Functionals from the strongcoupling limit of DFT: promises and challenges

Paola Gori-Giorgi

Theoretical Chemistry, VU University Amsterdam

Functionals from the strong coupling limit of DFTSCM - VU - April 2016

	functional	year	cites	like	neutral	hate	empty	points
Primera Divisió								
1	PBE	1996	24231	75	45	7	44	263
2	PBE0	1996	3754	70	40	11	50	239
3	B3LYP	1994	25488	66	36	32	37	202
4	PW91	1992	9582	45	43	11	72	167
5	BP86	1988	909	38	45	10	78	149
6	B97-D	2006	85	28	50	11	82	123
7	B3LYP-D	2006	56	29	50	21	71	116
8	M06-2X	2008	389	41	25	33	72	115
9	BLYP	1988	1347	28	48	18	77	114
10	revPBE	1998	561	25	44	11	91	108
11	CAM-B3LYP	2004	1033	23	45	11	92	103
12	B2PLYP	2006	428	21	44	12	94	95
4.0	72 0 727 4 70 4	1000	4040	0.4			0.4	

B3PW91 13 14 SSB-D 15 TPSSh M06-L B3LYP*

PWPB95-D₃ revTPSS-D revTPSS

Diminió

Different structure/ingredients from the strong coupling limit

ego	nu Divisio							
	LDA	1980	11795	42	34	24	71	136
	ωB97X-D	2008	402	41	26	13	91	136
	HSE	2003	875	31	28	10	102	111
	M06	2008	636	24	33	28	86	77
	OLYP	2001	101	16	34	14	107	68
	LC-wPBE	2006	312	15	34	14	108	65
	LC-PBE	2007	95	11	34	14	112	53
	SAOP	2000	77	9	33	8	121	52
	PW6B95	2005	19	11	33	15	112	51
0	LB94	1994	35	9	32	10	120	49
1	RPBE	1999	1796	9	38	16	108	49
2	mPW1K	2000	774	7	38	16	110	43
3	M05-2X	2006	945	15	32	35	89	42
4	optB88-vdW	2010	75	11	11	5	144	39
5	APBE	2011	13	4	36	9	122	39
6	BHandH	1993	57	8	35	22	106	37
7	DSD-BLYP	2010	25	7	29	13	122	37
8	M05	2005	243	10	36	33	92	33
9	VSXC	1998	43	3	34	18	116	25
0	τ-HCTH	2002	158	3	30	17	121	22
1	X3LYP	2004	79	5	31	25	110	21
2	XLYP	2004	4	0	29	25	117	4

Density functionals polls Swart, Bickelhaupt & Duran

Functionals from the strong coupling limit of DFT

they all use the same "ingredients" combined in many different ways, with parameters, etc.

- Broken symmetry solutions can mimic strong correlation (not always!)
- Often better energies, but wrong characterizations of several properties (e.g. magnetism)
- Potential energy surfaces with kinks/discontinuous
- Huge literature: controversial, wrong interpretation, etc...
- Crucial for: transition metals, Mott insulators, bond breaking, nanostructures,...

$$F[
ho] = \min_{\Psi o
ho} \langle \Psi | \hat{T} + \hat{V}_{ee} | \Psi
angle$$

$$T_s[\rho] = \min_{\Psi \to \rho} \langle \Psi | \hat{T} | \Psi \rangle$$

HK functional

KS kinetic energy

$$V_{ee}^{\rm SCE}[\rho] = \min_{\Psi \to \rho} \langle \Psi | \hat{V}_{ee} | \Psi \rangle$$

SCE functional "strictly correlated electrons"

Hartree + xc functional tends asymptotically to SCE in the low-density or strong-coupling limit

Cotar, Friesecke, & Kluppelberg, Comm. Pure Appl. Math. 66, 548 (2013)

optimal transport theory: algorithms, exact results

xc functionals: approximations, scaling local interpolation, spin

low-dimensional physics: electrons, cold atoms..

time-dependent: adiabatic SCE kernel, quantum transport

$$\Lambda[
ho] \, \equiv \, \max_{\Psi o
ho} \lambda[\Psi] \qquad { t Lieb-Oxford} \ { t bound}$$

What is the structure of the SCE functional?

$$V_{ee}^{\rm SCE}[\rho] = \min_{\Psi \to \rho} \langle \Psi | \hat{V}_{ee} | \Psi \rangle$$

Minimize e-e repulsion in a given density

N classical charges, equilibrium positions r_i

Minimize e-e repulsion in a given density

- N classical charges, equilibrium positions r_i
- Take one (e.g. #1) as reference

Minimize e-e repulsion in a given density

- N classical charges, equilibrium positions r_i
- Take one (e.g. #1) as reference

Minimize e-e repulsion in a given density

- N classical charges, equilibrium positions r_i
- Take one (e.g. #1) as reference

Minimize e-e repulsion in a given density

- N classical charges, equilibrium positions r_i
- Take one (e.g. #1) as reference
- **The position of the other** *N***-1 charges become a function of** \mathbf{r} : $\mathbf{r}_i \equiv \mathbf{f}_i(\mathbf{r})$

 $f_i(r)$: co-motion functions

Minimize e-e repulsion in a given density

• For a given smooth density $\rho(\mathbf{r})$:

$$ho(\mathbf{f}_i(\mathbf{r}))d\mathbf{f}_i(\mathbf{r})=
ho(\mathbf{r})d\mathbf{r}$$

 $f_i(\mathbf{r})$: co-motion functions

Prob (find electron 1
at position r) = Prob (find electron *i*
at position
$$f_i(r)$$
)

Minimize e-e repulsion in a given density

For a given smooth density ρ(r):

$$ho(\mathbf{f}_i(\mathbf{r}))d\mathbf{f}_i(\mathbf{r})=
ho(\mathbf{r})d\mathbf{r}$$

$$\mathbf{F}_{ ext{Coul}}(\mathbf{r}) = \sum_{\mathbf{i}=\mathbf{2}}^{\mathbf{N}} rac{\mathbf{r} - \mathbf{f}_{\mathbf{i}}[
ho](\mathbf{r})}{|\mathbf{r} - \mathbf{f}_{\mathbf{i}}[
ho](\mathbf{r})|^{\mathbf{3}}}$$

 $f_i(r)$: co-motion functions

The total Coulomb force acting on the electron at position r becomes a function of only r itself

Minimize e-e repulsion in a given density

For a given smooth density ρ(r):

$$ho(\mathbf{f}_i(\mathbf{r}))d\mathbf{f}_i(\mathbf{r})=
ho(\mathbf{r})d\mathbf{r}$$

A <u>local one-body potential</u> can be defined:

$$-\nabla v_{\text{SCE}}[\rho](\mathbf{r}) = \mathbf{F}_{\text{Coul}}(\mathbf{r}) = \sum_{\mathbf{i}=\mathbf{2}}^{\mathbf{N}} \frac{\mathbf{r} - \mathbf{f}_{\mathbf{i}}[\rho](\mathbf{r})}{|\mathbf{r} - \mathbf{f}_{\mathbf{i}}[\rho](\mathbf{r})|^{\mathbf{3}}}$$

 $f_i(r)$: co-motion functions

The total Coulomb force acting on the electron at position r becomes a function of only r itself

SCE functional ("wave function")

$$V_{ee}^{\text{SCE}}[\rho] = \min_{\Psi \to \rho} \langle \Psi | \hat{V}_{ee} | \Psi \rangle$$

$$|\Psi_{\text{SCE}}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)|^2 = \frac{1}{N!} \sum_{\mathcal{P}} \int d\mathbf{s} \frac{\rho(\mathbf{s})}{N} \delta(\mathbf{r}_1 - \mathbf{f}_{\mathcal{P}(1)}(\mathbf{s})) \delta(\mathbf{r}_2 - \mathbf{f}_{\mathcal{P}(2)}(\mathbf{s})) \dots \delta(\mathbf{r}_N - \mathbf{f}_{\mathcal{P}(N)}(\mathbf{s}))$$

the wavefunction collapses to a 3D subspace of the full 3N-dimensional configuration space

$$\rho(\mathbf{f}_i(\mathbf{r})) d\mathbf{f}_i(\mathbf{r}) = \rho(\mathbf{r}) d\mathbf{r} \qquad \begin{array}{l} \mathbf{f}_2(\mathbf{r}) \equiv \\ \mathbf{f}_3(\mathbf{r}) = \\ \mathbf{f}_4(\mathbf{r}) = \\ \vdots \\ \mathbf{f}_4(\mathbf{f}) = \\ \end{array}$$

$$f_{1}(\mathbf{r}) \equiv \mathbf{f},$$

$$f_{2}(\mathbf{r}) \equiv \mathbf{f}(\mathbf{r}),$$

$$f_{3}(\mathbf{r}) = \mathbf{f}(\mathbf{f}(\mathbf{r})),$$

$$f_{4}(\mathbf{r}) = \mathbf{f}(\mathbf{f}(\mathbf{f}(\mathbf{r}))),$$

$$\vdots$$

$$\underbrace{\mathbf{f}(\mathbf{f}(\dots \mathbf{f}(\mathbf{f}(\mathbf{r}))))}_{N \text{ times}} = \mathbf{r}.$$

 $\mathbf{f}_1(\mathbf{r}) \equiv \mathbf{r}$

Seidl, PRA 60, 4387 (1999) Seidl, Gori-Giorgi and Savin, PRA **75**, 042511 (2007) Malet & Gori-Giorgi, PRL **109** 246402 (2012) Malet, Mirtschink, Cremon, Reimann & Gori-Giorgi, PRB **87** 115146 (2013)

Functionals from the strong-coupling limit of DFT

SCM- VU - April 2016

SCE functional and functional derivative

$$\begin{aligned} V_{ee}^{\text{SCE}}[\rho] &= \int d\mathbf{r} \frac{\rho(\mathbf{r})}{N} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{1}{|\mathbf{f}_i(\mathbf{r}) - \mathbf{f}_j(\mathbf{r})|} \\ &= \frac{1}{2} \int \rho(\mathbf{r}) \sum_{i=2}^{N} \frac{1}{|\mathbf{r} - \mathbf{f}_i(\mathbf{r})|} \end{aligned}$$

$$\frac{\delta V_{ee}^{\text{SCE}}[\rho]}{\delta \rho(\mathbf{r})} = v_{\text{SCE}}(\mathbf{r}) \qquad \nabla v_{\text{SCE}}(\mathbf{r}) = -\sum_{i=2}^{N} \frac{\mathbf{r} - \mathbf{f}_{i}(\mathbf{r})}{|\mathbf{r} - \mathbf{f}_{i}(\mathbf{r})|^{3}}$$
shortcut to the functional derivative

Seidl, Gori-Giorgi and Savin, PRA **75**, 042511 (2007) Malet & Gori-Giorgi, PRL **109** 246402 (2012) Malet, Mirtschink, Cremon, Reimann & Gori-Giorgi, PRB **87** 115146 (2013)

Functionals from the strong-coupling limit of DFT

SCM- VU - April 2016

$$V_{ee}^{\rm SCE}[\rho] = \min_{\Psi \to \rho} \langle \Psi | \hat{V}_{ee} | \Psi \rangle$$

equivalent to an optimal transport (or mass transportation theory) problem with Coulomb cost

- Buttazzo, De Pascale, & Gori-Giorgi, Phys. Rev. A. 85, 062502 (2012)
- Cotar, Friesecke, & Kluppelberg, Comm. Pure Appl. Math. 66, 548 (2013)
- Pass, Nonlinearity 26, 2731 (2013)
- Mendl & Lin, Phys. Rev. B 87, 125106 (2013)
- Chen, Friesecke, & Mendl, J. Chem. Theory Comput 10, 4360 (2014)
- Colombo, De Pascale, Di Marino, Can. J. Math. 67, 350 (2015)
- Benamou, Carlier, Cuturi, Nenna, L.; Peyré, arXiv:1412.5154
- Benamou, Carlier, Nenna, arXiv:1505.01136v2
- Friesecke, Mendl, Pass, Cotar & Kluppelberg, J. Chem. Phys. 139, 164109 (2013)
- De Pascale, arXiv:1503.07063
- Colombo & Stra, arXiv:1507.08522

1D case is transparent (and as cheap as LDA)

1

$$N_e(x) = \int_{-\infty}^x \rho(x') \, dx'$$

$$a_k = N_e^{-1}(k)$$

$$f_i(x) = \begin{cases} N_e^{-1}[N_e(x) + i - 1] & x \le a_{N+1-i} \\ N_e^{-1}[N_e(x) + i - 1 - N] & x > a_{N+1-i}, \end{cases}$$

Written on simple physical considerations: M. Seidl, PRA 60, 4387 (1999)

Rigorous Proof: M. Colombo, L. De Pascale, S. Di Marino, Can. J. Math. 67, 350 (2015)

KS SCE applied to 1D physics: Malet & Gori-Giorgi, PRL 109 246402 (2012); Malet, Mirtschink, Cremon, Reimann & Gori-Giorgi, PRB 87 115146 (2013)

optimal transport theory: algorithms, exact results

xc functionals: approximations, scaling local interpolation, spin

time-dependent: adiabatic SCE kernel, quantum transport

$$\Lambda[
ho] \ \equiv \ \max_{\Psi o
ho} \lambda[\Psi] \qquad { t Lieb-Oxford} \ { t bound}$$

KS SCE in 1D: $2k_F - 4k_F$ crossover without magnetic order

1D harmonic confinement:

$$v_{
m ext}(x)=rac{1}{2}\omega^2 x^2$$
 $\omega=rac{4}{L^2}$ L: effective length

Previous attempts include self-interaction corrections (SIC) and GGA: S. H. Abedinpour, M. Polini, G. Xianlong, and M. P. Tosi, Eur. Phys. J. B 56, 127 (2007) D. Vieira and K. Capelle, J. Chem. Theory Comput. 6, 3319 (2010) D. Vieira, Phys. Rev. B 86, 075132 (2012)

ansatz: 1D solution for the radial part + relative angles minimization

Seidl, Gori-Giorgi and Savin, PRA 75, 042511 (2007)

not always the lowest solution (it depends on the density)

Colombo & Stra, arXiv:1507.08522

however, the 1D-like solution is very close to the true minimum, and the potential computed from it is the functional derivative of the 1D-like SCE functional

Seidl, Di Marino, Gerolin, Nenna, Giesbertz & Gori-Giorgi, in preparation

$$\nabla v_{\text{SCE}}(\mathbf{r}) = -\sum_{i=2}^{N} \frac{\mathbf{r} - \mathbf{f}_i(\mathbf{r})}{|\mathbf{r} - \mathbf{f}_i(\mathbf{r})|^3}$$

Maximum possible angular and radial correlation in a given density

Spherically symmetric systems: applications

Example: Electrons confined in semiconductor heterostructures Self-consistent KS densities with the SCE functional

Mendl, Malet & Gori-Giorgi, PRB 89, 125106 (2014)

Classically forbidden regions & strong correlation

Mendl, Malet & Gori-Giorgi, PRB 89, 125106 (2014)

Accuracy of KS SCE for low-density

Mendl, Malet & Gori-Giorgi, PRB 89, 125106 (2014)

Bosons and fermions: change the kinetic energy functional Easy to treat tunable interactions with the SCP functional

$$V_{\text{int}}^{\text{SCP}}[n] = \frac{1}{2} \int d\mathbf{r} n(\mathbf{r}) \sum_{i=2}^{N} v_{\text{int}}(\mathbf{r} - \mathbf{f}_i(\mathbf{r}))$$

$$abla v_{ ext{SCP}}([n];\mathbf{r}) = \sum_{i=2}^{N}
abla v_{ ext{int}}(\mathbf{r} - \mathbf{f}_i(\mathbf{r}))$$

Malet, Mirtschink, Mendl, Bjerlin, Karabulut, Reimann & PG-G, PRL 115, 033006 (2015)

optimal transport theory: algorithms, exact results

xc functionals: approximations, scaling local interpolation, spin

low-dimensional physics: electrons, cold atoms..

time-dependent: adiabatic SCE kernel, quantum transport

$$\Lambda[
ho] \equiv \max_{\Psi o
ho} \lambda[\Psi]$$
 Lieb-Oxford bound

$$W[\Psi] \equiv \langle \Psi | \hat{V}_{ee} | \Psi \rangle - U[\rho_{\Psi}] \qquad \qquad U[\rho] = \frac{1}{2} \int d^3r \int d^3r' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

 $W[\Psi]$ is bounded from below by its density $\rho_{\Psi}(\mathbf{r})$

$$W[\Psi] \ge -C_3 \int d^3 r \,\rho_{\Psi}(\mathbf{r})^{4/3}$$

the minimum $C_3 > 0$ that makes the inequality true for all wave functions is not known

a rigorous upper bound for C_3 is known:

 $C_3 \le 1.6358$

Lieb & Oxford, IJQC 19, 427 (1981); Chan & Handy, PRA 59, 3075 (1999)

it was believed that a lower bound for C_3 was given by the total energy of the Wigner crystal

 $C_3 \ge 1.444$

not rigorous!

Lewin & Lieb, PRA 91, 022507 (2015)

Lieb-Oxford bound in terms of LDA exchange

$$\lambda[\Psi] \equiv \frac{W[\Psi]}{E_{\mathbf{x}}^{\text{LDA}}[\rho_{\Psi}]} \qquad \qquad E_{x}^{\text{LDA}}[\rho] = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int d^{3}r \ \rho(\mathbf{r})^{4/3}$$
$$\lambda[\Psi] \leq \bar{\lambda}_{3} \qquad \qquad \bar{\lambda}_{3} = \frac{C_{3}}{\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3}}$$

 $\bar{\lambda}_3 \le 2.215$

Lieb & Oxford, IJQC 19, 427 (1981); Chan & Handy, PRA 59, 3075 (1999)

SCE wave functions are the most challenging for the bound: very efficient way to improve the lower bound

Functionals from the strong-coupling limit of DFT

Lower bounds from SCE

for any given density, we use the wave function that maximally challenges the bound

$$\Lambda[\rho] \equiv \max_{\Psi \to \rho} \frac{\langle \Psi | \hat{V}_{ee} | \Psi \rangle - U[\rho]}{E_{x}^{\text{LDA}}[\rho]} = \frac{V_{ee}^{\text{SCE}}[\rho] - U[\rho]}{E_{x}^{\text{LDA}}[\rho]}$$

we can also look at the bound for a given number of particles N

$$\bar{\lambda}_3(N) = \sup_{\Psi \to N} \lambda[\Psi] \qquad \bar{\lambda}_3(N) \le \bar{\lambda}_3(N+1)$$

$$\lim_{N\to\infty}\bar{\lambda}_3(N)=\bar{\lambda}_3$$

Lieb & Oxford, IJQC 19, 427 (1981)

The bound for N = 2

Useful for metaGGA functionals (e.g. SCAN)

Sun, Ruzsinszky & Perdew, PRL 115, 036402 (2015)

maximising, we find the new lower bound: $ar{\lambda}_3(2) \geq 1.701052$

a uniform density profile is not the most challenging!

Seidl, Vuckovic & Gori-Giorgi, Mol. Phys., published online (Savin special issue)

SCM- VU - April 2016

The bound for general *N*

Seidl, Vuckovic & Gori-Giorgi, Mol. Phys., published online (Savin special issue)

SCM- VU - April 2016

optimal transport theory: algorithms, exact results

low-dimensional physics: electrons, cold atoms..

time-dependent: adiabatic SCE kernel, quantum transport

$$\Lambda[
ho] \ \equiv \ \max_{\Psi o
ho} \lambda[\Psi] \qquad {f Lieb-Oxford} \ {f bound}$$

$$V_{ee}^{\rm SCE}[\rho] = \min_{\Psi \to \rho} \langle \Psi | \hat{V}_{ee} | \Psi \rangle$$

Kantorovich dual formulation (linear programming algorithm)

- Buttazzo, De Pascale, & Gori-Giorgi, Phys. Rev. A. 85, 062502 (2012)
- De Pascale, arXiv:1503.07063
- Mendl & Lin, Phys. Rev. B 87, 125106 (2013)

Entropic regularization algorithm

- Benamou, Carlier, Nenna, arXiv:1505.01136v2

H₂ molecule (SCE from Kantorovich formulation)

Stefan Vuckovic

-KS SCE dissociates correctly-horrible at equilibrium and beyond-higher order terms improve the results

$$F[\rho] = T_s[\rho] + V_{ee}^{\text{SCE}}[\rho] + T_c[\rho] + V_{ee}^d[\rho] \ge 0$$
approximated

Vuckovic, Wagner, Mirtschink & Gori-Giorgi, JCTC 11, 3153 (2015)

The SCE non-locality is too extreme

Density Functionals for Coulomb Systems

ELLIOTT H. LIEB

Departments of Mathematics and Physics, Princeton University, P.O.B. 708, Princeton, New Jersev 08544, U.S.A.

exist. Any reader who is devoted to abstract density functional theory, in the spirit of Sec. 3 or (5.8), should try to guess a plausible form for $\tilde{I}(\rho)$. (Proving it is another matter.) It will quickly be seen that $\tilde{I}(\rho)$ must be extremely complicated, and to say that it is "nonlocal" is an understatement. To see this,

however, local, semi-local will not capture self-consistently the right physics

$$\int_{\Omega(\mathbf{r})} \rho(\mathbf{r}') d\mathbf{r}' = 1$$

in each point of space, define a radius such that the density integrates to 1 (spherically)

use it to approximate the SCE exchange-correlation hole:

Lucas Wagner

$$w_{\infty}(\mathbf{r}) = -\frac{1}{2} \int_{\Omega(\mathbf{r})} d\mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

local interpolation between weak (exchange) and strong correlation

see also recent work by H. Bahman, M. Ernzerhof, J. Precechtelova, M. Kaupp,...

Wagner & PG-G, PRA 90, 052512 (2014)

Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit

Yongxi Zhou,¹ Hilke Bahmann,² and Matthias Ernzerhof^{1,a)} ¹Département de Chimie, Université de Montréal, C.P. 6128, Succursale A, Montréal, Québec H3C 3J7, Canada ²Department of Chemistry, Technische Universität Berlin, Strasse des 17 Juni, Berlin, Germany

(Received 12 March 2015; accepted 7 September 2015; published online 23 September 2015)

Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, various interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials. © 2015 AIP Publishing

not size consistent

M. Seidl, J.P. Perdew, M. Levy PRA 59, 51 (1999) Seidl, Perdew & Kurth, Phys. Rev. Lett. 84, 5070 (2000)

 Functionals from the strong coupling limit of DFT
 SCM - VU - April 2016

Local interpolations along the adiabatic connection

Global interpolations violate size consistency: turn to local interpolation

$$E_{xc}[\rho] = \int d\mathbf{r} \,\rho(\mathbf{r}) \,\epsilon_{xc}(\mathbf{r})$$

Stefan Vuckovic

 $\epsilon_{xc}(\mathbf{r}) = \int_0^1 w_\lambda(\mathbf{r}) d\lambda$

All the ingredients should be in the same "gauge"

Tom Irons Andy Teale

The xc hole potential gauge

$$\epsilon_{xc}(\mathbf{r}) = \int_0^1 w_\lambda(\mathbf{r}) d\lambda \qquad \qquad E_{xc}[\rho] = \int d\mathbf{r} \,\rho(\mathbf{r}) \,\epsilon_{xc}(\mathbf{r})$$

$$P_2^{\lambda}(\mathbf{r},\mathbf{r'}) = N(N-1) \sum_{\sigma_1,\dots,\sigma_N} \int |\Psi_{\lambda}(\mathbf{r}\sigma_1,\mathbf{r'}\sigma_2,\mathbf{r}_3\sigma_3,\dots,\mathbf{r}_N\sigma_N)|^2 d\mathbf{r}_3\dots d\mathbf{r}_N$$

$$h_{xc}^{\lambda}(\mathbf{r},\mathbf{r}') = \frac{P_2^{\lambda}(\mathbf{r},\mathbf{r}')}{\rho(\mathbf{r})} - \rho(\mathbf{r}') \qquad \qquad w_{\lambda}(\mathbf{r}) = \frac{1}{2} \int \frac{h_{xc}^{\lambda}(\mathbf{r},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r}'$$

$$w_{\lambda}(|\mathbf{r}| \to \infty) \sim -\frac{1}{2|\mathbf{r}|} \qquad \epsilon_{xc}(|\mathbf{r}| \to \infty) \sim -\frac{1}{2|\mathbf{r}|}$$

 $v_{xc}(\mathbf{r}) = \frac{\delta E_{xc}[\rho]}{\rho(\mathbf{r})} \sim -\frac{1}{|\mathbf{r}|}$

$$w_{\lambda \to 0}(\mathbf{r}) \to \epsilon_x(\mathbf{r})$$

$$|\psi(\mathbf{r}_{1},...,\mathbf{r}_{N})|^{2} = \frac{1}{N!} \sum_{P} \int d\mathbf{s} \; \frac{\rho(\mathbf{s})}{N} \delta(\mathbf{r}_{1} - \mathbf{f}_{P(1)}(\mathbf{s})) ... \delta(\mathbf{r}_{N} - \mathbf{f}_{P(N)}(\mathbf{s}))$$

$$P_2^{\text{SCE}}(\mathbf{r}, \mathbf{r}') = \sum_{\substack{i,j=1\\i\neq j}}^N \int d\mathbf{s} \frac{\rho(\mathbf{s})}{N} \delta(\mathbf{r} - \mathbf{f}_i(\mathbf{s})) \delta(\mathbf{r}' - \mathbf{f}_j(\mathbf{s}))$$
$$\underbrace{w_{\infty}(\mathbf{r}) = \frac{1}{2} \sum_{k=2}^N \frac{1}{|\mathbf{r} - \mathbf{f}_k(\mathbf{r})|} - \frac{1}{2} v_H(\mathbf{r})}_{k=2}}_{\mathbf{t}}$$

$$\begin{split} w_{\lambda}(|\mathbf{r}| \to \infty) &\sim -\frac{1}{2|\mathbf{r}|} \\ v_{xc}(\mathbf{r}) &= \frac{\delta E_{xc}[\rho]}{\rho(\mathbf{r})} \sim -\frac{1}{|\mathbf{r}|} \end{split} \text{ xc SCE satisfies both} \\ \nabla(v_{xc}^{\text{SCE}}(\mathbf{r}) + v_{H}(\mathbf{r})) &= -\sum_{i=2}^{N} \frac{\mathbf{r} - \mathbf{f}_{i}(\mathbf{r})}{|\mathbf{r} - \mathbf{f}_{i}(\mathbf{r})|^{3}} \end{split}$$

Mirtschink, Seidl, PG-G, JCTC 8, 3097 (2012)

How to get a local slope (in the right gauge)?

First step: compute the exact slope for small systems

 $F_{\lambda}[\rho] = \sup_{v} \left(E_{\lambda}[v] - \int v(\mathbf{r})\rho(\mathbf{r}) \,\mathrm{d}\mathbf{r} \right)$

A. Teale

• Use WFT approaches to compute E[v] and input the physical density ρ for all λ

local interpolation using exact ingredients...

Stefan Vuckovic

Interpolating locally using exact ingredients

Vuckovic, Irons, Savin, Teale & Gori-Giorgi, JCTC submitted

The local slope

Courtesy of Andrew Teale and Tom Irons

SCE adiabatic kernel for one-dimensional systems

Giovanna Lani Simone Di Marino Augusto Gerolin Robert van Leeuwen

$$\mathcal{F}_{\mathrm{Hxc}}^{\mathrm{SCE}}([n];\mathbf{r},\mathbf{r}') = \frac{\delta^2 V_{ee}^{\mathrm{SCE}}[n]}{\delta n(\mathbf{r}) \delta n(\mathbf{r}')}$$

N.B.:
$$ho({f r})
ightarrow n({f r})$$
 density

Lieb-Oxford bound and kernel from SCE

APS Baltimore 2016

$$\mathcal{F}_{\mathrm{Hxc}}^{\mathrm{SCE}}([n]; x, x') = \frac{\delta v_{\mathrm{Hxc}}^{\mathrm{SCE}}([n]; x)}{\delta n(x')}$$

we can analyse the kernel analytically

Lieb-Oxford bound and kernel from SCE

APS Baltimore 2016

1D SCE kernel

$$\mathcal{F}_{\text{Hxc}}^{\text{SCE}}([n]; x, x') = \sum_{i=2}^{N} \int_{x}^{\infty} \frac{w''(|y - f_i([n]; y)|)}{n(f_i([n]; y))} \left[\theta(y - x') - \theta(f_i([n]; y) - x')\right] dy$$

example: model homonuclear dissociation
$$n(x) = \frac{a}{2} \left(e^{-a \left| x - \frac{R}{2} \right|} + e^{-a \left| x + \frac{R}{2} \right|} \right)$$

Analysis of the divergence

$${}^{1}\Sigma_{g} \rightarrow {}^{1}\Sigma_{u}$$

excitation to the lowest singlet state in H_2

Gritsenko, van Gisbergen, Gorling & Baerends, J. Chem. Phys., 113, 8478 (2000) Giesbertz & Baerends Chem. Phys. Lett., 461, 338 (2008)

$$(\epsilon_u - \epsilon_g) \int dx \int dx' \sigma_g(x) \sigma_u(x) \mathcal{F}_{\text{Hxc}}^{\text{SCE}}([n]; x, x') \sigma_g(x') \sigma_u(x')$$

goes to zero as R gets larger

$$\int dx \int dx' |\phi_{\rm A}(x)|^2 \mathcal{F}_{\rm Hxc}^{\rm SCE}([n]; x, x') |\phi_{\rm A}(x')|^2 \approx \frac{1}{n(0)(R-1/a)^2}.$$

the divergence appears in the atomic regions, due to the presence of another distant atom (highly non-local dependence on the density)

$$\int dx \int dx' |\phi_{\rm A}(x)|^2 \mathcal{F}_{\rm Hxc}^{\rm SCE}([n]; x, x') |\phi_{\rm A}(x')|^2 \approx \frac{1}{n(0)(R-1/a)^2}.$$

the divergence appears in the atomic regions, due to the presence of another distant atom (highly non-local dependence on the density)

Lani, Di Marino, Gerolin, van Leeuwen & Gori-Giorgi, PCCP, published online (Baerends special issue)

Challenges/Perspectives

- SCE limit "too far": kinetic correlation needed

- inclusion of spin: a natural framework to import lattice results

to the continuum

- local interpolations along the adiabatic connection

Stefan Vuckovic

Derk Kooi

- insight to construct new xc kernel for TD DFT

Klaas Giesbertz

Thanks to...

Michael Seidl (University of Regensburg) Giovanni Vignale (University of Missouri) Andreas Savin (CNRS, University Paris VI) Giuseppe Buttazzo (University of Pisa) Luigi de Pascale (University of Pisa) Klaas Giesbertz (VU Amsterdam) Stephanie Reimann (Lund University) Jonas Cremon (Lund University) Christian Mendl (Technical University Munich) Cyrus Umrigar (Cornell University) Andy Teale (Nottingham University)

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Thank you for your attention!

