

ADF Technical overview

Mirko Franchini

TCCM Workshop April 19 | Amsterdam

The Kohn-Sham equations

$$\left(-\frac{1}{2}\nabla^2 + V_{\rm nuc}(\mathbf{r}) + V_{\rm C}[\rho, \mathbf{r}] + V_{\rm XC}[\rho, \mathbf{r}]\right)\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r}) \qquad \rho = \sum_i |\phi_i(\mathbf{r})|^2$$

The Kohn-Sham equations

$$\left(-\frac{1}{2}\nabla^2 + V_{\text{nuc}}(\mathbf{r}) + V_{\text{C}}[\rho, \mathbf{r}] + V_{\text{XC}}[\rho, \mathbf{r}]\right)\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r}) \qquad \rho = \sum_i |\phi_i(\mathbf{r})|^2$$

Kinetic energy

The Kohn-Sham equations

$$_{
m nuc}({f r}) = \sum_{I\in
m nuclei} \overline{|{f r}-{f R}_I|}$$

The Kohn–Sham equations

The Kohn–Sham equations

Self-Consistent Field: SCF

Self-Consistent Field: SCF

Self-Consistent Field: SCF

Kohn-Sham Equation (difficult to solve)

$$\left(-\frac{1}{2}\nabla^2 + V_{\rm nuc}(\mathbf{r}) + V_{\rm C}[\rho, \mathbf{r}] + V_{\rm XC}[\rho, \mathbf{r}]\right)\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

Kohn-Sham Equation (difficult to solve)

basis set expansion

$$\left(-\frac{1}{2}\nabla^2 + V_{\text{nuc}}(\mathbf{r}) + V_{\text{C}}[\rho, \mathbf{r}] + V_{\text{XC}}[\rho, \mathbf{r}]\right)\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

 $\left(-rac{1}{2}
abla^2 + V_{
m nuc}(\mathbf{r}) + V_{
m C}[
ho,\mathbf{r}] + V_{
m XC}[
ho,\mathbf{r}]
ight)\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$ Kohn-Sham Equation (difficult to solve) $\phi_i(\mathbf{r}) = \sum_j c_{ij} \chi_j(\mathbf{r})$ basis set expansion orbital expansion coefficients basis functions $\sum_{j}F_{ij}C_{jk}=\epsilon_{i}\sum_{j}C_{ij}S_{jk}$ Fock Matrix Kohn-Sham Equation In matrix form Overlap matrix (easy to solve) $F_{ij} = \int \chi_i(\mathbf{r}) \left(-rac{1}{2}
abla^2 + V_{
m nuc}(\mathbf{r}) + V_{
m C}[
ho,\mathbf{r}] + V_{
m XC}[
ho,\mathbf{r}]
ight) \chi_j(\mathbf{r}) d\mathbf{r}$ $S_{ij} = \int \chi_i(\mathbf{r}) \chi_j(\mathbf{r}) d\mathbf{r}$

- What basis function do we use in ADF?

- How do we calculate the integrals?

Fock matrix
$$F_{ij} = \int \chi_i(\mathbf{r}) \left(-\frac{1}{2} \nabla^2 + V_{\text{nuc}}(\mathbf{r}) + V_{\text{C}}[\rho, \mathbf{r}] + V_{\text{XC}}[\rho, \mathbf{r}] \right) \chi_j(\mathbf{r}) d\mathbf{r}$$

Overlap matrix $S_{ij} = \int \chi_i(\mathbf{r}) \chi_j(\mathbf{r}) d\mathbf{r}$

Basis functions: LCAO (linear combination of atomic orbitals)

	Basis set expansion: ort	$\phi_i(\mathbf{r}) = \sum_j c_{ij} \chi_j(\mathbf{r})$ bital expansion coefficients	basis functions
ADF	STO (slater type orbital)	$r^n e^{-\zeta r} Z_{\ell m}(\theta,\phi)$	Solutions of H atom
Band	NAO (numerical atomic orbital)	$N(r)Z_{\ell m}(heta,\phi)$	Numerical solutions for isolated atoms
	GTO (gaussian type orbital)	$r^n e^{-ar^2} Z_{\ell m}(\theta,\phi)$	Mathematically convenient (looks a bit like a STO)

Fock-Matrix: how do we calculate these integrals?

$$egin{aligned} &\int -rac{1}{2}\chi_i(\mathbf{r})
abla^2\chi_j(\mathbf{r})d\mathbf{r} \ &\int \chi_i(\mathbf{r})V_{
m nuc}(\mathbf{r})\chi_j(\mathbf{r})d\mathbf{r} \ &\int \chi_i(\mathbf{r})V_{
m C}[
ho,\mathbf{r}]\chi_j(\mathbf{r})d\mathbf{r} \ &\int \chi_i(\mathbf{r})V_{
m XC}[
ho,\mathbf{r}]\chi_j(\mathbf{r})d\mathbf{r} \end{aligned}$$

Fock-Matrix: how do we calculate these integrals?

 $\int \chi_i(\mathbf{r}) V_{\mathrm{XC}}[
ho,\mathbf{r}] \chi_j(\mathbf{r}) d\mathbf{r}$

Fock-Matrix: how do we calculate these integrals?

Choosing the right integration grid is important!

Wrapping up

- Kohn-Sham Equation: high non-linearity $\rightarrow \mathsf{SCF}$

- Basis set: integro-differential eq. \rightarrow eq. in matrix form

 $\int \chi_i(\mathbf{r}) V_{\rm XC}[\rho,\mathbf{r}] \chi_j(\mathbf{r}) d\mathbf{r}$

ADF: selected features

Technical:

- Relativistic effects (ZORA, spin-orbit coupling)
- XC: GGAs, meta-GGAs, Hybrids, RS-hybrids
- Efficiently parallelized, linear scaling techniques

Miscellaneous Features:

- Geometry optimization, transition state, IR frequencies
- Solvents and environments: COSMO, QM/MM
- Analysis: energy decomposition, bond analysis
- Electronic transport: NEGF, transfer integrals

Spectroscopy:

- IR, Raman, VCD, Franck-Condon factors
- UV/Vis spectra (TD-DFT)
- Frequency-dependent (hyper-)polarizability
- NMR chemical shift and spin-spin coupling
- ESR (EPR) g-tensor, hyperfine A-tensor, ZFS
- Mössbauer spectroscopy, NRVS

Hands-on session

ADF tutorials: https://www.scm.com/documentation/Tutorials/

- ADF-GUI Tutorial 1: Excitation energies and UV/Vis spectrum of ethene

- ADF-GUI Tutorial 2: Vibrational frequencies and IR spectrum of ethane

- Exercises / AMA (ask me anything)

Spectroscopy

TCCM workshop | 19 April 2016

Interaction between matter and electromagnetic radiation

Electronic excitations: Time-dependent DFT (TD-DFT)

Kohn-Sham equations (ground state)

$$(T + V_{\text{nuc\⪙}}[\rho] + V_{\text{XC}}[\rho])\phi_i = \epsilon_i\phi_i$$

Time dependent Kohn-Sham equations (excited states)

$$i\frac{\partial\phi_i}{\partial t} = (T + V_{\text{el-el\&nuc}} + V_{\text{ext}}(t))\phi_i$$

Linear response:

- excitations energies
- oscillator strength

(Line width: gaussian convolution)

Vibrational spectroscopy

Infra red (IR) spectroscopy: absorption of light to excite molecular vibrations

Molecular vibration — Newtonian mechanics

Harmonic approximation (at the optimized geometry): - parabolic potential wrt nuclear displacements

Normal modes 'Q': from Hessian

$$H_{ij} = \frac{\partial^2 E}{\partial x_i \partial x_j}$$

Absorption intensity:

$$I_{IR} \propto \left(\frac{d\mu}{dQ}\right)^2$$

