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Assumptions in Quantum Chemistry
● Born-Oppenheimer approximation

● Electronic and nuclear motion can be decoupled
● Electronic energies for motion around clamped nuclei provide 

potential energy surfaces for nuclear motion
● Coupling between surfaces can be studied by perturbation theory

● Nuclear charge distribution
● Point nucleus approximation
● Nuclear deformations are treated in perturbation theory

● Relativity
● The speed of electrons is always far below the speed of light
● Goal is to find time-independent wave functions (stationary states) 
● Magnetic effects are neglected or treated in perturbation theory
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Dirac’s view
● Dirac (1929) 

● The general theory of quantum mechanics is now
almost complete, the imperfection that still remain
being in connection with the exact fitting in of the 
theory with relativistic ideas. These give rise to
difficulties only when high speed particles are 
involved, and are therefore of no importance in 
the consideration of atomic and molecular
structure and ordinary chemical reactions in wich
it is, indeed, usually sufficiently accurate if one
neglects relativity variation of mass with velocity
and assumes only Coulomb forces between the 
various electrons and atomic nuclei. 

● The fundamental laws necessary for the 
mathematical treatment of large parts of physics 
and the whole of chemistry are thus fully known, 
and the difficulty lies only in the fact that 
application of these laws leads to equations that 
are too complex to be solved.
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Later insights
● Pekka Pyykkö and Jean-Paul Desclaux (1979)

● The chemical difference between the fifth row and the 
sixth row seems to contain large, if not dominant, 
relativistic contributions which, however, enter in an 
individualistic manner for the various columns and 
their various oxidation states, explaining, for example, 
both the inertness of Hg and the stability of 
Hg2

2+.These relativistic effects are particularly strong 
around gold. A detailed understanding of the interplay 
between relativistic and shell-structure effects will form 
the impact of relativity on chemistry.

● Jan Almlöf & Odd Gropen (1996)
● While the incorporation of these effects sometimes 

increases the computation labor, the increase is 
generally reasonable, and certainly much less than in, 
e.g. the transition from semiempirical to ab initio 
methods for routine quantum chemistry applications. 
We predict, therefore, that relativistic corrections in 
one form or another will be included in the majority of 
all quantum chemistry calculations before the end of 
this decade.



Special relativity

Postulate 1: All inertial frames are equivalent

Postulate 2: The laws of physics have the same form in 
all inertial frames

Lorentz coordinate transformations mix time and space

Postulates hold for electromagnetism (Maxwell relations)
Postulates do not hold for Newtonian mechanics

Develop quantum theory from classical relativistic equations 
and make sure electron spin is described
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The Dirac equation

J First derivatives with respect to time and position
J Linear in scalar and vector potentials

J Lorentz invariant

α and β are 4-component matrices
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The Dirac Hamiltonian
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Four component wave function

1) Spin doubles the number of components

2) Relativity doubles the number of components again



Charge and current density

• Charge density

• Current density

• Continuity relation
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ρ r, t( ) = qψ† r, t( )ψ r, t( )
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j r,t( ) = qψ† r,t( ) cα ψ r,t( )
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∂ρ r, t( )
∂t

+∇ ⋅ j r,t( ) = 0

cα is the relativistic velocity operator
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Free particle Dirac equation 

● Take simplest case : φ = 0 and A = 0
● Use plane wave trial function
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k± = kx ± iky

Non-relativistic functional form with constants ai
that are to be determined

After insertion into time-independent
Dirac equation



Free particle Dirac equation 

● Two doubly degenerate solutions

● Compare to classical energy expression

● Quantization (for particles in a box) and prediction of 
negative energy solutions

  

€ 

E2 −m2c4 − c22k2( ) = 0

E+ = + m2c4 + c22k2

E− = − m2c4 + c22k2

E = m2c4 + c2 p2



Lucas Visscher – ACMM - VU University Amsterdam - 11Lucas Visscher – ACMM - VU University Amsterdam - 11

Dirac sea of electrons
● Negative energy solutions are all 

occupied

● Pauli principle applies

J Holes in this sea of electrons are 
seen as particles with positive 
charge: positrons (1933)

L Infinite background charge

¤ QED (Quantum Electrodynamics) 
to properly account for 
contribution of negative energy 
states

¤ No-pair approximation

mc2

-mc2

2 e– 3 e– + 1 e+2mc2



The hydrogenic atom: Energies

● The exact non-relativistic energy

● The exact relativistic energy 

● Spin-orbit couping :
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Orbital stabilization: increase in ionization energy

Alkali metals
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Orbital destabilization and spin-orbit splitting

B, Al, Ga, In, Tl, 113
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Orbital contraction

● The outermost s-orbital becomes more compact

Alkali metals
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Orbital expansion

● The outermost p- and d-orbitals expand

Group 13

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 50 100 150
Nuclear charge

nonrelativistic
relativistic
relativistic

Group 12

0.8

1.0

1.2

1.4

1.6

1.8

2.0

20 70 120
Nuclear Charge

nonrelativistic
relativistic
relativistic



17

Ln-An contraction

● Ln-An contraction is partly caused by relativistic 
effects

● Trend expected from the atomic calculations is 
confirmed by calculations on LnF, AnF, LnH3 and 
AnH3 molecules.
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Expansion of the energy expression

● The exact Hydrogenic energy expression

● Can be expanded to
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Approximate Hamiltonians

● Find 2-component operators that describe these scalar relativistic 
and spin-orbit coupling energy corrections in molecular systems

● Start by decoupling the large and small component equations

● Rewrite the lower equation as

€ 

Vψ L + cσ ⋅ pψ S = Eψ L

cσ ⋅ pψ L + V − 2mc 2( )ψ S = Eψ S

ψ S r( ) = 1+ E −V
2mc2
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Approximate Hamiltonians

● Substitute in the upper equation

● Unnormalized Elimination of the Small Component (UESC)
● The full spinor is normalized to 1, so the large component only must 

have a norm < 1
● Large component spinors are not orthogonal to each other (only the full 

spinors are orthogonal)

● The UESC equation is exact: is used as starting point for 
approximations
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1
2m

σ ⋅ p( )K E,r( ) σ ⋅ p( ) +V
$ 
% 
& 

' 
( 
) 
ψ L r( ) = Eψ L r( )
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Regular Approximation
● What can go wrong ? Check the expansion parameter

● E should be small relative to 2mc2

● Orbital energies vary over a range of -0.1 to 5,000 au
● Twice the rest mass energy is 37,558 au
● This difference should be large enough

● V should be small relative to 2mc2

● The potential is dominated by the nuclear attraction close to the nuclei

● Take r = 10-4 au and Z=6 (carbon) : V = 60,000 au
● Is this inside the nucleus ? No : the nuclear radius is 4.7 10-5 au for C.
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0th order regular approximation: ZORA
● Can we find a good expansion parameter ? Yes !

● E should be small relative to 2mc2 - V
● V is negative which improves the expansion close to the nuclei

● Zeroth order in this expansion

J Zeroth order equation does describe SO-coupling and scalar 
relativistic corrections

L Gauge dependence of the energy
● Affects ionization energies, structures
● Is avoided by keeping potential in the denominator fixed
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Approximations to K(E,r) for the 1s orbital of Fm99+
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Approximations to K(E,r) for the 7s orbital of Fm99+
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Chemistry of heavy elements

● A different world….

● Possible to use frozen core approximation

Au2 C20N20H12

electrons 178 160

total energy -36,870 Hartree -987 Hartree

basis functions 48s38p24d18f2g
426 functions

240s108p24d
684 functions

chemical bonds 1 40

Bond energy 0.1 Hartree
2.3 eV

10 Hartree
272 eV
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f-elements

● Many low-lying electronic states

● Lanthanides: 4f is shielded from environment
● Actinides: 5f can participate in chemical bonding
● SOC is very important in open shell molecules

Eu3+ C6H6

electrons 6 f-electrons 6 π-electrons

orbitals 7 6

energies < 0.125 Hartree 3 (with SOC: 8) 1

states < 0.125 Hartree 159 (with SOC:58) 1
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Fine structure splitting in radicals

Fine structure splittings XO molecules 
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NMR: 1H shielding trends

20

25

30

35

40

45

50

55

HF HCl HBr HI

σ
H

(p
pm

)

NR 
NR+SR+SO
SR
Rel



32

NMR spin-spin couplings
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ZORA-DFT : J. Autschbach, T. Ziegler, J. Chem. Phys. 113 (2001) 9410.
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Why are SOC effects so important for NMR

● Shielding and sin-spin couplings can be written as a second 
derivative of the energy relative to the internal/external magnetic 
fields

● Can either be handled perturbatively (like in the above analysis) or in a 
more rigorous approach by including SOC from the start

EK
(11) =

d 2E
dMKdB

= −I3 +σ K

EKL
(02) =

d 2E
dMKdML

=
µ0
4π

RKL
2 I3 −3RKLRKL

T

RKL
5 +KKL

Shielding

Indirect nuclear spin-spin coupling

€ 

EK
(11) = 0 H (11) 0 +

0 H (10) S S H (01) 0
E0 −ESS

∑ +
0 H (10) S S H SO T T H (01) 0

E0 −ES( ) E0 −ET( )T
∑

S
∑

+
0 H (10) S S H (01) T T H SO 0

E0 −ES( ) E0 −ET( )T
∑

S
∑EKL

(02) = 0 H (02) 0 +
0 H (01) S S H (01) 0

E0 −ESS
∑ +

0 H (01) T T H (01) 0
E0 −ETT

∑
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Further reading

Relativistic Quantum Mechanics
● M. Reiher and A. Wolf, Relativistic Quantum Chemistry, (Wiley, 2009)    
● K. G. Dyall and K. Faegri Jr, Relativistic Quantum Chemistry, (Oxford 

University Press, 2007)
● R. E. Moss, Advanced molecular quantum mechanics. (Chapman & 

Hall, London, 1973).
● P. Strange, Relativistic Quantum Mechanics. (Cambridge University 

Press, Cambridge, 1998).

Relativistic Quantum Chemical methods
● Relativistic Electronic Structure Theory - Part 1 : Fundamentals, ed. 

P. Schwerdtfeger (Elsevier, Amsterdam, 2002).
● Theoretical chemistry and physics of heavy and superheavy 

elements, ed. U. Kaldor and S. Wilson (Kluwer, Dordrecht, 2003.

Applications
● Relativistic Electronic Structure Theory - Part 2 : Applications, ed. P. 

Schwerdtfeger (Elsevier, Amsterdam, 2004).



Molecular Modeling
Common element in chemical drawings
- Complexity is reduced by defining subunits
- Function of subunits is explained separately

Requirements for models:
- Reliability: Model should give correct answers
- Mapping: Model should be representative
- Feasible: Model construction should be easy
- Speed: Calculations should be fast
- Interpretation: Model should provide insights

Criteria are often not fulfilled
- Reliable but too slow
- Fast but too inaccurate
- Impossible to use by non-specialists
- Calculations answer other questions than asked
- Relevant data from calculations is ignored

Models should reflect this way of thinking !

Subsystem approaches



Toolbox for multiscale modeling
● (Relativistic) Wave Function Theory (WFT)

● Precise, adjustable, description of electronic structure
● Small systems (< 100 atoms).
● No dynamics.

● Density Functional Theory (DFT)
● Adequate but non-adjustable description of electronic 

structure
● Medium size systems (< 1000 atoms)
● AIMD on small systems, short times (ps)

● Density Functional Theory  Tight-Binding (DFTB)
● Simplest description of electronic structure
● Large size systems (1000s atoms)
● AIMD routinely possible

● Atomistic Modelling or Molecular Mechanics (MM)
● No explicit description of electrons
● Large systems (up to 1,000,000 atoms)
● Molecular dynamics, medium times (ns)

● Coarse Grain Modeling
● Fuse individual atoms to larger units
● Mesoscopic systems (polymers, membranes, solids)
● Dynamics for widely varying time scales

● Continuum Models
● Atomic structure of matter suppressed
● Macroscopic systems (hydro and aerodynamics)

Ψe(r1 ,.., rN)

ρe(r)

qi (R, t)

HK & KS

Discretize /
parametrize

ρ(R, t)

M (R, t)
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ρ r( ) = ρ I r( ) + ρJ r( )
J≠I

subsystems

∑

E[ρ I + ρ II ]= EI ρ I!" #$+E
int ρ I ,ρ II!" #$+E

II ρ II!" #$

Partitioning of density by subsystems

Subsystem DFT
● Focus on density of  subsystem(s) of interest

● Optimize only active part of the density
● Tune calculation for each subsystem

● Interactions between adjacent subsystems
● Use 3-FDE for covalent bonds
● Use FDE for H- and non-bonded interactions

● Polarization and charge transfer
● Relaxation (“freeze & thaw”) to correct 

density close to the active center
● Charge-transfer under development

● Response Theory
● Provides access to spectroscopy

● WFT in DFT
● Communication via density, not via orbitals
● Full CI provides exact density
● Approximate WFT provides approx. density

G. Senatore and K. R. Subbaswamy, Phys. Rev. B 34 (1986) 5754. P. Cortona, Phys. Rev. B 44 (1991) 8454. 
T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97 (1993) 8050-8053. 
N. Govind, Y. A. Wang, A. J. R. da Silva and E. A. Carter, Chem. Phys. Lett., 1998, 295, 129.



sDFT energy

Etot[ρtot] = EI [ρI] + Eint [ρI, ρII] + EII [ρII]

● Electrostatic interaction: Exact
Eel-st

int [ρI, ρII] = Eel-st[ρtot] - Eel-st[ρI] - Eel-st[ρII]

● Exchange-correlation energy: Functionals used in KS-DFT
Exc

int [ρI, ρII] = Exc[ρtot] - Exc[ρI] - Exc[ρII]

● Kinetic energy: Non-additive part of K. E. Density Functional

Ts
int[ρI, ρII] = Ts[ρtot] - Ts[ρI] - Ts[ρII]



● “Classical” contribution: screened nuclear potential 

● XC potential: difference between full and sub system

● Kinetic potential: difference between full and sub system

Embedding potential (FDE)

€ 

V emb =V emb:el.st . +V emb:xc +V emb:kin

€ 

V emb[ρI ,ρII ] =
δE[ρ]
δρ ρ= ρ tot = ρ I +ρ II

−
δE[ρ]
δρ ρ= ρ I

€ 

V emb:el.st . r( ) = −
ZA

r −RAA
∑ +

ρII r2( )
r − r2

∫ dr2

€ 

V emb:xc r( ) =V xc[ρtot ,r]−V
xc[ρI ,r]

V emb:kin r( ) = δTS[ρ]
δρ ρ=ρtot

−
δTS[ρ]
δρ ρ=ρI

Standard, long range

Standard, short range

KEDF, short range



Uncoupled formalism

● “Classical” contribution: Coulomb interaction

● XC kernel: adjust for difference between full and sub system

● Kinetic kernel: extra ingredient in TD-DFT

Embedding kernel

f emb[ρI ,ρII ]=
δ 2E[ρ]
δρ2

ρ=ρtot=ρI+ρII

−
δ 2E[ρ]
δρ2

ρ=ρI

f el.st. (r, !r ) = 1
r− !r

f emb:xc (r, !r ) = δ
2Exc[ρ]
δρ2

ρ=ρtot

−
δ 2Exc[ρ]
δρ2

ρ=ρI

No changes necessary

Change input density,
density variation only in I

f emb:kin (r, !r ) = δ
2TS[ρ]
δρ2

ρ=ρtot

−
δ 2TS[ρ]
δρ2

ρ=ρI

Like XC term, 
can also be combined

f emb:el.st. (r, !r ) = 0

M. E. Casida, T. A. Wesolowski, IJQC 96 (2004) 577.
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Magnetic fields in FDE: NMR shieldings

● Electrostatic interaction: Does not depend on the current
● XC contribution: Current dependency is usually ignored anyway

● Kinetic contribution: Use the same approximation

● Resulting formalism
• Decoupling of induced currents in the subsystems
• Chemical shielding reduces to a sum of subsystem contributions
• Shielding calculation is similar to NMR + NICS evaluation

€ 

E int = E int:el.st . + E int:xc + E int:kin

€ 

E xc[ρ, jp ] ≈ E
xc[ρ]⇒ E int,xc[ρ I ,ρ II , jp

I , jp
II ] ≈ E int,xc[ρ I ,ρ II ]

€ 

E int,kin[ρ I ,ρ II , jp
I , jp

II ] ≈ E int,kin[ρ I ,ρ II ]

E[ρ, jp ]= E[ρ
I + ρ II , jp

I + jp
II ]= EI[ρ I , jp

I ]+EII[ρ II , jp
II ]+E int[ρ I + ρ II , jp

I + jp
II ]



● Electrostatic interaction: not affected
● XC and Kinetic contributions: write in spin-density form

● Use collinear or non-collinear approach similar to XC evaluation with spin-
polarization

● Resulting formalism
• Consider spin-spin couplings within a subsystem
• Neglect induced currents in other subsystems
• Account for indirect effect of other subsystem in kernel
• Cost of NMR calculation does only depend on active subsystem

E[ρ, jp,m]= E[ρ
I + ρ II , jp

I + jp
II ,mI +mII ]

= EI[ρ I , jp
I ,mI ]+EII[ρ II , jp

II ,mII ]+E int[ρ I + ρ II , jp
I + jp

II ,mI +mII ]
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Magnetic fields in FDE: NMR couplings

€ 

E int = E int:el.st . + E int:xc + E int:kin

E int,xck[ρ I ,ρ II ,mI ,mII ] ≈ E int,xc[ρ↑
I ,ρ↓

I ,ρ↑
II ,ρ↓

II ]



sDFT: fundamental aspects
● Arbitrariness of density partitioning

● Infinite number of valid ways to split the density
● Infinite number of invalid ways to split the density
● Partition DFT: allow for fractional occupation to 

equilibrate chemical potentials

● Freeze and Thaw
● Only needed for approximate (non-universal) 

functionals
● Does in practice improve results

● External Orthogonality 
● In principle not necessary to have orbitals for the 

frozen system (FDE)
● Orthogonality can be enforced by projectors: brings 

theory outside domain of FDE

● Excited states / Response
● State-specific environment polarization or frequency-

dependent response
● Uncoupled: Localized excitations perturbed by 

environment
● Coupled: Delocalizaton possible, but no (or limited) 

charge-transfer possibilities

P. Elliott, M.H. Cohen, A. Wasserman, K. Burke, JCTC 5
(2009) 827–833.

O. Gritsenko, in Recent Advances in Orbital-Free Density 
Functional Theory, ed. A. Wang and T. A. Wesolowski, (World 
Scientific, Singapore, 2013).

T. Wesolowski, J. Weber, Chem Phys Lett. 248 (1996) 71–76.

F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller III, 
J Chem Theory Comput. 8 (2012) 2564–2568. 

Y.G. Khait, M.R. Hoffmann, Ann. Rep. in Comp. 
Chem. 8 (2012) 53-70.

C. Daday, C. König, O. Valsson, J. Neugebauer, C. 
Filippi, J Chem Theory Comput.9 (2013) 2355–
2367. 

S. Höfener, A.S.P. Gomes, L. Visscher, J Chem. 
Phys. 136 (2012) 044104. 



sDFT: practical aspects

● Basis set expansion
● Only economical if basis set is restricted to the monomer (FDE(m))
● Conventional basis sets can be used in unmodified form

● Self-consistency
● Full self consistency for freeze-thaw is usually not pursued
● Freeze-thaw (“polarization”) iterations are often done with DFT

● Implementation
● Calculate Coulomb potential for frozen density on a numerical 

integration grid appropriate for the active density
● Calculate non-additive kinetic energy contributions on the same grid, 

preferably by a dedicated library
● Use of a scripting framework (pyADF) is helpful to automatize sampling 

and partitioning in biomolecular systems

C.R. Jacob, S.M. Beyhan, R.E. Bulo, A.S.P. Gomes, A.W. Goetz, K. Kiewisch, et al., PyADF -A Scripting 
Framework for Multiscale Quantum Chemistry, J Comput Chem. 32 (2011) 2328–2338. 



sDFT: Interaction energies
H-Bonded systems

• ADF implementation
• Slater-type orbitals
• Coulomb interaction via fitted density

• Tests with available functionals
• Truhlars1 test sets 
• Kohn-Sham energy as reference value 

(judge quality of Ts)

• Monomer/supermolecular expansion
• Supermolecular (s): benchmark results
• Monomer (m): practical application

• Freeze-Thaw optimization
• SCF convergence
• FT convergence

1) Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 1(3), 415–432 (2005). Y. Zhao and D. G. Truhlar, J. Phys. Chem. A. 109(25), 5656–5667 (2005). 

Götz et al. J Chem Theory Comput 5 (2009) 3161-3174



sDFT: Better than DFT ?

● sDFT-PW91/PW91K functional has 
best overall performance

● Underbinding for sDFT-LDA/TF 
whereas DFT-LDA overbinds

● BP86/LLP91 most consistent with 
DFT-BP86 results 

● Largely confirms earlier benchmarks 
for sDFT

D. Schlüns, K. Klahr, C. Mück-Lichtenfeld, LV, J. 
Neugebauer, Phys. Chem. Chem. Phys. 17 (2015) 
14323–14341.

Wesolowski-Tran test set: weak interactions

Hobza: S22 test  set



sDFT: Better than DFT ?

● sDFT-PW91/PW91K is quite good at 
equilibrium but too attractive at short 
distance

● Can possibly be improved by also 
including empirical repulsive 
correction (van-der-Waals correction 
with both dispersion and repulsion)

● Not yet suitable as black-box method 
for geometry optimization

D. Schlüns, K. Klahr, C. Mück-Lichtenfeld, LV, J. 
Neugebauer, Phys. Chem. Chem. Phys. 17 (2015) 
14323–14341.

S22x5: Ammonia dimer

S66x8: Peptide dimer
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FDE: NMR shieldings
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FDE: NMR shieldings

C.R. Jacob, LV, J Chem Phys. 125 (2006) 194104.
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Δ1J(O,H)                 Δ1J(O,H)

KS

FDE(m)
FDE(s)

KS

FDE(m)
FDE(s)

A.W. Götz, J. Autschbach, LV, J Chem Phys. 140 (2014) 104107. 

– 4.1 Hz – 2.7 Hz
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Mercury complexes in DMSO

● Environment shift of same 
magnitude as coupling itself

● Fast convergence with FT-cycles

● Qualitative agreement

● Efficient: FDE(m)
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● sDFT partitioning can be used to define (quasi)-diabatic states

● Φ"#
$" = 𝒜 𝜙#$

( …𝜙#$
*+,( ⨂ 𝜙"( …𝜙"

*.

● Φ/
#"$ = 𝒜 𝜙#( …𝜙#

*+ ⨂ 𝜙"$
( … 𝜙"$

*.,(

● Four sets of non-orthogonal orbitals obtained from two freeze-thaw calculations

● With further approximation (no polarization) Frozen Orbital DFT (FODFT)
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sDFT: Electron Transfer

𝐷1 + 𝐴 → 𝐷 + 𝐴1

𝐷– + 𝐴 → 𝐷 + 𝐴–

Hole transport

Electron transport

R.A. Marcus, Annu Rev Phys Chem. 15 (1964) 155–196. 

𝐻"/ = Φ" 𝐻7 Φ/ = 𝐸 𝜌 "/ 𝑆"/

M. Pavanello, J. Neugebauer, J Chem Phys. 135
(2011) 234103–14; M. Pavanello, T. Van Voorhis, 
LV, J. Neugebauer, J Chem Phys. 138 (2013) 
054101–13.



FDE-ET / FODFT: Porphyrin dimers
● Polarization effects are modest 

(~20% for coupling parameter) 

● Consideration of overlap sufficient to 
explain trends

● Choice of metal is crucial for transfer 
properties

F. Hernández-Fernández, M. Pavanello, LV, PCCP, online (2016)



● Motivation
• Investigate solvent effect on ORD of methyloxirane

¡ M. C. Tam, N. J. Russ, T. D. Crawford, J Chem. Phys. 121 (2004) 3550.

• FDE should capture “cavity” effect of surrounding solvent
• Solvent excitations in ECD can be studied via subsystem TD-DFT

¡ J. Neugebauer, J. Chem. Phys. 126 (2007) 134116. 

● Pure embedding application: environment frozen
● Simplest WFT-in-DFT formalism: fixed embedding potential made after DFT 

freeze-thaw iterations
● Communicate numerical representation of embedding potential

● Study also other simple systems: dimethylallene
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Chiroptical properties with FDE: ORD and ECD

Vpq
emb = χ p r( )V emb r( )χq r( )∫ dr ≈ wg

g
∑ V emb rg( )χ p rg( )χq rg( )
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ORD: Dimethylallene

● Different microsolvated
environments (1, 2, 3 waters)

● ADF: PBE, TZP basis
● PSI4: CC2, aug-cc-pVDZ

● FDE gives too small shift relative to 
vacuum calculation

● In some cases: qualitatively wrong 
description

● Similar picture for methyloxirane

● What is missing ?

T.D. Crawford, A. Kumar, K.P. Hannon, S. Höfener, LV, J Chem Theory 
Comput. (2016) doi:10.1021/acs.jctc.5b00845.
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Dimethylallene analysis

● Calculate UV and ECD spectrum to 
understand errors

● FDE does shift peaks in the correct 
direction, reduces magnitude of 
rotational strengths

● Some shifts are too large, but not 
dramatic

● Slow convergence in sum over 
states expression, higher (charge-
transfer) excitations to blame

T.D. Crawford, A. Kumar, K.P. Hannon, S. Höfener, LV, J Chem Theory 
Comput. (2016) doi:10.1021/acs.jctc.5b00845.



sDFT and Wave Function Theory

Consider the embedding potential defined in FDE

Minimization of the energy of a full CI wave function for this local potential

is equivalent to minimizing the Hohenberg-Kohn energy of the embedded system

because (Levy constrained search)

Conditions to be fulfilled

References: N. Govind, Y. A. Wang, A. J. R. da Silva and E. A. Carter, Chem. Phys. Lett., 1998, 295, 129–134.
T. A. Wesolowski, PRA 012504  (2008), A. S. P. Gomes, C. R. Jacob, LV, PCCP 10 (2008) 5353 - 5362.

€ 

ρII r( ) ≤ ρtot r( )

F ρI( ) = min
Ψ I→ρI

Ψ I T +V
ee Ψ I

€ 

EI
FCI,emb =min

ΨI

ΨI ν I
ext+emb ri( )

i
∑ +T +V ee ΨI

ρI should be ν−representable 

€ 

ν I
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δρ ρ= ρ tot

−
δTs
δρ ρ= ρ I
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WFT-in-WFT: formic acid dimer

S. Höfener, LV, JCTC (online, 2016)

● Good description of strong intermolecular hydrogen bonds
● Addition of explicit dispersion interactions leads to overestimation of bond strength
● PW91k kinetic energy functional does probably underestimate Pauli repulsion

● Computationally efficient when using density fitting of Coulomb terms
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WFT-in-DFT: water in water

S. Höfener, A. S. P Gomes, LV, J. Chem. Phys. 139 (2013) 104106.

Convergence of explicit solvation model for CC2



WFT-in-DFT: water in 127 water

1) LDA/GGA embedding potential
2) perturbed / unperturbed HF orbitals
3) relaxed / static embedding potential
4) kernel: none, LDA, GGA

WFT
Method

Embedding
choices

Excitation 
Energy (eV)

Shift w.r.t.
vacuum

HF LDA-p-r-no 9.55 0.90

CC2 LDA-p-r-no 8.14 0.86

CCSD LDA-p-r-no 8.52 0.88

HF GGA-p-r-no 9.25 0.60

CC2 GGA-p-r-no 7.78 0.50

CCSD GGA-p-r-no 8.20 0.56

S. Höfener, A. S. P Gomes, LV, J. Chem. Phys. 139 (2013) 104106.



WFT-in-DFT: uracil in 6 water

1) LDA/GGA embedding potential
2) perturbed / unperturbed HF orbitals
3) relaxed / static embedding potential
4) kernel: none, LDA, (GGA)

WFT
Method

Embedding
choices

n èπ* (eV) π èπ* (eV)

CC2 vacuum 4.65 5.48

CC2 GGA-p-s-no 5.42 5.46

CC2 GGA-p-r-no 5.42 5.46

CC2 GGA-p-r-LDA 5.42 5.46

CC2 Supermolecule 5.31 5.36

Structures: M. Etinski and C. M. Marian, Phys. Chem. Chem. Phys. 12, 4915 (2010).

S. Höfener, A. S. P Gomes, LV, J. Chem. Phys. 139 (2013) 104106.



WFT-in-WFT: uracil in 6 water

1) GGA embedding potential
2) perturbed HF orbitals
3) relaxed embedding potential
4) kernel: none

WFT
Method

Environment n èπ* (eV) π èπ* (eV)

CC2 vacuum 4.65 5.48

CC2 DFT 5.42 5.46

CC2 CC2 5.36 5.45

CC2 Supermolecule 5.31 5.36

● Slight improvement by using CC2 environment densities

S. Höfener, A. S. P Gomes, LV, J. Chem. Phys. 139 (2013) 104106.



WFT-in-DFT: uracil in water box
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● States become almost degenerate on average
● Individual snapshots show relatively large variations

S. Höfener, A. S. P Gomes, LV, J. Chem. Phys. 139 (2013) 104106.



Coupled excitations: ethylene dimer

S. Höfener, LV, JCTC (online, 2016)

● Subsystem approach breaks down at short distance for lowest state
● Deficiencies of the kinetic energy functionals
● Omission of charge-transfer states

● At longer distance agreement with supermolecular splittings
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Coupled excitations: 4 Mg Porphyrins

● General formalism for WFT, DFT, approximate DFT
● Splitting slightly larger than with DFT-in-DFT
● Computational effort mainly in embedded monomer calculations
● Long-range approximations (e.g Förster dipoles) can be readily applied 

in the calculation of coupling elements
● Interpretation similar to well-known parametric models for exciton coupling

MgP (exp) MgP (CC2) 4MgP (CC2)

2.00 (Q) 2.50 2.49 – 2.51

3.07 (B) 3.58 3.11 – 4.06

S. Höfener, LV, JCTC (online, 2016)



Summary

Subsystem density functional theory
● Facile inclusion of many explicit molecules / ions in the environment
● Very general: subystems can be treated with DFT or WFT
● All interaction terms are expressed in terms of (current) density 

functionals
● Easy interpretation: can be used to connect to qualitative (semi-

empirical) models

Technical details
● Modular implementation (ADF, Dalton, Dirac, NWChem, Psi3, …)
● Organization of calculations via the PyADF python scripting 

framework

Outlook
● Standardization for response: “model spectroscopies”
● Larger chromophores with more efficient WFT codes
● Inclusion of charge-transfer excitations
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