Amsterdam Modeling Suite Atomistic & Multiscale Simulations for Chemistry & Materials

Fedor Goumans, Chief Customer Officer, goumans@scm.com AMS Workshop, NTU, Taiwan, 28 August 2023

New materials discovery too slow

- 8-19 years to develop materials solutions in new markets
- 80-85% R&D programs fail
- >50% R&D spending only incremental improvement
- **Catch 22**: slow discovery \Leftrightarrow few new materials

https://www.mckinsey.com/industries/chemicals/ourinsights/chemical-innovation-an-investment-for-the-ages

Simulations -> predict new materials Robots -> make new materials AI -> improve simulations and DOE

the Matter Lab - Aspuru-Guzik

Amsterdam Modeling Suite workshop, NTU, 28 August © 2023 SCM 2

Automated **Chemical Synthesis** System

Automated Characterization Platform

AI-aided Experiment Planning and Optimization System

High-performance computing for quantum-based simulations

Bottom up Property Prediction

Atomistic modeling
Decreases search space
Develops understanding
Input for meso & macro

Batteries: fast recharge, high capacity

(m)CPU: high capacity, I-V profiles

Glass, coating: optical properties, conductivity

OLEDs, QLEDs: color, lifetime & efficiency

History: Sofware for Chemistry & Materials

- 1970s ADF: first DFT code to understand chemistry
 - Baerends@VU & Ziegler@Calgary⁽⁺⁾ 0
 - 1980s: Mitsui, Shell, Akzo, Unilever:
 - Training in Amsterdam -> optimize catalysts
- 1995 SCM: Spin-off company Continuous support & Development
- 2010s: DFTB, ReaxFF, COSMO-RS (Albemarle, DSM)
- 2019: Multi-scale: ReaxPro (BASF, Dow, Shell, JM)
- 2023: ~30 people (19 senior PhD's)
 - Many collaborations nonprofit & industry
 - SCM: development, debug, port, optimize, & support Ο

articles &patents in materials science with "density functional theory", Nat. Mat. 4619

Amsterdam Modeling Suite

Continuum

Mesoscal

1.0e-04

0.0e-00 -1.0e-04

-2.0e-04

Fluid Thermodynamics

COSMO-RS COSMO-SAC UNIFAC

Kinetics

Kinetic Monte Carlo **Microkinetics**

Force Fields

ReaxFF, GFN-FF Machine Learning Potentials Apple & P

QM/MM FDE, Hybrid Engine

Tight binding GFN-xTB, DFTB

Periodic DFT BAND, Quantum Espresso

Molecular DFT ADF

Amsterdam Modeling Suite workshop, NTU, 28 August © 2023 SCM 7

AMS Driver: PES exploration, MD, MC, TS, IR, phonons, ...

Integrated GUI, remote jobs

The graphical user interface (GUI)

Setup & analyze calculations

- AMSjobs
 - manage jobs, locally or remotely 0
 - extract summaries
- AMSinput
 - build molecules, periodic systems, polymers, etc.
 - import structures from many formats
- AMSview, AMSlevels, AMSspectra, etc.
 - analyze results 0
 - visualize structures, transition states, orbital densities, DOS, band structure, spectra, etc.

Amsterdam Modeling Suite workshop, NTU, 28 August © 2023 SCM

88

AMS driver: MD with 'anything' A unified driver to explore the Potential Energy Surface (PES)

Amsterdam Modeling Suite workshop, NTU, 28 August © 2023 SCM

°9

ADF: Molecular DFT

Reaction Coordinate

Bonding analysis: Understanding Catalyst-Substrate Interactions Nature Chem. 2, 417 (2010)

NMR calculations locate ¹³C di-Rh carbene catalyst intermediate, Science, 342, 351 (2013)

Spectroscopy

Bonding analysis

- TDM between excited states
- Transfer integrals

Environments

- COSMO, SM12, 3D-RISM
- Subsystem DFT (FDE)

Strong & unique points All-electron Slaters, all elements ZORA & X2C scalar relativistic **Spin-orbit coupling** Fast GW, BSE, double hybrids

• EPR, NMR, IR, Raman, UV/VIS, XANES,

- ETS-NOCV, QTAIM, MO diagrams, NCI
 - NTOs, CT descriptors

DRF, SCRF, DIM/QM, QM/FQ, multi-layer

BAND Periodic DFT with AOs

Dielectric function ML ZnO (2D TDCDFT)

Band structure, pDOS, fat bands ZnS

Polarizing MoS₂ with an electric field

LDOS: STM PtGe(100)

BAND + Plane Wave codes (QE)

Atom centered basis functions, STO + NAO

- Compare cluster with periodic 0
- No pseudopotentials, basis sets for all elements Ο
- Core spectroscopy (core holes) 0
- Easy orbital analysis: pDOS, COOP, EDA 0
- Dielectric function: polarization functional, TDCDFT Ο
- xc: TASK, SCAN, MN15-L, HSE06, GLLB-sc, D3(BJ), DFT-1/2, r2SCAN-D4 Ο
- Self-consistent spin-orbit coupling Ο
- Self-consistent NEGF (biases, spin) 0

True 2D surfaces, 1D polymers

- Solvation: COSMO, SM12 Ο
- **Polarization in z-direction** 0
- 1D, 2D electronics (homogeneous E field) 0
- **Nanotubes** 0

Integrated GUI + Python I/F

- Easy set up & analysis 0
- Switch: ADF, DFTB, BAND, QE (VASP) Ο
- Parametrize DFTB, ReaxFF, MLP Ο

periodic energy decomposition analysis (tutorial) L. Pecher and R. Tonner **WIREs CMS**, (2018)

Position plane with atoms File -0.01 0.01 Log Ba

COOP in perovskites (tutorial) Goesten & Hoffmann **JACS (2018)**

Polarizing 2D semiconductor (tutorial) N. Zibouche et al. **PCCP (2014)**

DFTB: 'fast DFT' for molecules & periodic

 \bigcirc

SCM

Approximated DFT Nearest neighbor & minimal basis Tabulated elec & rep. parameters: Grimme GFN-xTB (Z = 1-86)

GBSA solvation QuasiNaNo & DFTB.org

Capabilities & Features • UV/VIS for molecules (fast!) MOs, Band structures, DOS Molecules, 1D polymers, bulk **NEGF:** transmission

DFTB & MOPAC + AMS driver Geometries, frequencies, phonons Stress tensors (optimize under p) Advanced MD, PES scans GCMC, molecule gun (deposition)

Single 2D semiconductor material diode

2D PdS₂ is

- semiconducting as ML
- semimetallic as BL

DFTB-NEGF

M.Ghorbani-Asl, A. Kuc, P. Miró, and T. Heine, A Single-Material Logical Junction Based on 2D Crystal PdS2, Adv. Mater. (2016)

channel lengths of about 2.5 nm • I-V characteristics tunable by gate voltage

ReaxFF – reactive molecular dynamics

- Single atom type, bond-order based
- Charge equilibration
- Continuous F & E

$$\begin{split} E_{\text{system}} &= E_{\text{bond}} + E_{\text{lp}} + E_{\text{over}} + E_{\text{under}} + E_{\text{val}} + E_{\text{pen}} + \\ E_{\text{coa}} + E_{\text{C}_2} + E_{\text{tors}} + E_{\text{conj}} + E_{\text{H-bond}} + E_{\text{vdWaals}} + E_{\text{Coulomb}} \end{split}$$

$$\mathsf{BO}_{ij}'(\mathsf{r}_{ij}) = \exp\left[p_{\mathsf{bo},1} \cdot \left(\frac{r_{ij}}{r_{\mathsf{o}}}\right)^{p_{\mathsf{bo},2}}\right] + \exp\left[p_{\mathsf{bo},3} \cdot \left(\frac{r_{ij}^{\pi}}{r_{\mathsf{o},\pi}}\right)^{p_{\mathsf{bo},4}}\right] + \exp\left[p_{\mathsf{bo},5} \cdot \left(\frac{r_{ij}^{\pi\pi}}{r_{\mathsf{o},\pi\pi}}\right)^{p_{\mathsf{bo},6}}\right]$$

In: distance between atoms, r. Out: 1, 2, 1.42, etc...

Parameters = 16 $P_{b0,1}, P_{b0,2}, P_{b0,3}, P_{b0,4}, P_{b0,5}, P_{b0,6}, r_{0}, r_{0,\pi}, r_{0,\pi}$ val₁, val₂, $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$

Correction terms f_1, f_2, f_3 : **BO**_{ii}(**r**_{ij}) = BO'_{ii}(**r**_{ij}) $\cdot f_1(BO'_{ij}) \cdot f_2(BO'_{ij}) \cdot f_3(BO'_{ij})$

Review NPJ Comp. Materials (2016): The ReaxFF reactive force field: development, applications and future directions

Combustion, pyrolysis Chem. Sci., 2016, 7, 5280

Polymer formation & Tg, CTE, yield point J. Polym. Sci. B 2018, 56, 255

Epoxy polymers: structure & properties

- Understand & predict how cross-linking effects mechanical properties
 - Exp = slow: minutes to hours to reach ~80% cross-linking
 - ReaxFF: simulate few ns => accelerate kinetics to get highly xlinked structures

ReaxFF simulations: degradation

Degradation mechanisms perfluoropolyether lubricant on SiO₂, Fe₂O₃ nanoparticles & DLC, effect of oxygen and water. Work by van Duin (Penn State/RxFFconsulting) with Western Digital J. Phys. Chem. C, 120, 27433 (2016) J. Phys. Chem. C, **122**, 2684 (2018)

Sputtering, etching, CVD, ALD, PVD

Shoot molecule/atomic targets at surface

- High E: sputtering, (plasma/photo?) etching
- Low E: CVD, ALD, PVD

- Need good force fields: 0 ReaxFF refit short distances
- Sputtering yields (E, angle) 0 (movie: Ar / SiO₂)

Machine Learning Potentials

• Automatically install popular ML Backends

- **Pre-parametrized**
 - ANI-1x and 2x (H, C, N, O, F, S, Cl) **i**)
 - ii) M3GNet ("Universal")
- Backends, via ASE
 - iii) NEquIP, FLARE (on-the-fly)
 - sGDML iv)
 - SchNet V)
 - vi) CHGNet

• Use MLP with all the tasks in the AMS driver

- PES scans, reaction discovery, conformers, IR, phonons, MD, MC etc.
- Hybrid (multi-layer): combine with other methods
- **CUDA-enabled PyTorch and Tensorflow**

×									AM	Spack	ages											ĸ×
Reposit	tory: [🛄 h	ttps://	downl	oads.	scm.ce	om/Do	wnloa	ids/pa	ackage	es/AM	IS202	2.1.ym	I					- 6	Local	mirr	or	3
Install I	ocation: /h	ome/b	as/.sc	m/pac	kage	s/AMS	2022.	1.pacl	kages													
	Package					Version Disk Usage U				U	Updates Has license?				Req. licenses							
 ✓ 	ADFCR	ADFCRS-2018 Database			2	2018-1 🗧 318.90 MiB				Up to date. Yes					CRS 2022.1							
 ✓ 	LFDFT atomic database			1	1.0-0 🚞 1.42 GiB					Up	Up to date. Yes				ADF 2022.1							
	All ML Potential backends				1	1.0.0-0 Yes							MLPOT 2022.1									
	OLED material database				2	2022.1-0 Yes							OLEDTOOLS 2022.1									
PiNN ML backend				0	0.3.1-0 Yes							MLPOT 2022.1										
						1						, roperties	, potuno			0						
									Task:	N	Aolecular D	ynamics	v			Ø		ML	POT 2	022.	1	
	æð	2.00	00						Frequenci	es: 🗆	Yes							ML	.POT 2	022.	1	
d	section of	28	20		,				Periodicity	E	Bulk		v			Ø		ML	.POT 2	022.	1	
(See			્રેન		8				Model:	N	//3GNet-U	-2022	v			Ø	R	emov	e			٦
Sec.		.8		¢,	B						Custom ANI-1ccx ANI-1x											
Constant of the second	2				FB						ANI-2x M3GNet-U	P-2022										
Ser				00	8																	
- 900 - 68	6		, e	Å	8																	
	Sec.	688	and a																			
	66	2622																				
																		110			0.06	
							E	ler	nen	t co	unt	5						не			100	
	Li	Be											В	С	Ν	0	F	Ne			105	
(Na	Mg											AI	Si	Р	S	CI	Ar			10	
	к	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr			104	
	Rh	Sr	Y	7r	Nb	Mo	Тс	Ru	Rh	Pd	Αa	Cd	In	Sn	Sh	Те	1	Xe				unt
		5		-	-		-			- u	A.			011	00	10		7.0			10 ³	ပိ
	Cs	Ва		Hf	Ia	VV	Re	Os	Ir	Pt	Au	Hg	11	Рр	В							
																					10 ²	
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu					
			Ac	Th	Pa	U	Np	Pu												ŕ	10	

i) O. Isayev et al. Chem. Sci., 2017, 8, 3192–3203 ii) C. Chen, S.P. Ong., Nature Comp. Sci. 2, 718-728 (2022) *iii) S. Batzner et al. Nature Comm. 13: 2453 (2022)* iv) S. Chmiela et al. Comp. Phys. Commun. 240 (2019) 38-45 v) K. T. Schütt et al., J. Chem. Theory Comput. 15 (2019) 448-455

MLPotentials for chemistry

From organic chemistry to catalysis

- Explore conformers with ANI-1x/2x
 - CREST & RDKit conformer generation
 - Re-score with DFT
 - **Boltzman averaged properties** 0
- Screen adsorption sites with PESexploration
 - Refined (or fully computed) with MLP 0
 - OCP (Open Catalyst Project) via ASE engine https://opencatalystproject.org/
- Discover chemical reactions with ANI-1xnr (2024)
 - Use the nano reactor to accelerate reactions
 - Analyze all chemical reactions with ChemTrayZer

MLPotentials for (battery) materials M3GNet, trained to Materials Project 1000x faster than DFT

1.2

- M3GNet can accelerate by 1000x
- (Dis)charge curves: GCMC
 - Activation energy
 - Diffusion (kinetics)

Amsterdam Modeling Suite workshop, NTU, 28 August © 2023 SCM 22

0.0

C. Chen, S.P. Ong., Nature Comp. Sci. 2, 718–728 (2022)

• Li intercalation potentials accurately predicted with DFT (~100 atoms) M3GNet reproduces DFT really well

Li potential

Mechanical properties of electrode (volume change upon lithiation)

Li migration barriers in Li_xTiS₂ spinel structure

Training FF with ParAMS

ParAMS making parameters optimization easier

- Import, build and visualize training data
- Use data from AMS, VASP, QE, and experiments
- Tune parameters to describe energies, forces, geometries, stress tensor, charges, bandgaps, etc.
- Use validation sets to prevent overfitting
- Submit multiple optimization at the same time to explore parameters space
- Explore the sensitivity of the parameters to select the most important subset to optimize
- Train DFTB, ReaxFF, Force field, and ... MLP

J. Chem. Inf. Model. 2021, 61, 8, 3737-3743 J. Chem. Theory Comput. 2023, 19, 9, 2557-2573 https://www.scm.com/product/params

Hybrid Engine combine any periodicity, number of layers, and QM or FF methods

- Multi-layer (subtractive, QUILD, ONIOM)
 - 0
- 2-layer: (additive) QM/MM
 - any periodicity 0
 - QM: ADF, DFTB, BAND, MM: Force Field engine 0

SCM File Edit Select Atoms Bonds View Help	Hybrid Main	Model Properties Details	;
	Task: Frequencies:	Geometry Optimizatio 🔻	
	Capping option: Distance:	Slab Fixed	
	Energy terms:	QMMM Energy Terms Factor Region Engir 1.0 h20 DFT 1.0 All Rea	e Charg B 1 0
	-	-1.0 h2o Rea	<pre>cFF 2 0</pre>

SCM

COSMO-RS/SAC: thermodynamic properties of fluids

Quantum Chemistry & QSPR for quick property predictions

COntinuum Solvation MOdel + RS (Klamt), SAC (Sandler) chemical potential => activity coefficients => instantaneous properties

COSMO-RS: solubility in (polymeric) ionic liquids

- (opposed to UNIFAC)
- Works well for SO₂ solubilities
- Improvements for CO₂ (2018)
- Combined with polymer terms (2021)

Lei group: Chem. Rev., 114, 1289–1326 (2014), Green Energy & Environment (2018), Green Energy & Environment (2021)

COSMO-RS predicts beyond parametrization

Enjoy the workshop!

Amsterdam Modeling Suite

Making Computational **Chemistry Work** For You

We love to hear about your R&D challenges! goumans@scm.com www.scm.com 生萊科技有限公司 | www.sunrise.tw

Try for free

scm.com/trial

Summary: Amsterdam Modeling Suite

- Couple atomistic, meso & macro
- Integrated User Interfaces
 - Graphical
 - Python layer
 - Connections to third party

Applications

- Catalysis
- Organic electronics
- Batteries
- Polymers

Polymers: QSPR with sigma-moments

Hydrodesulfurization MoS₂: exp + calc

- STM with high p & T (different H_2/H_2S pressure)
- BAND calc. 2D=> phase diagram of edge -> compare with exp
- Reaction pathways (Albemarle: partial Hessian in BAND very useful!)

Nature Communications **10**, 2546 (2019)

CH_4 and H_2 dissociation on Ni/ γ -Al₂O₃

- Dissociation at TMO NP interface preferred
- Aluminum acts as electron donor
- Need 2D to polarize surface

Li, Croiset, Ricardez-Sandoval, J. Phys. Chem. C 2013, 117, 16907

Electrochemical activation MoTe₂ for H₂ evolution

The rapid electrochemical activation of MoTe₂ for the hydrogen evolution reaction <u>Nature Comm. 2019</u>

Amsterdam Modeling Suite workshop, NTU, 28 August © 2023 SCM 33

1T'-MoTe₂ catalyst improved at bias 2D surfaces + COSMO solvation

H adsorbs on Te at cathodic bias

Flory-Huggins from COSMO-RS

 $N_{p/s}$ – Number of moles of polymer / solvent $\phi_{p/s}$ – Volume fraction of polymer / solvent χ_{ps} – Flory – Huggins Parameter

Estimated FH Parameter

Amsterdam Modeling Suite workshop, NTU, 28 August © 2023 SCM 34

 $\frac{\Delta G_{mix}}{RT} = N_p \ln(\phi_p) + N_s \ln(\phi_s) + N_s \phi_p \chi_{ps}$

Training FF with ParAMS

Making parameters optimization simple

What can you do with ParAMS?

- Import, build and visualize training data
- Use data from AMS, VASP, QE, and experiments
- Tune parameters to describe energies, forces geometries, stress tensor, charges, bandgaps, etc.
- Use validation sets to prevent overfitting
- Submit multiple optimization at the same time to explore parameters space
- Explore the sensitivity of the parameters to select the most important subset to optimize
- Train DFTB, ReaxFF, Force field, and ... MLP

J. Chem. Inf. Model. 2021, 61, 8, 3737-3743 J. Chem. Theory Comput. 2023, 19, 9, 2557-2573 https://www.scm.com/product/params

MAE = 1.83 eV/A

MAE = 1.83 eV/A

MAE = 1.32 eV/A

SCM

MAE = 0.26 eV/A

MAE = 0.25 eV/A

MAE = 0.10 eV/A

Training MLP with ParAMS Active learning workflow Yes Initial **Replay with** Use ML to Train ML dataset DFT generate new data Geometry Forces 12.5 fs NVT 100 K Training 1.16 optimization 25 fs NVT 100 K 73 training references (eV/Å) ~10 steps 21 validation 50 fs NVT 100 K etc. DFT -1146.15--1Predictions (eV/Å) 1146.4-1146.45 -1146.5 1146.55 -1146.6-1146.65 -1146.

MAE = 0.18 eV/A

amshome/scripting/scm/params/examples/ActiveLearning

- Compute the initial training set of reference calculations
- Select the ML model to optimize (nequip, flare)
- Define the series of test tasks (default/custom)
- Run an interactively follow the training procedure
 - MAE plot 0
 - Parity plot 0
 - **Dynamics** 0

