A

No **Replay with** Initial Use ML to Accurate? **Train ML** dataset DFT generate new data Geometry 12.5 fs NVT 100 K Forces Training 1.4 optimization 21 training 25 fs NVT 100 K references (eV/Å) ______ ~10 steps 50 fs NVT 100 K 8 validation etc. DFT -1146.15--1-2 Predictions (eV/Å) 1146.4-1146.45 -1146.5 1146.55 -1146.6-1146.65 -1146. 1146.75 MAE = 0.26 eV/A

Active learning workflow

Training MLP with ParAMS Active learning workflow No **Replay with** Initial Use ML to Accurate? **Train ML** dataset DFT generate new data Geometry 12.5 fs NVT 100 K Forces Training 1.5 optimization 25 fs NVT 100 K 25 training DFT references (eV/Å) ~10 steps 9 validation 50 fs NVT 100 K etc. -1146.15--2 -1Predictions (eV/Å) 1146.4-1146.45 -1146.5 1146.55 -1146.6-1146.65 -1146. 1146.75 MAE = 0.25 eV/A

Active learning workflow No **Replay with** Initial Use ML to Accurate? **Train ML** dataset DFT generate new data Geometry 12.5 fs NVT 100 K Forces Training 1.16 optimization 69 training 25 fs NVT 100 K references (eV/Å) ~10 steps 20 validation 50 fs NVT 100 K etc. -1146.15--1 -3 Ó -2 Predictions (eV/Å) 46.35 1146.4-1146.45 -1146.5 1146.55 -1146.6-1146.65 -1146. 1146.75 MAE = 0.10 eV/A

Active learning workflow Yes **Replay with** Initial Use ML to Accurate? **Train ML** dataset DFT generate new data Geometry Forces 12.5 fs NVT 100 K Training 1.16 optimization 25 fs NVT 100 K 73 training references (eV/Å) ~10 steps 50 fs NVT 100 K 21 validation etc. DFT -1146.15--12 -2 Predictions (eV/Å) 1146.4-1146.45 -1146.5 1146.55 -1146.6-1146.65 -1146. 1146.75 MAE = 0.18 eV/A

Active learning workflow Initial Use ML to **Train ML** dataset generate new data 12.5 fs NVT 100 K Geometry Training 14.9 25 fs NVT 100 K optimization 220 training es (eV/Å) ~10 steps 55 validation referenc 2.5 ps NVT 300 K DFT -1146.15 -1.51146.4-146.45 -1146.5 1146.55 -1146.6-1146.65 DFT MLP Normal 0.03 SCM 1000 1500 2000 2500 3000 Frequencies (cm⁻¹)

Amsterdam

amshome/scripting/scm/params/examples/ActiveLearning

86

NVT@300K

Training MLP with ParAMS

Summary

- Compute the initial training set of reference calculations
- Select the ML model to optimize (nequip, flare)
- Define the series of test tasks (default/custom)
- Run an interactively follow the training procedure

매우 감사합니다! Let us help you accelerate your R&D!

Important properties? Most exp. costs/time? Need help setting up? Errors?

<u>support@scm.com</u> <u>goumans@scm.com</u> (주)티앤제이테크 comj@tnjtech.co.kr

