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1. Introduction

1.1. Embedding methods in theoretical chemistry

The subject of theoretical chemistry is the development of methods for the calculation
of properties of molecules and their application to problems from different areas of
chemistry.1 Of particular interest are the calculation of the geometric structure of
molecules, of the energetics of chemical reactions, and of molecular properties, such
as electronic, vibrational or nuclear magnetic resonance (NMR) spectra. In many
cases, such calculations are able to provide useful insight that cannot be obtained
from experiment alone.

The most accurate and generally applicable methods in theoretical chemistry are those
based on quantum mechanics, which solve the Schrödinger equation using different
numerical schemes and approximations. Among these quantum chemical methods,
one can distinguish wave function based ab initio methods and density-functional
theory (DFT). The wave function based methods2 form a well defined hierarchy,
which offers a systematic way of approaching the exact solution of the Schrödinger
equation. However, when more accurate wave function based methods are employed,
the required computer time increases dramatically, so that such calculations quickly
become infeasible.

DFT3 is based on the solution of the Schrödinger equation as well, but it employs a
different strategy by avoiding the calculation of the many-electron wave function. Due
to its accuracy for a wide range of compounds and because the computational effort
is in general lower than that of wave function based methods, DFT has become the
method of choice for many practical applications. However, DFT relies on the use of an
approximate functional for the exchange-correlation energy, and the accuracy of DFT
calculations is limited by the quality of this approximate functional. Furthermore, in
contrast to wave function based methods, there is no way of systematically improving
the quality of DFT results. A more detailed discussion of quantum chemical methods,
and in particular of DFT, can be found in Chapter 2.

Besides quantum chemical methods, there are the molecular mechanics (MM) meth-
ods, which are based on classical force fields obtained from fitting to experimental data
or to the results of quantum chemical calculations. MM methods are computationally

11



1. Introduction

inexpensive, and can be applied to very large systems. However, the applicability of
the available force fields is usually limited to a rather restricted class of molecules for
which the force field has been designed.

As this short overview shows, the methods available in theoretical chemistry differ
significantly in their applicability, their accuracy and the computational effort that is
required. As a rule of thumb, more accurate methods are in general computationally
more expensive, and usually show a less favourable scaling of the computational effort
with the size of the system. Therefore, calculations using the most accurate methods
are often limited to small molecules in the gas phase, while calculations on larger
systems are only feasible with less accurate methods.

One of the biggest challenges for theoretical chemistry is the realistic description of
large systems such as biological systems (e.g., reactions catalyzed by enzymes) or of
molecules in solution. Such a description requires not only the calculation of large
systems, but also that the dynamics of the system at finite temperature is accounted
for, i.e., long time scales have to be considered by performing calculations for a large
number of different structures. Therefore, such calculations are often out of reach if
one tries to apply accurate quantum chemical methods.

In many cases, however, one is only interested in a small part of the total system.
For instance, in enzymes focus can be placed on the active center, where the reaction
of interest takes place, while the protein environment is important for stabilizing this
active center, but in general does not take part in the reaction itself. In the case
of solvent effects, the main interest lies usually on properties of the solute molecule,
while the surrounding solvent molecules are only important because of their effect on
the solute.

Therefore, it is often not desirable to treat the whole system at the same level, but
instead to apply methods in which different parts of the system are described using
different approximation. Usually, one combines a high-level method for the important
part of the system (the subsystem of interest) with a low-level method for the environ-
ment. This allows it to focus on the important parts, while not wasting computational
effort on parts of the system were an accurate description is not essential.

There are a number of different embedding schemes available, that can be distin-
guished by the methods that are combined and by their treatment of the coupling be-
tween these different methods. In QM/MM methods,4,5 a quantum chemical method
(wave function based or DFT) is employed for the subsystem of interest, while a
molecular mechanics description is used for the environment. In QM/QM embedding
schemes,6–8 different quantum chemical methods are employed for different part of
the system. This can, for instance, be a highly accurate wave function based method
for the subsystem of interest, which is combined with a DFT description of the envi-
ronment. It is also possible that the same method is used for both parts of the system,

12



1.1. Embedding methods in theoretical chemistry

e.g., in a DFT-in-DFT embedding scheme. This can be advantageous if additional
approximations are introduced for the description of the environment, or if the ex-
pensive calculation of molecular properties or spectra can be done for the subsystem
of interest only.

In embedding methods, the total energy is expressed in terms of the energy of the
subsystem of interest EI, the energy of the environment Eenv, and an interaction
energy Eint as

Etot = EI + Eenv + Eint. (1.1)

Different embedding methods differ in the way in which the energies EI and Eenv are
calculated and in the definition of the interaction energy Eint.

The simplest approach is that of the ONIOM family of embedding methods,6,7 in
which the energy of the system of interest is calculated for the isolated subsystem of
interest (i.e., without including the environment) using a high-level method, whereas
the energy of the environment is calculated for the isolated environment (i.e., in the
absence of the subsystem of interest) using a low-level method. The interaction energy
is calculated using the low-level method as,

Eint = Elow
tot − Elow

I − Elow
env . (1.2)

This results in the total energy expression

Etot = Ehigh
I − Elow

I + Elow
tot . (1.3)

This ONIOM scheme allows the combination of any kind of methods and can be ap-
plied for both QM/QM and QM/MM embedding calculations. However, the coupling
between the different parts of the system is only included in the energy expression.
Therefore, no polarization of the subsystem of interest due to the environment is in-
cluded and properties and spectra calculated for the subsystem of interest will not
differ from those of the isolated subsystem (except for a change of the equilibrium
geometry).

The description of the polarization of the subsystem of interest with respect to the
environment requires that the calculation on the subsystem of interest is not done for
the isolated subsystem, but that the interaction with the environment is included. The
simplest possibility is the inclusion of an interaction potential that models the effect
of the environment. In QM/MM schemes, this interaction potential is described using
MM methods, by employing a suitable parametrization of this interaction potential.4,9

In QM/QM schemes employing wave function based methods, the inclusion of the po-
larization of the subsystem of interest due to the environment is not straightforward
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1. Introduction

and a suitable description is difficult to achieve. Such a description would require
a partitioning of the wave function of the total system into wave functions of the
subsystem of interest and of the environment, which requires either the introduc-
tion of additional approximations or leads to a scheme that is computationally very
demanding (see, e.g., Refs. 10, 11).

However, within DFT the calculation of the wave function is avoided and it is, there-
fore, not necessary to partition the wave function. Instead, the electron density can
be partitioned and it is possible to formulate a DFT-in-DFT embedding scheme in
which the polarization of the subsystem of interest due to the environment is in-
cluded by means of an effective embedding potential.8 This embedding potential only
depends on the (frozen) electron density of the environment, which makes it possible
to introduce additional approximations for the environment. This DFT-in-DFT em-
bedding method will be referred to as frozen-density embedding (FDE) in this thesis.
In Chapter 3, a detailed introduction of the FDE scheme will be given.

The FDE scheme allows a both accurate and efficient description of the coupling
between the subsystem of interest and the environment, that goes beyond the very
simple coupling only at the level of the energy expression employed in the widely
used ONIOM scheme. Furthermore, it has the advantage that it provides a formalism
that is in principle exact and that, unlike QM/MM schemes, does not rely on an
empirical parametrization. Therefore, FDE is a very promising scheme for tackling
large systems, and this thesis will explore some of its possibilities.

1.2. This thesis

The topic of this thesis is the further development of the frozen-density embedding
(FDE) method. It contributes to the theoretical development of by extending its
applicability and by investigating and improving the involved approximations. Fur-
thermore, by providing an efficient and flexible implementation, this thesis provides
a tool for the application of FDE to challenging problems, such as the description of
solvent effects.

This thesis is divided into four parts. In the first part, the theoretical framework
is introduced. In Chapter 2, an introduction to density-functional theory is given,
with a special focus on the treatment of the kinetic energy. The different possible
treatments of the kinetic energy presented there provide the starting point for the
FDE scheme, which is introduced in Chapter 3. Chapter 3 also reviews the previous
theoretical work and applications related to FDE.

The second part is devoted to theoretical developments related to FDE. In Chapter 4,
the FDE scheme is extended to the calculation of magnetic properties, in particular

14



1.2. This thesis

of nuclear-magnetic resonance (NMR) shieldings. In Chapter 5, a contribution to the
development of approximations for the nonadditive kinetic-energy, that are crucial for
the FDE scheme, is given.

The third part presents an implementation of FDE. In Chapter 6, an efficient numer-
ical integration scheme is developed, that makes FDE applicable for very large frozen
environments (up to 1000 atoms). In Chapter 7, a flexible implementation of FDE
is described that allows an arbitrary number of frozen fragments, and that further
allows it to include the polarization of the environment is a very simple way.

Finally, the fourth part shows two applications of the FDE scheme. In Chapter 8, a
study on van der Waals complexes is presented, which serves as a benchmark applica-
tion to identify possible problems in the approximations made in FDE. In Chapter 9
a contribution to the application of FDE for modeling solvent effects on molecular
properties is given, by providing a detailed comparison to the discrete reaction field
solvent model.
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2. Density-functional theory and the
kinetic energy

In this Chapter, an introduction to density-functional theory (DFT) is given, with
a special focus on the kinetic energy. First, in Section 2.1 a brief introduction of
the main concepts of quantum mechanics that are employed in theoretical chemistry
is given. In Section 2.2, the foundations of DFT are explained. In particular, the
Hohenberg–Kohn theorem is introduced, and the total energy functional and its com-
ponents, especially the kinetic energy and the exchange-correlation energy, are dis-
cussed. Finally, in Section 2.3 different ways of handling the kinetic energy in DFT
are explained. First, the conventional Kohn–Sham treatment of the kinetic energy
is derived. This is followed by a discussion of orbital-free DFT and of approximate
kinetic-energy functionals. Finally, a hybrid Kohn–Sham / orbital-free treatment of
the kinetic energy is presented, which form the basis of the frozen-density embedding
(FDE) scheme that is the topic of this thesis.

2.1. Quantum mechanics

Molecules consist of nuclei and electrons. The theory that describes such small par-
ticles is given by quantum mechanicsa (for a good text book, see Ref. 14).

For the description of molecules, one usually applies the Born–Oppenheimer approx-
imation and considers the position of the nuclei as fixed, while the electrons are
treated quantum mechanically. Since the nuclei are much heavier than the electrons,
their movement is usually slower than that of the electrons, and this approximation
is, therefore, well justified. Hence, in the following, the nuclei will not be treated
quantum mechanically and only systems of electrons, in the field of nuclei at fixed
positions, will be considered.

According to quantum mechanics, all information about a given state of a system of
electrons is contained in its wave function Ψ(r1, s1, . . . , rN , sN ), which depends on
aIn this thesis, only nonrelativistic quantum mechanics will be used. However, for systems contain-

ing heavy nuclei, one has to apply relativistic quantum mechanics. For details, see, e.g., Refs. 12,
13.
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2. DFT and the kinetic energy

the spatial coordinates ri and the spin coordinates si (for electrons, these can only
take the values + 1

2 and − 1
2 ) of all N electrons. For reasons of simplicity, the wave

function is usually chosen to be normalized, i.e.,

〈Ψ|Ψ〉 = |Ψ|2 =
∫
· · ·
∫

Ψ∗Ψ dr1ds1 · · · drNdsN = 1. (2.1)

Any wave function can be normalized by multiplication with the factor 1/
√
|Ψ|2.

For any measurable physical property of the system exists a corresponding Hermitian
operator Ô. In a measurement, only eigenvalues of this operator can be obtained, i.e.,
only values xi for which there exists a wave function Ψi such that

ÔΨi = xiΨi. (2.2)

Because of the hermiticity of Ô, a given wave function Ψ can (in the case of a discrete
spectrumb) be expressed as a linear combination of these (normalized) eigenfunctions
Ψi, which form a complete and orthonormal set, as

Ψ =
∑

i

ciΨi, (2.3)

where the coefficients ci can be obtained from ci = 〈Ψ|Ψi〉. The probability that a
measurement leads to the result xi is then given by

|ci|2 = | 〈Ψ|Ψi〉 |2. (2.4)

If the system is in the corresponding eigenstate Ψi of Ô, this probability is 1 and any
measurement will result in the value xi.

For an arbitrary state described by the wave function Ψ, the expectation value of Ô
is given by〈

Ô
〉

= 〈Ψ| Ô |Ψ〉 =
∫
· · ·
∫

Ψ∗ÔΨ dr1ds1 · · · drNdsN (2.5)

It should be noted that this expectation value is the average value that would be
obtained from a large number of measurements. If it is not an eigenvalue of Ô, the
expectation value itself will never be obtained in any measurement.

The position operator of the first electron is given by r̂1 = r1. This operator has a
continuous spectrum, i.e., any value of r1 is an eigenvalue, and the eigenfunctions are
given by the Dirac delta functions δ(r1 − r′

1). Therefore, the probability density for
finding an electron at the position r (because the electrons are indistinguishable, this

bThe generalization to operators with a continuous spectrum is straightforward, see Ref. 14.
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2.1. Quantum mechanics

is N -times the probability density for finding the first electron at this position, where
N is the number of electrons) is

ρ(r) = N | 〈Ψ|δ(r1 − r)〉 |2

= N

∣∣∣∣∫ · · ·∫ Ψ∗(r1, s1, . . . , rN , sN )δ(r1 − r) dr1ds1 · · · drNdsN

∣∣∣∣2
= N

∫
· · ·
∫
|Ψ(r, s1, . . . , rN , sN )|2 ds1 · · · drNdsN . (2.6)

This probability density of finding an electron at position r is usually referred to as
“electron density”. The probability P of finding an electron in the volume element
x ∈ [x1, x2], y ∈ [y1, y2], z ∈ [z1, z2] can be calculated as

P =
∫ x2

x1

∫ y2

y1

∫ z2

z1

ρ(r) dxdydz. (2.7)

The momentum operator for the first electron is in atomic unitsc given by p̂1 = −i∇1,
where the subscript 1 indicates that the derivative is only taken with respect to the
coordinates r1 of the first electron. This operator also has a continuous spectrum,
and its eigenfunctions are given by the plane waves e−ip·r. Therefore, the probability
density for finding an electron with momentum p can be obtained from the Fourier
transformation of the wave function.

All other operators can be obtained in terms of the position operator r̂ = r and the
momentum operator p̂ = −i∇. For instance, the kinetic energy operator is

T̂ =
N∑

k=1

p̂k
2

2me
= −

N∑
k=1

∇2
k

2
, (2.8)

and, therefore, the expectation value of the kinetic energy is

T = −

〈
Ψ

∣∣∣∣∣
N∑

k=1

∇2
k

2

∣∣∣∣∣Ψ
〉

= −
∫
· · ·
∫

Ψ∗

(
N∑

k=1

∇2
k

2

)
Ψ dr1ds1 · · · drNdsN . (2.9)

For molecules, one is usually interested in the stationary states, i.e., states with a
constant energy. Of special interest is the stationary state with the lowest energy, the
ground state of the system. These can be obtained by solving the time-independent
Schrödinger equation

ĤΨi = EiΨi, (2.10)
cIn atomic units, the electron mass me = 1, the charge of the electron e = 1, ~ = 1, and the Bohr

length a0 = 4πε0 ~2

mee2 = 1. These atomic units will be used throughout this thesis.
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2. DFT and the kinetic energy

where Ĥ is the Hamiltonian of the system, which is the operator corresponding to
the total energy. The wave functions Ψi and the corresponding energies Ei of the
stationary states are given by the eigenfunctions and eigenvalues, respectively, of this
Schrödinger equation. The ground state is described by the wave function Ψ0, which
is the eigenfunction corresponding to the lowest eigenvalue E0.

For a molecule in the absence of any external fields, the electronic Hamiltonian is

Ĥ = −
N∑

k=1

∇2
k

2
−

N∑
k=1

Nnuc∑
A=1

ZA

|rk −RA|
+

N∑
k=1

N∑
l=k+1

1
|rk − rl|

, (2.11)

where ri is the spatial coordinate of the ith electron, and RA and ZA are the coor-
dinates and charges of the nuclei, respectively. The first term in the Hamiltonian is
the kinetic energy operator, while the remaining two terms are the potential energy
operator. The second term arises due to the attraction of the nuclei and the electrons,
and the third term is due to the electron–electron repulsion.

To solve the Schrödinger equation for the ground-state wave function, the variational
principle can be employed. It states that for any trial wave function Ψ̃,

Ẽ[Ψ̃] =
〈

Ψ̃
∣∣∣ Ĥ ∣∣∣Ψ̃〉 ≥ E0, (2.12)

and that equality only holds for the exact ground-state wave function Ψ0. Hence, the
ground-state energy E0 and wave function Ψ0 can be obtained from the minimization

E0 = min
Ψ̃

Ẽ[Ψ̃] = min
Ψ̃

〈
Ψ̃
∣∣∣ Ĥ ∣∣∣Ψ̃〉 , (2.13)

where the minimization runs over all allowed trial wave functions Ψ̃.

The space of “allowed wave functions” is defined by the Pauli principle, which states
that for many-electron systems, the wave function has to be antisymmetric with
respect to the exchange of two electrons, i.e.,

Ψ(. . . , ri, si, . . . , rj , sj , . . . ) = −Ψ(. . . , rj , sj , . . . , ri, si, . . . ). (2.14)

The simplest ansatz for such an antisymmetric wave function is a Slater determinant,
i.e., a wave function of the form

Ψ(r1, s2, . . . , rN , sN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(r1, s1) φ2(r1, s1) . . . φN (r1, s1)
φ1(r2, s2) φ2(r2, s2) . . . φN (r2, s2)

...
...

...
φ1(rN , sN ) φ2(rN , sN ) . . . φN (rN , sN )

∣∣∣∣∣∣∣∣∣ , (2.15)
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2.2. Density-functional theory

where the {φi} are a set of orthonormal one-electron functions (orbitals). The chosen
form of a determinant ensures the antisymmetry with respect to the exchange of two
electrons.

If one performs the minimization of Eq. (2.13) only for wave functions that have the
form of a single Slater determinant, this leads to the Hartee-Fock method (for details,
see Refs. 15, 16). However, as this search space does not contain all possible wave
functions, the Hartee-Fock method only provides an approximate ground-state energy,
that is an upper bound to the correct ground-state energy, and an approximate wave
function.

To obtain a better approximation, one has to use a linear combination of Slater
determinants as ansatz for the trial wave function in Eq. (2.13). Performing this
minimization for different expansions of the trial wave function in Slater determinants
is the starting point of almost any post-Hartee-Fock wave function based method in
quantum chemistry.

2.2. Density-functional theory

2.2.1. Hohenberg–Kohn theorem

The variational principle in combination of the expansion of the wave function in
terms of Slater determinants offers a possible strategy for the determination of the
ground-state wave function. However, this is still an extremely complicated problem.
The wave function is a function of the 3N spatial coordinates of the electronsd, and
the space of allowed wave functions is—for systems with more than a few electrons—of
an enormous size (the number of possible Slater determinants grows factorially with
the number of considered orbitals).

In density-functional theory (for text books, see Refs. 3, 17), the complexity of this
problem is reduced by considering the electron density

ρ(r) =
∫
· · ·
∫
|Ψ(r, r2, . . . , rN )|2 dr2 · · · drN (2.16)

instead of the wave function Ψ(r1, . . . , rN ). The electron density is a function of only
three coordinates and is, therefore, a much simpler quantity than the wave function.

The theoretical justification for such a treatment is given by the Hohenberg–Kohn
theorem.18 Its first part states that there exists a one-to-one mapping between the
dFor reasons of simplicity, in the following only the closed-shell case with N doubly occupied orbitals

will be considered and the spin coordinate will, therefore, not be included.
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2. DFT and the kinetic energy

Figure 2.1.: Illustration of the connection between the ground-state electron density
and the total energy as given by the first part of the Hohenberg-Kohn
theorem.

ρ(r)
HK←→ vext −→ Ĥ

SE−→ Ψ(r1, . . . , rN) −→ E0

external potential vext (in the case of molecules, the potential of the nuclei) and
the ground-state electron density ρ0(r). This implies that from a given ground-
state electron density ρ0(r), the corresponding external potential can be uniquely
determined. With the knowledge of the external potential, the complete Hamiltonian
of the system is known, and the wave function and with it all other properties of the
system can—in principle—be determined. This connection between the ground-state
electron density, the external potential, and the wave function is illustrated in Fig. 2.1.

Therefore, any property of a system of electrons can—in principle—be calculated
from its ground-state electron density, since the ground-state wavefunction is given
as a functional Ψ0[ρ] of the electron density. This establishes for a given external
potential vext the existance of a density functional

Ev[ρ] =
〈

Ψ0[ρ]
∣∣∣T̂ + vext + V̂ee

∣∣∣Ψ0[ρ]
〉

, (2.17)

which provides an energy for any trial density in this external potential.

The second part of the Hohenberg–Kohn theorem provides a variational principle for
the electron density. For any density ρ, the energy functional Ev[ρ] will lead to an
energy that is larger or equal to the ground-state energy, i.e.,

Ev[ρ] ≥ E0 ∀ρ. (2.18)

Equality only holds for the correct ground-state density ρ0,

Ev[ρ] = E0 only for ρ = ρ0. (2.19)

Therefore, the ground-state energy and the ground-state density ρ0 can be calculated
by minimizing the total-energy functional Ev[ρ], i.e.,

E0 = min
ρ

Ev[ρ], (2.20)

where the search space includes all densities that correspond to an antisymmetric
N -electron wave function. This search space is much smaller than that of all anti-
symmetric wave functions, thus simplifying the initial problem considerably.
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2.2. Density-functional theory

2.2.2. The total energy functional

Even though the Hohenberg–Kohn theorem establishes the existence of a total-energy
functional Ev[ρ], the explicit form of this functional is unknown. In order to find suit-
able approximations, the total energy functional is usually decomposed into different
contributions,

Ev[ρ] = T [ρ] + Vne[ρ] + Vee[ρ]

= T [ρ] + Vne[ρ] + J [ρ] + V nonclassical
ee [ρ]. (2.21)

In this expression, T [ρ] is the (interacting) kinetic energy, Vne[ρ] is the electrostatic
attraction of the electrons and the nuclei, which is given by

Vne[ρ] =
∫

vnuc(r)ρ(r)dr, (2.22)

and Vee[ρ] is the electron-electron repulsion energy. The latter can be further decom-
posed into the classical Coulomb repulsion of the electron cloud, i.e.,

J [ρ] =
∫

ρ(r)ρ(r′)
|r − r′|

drdr′, (2.23)

and the remaining nonclassical repulsion energy V nonclassical
ee [ρ].

While both the nuclear–electron attraction Vne[ρ] and the Coulomb repulsion J [ρ]
can be calculated explicitly in terms of the electron density, the explicit form of
the density functionals of the kinetic energy T [ρ] and of the nonclassical electron–
electron repulsion energy V nonclassical

ee [ρ] are not known. The (interacting) kinetic-
energy functional is given by

T [ρ] = −1
2

〈
Ψ

∣∣∣∣∣
N∑

i=1

∇2
i

∣∣∣∣∣Ψ
〉

, (2.24)

and the nonclassical electron–electron repulsion is given by

V nonclassical
ee [ρ] =

N∑
i=1

N∑
j=i+1

〈
Ψ
∣∣∣∣ 1
|ri − rj |

∣∣∣∣Ψ〉− J [ρ] (2.25)

where the wave function Ψ can be obtained from ρ according to the Hohenberg–Kohn
theorem. However, in density-functional theory one tries to avoid this calculation of
the wave function.
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2. DFT and the kinetic energy

2.2.3. The noninteracting reference system

In order to simplify the calculation of the kinetic-energy functional, Kohn and Sham
proposed to approximate the kinetic energy by introducing a reference system of
noninteracting electrons.19 The external potential vs of this noninteracting reference
system is chosen such that its electron density ρ is equal to the electron density of the
original, interacting system. The Hamiltonian of this noninteracting reference system
is given by

H = −
N∑

i=1

∇2
i

2
+

N∑
i=1

vs(ri), (2.26)

and the wave function solving the corresponding Schrödinger equation is given by
a single Slater determinant consisting of the orbitals {φi}, which are the solutions
corresponding to the N lowest eigenvalues of the one-electron equations[

−∇
2

2
+ vs(r)

]
φi(r) = εiφi(r) i = 1, . . . , N. (2.27)

The kinetic energy Ts of this noninteracting reference systeme can be calculated easily
from the orbitals φi as

Ts = −1
2

N∑
i=1

∫
φ∗i (r)∇2φi(r) dr. (2.28)

By introducing this noninteracting kinetic energy Ts, the total energy functional of
Eq. (2.21) can be written as

Ev[ρ] = Ts[ρ] + Tc[ρ] + Vne[ρ] + J [ρ] + V nonclassical
ee [ρ]

= Ts[ρ] + Vne[ρ] + J [ρ] + Exc[ρ], (2.29)

where Tc[ρ] = T [ρ] − Ts[ρ] is defined as the difference between the interacting and
the noninteracting kinetic energy. This difference is usually included in the exchange-
correlation energy,

Exc[ρ] = V nonclassical
ee [ρ] + Tc[ρ]. (2.30)

It has to be stressed that the total energy functional given above is still an exact
functional because even though the exact interacting kinetic energy has been replaced
by the noninteracting kinetic energy, this difference has been included in Exc[ρ].

The introduction of the noninteracting reference system and its kinetic energy makes
it possible to calculate Ts, the largest part of the kinetic energy, exactly so that only
the much smaller exchange-correlation energy Exc has to be approximated.
eThe subscript s stands for “single-particle”.
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2.2. Density-functional theory

2.2.4. The exchange-correlation energy

The explicit form of the exchange-correlation energy functional is not know and,
therefore, this functional has to be approximated. There is no generally applicable
strategy for developing approximate exchange-correlation functionals, but a number
of approximations are available. However, there is no systematic way of improving
an existing approximation.

The simplest approximate exchange-correlation functional is the local density approx-
imation (LDA). To derive the LDA, one considers a large number N of electrons in a
cube of volume V = l3, in which a positive charge is uniformly spread to compensate
the negative charge of the electrons. If one takes the limit N →∞ and V →∞, while
the density ρ = N/V is kept finite, one obtains the model of the uniform electron gas.

The exchange-correlation energy density εuniform
xc = Euniform

xc /V of the uniform elec-
tron gas with density ρ has been calculated accurately using quantum Monte-Carlo
calculations by Ceperley and Alder.20 Using these results, it is possible to obtain an
expression for εuniform

xc (ρ) in terms of the electron density. By applying this exchange-
correlation energy density also for systems with a non-uniform electron density,

ELDA
xc [ρ] =

∫
εuniform
xc (ρ(r))ρ(r)dr, (2.31)

one obtains the LDA exchange-correlation functional. Surprisingly, this LDA func-
tional performs extremely well also for systems that are far from a uniform electron
density distribution, such as atoms and molecules.

This local-density approximation can be improved by also considering the gradient
of the density ∇ρ. This leads to the generalized gradient approximation (GGA), in
which—in the most general form—the exchange-correlation energy is approximated
as

EGGA
xc [ρ,∇ρ] = ELDA

xc [ρ] +
∫

ρ(r)
4
3 F (ρ(r),∇ρ(r))dr, (2.32)

where F (ρ,∇ρ) is an enhancement factor depending on the density and its gradient.
Usually, the exchange-correlation functional is split up into an exchange part Ex and a
correlation part Ec, which are approximated separately. Popular exchange functionals
include the functional of Becke21 and of Perdew and Wang,22 and for the correlation
part, the functionals of Perdew,23 and of Lee, Yang, and Parr24 are widely used.

There are a number of more general approaches going beyond GGA functionals. In
meta-GGA functionals, not only the density and its gradient, but also the kinetic-
energy density τ , which depends on the second derivative of the density, is used as
an additional variable.25 Going even further, functionals that additionally addition

25



2. DFT and the kinetic energy

depend on the occupied or even on the virtual orbitals have been proposed (see,
e.g., Refs. 26–28). Often, this is referred to as “Jacob’s ladder”, on which the exact
exchange-correlation functional is reached by going to the next step on this ladder.
However, in many cases the hierarchy of the different approximations is not that clear.

2.3. The kinetic energy in DFT

In Kohn–Sham DFT, the true, interacting kinetic energy T [ρ] =
〈

Ψ
∣∣∣T̂ ∣∣∣Ψ〉 [cf.

Eq. (2.24)], is approximated by the kinetic energy Ts[ρ] of a noninteracting refer-
ence system with the same electron density, while the remainder Tc[ρ] is included in
the exchange-correlation energy. This leads to a decomposition of the total energy
functional given in Eq. (2.29).

In this total-energy functional, the noninteracting kinetic-energy Ts has been ex-
pressed as a functional of the electron density ρ, even though it explicitly depends
on the orbitals of the noninteracting reference system. This density functional has
to be understood as follows: For a given electron density ρ, it is assumed that a
noninteracting reference system with the same electron density ρ exists, i.e., that the
density is vs-representable. In this case the given density defines—according to the
Hohenberg–Kohn theorem—the corresponding potential vs. This potential defines
the orbitals of the noninteracting reference system, from which the kinetic energy can
be calculated. Thus, Ts is an implicit functional of the density ρ.

Another definition of Ts can be obtained within the Levy constrained-search formu-
lation17,29,30 of DFT, by defining

T̃s[ρ] = min
Ψ→ρ

〈
Ψ
∣∣∣T̂ ∣∣∣Ψ〉 , (2.33)

where the minimization is such that only antisymmetric wave functions yielding the
electron density ρ are considered. This definition is more general than the definition
given above, because it is not limited to vs-representable densities, but it can be
applied for any density that can be represented by an antisymmetric wave function.

It remains to be shown that for vs-representable densities this definition is identi-
cal to the definition given above, i.e., that T̃s[ρ] is equal to the kinetic energy of
the noninteracting reference system with density ρ. For this purpose, one consid-
ers the Schrödinger equation of this reference system, with the Hamiltonian given in
Eq. (2.26). According to the variational principle, its ground-state energy Es and
wave function can be determined from

Es = min
Ψ

〈
Ψ

∣∣∣∣∣T̂ +
N∑

i=1

vs(ri)

∣∣∣∣∣Ψ
〉

. (2.34)
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2.3. The kinetic energy in DFT

Since the density ρ corresponding to the wave function is known, the minimization
can be restricted to wave functions that yield this density, i.e.,

Es[ρ] = min
Ψ→ρ

〈
Ψ
∣∣∣T̂ ∣∣∣Ψ〉+

∫
vs(r)ρ(r)dr, (2.35)

and therefore,

Ts[ρ] = Es[ρ]−
∫

vs(r)ρ(r)dr = min
Ψ→ρ

〈
Ψ
∣∣∣T̂ ∣∣∣Ψ〉 (2.36)

Since it is known that for the noninteracting reference system the ground-state wave
function is a single Slater determinant, the search can be further constrained to single-
determinant wave functions ΨD yielding the density ρ,

Ts[ρ] = min
ΨD→ρ

〈
Ψ
∣∣∣T̂ ∣∣∣Ψ〉

= minP
i |φi|2=ρ

N∑
i=1

∫
φ∗i (r)

(
−∇2

2

)
φi(r) dr. (2.37)

For vs-representable densities, this definition is equivalent to those given earlier, but
it is also applicable for any N -representable density, i.e., for any density that can be
expressed as a sum of the square of N orbitals.

However, even though the above definition is theoretically very useful, it does not
make the practical evaluation of Ts[ρ] any easier. Performing the constrained min-
imization of Eq. (2.37) using Lagrange minimization leads to the initial problem of
determining the potential vs yielding the density ρ (see Ref. 17, page 151). In the
following, different strategies for handling the noninteracting kinetic energy Ts in
practical calculations of the ground-state density will be discussed.

2.3.1. Kohn–Sham DFT

The ground-state density can be determined by minimizing the total-energy functional
given above in Eq. (2.29). To ensure that only electron densities are considered that
correspond to an antisymmetric N -electron wave function, one has to introduce the
constraint that the electron density integrates to the correct number of electrons. In
addition, it has to be made sure that the electron density is positive or zero at any
point in space (i.e., ρ(r) ≥ 0 ∀r). The following derivation of the KS equations is
similar to the one given by van Leeuwen.31

The Lagrange minimization of the total-energy functional under the constraint that
the number of electrons N is conserved (the positivity of the density will be ensured
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2. DFT and the kinetic energy

at a later point) leads to the condition

0 =
δ

δρ

[
Ev[ρ]− µ

(∫
ρ(r)dr −N

)]
=

δTs[ρ]
δρ

+ vnuc(r) +
∫

ρ(r′)
|r − r|

dr′ +
δExc[ρ]

δρ
− µ. (2.38)

However, the functional derivative of the kinetic-energy cannot be evaluated directly,
since the evaluation of the kinetic-energy functional requires the knowledge of the
orbitals of the corresponding noninteracting reference system.

According to the Hohenberg–Kohn theorem, the same density can alternatively be
obtained by minimizing the total-energy functional of the noninteracting reference
system,

Es[ρ] = Ts[ρ] +
∫

ρ(r)vs(r) dr, (2.39)

under the constraint that the density contains the correct number of electrons. This
minimization leads to the condition

0 =
δ

δρ

[
Es[ρ]− µ

(∫
ρ(r)dr −N

)]
=

δTs[ρ]
δρ

+ vs(r)− µ, (2.40)

where the potential vs, that leads to the correct density in the noninteracting reference
system, is still unknown.

Comparing Eq. (2.38) with Eq. (2.40), one obtains for the ground-state density ρ0,

vs(r) = vnuc(r) +
∫

ρ0(r′)
|r − r|

dr′ +
∂Exc[ρ]

∂ρ

∣∣∣∣
ρ=ρ0

. (2.41)

Therefore, the orbitals of the noninteracting reference system corresponding to the
ground-state density can be obtained as solutions of the KS equations [cf. Eq. (2.27)]

[
−∇

2

2
+ vKS

eff [ρ](r)
]

φi(r) = εi φi(r) ; i = 1, . . . , N, (2.42)

where the effective potentialf

vKS
eff [ρ] = vnuc(r) +

∫
ρ(r′)
|r − r|

dr′ +
∂Exc[ρ]

∂ρ
(2.43)

fThis effective potential, that is used during the self-consistent solution of the KS equations is
labeled vKS

eff [ρ], to distinguish it from the potential vs[ρ] of the noninteracting reference system
with a given density. Only for the ground-state density ρ0, these two potentials are identical.
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2.3. The kinetic energy in DFT

depends on the density ρ =
∑N

i=1 |φi|2 calculated from the KS orbitals φi. Hence,
these equations have to be solved iteratively. Since the electron density is obtained
as the sum of the squared KS orbitals, it is automatically ensured that it is larger or
equal zero in all points in space.

An alternative derivation of the KS equations can be given by employing the Levy
constrained-search definition of Ts. Using this definition, the minimization of the
total-energy functional can be written as a two-step procedure,

E0 = min
ρ

(
minP

i |φi|2=ρ

[
N∑

i=1

∫
φ∗i (r)

(
−∇2

2

)
φi(r) dr

]
+ Vne[ρ] + J [ρ] + Exc[ρ]

)
,

(2.44)

where the outer minimization runs over all positive densities that integrate to the cor-
rect number of electrons, while the inner minimization exploits all single-determinant
wave functions that yield a given density.

Since a search over all single-determinantal wave functions will automatically exploit
all allowed electron densities, the minimization over ρ can be eliminated and one
obtains,

E0 = min
φi

(
N∑

i=1

∫
φ∗i (r)

(
−∇2

2

)
φi(r) dr + Vne[ρ] + J [ρ] + Exc[ρ]

)
= min

φi

(Ts[{φi}] + Vne[ρ] + J [ρ] + Exc[ρ]) = min
φi

E[{φi}]. (2.45)

This means that the total-energy density functional has been converted to a functional
of the KS orbitals, and the determination of the electron density has been recast to a
minimization with respect to these KS orbitals.

The minimization of E[{φi}] with respect to the KS orbitals under the constraint that
these orbitals are orthonormal, leads to the condition,

0 =
δ

δφ∗i

E[{φi}]−
N∑

j=1

λij

(∫
φ∗i (r)φi(r)dr − δij

) , (2.46)

from which the KS equations can be obtained (for details, see the similar derivation
of the Hartee–Fock equations in Ref. 16).

To solve the KS equations in practice, the KS orbitals are expanded in basis function,

φi(r) =
M∑

j=1

Cijχj(r), (2.47)
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2. DFT and the kinetic energy

where χi are the basis functions, and the matrix C contains the expansion coefficients.
For molecular systems, usually atom-centered Slater or Gaussian functions are used
as basis functions, while for solid state and condensed phase systems under periodic
boundary conditions, plane waves are employed.

With the overlap matrix S,

Sij =
∫

χ∗i (r)χj(r)dr, (2.48)

and the Fock matrix F

Fij =
∫

χ∗i (r)
(
−∇2

2
+ vKS

eff [ρ]
)

χj(r)dr, (2.49)

the KS equations can, in the chosen basis set, be written as a generalized matrix
eigenvalue problem,

FC = SCε, (2.50)

where the diagonal matrix ε contains the orbitals energies εi. By transforming this
problem to an orthonormal basis, and then diagonalizing the transformed Fock ma-
trix F ′, the expansion coefficients C can be calculated. Using these KS orbitals,
a new Fock matrix is constructed, and this procedure is repeated iteratively until
self-consistency is reached.

The Kohn–Sham formalism provides a practical scheme for DFT calculations. By
introducing the orbitals of the noninteracting reference system, the noninteracting
kinetic energy Ts can be treated exactly, while approximations are only introduced
for the exchange-correlation energy, which has to be calculated using an approximate
density functional. In combination with suitable exchange-correlation functionals,
the KS-DFT scheme has been applied to a huge number of problems. Because of
its good compromise between accuracy and efficiency—especially when compared to
wave function based methods—it is one of the most successful methods in quantum
chemistry.

However, the exact treatment of Ts comes at a price. While according to the Hohen-
berg–Kohn theorem, the wave function (a complicated function of 3N variables) can
be replaced by the electron density (a function of only three variables), in the KS for-
malism a wave function is introduced. Even though in the KS case this wave function
is of the simple form of a single Slater determinant, this requires the calculation of
N orbitals (each a function of three variables), instead of only the electron density.
In particular, the requirement that these orbitals are orthogonal, leads to the form of
an eigenvalue problem, which requires a diagonalization step which is expensive for
large systems.
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2.3. The kinetic energy in DFT

2.3.2. Orbital-free DFT

In an orbital-free (OF) DFT scheme, the calculation of a wave function of the nonin-
teracting reference system is completely avoided. This leads to a scheme that is much
more efficient, since only the density itself has to be determined, but no orbitals have
to be calculated and no diagonalization step is needed.

However, such a pure density-functional theory requires the knowledge of the kinetic-
energy functional Ts[ρ] in terms of the density only. Since the explicit form of this
functional is not known, an approximate functional has to be used for Ts[ρ]. This
means that not only the exchange-correlation energy is treated approximately, but
that additional approximations have to be introduced for the kinetic energy. Different
approximate orbital-free kinetic-energy functionals will be discussed in the following
section.

In such an OF-DFT scheme, the density can be determined by minimizing the total-
energy functional of Eq. (2.29) with respect to ρ, under the constraint that it integrates
to the correct number of electrons and that the density is positive or zero at every
point in space. This leads to the condition,

0 =
δ

δρ

[
E[ρ]− µ

(∫
ρ(r)dr −N

)]
=

δTs[ρ]
δρ

+ vKS
eff [ρ]− µ

⇒ µ =
δTs[ρ]

δρ
+ vKS

eff [ρ], (2.51)

where the Lagrange multiplier µ can be identified with the orbital energy of the
highest occupied KS orbital.32 From the solution of this equation, the ground-state
electron density can be obtained.

To ensure the positivity of the electron density, one can introduce a pseudo-orbital φ
which is used as a new variational variable, and express the density as

ρ(r) = φ(r)2. (2.52)

By separating the kinetic-energy functional into a von Weizsäcker part (see below for
details on this functional) and a remaining part,

Ts[ρ] =
1
8

∫
|∇ρ(r)|2

ρ(r)
dr + TX [ρ] =

1
2

∫
∇φ(r)∇φ(r)dr + TX [ρ] (2.53)

one can obtain for the functional derivative of the kinetic-energy functional

δTs[ρ]
δρ

= −1
2
∇2φ

φ
+

δTX [ρ]
δρ

, (2.54)
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and this allows it to rewrite Eq. (2.51) as(
−1

2
∇2 +

δTX [ρ]
δρ

∣∣∣∣
ρ=φ(r)2

+ veff[φ2](r)

)
φ(r) = µφ(r). (2.55)

This equation has a similar form as the KS equation. However, it is only a single
equation that has to be solved only for one pseudo-orbital and not for a set of or-
thogonal KS orbitals. This equation can be solved efficiently using different standard
algorithms. Details can be found in section VI.1 of Ref. 33.

But the fact that this equation is similar to the KS equations also allows the simple
implementation of OF-DFT in standard KS-DFT codes. By simply introducing the
additional term δTX [ρ]

δρ in the KS potential and by adjusting the occupation num-
bers in such a way that all electrons occupy the orbital with the lowest eigenvalue
(which is then the pseudo-orbital of OF-DFT), one can perform OF-DFT calculations.
However, even though such an implementation might be interesting for theoretical in-
vestigation, such a scheme will also not be more efficient than KS-DFT calculations
unless one gets rid of the diagonalization step.

2.3.3. Orbital-free kinetic-energy functionals

For the OF-DFT scheme, an orbital-free kinetic-energy functional is needed, and suit-
able approximate functionals have to be found. For the exchange-correlation energy,
very accurate approximate functionals exist, that can be applied to a wide range of dif-
ferent systems. However, approximating the kinetic energy is much more difficult. For
this reason, Kohn and Sham introduced their exact treatment of the noninteracting
kinetic energy, which made it for the first time possible to apply density-functional
theory to molecules and turned DFT into an accurate and useful method. In the
following, different approaches to the approximation of the kinetic-energy using an
orbital-free functional will be discussed, and a brief overview of the performance of
these functionals in OF-DFT calculations on solids and on molecules will be given.

As described above, one usually tries to approximate the noninteracting kinetic en-
ergy Ts using an approximate functional, not the true, interacting kinetic energy T .
This has mainly two reasons. First, the difference between Ts and T is included
in the exchange-correlation energy, and most approximate exchange-correlation func-
tionals have been developed in such a way that they include this difference. Therefore,
approximating T instead of Ts in OF-DFT calculations would also require the devel-
opment of new exchange-correlation functionals. Second, the noninteracting kinetic-
energy has a much simpler definition than the interacting kinetic energy. This makes it
in several cases possible to use simpler arguments in the development of approximate
functionals.
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2.3. The kinetic energy in DFT

There are numerous different approaches to the development of approximate kinetic-
energy functionals. In the following, a brief overview of the most important and
widely used kinetic-energy functionals will be given. A more complete overview can
be found in Ref. 33, and extensive information about the theoretical background,
including many derivations, is given in Ref. 17.

Thomas-Fermi functional

As for the exchange-correlation energy, also for the kinetic energy the simplest possible
approximation is the local-density approximation (LDA), which employs the kinetic-
energy density calculated for the uniform electron gas already described in Sec. 2.2.4.
As before, one considers a large number N of electrons in a cube of volume V = l3

and takes the limit N →∞ and V →∞, while the density ρ = N/V is kept finite. To
calculate the noninteracting kinetic-energy Ts, one has to consider a uniform electron
gas of noninteracting electrons.

The eigenfunctions (orbitals) of the noninteracting uniform electron gas are given by
the plane waves that fit the dimensions of the considered cube,

φk(r) =
1√
V

eik·r with k =
2π

l
n, nx, ny, nz = 0,±1,±2, . . . , (2.56)

with the orbital energies given by

Ek =
1

8π2
k2 (2.57)

i.e., the orbital energies are proportional to the magnitude of the wave vector k. For
a given density ρ, all orbitals with |k| ≤ kF are occupied, where kF is called the Fermi
wave vector.

To calculate the electron density, one has to sum the densities of all occupied orbitals
(the factor 2 accounts for the double occupation of the orbitals),

ρ(r) = 2
∑

|k|≤kF

|φk(r)|2 =
2
V

∑
|k|≤kF

eik·re−ik·r =
2
V

∑
|k|≤kF

1. (2.58)

In the limit of the uniform electron gas, the sum can be replaced by an integral. In
each volume element of volume 8π3

V , there is one orbital and, therefore, if k is used
as integration variable, the integral has to be divided by this volume. One obtains
(where it has been used that the integral is the volume of a ball with radius kF ),

ρ =
2
V

V

8π3

∫
|k|≤kF

dk =
1

4π3

∫
|k|≤kF

dk =
1

4π3

4π

3
k3

F =
1

3π2
k3

F (2.59)

⇒ kF =
(
3π2ρ

)1/3
. (2.60)
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2. DFT and the kinetic energy

The kinetic energy of one of the doubly occupied orbitals is given by

Ts(k) = − 1
V

∫
V

e−ik·r∇2eik·rdr = − 1
V

∫
V

e−ik·r(−k2)eik·rdr = k2. (2.61)

and the total kinetic-energy density can be obtained by summing over the kinetic
energies of all occupied orbitals and dividing by the volume of the considered cube,

ts =
∑

k occ.

Ts(k)
V

=
1
V

∑
k occ.

k2. (2.62)

As above, in the limit of the electron gas this sum can be replaced by an integral
(taking into account that in k-space, there is one orbital in a volume of 8π3

V ), and the
integral is performed in spherical coordinates,

ts =
1
V

V

8π3

∫
k occ.

k2dk =
1

8π3

∫ kF

0

∫ π

0

∫ 2π

0

k4dk sin θdθdφ =
1

10π2
k5

F (2.63)

By making use of the relationship between ρ and kF obtained above, one obtains the
kinetic-energy density ts of the noninteracting electron gas in terms of the density,

ts(ρ) =
1

10π2

(
3π2
)5/3

ρ5/3 =
3
10
(
3π2
)2/3

ρ5/3 = CTF ρ5/3. (2.64)

By applying this noninteracting kinetic-energy density also for nonuniform systems,
one obtains the Thomas–Fermi functional,34,35

TTF
s [ρ] = CTF

∫
ρ(r)5/3 dr. (2.65)

However, in contrast to the LDA for the exchange-correlation energy, which is sur-
prisingly accurate, the Thomas–Fermi functional performs poorly in most cases. If
applied in OF-DFT, it does not lead to a correct description of atoms (in particular,
no shell structure is obtained), and one can prove that it will not lead to any bound
molecules (for details on this “non-binding theorem”, see Sec. 6.3 in Ref. 17). Only
for metals, which most closely resemble a uniform electron gas, the Thomas–Fermi
functional leads to reasonable results.

von Weizsäcker functional

While the Thomas–Fermi functional describes the limiting case of a uniform electron
gas, the von Weizsäcker functional36 describes the limiting case of a one-orbital sys-
tem, i.e., a one-electron system or a closed-shell two-electron system. This should
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2.3. The kinetic energy in DFT

also be the correct limit in the asymptotic regions of molecules, where the density is
dominated by the highest-occupied molecular orbital (HOMO), and near the nuclei,
where the density is dominated by a 1s-like orbital. In this limit, the Thomas–Fermi
functional is completely wrong.

For a single-orbital system, the electron density is given by ρ(r) = φ(r)2, where the
orbital φ can be easily obtained from the density as

φ(r) = ±
√

ρ(r). (2.66)

Using this orbital, the (noninteracting) kinetic energy can be calculated as

T vW
s [ρ] = −1

2

∫
φ(r)∇2φ(r)dr

= −1
2

∫ √
ρ(r)∇2

√
ρ(r)dr. (2.67)

Using integration by parts, one obtains the usual form of the von Weizsäcker functional

T vW
s [ρ] =

1
2

∫ (
∇
√

ρ(r)
)(
∇
√

ρ(r)
)

dr

=
1
8

∫
|∇ρ(r)|2

ρ(r)
dr, (2.68)

where in the last step the chain rule has been used in the derivative∇
√

ρ(r) = ∇ρ(r)

2
√

ρ(r)
.

This von Weizsäcker functional is the exact functional in the single-orbital case and in
molecules, it provides the correct asymptotic limit and the correct behavior near the
nuclei. However, in most other cases it is not accurate. In particular, for the uniform
electron gas, where the gradient of the density vanishes, it gives a kinetic energy of
zero, which is clearly wrong. Therefore, the von Weizsäcker functional is rarely used
as a stand-alone functional, but instead it is often employed in combination with other
approximations.

Conventional gradient expansion

One possible strategy of systematically improving the Thomas–Fermi functional is to
introduce terms depending on the gradient of the density (such as the von Weizsäcker
functional) and possibly even higher derivatives of the density in a series expansion.
This leads to the conventional gradient expansion (CGE), in which the kinetic energy
is expressed as

TCGE
s [ρ] =

∞∑
i=0

T2i[ρ] =
∞∑

i=0

∫
t2i(ρ(r),∇ρ(r), . . . ) dr. (2.69)
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2. DFT and the kinetic energy

There are different ways to derive the kinetic-energy densities t2i in the above ex-
pansion, for details see Sec. 6.8 in Ref. 17. The zeroth order term is given by
the Thomas–Fermi functional, while the second-order is given by 1

9 times the von
Weizsäcker functional. Therefore, the CGE up to second order is

TCGE-2
s [ρ] = TTF

s +
1
9
T vW

s . (2.70)

The forth and sixth-order terms are also available in the literature,17,33 but for higher
orders, no analytic expression exists.

Even though the strategy of a systematic series expansion is very appealing, there are
two major problems with the CGE. First, for system with an inhomogeneous density
the convergence is very slow and results obtained when only the leading terms of the
expansion are included are usually poor. Second, in regions where the density decays
exponentially, as it is the case in the asymptotic regions of atoms and molecules,
T2i diverges for the sixth and higher orders, and the associated functional derivative
diverges for the forth and higher orders. Therefore, the CGE can not be used for
constructing accurate orbital-free kinetic energy functionals.

Due to its simplicity, the second order expansion given above has been used in a
number of cases. A slight modification is given by the so-called TFλvW functional,

TTFλvW
s [ρ] = TTF

s + λT vW
s , (2.71)

where λ is a constant. Different values of λ between 0 and 1 have been used, especially
λ = 1

5 has been found to be the optimal choice from numerical results for atoms. In
contrast to the Thomas–Fermi functional, when the CGE or TFλvW functionals
are applied in OF-DFT it is possible to obtain bound molecules. However, none of
these approximations produces satisfactory results. In particular, for atoms no shell
structure is obtained. A detailed study of the performance of TFλvW functionals for
molecules can be found in Ref. 37.

GGA functionals

In analogy to the GGA for the exchange-correlation energy, the dependence on the
gradient of the density can—instead of employing a series expansion—also be intro-
duced by using an approximation of the form

TGGA
s [ρ] =

∫
ρ5/3F (ρ(r,∇ρ(r)) dr, (2.72)

where F (ρ,∇ρ) is an enhancement factor. Lee, Lee, and Parr suggested to use the
same form of this enhancement factor as for the exchange-functional, i.e.,

TGGA
s [ρ] =

∫
ρ5/3F (s(r)) dr, (2.73)
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2.3. The kinetic energy in DFT

where s(r) = 1
2(3π2)1/3

|∇ρ(r)|
ρ(r)4/3 .

Using this strategy, a number of GGA kinetic-energy functionals has been suggested,
either by using the unmodified enhancement factor of a given exchange functional, or
by reparametrizing this enhancement factor. An overview and an numerical tests for
kinetic energies of rare gas atoms can be found in Ref. 38.

One notable example of a GGA kinetic-energy functional is the functional developed
by Karasiev et al., who fitted the enhancement factor such that not, as usual, the den-
sities or kinetic energies are reproduced, but that accurate gradients and equilibrium
geometries are obtained.39 This way, they obtain a functional that yields reasonable
geometries for certain molecules not included in the fitting set.

However, also with GGA functionals, the densities calculated for atoms show no
shell structure, and also for molecules and solids, the obtained results are usually
poor. Nevertheless, GGA kinetic-energy functionals have been shown to be reasonably
accurate if they are applied for a small part of the kinetic energy only40 (as will be
discussed below and in the next chapter).

Linear response functionals

Another approach to the construction of approximate kinetic-energy functionals is
to consider the linear-response behavior of the uniform electron gas.33,41 The change
in the electron density caused by a change in the potential is for a translationally
invariant system, to first order, given by

δρ(r) =
∫

χ(r − r′)δv(r′) dr′, (2.74)

with the linear-response function

χ(r − r′) =
δρ(r)
δv(r′)

. (2.75)

By considering the inverse liner-response function and performing a Fourier transfor-
mation (denoted by the symbol F̂ ), one obtains,

1
χ̃(q)

= F̂

(
δv(r)
δρ(r′)

)
, (2.76)

where χ̃(q) is the linear-response function in momentum space.

The linear-response function of the total KS potential can then be obtained from,

1
χ̃s(q)

= F̂

(
δvKS

eff (r)
δρ(r′)

)
, (2.77)
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2. DFT and the kinetic energy

where the KS potential is according to Eq. (2.51) given by

vKS
eff (r) = −δTs[ρ]

δρ(r)
+ µ, (2.78)

and, therefore,

1
χ̃s(q)

= −F̂

(
δ2Ts[ρ]

δρ(r)δρ(r′)

)
. (2.79)

For the uniform electron gas of density ρ0, the the linear-response function is known,
and its Fourier transformation is given by the Lindhard function,

χ̃Lind(q) = −kF

π2

(
1
2

+
1− η2

4η
ln
∣∣∣∣1 + η

1− η

∣∣∣∣) , (2.80)

where kF = (3π2ρ0)1/3, and η = |q|/(2kF ).

To construct kinetic-energy functionals that show the correct linear-response behavior
for the uniform electron gas, one usually uses functionals of the form,

TLR
s [ρ] = TTF

s [ρ] + T vW
s [ρ] + TX

s [ρ], (2.81)

where for TX
s the simplest possible ansatz is

TX
s =

∫
ρ(r)αK(|r − r′|)ρ(r′)αdrdr′, (2.82)

in which the parameter α has to be chosen appropriately.

The kernel K(|r− r′|) is constructed such that the correct liner-response behavior is
obtained for the uniform electron gas, i.e.,

− 1
χ̃Lind(q)

= F̂

(
δ2TLR

s [ρ]
δρ(r)δρ(r′)

)
= F̂

(
δ2TTF

s [ρ]
δρ(r)δρ(r′)

)
+ F̂

(
δ2T vW

s [ρ]
δρ(r)δρ(r′)

)
+ F̂

(
δ2TX

s [ρ]
δρ(r)δρ(r′)

)
= +

π2

kF
+

3π2η2

kF
+ α2ρ

2(α−1)
0 K(q), (2.83)

where ρ0 is the uniform density (for nonuniform systems, the average density is used)
and the linear response functions of the Thomas–Fermi functional χ̃TF(q) = −kF

π2

and of the von Weizsäcker functional χ̃vW(q) = − kF

3π2η2 have been used. Hence, one
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2.3. The kinetic energy in DFT

obtains within this ansatz,

K(q) =
1

α2ρ
2(α−1)
0

(
1

χ̃Lind(q)
− π2

kF
− 3π2η2

kF

)

= − π2

kF

[(
1
2

+
1− η2

4η
ln
∣∣∣∣1 + η

1− η

∣∣∣∣)−1

+ 1 + 3η2

]
. (2.84)

For the choice of the parameter α, different parameters have been examined (for an
overview, see Ref. 41). In addition, a number of more complicated forms of TX

s [ρ]
have been employed, by introducing different exponents α and β for the densities in
Eq. 2.82 or by introducing a kernel that depends not only on |r − r′| but also on the
nonlocal two-body Fermi wave vector42

ξγ(r, r′) =
(

kF (r)γ + kF (r′)γ

2

)1/γ

, (2.85)

where kF (r) = (2π2ρ(r))1/3. An overview of different such linear-response based
kinetic-energy functionals can be found in Ref. 43.

The functional TX
s [ρ] can be evaluated in momentum space, which can be done effi-

ciently in calculations employing periodic boundary conditions. Choly and Kaxiras
have presented a way of evaluating this term in real space, which is based on numer-
ical integration employing an evenly-space grid,44 but this scheme is also taylored to
the application in calculations with periodic-boundary conditions. Therefore, these
linear-response based functionals have not been applied to the calculation of molecules
so far.

Linear-response based kinetic-energy functionals have been shown to lead to accu-
rate results for metals,41 but also for non-metallic materials such as silicon.43 These
advanced functionals make it possible to employ OF-DFT for studying properties of
simple materials. Carter et al. have applied a combination of OF-DFT with quasi-
continuum mechanics to study the nanoindentation of fcc aluminum.45 Furthermore,
they have applied OF-DFT to study the diffusion and aggregation of vacencies in
shocked aluminum.46

However, if one goes beyond the limited class of system for which OF-DFT in combi-
nation with a suitable functional is known to be reliable, the results are disappointing.
Frankcombe et al. explored the ability of OF-DFT to describe the structures Al, NaH,
AlH3 and NaAlH4, which are of interest in the context of hydrogen storage.47 While
they find that for the simple materials Al and NaH, the linear-response functionals
described above lead to reasonable structures, they fail completely for the hydrides
AlH3 and NaAlH4, where completely wrong structures are obtained. This shows that
even though the performance of these functionals is good for a certain class of ma-
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2. DFT and the kinetic energy

terials, one cannot expect a similar accuracy for even only slightly more complex
materials.

2.3.4. A hybrid orbital-free / KS treatment of the kinetic-energy

Finally, not only the Kohn–Sham and the orbital-free treatment of the noninteracting
kinetic energy are possible, but also a hybrid treatment can be employed. In this
hybrid treatment, the electron density ρ is split up into two components ρ = ρI + ρII,
and the noninteracting kinetic energy is written as,

Ts[ρ] = Ts[ρI] + Ts[ρII] + T nadd
s [ρI, ρII] (2.86)

where the nonadditive kinetic energy is defined as

T nadd
s [ρI, ρII] = Ts[ρI + ρII]− Ts[ρI]− Ts[ρII]. (2.87)

While the kinetic energies corresponding to the two components of the density ρI and
ρII are treated using the corresponding KS orbitals, the nonadditive kinetic energy is
calculated using an orbital-free density functional, i.e., the kinetic energy is calculated
as

Ts[{φ(I)
i }, {φ

(II)
i }] =

N∑
i=1

∫
φ

(I)
i (r)∗

(
−∇2

2

)
φ

(I)
i (r) dr

+
N∑

i=1

∫
φ

(II)
i (r)∗

(
−∇2

2

)
φ

(II)
i (r) dr + T̃ nadd

s [ρI, ρII].

(2.88)

This way, the largest part of the kinetic energy is treated exactly using the KS orbitals,
while only the smaller nonadditive kinetic energy has to be approximated using an
orbital-free kinetic-energy functional.

It is important to note that the KS orbitals corresponding to the densities ρI and
ρII form two orthogonal sets, but the orbitals in one of these sets are not necessarily
orthogonal to orbitals in the other sets. In analogy to the second derivation of the KS
equations given above in Sec. 2.3.1, the ground state can be determined by minimizing
the total energy,

E0 = min
φ

(I)
i ,φ

(II)
i

(
Ts[{φ(I)

i }, {φ
(II)
i }] + Vne[ρ] + J [ρ] + Exc[ρ]

)
, (2.89)

where the kinetic energy has been expressed as in Eq. (2.88). The above minimization
has to be performed subject to the constraint that the sets of orbitals φ

(I)
i and φ

(II)
i

are both orthogonal.
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2.3. The kinetic energy in DFT

Even though this hybrid treatment might seem unnecessarily complicated, it provides
a way of splitting up the total system into separate subsystems, which can be used
as a starting point for efficient calculations of large systems. The frozen-density
embedding scheme, which is the subject of this thesis, exploits this possibility. This
scheme will be discussed in detail in the following chapter.
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3. Frozen-density embedding

In this Chapter, an introduction into the frozen-density embedding (FDE) scheme and
related methods is given. After the main idea, the partitioning of the electron density
into subsystem densities, the general theory is presented. Afterwards, it is explained
how this scheme can be used to model large environments, and how it can be used
as an efficient alternative to conventional KS-DFT. This is followed by a discussion
of the required approximations for the nonadditive kinetic energy. Furthermore, the
extensions of FDE to time-dependent DFT and to wave-function theory (WFT) in
DFT embedding are discussed. Finally, a review of previous applications of the FDE
scheme and related methods is given.

3.1. Partitioning of the electron density

The FDE formalism8,48 is based on a partitioning of the total electron density ρtot(r)
into the electron densities of two subsystems, i.e., it is represented as the sum of two
components ρI(r) and ρII(r),

ρtot(r) = ρI(r) + ρII(r). (3.1)

Except for the requirement that both subsystem densities integrate to an integer
number of electrons, they are not subject to any further conditions. In particular, the
subsystem densities are allowed to overlap. In addition to the electron density, also
the nuclear charges are partitioned accordingly. This partitioning of the density and
of the nuclear charges defines two subsystems (subsystems I and II).

Given this partitioning of the electron density, the DFT total energy can (in the
absence of any external fields) be expressed as a bifunctional of ρI and ρII,

E[ρI, ρII] = ENN +
∫

(ρI(r) + ρII(r)) (vnuc
I (r) + vnuc

II (r)) dr

+
1
2

∫
(ρI(r) + ρII(r))(ρI(r′) + ρII(r′))

|r − r′|
drdr′

+ Exc[ρI + ρII] + Ts[ρI] + Ts[ρII] + T nadd
s [ρI, ρII],

(3.2)
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3. Frozen-density embedding

where ENN is the nuclear repulsion energy, vnuc
I and vnuc

II are the electrostatic poten-
tials of the nuclei in subsystems I and II, respectively, Exc is the exchange-correlation
energy functional, Ts[ρ] is the kinetic energy of the noninteracting reference system,
and T nadd

s [ρI, ρII] is the nonadditive kinetic energy, which is defined as

T nadd
s [ρI, ρII] = Ts[ρI + ρII]− Ts[ρI]− Ts[ρII]. (3.3)

If the densities ρI(r) and ρII(r) are represented using the canonical Kohn-Sham (KS)
orbitalsa for the individual subsystems φ

(n)
i with ρn(r) = 2

∑Nn/2
i=1 φ

(n)
i (r)

∗
φ

(n)
i (r)

(n = I, II), it is possible to calculate the kinetic energy of the corresponding nonin-
teracting reference system as

Ts[ρn] = −2
Nn/2∑
i=1

〈
φ

(n)
i

∣∣∣ ∇2

2

∣∣∣φ(n)
i

〉
. (3.4)

However, with the partitioning of the total electron density into ρI(r) and ρII(r) there
is in general no representation of ρtot(r) in the canonical KS orbitals available, so that
Ts[ρI + ρII] cannot be calculated in this way. Therefore, in practical implementations
T nadd

s [ρI, ρII] has to be calculated using an approximated kinetic-energy functional.

The exchange-correlation energy in Eq. (3.2) can be split up in a similar way as the
kinetic energy into

Exc[ρI + ρII] = Exc[ρI] + Exc[ρII] + Enadd
xc [ρI, ρII], (3.5)

where the nonadditive part of the exchange-correlation energy is defined as

Enadd
xc [ρI, ρII] = Exc[ρI + ρII]− Exc[ρI]− Exc[ρII]. (3.6)

This partitioning of the exchange-correlation energy functional is introduced here to
make it possible to use different approximations for the exchange-correlation func-
tionals in the two subsystems. This possibility will be further explored in Chapter 8.

3.2. The embedding potential

For a given frozen electron density ρII(r) in one of the subsystems (subsystem II) the
electron density ρI(r) in the other subsystem (subsystem I) can be determined by
minimizing the total energy bifunctional [Eq. (3.2)] with respect to ρI, while ρII(r) is
kept frozen. If the complementary ρI(r) is positive, this will lead to the total density
a For reasons of simplicity, only the closed-shell case with N/2 doubly occupied orbitals will be

considered. A generalization to open-shell systems is possible in a straightforward way
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3.2. The embedding potential

ρtot(r) = ρI(r)+ρII(r) that minimizes the total energy functional. This total density
is, therefore, the same density that could also be obtained from a conventional DFT
calculation on the total system.

The minimization of the total energy E[ρI, ρII] with respect to ρI, under the constraint
that the number of electrons NI in subsystem I is conserved, leads to the condition

0 =
δ

δρI

[
E[ρI, ρII] + µI

(∫
ρI(r)dr −NI

)]
= vnuc

I (r) + vnuc
II (r) +

∫
ρI(r′)
|r − r′|

dr′ +
∫

ρII(r′)
|r − r′|

dr′

+
δExc[ρI + ρII]

δρI
+

δTs[ρI]
δρI

+
δT nadd

s [ρI, ρII]
δρI

+ µ(I). (3.7)

If the electron density ρI(r) determined from this minimization is vs-representable,17

it can be expressed as ρI(r) = 2
∑NI/2

i |φ(I)
i (r)|2 in terms of the KS orbitals {φ(I)

i (r)}
of subsystem I. These are determined by solving the Kohn–Sham equations with
constraint electron density (KSCED equations),[

−∇
2

2
+ vKSCED

eff [ρI, ρII](r)
]

φ
(I)
i (r) = εi φ

(I)
i (r); i = 1, . . . , NI/2. (3.8)

In these equations, the KSCED effective potential vKSCED
eff [ρI, ρII](r) is the yet un-

known potential which, for a noninteracting system, leads to an electron density
which is equal to the density obtained from minimizing the (interacting) total energy
bifunctional of Eq. (3.2).

The electron density of this noninteracting reference system can be determined by
minimizing the noninteracting energy functional

Es[ρI] = Ts[ρI] +
∫

ρI(r)vKSCED
eff [ρI, ρII](r)dr, (3.9)

with respect to ρI, under the constraint that the correct number of electrons NI in
subsystem I is conserved. This minimization leads to the condition

0 =
δ

δρI

[
Es[ρI] + µI

(∫
ρI(r)dr −NI

)]
=

δTs[ρI]
δρI

+ vKSCED
eff [ρI, ρII](r) + µI. (3.10)

Comparing Eq. (3.7) and Eq. (3.10) one obtains

vKSCED
eff [ρI, ρII](r) = vKS

eff [ρtot](r) + vT [ρI, ρII](r), (3.11)
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where vKS
eff [ρtot](r) is the KS effective potential for the total system. It contains the

total nuclear potential, the Coulomb potential of the total electron density and the
exchange-correlation potential of the total system,

vKS
eff [ρtot](r) = vnuc

I (r) + vnuc
II (r) +

∫
ρtot(r′)
|r − r′|

dr′ +
δExc[ρ]

δρ

∣∣∣∣
ρ=ρtot(r)

. (3.12)

In addition, the KSCED effective potential contains a kinetic-energy component
vT [ρI, ρII] which is given as the functional derivative of the nonadditive kinetic-energy
bifunctional,

vT [ρI, ρII](r) =
δT nadd

s [ρI, ρII]
δρI

=
δTs[ρ]

δρ

∣∣∣∣
ρ=ρtot(r)

− δTs[ρ]
δρ

∣∣∣∣
ρ=ρI(r)

. (3.13)

In practical applications of the FDE scheme, this kinetic-energy component vT has
to be modeled using an approximate kinetic-energy functional. It should be noted
that in contrast to the bifunctional of the nonadditive kinetic energy of Eq. (3.3),
vT is not symmetric with respect to the exchange of the two electron densities, i.e.,
vT [ρI, ρII] 6= vT [ρII, ρI].

To underline the effective embedding character of the FDE formalism, the KSCED
effective potential is usually expressed in an alternative way than in Eq. (3.11), by
separating terms that depend only on the electron density ρI and the positions of the
nuclei of subsystem I and those that also depend on the frozen electron density ρII

and the positions of the nuclei in the frozen subsystem. This leads to the expression

vKSCED
eff [ρI, ρII](r) = vKS

eff [ρI](r) + vemb
eff [ρI, ρII](r), (3.14)

where vKS
eff [ρI](r) is the KS effective potential of the isolated subsystem I containing

the usual terms of the nuclear potential, the Coulomb potential of the electrons, and
the exchange–correlation potential,

vKS
eff [ρI](r) = vnuc

I (r) +
∫

ρI(r′)
|r − r′|

dr′ +
δExc[ρ]

δρ

∣∣∣∣
ρ=ρI(r)

. (3.15)

The effective embedding potential vemb
eff [ρI, ρII](r) describes the interaction of the sub-

system I with the frozen density and nuclei of subsystem II and reads

vemb
eff [ρI, ρII](r) = vnuc

II (r) +
∫

ρII(r′)
|r − r′|

dr′ +
δEnadd

xc [ρI, ρII]
δρI

+ vT [ρI, ρII](r).

(3.16)

In addition to the electrostatic potential of the nuclei and the electrons in the frozen
subsystem, this effective embedding potential also contains an exchange-correlation
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component, which is given by the functional derivative of the nonadditive exchange-
correlation energy [Eq. (3.6)] as,

δEnadd
xc [ρI, ρII]

δρI
=

δExc[ρ]
δρ

∣∣∣∣
ρ=ρI+ρII

− δExc[ρ]
δρ

∣∣∣∣
ρ=ρI

(3.17)

and a kinetic-energy component as given in Eq. (3.13).

In summary, for a given frozen density ρII(r), the density of the nonfrozen subsystem
ρI(r) can be obtained by solving KS-like equations[

−∇
2

2
+ vKS

eff [ρI](r) + vemb
eff [ρI, ρII](r)

]
φ

(I)
i (r) = εi φ

(I)
i (r) ; i = 1, . . . , NI/2,

(3.18)

in which the effect of the environment is represented by the additional effective em-
bedding potential vemb

eff as given in Eq. (3.16). If the initial assumption that the
complementary ρI is positive and vs-representable is fulfilled, the solution of these
equations will directly yield the exact ground-state electron density of the total sys-
tem.48

3.3. Approximate treatments of the environment

In typical applications of the FDE scheme, the nonfrozen subsystem I is a small
system of interest, which is embedded in a much larger environment. Especially for
the calculation of molecular properties (e.g., electronic excitation energies, or nuclear
magnetic resonance shieldings), this will be a very efficient scheme, since the property
calculation generally has to be performed for the nonfrozen subsystem only.

However, in these cases the construction of the electron density becomes a bottleneck
if the standard approach is used and the frozen density is obtained using a DFT
calculation of the full environment. Since Eq. (3.18) can be solved for any postulated
electron density, ρII(r) may also be obtained from simpler considerations and this
problem can be overcome by applying approximations in the constructions of the
environment. Already in their initial papers, Wesolowski and Warshel proposed the
use of such an approximate density to describe a water environment.8,49

In an initial study of solvent effects on excitation energies, Neugebauer et al. inves-
tigated the electronic absorption spectrum of acetone in water and tested different
approximate descriptions of the frozen solvent environment. They found that com-
pared to a full DFT calculation of the environment, the error introduced by using a
superposition of gas-phase densities of isolated water molecules is less than 0.01 eV
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3. Frozen-density embedding

for the n → π∗ transition of interest. Subsequently, this strategy has been success-
fully applied in a number of studies of solvent effects on molecular properties.CJ4,50 In
some cases it was, however, necessary to include some solvent molecules in the non-
frozen systemCJ4 or to partially relax the frozen density with respect to the nonfrozen
subsystem.CJ5

3.4. Subsystem density-functional theory

While the strategy to use approximate densities as described in the previous section
can be applied for large environments, the FDE formalism can also be used to deter-
mine the electron densities of both subsystems. In particular, for most approximate
environment densities, the requirements that the complementary ρI is vs-representable
and positive at any point in space will not be fulfilled. To correct for the errors intro-
duced by these deficiencies of the approximate environment density, both the electron
density in the nonfrozen subsystem and the environment density should be deter-
mined. This leads to the “subsystem DFT” formalism as it was initially proposed by
Cortona,51 which provides an efficient alternative to conventional KS-DFT.

The starting point for this subsystem DFT formulation is again the total energy
bifunctional of Eq. (3.2), but now this total energy is not only minimized with respect
to the electron density ρI in one of the subsystems while the density ρII in the other
subsystem is kept frozen, but it is minimized with respect to the electron densities in
both subsystems. This means that one determines a pair of electron densities {ρI, ρII}
such that these densities minimize the total energy, i.e., that the energy is stationary
with respect to variations in both densities,

0 = dE =
(

δE

δρI

)
δρI +

(
δE

δρII

)
δρII ∀δρI, δρII, (3.19)

where the functional derivatives with respect to ρI and ρII have to be understood
as partial derivatives (the other density is kept constant) and where the variations
δρI and δρII have to conserve the number of electrons NI and NII in the individual
subsystems, respectively.

Obviously, if the total energy is stationary with respect to variations of both ρI and
ρII, it will also be stationary with respect to variations of ρtot = ρI + ρII. However,
it is important to note that the partitioning of the total density is not unique. As
the total energy only depends on the total electron density ρtot, there will be many
partitionings of the total electron density minimizing the total energy, even if the
number of electrons in the subsystems are fixed.

The stationarity condition given in Eq. (3.19) leads to the conditions for the subsystem
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densities

0 =
δ

δρI

[
E[ρI, ρII] + µI

(∫
ρI(r)dr −NI

)]
(3.20)

0 =
δ

δρII

[
E[ρI, ρII] + µII

(∫
ρII(r)dr −NII

)]
(3.21)

which—similar to what is explained above—lead to two coupled sets of KSCED equa-
tions, [

−∇
2

2
+ vKS

eff [ρI](r) + vemb
eff [ρI, ρII](r)

]
φ

(I)
i (r) = ε

(I)
i φ

(I)
i (r),

i = 1, . . . , NI/2, (3.22)[
−∇

2

2
+ vKS

eff [ρII](r) + vemb
eff [ρII, ρI](r)

]
φ

(II)
i (r) = ε

(II)
i φ

(II)
i (r),

i = 1, . . . , NII/2, (3.23)

where vKS
eff and vKS

eff are the KS potentials of the isolated subsystem I and II, respec-
tively, and vemb

eff is the effective embedding potential as defined in Eq. (3.16).

As the effective embedding potential depends on the electron densities in both subsys-
tems, these two equations are coupled and have to be solved iteratively. This can be
done by applying so-called “freeze-and-thaw” cycles,52 in which the roles of frozen and
nonfrozen subsystem are interchanged until convergence is reached. Alternatively, the
coupled KSCED equations can be solved simultaneously by updating both densities
after each SCF cycle.53,54

The subsystem DFT scheme can be easily extended to an arbitrary number of sub-
systems by starting from the partitioning

ρtot(r) =
M∑
i=1

ρi(r), (3.24)

where M is the number of subsystems. This leads to a formulation similar to the
one presented here, except that a set of M coupled KSCED equations is obtained, in
which the frozen density in the effective embedding potential is replaced by the sum
of the densities of all frozen subsystems.51,53

In Chapter 7, a flexible implementation of the FDE scheme will be presented, which
allows both the FDE treatment using approximate environments and the subsystem
DFT treatment with many subsystems as well as different intermediate schemes.
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3. Frozen-density embedding

3.5. Approximating the nonadditive kinetic-energy

Both the total energy bifunctional and the effective embedding potential contain a
nonadditive kinetic-energy component that usually cannot be calculated exactly. For
the performance of the FDE scheme, the choice of the approximation which is used
for this nonadditive kinetic-energy component is of great importance.

Usually, the nonadditive kinetic energy is approximated in the form

T̃ nadd
s [ρI, ρII] = T̃s[ρI + ρII]− T̃s[ρI]− T̃s[ρII], (3.25)

and the kinetic-energy component vT of the embedding potential is approximated as

ṽT [ρI, ρII](r) =
δT̃s[ρ]

δρ

∣∣∣∣∣
ρ=ρtot(r)

− δT̃s[ρ]
δρ

∣∣∣∣∣
ρ=ρI(r)

, (3.26)

where the tilde is used to label approximate quantities, and T̃s[ρ] refers to some
approximate kinetic-energy functional.

An overview of different approximate kinetic-energy functionals has already been
given in Chapter 2. Here, only a brief overview of the approximate functionals that
are commonly used in combination with the FDE scheme is given. It should be noted
that the requirements on the approximate kinetic-energy functionals for the use in
FDE are quite different from those in orbital-free DFT. Since only a relatively small
part of the kinetic energy has to be described by the approximate functional, even
functionals that perform poorly in orbital-free DFT can provide reasonable results in
FDE.

The simplest approximation for the kinetic-energy functional, corresponding to the
local-density approximation for exchange and correlation, is the Thomas-Fermi func-
tional,

T̃TF
s [ρ] = CTF

∫
ρ5/3(r)dr. (3.27)

For the construction of GGA kinetic energy functionals, the suggestion of Lee, Lee and
Parr55 to use similar analytical forms for approximated kinetic-energy and exchange
energy functionals can be applied, i.e.,

ẼGGA
x [ρ] = −Cx

∫
ρ4/3(r)F (s(r))dr, (3.28)

and

T̃GGA
s [ρ] = CF

∫
ρ5/3(r)F (s(r))dr, (3.29)
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where Cx = 3
4

(
3
π

)1/3, CTF = 3
10

(
3

π2

)2/3 and s(r) = 1
2(3π2)1/3

|∇ρ(r)|
ρ(r)4/3 .

In a series of studies,40,56,57 Wesolowski and co-workers compared the accuracy of
different approximate kinetic-energy functionals, including the TF functional and
several GGA functionals, for different hydrogen-bound complexes. In particular, they
investigated FH· · ·NCH (Ref. 56), HCN· · ·H2 (Ref. 57) and a test set consisting of
(H2O)2, (HF)2, (HCl)2, and HF· · ·NCH (Ref. 40).

By comparing results of freeze-and-thaw FDE calculations to supermolecular KS-DFT
calculations it is found that the functional that yields the most accurate interacting
energies for the investigated complexes is the GGA functional which has the same an-
alytic form of the enhancement factor F (s) as the exchange functional of Perdew and
Wang22 but should be reparametrized for the kinetic energy as described by Lembarki
and Chermette.58 This functional is commonly dubbed PW91k. The complete form
of its enhancement factor reads,

FLC94(s) =
1 + 0.093907s arcsinh(76.32s) +

(
0.26608− 0.0809615e−100s2

)
s2

1 + 0.093907s arcsinh(76.32s) + 0.57767× 10−4s4
. (3.30)

For the complexes that were considered, the interaction energies calculated using
the PW91k functional agree very well with those from supermolecular KS-DFT cal-
culations. However, when comparing dipole moments and electron densities, this
agreement is not as good as for the interaction energies. In addition, it is found
that approximate kinetic-energy functionals which are accurate for the energy are not
necessarily as accurate for the electron density, i.e., for a given approximate kinetic en-
ergy functional Ts[ρ] there is in general no link between the quality of T̃ nadd

s [ρI, ρII] =
T̃s[ρI+ρII]−T̃s[ρI]−T̃s[ρII] and ṽT [ρI, ρII](r) = δT̃s[ρ]

δρ

∣∣∣
ρ=ρtot(r)

− δT̃s[ρ]
δρ

∣∣∣
ρ=ρI(r)

. Never-

theless, the PW91k functional has been used in most applications of the FDE scheme
and has also been used throughout this work (if not stated otherwise).

In Chapter 5, a new class of approximations to the kinetic-energy component vT is
introduced, which do not rely on Eq. (3.26) anymore. Instead, vT is approximated
directly by making use of its known exact behavior in a well-defined limit.

3.6. Extension to time-dependent DFT

A time-dependent linear-response generalization of the FDE scheme was derived by
Casida and Wesolowski.59 Under the assumption that the response to an external elec-
tromagnetic field in resonance with an electronic transition of the embedded molecule
is localized at the nonfrozen subsystem, i.e., that the response of the frozen environ-
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ment can be neglected, this leads—in addition to the kernel within the adiabatic local
density approximation (ALDA) in conventional TDDFT—to an effective embedding
kernel (see the supplementary material to Ref.60),

f emb
xc (r, r′) =

δ2Exc[ρ]
δρ(r)δρ(r′)

∣∣∣∣
ρ=ρI+ρII

− δ2Exc[ρ]
δρ(r)δρ(r′)

∣∣∣∣
ρ=ρI

+
δ2T nadd

s [ρI, ρII]
δρI(r)δρI(r′)

, (3.31)

which now also contains a contribution of the nonadditive kinetic energy. This con-
tribution is, for consistency with the ALDA-kernel, approximated by using the (local
density) Thomas–Fermi functional in Eq. (3.31). In this effective embedding kernel,
the additional term depending on the solvent response function in the exact formu-
lation in Ref. 59 is assumed to be negligible, and the exchange–correlation kernel in
Eq. (3.31) is evaluated for the density ρII of the ground-state calculation. In an initial
application, this TDDFT extension has been shown to be able to describe localized
excitations in DNA base pairs accurately.60

Recently, Neugebauer derived a more general formulation by reformulating the formal
TDDFT extension by Casida and Wesolowski in a finite basis set.61 In this formula-
tion, it is not necessary to neglect the response of the environment and it is possible
to describe couplings between excitations in different subsystems. In addition to this
exact formulation, he also suggests an approximate treatment, in which only a few
couplings are included and demonstrates that this is sufficient to describe coupled
excitations in a benzaldehyde dimer.

3.7. Extension to WFT-in-DFT embedding

Carter and co-workers have extended the FDE formalism to an WFT-in-DFT embed-
ding scheme.62,63 Starting from a partitioning of the total system into two subsystems,
the total energy of the system can be expressed as

Etot = EI + EII + Eint, (3.32)

where the energy EI of subsystem I will be described using wave-function based meth-
ods, the energy EII of subsystem II will be described using DFT, and the interaction
energy will also be treated using DFT. In DFT, this interaction energy between sub-
system I (characterized by its electron density ρI) and subsystem II (characterized by
its electron density ρII) is given by

Eint[ρI, ρII] = Eint
NN +

∫
ρI(r)vnuc

II (r) dr +
∫

ρII(r)vnuc
I (r) dr

+
∫

ρI(r)ρII(r′)
|r − r′|

drdr′ + Enadd
xc [ρI, ρII] + T nadd

s [ρI, ρII], (3.33)
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where Eint
NN is the interaction energy between the nuclei in the two subsystems, and

Enadd
xc and T nadd

s are the nonadditive exchange-correlation and kinetic energies as
defined in Eq. (3.3) and Eq. (3.6), respectively. As in the FDE scheme, the KS
orbitals of the total system and the KS orbitals of subsystem I, which is treated using
wave function based methods, are not available, so that an approximate kinetic-energy
functional has to be used for the nonadditive kinetic energy.

The embedding potential for subsystem I due to the environment in subsystem II can
now be obtained as functional derivative of the interaction energy Eint with respect
to ρI, and one obtains the effective embedding potential

vemb
eff [ρI, ρII](r) = vnuc

II (r) +
∫

ρII(r′)
|r − r′|

dr′ +
δEnadd

xc [ρI, ρII]
δρI

+
δT nadd

s [ρI, ρII]
δρI

,

(3.34)

which is the same as the embedding potential of Eq. (3.16). All of the terms in this
equation are evaluated using DFT, and this embedding potential is included in the
one-electron part of the Fock matrix in the WFT treatment.

Carter and co-workers applied this WFT-in-DFT embedding scheme to investigate
atoms and molecules adsorbed on metallic surfaces. While they use a periodic DFT
description for the metal, the adsorbed molecule is treated more accurately using
wave-function based methods. For the WFT part they applied different configuration
interaction (CI) and complete active space SCF (CASSCF) methods. These allow an
easy construction of the electron density, that is needed for the construction of the
embedding potential.

In their initial setup,63 the total electron density ρtot is obtained from a periodic
DFT calculation on the total system. This total electron density is kept fixed in
the following, and ρI (and implicitly also ρII) is determined from a wave-function
calculation. Using a starting density for ρI, the embedding potential vemb

eff [ρI, ρtot−ρI]
is constructed, and a new density ρI is obtained from a wave-function calculation
employing this embedding potential. The new ρI is then used to update the embedding
potential, and this procedure is repeated iteratively until convergence is reached.

In an improved setup,64,65 the restriction that ρtot has to be kept fixed is relaxed. In-
stead, an initial density ρbare

I of subsystem I is obtained from an isolated wave-function
calculation, and the density ρII = ρtot−ρbare

I is kept frozen in the following. As before,
the embedding potential vemb

eff [ρI, ρII] is constructed, an updated ρI is obtained, and
a new embedding potential is constructed. Again, this procedure is repeated until
convergence is reached.

There is also work in progress using a slightly different scheme.66 The embedding
potential can also be obtained from a standard FDE calculation, either using an ap-
proximate environment density or “freeze-and-thaw” cycles. The effective embedding

53



3. Frozen-density embedding

potential from this FDE calculation can subsequently be used in a wave-function cal-
culation on subsystem I. In contrast to the previous schemes, the embedding potential
is constructed using the DFT density for subsystem I, instead of the density from the
wave-function calculation. This scheme has the advantage that only a single wave-
function calculation is required, and that it is not necessary to obtain the electron
density from the wave-function calculation (which is rather demanding for many ad-
vanced methods). However, it will only be applicable if the density of subsystem I
can be approximated rather accurately using DFT.

Carter and co-workers have applied their WFT-in-DFT embedding scheme to study
the adsorption of CO on a Cu(111) surface62,63 and to describe localized electronic
excitations in a CO molecule adsorbed on a Pd(111) surface.67,68 Furthermore, they
have investigated the adsorption of a cobalt atom on a Cu(111) surface,64 and they
were able to obtain the experimentally observed spin-compensated ground-state, in
contrast to the results of a conventional DFT treatment.

3.8. Review of applications of FDE

Since they were first proposed in 1991 and 1993, respectively, the subsystem formu-
lation of DFT and the FDE scheme have been applied in a number of studies of
small complexes, solid state systems, simulations of the condensed phase as well as
investigations of biological systems. In this section, a brief overview of these appli-
cations will be given. However, this overview will probably not be complete. An
extensive overview of the applications of the FDE scheme carried out by Wesolowski
and co-workers is given in Ref. 48.

In their initial papers,8,49 Wesolowski and Warshel investigated the solvation of a
lithium ion in water and the solvation free energy of liquid water and methane. In
these studies, the frozen solvent environments were constructed by using a superpo-
sition of the densities of isolated water or methane molecules, as described above.

Subsequently, Wesolowski and co-workers have performed a number of detailed stud-
ies40,52,56,57 investigating the accuracy of different kinetic-energy functionals for hy-
drogen-bound complexes by comparing interaction energies obtained from “freeze-
and-thaw” FDE calculations to those calculated in conventional KS-DFT calculation.
This work has been followed up in studies on different sets of hydrogen-bound com-
plexes, both for interaction energies69 as well as for equilibrium structures.70 However,
these later studies focus on the comparison to high-level ab initio results, and in this
case fortunate error cancellations might mask inaccuracies in the nonadditive kinetic-
energy functionals used.

Similarly, it was found in studies on van der Waals complexes [of C6H6 and O2, N2,
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CO (Ref. 71), of carbazole and Ne, Ar, CH4, CO, N2 (Ref. 72), and a large test set of
complexes containing Ne, Ar, F2, N2, C2H2, C2H4, C2H6, C3H6, C3H8, C6H6, C2F6,
(Ref. 73)], that interaction energies calculated in “freeze-and-thaw” FDE calculations
agree better with ab initio benchmark data than conventional KS-DFT calculation.
However, this better agreement is due to a fortunate error cancellation.

In contrast, in Chapter 8 (Ref. CJ3) a different type of study on CO2 · · ·X (X=He,
Ne, Ar, Kr, Xe, Hg) van der Waals complexes is presented, that focuses on the
identification of possible problem in the kinetic-energy functional by comparing the
dipole moments calculated in “freeze-and-thaw” FDE calculations to those obtained
in conventional KS-DFT calculations. The problems identified there were investigated
in more detail in later works.CJ7,74

Besides these works that mainly focus on the theoretical aspects of the FDE scheme,
it has also been applied to tackle problems from different areas of chemistry and
physics. Most important, it has been used to determine various molecular properties
of molecules in different environments. Wesolowski investigated the electron spin
resonance (ESR) hyperfine coupling constants (hfcc’s) of Mg+ in Ne and Ar matrices,
where the matrix environment was represented by a small cluster of rare gas atoms.75

ESR hfcc’s were also investigated by Neugebauer et al., who studied H2NO in water.50

In both cases, a good agreement between the calculated hfcc’s and the experimental
values was found.

Solvent effects on different molecular properties have been looked at by Neugebauer
and co-workers. In all these works, the solvent environment is approximated as a
sum of the densities of isolated solvent molecules. To account for the dynamics of
the solvent, the properties were calculated for a large number (several hundreds) of
snapshots obtained from classical or Car-Parrinello molecular dynamics simulations,
and the results were averaged. These very demanding calculations have been made
possible by the efficiency of the FDE scheme, which allows the inclusion of solvent
environments consisting of up to 1000 atoms.

Using this strategy, solvatochromic shifts, i.e., shifts in electronic excitation energies
due to the solvent, have been investigated for acetone in water76 and for the organic
dye aminocoumarin C151 in n-hexane and in water.CJ4 As mentioned above, solvent
effects on ESR hfcc’s have also been successfully calculated.50 In Chapter 9 (Ref. CJ5)
a systematic comparison of the FDE scheme to QM/MM methods for the description
of solvent effects of different molecular properties will be presented.

Warshel and co-workers have applied the FDE scheme for calculations of free-energy
surfaces of chemical reactions in solution and in biological environments. In combina-
tion with free energy perturbation (FEP) calculations using empirical valence bond
(EVB) reference surfaces, they investigated the proton transfer reaction F− + HF→
FH + F− in aqueous solution,77 as well as the autodissociation of water in aqueous
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solution.78 They further studied the proton transfer between two water molecules
in a (Im)3Zn2+H2O (Im = imidazole) complex, which is a model system for proton
transfer reactions in zinc containing metalloenzymes.79 Using similar techniques and
by combining the FDE description of the active center of the protein to an MM treat-
ment of the remaining parts of the protein, they were also able to calculate the redox
potentials of the redox proteins plastocyanin and rusticyanin.80

More complex environments were also used in a study of the adsorption of CO in
zeolites, in which the geometry and vibrational frequency of CO in different zeolite
environments was investigated,81 and in a theoretical investigation of the mechanism
of the enzymatic reduction of nitrate, in which the frozen enzyme environment was
modeled by four neighboring amino acids.82

The TDDFT extension of FDE,59 initially benchmarked for DNA base pairs,60 was
employed in several different applications. It was used in the above mentioned studies
of solvatochromic shiftsCJ4,CJ5,76 as well as for the calculation of polarizabilities.CJ5

Furthermore, it has been used by Neugebauer et al. to describe induced circular
dichroism (CD) in host–guest systems.83 They studied the CD spectrum of a complex
of 2-benzoylbenzoic acid with (−)-(R)-amphetamine and for a complex of L-leucine
with an artificial amino acid receptor system. In both cases, a good agreement of the
FDE results with supermolecular calculations was found. However, for a system con-
sisting of phenole in a cyclodextrin cavity problems were found because FDE cannot
describe couplings between excitations in the different subsystems. These deficiencies
were solved by the subsystem TDDFT formalism introduced by Neugebauer in a later
work.61

A number of questions from the area of solid state physics have been investigated
using the FDE scheme, too. In an early study, Stefanovich and Troung investigated
the adsorption of H2O on a NaCl(001) surface.84 They modeled the NaCl surface
by using a frozen density, that was obtained as a sum of the (spherical) densities
of the isolated Na+ and Cl− ions. Trail and Bird explored the ability of the FDE
scheme to correctly describe the electron density in a unit cell of bulk aluminum.85

The good agreement found in these applications is particularly interesting, since in
these cases the interaction with the environment is rather strong. However, in the case
of metals, this strong interaction can be accurately modeled by simple approximate
kinetic-energy functionals, while this is not possible for molecular systems.

Choly et al. used the FDE scheme in molecular dynamics (MD) simulations to cou-
ple a DFT description of a small part of bulk aluminum with a more approximate
treatment of the remaining bulk aluminum in the environment. The dynamics in
this environment is described using classical potentials,86 while for the smaller part
of interest, an FDE-based description is employed. To model the electron density of
the environment that is needed for the construction of the embedding potential, they
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employed a superposition of the spherical densities of isolated aluminum atoms.

Properties of localized defects in solids have been investigated using FDE by Garćıa-
Lastra et al., who studied both crystal field splittings as well as changes in vibrational
frequencies of MnF4−

6 subunits in Mn2+-doped flouroperovskites.87 Similarly, Zbiri
et al. studied the crystal field splittings of lanthanide cations in chloroelpasolite
crystals88 and in elpasolite crystals.89

It has to be mentioned that also the subsystem DFT formulation has been used in
several works on solid state systems. In the scheme initially proposed by Cortona,51

the atoms of a crystal are treated as individual subsystems, and the electron density
of each of these subsystems is optimized individually. However, in Cortona’s scheme,
the atomic densities are constraint to be spherical, and the potential is spherically
averaged. This scheme has been applied to study several ionic crystals, such as alkali
halides,90 MgO and CaO,91 alkali-earth sulfides,92 alkali-earth oxides,93 CaS, CaSe,
and CaTe,94 magnesium oxide,95 as well as SrSe and SrTe.96 Cortona’s scheme has
been extended by Boyer and Mehl,97 who removed the constraint of spherical atomic
densities and allowed deformations of the atomic densities. Using this method, which
they called self-consistent atomic deformation (SCAD) method, alkali halides98 and
corundum (Al2O3)99 have been studied.

Finally, the subsystem DFT formulation has been employed to perform molecular dy-
namics simulations of the condensed phase. Hutter and co-workers implemented an
MD algorithm based on subsystem DFT in the CP2K package100,101 and performed
MD simulations of water at ambient conditions.53 However, the pair distribution
functions they obtained showed only an unstructured second solvation shell, and they
attributed this wrong description to shortcomings of the approximate kinetic-energy
functionals. Shimojo et al. developed another MD code based on subsystem DFT, us-
ing an efficient numerical integration scheme employing hierarchical real-space grids.54

They have applied their implementation to MD simulations of aluminum nanoparti-
cles and of nanoindentation of ceramics materials.102
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4. Calculation of nuclear magnetic
resonance shieldings

adapted from

Christoph R. Jacob and Lucas Visscher,
“Calculation of nuclear magnetic resonance shieldings using

frozen-density embedding”,
J. Chem. Phys. 125 (2006), 194104.

c© 2006 American Institute of Physics

Abstract

We have extended the frozen-density embedding (FDE) scheme within density-funct-
ional theory to include external magnetic fields and applied this extension to the
nonrelativistic calculation of nuclear magnetic resonance (NMR) shieldings. This
leads to a formulation in which the electron density and the induced current are
calculated separately for the individual subsystems. If the current-dependence of the
exchange-correlation functional and of the nonadditive kinetic-energy functional are
neglected, the induced currents in the subsystems are not coupled and each of them
can be determined without knowledge of the induced current in the other subsystem.
This allows the calculation of the NMR shielding as a sum of contributions of the
individual subsystems. As a test application, we have calculated the solvent shifts
of the nitrogen shielding of acetonitrile for different solvents using small geometry-
optimized clusters consisting of acetonitrile and one solvent molecule. By comparing
to the solvent shifts obtained from supermolecular calculations we assess the accuracy
of the solvent shifts obtained from FDE calculations. We find a good agreement
between supermolecular and FDE calculations for different solvents. In most cases it is
possible to neglect the contribution of the induced current in the solvent subsystem to
the NMR shielding, but it has to be considered for aromatic solvents. We demonstrate
that FDE can describe the effect of induced currents in the environment accurately.
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4. Calculation of NMR shieldings

4.1. Introduction

Nuclear magnetic resonance (NMR) spectroscopy is one of the most important and
powerful tools in chemistry and biochemistry and quantum-chemical calculations
of NMR parameters have developed into a routine task (for reviews, see Refs. 103
and 104). Often these calculations assist in the assignment of NMR spectra and their
interpretation (see, e.g., Refs. 105–109). Due to its ease of application and compu-
tational efficiency, density-functional theory (DFT) is the standard method for the
calculation of NMR parameters.

In the past years, there is an increasing interest in quantum-chemical calculations
of NMR parameters for large systems (with a few hundred atoms), e.g., biological
systems or molecules in solution or in other complex environments, and methods that
show a linear scaling with the system size have been implemented for the Hartree-Fock
and DFT calculations of NMR parameters.110,111 However, even with linear scaling
of the computational effort these methods still have high computational requirements
for many systems of interest, since they require a full quantum-mechanical treatment
of the whole system.

The NMR shielding describes the induced current near the NMR active nucleus, with
the nuclear magnetic moment acting as a probe. Because the operator corresponding
to this nuclear magnetic moment is relatively short ranged, scaling as r−2 with the dis-
tance r to the nucleus, the NMR shielding can be regarded as a rather “near-sighted”
property. Therefore, it is often possible to focus on a subsystem that is close to the
NMR active nucleus, avoiding the quantum-mechanical treatment of the full system.
One possible way of exploiting this near-sightedness of the NMR shielding are methods
that treat only a small part of the system containing the NMR active nuclei explic-
itly quantum mechanically, while a more approximate method is chosen to represent
the environment. The most prominent example of methods following this strategy
are combined quantum mechanics / molecular mechanics (QM/MM) methods.4,112

However, the success of QM/MM methods relies on the careful parametrization of
the force field used in the MM part.

For the special case that the environment is formed by a solvent, continuum solvation
models, in which the solvent environment is described as a continuous medium char-
acterized by its dielectric constant, can be employed for the calculation of NMR pa-
rameters.113–115 While it is clear that continuum models are able to correctly describe
unspecific solvent effects, i.e., dielectric medium effects, problems may appear in the
description of specific effects such as hydrogen bonding. Especially for the calculation
of NMR shieldings it has been found that it is necessary to combine the continuum
description with the explicit inclusion of a number of solvent molecules.116–118

Frozen-density embedding (FDE), originally introduced by Wesolowski and Warshel,8,48
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offers an appealing alternative for the DFT calculation of NMR shieldings in large
systems. The FDE scheme is based on a partitioning into separate subsystems, which
are each calculated separately, with the effect of the other (frozen) subsystems rep-
resented by an effective embedding potential which only depends on their charge
density. Even though the construction of this embedding potential requires the use
of an approximate kinetic-energy functional, the FDE scheme itself is in principle
exact. It thus allows it to exploit the near-sightedness of the NMR shielding by fo-
cusing on the subsystem containing the NMR active nuclei while still keeping the
quantum-mechanical treatment of the full system.

In this Chapter, we will extend the FDE formalism to the calculation of NMR shield-
ings and test the method for the calculation of solvent shifts of NMR shieldings, using
small solute–solvent clusters.

This Chapter is organized as follows. First, we will present the theory of the calcu-
lation of NMR shieldings using frozen-density embedding in Sec. 4.2. After a brief
review of nonrelativistic current density-functional theory in Sec. 4.2.1 and of the
nonrelativistic DFT calculation of NMR shieldings in Sec 4.2.2, we present the theory
of frozen-density embedding for systems in magnetic fields in Sec. 4.2.3. This the-
ory is then applied to the calculation of NMR shieldings using FDE in Sec. 4.2.4. In
Sec. 4.3 computational details are given, and in Sec. 4.4, the FDE formalism is applied
to the calculation of the solvent shift of the nitrogen NMR shielding in acetonitrile.
Concluding remarks follow in Sec. 4.5

4.2. Theory

4.2.1. Nonrelativistic current density-functional theory

The starting point for the nonrelativistic DFT calculation of NMR shieldings is the
generalization of DFT to include magnetic fields, which is given by current density
functional theory (CDFT) as it was first formulated for closed-shell systems by Vignale
and Rasolt.119 This requires to consider not only the electron density ρ(r) as the basic
variable, but also the current density j(r). They show that in order to prove an analog
of the Hohenberg-Kohn theorem, it is necessary to use the electron density ρ(r) and
the paramagnetic current jp(r) = j(r)+ρ(r)A(r) as basic variables, i.e., the (gauge-
dependent) paramagnetic current jp has to be used instead of the (gauge-invariant)
total current j.119,120

In the following, we will always consider a closed-shell system with N doubly occupied
orbitals and with 2N electrons. For such a system in an external magnetic field the

63



4. Calculation of NMR shieldings

total energy functional is given by

E[ρ, jp] = Ts[ρ, jp] +
∫

vnuc(r)ρ(r) dr

−
∫

jp(r)A(r) dr +
1
2

∫
ρ(r)A2(r) dr

+
∫

ρ(r)ρ(r′)
|r − r′|

dr + Exc[ρ, jp]. (4.1)

We are using Hartree atomic units throughout this paper and have used the Coulomb
gauge for the external vector potential (∇A = 0). In the above expression, the exter-
nal scalar potential vnuc is the electrostatic potential of the nuclei and the external
vector potential A(r) corresponds to the magnetic field. The total energy functional
contains terms for the noninteracting kinetic energy, the electron–nuclei attraction,
the interaction of the current and of the electron density with the external vector po-
tential, the Coulomb repulsion of the electrons, and the exchange-correlation energy,
which now also depends on the current.

The noninteracting kinetic energy Ts[ρ, jp] is the kinetic energy of a reference system
of noninteracting electrons having the same electron density ρ and paramagnetic
current jp as the interacting system. For such a system, the wave function is given
by one single Slater determinant. The electron density is then given by

ρ(r) = 2
N∑

i=1

φ∗i (r)φi(r), (4.2)

and the paramagnetic current is given by

jp(r) = i

N∑
i=1

{φ∗i (r)∇φi(r)− φi(r)∇φ∗i (r)}. (4.3)

In this definition of the paramagnetic current the negative unit charge of the electron
and the double occupation of the orbitals have been included.

Minimization of the total energy functional with respect to the Kohn–Sham (KS)
orbitals {φi} of this noninteracting reference system under the constraint that the
KS orbitals are orthonormal leads to KS equations for the determination of the KS
orbitals {φi},[

1
2

(−i∇+ A(r))2 +
i

2
Axc(r)∇+ vKS

eff [ρ](r)
]

φi(r) = εi φi(r). (4.4)

The KS effective potential vKS
eff [ρ] contains the usual terms of the nuclear potential,

the Coulomb potential of the electrons and the exchange-correlation potential. In
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addition, Axc(r) = δExc[ρ,jp]

δjp(r) enters these equations because of the current dependence

of the exchange-correlation functional. It can be shown119 that these one-electron
equations are gauge invariant and that the total current j(r) = jp(r) − ρ(r)A(r)
obtained from it satisfies the continuity equation

∇ · j(r) +
∂ρ(r)

∂t
= 0. (4.5)

For the calculation of NMR parameters, the current dependence of the exchange-
correlation functional is usually neglected. This approximation is often referred to
as “uncoupled DFT”. In this case, the KS equations for systems in a magnetic field
reduce to[

1
2

(−i∇+ A(r))2 + vKS
eff [ρ](r)

]
φi(r) = εi φi(r). (4.6)

These equations can also be obtained from the usual KS equations by substitution of
the momentum operator p̂ = −i∇ with p̂ + A(r).

4.2.2. Nonrelativistic DFT calculation of NMR shieldings

The NMR shielding tensor can be expressed in terms of the first-order current induced
by a homogeneous external magnetic field, which is probed by the nuclear magnetic
moment of the nucleus in question, as121

σst = − 1
c2

∫ [
(r −Rnuc)× jBt(r)
|r −Rnuc|3

]
s

dr. (4.7)

In this expression, the subscripts s and t refer to the individual Cartesian compo-
nents, Rnuc is the position of the NMR nucleus and the first-order induced current is
given by jBt(r) = ∂j(r)

∂Bt
, where the derivative is taken with respect to the Cartesian

components of the external magnetic field B.

As in the previous section, the induced current can be split up into a paramagnetic
and a diamagnetic part,

jBt(r) = jBt
p (r)− ρ(r)

∂A(r)
∂Bt

. (4.8)

With this decomposition, the shielding tensor can then also be written as a sum of a
diamagnetic and a paramagnetic part,

σst = σD
st + σP

st. (4.9)
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The diamagnetic part of the shielding tensor is given by

σD
st =

1
c2

∫ [ (r −Rnuc)× ρ(r)∂A(r)
∂Bt

|r −Rnuc|3

]
s

dr =
∫

h11
st ρ(r) dr, (4.10)

with the diamagnetic shielding operator

h11
st =

1
2

r · (r −Rnuc) δst − rs(r −Rnuc)t

|r −Rnuc|3
. (4.11)

(We have followed the usual convention of specifying the order of the perturbation
operator in the external magnetic field as superscripts.) The diamagnetic part only
depends on the unperturbed electron density and does not require the knowledge of
the perturbed orbitals.

The paramagnetic part of the shielding tensor is given by

σP
st = − 1

c2

∫ [ (r −Rnuc)× jBt
p (r)

|r −Rnuc|3

]
s

dr (4.12)

and requires the knowledge of the first-order induced paramagnetic current jBt
p , which

can be determined from the response of the KS orbitals to a homogeneous external
magnetic field. As described in the previous section, CDFT has to be used to describe
systems in magnetic fields and in the approximation of uncoupled DFT, i.e., neglecting
the current dependence of the exchange-correlation functional, the KS equations in the
presence of a magnetic field are given by Eq. (4.6). To first order in the magnetic field
strength, the perturbation that is introduced in these equations by a homogeneous
external magnetic field is given by

h10 = − i

2
(r ×∇). (4.13)

This perturbation operator is purely imaginary, which implies that the first-order
perturbed orbitals will also be purely imaginary and that the first-order change in the
electron density vanishes.122

Choosing the unperturbed KS orbitals as real so that the first-order perturbed orbitals
are purely imaginary, the first-order induced paramagnetic current can be expressed
in terms of the KS orbitals as

jBt
p (r) = 2i

N∑
i=1

{
φ

(0)
i (r)∇φBt

i (r) − φBt
i (r)∇φ

(0)
i (r)

}
, (4.14)

where the superscript (0) is used to refer to the KS orbitals of the unperturbed system
and the first-order perturbed orbitals φBt

i (r) = ∂φi(r)
∂Bt

describe the response of the
KS orbitals to a homogeneous external magnetic field.
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The first-order perturbed orbitals are usually determined by expanding them in terms
of the canonical KS orbitals of the unperturbed system as

φBt
i (r) =

∑
j

uij,t φ
(0)
j (r), (4.15)

where the coefficients uij can easily be determined from

uij,t = −

〈
φ

(0)
i

∣∣∣h10
t

∣∣∣φ(0)
j

〉
εi − εj

. (4.16)

In practical applications with atom-centered basis functions, it is necessary to ensure
the gauge invariance of the above formulation. It is well known that fast basis set con-
vergence can be achieved by employing gauge-including atomic orbitals (GIAOs),123

i.e., by including a magnetic-field-dependent phase factor in the basis functions. This
leads to additional terms in the expressions for both the diamagnetic and the para-
magnetic shielding.121 For reasons of simplicity, we will not mention these additional
terms in the following, they are, however, included in the implementation that is used.

4.2.3. Frozen-density embedding for systems in external magnetic
fields

In the frozen-density embedding (FDE) formalism within DFT8,48 the total electron
density ρtot(r) is split up into two components ρ(I)(r) and ρ(II)(r), which add up to
the total electron density,

ρ(tot)(r) = ρ(I)(r) + ρ(II)(r). (4.17)

Both ρ(I)(r) and ρ(II)(r) can then be determined separately from a set of one-electron
equations in which the effect of the density in the other subsystem is represented in
terms of an effective embedding potential.

To extend the FDE formalism to systems in magnetic fields, it is not sufficient to use
only the electron density as a basic variable, since the energy is now also a functional
of the paramagnetic current. Therefore, we make the same ansatz and split the
paramagnetic current into contributions from the two separate subsystems,

j(tot)
p (r) = j(I)

p (r) + j(II)
p (r). (4.18)

With these definitions, also the total current is given as the sum of the currents of
the two subsystems, j(tot)(r) = j(I)(r) + j(II)(r). Furthermore, it has to be noticed
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that if the continuity equation [Eq. (4.5)] is satisfied for each of the two subsystems
individually, it is also satisfied for the total system and the above partitioning of the
electron density and of the paramagnetic current are, therefore, justified in this case.

With this partitioning of the electron density and the paramagnetic current, the total
energy functional for systems in magnetic fields of Eq. (4.1) can be formulated as a
bifunctional in terms of the electron densities and paramagnetic currents of the two
subsystems,

E[ρ(I), j(I)
p ,ρ(II), j(II)

p ] =

Ts[ρ(I), j(I)
p ] + Ts[ρ(II), j(II)

p ] + T nadd
s [ρ(I), j(I)

p , ρ(II), j(II)
p ]

+
∫ (

ρ(I)(r) + ρ(II)(r)
)

(v(I)
nuc(r) + v(II)

nuc(r)) dr

+
∫

(ρ(I)(r) + ρ(II)(r))(ρ(I)(r′) + ρ(II)(r′))
|r − r′|

drdr′

−
∫ (

j(I)
p (r) + j(II)

p (r)
)

A(r) dr

+
1
2

∫ (
ρ(I)(r) + ρ(II)(r)

)
A2(r) dr

+ Exc[ρ(I) + ρ(II), j(I)
p + j(II)

p ],

(4.19)

where the nonadditive kinetic-energy functional T nadd
s is defined as

T nadd
s [ρ(I), j(I)

p , ρ(II), j(II)
p ]

= Ts[ρ(I) + ρ(II), j(I)
p + j(II)

p ]− Ts[ρ(I), j(I)
p ]− Ts[ρ(II), j(II)

p ]. (4.20)

If the densities and currents are represented using the KS orbitals of the individual
subsystems, it is possible to calculate the noninteracting kinetic energy Ts[ρ(I,II), j(I,II)

p ]
of the separate subsystems directly. However, with the partitioning of the electron
density and current into the contributions of the two subsystems, the canonical KS
orbitals of the total system are in general not available, so that the noninteracting
kinetic energy Ts[ρ(tot), j(tot)

p ] of the total system cannot be calculated in this way.
For this reason, in practical applications of the FDE scheme an appropriate orbital-
independent approximation of T nadd

s has to be applied.

The total energy bifunctional of Eq. (4.19) does not contain a current–current in-
teraction between the currents in systems I and II. This magnetic interaction is not
present in the nonrelativistic limit of electrodynamics,122 where the electrons only
interact via the Coulomb interaction, i.e., a magnetic electron–electron interaction is
not included.
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For a given electron density and paramagnetic current in subsystem II, the KS orbitals
of subsystem I, {φ(I)

i }, can now be obtained by minimizing E[ρ(I), j(I)
p , ρ(II), j(II)

p ] with
respect to the KS orbitals of subsystem I, under the constraint that these orbitals are
orthonormal. This leads to a set of one-electron equations for the KS orbitals {φ(I)

i },[
1
2

(−i∇+ A(r))2 + vKSCED
eff [ρ(I), ρ(II)](r)

+ i
δT nadd

s [ρ(I), j(I)
p , ρ(II), j(II)

p ]

δj(I)
p (r)

∇+ i
δExc[ρ(I) + ρ(II), j(I)

p + j(II)
p ]

δj(I)
p (r)

∇

]
φ

(I)
i (r)

= εiφ
(I)
i (r).

(4.21)

These equations will, as in the case without magnetic fields, be referred to as Kohn–
Sham equations with constrain electron density (KSCED). The KSCED effective po-
tential in the above equations is given by

vKSCED
eff [ρ(I), ρ(II)](r) = vKS

eff [ρ(I)](r) + vemb
eff [ρ(I), ρ(II)](r), (4.22)

where vKS
eff [ρ(I)](r) is the KS effective potential of the isolated subsystem I containing

the usual terms of the nuclear potential, Coulomb potential of the electrons, and the
exchange–correlation potential. The effective embedding potential vemb

eff [ρ(I), ρ(II)](r)
describes the interaction of the subsystem I with the frozen density of subsystem II
and reads

vemb
eff [ρ(I), ρ(II)](r) = vnuc

II (r) +
∫

ρ(II)(r′)
|r − r′|

dr′

+
δExc[ρ]

δρ

∣∣∣∣
ρ=ρ(tot)(r)

− δExc[ρ]
δρ

∣∣∣∣
ρ=ρ(I)(r)

+
δT nadd

s [ρ(I), ρ(II)]
δρ(I)(r)

. (4.23)

The KS orbitals of subsystem I can then be obtained by solving the KSCED equations
self-consistently.

If the assumption that ρ(tot)−ρ(II) is positive and vs-representable17 and that j(tot)
p −

j(II)
p is vs-representable is fulfilled, the solution of Eq. (4.21) will—in the case that

the exact nonadditive kinetic-energy functional would be used—yield the same total
electron density and total current as the solution of Eq. (4.4), i.e., as the corresponding
supermolecular KS-DFT calculation (using the same approximation for the exchange-
correlation functional). If the initial assumptions are not satisfied, Eq. (4.21) can be
solved in “freeze-and-thaw” cycles by exchanging the role of the frozen and nonfrozen
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system, i.e., by solving two coupled sets of KSCED equations for subsystems I and
II.

Usually in the calculation of NMR parameters the current dependence of the exchange-
correlation functional is neglected. In this case, the corresponding term drops out of
the KSCED equations. However, in the case that the exact nonadditive kinetic-energy
functional would be used, the solution of the KSCED equations will still yield the same
solution as the supermolecular KS-DFT calculation in which the same approximation
is made.

In practical applications of the FDE formalism, approximations have to be used for
the nonadditive kinetic-energy functional. The approximations that are available for
the nonadditive kinetic-energy functional40 do not include a current dependence. For
the calculation of NMR parameters it will, therefore, be the first choice to apply these
approximations and to neglect the current dependence. It can be expected that for
weakly interacting systems, where the available approximations are applicable, the
error introduced by the neglect of the current dependence is smaller than the intrinsic
error of the approximate functionals. However, the validity of this assumption has to
be assessed in test calculations of NMR parameters.

If the current dependence both of the nonadditive kinetic-energy functional and of
the exchange-correlation functional is neglected, the KSCED equations reduce to[

1
2

(−i∇+ A(r))2 + vKSCED
eff [ρ(I), ρ(II)](r)

]
φ

(I)
i (r) = εiφ

(I)
i (r) (4.24)

The absence of a magnetic interaction between the currents in the two subsystems
and the neglect of the current dependence of T nadd

s and of Exc have the consequence
that the KSCED equations for subsystems I and II are not coupled via the current.
This means that calculations on the nonfrozen subsystem can be carried out without
knowledge of the induced current in the frozen subsystem.

Finally, it is important to note that the electron density and current that are given
by the KS orbitals obtained from the KSCED equations will satisfy the continuity
equation [Eq. (4.5)], because the KSCED equations are of the same form as the KS
equations of CDFT.

4.2.4. Calculation of NMR Shieldings with frozen-density
embedding

The FDE formalism described in the previous section is now applied to the calcu-
lation of NMR shielding tensors by decomposing the first-order current induced by
an external homogeneous magnetic field into the contributions of the two individual
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subsystems,

jBt = j(I)Bt + j(II)Bt . (4.25)

With this decomposition, also the shielding tensor [Eq. (4.7)] separates into contribu-
tions of the two subsystems,

σst = σ
(I)
st + σ

(II)
st , (4.26)

where

σ
(n)
st = − 1

c2

∫ [
(r −Rnuc)× j(n)Bt(r)

|r −Rnuc|3

]
s

dr (n = I, II). (4.27)

As before, these can again be split up into diamagnetic and paramagnetic contribu-
tions.

These contributions to the shielding tensor are determined separately for the individ-
ual subsystems. The starting point is the determination of the ground-state electron
density of the two subsystems by solving the KSCED equations for both fragments
in freeze-and-thaw cycles. The diamagnetic shielding can then be evaluated directly,
since it only depends on the unperturbed electron densities,

σD
st = σ

D,(I)
st + σ

D,(II)
st , (4.28)

with

σ
D,(n)
st =

∫
h11

st ρ(n)(r) dr (n = I, II). (4.29)

The calculation of the paramagnetic shielding requires the determination of the first-
order current that is induced by a homogeneous external magnetic field in each sub-
system. For the evaluation of the induced current in one of the subsystems, the
induced current in the frozen system is not needed because there is no dependence
on the current in the frozen subsystem in Eq. (4.24) and because the homogeneous
external magnetic field does not induce a first-order change in the electron density
(see Section 4.2.2), i.e., the external magnetic field does not induce any coupling be-
tween the two subsystems. Therefore, the first-order perturbed orbitals and thus the
induced paramagnetic current can be determined separately for the subsystems by
using Eq. (4.16) and it is not necessary to determine the induced current in freeze-
and-thaw cycles. Within the FDE formalism, the paramagnetic shielding can thus
simply be calculated by adding the contributions of the individual subsystems,

σP
st = σ

P,(I)
st + σ

P,(II)
st , (4.30)
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with

σ
P,(n)
st = − 1

c2

∫ [ (r −Rnuc)× j(n)Bt
p (r)

|r −Rnuc|3

]
s

dr (n = I, II). (4.31)

In the calculation of the NMR shielding of one subsystem, no additional contributions
arise due to the other subsystem, i.e., all the effects of the other (frozen) subsystem are
included already in the effective embedding potential that is used in the determination
of the ground-state electron density and KS orbitals.

Two approximations are made in the theory presented above. First, the approxima-
tion of uncoupled DFT is employed, i.e., the current dependence of the exchange-
correlation functional is neglected. This approximation is consistently made both
in supermolecular DFT calculations and in FDE calculations of NMR shieldings.
Second, the current dependence of the nonadditive kinetic-energy functional is also
neglected. It can be expected that this approximation is only valid if the interaction
between the two subsystems is sufficiently weak and that in the case of stronger in-
teractions, such as chemical bonds, between the subsystems, it will not be possible to
neglect the current-dependence of the nonadditive kinetic-energy functional anymore.
The validity of this approximations will therefore depend on choosing an appropriate
partitioning into subsystems. However, the same restrictions apply for the available
approximate functionals for the nonadditive kinetic energy.

In the calculation of NMR shieldings, the induced current is only probed by the
nuclear spin of the NMR nucleus in question [see Eq. (4.7)], so that the most important
contributions to the shielding tensor are due to the induced current in the vicinity
of the NMR nucleus. The subsystem-based formulation of the calculation of NMR
shieldings presented above has the advantage that it makes it possible to exploit this
near-sightedness of the NMR shielding very easily. The main contribution to the NMR
shielding and to chemical shifts is the contribution of the subsystem that contains
the NMR nucleus. In many cases, it will be possible to neglect the contribution of
the other subsystem to the NMR shielding, i.e., the effect of the other subsystem
is only included in the calculation of the ground-state density and KS orbitals. It
is also possible to construct the electron density of an environment using further
approximations, for instance by using a sum-of-fragments density, or by applying
freeze-and-thaw cycles only for parts of the system that are close to the subsystem of
interest.CJ5,76

4.3. Computational details

All density functional calculations were performed using the Amsterdam Density
Functional (Adf) package.124,125 The FDE scheme of Wesolowski and Warshel8 has
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been implemented in the most recent version of Adf using an efficient numerical in-
tegration scheme.CJ4 For the nonadditive kinetic-energy component of the embedding
potential we chose to employ, based on previous results of Wesolowski et al.,40,56,71

the PW91k kinetic-energy functional.58

The calculations of NMR shieldings were performed using the NMR program of
Schreckenbach and Ziegler that is part of the Adf package,126 which calculates the
shielding tensor using GIAOs.123 The calculation of NMR shieldings using the FDE
scheme does not require major modifications of the program that is used for the cal-
culation of the shielding. It only has to be ensured that the electron density and
KS orbitals obtained from an FDE calculation can be used and that the effective
embedding potential is included in the total KS potential that is needed in the NMR
calculation. In addition, the calculation of the contribution of the frozen subsystem to
the shielding requires the possibility to calculate the shielding tensor at an arbitrary
position [nucleus-independent chemical shifts (NICSs)], which we implemented in the
NMR program of Adf for this work.

We have used two different approximations for the exchange-correlation potential,
the generalized-gradient approximation (GGA) functional BP86, consisting of the ex-
change functional by Becke21 and the correlation functional by Perdew,23 and the “sta-
tistical averaging of molecular orbital potentials” (SAOP),26,127,128 which has been
shown to improve the description of NMR chemical shifts significantly with respect to
GGA functionals.129 In the FDE calculations using the orbital-dependent SAOP po-
tential, the exchange–correlation component of the effective embedding potential was
approximated using the Becke–Perdew–Wang (BPW91) exchange-correlation func-
tional.21,130

We have used the TZ2P basis set from the ADF basis set library, which is of triple-ζ
quality and contains two sets of polarization functions, and the ZORA-QZ4P basis
set, which is of quadruple-ζ quality and contains four sets of polarization functions.

4.4. Results and discussion

To assess the quality of chemical shifts calculated using the FDE formalism we have
performed test calculations on small systems. The accuracy of the FDE calculations
can be tested by comparing them to supermolecular KS-DFT calculations using the
same approximation for the exchange-correlation functional.CJ3 In the limit that the
exact (current-dependent) nonadditive kinetic-energy functional is used, both meth-
ods should yield identical results.

As a test application, we investigate the effect of different solvents on the nitrogen
shielding in acetonitrile, CH3CN. The nitrogen shielding is known to be very sensitive
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to environment effects, and the nitrogen shielding in acetonitrile has been used as a
model system for studying environment effects on NMR chemical shifts in earlier
studies.116,131

As model systems for these solvent effects, we have used small clusters consisting
of acetonitrile and one solvent molecule. As solvents we have investigated water,
chloroform, cyclohexane, and benzene. This simple cluster model will certainly not be
able to give a realistic description of all solvent effects on the nitrogen chemical shifts.
A more realistic description would require the inclusion of a much larger number of
solvent molecules and would also require the inclusion of the dynamics in solution.
However, this is not the purpose of this study, as we only want to assess the accuracy
of the FDE calculation by comparing to supermolecular KS-DFT calculations.

There are different approximations involved in the FDE scheme that can lead to dif-
ferences with respect to supermolecular KS-DFT calculations. First, approximations
have to be used for the nonadditive kinetic-energy functional, and for the calculation
of NMR chemical shifts the current dependence of the nonadditive kinetic energy
is neglected. Second, in calculations using orbital-dependent approximations to the
exchange-correlation potential such as SAOP, one furthermore encounters the com-
plication that the supermolecular exchange-correlation potential is constructed in
terms of a set of supermolecular orbitals. This potential cannot be reconstructed in
a KSCED calculation since only the subsystem orbitals are available. This makes
it necessary to choose a non-orbital-dependent form for the nonadditive exchange-
correlation contribution to the effective embedding potential, introducing an addi-
tional inconsistency relative to the supermolecular calculation.CJ3 This is not the case
with a GGA potential such as BP86, because then the same approximation can be
used for the exchange-correlation potential in the subsystems and for the nonadditive
exchange-correlation contribution to the embedding potential.

A third origin of differences with respect to the supermolecular calculation is the finite
basis set that is used.40 The most obvious choice for the basis set in the FDE calcu-
lations is to use only basis functions that are centered on the atoms in the considered
subsystem to expand the corresponding density. Calculations using this monomolec-
ular basis set expansion will be labeled FDE(m). However, this choice of the basis
functions introduces an additional source of differences to the supermolecular calcu-
lation. In the expansion of the total electron density the products of basis functions
centered at atoms in different subsystems are neglected. Furthermore, since the total
number of electrons in both subsystems is fixed, a charge transfer between the two
subsystems is not possible. These problems are both removed if the full supermolec-
ular basis set is used to expand the density of both subsystems. Calculations using
this supermolecular basis set expansion will be labeled FDE(s).

In addition, further approximations can be applied in the construction of the electron
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density of the solvent. Instead of obtaining the electron density of the two subsystems
using freeze-and-thaw cycles, the electron density of the solvent can be obtained from
a gas-phase calculation (i.e, the electron density of the isolated solvent molecule is
used). Such a gas-phase density can be improved by applying one single freeze-and-
thaw cycle (i.e., the gas-phase density is polarized). In the following, we will indicate
the number of freeze-and-thaw cycles that have been applied. Calculations using
the frozen gas-phase density of the solvent will be labeled FDE(x,0), calculations
in which one single freeze-and-thaw cycle was applied will be labeled FDE(x,1), and
calculations in which freeze-and-thaw cycles were applied until the NMR shielding was
converged will be labeled FDE(x,∞), where x=s,m indicate the basis set expansion
that was used.

Finally, in the FDE calculation of NMR shieldings the contribution of the induced
current in the solvent subsystem to the shielding has to be included to be consistent
with the supermolecular KS-DFT calculation. As we will see, it is possible to neglect
this additional contribution in many cases.

The structures of the acetonitrile–solvent clusters that were used in the calculations
are shown in Figure 4.1. These structures have been obtained from geometry op-
timizations using the BP86 exchange-correlation functional in combination with a
TZ2P basis set. They have been confirmed to represent local minima on the potential
energy surface, but they do not represent global minima.

In the following we will investigate the solvent shifts on the isotropic shielding of the
nitrogen nucleus in acetonitrile, which are defined as

∆σ = σcluster − σacetonitrile, (4.32)

where σcluster denotes the isotropic shielding as calculated for the acetonitrile–solvent
cluster (either using a supermolecular KS-DFT calculation or an FDE calculation)
and σacetonitrile denotes the isotropic shielding calculated for the isolated acetonitrile
molecule. For the calculations on the isolated acetonitrile molecule, the same geom-
etry as in the acetonitrile–solvent cluster is used, i.e., the change of the acetonitrile
geometry due to the presence of the solvent molecule is not included in the solvent
shift. This geometric effect is the same for both supermolecular KS-DFT calculations
and for the FDE calculations, since the same geometries are used in both calculations.

For each acetonitrile–solvent cluster considered, the solvent shifts for calculations us-
ing the same exchange-correlation functional and basis set are reported with respect
to the same isolated acetonitrile calculation, i.e., all differences between supermolec-
ular KS-DFT calculations and FDE calculations, as well as differences between FDE
calculations employing different additional approximations, are visible in the reported
solvent shifts.
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4. Calculation of NMR shieldings

Figure 4.1.: Structures of the acetonitrile–solvent clusters used in the calculations:
(a) acetonitrile–water, (b) acetonitrile–chloroform, (c) acetonitrile–
cyclohexane, and (d) acetonitrile–benzene

(d)

(a) (b)

(c)
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Table 4.1.: Solvent shift of the nitrogen NMR shielding in the acetonitrile–water
cluster relative to isolated acetonitrile, calculated using supermolecular
KS-DFT calculations and FDE calculations. See text for details.

BP86 SAOP
TZ2P QZ4P TZ2P QZ4P

Supermolecule 15.89 15.05 17.73 16.99

FDE(m,0) 12.57 12.04 12.18 11.89
FDE(m,1) 16.49 16.41 15.58 15.63
FDE(m,∞) 16.64 16.64 15.70 15.79
FDE(s,∞) 17.16 16.44 15.82 15.40

4.4.1. Acetonitrile–water

First, we investigate the acetonitrile–water cluster as a model for the effects of a
water solution on the nitrogen chemical shift in acetonitrile. Due to the formation
of a hydrogen bond between the solvent water molecule and the nitrogen atom of
the acetonitrile, which is also the NMR nucleus under investigation, a large solvent
shift can be expected. The results obtained for the acetonitrile–water cluster are
summarized in Table 4.1.

As expected, the supermolecular KS-DFT calculations show a large solvent shift on
the nitrogen shielding in acetonitrile of 15.05 ppm using the GGA functional BP86
and of 16.99 ppm using the SAOP potential. With both functionals, the change in
the solvent shift when going from the TZ2P to the larger QZ4P basis set is smaller
than 1 ppm, so that with respect to the basis set the solvent shifts can be considered
as converged within this accuracy. It should be noted that this is not the case for
the absolute shieldings, which still show a strong basis set dependence due to the
addition of more tight basis functions. In the calculations using the BP86 functional,
the absolute nitrogen shielding in acetonitrile changes from −24.71 to −31.19 ppm
when going from the TZ2P to the QZ4P basis set, in the calculations using SAOP it
changes from −17.76 to −22.17 ppm.

Already using the most simple embedding method, labeled FDE(m,0) in the table,
in which the frozen electron density is taken from an isolated water molecule, the
largest part of the solvent shift is recovered, and the solvent shift calculated for the
supermolecule is underestimated by only approximately 3 ppm for the BP86 calcu-
lations and approximately 5 ppm for the SAOP calculations. If the frozen density
is polarized in one single freeze-and-thaw cycle [FDE(m,1)], the solvent shifts agree
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very well with the supermolecular calculation. With the BP86 functional, the differ-
ences are for both basis sets smaller than 1.4 ppm. In the calculations using SAOP,
where an additional approximation has to be made in the nonadditive kinetic-energy
functional, the differences are slightly larger, but still for both basis sets smaller than
2.3 ppm. These differences are small compared to the range of the nitrogen shielding
scale of about 600 ppm for organic molecules.

Applying freeze-and-thaw cycles until the NMR shieldings are converged to the ac-
curacy reported here does not change the solvent shifts significantly. In all cases,
convergence is achieved after at most three full freeze-and-thaw cycles. The inclusion
of basis functions located on the frozen subsystem does not change the solvent shifts
significantly either.

One interesting finding is that the difference between the results obtained with the dif-
ferent basis sets is much smaller in the FDE(m,∞) calculations than in the FDE(s,∞)
and in the supermolecular calculations. This can be explained by the absence of basis
set superposition error (BSSE) in the case of the FDE(m) calculations. In these calcu-
lations BSSE is explicitly excluded because no basis functions on the frozen fragment
are included. However, the FDE(s,∞) calculations and not the BSSE-free FDE(m,∞)
calculations have to be compared to the supermolecular calculations, since both will
consistently include a BSSE of approximately the same size. Even though the basis set
convergence in the BSSE-free FDE(m,∞) calculations is faster, the small differences
between the FDE(m,∞) and the FDE(s,∞) results, as well as the small differences
between the results using the different basis sets show that the BSSE is sufficiently
small compared to other sources of errors.

The contribution of the induced current in the frozen water molecule to the shielding
is in all FDE calculations smaller than 0.2 ppm and thus negligible and has not been
included in the solvent shifts given in the table.

4.4.2. Acetonitrile–chloroform

As another example of a polar solvent we have looked at chloroform. The solvent
shifts calculated for the acetonitrile–chloroform cluster are summarized in Table 4.2.

The supermolecular KS-DFT calculations show a large solvent shift of the nitrogen
shielding, but the shifts calculated with the QZ4P basis set of 12.91 and 13.97 ppm
with BP86 and SAOP, respectively, are smaller than for the acetonitrile–water cluster
because of the smaller polarity of the solvent molecule. As for water, the FDE(m,0)
calculations are able to recover the largest part of this solvent shift, underestimating
the shift calculated in the supermolecule. If the frozen density is allowed to be polar-
ized, differences between FDE and the supermolecular calculation are reduced. In the
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Table 4.2.: Solvent shift of the nitrogen NMR shielding in the acetonitrile–
chloroform cluster relative to isolated acetonitrile, calculated using su-
permolecular KS-DFT calculations and FDE calculations. See text for
details.

BP86 SAOP
TZ2P QZ4P TZ2P QZ4P

Supermolecule 12.91 12.24 14.11 13.97

FDE(m,0) 10.35 9.87 9.04 8.52
FDE(m,1) 14.76 14.81 13.07 12.97
FDE(m,∞) 14.96 15.09 13.23 13.23
FDE(s,∞) 15.22 14.82 13.04 12.86

calculations using the BP86 functional, the agreement is with both basis sets better
than 2.6 ppm, with SAOP the differences are even below 1 ppm. However, as there is
an additional approximation involved in the case of the SAOP calculations, this better
agreement is probably due to a fortunate error cancellation between the nonadditive
kinetic-energy functional and the nonadditive exchange-correlation functional.

As for the acetonitrile–water cluster, using additional freeze-and-thaw cycles and in-
cluding basis functions on the frozen system does not change the solvent shifts sig-
nificantly. Again the contribution of the induced current in the (frozen) chloroform
molecule is smaller than 0.2 ppm.

4.4.3. Acetonitrile–cyclohexane

As an example of a nonpolar solvent we have investigated cyclohexane and the solvent
shifts obtained for the acetonitrile–cyclohexane cluster are summarized in Table 4.3.

As expected for the weak interaction between acetonitrile and the nonpolar cyclohex-
ane, the solvent shift is very small. The calculations using the QZ4P basis set predict
with the BP86 functional a solvent shift of 0.32 ppm and with SAOP a solvent shift
of 2.45 ppm. In the FDE(m,0) calculations the solvent shift is almost zero (smaller
than 0.3 ppm) with both functionals. However, if one freeze-and-thaw cycle is applied
for the solvent molecule the solvent shift increases by about 2 ppm. In the case of
the BP86 functional, this leads to an overestimation of the supermolecular shift by
ca. 2.5 ppm. With SAOP, the agreement with the supermolecular result is very good,
but again this is probably due to a fortunate error cancellation.
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Table 4.3.: Solvent shift of the nitrogen NMR shielding in the acetonitrile–
cyclohexane cluster relative to isolated acetonitrile, calculated using su-
permolecular KS-DFT calculations and FDE calculations. See text for
details.

BP86 SAOP
TZ2P QZ4P TZ2P QZ4P

Supermolecule 0.39 0.32 2.88 2.45

FDE(m,0) 0.07 0.29 −0.24 −0.06
FDE(m,1) 2.21 2.77 1.70 2.13
FDE(m,∞) 2.27 2.85 1.74 2.19
FDE(s,∞) 2.50 2.51 1.63 1.71

Even though the absolute error is of the same size in the case of water and of chloro-
form, the relative error is unacceptably large if one is interested in accurate results for
nonpolar solvents. As it is believed that the PW91k kinetic energy functional that is
used for the kinetic energy component in the embedding potential is rather accurate
for weakly interacting systems, this is quite surprising. It could be that the larger
error in the calculation of NMR parameters is caused by the neglect of the current
dependency of the nonadditive kinetic-energy functional. However, even with these
large relative errors, the solvent shifts predicted by FDE are qualitatively correct and
the absolute error is comparable to the differences between different approximations
for the exchange-correlation functional.

Also for the acetonitrile–cyclohexane cluster, neither additional freeze-and-thaw cycles
nor the inclusion of the basis functions of the frozen system changes the solvent shifts
significantly. As expected the contribution of the induced current of the environment
is below 0.2 ppm and is therefore neglected.

4.4.4. Acetonitrile–benzene

Finally, we have considered benzene as the prototypical nonpolar, aromatic solvent.
For aromatic solvents, the contributions of the induced current in the solvent are
expected to be significant, because there are large currents induced in the aromatic
solvent.132,133 These effects have also been explored experimentally and are known
as aromatic solvent induced shifts (ASISs).134 The solvent shifts calculated for the
acetonitrile–benzene cluster are summarized in Table 4.4.
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Table 4.4.: Solvent shift of the nitrogen NMR shielding in the acetonitrile–benzene
cluster relative to isolated acetonitrile, calculated using supermolecular
KS-DFT calculations and FDE calculations. The environment contribu-
tion of the induced current in the benzene molecule to the shielding is
labeled “env”. See text for details.

BP86 SAOP
TZ2P QZ4P TZ2P QZ4P

Supermolecule −2.74 −0.29 0.69 2.42

FDE(m,0) −4.60 −2.53 −3.88 −2.10
FDE(m,1) −3.47 −1.20 −2.87 −0.95
FDE(m,∞) −3.46 −1.18 −2.86 −0.97
FDE(s,∞) −3.39 −1.04 −3.06 −1.10

env(m,∞) +1.34 +1.37 +1.32 +1.39
FDE+env(m,∞) −2.12 0.19 −1.54 0.42
FDE+env(s,∞) −2.07 0.31 −1.76 0.24

The supermolecular calculations using the BP86 functional predict a small negative
solvent shift of −0.29 ppm with the QZ4P basis set for the acetonitrile–benzene cluster
considered here. In contrast to that, the shift of 2.42 ppm predicted by the super-
molecular calculations using the SAOP potential and the QZ4P basis set is also small,
but positive. In addition, the results obtained using the TZ2P and the QZ4P basis
set differ in both cases by about 2.0–2.5 ppm. This worse basis set convergence com-
pared to the systems considered earlier can be attributed to the importance of diffuse
basis functions in this weakly interacting system. Even though the supermolecular
calculations do not provide a clear picture, it is still possible to compare the results
obtained to the FDE calculations using the same functional and basis set.

As for the other systems, only one single freeze-and-thaw cycle is sufficient to converge
the solvent shift to the required accuracy and also the inclusion of the basis functions
of the frozen system is not important. When using the BP86 functional, the FDE(m,1)
calculations predict a solvent shift that is with the TZ2P basis set 0.73 ppm smaller
and for the QZ4P basis set 0.91 ppm smaller than the solvent shift obtained from the
supermolecular calculation. In the calculations using SAOP, the difference amounts
to 3.56 ppm with the TZ2P basis set and 3.37 ppm with the QZ4P basis set. These
differences found in the calculations using SAOP are larger than those found for the
other systems.
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The picture changes when the contribution of the induced current in the benzene
molecule is included. This environment contribution, which can be calculated from
a calculation of the NICS at the position of the nitrogen nucleus for the benzene
molecule (using the electron density and KS orbitals obtained in the embedding cal-
culation), is given in Table 4.4 in the row labeled env(m,∞). It amounts to approx-
imately 1.4 ppm and can therefore certainly not be neglected. If this contribution
is included, the agreement between the FDE(m) calculations and the supermolecular
calculations improves significantly. In the calculations using BP86, the differences are
for both basis sets smaller than 0.7 ppm, for the calculations using SAOP they are
smaller than 2.3 ppm.

4.5. Conclusions

In this paper, we have presented an extension of the frozen-density embedding (FDE)
formalism to the calculation of NMR chemical shifts. This leads to a formulation of the
nonrelativistic DFT calculation of NMR shieldings that is based on the partitioning
of the system into several fragments, which are treated separately. For each fragment
the ground-state density as well as the first-order current induced by a homogeneous
external magnetic field are calculated separately and the effect of the other (frozen)
fragments is included via an effective embedding potential. If the current dependence
of the exchange-correlation functional and of the nonadditive kinetic-energy functional
are neglected, this embedding potential does not depend on the induced current in
the frozen fragment. This absence of a coupling via the current makes it possible to
simply calculate the contributions of the individual fragments to the NMR shielding
from their ground-state electron densities and KS orbitals.

The formalism presented is very well suited to exploit the near-sightedness of the
NMR shielding by applying additional approximations, e.g., by neglecting the induced
current in fragments that are far away from the NMR nucleus and by using simplified
ways of constructing the electron density of the fragments that do not contain the
NMR nucleus.

Our test applications to small clusters of acetonitrile with different solvents show that
the FDE scheme is able to reproduce the solvent shifts calculated in supermolecular
KS-DFT calculations. The error of the FDE calculations with respect to the super-
molecular calculations is about 2 ppm for the nitrogen shielding investigated here,
which is about as large as the error of the currently available approximate exchange-
correlation functionals. If the SAOP potential is used, the errors with respect to the
supermolecular calculation are in most cases smaller, which is probably due to error
cancellation.
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Whereas absolute errors as large as 2 ppm are acceptable in the case of water and
chloroform, where the frozen solvent molecule is very close to the NMR nucleus and
even forms direct hydrogen bonds to the NMR nucleus, an error of this size is quite
large in the case of weaker interactions, where the solvent shift is smaller. For these
systems, improvements in the approximations to the nonadditive kinetic-energy func-
tional might be needed to achieve more reliable results. If in future applications to
larger systems a higher accuracy is required, it is possible to circumvent this problem
by simply extending the nonfrozen fragment. This strategy has already been followed
in earlier works.CJ4

The test calculations further show that for the systems studied here it is not necessary
to include basis functions that are centered on the frozen fragments, making it possible
to employ the computationally simpler FDE(m) scheme. However, it is in most cases
required to include the polarization of the frozen solvent density by one single freeze-
and-thaw cycle, especially if hydrogen bonds are present between solvent and solute.
This is similar to what was found in earlier studies, where the FDE formalism was
applied to modeling solvent effects on different other molecular properties.CJ5

In most cases it is possible to neglect the contribution of the induced current in the
solvent molecule to the shielding, only for an aromatic solvent, where these induced
currents are large, is this additional contribution significant, but even in this case it
is possible to retain the separation of the total system into separate fragments. For
a realistic modeling of the effects of an aromatic solvent on the NMR shielding of
solute molecules, the contributions will become even more important, because these
contributions of the currents induced in neighboring solvent molecules will add up to
a large contribution of the aromatic environment.132,134

For an application of the FDE scheme to a realistic modeling of solvent shift in NMR
shieldings it will be necessary to use much larger solvent environments than in the
test systems studied here, requiring also a proper sampling of a large number of sol-
vent structures. This is feasible using the FDE scheme, as has been shown in earlier
studies of solvent effects on different properties by Neugebauer and coworkers.CJ4,50,76

Its extension to the calculation of NMR chemical shifts presented in this paper and
the good agreement between the FDE calculations and supermolecular DFT calcu-
lations we found for a number test systems, make this kind of applications to large
systems attractive. Furthermore, the possibility to describe the induced currents in
the environment allows the applications of the FDE scheme to the calculation of NMR
chemical shifts for systems in environments where these play an important role, such
as aromatic solvents or biological systems, and that are difficult to tackle with other
environment models, such as continuum solvation or QM/MM models.
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Abstract

We have investigated the functional derivative of the nonadditive kinetic-energy bi-
functional, which appears in the embedding potential that is used in the frozen-density
embedding (FDE) formalism, in the limit that the separation of the subsystems is
large. We have derived an exact expression for this kinetic-energy component of the
embedding potential and have applied this expression to deduce its exact form in
this limit. Comparing to the approximations currently in use, we find that while
these approximations are correct at the nonfrozen subsystem, they fail completely at
the frozen subsystem. Using test calculations on two model systems, an H2O· · ·Li+

complex and a cluster of aminocoumarin C151 surrounded by 30 water molecules, it
is shown that this failure leads to a wrong description of unoccupied orbitals, which
can lead to convergence problems caused by too low-lying unoccupied orbitals and
which can further have serious consequences for the calculation of response proper-
ties. Based on these results, a simple correction is proposed and it is shown that this
correction is able to fix the observed problems for the model systems studied.
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5.1. Introduction

The frozen-density embedding (FDE) formalism within density-functional theory
(DFT)8,48 offers an efficient scheme for the quantum chemical description of large
systems by splitting the total system into an active subsystem and a frozen environ-
ment. It is based on a partitioning of the electron density of the total system ρtot

into the electron densities ρI and ρII of two appropriately chosen subsystems. These
electron densities of the subsystems are each calculated separately, with the effect of
the other subsystem represented by an effective embedding potential which only de-
pends on its charge density. This embedding potential contains a component vT that
is given by the functional derivative of the nonadditive kinetic-energy bifunctional,

vT [ρI, ρII](r) =
δT nadd

s [ρI, ρII]
δρI

=
δTs[ρ]

δρ

∣∣∣∣
ρ=ρtot(r)

− δTs[ρ]
δρ

∣∣∣∣
ρ=ρI(r)

, (5.1)

where the nonadditive kinetic energy T nadd
s is defined as

T nadd
s [ρI, ρII] = Ts[ρI + ρII]− Ts[ρI]− Ts[ρII]. (5.2)

In the above expressions, Ts[ρ] is the kinetic energy of the noninteracting reference
system, as it is defined within Kohn–Sham (KS) DFT, which is usually calculated
using the KS orbitals.

However, with the given partitioning into subsystems, the KS orbitals are only avail-
able for the subsystems and not for the full system and Ts[ρI + ρII] can therefore not
be calculated directly. For this reason, in practical applications approximations have
to be introduced in the construction of the kinetic-energy component vT [ρI, ρII] of the
embedding potential. Up to now, only approximations of the form

ṽT [ρI, ρII](r) =
δT̃s[ρ]

δρ

∣∣∣∣∣
ρ=ρtot(r)

− δT̃s[ρ]
δρ

∣∣∣∣∣
ρ=ρI(r)

(5.3)

have been applied, where the tilde is used to label approximate quantities, and T̃s[ρ]
refers to some approximate kinetic-energy functional. The simplest approximation
for the kinetic-energy functional, corresponding to the local-density approximation
(LDA), is the well-known Thomas-Fermi functional, and a large number of more
advanced approximate kinetic-energy functionals are available (for an overview see,
e.g., Refs. 33 and 38).

For their application in calculations using the FDE scheme, different generalized-
gradient approximation (GGA) kinetic-energy functionals have been tested and com-
pared for a number of weakly interacting systems.40,56,71 Based on these results, a
large number of studies employing the FDE scheme have been conducted using the
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PW91k kinetic-energy functional, which is a GGA functional using the same analytic
form of the enhancement factor as the exchange functional of Perdew and Wang,22 but
that has been reparametrized for the kinetic energy by Lembarki and Chermette.58

The approximation of vT [ρI, ρII] using Eq. (5.3) in combination with the PW91k
kinetic-energy functional has been shown to yield reliable results in FDE calcula-
tions in a number of studies. In particular, it has been found to be accurate in
studies of weakly interacting complexesCJ3,60,72,73 and of solvent effects on different
molecular properties.CJ4,CJ5,CJ6,76 However, the applicability of the currently avail-
able kinetic-energy functional is limited to systems where the interaction between the
two subsystems is not too strong. While accurate results can be obtained for van
der Waals complexes as well as for hydrogen-bound systems, a description of stronger
interactions such as chemical bonds is not possible. It thus remains a challenge to
develop approximations to vT [ρI, ρII] that are applicable also in the case of stronger
interactions.

Also, in the case of weaker interactions the currently available kinetic-energy function-
als need improvements for certain applications. Iannuzzi et al. have made use of FDE
for molecular dynamics simulations in the condensed phase,53 but have found that
with the available LDA and GGA kinetic-energy functionals, they were not able to
describe water at ambient conditions correctly. The pair distribution functions they
obtained showed only an unstructured second solvation shell, and they attributed this
wrong description to shortcomings of the approximate kinetic-energy functional.

Furthermore, for weakly interacting complexes an “electron-leak” problem in FDE
calculations has been discussed. Near the nuclei in the frozen subsystem, the at-
tractive nuclear potential is very large and, when using LDA or GGA kinetic-energy
functionals, the kinetic-energy component of the embedding potential is not able to
completely compensate this attraction. This might then lead to electrons of the non-
frozen system leaking to the nuclei of the frozen subsystem, causing an artificial charge
transfer between the subsystems. This problem has first been discussed for a com-
plex of a fluorine anion and a water molecule at short distances by Stefanovich and
Truong,84 who proposed the use of a pseudopotential representing the core orbitals to
overcome this problem. However, Dulak and Wesolowski reinvestigated this electron-
leak problem for F− · · ·H2O and Li+ · · ·OH2 and found that at short distances it is
of no importance for the calculation of the ground-state density and interaction en-
ergies.74 On the other hand, in calculations on CO2 · · ·X (X = He, Ne, Ar, Kr, Xe,
and Hg) van der Waals complexes, it was found that for the complexes containing the
heavier rare gases or mercury the dipole moment is overestimated if basis functions
on the frozen system are included. This has also been attributed to the fact that close
to the nuclei the PW91k kinetic-energy functional is not able to compensate the large
nuclear attraction.CJ3
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In order to devise more accurate approximations of the kinetic-energy component
vT of the embedding potential, we will in this work investigate vT in the limit of
large separation of the two subsystems. In the quest for more accurate approximate
functionals, both for the exchange-correlation energy as well as for the kinetic energy,
it is a widely followed and successfully applied strategy to use exact physical boundary
conditions and/or the known behavior in simple limiting cases. These can be used
as guidance in the construction of approximate functionals by requiring that the
approximations obey these physical limits.

Following this strategy, several approximate exchange-correlation functionals have
been constructed, e.g., the GGA functional PBE135 and the meta-GGA functional
TPSS.25 Furthermore, exchange-correlation potentials have been constructed that
have the correct asymptotic behavior far from the nuclei, which is particularly impor-
tant for describing response properties.26,136 Also, for the construction of approximate
kinetic-energy functionals, this strategy has been applied. One example is a class of
functionals by Carter and co-workers that are constructed to yield exact results for
the linear response of the uniform electron gas.41–43

Instead of looking at the kinetic-energy functional itself, in this work we will focus
on the quantity of interest directly, which is, in the case of the FDE scheme, the
kinetic-energy component vT of the embedding potential. As we will show, in the
limit of large separation of the two subsystems, the two terms on the right-hand side
of Eq. (5.1) do behave very differently in regions where either ρI or ρII are large,
which can be used to deduce the exact vT in this limit. It turns out that for regions
where ρII is large, the available LDA or GGA kinetic-energy functionals do not obey
this limit.

This Chapter is organized as follows. First, we derive an expression for the exact
nonadditive kinetic-energy potential in Sec. 5.2. This is then used in Sec. 5.3 to
investigate the exact embedding potential at large separation of the two subsystems.
After giving the computational details in Sec. 5.4, we show in Sec. 5.5 for model
systems that the approximations currently in use for the kinetic-energy potential are
not able to describe this long-distance limit correctly and investigate the consequences
of this failure. In Sec. 5.6, a correction is proposed that enforces the correct embedding
potential in the considered limit before we summarize and conclude in Sec. 5.7.

5.2. The exact nonadditive kinetic-energy potential

The calculation of the kinetic-energy component vT [ρI, ρII](r) of the KSCED effective
potential requires the evaluation of the functional derivative δTs[ρ]

δρ for two different
electron densities—for the density of the nonfrozen subsystem I and for the total
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5.2. The exact nonadditive kinetic-energy potential

electron density. In this section we will first describe a general procedure for the
evaluation of δTs[ρ]

δρ for an arbitrary vs-representable electron density.

The functional derivative of the nonadditive kinetic-energy bifunctional with respect
to the electron density cannot be evaluated directly since the noninteracting kinetic
energy does not depend directly on the density, but it requires the knowledge of the KS
orbitals. The KS orbitals are an implicit functional of the electron density because the
electron density uniquely defines a corresponding KS potential vs[ρ], which, in turn,
determines the KS orbitals. The usual method for the evaluation of the functional
derivative of orbital-dependent functionals is the optimized effective potential (OEP)
method.137

However, in the case of the kinetic energy an alternative route is possible for the
evaluation of δTs[ρ]

δρ . For an arbitrary vs-representable electron density ρ(r) there
exists the corresponding KS potential vs[ρ](r), i.e., the potential that will yield the
density ρ(r). The existence of this one-to-one mapping between the electron density
and the KS potential is given by the first Hohenberg–Kohn theorem.17,18 Throughout
this paper, we use vs[ρ] to refer to this KS potential, yielding the density ρ(r). This
is to be distinguished from the KS effective potential vKS

eff [ρ] that can be calculated
from the electron density ρ according to Eq. 3.15. Only for the ground-state electron
density ρ0(r), which can be obtained from the self-consistent solution of the KS
equations, vs[ρ0] and vKS

eff [ρ0] are identical. For the practical evaluation of vs[ρ] from
a given density ρ(r), there are different numerical schemes available.136,138,139

To evaluate the functional derivative δTs[ρ]
δρ , we will consider this KS potential vρ

s (r)
as fixed by the given input density; i.e., the functional dependence on ρ(r) is replaced
by a parametrical dependence. For this fixed potential vρ

s (r), the electron density
ρ(r) is the density which minimizes the total-energy functional

Evρ
s
[ρ] = Ts[ρ] +

∫
vρ

s (r)ρ(r) dr (5.4)

of a system of noninteracting electrons with vρ
s (r) as the external potential under

the constraint that the electron density integrates to the correct number of electrons.
Therefore, the electron density ρ(r) is the solution of the Lagrange minimization
problem17

δ

{
Evρ

s
[ρ]− µρ

(∫
ρ(r)dr −N

)}
= 0, (5.5)

which is equivalent to the Euler-Lagrange equation

µρ =
δEvρ

s
[ρ]

δρ(r)
=

δTs[ρ]
δρ(r)

+ vρ
s (r), (5.6)
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5. Exact long-distance limit

where µρ is a constant that depends on the input electron density and that can
be identified to equal the orbital energy of the highest occupied molecular orbital
(HOMO) in the exact functional limit.32

This Euler-Lagrange equation with the potential vρ
s (r) holds for the given electron

density ρ(r), and it can be employed to evaluate the functional derivative of the
noninteracting kinetic energy δTs[ρ]

δρ from

δTs[ρ]
δρ(r)

= −vρ
s (r) + µρ. (5.7)

When solving the KSCED equations, the above functional derivative is needed for
two different electron densities, for the electron density of the nonfrozen subsystem
ρI(r) and for the total electron density ρtot(r). Using the obtained expression for
δTs[ρ]

δρ , the kinetic-energy component of the KSCED effective potential [Eq. (5.1)] can
be written as

vT [ρI, ρII](r) =
δT nadd

s [ρI, ρII]
δρI

= vs[ρI](r)− vs[ρtot](r) + ∆µ. (5.8)

In this expression ∆µ = µρI − µρtot is a constant shift of the potential that leads
to a constant shift in the orbital energies but that will effect neither the obtained
orbitals nor the orbital energy differences. Therefore, the shift ∆µ can be ignored in
the following.

The above expression for vT [ρI, ρII] can be employed for arbitrary pairs of vs-represent-
able electron densities ρI and ρtot and can, in principle, be used to evaluate the exact
contribution of the nonadditive kinetic energy to the effective embedding potential
during the solution of the KSCED equations. However, it requires the knowledge
of the KS potentials corresponding to ρI and to ρtot, respectively. Those are, in
general, not easy to obtain in practical calculations. The application of Eq. 5.8 for
the calculation of the exact embedding potential will be the subject of our future work.
In the present work, we will employ it to investigate vT [ρI, ρII] in the long-distance
limit without actually reconstructing KS potentials from the electron density.

5.3. Exact effective embedding potential in the
long-distance limit

In the following, the effective embedding potential will be investigated in the limit
of a large separation of the two subsystems. This limit will be referred to as the
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“long-distance limit”. In this considered limit, the overlap of the electron densities of
the two subsystems will be very small and at every point in space r,

ρtot(r) ≈ ρI(r) ∨ ρtot(r) ≈ ρII(r). (5.9)

This implies that also the corresponding KS potentials do not “overlap”, that is, at
every point in space r,

vs[ρtot](r) ≈ vs[ρI](r) ∨ vs[ρtot](r) ≈ vs[ρII](r), (5.10)

where we assumed that both vs[ρI](r) and vs[ρII](r), and therefore also vs[ρtot](r),
have been chosen such that they go to 0 at infinity, i.e., where the corresponding
density approaches 0.

In addition, we will assume that the electron density ρII of the frozen subsystem in
the environment is close to the correct total density, i.e., that the chosen partitioning
of the electron density is such that the subsystem densities are equal to the ground-
state densities of the separated subsystems. This restriction rules out the case where
there is a charge transfer between the subsystems. Even though this is a quite severe
restriction, this is the most common use of the FDE scheme. In most practical
applications, an approximate ρII(r) is used, which is chosen such that it can be
considered a good approximation to the correct electron density in the environment.

It should be noted that in the following “exact” effective embedding potential refers to
the embedding potential that is constructed using the exact kinetic-energy component
vT . This does not require that also the exact exchange-correlation potential is used,
but approximate exchange-correlation potentials can be employed. However, when
using the exact embedding potential, the results of a fully variational FDE calcula-
tion (in which the electron density of both subsystems is updated in freeze-and-thaw
cycles), will be equal to the electron density calculated from a supermolecular KS-
DFT calculation using the same approximate exchange-correlation potential. In the
following, we will restrict ourselves to approximate exchange-correlation potentials
that only depend on the electron density locally, i.e., to LDA and GGA functionals.

Under these assumptions, the KS potential that yields the correct total electron den-
sity can, in the long-distance limit, be decomposed as

vs[ρtot](r) ≈ vs[ρI](r) + vs[ρII](r); (5.11)

i.e., it can be written as the sum of the KS potentials that correspond to the individual
electron densities of the subsystems. It should be pointed out that this decomposition
is only exact if approximate exchange-correlation potentials that only depend locally
on the electron-density are employed. It is not valid if the exact KS potentials are
considered.

91



5. Exact long-distance limit

5.3.1. Embedding potential at the nonfrozen subsystem

In the region of the nonfrozen subsystem I, where ρII is negligibly small [ρII(r) ≈ 0],
the total density equals the density of the nonfrozen subsystem I, i.e., ρI(r) ≈ ρtot(r).
This implies, under the assumptions made above, that

vs[ρtot](r) ≈ vs[ρI](r), (5.12)

and it follows from Eq. (5.8) that

vT [ρI, ρII](r) ≈ 0 for ρII(r) ≈ 0; (5.13)

i.e., the kinetic-energy component of the effective embedding potential disappears.

If a local approximation (LDA or GGA) to the exchange-correlation potential is
used, also the exchange-correlation component of the effective embedding potential
in Eq. (3.16) cancels, and the effective embedding potential reduces to the purely
electrostatic embedding potential,

vemb
eff [ρI, ρII](r) = vnuc

II (r) +
∫

ρII(r′)
|r − r′|

dr′ for ρII(r) ≈ 0. (5.14)

5.3.2. Embedding potential at the frozen subsystem

In the region of the frozen subsystem II, where ρI is negligibly small [ρI(r) ≈ 0], the
total density equals the density of the frozen subsystem II, i.e., ρII(r) ≈ ρtot(r). This
implies, under the assumptions made above,

vs[ρtot](r) ≈ vs[ρII](r) (5.15)

and

vs[ρI](r) ≈ 0, (5.16)

and it follows from Eq. (5.8) that

vT [ρI, ρII](r) ≈ −vs[ρII](r) for ρI(r) ≈ 0. (5.17)

As the frozen density ρII(r) has usually been obtained from the self-consistent solution
of the KS equations in an earlier step, the corresponding KS potential vs[ρII](r) is
known and is given by the effective potential that was used to obtain ρII(r). In the
simplest case, ρII has been obtained from an isolated KS-DFT calculation. In this
case, the KS potential corresponding to ρII(r) is given by

vs[ρII](r) = vKS
eff [ρII](r) = vnuc

II (r) +
∫

ρII(r′)
|r − r′|

dr′ +
δExc[ρ]

δρ

∣∣∣∣
ρ=ρII(r)

, (5.18)
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and, therefore,

vT [ρI, ρII](r) ≈ −vnuc
II (r)−

∫
ρII(r′)
|r − r′|

dr′− δExc[ρ]
δρ

∣∣∣∣
ρ=ρII(r)

for ρI(r) ≈ 0. (5.19)

The nuclear potential and the electrostatic potential of the electrons exactly cancel
the corresponding terms in the effective embedding potential [Eq. (3.16)] and in the
case of a local approximation (LDA or GGA) for the exchange-correlation poten-
tial, the exchange-correlation component cancels, too. Therefore, the kinetic-energy
component cancels all the other terms of vemb

eff , and one obtains

vemb
eff [ρI, ρII](r) = 0 for ρI(r) ≈ 0. (5.20)

If the frozen density ρII has not been obtained from an isolated molecule calculation,
but from a FDE calculation itself, as it is done when performing freeze-and-thaw
cycles, the KS potential corresponding to ρII(r) also contains the effective embedding
potential, i.e.,

vs[ρII](r) = vKS
eff [ρII](r) + vemb

eff [ρII, ρI](r), (5.21)

where vemb
eff [ρII, ρI](r) is the embedding potential that appears when ρII is calculated

in a FDE calculation in the presence of the (frozen) ρI density, i.e., when the roles of
ρI and ρII are interchanged in a freeze-and-thaw calculation.

Since the distance between the two subsystems is large, the effective embedding po-
tential in the calculation of ρII is, as described above in Sec. 5.3.1, in the regions of
interest given by the electrostatic potential only. Therefore,

vT [ρI, ρII](r) ≈ −vKS
eff [ρII](r)− vnuc

I (r)−
∫

ρI(r′)
|r − r′|

dr′ for ρI(r) ≈ 0. (5.22)

The effective embedding potential at the frozen system is then given by

vemb
eff [ρI, ρII](r) = −vnuc

I (r)−
∫

ρI(r′)
|r − r′|

dr′ for ρI(r) ≈ 0. (5.23)

This effective embedding potential cancels the corresponding terms in the KS effective
potential of the embedded subsystem vKS

eff [ρI], so that the total effective potential used
in the calculation of the embedded subsystem is zero at the frozen subsystem,

vKSCED
eff [ρI](r) ≈ 0 for ρI(r) ≈ 0. (5.24)
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5.4. Computational details

All density functional calculations have been performed using the Amsterdam density
functional (Adf) package.124,125 The FDE scheme of Wesolowski and Warshel8 has
been implemented in the most recent version of Adf using an efficient numerical in-
tegration scheme.CJ4 The PW91 exchange-correlation functional22,130 in combination
with the TZ2P basis set from the ADF basis set library124 has been employed in all
calculations. If not stated otherwise, in the FDE calculations the PW91k kinetic-
energy functional58 has been used to approximate the kinetic-energy component of
the embedding potential according to Eq. (5.3). The calculations on H2O· · ·Li+ pre-
sented below have been independently verified using the implementation of the FDE
scheme in the deMon2k program package.140

In the FDE calculations, there are two possibilities for the choice of the basis functions
which are used to expand the density of the nonfrozen subsystems.CJ3,40 The most
obvious choice is to use only basis functions that are centered on the atoms in the
considered subsystem to expand the corresponding density. Calculations using this
monomolecular basis set expansion will be labeled as FDE(m). However, in this case
an inconsistency with respect to the supermolecular calculation is introduced since
the products of basis functions of different subsystems cannot be used for expanding
the electron density. Therefore, it is more accurate to include all basis functions,
also those of the frozen subsystem, in FDE the calculation. Calculations using this
supermolecular basis set expansion will be labeled as FDE(s).

5.5. The failure of the available approximate
kinetic-energy potentials in the long-distance limit

The currently available approximations to the kinetic-energy component vT of the
embedding potential, which are of the form

ṽT [ρI, ρII](r) =
δT̃s[ρ]

δρ

∣∣∣∣∣
ρ=ρtot(r)

− δT̃s[ρ]
δρ

∣∣∣∣∣
ρ=ρI(r)

, (5.25)

only partly satisfy the exact long-distance limit that was derived in the previous
section. At the nonfrozen subsystem, ρI(r) ≈ ρtot(r) and, therefore, the two terms in
Eq. (5.25) will cancel, such that the correct long-distance limit given by Eq. (5.13) is
obtained.

94
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In contrast, at the frozen subsystem Eq. (5.25) reduces to

ṽT [ρI, ρII](r) =
δT̃s[ρ]

δρ

∣∣∣∣∣
ρ=ρII(r)

for ρI(r) ≈ 0 (5.26)

and it is not evident that the available kinetic-energy functionals fulfill the exact limit
given by Eq. (5.17), i.e., that the kinetic-energy component cancels the electrostatic
and exchange-correlation components of the effective embedding potential.

This wrong description of the long-distance limit can be considered a serious short-
coming of the approximate kinetic-energy functionals that are currently in use in
practical applications of the FDE scheme. At the frozen system, the available approx-
imate kinetic-energy functionals, used in Eq. (5.3) to approximate the kinetic-energy
component vT of the effective embedding potential, are in general not able to com-
pensate the electrostatic parts of the embedding potential, as they should in the exact
long-distance limit. We will investigate the consequences of this wrong description in
the following.

To illustrate the behavior of the embedding potential in the different regions, we
investigated a H2O· · ·Li+ complex as a simple model system. This complex has
already been used in earlier studies of the possible charge-leak problem in FDE calcu-
lations.74,84 The structure of this complex, as it was used in the calculations, is shown
in Fig. 5.1. As a starting point, we use the optimized geometry of H2O· · ·Li+, which
assumes a planar structure with C2v symmetry and d(O–H) = 0.97Å, ∠(H–O–H) =
105.1◦ and d(O–Li) = 1.8Å. To investigate the limit of large separations of the two
subsystems, the O–Li distance is varied.

In the FDE calculations, the positively charged Li+ ion is used as the frozen subsystem
(ρII). The electron density of the Li+ subsystem is calculated for the isolated ion in
the gas phase. The H2O molecule constitutes the nonfrozen subsystem (ρI), and its
electron density is calculated in a FDE calculation in the presence of the frozen Li+

electron density. At large separations, the effect of the H2O subsystem on the Li+ ion
can be expected to be very small; i.e., the frozen Li+ density will be very close to the
correct total density, so that the assumptions made in Sec. 5.3 are fulfilled. On the
other hand, the effect of the frozen Li+ subsystem can be expected to be significant
even when the overlap of the electron densities is negligible since its positive charge
gives rise to a long-range electrostatic interaction.

As a reference, we first performed supermolecular KS-DFT calculations. The orbital
energies obtained in this supermolecular calculation as a function of the O–Li distance
are shown in Fig. 5.2, and pictures of the relevant orbitals are shown in Fig. 5.3.

The HOMO in the supermolecular calculation is a lone-pair p orbital on the water
molecule. When the distance between the two fragments is increased, its orbital
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5. Exact long-distance limit

Figure 5.1.: Structure of the employed model system H2O· · ·Li+. In the calculations
the O–Li distance is varied; the picture is for d(O–Li) = 5.8 Å. An
isosurface plot of the electron density is also shown to illustrate the
partitioning into subsystems. Graphics: ADF-VIEW [141]

Figure 5.2.: Orbital energies calculated in a supermolecular KS-DFT calculation as
a function of the O–Li distance. See text for details.
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5.5. The Failure in the Long-Distance Limit

Figure 5.3.: Isosurface plots of the orbitals calculated in a supermolecular KS-DFT
calculation for d(O–Li) = 5.8Å. Shown are (a) the lowest unoccu-
pied H2O orbital (LUMO-H2O), (b) the lowest unoccupied Li+ orbital
(LUMO-Li), and (c) the highest occupied H2O orbital (HOMO-H2O).
See text for details. Graphics: ADF-VIEW [141].
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energy increases. This is due to the Coulomb potential of the charged Li+ ion that
is felt at the water molecule. The lowest unoccupied molecular orbital (LUMO) is
the rather diffuse 2s orbital on the Li+ ion (labeled LUMO-Li). Its orbital energy
is almost constant with increasing distance between the fragments since at larger
distances there is no interaction of this orbital with the H2O molecule. Only close to
the equilibrium distance there is some overlap of the LUMO-Li with H2O orbitals. In
addition, the figures also include the lowest unoccupied H2O orbital, labeled LUMO-
H2O, i.e., the lowest unoccupied orbital that is mainly located at the H2O molecule.
This is a diffuse s-like orbital. As it is localized at the water molecule, its orbital
energy shows the same Coulombic behavior as that of the HOMO when the distance
between the fragments is increased.

The orbital energies of the HOMO and the LUMO in FDE calculations on the H2O
subsystem in the presence of the frozen Li+ density, using both the monomolecular
and the supermolecular expansion, are shown in Fig. 5.4. Pictures of the orbitals
obtained with FDE(m) are shown in Fig. 5.5, and the orbitals calculated in the
FDE(s) calculations are shown in Fig. 5.6.

Both in the FDE(m) and in the FDE(s) calculations the HOMO of the H2O subsystem
is the same orbital as the HOMO in the supermolecular calculation, and the orbital
energy is identical to the orbital energy calculated in the supermolecular calculation.
Since this orbital is localized at the H2O subsystem, at larger separations of the two
subsystems it is exposed to the embedding potential at the nonfrozen system only. As
shown above, in these regions the embedding potential should reduce to the purely
electrostatic embedding potential. With the approximate kinetic-energy functionals
in use this limit is reproduced correctly.

In the FDE(m) calculation the LUMO of the H2O subsystem is at larger separations
of the two subsystems similar to the LUMO-H2O in the supermolecular calculation.
It is a diffuse s-like orbital localized at the water subsystem. Therefore, it does not
correspond to the LUMO of the supermolecule, but to the lowest unoccupied orbital of
the subsystem in question. The orbital energy of the LUMO equals at larger distances
the orbital energy of the LUMO-H2O in the supermolecular calculation.

In the FDE(s) calculation, where the basis functions centered at the Li subsystem
are included, a completely different orbital is found as the LUMO. In contrast to the
FDE(m) calculation, where the LUMO was localized at the H2O subsystem, a rather
diffuse, nodeless s orbital localized at the Li+ ion is obtained. The orbital energy of
this orbital is at larger distances −8.6 eV, which is approximately 2.0 eV lower than
the orbital energy of the LUMO-Li obtained in the supermolecular calculation. Since
the orbital is localized at the Li+ subsystem its orbital energy is almost constant
when the distance between the subsystems is increased. At O–Li distances larger
than approximately 12 Å, the energy of the HOMO becomes larger than the orbital
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5.5. The Failure in the Long-Distance Limit

Figure 5.4.: Orbital energies calculated in FDE calculations on the H2O subsystem
in the presence of the frozen Li+ subsystem as a function of the O–Li
distance. Both results using the supermolecular basis set expansion
[FDE(s)] and the monomolecular basis set expansion [FDE(m)] are
shown. For comparison, also the corresponding supermolecular orbitals
are included.

−16

−14

−12

−10

−8

−6

−4

−2

 0

 0  5  10  15  20  25  30

O
rb

ita
l E

ne
rg

y 
[e

V
]

Distance d (Li−O) [Angstrom]

FDE(m)

FDE(s)HOMO
supermol

LUMO−H  O2

LUMO−Li

99



5. Exact long-distance limit

Figure 5.5.: Isosurface plots of the H2O orbitals calculated in a FDE(m) calcula-
tion in the presence of the frozen Li+ subsystem for d(O–Li) = 5.8Å.
Only basis functions of the H2O subsystem are included (monomolecu-
lar expansion). Shown are (a) the lowest unoccupied molecular orbital
and (b) the highest occupied molecular orbital. See text for details.
Graphics: ADF-VIEW [141].
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Figure 5.6.: Isosurface plots of the H2O orbitals calculated in a FDE(s) calculation
in the presence of the frozen Li+ subsystem for d(O–Li) = 5.8Å. Basis
functions of both subsystems are used in the FDE calculation (super-
molecular expansion). Shown are (a) the lowest unoccupied molecular
orbital and (b) the highest occupied molecular orbital. See text for
details. Graphics: ADF-VIEW [141].
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energy of the LUMO. In these cases the calculation has to be forced to converge to a
nonaufbau solution.

The fact that a bound unoccupied orbital appears at the frozen subsystem is a conse-
quence of the wrong limit of the kinetic-energy component of the embedding potential
for the approximate kinetic-energy functional PW91k applied here. If the kinetic-
energy component of the embedding potential shows the correct long-distance limit
derived in Sec 5.3.2 at the frozen system, the (repulsive) kinetic-energy component
should cancel the attractive electrostatic potential. In this case, there should not
be any bound orbitals localized at the frozen subsystem. The low-lying unoccupied
orbital localized at the Li+ subsystem is thus an artifact introduced by the use of
an approximate kinetic-energy functional. The PW91k kinetic-energy functional is
not able to compensate the attractive electrostatic parts of the embedding poten-
tial, which leads to an artificially too low-lying virtual orbital localized at the frozen
subsystem. This wrong description is similar to the problems that arise if purely
electrostatic models (e.g., point charges) are used to describe an environment, where
additional measures, such as the introduction of pseudopotentials or a damping factor
for the nuclear attraction, have to be taken to avoid the localization of charge on the
environment.142

It should be noted that the limiting case for the embedding potential is quite different
from the behavior that appears if a pseudopotential approach is used for representing
the frozen subsystem, like it is, for instance, done in the effective group potential
method.143,144 In this case, only the occupied orbitals of the frozen subsystem are
projected out of the variational space used for the nonfrozen system, so that all
virtual orbitals present in the supermolecular calculation, including those localized
at the frozen subsystem, will appear in the calculation on the nonfrozen subsystem.
The partitioning of the electron density into the electron densities of subsystems that
is the starting point for the FDE scheme leads to a partitioning not only of the
occupied orbitals, but also implies a partitioning of the virtual orbital space. This is
a consequence of the use of a local embedding potential that does not contain any
projection operators, unlike in pseudopotential approaches.

To investigate the influence of the approximate kinetic-energy functional, we also
performed calculations using the Thomas–Fermi (TF) functional to approximate the
kinetic-energy component of the embedding potential. In this case, the general picture
is identical to that obtained using PW91k, only that in the FDE(s) calculation the
LUMO, which is also localized at the Li subsystem, has an even lower orbital energy.
At larger distances, its orbital energy is approximately −8.7 eV, i.e., 2.1 eV lower
than that of the LUMO-Li in the supermolecular calculation. Therefore, also when
using the TF functional, the orbital energy of the artificially too low-lying LUMO is
below the orbital energy of the HOMO, and a nonaufbau solution is obtained.
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We did not investigate approximate GGA kinetic-energy functionals other than
PW91k since only the TF functional and PW91k have been widely applied in prac-
tical applications of FDE. However, none of them ensures the correct long-distance
limit. It can therefore be expected that any GGA kinetic-energy functional will be-
have similar to PW91k and show this shortcoming if applied for approximating the
kinetic-energy component of the embedding potential.

Even though the failure of the kinetic-energy component of the embedding potential
in the long-distance limit leads to artificially too low-lying unoccupied orbitals, it does
not change the occupied orbitals, since in the region of the nonfrozen subsystem the
embedding potential is correct. Therefore, the calculated electron density will not be
affected, as long as no orbital localized at the frozen subsystem is occupied and as long
as there is no electron density leaking into the regions of the frozen system. However,
the artificially too low-lying virtual orbitals will lead to a number of problems in
practical applications of FDE.

First, as it was shown here in the case of H2O· · ·Li, their orbital energies can be
of similar size as the orbital energy of the HOMO of the nonfrozen system, or even
drop below the orbital energy of the HOMO. This will lead to serious convergence
problems since the self-consistent field procedure has to be forced to converge to a
nonaufbau solution. Second, the accurate description of virtual orbitals is crucial for
the correct description of response properties such as excitation energies, which is a
very important application of the FDE scheme.CJ4,76,83 In the calculation of response
properties, the artificially too low-lying virtual orbitals will introduce spurious ex-
citations to these orbitals. Even though they will, in general, have a low oscillator
strength, they might mix with other excitations and thus influence the calculated
absorption spectra.

In the FDE(m) calculations, the problem of artificially too low-lying virtual orbitals
does not occur because there are no basis functions present that probe the regions of
the frozen system, where the embedding potential is wrong. This might be a practical
way of avoiding the problems discussed above. However, it does not solve them. Since
FDE should be exact in the exact-functional limit, it should also be applicable when
larger basis sets are used. In many cases, it might be necessary to include basis
functions on the frozen system, at least for a few atoms involved in (hydrogen) bonds
with the nonfrozen subsystem because these basis functions are important to model
the charge density in the bonding region.40,69 Furthermore, the calculation of response
properties of the nonfrozen subsystem often requires the use of basis sets containing
very diffuse functions.CJ5 In calculations on weakly interacting systems such as van
der Waals complexes the inclusion of diffuse functions is in many cases required.CJ3

These diffuse basis functions on the nonfrozen system will also probe the embedding
potential at the frozen subsystem, thus possibly leading to artificially too low-lying
virtual orbitals, even in FDE(m) calculations. In the examples presented here, the

103
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use of basis functions of the frozen subsystem would normally not be necessary, but
they have been included to identify problems that will appear with sufficiently diffuse
basis sets more clearly.

To demonstrate that the wrong long-distance limit of the kinetic-energy component
vT of the embedding potential does not only have consequences in rather artificial
model systems, but also in cases that are of importance in practical applications, we
have also investigated the system studied in Ref. CJ4, where solvent effects on the
absorption spectrum of the organic dye aminocoumarin C151 have been studied. For
our test calculations, we employed a cluster consisting of the aminocoumarin C151
molecule and the 30 closest solvent water molecules, using the coordinates of one
arbitrary snapshot from the molecular dynamics simulation performed in Ref. CJ4.
The structure of this cluster is shown in Fig. 5.7.

In the FDE calculations, the frozen subsystem is formed by the solvent environment,
and a sum of the electron densities calculated for the isolated water molecules is
used to approximate the frozen density ρII. For studying solvent effects it has been
shown76 that this is usually a good approximation to the true electron density of the
solvent. It can, therefore, be assumed that this approximated density in the regions
of the frozen density—at least in the regions where the overlap with the density of
the nonfrozen subsystem is small—is close to the exact total density and that in these
regions the assumptions made in Sec. 5.3 are fulfilled.

The orbital energies of the four highest occupied MOs and of the unoccupied orbitals
with orbital energies lower than −0.3 eV calculated for this test system are shown in
Fig. 5.8. As a starting point, the orbitals calculated for the isolated aminocoumarin
C151 are given. In this case, the virtual orbitals (59a – 62a) are antibonding orbitals
of the aminocoumarin C151. In the FDE(m) calculation, the orbital energies change
significantly with respect to the isolated molecule calculation, which is due to the
influence of the solvent environment. However, for both the occupied and the unoc-
cupied orbitals in the energy range of interest, the main character of the orbitals does
not change.

In the FDE(s) calculations, the orbital energies of the orbitals 55a to 61a are all
slightly lower than in the FDE(m) calculation but do not change significantly. This
can be attributed to the larger basis set available in the FDE(s) calculation. However,
additional virtual orbitals (62a – 65a) show up in the energy range of interest that
were not present in the FDE(m) calculation. Isosurface plots of these unoccupied
orbitals are shown in Fig. 5.7.

It can be seen that all four of these unoccupied orbitals are mainly localized at the
water environment. As discussed above, these orbitals should not be present in the
calculation of the aminocoumarin C151 subsystem. They are thus artificially too low-
lying orbitals introduced by the wrong long-distance limit of the approximations used
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5.5. The Failure in the Long-Distance Limit

Figure 5.7.: Structure of an aminocoumarin C151 molecule surrounded by 30 water
solvent molecules and isosurface plots (contour value: 0.03) of the spu-
rious unoccupied orbitals obtained in the FDE(s) calculation. See text
for details. Graphics: Vmd [145].
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5. Exact long-distance limit

Figure 5.8.: Orbital energies (in eV) of the relevant orbitals calculated for
aminocoumarin C151 surrounded by 30 water molecules. Only orbitals
with energies lower than −0.3 eV have been included. As reference,
the orbital energies calculated for the isolated aminocoumarin C151
are shown first, together with those calculated both using FDE(m) and
FDE(s). Finally, the orbital energies calculated in a FDE(s) calcula-
tion using the long-distance corrected approximation to vT are given
[labeled FDE(s)-corr]. See text for details.
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for the kinetic-energy component of the embedding potential. This shows that this
wrong limit does also have consequences in realistic systems that have been studied
using the FDE scheme, if basis functions that can probe the regions of the frozen
subsystem are present.

The artificially too low-lying virtual orbitals also show up in the calculation of the
absorption spectrum by introducing spurious excitations. In the spectrum calculated
using time-dependent DFT (TDDFT), the seventh excitation has a contribution of
28.1% of an excitation from orbital 58a to orbital 63a, i.e., of an excitation to one of
the spurious virtual orbitals, and the eighth excitation has a contribution of 69.4% of
such an excitation. The excitation energies of both of these excitations appear in the
energy range of interest and show a significant oscillator strength. In the FDE(m)
calculation, no similar excitations are found.

5.6. A long-distance corrected approximation to vT

To compensate for the wrong long-distance limit of the kinetic-energy component
of the embedding potential, we can improve the currently available approximations,
which employ Eq. (5.3) in combination with an approximate LDA or GGA kinetic-
energy functional, by enforcing the correct long-distance limit. The strategy followed
is similar to that applied in Refs. 146 and 147 to enforce the correct description of
charge-transfer excitations in TDDFT.

To achieve the correct long-distance limit, we augment the approximate kinetic-energy
component ṽT of the embedding potential with a correction term vcorr

T , i.e.,

ṽT [ρI, ρII](r) =
δT̃s[ρ]

δρ

∣∣∣∣∣
ρ=ρtot(r)

− δT̃s[ρ]
δρ

∣∣∣∣∣
ρ=ρI(r)

+ vcorr
T [ρI, ρII](r). (5.27)

This correction term should enforce the correct long-distance limit at the frozen sys-
tem. In all other cases, it should leave the approximate ṽT unchanged because it is
expected to be a rather good approximation in those cases and currently there are no
better approximations available.
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5. Exact long-distance limit

For this correction term, we therefore chose the form

vcorr
T [ρI, ρII](r) =− exp

[
−
(

ρI(r)
α ρII(r)

)2
] (

vnuc
II (r) +

∫
ρII(r′)
|r − r′|

dr′

+
δExc[ρ]

δρ

∣∣∣∣
ρ=ρtot(r)

− δExc[ρ]
δρ

∣∣∣∣
ρ=ρI(r)

+
δT̃s[ρ]

δρ

∣∣∣∣∣
ρ=ρtot(r)

− δT̃s[ρ]
δρ

∣∣∣∣∣
ρ=ρI(r)

 . (5.28)

In this expression, the first factor serves as a switching function that turns on the cor-
rection when needed, but that is zero otherwise. When the correction is switched on,
i.e., the exponential in the above expression equals 1, the term in parentheses, which
equals the approximate effective embedding potential, is subtracted, thus leading to
the total effective embedding potential being zero and enforcing the correct long-
distance limit at the frozen subsystem. To decide when this correction is switched
on, we used the ratio of ρI(r) and ρII(r) in the switching function; i.e., when ρII(r) is
sufficiently large compared to ρI(r), the correction is switched on. Based on numerical
tests, we chose a value of 0.1 for the parameter α, which means that the correction is
applied when ρII(r) is ten times as large as ρI(r).

It should be noted that this proposed correction can only be applied if the initial
assumptions given in Sec. 5.3 are fulfilled, i.e., if the partitioning of the total electron
density is such that the electron densities of the subsystems equal the ground-state
densities of the separated subsystems. This is not the case if there is charge transfer
between the subsystems. In such cases, the correction given above will enforce a
long-distance limit that is not correct.

The orbital energies calculated using this long-distance correction in combination
with the PW91k kinetic-energy functional for the H2O· · ·Li complex studied above
are shown in Fig. 5.9. It can be seen that, while the orbital energy of the HOMO still
agrees with the supermolecular HOMO, the spurious LUMO-Li found in the FDE(s)
calculation does not appear anymore. Instead, the LUMO is given by an orbital
localized at the H2O subsystem, and its orbital energy agrees with the orbital energy
of the LUMO-H2O found in the supermolecular calculation.

Finally, we applied the correction in the calculation of aminocoumarin C151 sur-
rounded by water. The orbital energies calculated in the FDE(s) calculation using
the long-distance correction are included in Fig. 5.8. It can be seen that while the
orbital energies of the other orbitals do not change significantly, the spurious virtual
orbitals 62a to 65a found in the uncorrected FDE(s) calculation, which were mainly
localized at the water environment, do not appear anymore. Instead, there is only
one virtual orbital 62a that was not present in the FDE(m) calculation.

108



5.6. A long-distance corrected approximation to vT

Figure 5.9.: Orbital energies calculated in FDE calculations on the H2O subsystem
in the presence of the frozen Li+ subsystem using the PW91k kinetic-
energy functional in combination with the long-distance correction as
a function of the O–Li distance. As reference, the results of the super-
molecular DFT calculation are also shown. See text for details.
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5. Exact long-distance limit

Figure 5.10.: Isosurface plots (contour value: 0.05) of the unoccupied orbital 62a
calculated for (a) aminocoumarin C151 surrounded by 30 water
molecules using the long-distance corrected approximation to vT in
a FDE(s) calculation and (b) the isolated aminocoumarin C151. See
text for details. Graphics: Vmd [145].
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An isosurface plot of this orbital is shown in Fig. 5.10. This virtual orbital is not
localized at the water environment, but it is a N–H antibonding orbital of the amino
group. A similar orbital is also present in the isolated molecule calculation (also
shown in Fig. 5.10 for comparison). A closer inspection of the orbitals in the FDE(s)
calculation shows that, actually, the virtual orbitals 62a, 64a and 65a do also have
a contribution from such an N–H antibonding orbital. The long-distance correction
is thus able to remove the spurious contributions localized at the environment while
keeping the contributions corresponding to virtual orbitals localized at the nonfrozen
subsystem.

However, in the FDE(m) calculation such a N–H antibonding orbital appears only
with a positive orbital energy. The long-distance correction not only compensates the
attractive potential in the environment, but also the repulsive parts of the embedding
potential. As the 62a orbital reaches out into regions of the environment where the
embedding potential is mainly repulsive, this leads to a lowering of its orbital energy.
If the long-distance correction is also applied in the FDE(m) calculation, a virtual
orbital 62a similar to that in the FDE(s) calculation is found at an orbital energy
of -0.26 eV, which is still significantly higher than in the FDE(s) calculation. This
remaining difference is due to the larger flexibility of the basis set in the FDE(s)
calculation.

5.7. Conclusions

We have derived an exact expression for the kinetic-energy component vT of the
embedding potential that is used in the FDE scheme. By relating the functional
derivative of the noninteracting kinetic-energy Ts[ρ] to the KS potential vs[ρ] corre-
sponding to this density, we obtain a way of calculating vT exactly for an arbitrary
pair of vs-representable densities. In future work, this could be applied for perform-
ing FDE calculations using the exact kinetic-energy potential that could serve as a
reference for developing improved approximations to vT .

In this paper, we have applied the obtained expression to investigate vT in the long-
distance limit. We have shown that—under the assumption that the frozen electron
density is close to the exact total electron density at the frozen subsystem—for large
separations of the two subsystems the embedding potential at the nonfrozen subsys-
tem should reduce to the purely electrostatic embedding potential, while at the frozen
subsystem it should be zero.

One consequence of this exact limit is that for well-separated subsystems, not only
the electron density and thus the occupied orbitals, but also the virtual orbitals
are divided between the two subsystems; i.e., in the FDE calculation on one of the
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5. Exact long-distance limit

subsystems no virtual orbitals of the other subsystems should appear. This is a
fundamental difference to pseudopotential approaches, in which only the occupied
orbitals are projected out.

We have shown that while in the long-distance limit the approximations currently
in use for vT are correct at the nonfrozen subsystem, they fail at the frozen system,
where the available GGA kinetic-energy functionals are not able to cancel the elec-
trostatic and exchange-correlation components of the embedding potential. As our
calculations on model systems have shown, this, in general, does not influence the
calculated electron density and the calculated occupied orbitals, but it leads to arti-
ficially too low-lying virtual orbitals. These are problematic in two respects. First,
as shown for H2O· · ·Li, their orbital energy can drop below that of the HOMO, lead-
ing to nonaufbau solutions. Second, these spurious virtual orbitals will influence the
calculation of response properties, for which a good description of virtual orbitals is
crucial.

While it is in many cases possible to avoid these problems by not including basis func-
tions on the frozen subsystem in the calculation of the nonfrozen subsystem [FDE(m)],
these basis functions might be necessary to accurately describe hydrogen bonds be-
tween the subsystems or diffuse basis functions on the nonfrozen subsystem might be
able to probe the regions in which the embedding potential is wrong. In these cases,
we recommend the use of the long-distance correction proposed in this work.

However, while the proposed long-distance correction is able to remove the spurious
virtual orbitals in the model systems studied here, its applicability is rather limited.
First, it can only be used if the partitioning is such that the subsystem densities
are close to the ground-state densities of the well-separated subsystems and it will,
therefore, not work if there is a (partial) charge transfer from the nonfrozen to the
frozen subsystem. It might be possible to devise more advanced corrections that
detect such cases, e.g., by monitoring the orbital energies of both subsystems. Second,
the proposed correction does only work in combination with approximate kinetic-
energy functionals that are wrong in the long-distance limit. If it is used with the
exact kinetic-energy functional, the correction of Eq. (5.28) will still give nonzero
contributions. And third, the kinetic-energy component of the embedding potential
obtained with this correction cannot be expressed as the functional derivative of an
energy functional. For these reasons, this correction can only be viewed as a first step
toward more advanced approximations that ensure the correct long-distance limit.

Furthermore, the fact that the available approximations to vT fail completely at the
frozen subsystem makes it very likely that they can be considerably improved in the
regions where the densities of the two subsystems overlap. The correction proposed
in this work can be seen as a first step towards a new generation of approximations,
which do not employ Eq. (5.3), i.e., which make use of an approximate kinetic-energy
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functional but that approximate vT directly and which are constructed such that they
obey the exact limits derived here. This might possibly be a promising route on the
way to approximations that will also be applicable in the case of stronger interactions
and thus remove some of the limitations the FDE scheme currently still has.
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Abstract

An improved implementation of frozen-density embedding (FDE) is presented. Due
to an efficient numerical integration scheme, this implementation makes it possible
to apply FDE to large solvent shells (up to more than 1000 atoms in the present
example). For sufficiently large environments, the size of the grid used in the numerical
integration does not increase with the size of the environment, and therefore the
computer time required for the most expensive steps of the calculation (such as the
SCF iterations or the solution of the TDDFT eigenvalue problem) is constant.

6.1. Introduction

A great advantage of the frozen-density embedding scheme in comparison to super-
molecule calculations is the restriction to the orbital space of the embedded system.
As a consequence, the dimension of the Fock matrix and of the TDDFT eigenvalue
problem (see, e.g., Refs. 148–150), are independent of the system size.

The bottleneck in frozen-density calculations for large solvation shells is the generation
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6. Improved efficiency for FDE calculations

of the solvent density, which in principle requires a converged SCF for the system to be
frozen in the embedding calculation. In Ref. 76 it was shown that this can be avoided
without significant loss of accuracy in the excitation energies by using a superposition
of molecular densities for the solvent. This approach made it possible to apply the
embedding scheme to excitations of systems solvated by several hundreds of solvent
molecules. For ground-state properties, similar construction methods of approximate
environmental densities have been employed.49,77,79,86

However, the first implementation used in Ref. 76 still showed a rather strong increase
of the CPU time with increasing system size. Calculations with up to 300 water
molecules could be carried out, but statistical analyses with solvent shells of this size
were out of reach.

We now implemented a version of the frozen-density embedding which is improved in
three respects: (i) The generation of the sum-of-fragment density has been made more
efficient, (ii) the cost of the numerical integration has been significantly decreased by
using a reduced integration grid, and (iii) linear scaling techniques are employed.

6.2. Efficient numerical integration scheme

Adf uses a numerical integration scheme for evaluating the the matrix elements of
the Coulomb and exchange-correlation potential.125 As many steps scale linearly with
the number of grid points, the generation of an efficient integration grid is of great
importance to speed up the calculations.

Besides the integrals that are needed in the calculation of the isolated system I, also
the matrix elements of the embedding potential are necessary in KSCED calculations.
These matrix elements are given by

〈χi| vemb
eff |χj〉 =

∫
χ∗i (r)vemb

eff (r)χj(r) dr (6.1)

where vemb
eff is the embedding potential,

vemb
eff [ρI, ρII](r) = vnuc

II (r) +
∫

ρII(r′)
|r − r′|

dr′ +
δEnadd

xc [ρI, ρII]
δρI

+ vT [ρI, ρII](r), (6.2)

and χi are the STO-basis functions that are used in the calculation of the non-frozen
system and that are usually centered only on the atoms in the non-frozen system. The
integration grid should be constructed in such a way that only the region in space
where the integrand is not negligible is covered.

Among the different components of the embedding potential, the integration of the
Coulomb potential for the frozen system puts the most severe requirements on the
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6.2. Efficient numerical integration scheme

integration grid, since the singularities of the Coulomb potential at the nuclei of the
frozen system need to be integrated accurately. We therefore concentrate in the fol-
lowing on this contribution to the embedding potential. The previous implementation
of the FDE scheme in Adf used the same integration grid that would be employed
in a full super-molecular calculation to avoid problems in this step. However, this
integration grid is much larger than necessary, especially in calculations where the
frozen environment becomes very large.

The numerical integration used in Adf124,125 is based on a partitioning of space into
atomic polyhedra that are constructed as Voronoi cells around the atoms and the
remaining “outer region”. Inside the atomic polyhedra a dense spherical grid around
the atom ensures an accurate integration of the Coulomb singularity of the nucleus,
while in the outer region only few integration points are needed. Details of this grid
generation are explained in Ref. 151.

In the improved FDE implementation, atomic polyhedra are only constructed for
atoms that are within a certain distance from atoms in the non-frozen system (4.0 Å
in the present example). All other atoms in the frozen part are considered part of the
outer region. This ensures sufficiently many grid points for an accurate integration
where the integrand in Eq. (6.1) is non-negligible, while only few integration points are
created in in those regions where the integrand vanishes because the basis functions
χi,j of the non-frozen system are small. With the integration grid generated in this
way, the number of grid points for larger environments does no longer increase with
the size of the frozen environment.

It is important to note that numerical integration over basis or fit functions of the
frozen system is completely avoided. The (electronic) Coulomb part of the embedding
potential,

vemb
Coulomb(r) =

∫
ρII(r′)
|r − r′|

dr′ (6.3)

is calculated using density fitting, i.e., the electron density of the frozen environment
ρII(r) expressed as a linear combination of STO fit functions χfit:

ρII(r) ≈
∑

i

ciχ
fit
i (r) (6.4)

These fit functions are centered on the atoms of the frozen environment. Integrals over
these functions—as needed for vemb

Coulomb(r)—can easily be calculated analytically.125

The Coulomb potential has to be evaluated only on the integration grid in the non-
frozen system.

A further speed-up of the calculations is achieved by the use of linear scaling tech-
niques152 to skip complete blocks of integration points for basis functions that are
small on these parts of the grid.
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6. Improved efficiency for FDE calculations

Figure 6.1.: Structure of the organic dye aminocoumarin C151, and of five water
molecules that are closest in the MD snapshot employed for the test
calculations. See text for details.
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With this improved implementation, for most parts of the calculation the CPU time
needed does not depend on the size of the frozen environment anymore. For large
environments, the number of grid points is constant, even if the size of the frozen
system is further increased. Therefore the time needed for one SCF cycle and the
time spent for the TDDFT calculation are also independent of the size of the frozen
system.

There are two steps that still do scale roughly linear with the size of the environment:
the construction and fitting of the environment density and the calculation of the
frozen density and its Coulomb potential in the grid points. Since the density of
the environment is frozen during the SCF, these steps are only performed once at
the beginning of the calculation. The frozen density and the corresponding Coulomb
potential are then stored for further use.

6.3. Results

To demonstrate the efficiency of this improved implementation, we have performed
test calculations on the organic dye molecule aminocoumarin C151, which is shown
in Fig. 6.1. For these tests, an arbitrary snapshot from a classical MD simulation
was employed, and up to 500 solvent water molecules have been included in the
frozen environment. For the preparation of the frozen-density, the innermost 50 water
molecules were treated as flexible fragments with the geometries they have in the
snapshot, while a uniform rigid structure (optimized in vacuo) was assumed for the
outer water molecules (cf. Ref. 76). The structure of aminocoumarin surrounded by
300 water molecules is shown in Fig 6.2
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6.3. Results

Figure 6.2.: Structure of aminocoumarin C151, surrounded by 300 solvent water
molecules. Graphics: Vmd [145].

Due to the efficient numerical integration scheme, a large speed-up of the embedding
calculations could be achieved. Figure 6.3 shows the CPU times for calculations (on
one processor of an SGI Altix 3700) of the 5 lowest excitations of aminocoumarin
C151 solvated by 0 to 500 water molecules.

The frozen-density preparation step is reduced to a very small amount of the total
CPU time, and typically takes less than 10 minutes even for the largest systems
considered here. The calculation of the frozen density and its Coulomb potential in
the grid points still shows an approximately linear increase in computer time with the
size of the frozen system, while the time needed for one SCF cycle is constant (about
8 min in the present example). The effort for the TDDFT part is approximately 55
min for all embedded calculations for this snapshot, independently of the size of the
solvent shell. The deviations between excitation energies calculated with the reduced
grid and with a full integration grid are negligible (typically not larger than ≈ 0.0001
eV).

While the CPU time only increases slightly with the size of the solvent shell, the
inclusion of additional solvent molecules has a large influence on the calculated ex-
citation energies. In Fig. 6.4, excitation energy is show as a function of the size of
the solvent shell. For the first 50 water molecules, the behavior of the excitation
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Figure 6.3.: Total CPU times for calculations of the 5 lowest excitations of
aminocoumarin C151 on one processor of an SGI Altix 3700 as a func-
tion of the number of frozen water molecules considered. The CPU
times include the frozen-density preparation, embedded SCF, and em-
bedded TDDFT steps. Additionally, a linear fit to the wall clock times
of the embedding calculations is shown.
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energies is rather irregular, while adding additional water molecules the excitation
energy converges more regularly. It can be seen that a solvent shell of approximately
300 water molecules is needed to obtain converged excitation energies.

6.4. Conclusion

Due to an optimized grid generation scheme and the combination of linear-scaling
techniques with the frozen-density embedding as well as the efficient generation of
solvent densities by a sum-of-fragments approach, the size of the explicitly modeled
environment could be extended to solvent shells including more than 1000 atoms.

Since such calculations are easily possible even on single CPUs of a modern PC,
modeling general solvent effects by an evaluation of several hundreds of snapshots
including large solvation shells becomes feasible. Explicit solvent models for systems
of this size were, up to now, restricted to (semi-)empirical models, whereas frozen-
density embedding does not require any empirical information - apart from the usual
parametrization in the density functionals.

The improved implementation described in this Chapter has been applied in a more
extensive studyCJ4 of the solvent effect on the excitation energies of aminocoumarin
C151, where the spectrum in water and in n-hexane was simulated by averaging over
400 snapshots obtained from a classical MD simulation. For each snapshot, a solvent
shells consisting of 900 atoms was employed. The solvent shift between the polar
solvent water and the nonpolar solvent n-hexane calculated in this way agreed very
well with the experimental results.
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“A flexible implementation of frozen-density embedding for use in multilevel

simulations”,
J. Comput. Chem., accepted (2007).

c© 2007 Wiley Periodicals, Inc.

Abstract

A new implementation of frozen-density embedding (FDE) in the Amsterdam Den-
sity Functional (Adf) program package is presented. FDE is based on a subsystem
formulation of density-functional theory (DFT), in which a large system is assembled
from an arbitrary number of subsystems, which are coupled by an effective embedding
potential. The new implementation allows both an optimization of all subsystems as
a linear-scaling alternative to a conventional DFT treatment, the calculation of one
active fragment in the presence of a frozen environment, and intermediate setups, in
which individual subsystems are fully optimized, partially optimized, or completely
frozen. It is shown how this flexible setup can facilitate the application of FDE in
multilevel simulations.

7.1. Introduction

Applications of quantum chemical methods for studying biological systems often re-
quire the use of multilevel methods, i.e., methods that treat different parts of the
total system using different approximations (for recent examples, see, e.g., Refs. 80,
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153–155). In particular, QM/QM methods6 (i.e., multilevel methods that apply dif-
ferent quantum mechanical (QM) methods in different regions), and QM/MM meth-
ods5,156,157 (i.e., methods that combine a QM treatment with a molecular mechanics
(MM) treatment) are widely used.

Different multilevel methods can be classified according to the way in which the
interaction between the different levels is described.9 Many methods, in particular
QM/QM methods, only employ what is usually referred to as mechanical coupling,
i.e., the coupling between the different regions is only described at the level of the
total energy.6,7,158,159 In these methods, no effect of the other region is included in
the potential, so that only an indirect effect on molecular properties due to changes
in the equilibrium structure can be described. In contrast, most standard QM/MM
methods4,5,142 include the electrostatic potential of the MM environment in the QM
calculation (electronic coupling), thus allowing a more adequate description of molec-
ular properties. An even more accurate description of the coupling can be obtained by
also considering the polarization of the MM environment due to the QM part, as it is
done in some advanced QM/MM schemes that employ polarizable force fields.160–162

However, QM/MM methods rely on a careful parametrization of the MM part, and
even though there are accurate force fields available for many classes of compounds,
these often cannot be applied for non-standard system, such as compounds containing
transition metal atoms. On the other hand, common QM/QM methods do not suffer
from these restrictions, but they are limited to describing the interaction between the
different regions at the level of mechanical coupling only.

One promising multilevel method is the frozen-density embedding (FDE) scheme
within density-functional theory first developed by Wesolowski and Warshel.8,48 It
describes the full system on a quantum mechanical basis and at the same time in-
cludes the electronic coupling between different regions. Even though the FDE scheme
relies on the use of an approximate kinetic-energy functional, it offers a treatment that
is in principle exact. It has been successfully applied in a number of studies, e.g., of
solvent effects on absorption spectra,CJ4,CJ5,76 electron spin resonance (ESR) param-
eters50 and nuclear magnetic resonance (NMR) chemical shifts.CJ6 It has further been
employed for describing induced circular dichroism in host–guest systems83 and for
free-energy calculations in protein environments.78,80

In the subsystem formulation of DFT,51 which forms the starting point for FDE,
the total system is partitioned into N subsystems, and the total electron density
ρtot(r) is represented as the sum of the electron densities of these fragments ρi(r)
(i = 1, . . . , N). Given this partitioning of the electron density, the DFT total energy
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can be expressed as a functional of the subsystem densities.

E[ρ1, . . . , ρN ] =
∫

ρtot(r)

(
N∑

i=1

vnuc
i (r)

)
dr +

1
2

∫
ρtot(r)ρtot(r′)
|r − r′|

drdr′

+ Exc[ρtot] +
N∑

i=1

Ts[ρi] + T nadd
s [ρ1, . . . , ρN ],

(7.1)

where ρtot =
∑N

i=1 ρi is the total electron density, vnuc
i is the electrostatic poten-

tial of the nuclei in subsystem i, Exc is the exchange-correlation functional, and
T nadd

s [ρ1, . . . , ρi] is the nonadditive kinetic-energy functional, which is defined as

T nadd
s [ρ1, . . . , ρN ] = Ts[ρtot]−

N∑
i=1

Ts[ρi]. (7.2)

In the above expressions, Ts[ρ] is the kinetic energy of the noninteracting reference
system, as it is defined within Kohn–Sham (KS) DFT, which is usually calculated
using the KS orbitals. However, with the given partitioning into subsystems, KS
orbitals are only available for the subsystems and not for the full system and Ts[ρtot]
can therefore not be calculated directly. For this reason, in practical applications
an approximate kinetic energy functional has to be used to evaluate T nadd

s . Most
previous applications employ either the Thomas–Fermi (TF) kinetic energy functional
or the GGA functional PW91k,58 which have been shown to yield accurate results for
weakly interacting and hydrogen-bound systems.CJ3,40 However, the applicability of
these functionals is limited to cases in which the interaction between the subsystems
is not too large, and the description of covalent bonds between subsystems is currently
not possible. The development of improved approximate kinetic-energy functionals
for the application in the FDE scheme is, therefore, an active area of research.CJ7,48

The electron densities of the individual subsystem ρi can be determined by minimizing
the above total energy functional with respect to the density of this subsystem, while
keeping the densities of the other subsystems frozen. This leads to a set of coupled
KS-like equations,[

−∇
2

2
+ vKS

eff [ρi](r) + v
(i)
emb[ρ1, . . . , ρN ](r)

]
φ

(i)
k (r) = ε

(i)
k φ

(i)
k (r) (7.3)

from which the KS orbitals {φ(i)
k } and the associated electron density ρi of the sub-

system can be obtained. In this equation, vKS
eff [ρi] is the KS effective potential of

the isolated subsystem i containing the usual terms of the nuclear potential, the
Coulomb potential of the electron, and the exchange–correlation potential. The effec-
tive embedding potential v

(i)
emb[ρ1, . . . , ρN ] contains the effect of the other subsystems
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on subsystem i and is given by

v
(i)
emb[ρ1, . . . , ρN ] =

∑
j 6=i

vnuc
j (r) +

∑
j 6=i

∫
ρj(r′)
|r − r′|

dr′

+
δExc[ρ]

δρ

∣∣∣∣
ρ=ρtot(r)

− δExc[ρ]
δρ

∣∣∣∣
ρ=ρi(r)

+
δT nadd

s [ρ1, . . . , ρN ]
δρi(r)

.

(7.4)

It contains the potential of the environment, the Coulomb potential of the electrons in
the environment, a nonadditive exchange-correlation component, and a kinetic-energy
component.

However, since the density of all the other subsystems appears in the embedding
potential for one of the subsystems, the subsystem densities have to be determined
iteratively.51 One possibility of doing this is to employ “freeze-and-thaw” cycles,52

i.e., to determine the electron density of one active subsystem, which is then frozen
while the density of the next subsystem is determined. This procedure can be re-
peated multiple times for each subsystem, until the densities of all subsystems are
converged. Alternatively, the orbitals of all subsystems can be determined simultane-
ously by constructing a block-diagonal Fock-matrix (consisting of one block for each
subsystem) in each SCF iteration, i.e., in each SCF iteration the electron densities of
all subsystems are updated.

This fully variational approach, in which the densities of all subsystems are optimized,
can be used as an alternative to conventional KS-DFT calculation for large systems.
By construction, it scales linearly with the number of subsystems. Initially, it has
been applied by Cortona and co-workers for calculations on simple ionic crystals (e.g.,
alkali halides,90 alkali-earth oxides,93 and alkali-earth sulfides92), by determining the
densities of the ions individually. While in the implementation of Cortona, these
densities are constraint to be spherical, an extended scheme has been implemented
by Mehl and co-workers. They allow deformations of the atomic densities, and studied
alkali halides98 and corundum.99

Recently, the fully variational subsystem DFT approach has been implemented by
Iannuzzi et al. in the CP2K (Refs. 100, 101) program package.53 With their imple-
mentation molecular dynamics simulations can be performed, in which the individual
molecules are treated as subsystems. In this scheme all subsystems are treated on the
same footing and the implementation is most efficient in the case of subsystems of the
same kind, e.g., the molecules in a homogeneous liquid phase. Another implementa-
tion has been presented by Shimojo et al. who also implemented this subsystem DFT
scheme in combination with a numerical integration scheme employing hierarchical
real-space grids as an efficient alternative to standard KS-DFT calculations.54 They
have applied their implementation to MD simulations of aluminum nanoparticles and
of nanoindentation of ceramics materials.102
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The presented subsystem formulation of DFT can also be employed as a method to
model the effect of an environment by only optimizing the electron density of one
active subsystem in the presence of a frozen environment density and by introducing
additional approximations in the construction of this frozen density.8,49 This strategy,
usually referred to as frozen-density embedding (FDE), has been applied in a number
of studies of solvent effects on different molecular properties, in which the solvent
was constructed as a superposition of the gas phase densities of the individual solvent
molecules.CJ4,CJ5,50,76

It is particularly suited for studying molecular properties, which are often rather local
and can be described well in terms of an active system (of which some property is
calculated) and an environment. The theory presented above has been generalized to
the calculation of a number of properties, like the calculation of electronic absorption
spectra using time-dependent DFT (TDDFT)59,61 and of NMR shieldings.CJ6 In these
cases also the property calculation is sped up significantly compared to the treatment
of the full system, because it only has to be performed for the much smaller active
subsystem (which has been influenced by the environment).

The FDE scheme as described above was implemented by Wesolowski and co-workers
both in deMon and in deMon2k163–165 as well as in the Amsterdam Density-Functional
(Adf) program package.CJ4,124,125 Both implementations are limited to two subsys-
tems, of which one is optimized while the other subsystem is kept frozen. In Adf,
this frozen density can also be composed from the density of several fragments to ob-
tain approximate environment densities. In both implementations, it is also possible
to perform fully variational subsystem DFT calculations by exchanging the role of
the frozen and the nonfrozen subsystem in freeze-and-thaw cycles, but this requires
several runs of the program and is in general limited to two subsystems.

The implementation in Adf uses an efficient numerical integration scheme that makes
it applicable also in the case of rather large (up to more than 1000 atoms) environ-
ments (see, e.g., Ref. CJ4). Furthermore, Adf supports the generalization of FDE
to TDDFT59,60 and to the calculation of NMR parametersCJ6 and can therefore be
applied for calculating a wide range of molecular properties (see, e.g., Refs. CJ5, 50,
83).

In this paper, we present a new, improved implementation of FDE in the Adf pro-
gram package, based on the previous implementation of Wesolowski and coworkers.
This new implementation is an intermediate between the two approaches described
above, i.e., the fully variational subsystem DFT treatment and the frozen-density
embedding approach using an approximate environment. In our implementation the
total system is composed of an arbitrary number of fragments that can each be treated
using different levels of accuracy, while the interaction between the fragments is de-
scribed by the embedding potential of Eq. (7.4). On the one hand, the density of
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all subsystems can be fully optimized, leading to a subsystem DFT implementation
similar to that of Hutter and coworkers.53 On the other hand, it is also possible to
optimize only the density of one active subsystem, while all other subsystems form
a frozen environment, leading to the FDE scheme previously implemented in Adf.
Furthermore, our implementation also allows all kinds of intermediate setup, e.g., a
number of subsystems is fully optimized, while for other subsystems the gas-phase
density is only polarized in one freeze-and-thaw cycle and while for the remaining
subsystems the frozen density of the isolated molecule is used. In addition, a number
of additional options can be specified for each fragment.

7.2. Implementation

Our implementation of FDE in the Adf program package makes use of the concept
of fragments, that is central to many aspects of the Adf package.125 In Adf, any
system is build from fragments, which are either atoms or larger parts of the system
under study. A lot of quantities calculated, in particular the bonding energy, are then
expressed relative to these fragments, and a number of the analysis tools of Adf, like
the energy decomposition analysis,166 rely on the decomposition of the total system
into the initial fragments.

This fragments setup has been extended by introducing frozen fragments as a new
type of fragments. Similar to the usual nonfrozen fragments, for each frozen fragment
the results of a previous Adf calculation have to be provided. In the simplest possible
setup, only one frozen fragment is used. In this case, the nonfrozen subsystem will
be build from all nonfrozen fragments, as it is normally done in Adf. The frozen
fragment will be used as frozen density, and an embedding potential according to
Eq. (7.4) will be included in the calculation of the nonfrozen subsystem. This simple
setup with only one frozen fragment is similar to the FDE implementation that was
previously available in Adf.

In addition, our new implementation also allows the use of more than one frozen
fragment. In this case, the frozen densities of all these frozen fragments are added
when the embedding potential is constructed. This allows the use of frozen densities
that are given by the sum of the densities of isolated molecules, as they are used in
studies of solvent effects,CJ4,76 in a very simple way. If the frozen environment is
composed of identical molecules and if the same geometry is used for these molecules,
the density of the isolated molecules only has to be calculated once, and this density
will be automatically rotated and translated so that it can be used for multiple frozen
fragments.

For each fragment, a number of additional options can be specified. It is possible
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to choose whether the exact density (calculated using the molecular orbital coeffi-
cients) or the fitted density, which can be calculated more efficiently, should be used
for the construction of the frozen density. Furthermore, it can be specified whether
the basis functions of a frozen fragment are included in the calculation of the non-
frozen subsystem. This way it is easily possible to perform calculations using the
so-called supermolecular basis set expansion, which is useful for benchmarking calcu-
lations.CJ3,52

Our new implementation allows the efficient treatment of very large environments. In
particular, it employs the numerical integration scheme described in Ref. CJ4, which
uses an integration grid that is centered on the nonfrozen subsystem and which does
not increase in size for sufficiently large environments. Therefore, the computational
effort for most parts of the calculation, like the self-consistent field (SCF) iterations
or property calculations does not increase if the size of the environment is increased.
Only the computational effort for the construction of the electrostatic part of the
embedding potential and of the frozen electron density, which are both only done
once at the beginning of the calculation, scales linearly with the size of the environ-
ment. Furthermore, the implementation is efficiently parallelized by applying Adf’s
parallelization techniques, in particular by distributing the grid points used for the
numerical integration among the available nodes.

One of the major new features of our implementation is the ability to relax the
electron density of individual frozen subsystems. For each frozen fragment, it is
possible to specify whether its density should be relaxed. In this case, the electron
density of this fragment will be calculated in a “freeze-and-thaw” cycle, i.e., the
fragment is thawed, while all other fragments are frozen. This will be repeated for
all frozen fragments for which the density should be relaxed. These relaxation steps
are performed several times, until all densities are converged, or until a user-specified
maximum number of freeze-and-thaw cycles has been reached. The computational
efficiency of the implementation in the case of freeze-and-thaw cycles is ensured by
constructing different numerical integration grids as described in Ref. CJ4 for each of
the fragments that are relaxed.

By relaxing the density of all frozen subsystems, fully variational subsystem DFT
calculations can be performed. However, the main advantage of our flexible setup is
the possibility to relax the density only for certain frozen subsystems. This allows
the combination of the subsystem DFT approach as an efficient alternative to conven-
tional KS-DFT calculations with the approximate frozen density treatment of large
environments.

In Figure 7.1, an schematic overview of the different types of fragments that are
possible and of the options that can be specified for each fragment is given. The
implementation contains a number of approximate kinetic-energy functionals for the
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Figure 7.1.: Schematic overview of the fragment-based implementation. The imple-
mentation support nonfrozen fragments, normal frozen fragments, and
frozen fragments for which the density is relaxed in freeze-and-thaw cy-
cles. In addition, a number of options are available for each fragment.

use in the FDE embedding potential, including the Thomas-Fermi functional and
the widely used PW91k functional. The code for the evaluation of these functionals
has been retained from the previous implementation of Wesolowski, as it was already
suitable for the new setup.

For its flexible setup, our implementation makes use of modern object-oriented pro-
gramming techniques. The code is written in Fortran90, and introduces abstract data
types (ADTs) to represent fragments and their properties (like geometry, symmetry
information, basis and fit function sets, molecular orbital coefficients, and fit coef-
ficients). The use of these ADTs is not restricted to the FDE code, but they are
now used throughout large parts of Adf. This restructured setup also facilitates the
implementation of several extensions of the FDE formalism, such as the recently de-
veloped scheme for general subsystem TDDFT calculations on an arbitrary number
of subsystems61 that is based on the TDDFT generalization of FDE.59

7.3. Example of Application

To illustrate the capabilities of our new implementation, we present some test calcula-
tions from an ongoing project,167 the description of the solvent effect on the nitrogen
NMR chemical shift for acetonitrile in water. We have performed calculations on
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Figure 7.2.: Structures of the acetonitrile–water clusters used in the test calcula-
tions. (a) acetonitrile surrounded by 15 water molecules, (b) acetoni-
trile surrounded by 25 water molecules, (c) acetonitrile surrounded by
40 water molecules. Graphics: Vmd (Ref. [145])

small clusters consisting of acetonitrile and 15, 25, and 40 water molecules, respec-
tively. The structures have been taken from an arbitrary snapshot of a classical MD
simulation. This simulation was performed with the NAMD high performance paral-
lel molecular dynamics package168 using a box of 30 Å in diameter, and the system was
described using CHARMM force field,169 with standard TIP3P water molecules.170

The water molecules included in the cluster are those nearest to the nitrogen atom of
the acetonitrile. The studied clusters are shown in Figure 7.2.

In the calculations presented in the following, the NMR shieldings have been calcu-
lated using the extension of FDE to the calculation of magnetic properties,CJ6 and
based on the tests performed in Ref. CJ6 the contributions of the induced current in
the environment have been neglected. In all calculations, the TZ2P basis set from
the Adf basis set library124 has been used for acetonitrile as well as for water, and
the exchange-correlation functional BP86, consisting of the exchange functional by
Becke21 and the correlation functional by Perdew,23 has been employed throughout.
The kinetic-energy functional PW91k58 has been used to approximate the nonadditive
kinetic-energy component of the FDE embedding potential.

In the FDE embedding calculations, the nonfrozen subsystem is formed by the ace-
tonitrile molecule and the two closest water molecules. These are included in the
nonfrozen subsystem in order to describe the hydrogen bonds to the nitrogen atom
of acetonitrile accurately. The remaining water molecules are included in the calcu-
lation as frozen fragments, for which the density of the isolated molecule is used as
initial frozen density. Since all solvent water molecules share the same geometry, this
initial density only has to be calculated once and can then be used for all frozen water
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molecules.

The solvent shifts of the nitrogen NMR shielding calculated for the different clusters
are given in Table 7.1. In all cases, the solvent shifts, i.e., the shift relative to the
isolated acetonitrile molecule, are given.

For the cluster of acetonitrile and 15 water molecules, already the FDE calculation
using the simplest sum-of-fragments (SumFrag) approximation for the frozen density,
in which the frozen densities of the isolated molecules are used for all frozen fragments,
leads to a solvent shift of 12.6 ppm. This is rather accurate compared to 14.0 ppm
calculated in the conventional, supermolecular KS-DFT calculation. To improve this
first approximation of the frozen density, our new implementation makes it possible
to relax the electron densities of selected frozen fragments. In Table 7.1, the effect of
relaxing the densities of some of the solvent water molecules is shown. In all cases, the
densities were only relaxed in one freeze-in-thaw cycle, since we found that additional
freeze-and-thaw cycles only have a minor effect on the calculated NMR shielding.

For the closest three water molecules, relaxing the density leads to an increase in the
solvent shift of in total 1.2 ppm. For the water molecules that are further away, this
effect is smaller. Relaxing the densities of five additional water molecules leads to
an increase of only 0.9 ppm, and of the next five water molecules of only 0.7 ppm,
i.e., the effect of relaxation decreases for water molecules that are further away from
the nitrogen atom. However, as can be seen from Figure 7.2 also some of the water
molecules at a larger distance from the nitrogen atom can be rather close to other
parts of the acetonitrile molecule, so that it is not surprising that the relaxation of
their density has an effect on the solvent shift that is rather large.

If the densities of all 13 frozen water molecules are relaxed, a solvent shift of 15.3 ppm
is obtained, which is 1.3 ppm higher than the reference value from the supermolecular
calculation. This remaining difference is due to the approximations introduced by
the subsystem DFT treatment, in particular inaccuracies of the approximate kinetic-
energy functional, differences in the basis set expansion,52 and in the case of the
calculation of NMR parameters also the neglect of the current dependence of the
nonadditive kinetic energy and of the induced current in the frozen fragments.CJ6 By
including more water molecules in the nonfrozen subsystem this error can be reduced,
but this will also lead to an increase of the computational cost. The fact that the
solvent shift calculated using the simple SumFrag approximation is nearly as close to
the supermolecular reference value as in the case where all frozen densities are relaxed
is due to an error cancellation between the error introduced by the approximate frozen
density and the errors of the FDE treatment mentioned above.

When considering the large clusters containing 25 and 40 water molecules, respec-
tively, the same trends as for the small cluster can be observed. While relaxing the
densities of the water molecules close to the nitrogen atom has a larger effect, the ef-
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fect of relaxing ten additional water molecules is only +0.5 ppm and −0.1 ppm in the
clusters containing 25 and 40 water molecules, respectively. While for the relaxation
of the water molecules closer to the acetonitrile, the effect of relaxation is roughly the
same for all cluster sizes, for the relaxation of these ten water molecules this is not
the case. This is because in the cluster containing 25 water molecules they are only
polarized by the inner water molecules, while in the large cluster containing 40 water
molecules, another layer of water molecules has been added that also polarizes the
ten water molecules in question. The effect of this outer layer is largest for the water
molecules closest to it, i.e., further away from the acetonitrile, while its effect on the
inner water molecules is rather small. In the cluster containing 40 water molecules,
the effect of relaxing the densities of the additional outer layer of 25 water molecules
is negligible.

For both clusters, the difference between the supermolecular reference value and the
solvent shift calculated when the densities of all frozen water molecules are relaxed
are approximately 2 ppm. It should be noted that this error is of similar size as
other errors that appear in the conventional KS-DFT calculation of NMR shieldings,
such as basis set effects and inaccuracies in the exchange-correlation functional. As
mentioned above, in the case that fewer frozen water molecules are relaxed, the error
introduced by the FDE treatment, in particular the use of an approximate kinetic-
energy functional, are (partly) canceled by the error caused by the use of a more
approximate frozen density.

In Table 7.2, the wall clock time required for the calculations discussed above on 8
dual processor nodes of an Intel Xeon 3.4 GHz cluster are given. These timings show
for the three clusters a slight increase in the required computer time when a larger
number of frozen fragments are relaxed. This is due to the additional freeze-and-
thaw cycles needed in this case. Going to a larger cluster, the required time increases
approximately linear with the number of water molecules included, which is due to
the increased size of the numerical integration grid as well as the additional effort for
constructing the larger frozen density. Because of this linear scaling, the FDE cal-
culations are significantly more efficient compared to the supermolecular calculation
of the NMR shielding, especially for larger clusters. A large part of this difference is
caused by the fact that in the FDE case, the calculation of the NMR shielding can
be performed for the much smaller nonfrozen system only, while including the effect
of the frozen environment in the FDE embedding potential.

The test calculation presented above demonstrate how the approximate frozen den-
sity can be improved by relaxing the densities of frozen fragments. Especially for
solvent molecules close to the nonfrozen subsystem, this will be important to obtain
accurate results.CJ4,CJ5 However, for solvent molecules that are further away from the
nonfrozen subsystem the effect of relaxation is rather small. Therefore, it is possible
to restrict the number of frozen fragments that are relaxed and to avoid the increased
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Table 7.2.: Wall clock time (in minutes) required for the calculation of the nitrogen
NMR shielding in acetonitrile–water clusters with 15, 25, and 40 water
molecules, respectively, on 8 dual processor nodes of an Intel Xeon 3.4
GHz cluster, using different approximations for the frozen density. See
text for details.

15 H2O 25 H2O 40 H2O
isolated 0.4 0.4 0.4
SumFrag 1.7 2.1 2.9
1 H2O relaxed 2.6 3.1 4.3
2 H2O relaxed 2.8 3.6 5.0
3 H2O relaxed 3.0 3.8 5.0
8 H2O relaxed 3.6 5.2 6.2
13 H2O relaxed 4.0 5.3 7.2
23 H2O relaxed 7.1 9.4
38 H2O relaxed 12.8
supermolecule 8.5 29.8 103.5

computational effort caused by relaxing the densities of all frozen fragments. This
will be particularly useful in practical applications requiring calculations for hundreds
of snapshots and the inclusion of a large number of solvent molecules. Based on our
tests, we chose to relax the densities of 13 solvent water molecules, in addition to
the two water molecules that are included in the nonfrozen subsystem. However,
the accurate description of the nitrogen NMR chemical shift of acetonitrile in water
will require calculations on a large number for snapshots from MD simulations. This
requires more thorough tests than those presented here, and a detailed study will be
presented elsewhere.167

The solvent shifts of the nitrogen NMR shielding calculated in FDE calculations
using this setup (i.e., two water molecules are nonfrozen, and the densities of 13
additional water molecules are relaxed) including up to 250 water molecules are shown
in Figure 7.3. It can be seen that up to approximately 100 water molecules, the solvent
shift shows a rather irregular behavior, while adding further water molecules leads
to a smooth increase of the solvent shift. The observation that the water molecules
50 to 75 lead to a larger change of the solvent shifts than water molecules 25 to
50 is due to the geometries of the investigated clusters. Since the water molecules
are chosen according to their distance from the nitrogen atom of the acetonitrile
molecule, the water molecules 50 to 75 include several water molecules close to methyl
group of acetonitrile, which influence its electronic structure significantly. Only after
approximately 100 solvent water molecules have been included, the acetonitrile is
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7. A flexible implementation of FDE for use in multilevel simulations

Figure 7.3.: Solvent shift on the nitrogen NMR shielding of acetonitrile in water
(solid line), calculated including solvent shells of different size. The re-
sults of the FDE calculations (squares/diamonds) and for small solvent
shells of supermolecule calculations (triangles) are given. In addition,
also the wall clock time (dashed line) required on 8 dual processor nodes
of an Intel Xeon 3.4 GHz cluster are shown. See text for details.
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completely surrounded by solvent molecules and the effect of the addition of further
solvent molecules becomes more regular.

As can be seen from Figure 7.3, approximately 200 solvent water molecules have to
be included to obtain a solvent shift that is converged with respect to the size of
the solvent shell. The required wall clock times that are included in Figure 7.3 show
that this is easily possible in the FDE calculations. While for solvent shells up to 50
atoms the computer time increases approximately linearly, for larger solvent shells the
time required for the FDE calculation is almost constant. In contrast, due to their
unfavorable scaling, the conventional supermolecular KS-DFT calculations become
infeasible already for rather small solvent shells.

7.4. Conclusions

We have presented a new implementation of the FDE scheme, which allows both
a frozen density treatment using an approximate environment density as well as a
subsystem DFT treatment, in which the densities of all subsystems are determined.
In addition, intermediate treatments are possible, in which only the densities of a few
subsystems are relaxed, in the presence of a larger frozen environment.

This flexible scheme offers several new possibilities for the multilevel description of
environment effects. The partial relaxation of the electron density of the environment
makes it possible to include not only the electronic coupling of the environment with
the nonfrozen subsystem, but to include the polarization of the environment due to
the nonfrozen subsystem as well. This results in a very accurate description of the
coupling between different regions described at the QM level, in contrast to other
popular QM/QM methods6,7,158,159 that only include a mechanical coupling between
the different regions.

As we show for the NMR chemical shift of acetonitrile in water, this flexible FDE
scheme can be employed to improve the FDE treatment using an approximate envi-
ronment density. By relaxing the electron densities of some solvent molecules that
are close to the subsystem of interest, it is possible to adjust the accuracy of the de-
scription of the environment to the degree needed. At the same time, the total time
of the computation only increases moderately. In particular, the time needed for the
calculation of the NMR chemical shift does not increase, since it can be performed
for the nonfrozen subsystem only.

Because of the numerical integration scheme used, our FDE implementation is very
efficient, in particular for large frozen environments. It allows the treatment of envi-
ronments consisting of hundreds of atoms, which makes it an attractive method for
modeling large systems such as solvent environments or biological systems.
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7. A flexible implementation of FDE for use in multilevel simulations

The FDE implementation described here is included in the 2007 release of the Adf
program package. The FDE scheme can be combined with the calculation of several
molecular properties that are available in Adf. Currently, properties that depend
directly on the electron density (such as dipole and quadrupole moments), electronic
excitation energies and polarizabilities can be calculated, as well as NMR shieldings
and ESR hyperfine coupling constants. The extension to other properties, such as
energy gradients, vibrational frequencies, and NMR spin–spin coupling constants is
currently in progress. The FDE scheme can be further be combined with additional,
more approximate descriptions of environments that are present in Adf, like contin-
uum solvation models or different QM/MM schemes.

The user’s guide describing in details all the features and options in detail can be found
in Appendix A of this thesis. A detailed documentation of the technical aspects of
the implementation can be found in Appendix B

Our flexible setup will make several extensions of our implementation possible. An
extension of the implementation to the calculation of excited states, that uses the re-
cently proposed protocol for subsystem-TDDFT calculations with an arbitrary num-
ber of subsystems,61 is currently being integrated into the new FDE implementation
and will be included in a future release. First test applications of this methods have
already shown that it will be very useful for the description of excitonic couplings
between different subsystem.

In addition, we are working on an extension to molecular dynamics and on coupling
our implementation to ab initio codes to allow the treatment of individual subsystems
using wave function based methods, similar to the ab initio-in-DFT embedding scheme
by Carter and co-workers.63,64,67
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8. Calculation of induced dipole
moments in CO2 · · · X (X = He,
Ne, Ar, Kr, Xe, Hg) van-der-Waals
complexes

adapted from

Christoph R. Jacob, Tomasz A. Wesolowski, and Lucas Visscher,
“Orbital-free embedding applied to the calculation of induced dipole moments in

CO2 · · · X (X = He, Ne, Ar, Kr, Xe, Hg) van-der-Waals complexes”,
J. Chem. Phys. 123 (2005), 174104.

c© 2005 American Institute of Physics

Abstract

The frozen-density embedding scheme within density-functional theory is applied to
the calculation of induced dipole moments of the van der Waals complexes CO2 · · ·X
(X = He, Ne, Ar, Kr, Xe, Hg). The accuracy of the embedding scheme is inves-
tigated by comparing to the results of supermolecule Kohn-Sham density-functional
theory calculations. The influence of the basis set and the consequences of using or-
bital dependent approximations to the exchange-correlation potential in embedding
calculations are examined. It is found that in supermolecular Kohn-Sham density-
functional calculations, different common approximations to the exchange-correlation
potential are not able to describe the induced dipole moments correctly and the rea-
sons for this failure are analyzed. It is shown that the orbital-free embedding scheme
is a useful tool for applying different approximations to the exchange-correlation po-
tential in different subsystems and that a physically guided choice of approximations
for the different subsystems improves the calculated dipole moments significantly.
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8. Induced dipole moments in CO2 · · · X complexes

8.1. Introduction

The frozen-density embedding (FDE) scheme within density-functional theory (DFT)
by Wesolowski and Warshel8,48 is a promising approach to the efficient calculation of
large scale molecular systems because it allows to split up the calculation using a
“divide-and-conquer” strategy. However, even though the FDE scheme has been ap-
plied successfully to a number of different systems (see, e.g., Refs. 40, 76, 77), there
remain a number of open questions related to the quality of the approximations to
the nonadditive kinetic-energy functional. For the development of improved approxi-
mations it is of great importance to identify and analyze the possible problems of the
currently used approximations.

The accuracy of the FDE scheme can be assesed be by comparing the results of FDE
calculations in which the electron densities of both subsystems are fully relaxed in
freeze-and-thaw cycles as explained in Chapter 3 to results obtained from supermolec-
ular Kohn–Sham (KS) DFT calculations. In this chapter, the accuracy of the FDE
scheme is invesigated for weakly interacting CO2 · · ·X (X = He, Ne, Ar, Kr, Xe, Hg)
van der Waals complexes.

We note that in the FDE scheme an approximated nonadditive kinetic-energy func-
tional is used for two different purposes: First, its functional derivative is used in the
construction of the embedding potential [Eqs. (3.16) and (3.13)] which is used to cal-
culate the electron density and second, the functional itself is needed to calculate the
total energy [Eqs. (3.2) and (3.3)]. Since the induced dipole moments depend directly
on the density we only need to consider the functional derivative of the approximate
nonadditive kinetic-energy functional and not the nonadditive kinetic-energy func-
tional itself. This reduces the chances of encountering error cancellations which could
mask possible problems with the method.

Furthermore, the ability to apply different approximations for the exchange-correla-
tion potential for different subsystems in a straightforward way is another application
of the FDE scheme not exploited previously which will be examined in this chap-
ter. This is particularly useful since the approximate exchange-correlation potentials
which are applied in practical calculations do not lead to exact results. In this chapter,
we show that a physically guided choice of approximations to the exchange-correlation
potential for different subsystems can lead to results which are superior to those ob-
tained from using a single KS-DFT calculation. This approach follows ideas similar to
those of Carter and co-workers,62,67 in which instead of selecting the most appropriate
approximation to the exchange-correlation potential for a given subsystem, as we do
in the current work, they replaced the DFT description for one of the subsystems by
a wave-function-based ab initio one.

The induced dipole moments in the weakly interacting CO2 · · ·X (X = He, Ne, Ar,
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8.1. Introduction

Kr, Xe, Hg) van der Waals complexes are ideally suited to investigate the performance
of the FDE scheme and the quality of the approximation to the nonadditive kinetic-
energy functional in detail. The interaction in these van der Waals complexes is weak
and the overlap between the densities of the CO2 molecule and the rare-gas or mercury
atom is small. The FDE scheme has been applied to other van der Waals complexes
before71–73 and the approximated nonadditive kinetic-energy functional used there
has been shown to be the most accurate, both for the energy and for the potential,
among a large family of gradient-dependent approximations. In particular, it gives
accurate interaction energies for weakly overlapping densities.

The induced dipole moments in these complexes should be mainly determined by the
electrostatic interaction and the Pauli repulsion between the CO2 molecule and the
rare-gas or mercury atom. KS-DFT and the FDE scheme are believed to be able to
describe both effects accurately. Dispersion interactions, which cannot be described
correctly within KS-DFT, would be important for the calculation of interaction en-
ergies and of geometries, but they should only have a small influence on the induced
dipole moment. However, the accurate calculation of the induced dipole moments in
the van der Waals complexes investigated here is still a challenging task. The calcu-
lated dipole moments will be very sensitive to small changes in the electron density
and can, therefore, be used as a good measure for the quality of the electron density
which results from FDE calculations.

van der Waals complexes of CO2 and a rare-gas atom have been subject to a number of
experimental and theoretical studies because they are a prototype system for the weak
interaction of nonpolar constituents. For all CO2 – rare-gas complexes, infrared171,172

and microwave spectra173–175 have been measured. All experiments have found that
the complexes have a T-shaped geometry. Except for CO2 · · ·He, the dipole moments
of the complexes have been determined from measurements of the Stark effect on the
rotational transitions. In our study, we also include the CO2 · · ·Hg complex, which
can be viewed as an analog of the CO2 – rare-gas complexes. This complex has
also been investigated experimentally by microwave spectroscopy where a T-shaped
structure has been found from the rotational spectrum and the dipole moment has
been determined from the Stark effect splitting.176

A number of theoretical works deal with CO2–rare-gas complexes. For CO2 · · ·He,
CO2 · · ·Ne, and CO2 · · ·Ar, the potential energy surfaces have been calculated using
Møller-Plesset perturbation theory.177–180 All these calculations confirm that the T-
shaped structure is the global minimum on the potential-energy surface and that
the linear structure is a local minimum at significantly higher energy. Maroulis
and Haskopoulos181 have studied the induced dipole moments and polarizabilities
in the CO2 – rare-gas complexes using second order Møller-Plesset perturbation the-
ory (MP2). For the He and Ne complexes, they also performed CCSD(T) calculations,
which are in good agreement with the MP2 results.
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8. Induced dipole moments in CO2 · · · X complexes

This Chapter is organized as follows. After a brief outline of the methodology and
the computational details in Sec. 8.2, the results of the calculations are discussed in
Sec. 8.3: In Sec. 8.3.1, a simple electrostatic interaction model for the description of
the induced dipole moments in the considered complexes is presented. In Sec. 8.3.2,
we present the results of supermolecular KS-DFT calculations of CO2 · · ·X. These
calculations show that different exchange-correlation potentials fail to reproduce the
experimentally observed induced dipole moments and we investigate the reasons for
this failure. In Sec. 8.3.3, we investigate the performance of the FDE scheme by
comparing the results of embedding calculations to the supermolecular KS-DFT re-
sults and it is demonstrated how the FDE scheme can be used to get around the
problems we have found when comparing the supermolecular KS-DFT calculations to
experiment in Sec. 8.3.4. Concluding remarks are collected in Sec. 8.4.

8.2. Methodology and computational details

All calculations were performed using the Amsterdam Density-Functional (Adf) pack-
age.124,125

In all FDE calculations, the electron densities of both subsystems have been fully
relaxed, i.e., the set of the two coupled KSCED equations,[

−∇
2

2
+ vKS

eff [r; ρI] + vemb
eff [r; ρI, ρII]

]
φ

(I)
i (r) = ε

(I)
i φ

(I)
i (r), i = 1, . . . , NI,

(8.1)

[
−∇

2

2
+ vKS

eff [r; ρII] + vemb
eff [r; ρII, ρI]

]
φ

(II)
i (r) = ε

(II)
i φ

(II)
i (r), i = 1, . . . , NII,

(8.2)

has been solved iteratively. In these equations, vKS
eff [r; ρI] and vKS

eff [r; ρII] are the KS
potentials of the isolated subsystem I or II, respectively, and vemb

eff is the KSCED
effective embedding potential as defined in Eq. (3.16). As explained in Chapter 3 this
procedure is equivalent to minimizing the total energy bifunctional given in Eq. (3.2).

The kinetic-energy component of the effective embedding potential has been approxi-
mated using the PW91k kinetic-energy functional,58 because this functional has been
found be the most accurate among different GGA functionals for a test set of weakly
interacting systems.40

In the supermolecular KS-DFT calculations two different approximations were em-
ployed for the exchange-correlation potential: The Perdew-Wang 91 functional,
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8.2. Methodology and computational details

dubbed PW91,22,130 which is a typical example of the generalized gradient approxima-
tion (GGA) and the “statistical averaging of (model) orbital potentials”
(SAOP),26,127,128 which is a more advanced approximation to the KS potential and
shows the correct Coulombic decay of the potential at long distances.

In practical applications of the FDE scheme, not only the nonadditive kinetic-energy
component of the effective embedding potential has to be approximated, but also
the exchange-correlation potential, which enters these equations at different points:
First, it appears as part of the KS potentials vKS

eff of subsystems I and II. Since the
electron densities of the two subsystems are determined separately, it is possible to use
different approximations for the different subsystems. Furthermore, it is also possible
to use orbital-dependent approximations to the exchange-correlation potential of the
isolated subsystems I and II. The benefits of these possibilities, not investigated in
detail so far, will be demonstrated in this work. Second, an approximation to the
exchange-correlation potential is also needed in the effective embedding potential,
where the nonadditive exchange-correlation component of Eq. (3.17) appears. For
this component it is in general not possible to use orbital-dependent approximations
because there is no representation of ρtot(r) in the canonical KS orbitals available.

In the calculations presented here, different combinations of the two approximations
PW91 and SAOP were used in these calculations. First, calculations were performed
using PW91 both in the KS potential of the isolated subsystems and in the effective
embedding potential. These calculations will be referred to as FDE/PW91. Second,
the SAOP potential was used to approximate the exchange-correlation potential in
the KS potentials of the isolated subsystems [vKS

eff [r; ρI,II ] in Eqs. (8.1) and (8.2)].
Because the SAOP potential is orbital dependent it does not provide an expression
for the nonadditive exchange-correlation potential and therefore, cannot be used in
the effective embedding potential. We chose to use the PW91 functional for the
nonadditive exchange-correlation contributions to the effective embedding potential
[vemb

eff in Eqs. (8.1) and (8.2)] in these calculations, which introduces an inconsistency
compared to the supermolecular KS-DFT calculations using SAOP. This inconsis-
tency relative to supermolecular calculations will be further discussed in Sec. 8.3.3.
Calculations using this combination of approximations to the exchange-correlation
potential will be labeled FDE/SAOP.

Finally, we will present FDE calculations where different approximations to the
exchange-correlation potential in the KS potential of the isolated subsystems I and
II were chosen based on the physical knowledge about the investigated system and
the available approximations. In these calculations, which will be referred to as
FDE/combi, PW91 was used to approximate the exchange-correlation potential in
the KS potential of the isolated subsystem I V KS

eff [r; ρI] in Eq. (8.1) and SAOP was
used in the KS potential of the isolated subsystem II [V KS

eff [r; ρII] in Eq. (8.2)]. For the
complexes investigated in this work fragment I was chosen to be the CO2 molecule
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8. Induced dipole moments in CO2 · · · X complexes

and fragment II was chosen to be the attached rare-gas or mercury atom. For the
nonadditive exchange-correlation contribution to the effective embedding potential
[V emb

eff in Eqs. (8.1) and (8.2)], PW91 was used.

To include the effects of relativity for the complexes containing the heavier elements
Xe or Hg, the scalar zeroth order regular approximation (ZORA)182–184 was used.
The calculations of dipole polarizabilities were done using TDDFT as implemented
in Adf.149,185 For numerical integration we used a grid that was denser than the
default settings of Adf to get the dipole moments with the required accuracy. In the
FDE calculations, the same integration grid as in the corresponding supermolecular
KS-DFT calculations was used. The use of a grid which is larger than the one in
KS-DFT calculations for the isolated subsystems is needed because of the embedding
potential extends over the environment.

By default, the Adf package uses the fitted electron density for the evaluation of the
exchange-correlation potential. We found that for the evaluation of the nonadditive
kinetic-energy and exchange-correlation contributions to the embedding potential in
weakly interacting systems this fitted density is not accurate enough, especially when
gradient-dependent functionals are used. This can be related to the differences be-
tween the fitted and the exact electron density in the outer regions, that are usually
not important for the evaluation of the exchange-correlation potential, but that are
significant for the contributions of the nonadditive kinetic energy to the embedding
potential in FDE calculations. Therefore, we modified the Adf implementation of the
FDE scheme164 to use the exact electron density of both subsystems (ρI and ρII) in the
evaluation of the nonadditive kinetic-energy and exchange-correlation contributions
to the embedding potential.

For the accurate calculation of the induced dipole moments in the CO2 · · ·X com-
plexes, large basis sets with a sufficient number of diffuse functions are needed.181

We used a series of basis sets of increasing size to examine the influence of the basis
set on the calculated dipole moments. First, we used the quadruple-ζ basis set with
four sets of polarization functions (QZ4P) from the Adf basis set library.124 In addi-
tion, we used the even-tempered ET-pVQZ basis set,186 which was augmented with
field-induced polarization functions (aug-ET-pVQZ).187,188 This augmented basis set
is smaller than the QZ4P basis set, but it was shown to be of similar quality for the
calculation of various molecular properties.186 Finally, we used the largest basis set
available in the Adf basis set library, the even-tempered ET-QZ3P-3DIFFUSE basis
set, which is of quadruple-ζ quality and contains three sets of diffuse functions. Unfor-
tunately, the large even-tempered basis sets ET-pVQZ and ET-QZ3P-3DIFFUSE are
only available for the elements up to Kr. Therefore, we have extended the standard
QZ4P basis sets for Xe and Hg with additional diffuse functions, using the scheme
described in Refs. 187 and 188, yielding the basis set labeled aug-QZ4P in this work.
The convergence of the induced dipole moments with the size of the basis set will be
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Table 8.1.: Intermolecular distances R used in this work (in a.u.). R denotes the
distance between the carbon atom and the rare-gas or mercury atom in
the T-shaped geometry of CO2 · · ·X.

X R
He 6.019
Ne 6.206
Ar 6.605
Kr 6.846
Xe 7.332
Hg 6.983

discussed in the following section.

All calculations were performed for the same T-shaped geometries, which were used
in Ref. 181, at which the C-O bond length in the CO2 molecule is kept fixed at the
experimental value of 2.192 a.u. (Ref. 189). The C–Rg (Rg= He, Ne, Ar, Kr, Xe)
distances obtained from MP2 calculations taken from Ref. 181 were used. These
values are in excellent agreement with the experimental geometries. For CO2 · · ·Hg,
the experimental C–Hg distance176 was used. Table 8.1 collects the used distances.

8.3. Results and discussion

8.3.1. Simple electrostatic interaction model

In a simple electrostatic model, the interaction of the CO2 molecule and the attached
rare-gas or mercury atom can be described in the following picture: The electric field
of the CO2 molecule, which can be approximated by the electric field of a quadrupole,
distorts the charge distribution around the rare-gas or mercury atom and induces a
dipole moment which is given by

µind =
3 Qxx αX

R4
, (8.3)

where Qxx is the xx component of the traceless quadrupole moment of CO2 (the
z axis being along the CO2 molecule), αX is the static dipole polarizability of the
attached atom X, and R is the C–X distance.

In Table 8.2, the induced dipole moments calculated using the model of Eq. (8.3) are
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8. Induced dipole moments in CO2 · · · X complexes

Table 8.2.: Induced dipole moments (in debye) of CO2 · · ·X complexes, calculated
from the simple electrostatic interaction model as described in the text.

He Ne Ar Kr Xe Hg
electrostatic model 0.0128 0.0219 0.0708 0.0928 0.1148 0.1734
Experimenta 0.0244 0.0679 0.0829 0.1029 0.1070

aReferences 175 and 176.

given. The experimental values for the polarizabilities of the rare-gas atoms190 and
mercury,191 which are also given in Table 8.4, were used. For the quadrupole moment
of CO2 the experimental value of Qxx = 1.595 a.u. (Ref. 192) was used.

The results obtained within this simple model already account for the largest part of
the experimentally observed induced dipole moments. It is — if experimental values
are used as an input — able to reproduce the increase in the induced dipole moments
along this series of complexes qualitatively and is able to give numerical values which
are in reasonable agreement with the experimental dipole moments.

This simple electrostatic interaction model neglects the effects of higher multipole
moments of the CO2 molecule and of the finite size of the attached atom, which
are expected to become more important if the size of the attached atom increases.
The electrostatic interaction model could be further refined to take these effects into
account, but it would still neglect the effects of Pauli repulsion and orbital interactions,
which can only be described using quantum chemical methods.

Comparing the results which are obtained from the electrostatic interaction model
with the experimental induced dipole moments shows that the effects which are ne-
glected in the simple model become more important when going to the heavier at-
tached atoms. Especially for the mercury complex the electrostatic interaction model
overestimates the induced dipole moment significantly.

Still, the fact that the main part of the induced dipole moment originates from the in-
teraction of the quadrupole moment of the CO2 molecule with the polarizable electron
cloud of the attached atom shows that it is important to ensure that the methods
used in more advanced calculations are capable of describing the CO2 quadrupole
moment and the polarizability of the attached atom accurately.
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8.3.2. Supermolecular KS-DFT calculations

To provide a reference for the discussion of the results of the FDE calculations, we
first performed supermolecular KS-DFT calculations. These calculations will also be
used to investigate the influence of the basis set and the approximated exchange-
correlation potential on the induced dipole moments. Table 8.3 shows the results
for supermolecular KS-DFT calculations using PW91 and different basis sets. They
are compared to the experimentally observed dipole moments and the results of the
CCSD(T) and MP2 calculations.181 The calculated dipole moments are — unlike
the values given by Maroulis and Haskopoulos in Ref. 181 — not corrected for basis
set superposition errors (BSSE) to make comparisons with the results of the FDE
calculations in the next sections easier. Nevertheless, we calculated the effect of the
BSSE on the dipole moments using the counterpoise correction method and found
these corrections to be small in all cases. In the calculations using the largest basis
set the BSSE correction is smaller than 0.001 D for all complexes.

The results with different basis sets show that inclusion of diffuse functions is of
great importance for the calculation of the induced dipole moments. The inclusion of
diffuse functions when going from ET-pVQZ to aug-ET-pVQZ and when going from
QZ4P to ET-QZ3P-3DIFFUSE/aug-QZ4P results in a large increase in the induced
dipole moments. For the basis sets which do already include diffuse functions, the
difference in the induced dipole moments when going from the aug-ET-pVQZ basis
set to the largest basis set used (ET-QZ3P-3DIFFUSE) is significantly smaller. The
negligibly small BSSE correction gives another indication that the results obtained
with the largest basis set are close to the basis set limit. All calculations presented
in the following section use these large basis sets, e.g., ET-QZ3P-3DIFFUSE for the
elements up to Kr and aug-QZ4P for Xe and Hg.

Comparing the results of the PW91 calculations to the experimental values, one no-
tices that, except for CO2 · · ·He, the induced dipole moments are overestimated in all
cases. For CO2 · · ·He, where no experimental value is available, the calculated dipole
moment is slightly below the CCSD(T) calculation by Maroulis et al..

In the previous section, it was pointed out that to be able to describe the the induced
dipole moments correctly, it is important to describe the polarizability of the attached
atom accurately. GGA potentials like PW91 are known to overestimate polarizabili-
ties26 because they do not give the correct asymptotic behavior of the KS potential.136

Therefore, we also use the SAOP potential, which does have the correct asymptotic
behavior and which is known to perform well in the calculation of polarizabilities.26

In Table 8.4, the calculated induced dipole moments and static dipole polarizabilities
calculated using PW91 and SAOP are given together with the experimental values.

We notice that PW91 overestimates indeed the polarizabilities of the rare-gases and
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8. Induced dipole moments in CO2 · · · X complexes

Table 8.5.: Quadrupole moment Qxx (in atomic units) of CO2 calculated using
KS-DFT with the ET-QZ3P-3DIFFUSE basis set.

Qxx

PW91 1.55
SAOP 1.85
Experimenta 1.595

aReference 192.

mercury while the SAOP potential gives polarizabilities which are in good agreement
with the experiment. But even though SAOP gives better polarizabilities, for the
induced dipole moments the agreement with experiment calculated is much worse
than for PW91. These surprising findings are explained by looking at quadrupole
moments of CO2 calculated with KS-DFT using PW91 and SAOP, which are given in
Table 8.5. While the quadrupole moment calculated using PW91 is in good agreement
with the experimental value, the SAOP potential overestimates the CO2 quadrupole
moment by 15%.

Summarizing the results of the supermolecular KS-DFT calculations, we can conclude
that both PW91 and SAOP fail to reproduce the induced dipole moments of the in-
vestigated CO2 · · · X complexes, but for quite different reasons. PW91 overestimates
the dipole polarizability of the rare-gases, a consequence of the wrong asymptotic be-
havior of GGA potentials. On the other hand SAOP does describe the polarizabilities
of the rare-gases correctly, due to its correct asymptotic behavior, but it gives a poor
description of the quadrupole moment of CO2.

8.3.3. Frozen-density embedding calculations

To assess the performance of the FDE scheme we compared the induced dipole mo-
ments calculated using this scheme to the results of the supermolecular KS-DFT
calculations presented in the previous section. This comparison was done for the
two approximations to the exchange-correlation potential considered in the previous
section: PW91 and SAOP.

We applied the FDE scheme in freeze-and-thaw iterations as described above. In all
the calculations done here the dipole moment was converged to an accuracy of 0.0001
D after only two or three freeze-and-thaw iterations. The dipole moments calculated
for the two subsystems were added to yield the total induced dipole moment.

Following the formalism presented in Chapter 3, applying the FDE scheme in freeze-
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8.3. Results and discussion

and-thaw iterations should result in the same electron density and thus the same total
dipole moment as the supermolecular KS-DFT calculation. However, there are some
approximations involved, which can lead to differences between the FDE results and
the results of supermolecular KS-DFT calculations.

First, in all FDE calculation, the approximated nonadditive kinetic-energy functional
is not exact and its functional derivative, which is used in the construction of the em-
bedding potential, is not exact either. Second, in calculations using orbital-dependent
approximations to the exchange-correlation potential like SAOP, one furthermore en-
counters the complication that the supermolecular exchange-correlation potential is
constructed in terms of a set of supermolecular orbitals. This potential cannot be
reconstructed in a FDE calculation since only the subsystem orbitals are available.
This makes it necessary to choose a non-orbital-dependent form for the nonadditive
exchange-correlation contribution, introducing an additional inconsistency relative to
the supermolecular calculation. This is not the case with a GGA potential like PW91,
because then the same approximation can be used for the exchange-correlation po-
tential in the subsystems and for the nonadditive exchange-correlation contribution
to the embedding potential. Therefore, the treatment of the exchange-correlation
potential in KS-DFT and FDE calculations is consistent.

With regard to possible basis set errors, there are two possibilities for the choice of the
basis functions which are used to expand the densities of the two subsystems.40 The
most obvious choice is to use only basis functions that are centered on the atoms in
the considered subsystem to expand the corresponding density. This choice is in line
with the “divide-and-conquer” strategy mentioned earlier since the size of the KS-
Fock matrix is reduced in the separate calculations of ρI(r) and ρII(r). Calculations
using this monomolecular basis set expansion will be labeled FDE(m) following the
convention of Ref. 40. However, this choice of the basis functions introduces an
additional source of differences to the the supermolecular calculation. In the expansion
of the total electron density the products of basis functions centered at atoms in
different subsystems are neglected. Furthermore, since the total number of electrons
in both subsystems is fixed, a charge transfer between the two subsystems is not
possible.

These problems are both removed in the FDE(s) scheme which uses the full super-
molecular basis set to expand the density of both subsystems. In this scheme, the
advantage of the computational efficiency is lost. However, it is interesting from a the-
oretical point of view because the only sources of differences between FDE(s) and su-
permolecular KS-DFT calculations are the approximation to the nonadditive kinetic-
energy functional which is used when constructing the embedding potential and, in
SAOP calculations, the approximations in the nonadditive exchange-correlation com-
ponent of the embedding potential. It was, however, noticed in earlier works40,57 that
in the FDE(s) scheme the results are more sensitive to problems in the kinetic-energy
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8. Induced dipole moments in CO2 · · · X complexes

Table 8.6.: Induced dipole moments (in debye) in CO2 · · ·X complexes calculated
using the FDE scheme with different approximations for the exchange-
correlation potential (FDE/PW91, FDE/SAOP, and FDE/combi; see
text for details). In all calculations, the largest basis set available (aug-
QZ4P for Xe and Hg and ET-QZ3P-3DIFFUSE for all other elements)
have been used. For comparison, the results of the corresponding super-
molecule KS-DFT calculations are also given, as well as the experimental
values and the results of the previous MP2 and CCSD(T) calculations.

He Ne Ar Kr Xe Hg
FDE/PW91 FDE(m) 0.0136 0.0261 0.0747 0.0949 0.1136 0.1529

FDE(s) 0.0121 0.0258 0.0761 0.1028 0.1231 0.1771
PW91 KS-DFT 0.0134 0.0253 0.0736 0.0943 0.1194 0.1464

FDE/SAOP FDE(m) 0.0128 0.0225 0.0775 0.0999 0.1204 0.1467
FDE(s) 0.0116 0.0220 0.0780 0.1042 0.1273 0.1606

SAOP KS-DFT 0.0190 0.0286 0.0831 0.1112 0.1375 0.1651

FDE/combi FDE(m) 0.0103 0.0200 0.0668 0.0859 0.1017 0.1249

MP2a 0.0160 0.0274 0.0714 0.0877 0.0976
CCSD(T)b 0.0158 0.0267
Experimentc 0.0244 0.0679 0.0829 0.1029 0.1070

aReference 181.
bReference 181.
cReferences 175 and 176.

potential because the electron density is more flexible. Furthermore it should be noted
that the differences between the FDE(s) and FDE(m) schemes should become smaller
for larger basis sets as they approach the basis set limit.48

In Table 8.6, the induced dipole moments calculated with the FDE scheme using dif-
ferent approximations to the exchange-correlation potential are presented and com-
pared to the results of the corresponding supermolecule KS-DFT calculations and to
the experimental dipole moments.

In the FDE/PW91 calculations the induced dipole moments calculated using the
FDE(m) scheme are in excellent agreement with the results of the corresponding su-
permolecular KS-DFT calculations. For all considered complexes these differences
are below 5%. Opposite to what would be expected, the agreement with the super-
molecular KS-DFT calculations is worse for FDE(s). For the Ar, Kr, Xe, and Hg
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8.3. Results and discussion

complexes, the dipole moment calculated within the FDE(s) scheme overestimates
the dipole moments by up to 20%, with the differences becoming larger when moving
to the heavier attached atoms. While for the Ne complex the FDE(s) result is in
good agreement with both the FDE(m) and the supermolecular KS-DFT result, for
the He complex the FDE(s) dipole moment underestimates the supermolecular result
by 10%.

The increase in the dipole moment which is observed for the complexes with the
heavier attached atoms when going from FDE(m) to FDE(s) corresponds to electron
density of the rare-gas or mercury atom being moved in the direction of the CO2

molecule and the decrease for the CO2 · · ·He complex corresponds to electron density
of the CO2 molecule which is moved in the direction of the He atom. We think
that these artificial differences between FDE(m) and FDE(s) are mainly caused by
problems of the embedding potential in the region close to the nuclei of the frozen
subsystem. Near these nuclei the embedding potential has to compensate the large
attractive Coulomb potential of the nuclear charge. The observed differences indicate
that this is not achieved completely: In the calculation of a rare-gas or mercury
atom next to a frozen CO2 fragment there is a small amount of electron density
that is pulled to the C and O nuclei, leading to an artificial increase of the dipole
moment. This effect shows up the most for the fragment which is more polarizable,
e.g., the rare-gas or mercury in the complexes with the heavier attached atoms. In the
CO2 · · ·He complex the effect is the other way around. In the calculation of the He
fragment, a small amount of the more polarizable CO2 electron density is attracted
by the He nucleus. This kind of charge transfer can only occur if the basis set used
is flexible enough near these nuclei in the frozen fragment, which is only the case in
the FDE(s) scheme. In the FDE(m) calculations, the basis functions centered on the
nuclei of the frozen subsystem are not available so that the amount of spurious charge
transfer is smaller or not existent. It is important to note that the dipole moment,
which is investigated here, is very sensitive to this kind of charge transfer so that
small problems in the embedding potential have already a significant effect.

For the FDE(m)/SAOP calculations, the agreement with the corresponding super-
molecular KS-DFT calculations is not as good as in the FDE/PW91 calculations. This
is not surprising because of the contribution of the nonadditive exchange-correlation
potential to the effective embedding potential an additional inconsistency is intro-
duced. For the Ar, Kr, Xe, and Hg complexes the differences are rather small (below
13%), but for the He and Ne complexes the differences are larger (up to 32% for
He). A reason for this behavior can be found in the way the SAOP potential is
constructed. SAOP uses a statistical averaging over orbital potentials, in which the
difference between the orbital energy and the orbital energy of the highest occupied
molecular orbital (HOMO) is used to interpolate between two functional forms of the
exchange-correlation potential: one that is optimal for the core region and one that
is optimal for the valence region. For the He and Ne complexes, the highest occupied
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8. Induced dipole moments in CO2 · · · X complexes

rare-gas orbitals, which are most important for the induced dipole moments, are more
than 5 eV lower in energy than the HOMO and give rise to a ”core” contribution to
the exchange-correlation potential. In the FDE calculations, the two subsystems are
calculated separately, however, so that the rare-gas HOMO is then considered a va-
lence orbital with corresponding contribution to the exchange-correlation potential.
In the Kr, Xe, and Hg complexes, the rare-gas HOMO is also the HOMO in the
supermolecular calculation, while for the Ar complex it is only about 1 eV below the
HOMO of the supermolecule, so that these differences between the supermolecular
KS-DFT calculation and the FDE calculation are then much smaller.

Comparing the FDE(s)/SAOP calculations to the FDE(m)/SAOP ones shows the
same differences that were observed with FDE/PW91. Even with the large basis
sets used here, the FDE(s) results differ significantly from the FDE(m) results. As
with FDE/PW91, for the Kr, Xe, and Hg complexes, the dipole moments calculated
using FDE(s) are larger than the the FDE(m) values, with the difference increasing
when going to the heavier elements. For the Ne and Ar complexes, the differences be-
tween FDE(m) and FDE(s) are not significant, while for the He complex the FDE(s)
dipole moment is smaller than the FDE(s) one. These differences can be explained
in the same way as it was done above for the FDE/PW91 results. The fact that
the FDE(s) results are actually closer to the supermolecular KS-DFT results than
the FDE(m) results seems only to be a fortunate error cancellation between the
nonadditive exchange-correlation and kinetic-energy contributions to the embedding
potential.

8.3.4. Embedding with a combination of different
exchange-correlation approximations

The supermolecular KS-DFT calculations in Sec. 8.3.2 showed that both GGA poten-
tials like PW91 as well as the asymptotically correct SAOP potential are not able to
reproduce the experimental dipole moments of the investigated CO2 · · ·X complexes
correctly, because none of them is able to accurately describe the quadrupole moment
of CO2 and the polarizability of the attached atom at the same time.

One advantage of the FDE scheme presented here is that it allows one to use differ-
ent approximations for the exchange-correlation potential in the two subsystems in a
straightforward way. Therefore, we performed FDE calculations (FDE/combi) using
PW91 to approximate the exchange-correlation potential in the KS potential of the
CO2 fragment (because it reproduces the quadrupole moment of CO2 correctly) and
SAOP in the KS potential of the rare-gas or mercury fragment (because it is able to
describe the polarizability of the attached atom correctly). We would like to note that
the use of this combination of different approximations is not just an arbitrary choice
but one that is based on both physical knowledge about the systems under investi-
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gation (see the simple electrostatic interaction model presented in Sec. 8.3.1) and on
knowledge about the ability of different approximations to describe the polarizabilities
and molecular multipole moments correctly.

In the previous section, we have demonstrated that the FDE scheme works well for the
considered complexes both with PW91 and with SAOP. Therefore, we are confident
that the embedding scheme will also work when these different approximations are
combined by using them for the two subsystems. We can expect that the errors
introduced by the use of the embedding scheme will be similar to the errors observed in
the previous section. To get around the problems with the nonadditive kinetic-energy
potential which were found in the previous section, we only applied the FDE(m)
scheme here, that is less affected by these problems.

The results of these calculations are shown in Table 8.6. For the Ar, Kr, Xe and
Hg complexes the embedding calculations using a combination of different approxi-
mations significantly improve the results of the simple electrostatic interaction model
of Sec. 8.3.1, while giving dipole moments of comparable quality for the He and Ne
complexes.

The results obtained in the FDE/combi calculations are, for the Ar, Kr, and, Xe com-
plexes, in perfect agreement with the experimental values, with the differences being
smaller than 5%. For CO2 · · ·Ne, the experimental dipole moment is underestimated
by about 20% and an underestimation is also observed for CO2 · · ·He, where we have
to compare to CCSD(T) calculations because no experimental value is available. For
CO2 · · ·Hg, the experimental value is overestimated by about 20%. These differences
are of about the same size as the differences between the FDE(m)/SAOP calculations
and the corresponding supermolecular KS-DFT calculations in the previous section,
so that these differences can be mainly attributed to the approximation which has
to be made in the nonadditive exchange-correlation potential and the nonadditive
kinetic-energy functional.

8.4. Conclusions

In this study, we have for the first time applied the FDE scheme to the calculation
of induced dipole moments in van der Waals complexes. We have shown that the
embedding calculations are able to reproduce the results of supermolecular KS-DFT
calculations, if only basis functions centered on atoms of the nonfrozen subsystem
are included [FDE(m)]. The agreement is much better with a GGA potential like
PW91 than for calculations using the orbital dependent SAOP potential, which can
be explained by the additional approximations in the exchange-correlation part of the
embedding potential that have to be made in this case.
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8. Induced dipole moments in CO2 · · · X complexes

Including the basis functions of the frozen subsystem in the embedding calculations
[FDE(s)] lead to a spurious change transfer. We attribute this to the approximation
used for the nonadditive kinetic-energy part of the embedding potential. These prob-
lems are most important if there are larger differences between the nuclear charges in
the two subsystems, like in the CO2 · · ·X complexes where X is a heavier rare-gas or
a mercury atom.

For the van der Waals complexes investigated here, it is possible to circumvent these
problems by using the FDE(m) scheme that does not probe the embedding potential
in the region around the nuclei of the frozen subsystem as much as the FDE(s) scheme
does. However, this will not be possible in systems with a stronger interaction or where
a charge transfer between the subsystems occurs indeed, because for these systems the
inclusion of the additional basis functions in the FDE(s) is very important. Therefore,
it will be interesting for future work to analyze these problems in more detail and to
develop more advanced approximations to the nonadditive kinetic-energy functional
a.

Furthermore, we have demonstrated that the FDE scheme is a useful tool for com-
bining different approximated exchange-correlation potentials by applying different
approximations in the different subsystems. In this study, we have made use of this
feature for the calculation of induced dipole moments, where both the GGA potential
PW91 and the asymptotically correct SAOP potential fail to give a correct overall
description. The FDE scheme made it possible to use in both subsystems an approxi-
mation to the exchange-correlation potential that is able to describe those properties
of the fragments correctly that are important for the induced dipole moment of the
complex: the polarizability for the rare-gas or mercury atom and the quadrupole mo-
ment for the CO2 molecule. This strategy makes it possible to get induced dipole
moments for the CO2 · · ·X van der Waals complexes that are in good agreement with
the experiment, whereas KS-DFT calculations fail to achive this. We mention here
that a similar scheme was recently, mainly for reasons of computational efficiency,
also used in studies on solvatochromism.CJ4,76 While the SAOP potential was used to
get accurate excitation energies for the solute, the local-density approximation (LDA)
was used to describe the solvent molecules.

aThis observation was the starting point for the work on improved approximations to the kinetic-
energy component of the effective embedding potential in Chapter 5 (Ref. CJ7)
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9. Comparison of frozen-density
embedding and discrete reaction
field solvent models for molecular
properties

adapted from

Christoph R. Jacob, Johannes Neugebauer, Lasse Jensen, and Lucas Visscher,
“Comparison of Frozen-Density Embedding and Discrete Reaction Field Solvent

Models for Molecular Properties”,
Phys. Chem. Chem. Phys. 8 (2006), 2349-2359.

c© 2006 PCCP Owner Societies

Abstract

We investigate the performance of two explicit solvent models in connection with
density-functional theory (DFT) for the calculation of molecular properties. In our
comparison we include the discrete reaction field (DRF) model, a combined quantum
mechanics and molecular mechanics (QM/MM) model using a polarizable force field,
and the frozen-density embedding (FDE) scheme. We employ these solvent models
for ground-state properties (dipole and quadrupole moments) and response properties
(electronic excitation energies and frequency-dependent polarizabilities) of a water
molecule in the liquid phase. It is found that both solvent models agree for ground-
state properties, while there are significant differences in the description of response
properties. The origin of these differences is analyzed in detail and it is found that they
are mainly caused by a different description of the ground-state molecular orbitals of
the solute. In addition, for the calculation of the polarizabilities, the inclusion of the
response of the solvent to the polarization of the solute becomes important. This
effect is included in the DRF model, but is missing in the FDE scheme. A way of
including it in FDE calculations of the polarizabilities using finite field calculations is
demonstrated.
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9.1. Introduction

Since properties and reactions of molecules are usually studied in solution, and since
the solvent might not be innocent in experimental studies, there has been a grow-
ing interest in including solvent effects in theoretical investigations (for reviews, see,
e.g., Refs. 113, 193). Many solvent models used in quantum chemical studies are
developed and well-tested for reproducing solvation energies or reaction energies in
solution.1,194,195 In some solvent models, only an (interaction) energy term is added
so that effects on molecular properties cannot be described, apart from changes in
the equilibrium structure. But modeling solvent effects on molecular properties has
also attracted considerable attention during the past years, and several models for
the inclusion of solvent effects on a more fundamental level have been proposed and
tested (see, e.g., Refs. 76, 114, 161, 162, 196–207).

The models for the description of solvation effects can be divided into two groups. In
continuum solvation models113,193,208 the solvent is described as a continuous medium
that is characterized by its dielectric constant, with the solute molecule residing in-
side a cavity in this medium. The solute molecule can then be treated with different
quantum mechanical (QM) methods. Since the atomistic structure of the solvent
is not explicitly included in these continuum models, the averaging over different
solvent configurations is implicitly included in the continuum description that is pa-
rameterized to include all the degrees of freedom of the solvent. While it is clear
that continuum models are able to correctly describe non-specific solvation effects,
i.e., dielectric medium effects, their ability to describe specific interactions like hy-
drogen bonding is less obvious. Although progress in this direction has been made,
a description of specific interactions within continuum models apparently requires a
very careful parameterization of the size and shape of the cavity in which the solute
molecule is placed.195

A physically more appealing approach to the description of specific solvent effects
is given by discrete solvent models in which the geometrical structure of the solvent
is explicitly included. This offers a more straightforward way to take specific in-
teractions into account. However, to provide a complete description of all solvation
effects in discrete models it is necessary to average over the degrees of freedom of
the solvent. This can be achieved by sampling over a large number of snapshots
from classical209 or Car–Parinello molecular dynamics (CPMD)210,211 simulations.
For all these solvent structures, the molecular properties of interest are then calcu-
lated using quantum mechanical methods, taking the (discrete) solvent into account
in a cluster model.198,200 This can, for instance, be done using density-functional the-
ory (DFT)17 for ground-state properties or time-dependent DFT (TDDFT)148,212 for
response properties. Finally, the calculated property is averaged over the ensemble
of solvent structures. This approach is denoted as “sequential molecular dynamics
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9.1. Introduction

followed by quantum mechanics calculations” (S-MD/QM) following the terminology
of Canuto et al..200 It usually requires the inclusion of a large number of solvent
molecules in the solvent structures, which makes it necessary to use very efficient
methods for the calculation of molecular properties.

The most accurate approach would be the calculation of the properties of interest
from supermolecular calculations by using a sufficiently large cluster (if no periodic
boundary conditions can be used) in the quantum chemical calculation. However,
this approach is usually very demanding, since a large number of solvent molecules
has to be included, which quickly becomes infeasible for large solutes. In addition,
the supermolecular approach does not directly yield molecular properties of the so-
lute. Analysis of the results requires some partitioning of the wave function that is
usually not unique so the calculated molecular properties will strongly depend on the
partitioning scheme used.213

More efficient, though more approximate approaches are combined quantum mechan-
ics and molecular mechanics (QM/MM) models4,156,157,214,215 in which only the solute
is treated using QM methods, while molecular mechanics methods (MM) are used to
describe the solvent as well as the interactions between solute and solvent. The re-
striction of the QM treatment to the solute system makes the calculation of molecular
properties for a large number of structures feasible. However, the force field used in
the MM part has to be parameterized carefully to describe the solute–solvent inter-
actions accurately. In addition, quantum mechanical effects to these interactions,
which are important in the inner solvent shell, can only be modeled indirectly in an
empirical way, even though there are studies that claim that carefully parameterized
QM/MM models can yield results that are more reliable than DFT calculations.216

For the calculation of response properties, it has been noted that it is necessary to use
a polarizable molecular mechanics model in which the solute can respond to charge
redistribution in the solute.160 One example of such a polarizable QM/MM scheme is
the discrete reaction field (DRF) model,161,197,217 which has been implemented within
DFT for ground-state161 and response properties.162 The DRF model has been previ-
ously applied to the calculation of molecular (hyper-)polarizabilities and of nonlinear
optical (NLO) properties in solution.218–220

Frozen-density embedding (FDE)8,48 within DFT can be regarded as a compromise
between explicit QM models based on supermolecular cluster calculations and solvent
treatments based on effective solvent–solute interaction potentials as used in DRF.
In the FDE scheme, the (frozen) electron density of the solute is used to construct
an embedding potential that enters in the calculation of the solute properties. The
whole system (solute and solvent) is treated at a QM level, but the electron density
of the solute and the solvent subsystems are determined separately. The calculation
of orbitals for the supersystem is thus avoided. Even though FDE is in principle
exact, further approximations—in addition to those present in conventional Kohn–
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Sham (KS) DFT—have to be introduced. For modeling solvation effects, FDE is
usually combined with a simplified method for constructing the electron density of
the solvent, e.g., a sum-of-molecular-fragments approach.76 Since the calculation of
molecular (response) properties is done within a limited orbital space of the solute
only, FDE is very efficient, especially in the case of response properties.

Both DRF and FDE are promising approaches for the calculation of molecular (re-
sponse) properties in solution, mainly because their efficiency allows the calculation
of molecular properties for a large number of solvent structures. In addition, both
DRF and FDE introduce a “natural partitioning” of the supermolecular system into
a solute and a solvent system, which makes it possible to uniquely define molecular
properties in solution.

Even though both methods have been applied to the calculation of ground-state and
response properties in solution in a number of earlier studies, there are several open
questions. The DRF model relies on fitted parameters for atomic charges and po-
larizabilities and it is unclear if this parameterization is generally applicable. In the
FDE scheme, an approximate nonadditive kinetic-energy functional has to be used.48

Furthermore, in the calculation of response properties the response of the (frozen)
solvent is neglected. The approximations that are made in the two methods are quite
different and their importance for the calculation of different molecular properties is
not fully tested.

In this paper we present a detailed comparison of the DRF model and the FDE scheme
for calculating different molecular properties in solution. For this comparison, we use
a simple test system, a water molecule inside a solvation shell consisting of 127 water
molecules. This system is a well-established benchmark for the assessment of discrete
solvent models.161,162,197,217,221 Since we are only interested in a comparison of the
two different solvent models for the calculation of molecular properties, we did not
average over a large number of snapshots, but only use one solvent structure instead.
This allows us to focus on the differences in the description of the solvent effects.

This Chapter is organized as follows. In Sec. 9.2, a brief introduction into the theo-
retical background of DRF is given. In Sec. 9.3, we present a detailed comparison of
these two solvent models for a water molecule solvated in water. First, in Sec. 9.3.1,
the solvent models are compared for ground-state properties, namely the dipole and
the quadrupole moment. This is followed by a comparison of the performance of DRF
and FDE for response properties. In Sec. 9.3.2, they are compared for the calculation
of electronic excitation energies and in Sec. 9.3.3 for the calculation of static and
frequency-dependent polarizabilities. Concluding remarks follow in Sec. 9.4.
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9.2. Methodology

9.2.1. The discrete reaction field model

The DRF model is a polarizable quantum mechanics/molecular mechanics (QM/MM)
model. The solvent is represented by atomic charges qs and polarizabilities αs that
are placed at positions Rs. Although the DRF model can describe a frequency-
dependent atomic polarizability,222,223 we will assume that the atomic polarizabilities
are independent of the frequency. This is expected to be a reasonable assumption due
to the small dispersion of the polarizability in the frequency range that lies well below
any electronic excitation. In the DRF model the QM/MM operator at a point r is
given as an extra term in the effective potential in the KS equations,161[

−∇
2

2
+ V KS

eff [ρ](r) + V DRF[ρ](r)
]

φi(r) = εi φi(r), i = 1, . . . , N. (9.1)

where the DRF potential is given by

V DRF[ρ](r) = V el(r) + V pol[ρ](r)

=
∑

s

qs

|r −Rs|
+
∑

s

µind
s · (r −Rs)

|r −Rs|3
. (9.2)

The first term, V el, describes the Coulomb interaction between the QM system (the
solute) and the permanent charge distribution of the solvent molecules. The second
term, V pol, describes the many-body polarization of the solvent molecules.

The induced atomic dipole at a site s is given by

µind
s = αs

F init
s +

∑
t,t6=s

T
(2)
st µind

t

 , (9.3)

where T
(2)
st is the screened dipole interaction tensor161,224,225 for the interaction be-

tween sites s and t. The induced dipole arises from the field F init
s at site s that is

due to the electronic charge distribution of the QM part, the field from the QM nu-
clei, and the field from the point charges at the solvent molecules as well as the field
from all other induced dipoles. The induced dipole moments are therefore calculated
self-consistently in every iteration of the KS procedure.

The combination of the DRF model with TDDFT linear response theory was pre-
sented in Ref. 162. It introduces an additional contribution in the TDDFT kernel
that describes the change in the DRF potential of Eq. (9.2) due to a perturbation in
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the electron density of the QM system, i.e., the response of the atomic polarizabilities.
This additional contribution is given by

fDRF (r, r′) =
δV DRF [ρ](r)

δρ(r′)

=
∑

s

∑
t

(r′ −Rt)
|r′ −Rt|3

·Bst
(Rs − r)
|Rs − r|3

. (9.4)

In this equation Bst is the relay matrix that relates the induced dipole moment at
site s to the electric field at site t and that is defined by

µind
s =

∑
t

BstF t. (9.5)

This relay matrix is never calculated explicitly, but the induced dipole moments due
to the first-order change in the electron density are calculated iteratively by solving
Eq. (9.3) in the linear-response calculation. Details can be found in Ref. 162.

9.2.2. Computational details

All density functional calculations were performed using the Amsterdam Density
Functional (Adf) package.124,125 The “statistical averaging of molecular orbital po-
tentials” (SAOP) potential26,127,128 was used to approximate the exchange–correlation
potential, since it is well suited for the calculation of response properties. To pro-
vide a consistent comparison we also employed the SAOP potential for ground-state
properties, even though it has been found that SAOP is less reliable in this case.CJ3

All calculations were done using the VDiff basis set from the Adf basis set library,
which is a triple-ζ-quality Slater basis set containing additional diffuse functions.
Previous studies161,162 showed that this basis set is sufficiently large for the accurate
calculation of both ground-state and response properties investigated here. This was
confirmed in the present work by test calculations using the large even-tempered ET-
QZ3P-3DIFFUSE Slater basis set, in which the results did not change significantly.

In the FDE calculations, the initial solvent density was constructed as a sum of the
electron densities of molecular fragments calculated using the local-density approxima-
tion (LDA) and a DZP basis set. In the FDE calculations using the orbital-dependent
SAOP potential, the exchange–correlation component of the effective embedding po-
tential was approximated using the Becke–Perdew–Wang (BPW91) exchange–corr-
elation functional.21,130

The parameters needed for the solvent molecules in the DRF model, i.e., point charges
and atomic polarizabilities, were adopted from Ref. 161. The point charges are qH =
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0.3345 a.u. and qO = −0.6690 a.u. which generate a molecular dipole moment of 1.88
Debye. The atomic polarizabilities are αH = 0.0690 a.u. and αO = 9.3005 a.u. which
reproduced the molecular polarizability tensor with a mean polarizability of 9.62 a.u.
and a polarizability anisotropy of 0.52 a.u. The screening parameter, a = 2.1304,
used in Eq. 9.3, was taken from Ref. 225.

The calculations of excitation energies and of polarizabilities were done using the
TDDFT implementation of Adf.149,185 The finite field calculations of the polariz-
abilities in Sec. 9.3.3 were performed using an electric field of of 0.001 a.u.. To obtain
the static mean polarizability, six separate calculations were performed in which an
electric field was applied in x, y, and z direction. The individual components of the
polarizability tensor were then obtained by numerical differentiation of the dipole
moment.

9.3. Results and discussion

The comparison of the DRF and the FDE solvent models is carried out for the system
investigated in Refs. 161 and 162, where a water molecule in the “liquid phase” was
studied. It is a fixed structure of 128 rigid water molecules. The structure was
obtained from a molecular dynamics simulation using a polarizable force field in an
earlier work.221 One of the 128 water molecules is considered as the solute, while the
remaining 127 form the solvent shell. The structure of the water molecule inside the
solvent shell is shown in Fig. 9.1 and the coordinates are given in the Supplementary
Material.

We note that by using only one solvent structure any effects of the dynamics of the
solvent are neglected, i.e., the fluctuations in the geometrical structure of both the
solute and the solvent molecules are not taken into account and replaced by a static
picture. For correctly describing all solvent effects it would be necessary to include a
large number of solvent structures instead of just one average configuration.CJ4,76 It
will, therefore, be difficult to directly compare the obtained results to experimental
values. However, the error that results from neglecting the dynamical effects will be
made consistently in all calculations. As the purpose of this study is to provide a
comparison of different solvent models, this consistent error is not relevant for the
conclusions drawn here. Furthermore, the restriction to only one structure enables us
to do a very detailed analysis of the results and greatly simplifies their interpretation.
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Figure 9.1.: Structure of a water molecule inside a solvent shell of 127 water
molecules. The “solvated” water molecule is the one that is highlighted,
the other two water molecules are considered to belong to the solvent
shell. Coordinates are given in the Supplementary Material.
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Table 9.1.: Dipole moments µ (in debye), solvation shifts in dipole moments ∆solvµ
(in debye) relative to the isolated molecule, and traceless quadrupole
moments Q (in a.u.) for an isolated water molecule in the gas phase and
inside a solvation shell of 127 water molecules modeled using DRF as well
as FDE. For FDE results are given with an unrelaxed sum-of-molecular-
fragments electron density for the solvent (SumFrag) and with a solvent
density in which the density of the ten innermost water molecules is
relaxed with respect to the solute (relaxed).

xc-functional µ ∆solvµ Qxx Qyy Qzz

isolated BP86 1.80 1.79 −1.86 0.07
SAOP 1.95 1.76 −1.84 0.08

DRF BP86 2.66 +0.86 2.05 −2.15 0.11
SAOP 2.68 +0.73 1.99 −2.09 0.11

FDE(SumFrag) BP86 2.45 +0.65 2.04 −2.12 0.09
SAOP 2.52 +0.57 1.98 −2.07 0.08

FDE(relaxed) BP86 2.71 +0.91 2.09 −2.17 0.08
SAOP 2.75 +0.80 2.03 −2.11 0.08

9.3.1. Dipole and quadrupole moments

First, we compare the performance of DRF and FDE for dipole and quadrupole
moments. These are both ground-state properties that depend directly on the electron
density. They are a sensitive measure for the distribution of the electron density
obtained within the different solvent models.

Table 9.1 gives the dipole and quadrupole moments that were calculated for the iso-
lated water molecule and for the water molecule in the “liquid phase”, i.e., inside a
solvation shell of 127 water molecules. The calculations were done using both the
SAOP potential, that will also be used in the calculations of response properties in
the following sections, and the BP86 functional. We included BP86 in this compar-
ison because it was noticed that while SAOP is performing very well for response
properties, it sometimes fails for dipole and quadruple moments.CJ3

For the isolated water molecule, the dipole moment calculated using BP86 is in good
agreement with the experimental value190 of 1.854 D, while SAOP overestimates
the dipole moment. However, BP86 and SAOP are in excellent agreement for the
quadrupole moment.

For the water molecule in solution, DRF predicts a shift in the dipole moment of 0.86 D
with BP86 and a smaller shift of 0.73 D with SAOP, resulting in dipole moments that
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are in good agreement for BP86 and SAOP. The results obtained here differ slightly
from the results of Ref. 161 because of the slightly different basis sets. The increase
of the dipole moment of water in the liquid phase relative to the gas phase has been
discussed in detail in Ref. 161. Although for the dipole moment of water in the liquid
phase no direct comparison with experiment is possible, there are a number of studies
that deduce dipole moments of liquid water from various experiments. An overview
is given in Ref. 161 where it is argued that 3.1 D can be used as an upper limit,
while the lower limit is given by 2.5 D. The dipole moments calculated using DRF lie
within these boundaries. In addition, in Ref. 161 the results of the DRF calculations
were found to be in good agreement with CCSD calculations221 using a solvent model
similar to DRF and the same water structure that predict a dipole moment of 2.71 D.

The FDE calculations using a sum-of-molecular-fragments electron density for the sol-
vent [labeled FDE(SumFrag)] predict a shift in the dipole moment that is significantly
smaller than that predicted by DRF. The situation changes when relaxation of the
solvent electron density is included into the FDE calculations [labeled FDE(relaxed)].
In this case, the calculated dipole moments, using BP86 as well as SAOP, are in good
agreement with the dipole moment calculated using DRF. This shows that the effect
of polarization of the solvent density is of great importance for the correct description
of the dipole moment in the system considered here. It was already noticed in earlier
worksCJ4,60 that the inclusion of relaxation has strong influence in systems with direct
hydrogen bonds between the solvated molecule and the solvent. Since relaxation is
needed mainly for the correct description of hydrogen bonds it is sufficient to relax
the solvent molecules that are close to the solvated molecule whereas relaxation of
the outer solvent shells can safely be neglected.CJ4

In FDE the effect of relaxation of the solvent density, i.e., of changes in the solvent
electron density due to the solvated molecule, has to be included explicitly using
freeze-and-thaw cycles. In DRF calculations a discrete model of the same effect is
used, where the polarization of the solvent electron density is modeled using dis-
tributed atomic polarizabilities that can be obtained from gas-phase calculations.
While this strategy of modeling the change of the solvent density is computation-
ally more efficient than the full treatment in FDE, the FDE description should be
more accurate, especially at short distances where the discretization of the charge
distribution gives larger errors.

For the quadrupole moments, the shift from the gas phase to the liquid phase is
smaller than for the dipole moment. The quadrupole moments calculated using DRF
and FDE are in good agreement. While the effect of relaxation in the FDE calculations
is large for the dipole moment, this is not the case for the quadrupole moment.

Summarizing these results, we find that for the dipole moment and the quadrupole
moment DRF and FDE give results that are very similar if relaxation of the inner-
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most solvent molecules is included in FDE. Since both the dipole and the quadrupole
moment only depend on the calculated electron density, these results give a good
indication that the electron densities calculated within the different solvent models
are not very different.

9.3.2. Excitation energies

After comparing DRF and FDE for ground-state properties, we investigate the perfor-
mance of the different solvent models for properties depending on the density response,
starting with the electronic excitation energies. Table 9.2 gives the excitation energies
of the three lowest excitations of an isolated water molecule and of the corresponding
excitations for the system described in the previous section, a water molecule inside
a solvation shell consisting of 127 water molecules. Additionally, the solvation shifts
of the excitation energies and the oscillator strengths of the corresponding transitions
are reported.

The excitation spectra of water in the gas-phase and in the condensed phase are known
experimentally226–228 and have been discussed in detail before (see, e.g., Ref. 229).
The gas-phase spectrum shows two very diffuse bands with absorption maxima at
7.4 eV and at 9.7 eV, which are assigned to the the 11A1 → 11B1 and to the
11A1 → 21A1 transition, respectively. Qualitatively, both excitations have signifi-
cant Rydberg character. The 11A1 → 11A2 transition, which is the second excitation
in the calculations, is dipole forbidden in the gas phase. The excitation spectrum of
liquid water shows two very broad overlapping bands. The first band has a maximum
at 8.2 eV (corresponding to a solvent shift of approximately 0.8 eV), while the maxi-
mum of the second band is at 9.9 eV (corresponding to a much smaller solvent shift
of 0.2 eV).

The Rydberg character of the excitations requires the use of a large number of diffuse
functions in the basis set and of an asymptotically correct exchange–correlation po-
tential like SAOP.230,231 If this is taken care of, the results for the isolated molecule
in the gas phase are in good agreement with the experimental values. For the water
molecule in the “liquid phase”, DRF predicts solvent shifts of approximately 0.7 eV
for the lowest three transitions. These results have already been discussed in Ref. 162.
The predicted solvent shifts are of similar size for the first and the third excitation. For
the first excitation, the calculated solvent shift is in fair agreement with experiment,
but there is a significant overestimation of the solvent shift for the third excitation.

FDE using a sum-of-molecular-fragments solvent density predicts significantly larger
solvent shifts than DRF. The shifts increase even further to roughly 1.2 eV if relaxation
of the solvent density is included. In this case, FDE predicts solvent shifts that are
larger than the shifts predicted by DRF by 0.47, 0.31, and 0.61 eV for the first, second,

171



9. Comparison of FDE and DRF

T
ab

le
9.2.:

E
xcitation

energies
E

e
x

(in
eV

)
of

the
three

low
est

excitation
for

an
isolated

w
ater

m
olecule

in
the

gas
phase

and
of

the
corresponding

excitation
energies

for
a

w
ater

m
olecule

inside
a

solvation
shell

of
127

w
ater

m
olecules

m
odeled

using
D

R
F

and
F

D
E

.
T

he
solvation

shifts
of

the
excitation

energies
∆

so
lvE

e
x

(in
eV

)
and

the
oscillator

strength
f

(in
a.u.)

are
also

given.

1
1A

1
→

1
1B

1
1
1A

1
→

1
1A

2
1
1A

1
→

2
1A

1

E
e
x

∆
so

lvE
e
x

f
E

e
x

∆
so

lvE
e
x

f
E

e
x

∆
so

lvE
e
x

f
isolated

7.76
0.05

9
.61

0.00
9
.72

0.09
D

R
F

8.41
+

0
.65

0
.08

10
.38

+
0
.77

0
.011

10
.40

+
0
.68

0
.11

F
D

E
(Sum

Frag)
8.71

+
0
.95

0
.07

10
.43

+
0
.82

0
.0023

10
.70

+
0
.98

0
.04

F
D

E
(relaxed)

8.88
+

1
.12

0
.07

10
.69

+
1
.08

0
.0011

11
.01

+
1
.29

0
.06

172



9.3. Results and discussion

Table 9.3.: Excitation energies Eex and solvation shifts in excitation energies
∆solvEex (both in eV) of the lowest excitation of a water molecule in
the gas phase and in a cluster with two solvent water molecules, mod-
eled using DRF and FDE. In addition, the results of a supermolecular
KS-DFT calculation of the same cluster are given, see text for details.

Eex ∆solvEex

isolated 7.76
DRF 8.08 +0.32
FDE(relaxed) 8.30 +0.54
supermolecule 8.43 +0.67

and third transition, respectively. Like DRF, also FDE predicts similar solvent shifts
for the first and the third transition. The shifts predicted by FDE are larger than those
obtained with DRF, but for the lowest excitation there is still a fair agreement with the
experimentally observed shift. However, also FDE does not describe the lower solvent
shift for the third transition correctly. As mentioned earlier, it is difficult to directly
compare the obtained solvent shifts to experiment, because we only considered one
average solvent structure.

The accuracy of the two different solvent models for the electronic excitations inves-
tigated here can be assessed by a comparison to the results of a supermolecular DFT
calculation. Such a supermolecular calculation contains all interactions that are mod-
eled in DRF and FDE explicitly, so that it can provide information about the quality
of the approximations made in the two models. Obtaining the excitation energies of
interest from a supermolecular calculation is problematic, because the charge-transfer
excitation problem in TDDFT leads to a large number of artificially too low excita-
tions in the energy range of interest.76 In addition, for the system investigated here,
where also the solvent is water, the lowest excitation energies of the solvent molecules
will also perturb the analysis.

To minimize these problems, the comparison with a supermolecular calculation is
done for a small cluster consisting only of the water molecule in question and of the
two closest solvent water molecules. The structure is a substructure of the larger
cluster containing 127 solvent molecules and is shown in Fig. 9.2. In this structure,
the “solvated” water molecule is involved in two hydrogen bonds.

Even though in this small cluster the solvent shift of the excitation energies will be
much smaller than for the larger water cluster considered earlier, the main cause of
the differences between DRF and FDE is expected to originate form the innermost
solvent molecules. This small cluster will therefore already provide useful information.
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Figure 9.2.: Structure of the cluster containing a water molecule and the two closest
solvent water molecules. The “solvated” water molecule is the one that
is highlighted, the other two water molecules are considered to belong
to the solvent shell.

The lowest excitation energy of the “solvated” water molecule calculated using DRF
and FDE as well as a supermolecular calculation are given in Table 9.3. In the
supermolecular calculation, the DZP basis set was used for the two solvent molecules
for consistency with the FDE calculation. As in all previous calculations, the VDiff
basis set is used for the solute molecule. The transition corresponding to the lowest
excitation of the isolated water molecule is identified using the transition density
overlap criterion introduced in Ref. 76. The excitation that is found to have the
largest overlap with the lowest transition of the isolated water molecule is the seventh
excitation in the supermolecular calculation.

The solvent shift obtained using FDE is in reasonable agreement with the result of
the supermolecular calculation, with FDE slightly underestimating the supermolec-
ular result by 0.13 eV. In contrast to this, DRF yields a value that significantly
underestimates the solvent shift by 0.35 eV. This indicates that for the calculation of
excitation energies the FDE scheme provides an approximation that is closer to the
full description of the solvent effects than the DRF model. In the following we will
analyze the reasons for the differences in the excitation energies obtained with DRF
and FDE and try to identify the problems and shortcomings of the different solvent
models. For this analysis we will focus on the lowest excitation only.

For this analysis we split up the calculated excitation energies into different compo-
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Table 9.4.: Analysis of the excitation energies calculated for an isolated water
molecule and for a water molecule inside a solvent shell of 127 water
molecules using DRF and FDE to model the solvent shell. The HOMO–
LUMO gap ∆ε as calculated for the ground-state is given as a first order
approximation to the excitation energy. ∆resp

vac Eex refers to the correction
to this gap as calculated using TDDFT without including any contribu-
tions of the environment. The additional contributions of the environ-
ment to the excitation energies are given as ∆resp

env Eex. (All values in eV)

∆ε ∆resp
vac Eex ∆resp

env Eex Eex

isolated 7.59 +0.17 − 7.76
DRF 8.29 +0.15 −0.03 8.41
FDE(relaxed) 8.67 +0.14 +0.07 8.88

nents into

Eex = ∆ε + ∆resp
vac Eex + ∆resp

env Eex. (9.6)

In this equation, ∆ε is the orbital energy difference, i.e., for the excitation studied
here the difference between the orbital energies of the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The “vac-
uum” response contribution ∆resp

vac Eex is the correction that TDDFT applies to the
HOMO–LUMO gap if the effects of the environment are only included in the KS step
but not in the TDDFT part of the calculation. It is calculated by subtracting the
HOMO–LUMO gap, obtained for the solvated water molecule, from the excitation en-
ergy that is calculated from the embedded orbitals without including any additional
contributions of the solvent model in the exchange–correlation kernel. It is important
to note that for the calculations using solvent models, both the HOMO–LUMO gap
∆ε as well as the “vacuum” contribution ∆resp

vac Eex include the effect of the solvent
model on the ground-state orbitals and orbitals energies.

In addition to this effect on the ground-state orbitals, both solvent models employed
here introduce an additional term in the exchange–correlation kernel that give rise to
the environment contribution ∆resp

env Eex. For DRF, this additional contribution is given
by Eq. (9.4) and describes the response of the induced dipoles on the solvent to the
change in electronic density upon excitation. For FDE, the additional contribution is
given by the effective embedding kernel of Eq. (3.31) that arises from the contribution
of the nonadditive kinetic energy and the nonadditivity of the exchange–correlation
functional and its derivatives.

The results of the decomposition of the excitation energies according to Eq. (9.6) for
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the isolated water molecule and for the solvated water molecule described using either
DRF or FDE are given in Table 9.4. The differences in the calculated excitation
energies are mainly explained by the effects that the solvent models have on the
HOMO-LUMO gap, which amounts to 0.70 eV for DRF and to 1.08 eV for FDE.
The “vacuum” response correction ∆resp

vac Eex is of similar size for both the isolated
molecule calculation and the calculations in solution (DRF and FDE). The difference
is only approximately −0.03 eV, which is negligible compared to the large change in
the HOMO–LUMO gap that is induced by the solvation shell.

The additional environment correction ∆resp
env Eex is also small compared to the change

in the HOMO–LUMO gap caused by the solvation shell. However, these corrections
are responsible for a part of the differences that are observed between DRF and
FDE. In DRF the environment correction is negative, i.e., it lowers the calculated
excitation energy, because the response of the solvent stabilizes the excited state. In
FDE, the environment contribution is positive and therefore increases the excitation
energy. This is because the effective embedding kernel in FDE contains the effects
of the Pauli repulsion of the solvent molecules, that will destabilize the excited state.
These environmental contributions in DRF and FDE are largely complementary, i.e.,
each of them is describing an effect that is missing in the other model. In total,
the different description of the solvent effects in TDDFT causes a difference in the
excitation energies of 0.10 eV. This is a small part of the total difference between
DRF and FDE of 0.47 eV.

The differences in the HOMO–LUMO gap are mainly caused by two effects that
are included in FDE but that are absent in the DRF model. First, the effects of
hydrogen bonding are only partly included in the purely electrostatic DRF model.
For the solvated water molecule considered here, the HOMO is stabilized by hydrogen
bonding, while the LUMO is destabilized. Hydrogen bonding thus leads to an increase
of the HOMO–LUMO gap. This chemical bonding part of the hydrogen bonding
should be described correctly by FDE, while DRF only contains the electrostatic
part. As a second effect, FDE also includes the Pauli repulsion of the solvent. The
unoccupied orbitals partly extend into regions that are occupied by solvent molecules
and experience the Pauli repulsion of their electrons. This leads to a further increase
of the orbital energies of the diffuse unoccupied orbitals and therefore to an increase
of the HOMO–LUMO gap. This is especially important in the system investigated
here, since the lowest excitation is quite diffuse.

9.3.3. Polarizabilities

Finally, we compare the performance of DRF and FDE for modeling solvent ef-
fects on polarizabilities, again using the same solvent structure. In Table 9.5 for
both the isolated molecule and the water molecule in the solvent cage the calcu-
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Table 9.5.: Static and frequency-dependent polarizabilities calculated for an iso-
lated water molecule in the gas phase and inside a solvation shell of 127
water molecules modeled using DRF and FDE. The mean polarizabili-
ties ᾱ and the polarizability anisotropy γ are given. Frequencies ω and
polarizabilities are given in atomic units.

ω ᾱ γ
isolated 0.0000 9.40 0.91

0.0428 9.47 0.89
0.0570 9.51 0.88
0.0856 9.65 0.82

DRF 0.0000 9.62 0.72
0.0428 9.68 0.71
0.0570 9.73 0.71
0.0856 9.87 0.70

FDE(SumFrag) 0.0000 8.77 0.47
0.0428 8.82 0.47
0.0570 8.86 0.46
0.0856 8.98 0.46

FDE(relaxed) 0.0000 8.67 0.50
0.0428 8.72 0.50
0.0570 8.76 0.50
0.0856 8.87 0.50

lated mean polarizabilities and the polarizability anisotropies γ are given. Both the
static polarizabilities and the frequency-dependent polarizabilities at the frequencies
ω = 0.0428, 0.0570, 0.0856 a.u. (λ = 1064, 800, 532 nm, respectively) are given.

The static mean polarizability of 9.40 a.u. calculated for the isolated molecule is in
good agreement with both the results of previous CCSD(T) calculations232 (9.62 a.u.)
and with the experimental value of 9.83 a.u. taken from Ref. 233. For the frequency-
dependent polarizabilities our DFT results are in good agreement with previous CCSD
calculations217 that obtained mean polarizabilities of 9.52 a.u., 9.57 a.u., and 9.71 a.u.
calculated at frequencies of 0.0428 a.u., 0.0570 a.u., and 0.0856 a.u., respectively.

For the water molecule inside the solvation shell of 127 water molecules, DRF predicts
a slight increase of the mean polarizability of approximately 0.2 a.u., both for the static
and for the frequency-dependent polarizabilities. For the polarizability anisotropy,
DRF predicts a slight decrease, in agreement with the previous results of Ref. 162.
With FDE, the mean polarizability decreases in solution by approximately 0.7 a.u.
compared to the isolated molecule, which is in contrast to the increase in polarizability
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Table 9.6.: Analysis of the static mean polarizabilities calculated for an isolated wa-
ter molecule and for a water molecule inside a solvent shell of 127 water
molecules using DRF and FDE to model the solvent shell. First,the mean
polarizability calculated without including any effects of the environment
in the TDDFT calculation is given as ᾱnoenv. The additional contribu-
tions of the environment to the polarizabilities are given as ∆resp

env α. The
resulting mean polarizability is given as ᾱtot. All polarizabilities are
given in atomic units.

ᾱnoenv ∆resp
env α ᾱtot

isolated 9.40 − 9.40
DRF 9.22 +0.40 9.62
FDE(relaxed) 8.78 −0.11 8.67

that was found with DRF. The polarizability anisotropies calculated using FDE are in
qualitative agreement with the DRF calculations, but FDE predicts a lowering about
twice as large as predicted by DRF. We further note that for the calculation of the
polarizabilities the relaxation of the solvent density in the FDE approach is much less
important than for dipole moments and excitation energies.

The most striking finding of this comparison is the qualitative difference between DRF
and FDE for the mean polarizabilities. With DRF the mean polarizability increases
in solution, whereas it decreases with FDE. To analyze the qualitative differences
between DRF and FDE, we performed an analysis similar to that in Sec. 9.3.2 for the
excitation energies. We decomposed the calculated shifts of the mean polarizability
in solution into contributions due to changes in the (ground-state) molecular orbitals
and solvent contributions in the linear response calculation. To simplify this analysis,
we focus on the static mean polarizabilities.

The static mean polarizabilities calculated using the different solvent models are de-
composed according to

ᾱtot = ᾱnoenv + ∆resp
env α, (9.7)

where ᾱnoenv is the static mean polarizability calculated from the embedded orbitals
without including the additional environmental contributions in the linear response
calculation. The results of this analysis are given in Table 9.6.

The mean polarizabilities ᾱnoenv follow the trend that is given by the solvent shifts of
the excitation energies, since larger excitation energies should qualitatively correspond
to smaller mean polarizabilities. In the case of a larger solvent shift of the excita-
tion energies, the mean polarizability without the environment contribution should
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also decrease. For DRF, the mean polarizability in solution decreases by 0.18 a.u.
compared to the isolated molecule, which is in agreement with the larger excitation
energies. For FDE, where the solvent shift of the excitation energies is even larger
than in DRF, the mean polarizability in solution decreases by 0.62 a.u. compared to
the isolated molecule.

The qualitative differences between DRF and FDE are caused by the environmental
corrections to the mean polarizabilities ∆resp

env α that appear when the contributions of
the environment are also included in the TDDFT part of the calculation. In the case of
the DRF calculation, this correction contains the effect of the response of the solvent
to the polarization of the solvated molecule. This response stabilizes the polarized
molecule and therefore leads to an increase of the polarizability. This correction to
the mean polarizability of +0.40 a.u. is larger than the change in the polarizability
due to the changed molecular orbitals in solution of −0.18 a.u. and leads to an overall
increase of the mean polarizability in solution. For the FDE calculation, where the
response of the solvent is neglected, the environmental correction is much smaller
than the corresponding DRF correction and is of opposite sign, i.e., the environment
destabilizes the polarized molecule and thus leads to a lower polarizability. The FDE
correction does therefore not change the lowering of the mean polarizability in solution
that could be estimated from the increase of the excitation energies.

This analysis shows that for the calculation of polarizabilities the inclusion of the
solvent response is apparently very important. For the system considered here, it
changes the sign of the solvent effect on the static mean polarizability in the DRF
calculation. On the other hand, even though the response of the solvent is included,
the ground-state orbital energies obtained from DRF are worse than the ones obtained
from FDE, because the effects of hydrogen bonding and of Pauli repulsion are only
partly accounted for.

In the FDE calculation, where the response of the solvent is missing in the current
TDDFT extension, it is possible to include the response of the solvent in the FDE
calculations by calculating the static polarizabilities from the change in the dipole
moment due to a finite electric field. In these calculations one can allow the solvent
density to adapt to the polarization of the solute water molecule due to an applied
electric field so that the response of the solvent is included. To estimate the effect
of the environmental response in the FDE case, we calculate the difference between
the static mean polarizabilities obtained from two different series of finite-field cal-
culations. In the first calculations, the solvent density is relaxed with respect to
the nonpolarized solute molecule, whereas it was relaxed with respect to the solute
molecule polarized by the applied electric field in the second series of calculations to
include the response of the solvent.

The first calculations were performed by converging the electron densities of the sol-
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vent and the solute in two freeze-and-thaw FDE iterations. As in all earlier calcu-
lations, in theses freeze-and-thaw iterations only the ten solvent molecules that are
closest to the solute are allowed to relax, while for all other solvent molecules the
frozen gas-phase density is used. The relaxed solvent density was then used as the
frozen density in an FDE calculation of the solute water molecule. From the numerical
differentiation of the dipole moment obtained in this calculation with respect to the
applied electric field, the polarizability tensor was obtained. These calculations yield
a static mean polarizability of 7.79 a.u. In these finite-field calculations the solvent
density cannot respond to the polarization of the solute. The corresponding TDDFT
calculation that is labeled as FDE(relaxed) in Table 9.5 resulted in a mean polariz-
ability of 8.67 a.u. The difference between these values arise because in the TDDFT
calculations the ALDA approximation is used for the exchange–correlation kernel in
combination with the SAOP potential. Therefore, the polarizabilities obtained from
finite-field SAOP calculations do not agree with the TDDFT results. However, since
the SAOP potential was designed to be used together with the ALDA kernel, the
TDDFT calculations using ALDA should be more accurate than the finite-field cal-
culation (that correspond to a TDDFT calculation using the “true” SAOP kernel).26

To obtain the polarizability from finite-field FDE calculations that take the response
of the solvent into account, the electron densities of the solute and the solvent were
calculated from freeze-and-thaw FDE calculations in which a finite electric field was
applied in the calculation of the solute water molecule. The finite electric field was not
applied in the calculations of the solvent electron density since we are only interested
in the calculation of the local solute polarizability. Including the finite electric field
also in the solvent calculations would introduce a screening of the macroscopic field at
the solute molecule, leading to the so-called effective polarizability.218 By applying the
finite electric field in all calculations of the solute during the freeze-and-thaw cycles,
the converged solvent density is relaxed with respect to the polarized solute molecule.
The polarizabilities obtained from numerical differentiation of the dipole moments
thus include the response of the solvent with respect to the solute polarization. From
these calculations, a static mean polarizability of 8.09 a.u. is obtained. The difference
between these two sets of finite-field FDE calculations, which is our estimate for the
effect of the solvent response on the mean polarizability, amounts to +0.30 a.u.. This
is comparable to the solvent response correction of +0.40 a.u. in the DRF case.

Adding this correction to the static mean polarizability from the TDDFT calculations
using FDE to model the solvent leads to an estimated total static mean polarizability
of 8.97 a.u.. I.e., even when the (positive) correction due to the response of the
solvent is taken into account, the FDE calculations still predict a decrease in the
static mean polarizability in solution compared to the isolated molecule. The DRF
model predicts an increase, because the response of the solvent—modeled by atomic
polarizabilities—is the largest solvent effect. In contrast to this, the major solvent
effect in the FDE calculation arises from the increased HOMO–LUMO gap and, thus,
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leads to a smaller mean polarizability.

9.4. Conclusions

In this work we performed a detailed comparison of the two discrete solvent models
DRF and FDE for a number of molecular properties. For the dipole and quadrupole
moment as ground-state properties both solvent models lead to similar results. To be
able to account for the polarization of the solvent in FDE, it is necessary to relax the
solvent density with respect to the solute in freeze-and-thaw cycles. The same effect
is included in DRF in a computationally more efficient, though more approximate
way by using distributed atomic polarizabilities.

For response properties, there are significant differences between the two solvent mod-
els. In the case of the excitation energies of the water system studied here, FDE
predicts a larger solvent solvent shift than the DRF model. Our analysis showed
that this difference mainly originates from a different description of the ground-state
molecular orbitals of the solute molecule. The embedded orbitals obtained from the
FDE calculation show a larger HOMO–LUMO gap than those obtained in the DRF
calculation.

We attribute this difference in the HOMO–LUMO gap to a different description of
short-range effects, the most important effects being direct hydrogen bonding between
the solute and the solvent as well as the additional Pauli repulsion of the solvent on
the diffuse excited states. Since the FDE scheme is in principle exact, it should
be able to describe these effects more accurately than the DRF model, where both
effects can only be modeled by the parameterization of the atomic point charges and
polarizabilities. This was confirmed by a comparison to a supermolecular calculation
on a smaller system that agreed well with the excitation energy calculated using FDE,
while DRF yields an excitation energy that is too low. The small contribution of the
response of the solvent to the excitation energies shows that the approximation of
a response localized on the solute in the FDE calculation of excitation energies is
obviously fulfilled.

For the polarizabilities, the effect of the response of the solvent to the polarization
of the solute becomes nearly as important as the effect of the solvent on the ground-
state orbitals, whereas it was negligible for the calculation of excitation energies. The
solvent response is modeled in DRF by means of distributed atomic polarizabilities,
but it is missing in the TDDFT extension of the FDE scheme. Since it can appar-
ently not be neglected for the calculation of molecular polarizabilities in solution,
DRF performs better for this kind of response properties. It can be expected that
the effect of the solvent response will become even more important when going to

181



9. Comparison of FDE and DRF

hyperpolarizabilities and other nonlinear optical properties.

The inclusion of the environmental response in DRF does not overcome the problems
that are caused by the inaccurate description of the ground-state orbitals of the solute.
The finite-field calculations that were done to get an estimate of the polarizability
calculated using FDE including the response of the environment still yield a static
mean polarizability that significantly differs from the results of the DRF calculation.
In particular, the two models predict a different sign of the solvent shift in the mean
polarizability. It would, therefore, be interesting to extend the FDE scheme to ex-
plicitly include the response of the solvent, since the finite-field approach employed
here can only be applied for static polarizabilities. This would make the FDE scheme
more generally applicable, e.g., to the calculation of other nonlinear optical properties
in solution.
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Summary

The frozen-density embedding (FDE) scheme within density-functional theory (DFT)
provides a very powerful tool for the quantum chemical treatment of large systems.
It is based on a partitioning of the electron density into the density of an active
subsystem and a frozen environment. In the calculation of the density of the ac-
tive subsystem, the effect of the frozen environment is represented by an effective
embedding potential, that contains the electrostatic potential of the environment, an
exchange-correlation component and a kinetic-energy component. In contrast to most
other embedding schemes used in theoretical chemistry, the FDE scheme provides a
formulation that is in principle exact.

This thesis deals with various aspects of the FDE scheme. An introduction of the
methods of theoretical chemistry, in particular of DFT, and of the FDE scheme is
given in Part I of this thesis.

Part II of this thesis provides theoretical extensions and improvements of the FDE
scheme. In Chapter 4 it is shown how the FDE scheme can be applied to the cal-
culation of nuclear-magnetic resonance (NMR) shieldings. Since the description of
magnetic properties within DFT requires the use of the current density as a basic
variable—in addition to the electron density—this makes a generalization of the FDE
formalism necessary. By starting from nonrelativistic current DFT and by partition-
ing not only the electron density, but also the current density, such a generalized
FDE formalism is given. It is shown that this introduces a formal dependence of
the nonadditive kinetic-energy functional, which appears in the effective embedding
potential, on the current densities in the subsystems.

If the usual approximations are introduced and the current dependence of the
exchange-correlation potential of the nonadditive kinetic-energy functional are
neglected, one arrives at a formulation in which the currents in the two subsystems
that are induced by an external magnetic field are not coupled, and the NMR shielding
can be calculated as a sum of contributions calculated for the individual subsystem.
Since the NMR shielding only depends on the induced current in the vicinity of the
NMR active nucleus, the contribution arising from the induced current in the sub-
system containing this nucleus is dominant and the contribution due to the induced
current in the other subsystem can usually be neglected. Altogether, this extension of
the FDE scheme provides a simple and efficient scheme for calculating NMR shieldings
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in large systems.

Even though the FDE scheme is in principle exact, a kinetic-energy component vT

appears in the embedding potential that is given by the functional derivative of the
nonadditive kinetic-energy functional. To calculate vT , an approximate kinetic-energy
functional is needed and the applicability of the FDE scheme is limited by the ac-
curacy of the available approximate functionals. Chapter 5 is devoted to improving
the available approximations for the kinetic-energy component vT of the embedding
potential.

One strategy for developing approximate functionals is to investigate physical limits
that are known exactly. In the present case, the form of vT is investigated in the exact
long-distance limit, i.e., in the limit of an infinite separation of the two subsystems. It
can be shown that with the available approximate kinetic-energy functionals a wrong
form of vT is obtained in the regions of the frozen subsystem. The kinetic-energy
component should cancel the electrostatic and exchange-correlation components, but
the available approximate kinetic-energy functionals are not able to compensate the
large nuclear attraction.

For two test systems, a H2O· · ·Li+ complex and an organic dye molecule surrounded
by 30 water molecules, it is shown that this wrong behaviour of vT leads to too
low-lying virtual orbitals, that can lead to serious problems by causing convergence
problems and by introducing spurious excitations in calculations of response proper-
ties. Based on the knowledge of the exact form of vT in the long-distance limit, a
correction can be proposed that enforces the correct form in this limit and removes
the observed problems.

In Part III of this thesis (Chapters 6 and 7) an implementation of the FDE scheme is
described. This implementation uses a very flexible setup, in which the total system
is composed from an arbitrary number of fragments. For each frozen fragment, it
can be chosen whether its density is kept completely frozen or if it is updated in
freeze-and-thaw cycles. This allows a number of different setups. By employing a
number of frozen fragments it is possible to use an approximate environment density,
that is obtained as a sum of the densities of isolated molecules. On the other hand,
it is also possible to relax the densities of all fragments in freeze-and-thaw cycles,
which provides an efficient alternative to conventional DFT calculations. In addition,
intermediate setups can be employed, in which the densities of a few frozen fragments
are relaxed. This makes it possible to describe the polarization of the environment
with respect to the nonfrozen subsystem.

The implementation employs an efficient numerical integration scheme with an in-
tegration grid that is mainly centered on the nonfrozen subsystem, and makes use
of linear scaling techniques for the evaluation of the electrostatic potential and the
electron density of the frozen subsystems. For large environments, the size of the in-
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tegration grid does not increase and, therefore, the required computer time is almost
constant when the size of the environment increases. This makes it possible to treat
very large environments, for instance in studies of solvent effects, and the efficient
implementation described here has already been used in a number of applications.

Part IV of this thesis includes two applications of the FDE scheme. In Chapter 8, the
accuracy of FDE is investigated for weakly interacting CO2 · · ·X (X = He, Ne, Ar, Kr,
Xe, Hg) van der Waals complexes. By comparing the results of fully converged freeze-
and-thaw FDE calculations in which the densities of both subsystems are optimized
to conventional supermolecular DFT calculations, it is possible to investigate possible
problems in the approximate functionals used for the kinetic-energy component of the
embedding potential. It is found that while the agreement is very good if no basis
functions centered on the frozen system are included, problems arise when these basis
functions are included. This is attributed to the problems in the available approximate
kinetic-energy functionals that are investigated in Chapter 5.

As a second result, Chapter 8 shows how the FDE scheme can be used to apply differ-
ent approximations to the exchange-correlation potential is different regions. In the
case of the investigated CO2 · · ·X complexes, no common exchange-correlation ap-
proximation leads to a good agreement of the induced dipole moment calculated in a
supermolecular DFT calculation with the experimental data. The induced dipole mo-
ment is mainly due to the polarization of the rare gas atom due to the quadrupole mo-
ment of the CO2 molecule. It turns out that no approximation is able to describe both
the polarizability of the rare gas atom and the quadrupole moment of CO2 correctly.
While a conventional GGA functional such as PW91 yields an accurate quadrupole
moment for CO2, it overestimates—because of its wrong asymptotic behaviour—the
polarizability of the rare gas atom. On the other hand, the asymptotically correct
SAOP potential results in polarizabilities that agree very well with experiment, but it
yields an inaccurate quadrupole moment for CO2. The FDE scheme provides a way
to circumvent these problems by combining the PW91 functional for CO2 with SAOP
for the rare gas atom. This combination leads to induced dipole moments that are in
good agreement with experiment.

An important field of application of the FDE scheme is the description of solvent
effects on molecular properties. A realistic description of such solvent effects requires
the inclusion of a large number of solvent molecules to account for the large solvent
environment as well as calculations for a large number of solvent structures to account
for the dynamics of the solvent. Therefore, an efficient method such as FDE is required
for the calculation of the molecular properties.

In Chapter 9, a comparison of FDE with another solvent model, the discrete reac-
tion field (DRF) model, a QM/MM scheme employing a polarizable force field, is
given. The performance of FDE and DRF is compared for dipole and quadrupole
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moments, excitation energies, and polarizabilities. These tests have been performed
for a water molecules surrounded by a solvent shell of 127 water molecules, and only
one representative structure has been used.

It is found that the two solvent models agree well for the ground-state properties
(dipole and quadrupole moments). This shows that the electron density and the oc-
cupied orbitals calculated with FDE and DRF are very similar. However, there are
significant differences for the response properties (excitation energies and polarizabil-
ities). The analysis shows that this is due to two main reasons. First, the description
of the virtual orbitals differs between the two solvent models. In FDE, the kinetic-
energy component of the embedding potential provides a more accurate description
of the effects of Pauli repulsion than the purely electrostatic model employed in DRF.
Second, DRF includes the response of the environment, whereas this term is missing
in FDE. While it is found that this environment response can be neglected in the case
of excitation energies, it becomes important when calculating polarizabilities.

Several projects are already ongoing that build upon the results included in this thesis.
The extension of FDE to the calculation of NMR shieldings is currently being applied
to the calculation of the solvent shifts of the nitrogen shielding of acetonitrile in
different solvents.a Furthermore, the extension of FDE to other magnetic properties,
such as spin–spin couplings is underway.

A very promising extension of FDE is the application of its embedding potential to
couple wave-function based ab initio methods to DFT. Currently, we are working on
the application of such an ab initio-in-DFT embedding scheme to calculate electronic
excitation energies of molecules in solution.b

One of the main challenges remains the extension of the applicability of FDE to
systems in which there are covalent bonds between the active subsystem and the
environment. This will require the development of improved approximate kinetic-
energy functionals. One promising approach might be the application of the ideas
that were used in Chapter 5 to derive the exact long-distance limit in a self-consistent
scheme for the calculation of the exact embedding potential.c

aR. E. Bulo, Ch. R. Jacob, and L. Visscher, “NMR Solvent Shifts of Acetonitrile from Frozen-
Density Embedding Calculations”, to be submitted (2007).

bA. Severo Pereira Gomes, Ch. R. Jacob, and L. Visscher, in preparation (2007).
cCh. R. Jacob and L. Visscher, in preparation (2007).
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De “bevroren dichtheid”-inbeddingsmethode

De “bevroren dichtheid”-inbeddingsmethode (frozen-embedding density, FDE), die
op de dichtheidsfunktionaaltheorie (DFT) gebaseerd is, levert een zeer krachtig hulp-
middel voor de kwantumchemische behandeling van grote systemen. Zij is gebaseerd
op het opdelen van de elektronendichtheid in de dichtheid van een actief subsysteem
en die van een bevroren omgeving. In de berekening van de dichtheid van het actieve
subsysteem wordt het effect van de bevroren omgeving meegenomen door middel van
een effectieve inbeddingspotentiaal, die bestaat uit de elektrostatische potentiaal van
de omgeving, een bijdrage van de exchange-correlatie potentiaal en een deel van de
kinetische energie. In tegenstelling tot de meeste andere inbeddingsmethodes die in
de theoretische chemie worden gebruikt, is de FDE-inbeddingsmethode in principe
exact.

Dit proefschrift behandelt diverse aspecten van de FDE-inbeddingsmethode. Een
inleiding in de methodes van theoretische chemie, in het bijzonder van DFT, en de
FDE-inbeddingsmethode wordt gegeven in deel I van dit proefschrift.

Deel II van dit proefschrift behandelt theoretische uitbreidingen en verbeteringen van
de FDE-inbeddingsmethode. In hoofdstuk 4 wordt daarom aangetoond hoe de FDE-
inbeddingsmethode op de berekening van NMR-verschuivingen kan worden toegepast.
Omdat het voor de beschrijving van magnetische eigenschappen in DFT noodzake-
lijk is om niet alleen de elektronendichtheid als onderliggende variabele te gebruiken,
maar ook de stroomdichtheid, moet het FDE-formalisme hiervoor gegeneraliseerd
worden. Zo’n generalisatie wordt gevonden door uit te gaan van niet-relativistische
(stroom-)dichtheidsfunktionaaltheorie en vervolgens niet alleen de elektronendicht-
heid, maar ook de stroomdichtheid op te delen. Verder wordt aangetoond dat in dit
gegeneraliseerde FDE-formalisme de niet-additive kinetische energie, die nodig is in
de effectieve inbeddingspotentiaal, niet alleen van de elektronendichtheden, maar ook
van de stroomdichtheden in de subsystemen afhangt.

Door de gebruikelijke benaderingen te maken en de stroomafhankelijkheid van zowel
de exchange-correlatie potentiaal als de niet-additive kinetische-energie-funktionaal te
verwaarlozen, raken de stroomdichtheden van de subsystemen, gëınduceerd door een
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externe magnetische veld, ontkoppeld. Hierdoor kan de NMR-verschuiving worden
berekend als de som van de bijdragen van beide subsystemen. Omdat de NMR-
verschuiving slechts afhangt van de gëınduceerde stroomdichtheid in de buurt van de
NMR-actieve kern, is de bijdrage van de gëınduceerde stroomdichtheid in het subsys-
teem dat deze kern bevat dominant. Zodoende kan de bijdrage van de gëınduceerde
stroom in het bevroren subsysteem gewoonlijk worden verwaarloosd. Alles bij elkaar
levert deze uitbreiding van de FDE-inbeddingsmethode een eenvoudige en efficiënte
methode op voor het berekenen van NMR-verschuiving in grote systemen.

Alhoewel de FDE-inbeddingsmethode in principe exact is, bevat de effectieve inbed-
dingspotentiaal een kinetisch-energie component vT , die door de functionele afgeleide
van de niet-additive kinetisch-energie-funktionaal wordt gegeven. Om deze vT te
berekenen, is een benaderde kinetisch-energie-funktionaal nodig, waardoor de toepas-
baarheid van de FDE-inbeddingsmethode wordt beperkt door de nauwkeurigheid van
de beschikbare benaderingen. Hoofdstuk 5 is daarom gewijd aan het verbeteren van
de beschikbare benaderingen voor de kinetisch-energie-component vT van de effectieve
inbeddingspotentiaal.

Eén mogelijke strategie voor het ontwikkelen van benaderde funktionalen is het on-
derzoeken van limietgevallen, waarin het gedrag van deze funktionalen exact bekend
is. In dit hoofdstuk wordt de vorm van vT onderzocht in het geval van een zeer grote
afstand tussen de twee subsystemen. Men kan voor deze limiet aantonen dat de be-
schikbare benaderde kinetisch-energie-funktionalen vT een verkeerde gedrag vertonen
in de gebieden van het bevroren subsysteem. De kinetisch-energie-component vT zou
tegen de elektrostatische en de exchange-correlatie componenten weg moeten vallen,
maar de beschikbare benaderde kinetisch-energie-funktionalen kunnen helaas niet de
grote aantrekkingskracht van de kernen compenseren.

Voor twee testsystemen, een H2O· · ·Li+ complex en een organisch kleurstofmolecuul
dat door 30 watermoleculen is omgeven, wordt aangetoond dat dit verkeerde gedrag
van vT tot te lage energieën van virtuele orbitalen leidt. Dit zou tot ernstige problemen
kunnen leiden door ofwel convergentieproblemen te veroorzaken of door verkeerde
excitaties in berekeningen van respons-eigenschappen te introduceren. Gebaseerd
op de kennis van de exacte vorm van vT in de limiet van lange afstanden tussen
de subsystemen, kan een correctie worden opgesteld die in dit geval de juiste vorm
afdwingt en zo de waargenomen problemen oplost.

In deel III van dit proefschrift (hoofdstukken 6 en 7) wordt een implementatie van de
FDE-inbeddingsmethode beschreven. In deze flexibele implementatie bestaat het to-
tale systeem uit een willekeurig aantal fragmenten (subsystemen). Voor elk bevroren
fragment kan worden gekozen of zijn dichtheid volledig bevroren zal worden gehou-
den of dat het in “freeze-and-thaw”-iteraties (“bevriezen-en-ontdooien”-iteraties) zal
worden bijgewerkt. Dit maakt verschillende beschrijvingen van het totale systeem
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mogelijk. Zo is het mogelijk om door meerdere bevroren fragmenten te gebruiken
een benaderde omgevingsdichtheid te verkrijgen die de som is van de dichtheden van
gëısoleerde moleculen. Ook is het mogelijk om de dichtheid van alle fragmenten in
“freeze-and-thaw”-iteraties bij te werken, wat een efficiënt alternatief voor conventio-
nele DFT-berekeningen kan zijn. Bovendien kan een combinatie van beide technieken
gebruikt worden, dan worden slechts de dichtheden van een paar bevroren fragmenten
bijgewerkt met “freeze-and-thaw”-iteraties. Dit maakt het mogelijk om de polarisatie
van de omgeving als gevolg van het actieve subsysteem te beschrijven.

De implementatie maakt gebruik van een efficiënte methode voor numerieke integra-
tie met een integratierooster dat voornamelijk gecentreerd is op het niet-bevroren
subsysteem en bovendien gebruik maakt van “lineaire schalings”-technieken voor de
evaluatie van de elektrostatische potentiaal en de elektronendichtheden van de be-
vroren subsystemen. Doordat voor voldoend grote omgevingen de grootte van het
integratierooster niet toeneemt is de vereiste computertijd bijna constant met de
grootte van de omgeving. Dit maakt het mogelijk om zeer grote omgevingen, in bij-
voorbeeld in studies van oplosmiddeleffecten, te gebruiken en heeft al geleid tot een
aantal toepassingen.

Deel IV van dit proefschrift behandelt twee toepassingen van de FDE-inbeddingsme-
thode. In hoofdstuk 8 wordt de nauwkeurigheid van de FDE-methode onderzocht
voor zwak-wisselwerkende CO2·X (X = He, Ne, Ar, Kr, Xe, Hg) van-der-Waals-
complexen. Door de resultaten van “freeze-and-thaw”-FDE berekeningen waarin de
dichtheden van beide subsystemen geoptimaliseerd zijn te vergelijken met conventi-
onele DFT-berekeningen voor het totale systeem, is het mogelijk om problemen te
onderzoeken in de benaderde funktionalen voor de kinetisch-energie-component van
het inbeddingspotentiaal. Uit deze vergelijking blijkt dat de berekeningen waarin
de basisfuncties van de bevroren subsysteem niet worden gebruikt goed met elkaar
overeenkomen. Zodra deze basisfuncties echter worden meegenomen, treden proble-
men op. Dit wordt toegeschreven aan de problemen in de beschikbare benaderde
kinetisch-energie-funktionalen die in hoofdstuk 5 werden onderzocht.

Als tweede resultaat toont hoofdstuk 8 hoe de FDE-inbeddingsmethode kan wor-
den gebruikt om verschillende benaderingen voor de exchange-correlatie potentiaal in
verschillende gebieden te gebruiken. Voor de onderzochte CO2·X complexen leiden
de gebruikelijke exchange-correlatie benaderingen niet tot een goede overeenstem-
ming van de gëınduceerde dipoolmomenten uit de standaard DFT-berekeningen met
de experimentele waarden. Het gëınduceerde dipoolmoment is hoofdzakelijk toe te
schrijven aan de polarisatie van het edelgasatoom door het quadrupoolmoment van de
CO2-molecuul. Het blijkt dat geen van de benaderingen zowel de polariseerbaarheid
van het edelgasatoom als het quadrupoolmoment van CO2 correct kan beschrijven.
Terwijl een conventionele GGA funktionaal zoals PW91 een nauwkeurig quadrupool-
moment voor CO2 oplevert, overschat zo’n funktionaal door zijn verkeerde asympto-
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tisch gedrag de polariseerbaarheid van het edelgasatoom. Van de andere kant, voor
een asymptotisch correcte potentiaal zoals SAOP komen de polariseerbaarheden goed
overeen met het experiment, maar zij geven een onnauwkeurig quadrupoolemoment
voor CO2. De FDE-inbeddingsmethode is een manier om deze problemen te omzeilen
door de PW91 funktionaal voor CO2 en SAOP voor het edelgasatoom te gebruiken.
Deze combinatie leidt tot gëınduceerde dipoolmomenten die in goede overeenstem-
ming met het experiment zijn.

Een belangrijk toepassingsgebied van de FDE-inbeddingsmethode is de beschrijving
van oplosmiddeleffecten op moleculaire eigenschappen. Voor een realistische beschrij-
ving van de invloed van een oplosmiddel moet een groot aantal oplosmiddel-moleculen
meegenomen worden evenals een groot aantal van structuren om de dynamica van het
oplosmiddel goed te beschrijven. Daarom is voor de berekening van de moleculaire
eigenschappen een efficiënte methode zoals FDE nodig.

In hoofdstuk 9 wordt een vergelijking gemaakt tussen FDE met een ander model voor
de berekening oplosmiddeleffecten, het “discrete reaction field” (DRF) model. Dit
is een QM/MM methode die een polariseerbaar krachtveld gebruikt. De resultaten
van FDE en DRF modellen worden vergeleken voor dipool- en quadrupoolmomenten,
excitatieenergiën en polariseerbaarheden. Als testsystem wordt een watermolecuul
gebruikt, die door 127 watermoleculen omringd wordt, en er wordt slechts één repre-
sentatieve structuur gebruikt.

Voor eigenschappen van de grondtoestand (dipool- en quadrupolemomenten) stem-
men de twee modellen goed overeen. Dit toont aan dat de elektronendichtheid en de
bezette orbitalen, die met FDE en DRF worden berekend, zeer vergelijkbaar zijn. Er
zijn echter significante verschillen voor de respons-eigenschappen (excitatieenergiën
en polariseerbaarheiden). De analyse toont aan hiervoor twee belangrijke oorzaken
zijn. Ten eerste verschillen in de twee modellen de beschrijvingen van de virtuële
orbitalen. De kinetisch-energie-component van het FDE-inbeddingspotentiaal geeft
een nauwkeuriger beschrijving van de Pauli-repulsie dan het uitsluitend elektrostati-
sche model in DRF. Ten tweede, omvat het DRF-model de respons van de omgeving,
terwijl deze bijdrage in FDE mist. Deze omgevings-respons is verwaarloosbaar voor
excitatieenergiën, maar belangrijk voor polariseerbaarheden.

Er lopen reeds verscheidene projecten die voortbouwen op de resultaten van dit proef-
schrift. De uitbreiding van FDE voor de berekening van NMR-verschuivingen wordt
momenteel toegepast in de berekening van de invloed van verschillende oplosmid-
delen op de N-verschuiving van acetonitrile.a Verder wordt momenteel de FDE-
inbeddingsmethode uitgebreid voor de berekening van andere magnetische eigenschap-
pen, zoals spin-spin-koppelingen.

aR. E. Bulo, Ch. R. Jacob, and L. Visscher, “NMR Solvent Shifts of Acetonitrile from Frozen-
Density Embedding Calculations”, to be submitted (2007).
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Een zeer veelbelovende uitbreiding van FDE is om door middel van de FDE-in-
beddingspotentiaal golffunctie gebaseerde ab initio methodes (wave-function theo-
ry, WFT) aan DFT te koppelen. Momenteel werken wij aan de toepassing van een
dergelijke WFT-in-DFT-inbeddingsmethode om elektronische excitatieenergiën van
moleculen in een oplosmiddel te berekenen.b

Een van de belangrijkste uitdagingen blijft het vinden van een uitbreiding van de
FDE-inbeddingsmethode zodat deze toe te passen zal zijn op systemen waarin het
actieve subsysteem covalente bindingen heeft met de bevroren omgeving. Dit zal de
ontwikkeling van betere benaderde kinetisch-energie-funktionalen vereisen. Een veel-
belovende aanpak zou de toepassing van de ideeën van hoofdstuk 5 op de berekening
van de exacte inbeddingspotentiaal kunnen zijn.c

bA. Severo Pereira Gomes, Ch. R. Jacob, and L. Visscher, in preparation (2007).
cCh. R. Jacob and L. Visscher, in preparation (2007).

191



Samenvatting

192



Zusammenfassung

Das “gefrorene Dichte”-Einbettungsverfahren

Das “gefrorene Dichte”-Einbettungsverfahren (frozen-density embedding, FDE),
welches auf der Dichtefunktionaltheorie (DFT) basiert, ist ein sehr leistungsfähiges
Werkzeug für die quantenchemische Beschreibung großer Systeme. Es basiert auf einer
Unterteilung der Elektronendichte des Gesamtsystems in die Elekronendichten eines
aktiven Subsystems und einer gefrorenen Umgebung. In der Berechnung der Elek-
tronendichte des aktiven Subsystems wird der Effekt dieser gefrorenen Umgebung
durch ein effektives Einbettungspotential repräsentiert, welches das elektrostatische
Potential der Umgebung, einen Beitrag des Austausch-Korrelations-Potentials sowie
eine kinetische Energie-Komponente enthält. Im Gegensatz zu den meisten anderen
Einbettungsverfahren, die in der theoretischen Chemie verwendet werden, ist das
FDE-Einbettungsverfahren im Prinzip exakt.

Diese Doktorarbeit behandelt verschiedene Aspekte des FDE-Einbettungsverfahrens.
Eine Einführung in die Methoden der theoretischen Chemie, insbesondere DFT, sowie
des FDE-Einbettungsverfahrens wird in Teil I dieser Arbeit gegeben.

In Teil II dieser Arbeit werden verschiedene theoretische Erweiterungen und Verbes-
serungen des FDE-Einbettungsverfahrens vorgestellt. In Kapitel 4 wird gezeigt, wie
sich FDE für die Berechnung von NMR-Verschiebungen anwenden lässt. Da es für
die Behandlung solcher magnetischer Eigenschaften in DFT notwendig ist, nicht nur
die Elektronendichte sondern auch die Stromdichte als grundlegende Variablen zu
verwenden, ist es hierfür nötig den FDE-Formalismus zu verallgemeinern. Ausgehend
von nicht-relativistischer (Strom-)Dichtefunktionaltheorie und einer Partitionierung
sowohl der Elektronendichte als auch der Stromdichte wird eine solche verallgemei-
nerte Formulierung präsentiert. Es wird weiter gezeigt, dass in einer solchen verall-
gemeinerten Formulierung die nicht-additive kinetische Energie, welche im effektiven
Einbettungspotential benötigt wird, nicht nur von den Elektronendichten der Subsys-
teme abhängt, sondern auch von den Stromdichten in den Subsystemen.

Wenn die üblichen Näherungen eingeführt und die Abhängigkeit des Austausch-Kor-
relations-Potentials sowie des Funktionals der nicht-additiven kinetischen Energie von
der Stromdichte vernachlässigt werden, erhält man eine Formulierung in welcher
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die Stromdichten in den beiden Subsystemen, die durch ein externes magnetisches
Feld induziert werden, nicht gekoppelt sind. Dadurch kann die NMR-Verschiebung
als Summe von Beiträgen der beiden Subsysteme berechnet werden. Da die NMR-
Verschiebung nur von der induzierten Stromdichte in unmittelbarer Nähe des NMR-
aktiven Atomkerns abhängt, dominiert hierbei der Beitrag des Subsystems, welches
diesen Atomkern enthält und der Beitrag des gefrorenen Subsystems kann in der
Regel vernachlässigt werden. Die vorgestellte Verallgemeinerung des FDE-Einbett-
ungsverfahrens führt hierdurch zu einem einfachen und effizienten Verfahren für die
Berechnung von NMR-Verschiebungen in großen Systemen.

Auch wenn das FDE-Einbettungsverfahren im Prinzip exakt ist, enthält das effekti-
ve Einbettungspotential einen Beitrag vT der kinetischen Energie, welcher durch die
Funktionalableitung der nicht-additiven kinetischen Energie gegeben ist. Um diesen
Beitrag vT zu berechnen wird ein genähertes Funktional benötigt und die Anwend-
barkeit des FDE-Verfahrens ist durch die Genauigkeit dieses genäherten Funktionals
begrenzt. Kapitel 5 ist der Verbesserung der Näherungen für diesen Beitrag vT ge-
widmet.

Eine mögliche Strategie für die Entwicklung genäherter Funktionale ist es, Grenzfälle
zu untersuchen, für die das exakte Verhalten dieser Funktionale bekannt ist. Im vor-
liegenden Fall wird die Form von vT für den Grenzfall eines sehr großen Abstandes
zwischen den beiden Subsystemen untersucht. Es wird gezeigt, dass die zur Verfügung
stehenden genäherten Funktionale der kinetischen Energie zu einer falschen Form von
vT am gefrorenen Subsystem führen. Dort sollte der Beitrag der kinetischen Energie
den elektrostatischen sowie den Austausch-Korrelations-Beitrag aufheben, aber die
genäherten Funktionale können die starke Anziehung der Atomkerne nicht kompen-
sieren.

Für zwei Testsysteme, einen H2O· · ·Li+–Komplex und ein organisches Farbstoffmo-
lekül umgeben von 30 Wassermolekülen, wird gezeigt, dass dieses falsche Verhalten
von vT zu zu niedrigen Energien virtueller Orbitale führt, was zu Konvergenzproble-
men und einer falsche Beschreibung von Anregungsenergien und anderen Response-
Eigenschaften führen kann. Basierend auf der exakten Form von vT im Grenzfall
langer Abstände zwischen den beiden Subsystemen wird eine Korrektur vorgeschla-
gen, welche die korrekte Form von vT in diesem Grenzfall sicherstellt und dadurch die
beobachteten Probleme behebt.

In Teil III dieser Doktorarbeit (Kapitel 6 und 7) wird eine Implementierung des FDE-
Einbettungsverfahrens beschrieben. In dieser flexiblen Implementierung wird das Ge-
samtsystem aus einer beliebigen Anzahl von Fragmenten (Subsystemen) aufgebaut.
Für jedes gefrorene Fragment kann gewählt werden, ob die Elektronendichte dieses
Fragmentes komplett gefroren ist, oder ob es in “freeze-and-thaw”-Iterationen (“Ein-
frieren und Auftauen”-Iterationen) aktualisiert wird. Dies ermöglicht verschiedene
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Beschreibungen des Gesamtsystems. Indem mehrere gefrorene Fragmente verwendet
werden ist es möglich eine genäherte gefrorene Dichte für die Umgebung zu verwenden,
die als Summe der Dichten der einzelnen Fragmente erhalten wird. Des weiteren ist es
möglich, die Dichten aller Fragmente in “freeze-and-thaw”-Iterationen zu berechnen,
was eine effiziente Alternative zu gewöhnlichen DFT-Rechnungen liefert. Außerdem
sind gemischte Varianten möglich, in denen nur die Dichten einiger weniger gefrore-
ner Fragmente in “freeze-and-thaw”-Iterationen aktualisiert werden. Dies macht es
möglich, die Polarisierung der Umgebung durch das aktive System zu beschreiben.

Die Implementierung verwendet ein effizientes numerisches Integrationsverfahren mit
einem Integrationsgitter das hauptsächlich auf dem nicht-gefrorenen Subsystem loka-
lisiert ist. Des weiteren werden für die Berechnung der Elektronendichte und des
elektrostatischen Potentials der gefrorenen Subsysteme effiziente “linear scaling”-
Techniken verwendet. Für große Umgebungen ist die Größe des benötigten Integra-
tionsgitters nahezu konstant, was dazu führt dass die benötigte Rechenzeit eben-
falls konstant ist und nicht mit der Größe der gefrorenen Umgebung ansteigt. Das
ermöglicht Berechnungen mit sehr großen gefrorenen Umgebungen, zum Beispiel zur
Beschreibung von Lösungsmitteleffekten. Die beschriebene effiziente Implementierung
wurde bereits in mehreren solchen Untersuchungen angewendet.

Teil IV dieser Doktorarbeit enthält zwei Anwendungen des FDE-Einbettungsverfahr-
ens. In Kapitel 8 wird die Genauigkeit des FDE-Verfahrens für schwach wechselwir-
kende CO2 · · ·X (X = He, Ne, Ar, Kr, Xe, Hg) van-der-Waals-Komplexe untersucht.
Durch Vergleich der Ergebnisse von komplett konvergierten “freeze-and-thaw”-FDE-
Berechnungen, in denen die Elektronendichten beider Subsysteme optimiert werden,
mit gewöhnlichen DFT-Rechnungen am Supermolekül ist es möglich, Probleme der
verwendeten genäherten Funktionale der kinetischen Energie zu untersuchen. Dabei
zeigt sich, dass für den Fall, dass die Basisfunktionen des gefrorenen Subsystems nicht
in der Berechnung des aktiven Subsystems verwendet werden, gute Ergebnisse erzielt
werden, während Probleme auftreten, wenn diese Basisfunktionen berücksichtigt wer-
den. Dies wird auf Probleme des verwendeten Funktionals der kinetischen Energie
zurückgeführt, die in Kapitel 5 eingehender untersucht wurden.

Als ein weiteres Ergebnis zeigt Kapitel 8, dass das FDE-Einbettungsverfahren ange-
wendet werden kann, um verschiedene Näherungen für das Austausch-Korrelations-
Potential für verschiedene Regionen zu verwenden. Im Fall der untersuchten
CO2 · · ·X -Komplexe liefert keine der verfügbaren Näherungen für das Austausch-
Korrelations-Potential eine gute Übereinstimmung der in den supermolekularen DFT-
Rechnungen erhaltenen induzierten Dipolmomente mit den experimentellen Daten.
Dieses induzierte Dipolmoment kommt durch die Polarisierung des Edelgasatoms
durch das Quadrupolmoment des CO2-Moleküls zustande. Es zeigt sich, dass kei-
nes der genäherten Austausch-Korrelations-Potentiale sowohl die Polarisierbarkeit des
Edelgasatoms als auch das Quadrupolmoment des CO2-Moleküls korrekt beschreibt.
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Während Standard-GGA-Funktionale wie zum Beispiel PW91 das Quadrupolmoment
von CO2 korrekt beschreiben, überschätzen diese Funktionale durch ihr falsches asym-
ptotisches Verhalten die Polarisierbarkeit der Edelgasatome. Andererseits liefert das
asymptotisch korrekte SAOP-Potential Polarisierbarkeiten, die gut mit den experi-
mentellen Daten übereinstimmen, dieses führt aber gleichzeitig zu einer ungenau-
en Beschreibung des Quadrupolmoments von CO2. Das FDE-Einbettungsverfahren
ermöglicht es, diese Probleme durch eine Kombination von PW91 für CO2 mit der
Verwendung von SAOP für das Edelgasatom zu umgehen. Hierdurch ist es möglich,
induzierte Dipolmomente zu erhalten, die gut mit den experimentellen Daten über-
einstimmen.

Ein wichtiges Anwendungsgebiet des FDE-Einbettungsverfahrens ist die Beschrei-
bung von Lösungsmitteleffekten auf molekulare Eigenschaften. Für eine realistische
Beschreibung solcher Lösungsmitteleffekte ist es notwendig, sowohl ein große An-
zahl von Molekülen des Lösungsmittels zu berücksichtigen als auch eine Vielzahl von
Lösungsmittelstrukturen zu betrachten, um so die Dynamik der Moleküle in Lösung
angemessen beschreiben zu können. Aus diesen Gründen wird für die Berechnung der
molekularen Eigenschaften eine sehr effiziente Methode wie FDE benötigt.

In Kapitel 9 wird ein Vergleich des FDE-Einbettungsverfahrens mit einem anderen
Modell für Lösungsmitteleffekte, dem “discrete reaction field”-Modell (DRF-Modell),
einem QM/MM-Verfahren welches ein polarisierbares Kraftfeld verwendet, präsent-
iert. Dieser Vergleich wird für Dipol- und Quadrupolmomente, Anregungsenergien
sowie für Polarisierbarkeiten durchgeführt. Dabei wird ein Wassermolekül umgeben
von einer Lösungsmittelhülle aus 127 Wassermolekülen verwendet, wobei nur eine
einzige repräsentative Struktur verwendet wird.

Es zeigt sich, dass für Grundzustandseigenschaften (Dipol- und Quadrupolmomente)
die beiden Methoden gut übereinstimmen. Das zeigt dass die Elektronendichte und die
besetzen Orbitale mit FDE und DRF sehr ähnlich sind. Für Response-Eigenschaften
(Anregungsenergien und Polarisierbarkeiten) werden allerdings deutliche Unterschie-
de beobachtet. Die durchgeführten Analysen führen diese Unterschiede auf zwei Ur-
sachen zurück. Erstens unterscheidet sich die Beschreibung der virtuellen Orbitale
zwischen den beiden Methoden. In den FDE-Rechnungen führt der Beitrag der kine-
tischen Energie zum Einbettungspotential zu einer genaueren Beschreibung der Pauli-
Abstoßung der Umgebung als das rein elektrostatische Einbettungspotential, das im
DRF-Modell verwendet wird. Zweitens berücksichtigt DRF den Response der Umge-
bung, während dieser Beitrag in den FDE-Rechnungen fehlt. Es zeigt sich dass dieser
Beitrag für Anregungsenergien vernachlässigt werden kann, aber für die Berechnung
von Polarisierbarkeiten berücksichtigt werden muss.

Mehrere laufende Projekte bauen auf die Ergebnisse dieser Doktorarbeit auf. Die Er-
weiterung des FDE-Einbettungsverfahrens auf die Berechnung von NMR-Verschieb-
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ungen wird zur Zeit angewendet, um den Effekt verschiedener Lösungsmittel auf
die N-Verschiebung in Acetonitril zu beschreiben.a Des weiteren wird an der Erwei-
terung des FDE-Verfahrens auf weitere magnetische Eigenschaften, z.B. Spin-Spin-
Kopplungskonstanten, gearbeitet.

Eine weitere viel versprechende Verallgemeinerung des FDE-Einbettungsverfahrens
ist die Anwendung des FDE-Einbettungspotentials um ab initio Methoden, die auf
der Berechnung der Wellenfunktion basieren (wave function theory, WFT), mit DFT
zu koppeln. Zur Zeit arbeiten wir an der Anwendung eines solchen “WFT-in-DFT”-
Einbettungsverfahrens zur Berechnung von elektronischen Anregungsenergien von
Molekülen in Lösung.b

Eine der größten Herausforderungen bleibt die Erweiterung der Anwendbarkeit des
FDE-Verfahrens auf Systeme mit kovalenten Bindungen zwischen dem aktiven Sub-
system und der gefrorenen Umgebung. Hierfür werden verbesserte Funktionale der
kinetischen Energie benötigt. Ein viel versprechender Ansatz hierfür könnte die An-
wendung der in Kapitel 5 vorgestellten Ideen zur Berechnung des exakten Einbet-
tungspotentials sein.c

aR. E. Bulo, Ch. R. Jacob und L. Visscher, “NMR Solvent Shifts of Acetonitrile from Frozen-Density
Embedding Calculations”, to be submitted (2007).

bA. Severo Pereira Gomes, Ch. R. Jacob und L. Visscher, in preparation (2007).
cCh. R. Jacob und L. Visscher, in preparation (2007).
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A. ADF NewFDE User’s Guide

this is an extended version of the

FDE User’s Guide contained in the Adf manual

(http://www.scm.com)

A.1. Introduction

In the orbital-free frozen-density embedding (FDE) formalism,8 the environment of an
embedded subsystems is accounted for by means of the embedding potential depend-
ing explicitly on electron densities corresponding to the embedded subsystem (e.g.,
a solvated molecule) and its environment (e.g., solvent). For a detailed review, see
Ref. 48. The Adf implementation of the method is described in detail in Refs. CJ4,
CJ9. The implementation of FDE in Adf2007 has been completely revised and
improved. Therefore, the input format has been changed with respect to Adf2006.

A time-dependent linear-response generalization of this embedding scheme was de-
rived in Ref. 59. Its implementation in an approximate form, which assumes a local-
ized response of the embedded system only, is described in the supplementary material
to Ref. 60. For possible drawbacks and pitfalls in connection with this approximation,
see Refs. CJ4, CJ5, 83.

A generalization of the FDE scheme to the calculation of NMR shieldings has been
given in Ref. CJ6, where also the approximations involved and possible problems are
discussed.

The current implementation in Adf allows the calculation of molecular properties
that only depend on the electron density and of response properties using TDDFT.
For an application to the calculation of several molecular properties in solution and
a comparison to the DRF model also available in Adf, see Ref. CJ5. For further
applications of the Adf implementation, see Ref. CJ3 (weakly interacting complexes)
and Refs. CJ4, CJ5, 50, 76 (solvent effects) and83,88,89 (other environment effects).

In the Examples section at the end of this User’s Guide, several examples of different
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FDE calculations can be found.

A.2. FDE Input

To invoke a frozen-density embedding calculation, two additional specifications in the
input are required. First, one or more frozen fragments have to be included in the
FRAGMENTS block, and second, the block key FDE has to be included. In the simplest
case, this input should look like this:

FRAGMENTS
...
FragType FragFile type=FDE
...

END

FDE
PW91K

END

In the FRAGMENTS block, for any fragment it is possible to specify the option type=FDE
to indicate that the density of this fragment is kept frozen. This density is imported
from the file FragFile. The frozen fragments have to be included in addition to the
usual, nonfrozen fragments. The atoms of the frozen fragments have to be included
in the ATOMS block. As with normal fragments, the fragment found in the file will be
rotated and translated to its position specified in the ATOMS block. For more details
on specifying fragments, see the section “fragment files” of the Adf manual. In the
FDE input block, the recommended PW91k functional is chosen for the nonadditive
kinetic energy. For all other options the defaults will be used.

By including more than one frozen fragment, it is possible to use a frozen fragment
that is a superposition of the densities of isolated molecules (this was possible in the
previous version of Adf using the DENSPREP option). For a discussion and tests of
the use of such approximate environment densities, see Ref. 76.

There is no restriction on the use of symmetry in FDE calculations, and usually the
correct symmetry will be detected automatically. However, in the preparation of
frozen fragments that will be rotated and/or translated in the FDE calculation, for
technical reasons one has to include the keyword NOSYMFIT.

In the current implementation, only the electron density of the embedded (nonfrozen)
system is calculated. Therefore, only properties that depend directly on the electron

202



A.3. Fragment-specific FDE options

density (e.g., dipole moments) are available. In particular, the calculation of interac-
tion energies or of energy gradients is not implemented yet. All quantities given in
the output refer (unless explicitly specified otherwise) to the nonfrozen system only.

The TDDFT extension of the FDE formalism allows the calculation of electronic
excitation energies and polarizabilities. This extension is automatically activated if
FDE is used in combination with the EXCITATIONS or the RESPONSE key.

To employ the extension of FDE to the calculation of NMR shieldings, the file TAPE10
has to be used in the FDE calculation (by including the option SAVE TAPE10), and
subsequently the NMR shielding has to be calculated using the program Nmr (not
with Esr).

A.3. Fragment-specific FDE options

For each frozen fragment, several additional options can be applied. To do this,
the fragment specification is used as a subblock key by appending a & sign. The
subblock is terminated with SubEnd. This subblock key looks, in the most general
form, as follow:

FRAGMENTS
...
FragType FragFile type=FDE &

{FDEOPTIONS [USEBASIS] [RELAX]}
{FDEDENSTYPE [SCF | SCFexact | SCFfitted | FullSum ]}
{RELAXCYCLES n}
{XC [LDA | GGA ggapotx ggapotc | MODEL SAOP]}

SubEnd
...

END

FDE options

• FDEOPTIONS USEBASIS
If the USEBASIS option is specified, the basis functions of this frozen fragment
will be included in the calculation of the nonfrozen subsystem. This allows it
to apply the so-called “supermolecular basis set expansion”, also referred to as
FDE(s) calculations, which are often useful for benchmarking.

• FDEOPTIONS RELAX
If the RELAX option is specified, the density of this frozen fragment will be
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relaxed in freeze-and-thaw cycles, i.e., the active subsystem is frozen, while this
fragment is thawed. This is repeated, until convergence is reached or until
the maximum number of iterations has been performed. By relaxing frozen
fragments, it is possible to improve a given approximate environment density
by including the polarization of the environment due to the embedded system.

• FDEOPTIONS USEBASIS RELAX
It is further possible to combine USEBASIS and RELAX. In this case, the basis
functions of the nonfrozen fragment will be included when the density of the
fragment is relaxed. This allows fully relaxed FDE(s) calculations.

DENSTYPE

The FDEDENSTYPE option can be used to specify which density is read from the frag-
ment file. The possible options are:

• FDEDENSTYPE SCF (or FDEDENSTYPE SCFexact)
The exact density (not calculated using the fit functions) is used. This is the
default.

• FDEDENSTYPE SCFfitted
The fitted density is used. This is in general more efficient, but can lead to less
accurate results.

• FDEDENSTYPE FullSum
The superposition of the densities of the initial fragments is used. This option
is only included for compatibility with the DENSPREP option included in the
previous version of Adf.

Options for relaxing

The remaining options can be used for fragments that are relaxed.

• RELAXCYCLES n
This gives the maximum number of freeze-and-thaw cycles that are performed
for this fragment. If the maximum number given in the FDE block is smaller,
or if convergence is reached earlier, then less cycles are performed.

• XC
The XC option can be used to select the exchange-correlation potential that is
used for this fragment when it is relaxed. By default, the same potential as for
the nonfrozen system is used, but in some cases it might be preferable to use
another approximation for certain fragments.
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– XC LDA
This option selects LDA as exchange-correlation potential for relaxing this
fragment.

– XC GGA ggapotx ggapotc
This selects a GGA potential for relaxing this fragment. The GGA poten-
tial is specified by giving the name of the exchange potential, followed by
the name of the correlation potential. The available potentials are listed
in the documentation for the XC key.

– XC MODEL SAOP
This selects the model potential SAOP for relaxing this fragment.

A.4. General FDE options

In addition to the fragment-specific options, there are also a number of options avail-
able in FDE calculations that will be described in the following.

FDE
{kinetic energy functional}
{CJCORR}
{GGAPOTXFD exchange functional}
{GGAPOTCFD correlation functional}
{FULLGRID}
{RELAXCYCLES n}

end

kinetic energy functional

There are several approximate kinetic energy functionals available, that can be used
for the nonadditive kinetic energy in the effective embedding potential. If no kinetic
energy functional is specified, by default the local-density approximation (Thomas-
Fermi functional) is used. For an assessment of functionals for weakly interacting
systems see Ref. 40. Based on this study, the use of PW91k is recommended.

• THOMASFERMI (default)
Thomas-Fermi LDA functional34,35

• WEIZ
gradient-dependent von Weizsäcker functional36 (no LDA part included)

• TF9W
Thomas-Fermi functional + 1/9 von Weizsäcker functional
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• PW91k (recommended functional)
GGA functional based on PW91 exchange functional, reparametrized for the
kinetic energy by Lembarki and Chermette58

• LLP91
GGA functional based on Becke88 exchange functional, reparametrized for the
kinetic energy by Lee, Lee, and Parr55

• PW86k
GGA functional based on PW86 exchange functional235

• OL91A, OL91B
gradient-dependent functionals OL1 and OL2 by Ou-Yang and Levy236

• THAKKAR92
gradient-dependent functional by Thakkar237

• COULOMB
This option does not stand for a kinetic energy functional, but it disables the
nonadditive kinetic energy part and the exchange-correlation part in the em-
bedding potential. The remaining embedding potential will only contain the
Coulomb interaction with the frozen density. Note that the use of this option
is not recommended, it is useful for analysis purposes only.

long-distance correction

As was shown in Ref. CJ7, with the available approximate kinetic-energy functionals,
the embedding potential has the wrong form in the limit of a large separation of the
subsystems. In particular, it was shown that this can have serious consequences in the
case of FDE(s) calculations (USEBASIS option). In Ref. CJ7, a correction is proposed
that enforces the correct long-distance limit (See also Ref. CJ7 for limitations of this
correction).

• CJCORR [rho cutoff]
This option switches on the long-distance correction. This option has to be used
in combination with one of the above kinetic-energy functionals. By default, a
density cut-off of 0.1 is employed.

nonadditive exchange-correlation functional

By default, in the construction of the effective embedding potential the exchange-
correlation functional that was specified in the XC block is used. It is possible to
specify a different functional with the GGAPOTXFD and GGAPOTCFD options. This is
particularly useful in combination with the use of model potentials like SAOP, that

206



A.4. General FDE options

can not be used in the embedding potential because of their orbital dependence (for
a discussion, see Ref. CJ3).

• GGAPOTXFD exchange functional
The exchange functional is used in the construction of the embedding potential.
The same exchange functionals as in the XC key are available.

• GGAPOTCFD correlation functional
The correlation functional is used in the construction of the embedding poten-
tial. The same correlation functionals as in the XC key are available.

integration grid

• FULLGRID

By default, FULLGRID is not used, and in FDE calculations the integration grid
is generated as described in Ref. CJ4 by including only atoms of the frozen sys-
tem that are close to the nonfrozen system in the generation of the integration
grid. The distance cutoff used is chosen automatically based on the extend of
the basis functions of the nonfrozen system. (It can also be chosen manually,
see the option qpnear in the INTEGRATION key.) This scheme results in a ef-
ficient and accurate integration grid. However, it is possible that the default
integration scheme is not accurate enough. This can be the case for weakly in-
teracting systems and when the distance between the frozen and the nonfrozen
system is large. It is therefore recommended to check the quality of the default
integration grid by comparing to results obtained using the full supermolecular
grid (FULLGRID option).

If the subkey FULLGRID is included all atoms of the frozen system are included in
the generation of the integration grid. This results in the same grid that would
be used in a supermolecular calculation of the combined frozen and nonfrozen
system. The integration grid generated by this option might be much larger
than the default grid. This option should be used to check the quality of the
default integration grid.

freeze-and-thaw iterations

• RELAXCYCLES n
Specifies the maximum number n of freeze-and-thaw iterations that are per-
formed (for frozen fragments with the RELAX) option. If a smaller number of
iterations is specified as a fragment-specific option, for this fragment this smaller
number is used. Furthermore, if convergence is reached earlier, no more itera-
tions will be performed.
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• RELAXPOSTSCF
If this option is included, several post-SCF properties will be calculated after
each freeze-and-thaw cycle. These are otherwise only calculated in the last cycle.

A.5. Subfragments and superfragments

It is possible to apply the results of an FDE calculation as a fragments in another
calculation. In this case, the frozen fragments and the active subsystem of the FDE
calculation can be used separately. This might be useful for performing freeze-and-
thaw cycles manually. However, this is an option for expert users only. In most
common cases, it should be sufficient to apply the RELAX option and suitable fragment-
specific options.

Suppose in the FDE calculation, two frozen fragments frozen1 and frozen2 have been
used. If the results of this calculation are used in another calculation, three fragments
are available: the active (nonfrozen) subsystem from the FDE calculation, and the
two frozen fragments. These can be used as follows:

FRAGMENTS
...
FragType1 FragFile [superfrag=FragType] subfrag=active
FragType2 FragFile [superfrag=FragType] subfrag=frozen1
FragType3 FragFile [superfrag=FragType} subfrag=frozen2
...

END

For all three fragments, the same fragment file (from the previous FDE calculation)
has been used, and the subfrag option has been used to specify which fragment from
this previous calculation should be used. The subfragment “active” refers to the active
(nonfrozen) subsystem of the previous calculation. However, this active fragments can
be composed of several nonfrozen fragments in this previous calculation. The sub-
fragments “frozen1” and “frozen2” refer to frozen fragments with these names in the
previous FDE calculations. In addition, it is of course possible to specify type=FDE for
any of these three fragements, possibly also in combination with additional fragment-
specific options.

If the same fragment file is used multiple times, the option superfrag can be used to
specify which subfragments belong together. The subfragments that belong together
will be rotated and translated as one fragment, i.e., the geometry of the total sys-
tem from the previous calculation must not be changed. Therefore, also all parts of
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this total system (the active subsystem and all frozen fragments) have to be used,
otherwise this will result in an error.

If only some fragments of the previous FDE calculation (e.g., only the active sub-
system) should be used, one has to include the key ALLOW PARTIALSUPERFRAGS in
the input. However, in this case it could be that the rotation and translation is not
unique, so that it is up to the user to ensure that the fragment has been handled
correctly.

If in a previous FDE calculation a single frozen fragment frozen has been used, a
manual freeze-and-thaw cycle can be performed using a FRAGMENTS block similar to
the following:

FRAGMENTS
frozen FragFile subfrag=active type=FDE
frag_bla FragFile subfrag=frozen

END

This means that the active fragment of the previous calculation (now called frozen) is
used as a frozen fragment, while the previously frozen fragment (now called frag bla)
is used as nonfrozen fragment.

A.6. Restrictions and pitfalls

In the current implementation, only the electron density of the embedded system is
calculated. Therefore, only properties that depend directly on the electron density
(e.g., dipole moments) are available. In addition, the TDDFT extension allows the
calculation of electronic excitation energies and polarizabilities, and NMR shieldings
can be calculated.

Everything else is not yet implemented. In particular, interaction energies and energy
gradients are not yet available.

Kinetic energy functional

Although the effective embedding potential is derived from first principles using uni-
versal density functionals, the Adf implementation relies on approximations. Cur-
rently, two implemented approximations are recommended:40 PW91k, which uses
electron densities and the corresponding gradients to express the non-additive kinetic
energy component of the embedding potential, or TF (Thomas-Fermi LDA func-
tional), which does not use gradients at all. Either approximation is applicable only
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in cases where the overlap between electron densities of the corresponding interactions
is small. Note: So far, no approximation has been developed for the strong-overlap
case—two subsystem linked by covalent bonds for instance.

A.7. Examples

The complete input files for the examples given here can be found in the directories
examples/adf/FDE* in the Adf distribution.

A.7.1. HeCO2 freeze-and-thaw

This example demonstrates how a freeze-and-thaw FDE calculation can be performed.
As test system, a He· · ·CO2 van der Waals complex is used. It will further be shown
how different exchange-correlation potential can be used for different subsystems,
and how different basis set expansions can be employed. For details, see Ref. CJ3.
It should be stressed that the basis set and integration grid used in this example are
too small to obtain good results.

Part 1: PW91 everywhere

In the first part, the PW91 functional will be used for both the He and the CO2

subsystems. In this part, the FDE(m) basis set expansion is used, i.e., basis functions
of the frozen subsystem are not included in the calculation of the nonfrozen subsystem.

First, the CO2 molecule is prepared. In this calculation, the C2v symmetry of the final
complex is used, and the NOSYMFIT option has to be included because this molecule
will be rotated as a frozen fragment.

$ADFBIN/adf << eor

Title TEST 1 -- Preparation of frozen CO2

Units

Length Bohr

end

Atoms

C 0.000000 0.000000 0.000000

O -2.192000 0.000000 0.000000

O 2.192000 0.000000 0.000000

end
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Symmetry C(2V)

NOSYMFIT

Fragments

C t21.C

O t21.O

End

integration 5.0

xc

GGA pw91

end

End Input

eor

mv TAPE21 t21.co2.0

Afterwards, the FDE calculation is performed. In this calculation, the He atom is
the nonfrozen system, and the previously prepared CO2 molecule is used as frozen
fragment. For this frozen fragment the RELAX option is specified, so that the density
of this fragment is updated in freeze-and-thaw iteration (a maximum number of three
iteration is specified).

$ADFBIN/adf << eor >> $SCM_TESTOUTPUT

Title TEST 1 -- Embedding calulation: He with frozen CO2 density -- freeze-and-thaw

Units

Length Bohr

end

Atoms

He 0.000000 0.000000 6.019000 f=He

C 0.000000 0.000000 0.000000 f=co2

O -2.192000 0.000000 0.000000 f=co2

O 2.192000 0.000000 0.000000 f=co2

end

Fragments

He t21.He

co2 t21.co2.0 type=fde &

fdeoptions RELAX

SubEnd

End

integration 5.0

xc

GGA pw91

end
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FDE

PW91K

FULLGRID

RELAXCYCLES 3

end

End Input

eor

Part 2: SAOP for He; PW91 for CO2

In this second part, the above example is modified such that PW91 is employed for
the CO2 subsystem, while the SAOP potential is used for He. This can be achieved
by choosing SAOP in the XC key (this sets the functional that will be used for the
nonfrozen subsystem). Additionally, for the frozen fragment the XC option is used
to chose the PW91 functional for relaxing this fragment. Furthermore, the PW91
functional is chosen for the nonadditive exchange-correlation functional that is used
in the embedding potential with the GGAPOTXFD and GGAPOTCFD options in the FDE
key.

$ADFBIN/adf << eor >> $SCM_TESTOUTPUT

Title TEST 2 -- Embedding calulation: He with frozen CO2 density -- freeze-and-thaw

Units

Length Bohr

end

Atoms

He 0.000000 0.000000 6.019000 f=He

C 0.000000 0.000000 0.000000 f=co2

O -2.192000 0.000000 0.000000 f=co2

O 2.192000 0.000000 0.000000 f=co2

end

Fragments

He t21.He

co2 t21.co2.0 type=fde &

fdeoptions RELAX

XC GGA PW91

SubEnd

End

integration 5.0

xc

MODEL SAOP

end
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FDE

PW91K

FULLGRID

GGAPOTXFD PW91x

GGAPOTCFD PW91c

RELAXCYCLES 3

end

End Input

eor

Part 3: FDE(s) calculation with PW91 everywhere

In this third part, the PW91 functional is applied for both subsystems again, but
in contrast to part 1, now the FDE(s) basis set expansion is used, i.e., the basis
functions of the frozen subsystem are included in the calculation of the nonfrozen
subsystem. This can be achieved by employing the USEBASIS option. This option can
be combined with the RELAX option.

$ADFBIN/adf << eor >> $SCM_TESTOUTPUT

Title TEST 3 -- Embedding calulation: He with frozen CO2 density -- freeze-and-thaw

Units

Length Bohr

end

Atoms

He 0.000000 0.000000 6.019000 f=He

C 0.000000 0.000000 0.000000 f=co2

O -2.192000 0.000000 0.000000 f=co2

O 2.192000 0.000000 0.000000 f=co2

end

Fragments

He t21.He

co2 t21.co2.0 type=fde &

fdeoptions RELAX USEBASIS

SubEnd

End

integration 5.0

xc

GGA pw91

end

FDE
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PW91K

FULLGRID

RELAXCYCLES 3

end

End Input

eor

A.7.2. Excitation energies for H2O surrounded by 127 H2O

This example demonstrates how to use FDE in combination with a large environment,
that is modeled as a superposition of the densities of isolated molecules. Here, the
excitation energies of a water molecule surrounded by an environment of 127 water
molecules. For details, see Ref. CJ5.

First, a prototype water molecule is calculated. The density of this isolated water
molecules will afterwards be used to model the environment. Since this molecule will
be used as a frozen fragment that is rotated and translated, the option NOSYMFIT has
to be included.

$ADFBIN/adf << eor

Title Input generated by modco

UNITS

length bohr

END

XC

LDA

END

INTEGRATION 5.0 5.0

FRAGMENTS

O t21.DZP.O

H t21.DZP.H

END

ATOMS

O -11.38048700000000 -11.81055300000000 -4.51522600000000

H -13.10476265095705 -11.83766918322447 -3.96954531282721

H -10.51089289290947 -12.85330720999229 -3.32020577897331

END

NOSYMFIT

ENDINPUT

eor
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mv TAPE21 t21.mol_1

Afterwards, the FDE calculation is performed. In this FDE calculation, there is one
nonfrozen water molecule and the previously prepared water molecule is included as
a frozen fragment that is duplicated 127 times. For this frozen fragment, the more
efficient fitted density is used.

$ADFBIN/adf << eor

UNITS

length bohr

END

XC

MODEL SAOP

END

EXCITATION

ONLYSING

LOWEST 5

END

INTEGRATION 4.0 4.0

FRAGMENTS

O t21.DZP.O

H t21.DZP.H

frag1 t21.mol_1 type=fde &

fdedenstype SCFfitted

SubEnd

END

ATOMS

O 0.00000000000000 0.00000000000000 0.00000000000000

H -1.43014300000000 0.00000000000000 1.10739300000000

H 1.43014300000000 0.00000000000000 1.10739300000000

O -11.38048700000000 -11.81055300000000 -4.51522600000000 f=frag1/1

H -13.10476265095705 -11.83766918322447 -3.96954531282721 f=frag1/1

H -10.51089289290947 -12.85330720999229 -3.32020577897331 f=frag1/1

O -1.11635000000000 9.11918600000000 -3.23094800000000 f=frag1/2

H -2.82271357869859 9.71703285239153 -3.18063201242303 f=frag1/2

H -0.12378551814273 10.53819303003839 -2.70860866559857 f=frag1/2

O -16.96901200000000 -3.65835300000000 -10.78571300000000 f=frag1/3

H -15.70823656958949 -4.23996689198245 -9.62648920152293 f=frag1/3

H -16.47814038897754 -4.36080868684451 -12.37857352487904 f=frag1/3

...

...

...

O 5.96480100000000 4.51370300000000 3.70332800000000 f=frag1/127

H 5.24291272273548 3.06620845434369 2.89384293177905 f=frag1/127
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H 4.73614594944492 5.00201400735317 4.93765482424434 f=frag1/127

END

FDE

PW91K

END

ENDINPUT

eor

A.7.3. NMR shielding for acetonitrile in water

This examples demonstrates both the calculation of NMR shieldings using FDE, and
how the approximate environment density can be improved by partial relaxation of
individual solvent molecules. The test system is a cluster of acetonitrile and 12 solvent
water molecules, of which for two the densities are relaxed, while for the remaining
10 the frozen density of the isolated water is used. For details, see Refs. CJ9, 167.

First, the isolated solvent water molecule is prepared. Again, because this will be
rotated and translated afterwards, the option NOSYMFIT has to be included.

$ADFBIN/adf << eor

UNITS

Length Angstrom

END

ATOMS

O -1.46800 2.60500 1.37700

H -0.95200 3.29800 0.96500

H -1.16100 1.79900 0.96100

END

FRAGMENTS

H t21.H.DZP

O t21.O.DZP

END

XC

LDA

END

INTEGRATION 4.0

end input

eor

mv TAPE21 t21.h2o
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Afterwards, the FDE calculation is performed. In addition to the nonfrozen acetoni-
trile molecule, three different fragments are used for the solvent water molecules. The
first two fragments frag1 and frag2 are relaxed (in up to two freeze-and-thaw cy-
cles), while the third fragment is used for the remaining 10 solvent molecules. Since a
calculation of the shielding is performed afterwards, the option SAVE TAPE10 has to
be included.

$ADFBIN/adf << eor >> $SCM_TESTOUTPUT

UNITS

Length Angstrom

END

ATOMS

C 0.83000 0.66100 -0.44400

N 0.00000 0.00000 0.00000

C 1.87800 1.55900 -0.81900

H 1.78500 2.40300 -0.13500

H 1.76200 1.94900 -1.83000

H 2.82900 1.12200 -0.51300

O -1.46800 2.60500 1.37700 f=frag1

H -0.95200 3.29800 0.96500 f=frag1

H -1.16100 1.79900 0.96100 f=frag1

O 2.40400 -2.51000 -0.36200 f=frag2

H 2.70000 -3.41900 -0.40900 f=frag2

H 1.77500 -2.50000 0.35900 f=frag2

O -3.22800 -1.61500 1.18500 f=frag3/1

H -3.33300 -2.55300 1.03000 f=frag3/1

H -3.14200 -1.23600 0.31000 f=frag3/1

...

...

...

O -3.44400 2.36700 3.13700 f=frag3/10

H -2.70200 2.29200 2.53700 f=frag3/10

H -3.47300 3.29500 3.36800 f=frag3/10

END

FRAGMENTS

H t21.H.DZP

C t21.C.DZP

N t21.N.DZP

frag1 t21.h2o type=FDE &

fdeoptions RELAX

RELAXCYCLES 2

SubEnd

frag2 t21.h2o type=FDE &

fdeoptions RELAX

RELAXCYCLES 2

SubEnd

frag3 t21.h2o type=FDE &

FDEDENSTYPE SCFfitted

SubEnd
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END

XC

GGA BP86

END

INTEGRATION 4.0

SAVE TAPE10

FDE

PW91k

END

End Input

eor

Finally, the calculation of the NMR shielding of the nitrogen atom is performed using
the Nmr program.

$ADFBIN/nmr << eor >> $SCM_TESTOUTPUT

NMR

out tens iso

nuc 3

END

eor
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B. ADF NewFDE Code
Documentation

B.1. Introduction

This document gives a technical overview of the new implementation of frozen-density
embedding (FDE) in the Adf program package. The new and unique features of the
implementation are discussed in Ref. CJ9 and in the User’s Guide (see Appendix A)
and, therefore, this document will only focus on the technical aspects. It is mainly
intended for those who plan to maintain, improve and extend the code in the future
and those who want to make use of the flexible infrastructure it provides in other
parts of Adf.

The main feature of the new FDE implementation is the flexible, fragment-based
setup that allows it to employ any number of frozen fragments. This flexible setup
required a large rewrite of the way in which fragments are represented in Adf. For
this purpose, abstract data types (ADTs) representing these fragments have been
introduced. These contain all relevant information about a fragment, such as, e.g., its
geometry, the corresponding basis and fit functions, or its fit and molecular orbital
coefficients. An overview of these ADTs will be given in Sec. B.2.

In Section. B.3 it is explained how the fragment ADTs are initialized and finally, in
Sec. B.4, an overview of the most important subroutines of the new FDE implemen-
tation is given. Further information on the implementation described here can be
found in the detailed comments contained in the code.

B.2. Abstract data types

The new implementation makes use of abstract data types (ADTs) for representing
fragments. Each ADT is a Fortran type structure containing a number of related
variables (attributes). This type is contained within a module, together with sub-
routines for manipulating it (methods). Usually, the attributes are not supposed to
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be modified directly, but its methods should be used instead. These can then, for
instance, ensure that all data is consistent and take care of memory management.

The central ADT of the new FDE implementation is FragmentType, which represents
a fragment. It relies on a number of other ADTs, which are used for storing the
different data that is required for a fragments (such as, e.g., its geometry, its basis
and fit functions, or its MOs). The ADT FragmentsArrayType is used to store
instances of FragmentType, that represent all the required fragments. Figure B.1
gives a schematic overview of the most important attributes of FragmentsArrayType,
of FragmentType, and of the ADTs they rely on. Even though the ADTs described
here have been introduced to make the new FDE implementation possible, their use
is not limited to FDE calculations. They are already now used in all kinds of Adf
calculations, and they can be employed in the future to rewrite other parts of Adf
in a more modular way.

All ADTs described below contain an attribute id, which is used as an identifier in
Adf’s memory management (in particular in chckmem). For the attributes, it has
been tried to use names that are as descriptive as possible. However, for variables
that are also present as global variables in other places, the same names as for these
global variables have been used. In most ADTs, some attributes have been marked
as “Extras”. These attributes contain information that can be calculated in a simple
way from the other attributes. These are updated whenever the variables they depend
on are changed using a special method (usually initExtras).

All ADTs come with a new method, a newCopy method, and a delete methoda,
which are used as constructor, copy constructor, and destructor, respectively, and an
assignment operator (=) has been defined for them. For most ADTs, the methods
saveBla and readBla are defined, which can be used to save the data contained in
the ADT to file (TAPE21) and to read it in from file, respectively.

FragmentsArrayTypeFragmentsArrayTypeFragmentsArrayType

An instance of FragmentsArrayType is used to store all fragments that are required
during an Adf calculation.

The list of the initial fragments is stored in the array fragments, with each initial frag-
ment represented by a FragmentType. The method getFragmentByIndex can be used
to obtain a pointer to a fragment by giving its index. Similarly, getFragmentByName
can be used to obtain a pointer to a fragment by giving its fragment type. To loop
over all initial fragments, a construction similar to the following can be used:

aThe names of these methods might be changed in the future, in order to be consistent with Adf’s
new programming rules.
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Figure B.1.: Schematic overview of the most important attributes of
FragmentsArrayType, FragmentType, and the ADTs they rely
on.

atomtypes: names, charges, ...

FragmentsArrayType
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activeFragment

FragmentType

FragmentType

General: frgtyp, frgfil

Options: isfrozen, FDEusebasis, ...
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initialMOs

FitCoefs

initialFitCoefs
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type(FragmentType), pointer :: frag
...
do iftyp = 1, fragarray%nftyp

frag => getFragmentByIndex(fragarray, iftyp)
if (frag%isInactive) cycle

[do something with frag]

end do

In addition to the list of the initial fragments, the “active fragment” is stored in
activeFragment. This active fragment represents the system on which the actual
calculation is performed. It is composed of all nonfrozen initial fragments. The
active fragment stores information that is similar to that previously (or still) stored
in global variables. As far as they are still present, these global variables now duplicate
information that is also present in the active fragment (see also Section B.3.4).

Further important methods are:

• addFragment:
inserts a new initial fragment into the array fragments

• readFragments, readFragmentsCreateMode:
reads the information about the initial fragments from the fragment file (or in
CREATE mode, from the atomic data file). See Section B.3.1.

• initFragmentGeometries, initAtomtypeIndices:
initialization of the geometries of the initial fragments, see Sections B.3.1 and
B.3.2.

• initActiveFragment, initActiveFragmentSymmetry,
initActiveFragmentA1Fit, initActiveFragmentOrbitals:
initialization of the active fragment, see Section B.3.3.

FragmentsTypeFragmentsTypeFragmentsType

A fragment is represented by an instance of FragmentType, which stores all infor-
mation needed for a fragment during an Adf calculation. A fragment is identified
by its type, stored in frgtyp, and is usually associated with a fragment file, given in
frgfil.

One instance of FragmentType represents one initial fragment, which can be used
multiple times in the overall molecule. In this case, the initial geometry of the frag-
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ment is mapped onto the geometries of the different appearances of the fragment in
the overall molecule by suitable translations and rotations (compare also the general
documentation of Adf). The attribute numFrag gives the number of copies of the
initial fragment that are used in the overall molecule. FragmentType stores both in-
formation on the initial fragment and on the rotated copies of it (this mainly concerns
the atomic coordinates and the fit and MO coefficients).

The number of valence electrons in the fragment is given by numValenceElectrons
(and separately for alpha and beta spin in numValenceElectronsPerSpin), and the
charge of the fragment is given by charge. Further attributes contain general op-
tions relevant for the electronic structure of the fragment, such as nspin, lzora, and
lspinorbit.

The option isInactive is true if the fragment is inactive, which means that it will
be ignored when setting up the active fragment (see also Section B.4.5). Whether the
fragment is a frozen FDE fragment is specified by the attribute isFrozen. Further
attributes with names starting with FDE contain additional FDE-related options.

Further attributes of FragmentType are:

• geom:
fragment geometry (using FragGeometryType)

• sym:
symmetry information (using SymInfoType)

• basis:
basis functions (using BasisType)

• fit:
fit functions and A1 fit combinations (using FitType)

• core:
frozen core functions and coefficients (using CoreType)

• initialFitCoefs:
fit coefficients of the initial fragment (using FitCoefsType)

• FitCoefs:
fit coefficients of the rotated fragments (using FitCoefsType)

• initialMOs:
MO coefficients of the initial fragment (using OrbitalsType)

• MOs:
MO coefficients of the rotated fragments (using OrbitalsType)
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FragGeometryTypeFragGeometryTypeFragGeometryType

FragGeometryType stores the data related to the geometry of a fragment. This in-
cludes the information on the atom types, such as their names (in atmtyp), their
charges (total charge in atomtypeTotalCharge, and effective charge in
atomtypeEffectiveCharge), and their masses (in atmmass)

The atomic coordinates of the initial fragment are store in initialCoordinates, and
those of the rotated fragments in Coordinates. The affine transformations relating
the coordinates of the initial fragment to those of the rotated fragments are kept in
frgmap.

Furthermore, the arrays atomtypeIndices and atomIndices give the mapping be-
tween the atom types and the atoms in this fragment and those in the overall geometry,
respectively (see also Sections B.3.1 and B.3.2).

SymInfoTypeSymInfoTypeSymInfoType

SymInfoType keeps the information related to the symmetry of a fragment. In par-
ticular, the Schönfliess symbol of the point group is given in grouplabel, and the
labels of its irreducible representations in the array bb. Furthermore, information on
the symmetry-equivalent atoms is kept in the attributes nsetat, nratst, noat, and
notyps.

BasisTypeBasisTypeBasisType

BasisType stores the information on the basis set of a fragment. It uses an instance
of FunctionSetType in funcset to store the basis functions. Furthermore, the at-
tributes bradtypint and bradint contain the “radii” of the basis functions, which
are used to achieve linear scaling.

FitTypeFitTypeFitType

FitType stores the fit functions as well as the A1 fit combinations of a fragment. It
uses an instance of FunctionSetType in funcset to store the fit functions. As for
the basis set, the attributes fradtypint and fradint contain the “radii” of the fit
functions, which are used to achieve linear scaling.

A number of additional attributes is used to keep the A1 fit combinations. Information
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on the meaning of these variables can be found in the comments in the subroutine
symfit and in the general documentation of Adf.

In the attribute sym an instance of SymInfoType is used to store the symmetry that
has been used for generating the A1 fit combinations. This is not always the same
as the symmetry of the fragment because in a number of cases symmetry can not be
used in the fit (e.g., in TD-DFT calculations).

CoreTypeCoreTypeCoreType

CoreType contains the information on the frozen cores of a fragment. It uses an
instance of FunctionSetType in funcset to store the core functions, and the array
ccor contains the corresponding core coefficients.

FunctionSetTypeFunctionSetTypeFunctionSetType

FunctionSetType stores information on a set of Slater-type atomic orbitals (these can
be used as basis functions, core functions, or fit functions). The index array nsetpt
identifies which functions in this set belong to which atom type, and nqset, lqset,
and alfset store for each function the n and l quantum numbers and the exponent
α, respectively.

Several attributes, which can be calculated from the above refer to a different represen-
tation of the set of functions, in which each Cartesian component is listed separately
(nsptr, kx, ky, kz). In addition, the normalization constants (in setnrm) and the
integrals of the functions (in Integral) are stored.

FitCoefsTypeFitCoefsTypeFitCoefsType

FitCoefsType is used for storing the fit coefficients, both of the full Cartesian fit func-
tions (in fullfit) and of the A1 fit combinations (in fita1). It provides methods for
reading in these coefficients and takes care of the conversion between these two repre-
sentations (using the methods ConvertFullfitToA1fit and
ConvertA1fitToFullfit).
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OrbitalsTypeOrbitalsTypeOrbitalsType and related ADTs

OrbitalsType is used for storing MO coefficients. In irreps it keeps for each irre-
ducible representation (irrep) of the point group of the molecule the coefficients of
the corresponding MOs using IrrepOrbitalsType.

IrrepOrbitalsType stores the coefficients of the MOs in one irrep. In bb, the symme-
try label of the irrep in question is stored and the array npart keeps a list of the basis
functions that participate in the MOs of this irrep (the coefficients are kept only for
these functions). In sp, the MO coefficients are kept using SpinOrbitalsType. For
spin-unrestricted calculations, two instance of SpinOrbitalsType are used to keep
the MO coefficients for alpha and beta spin.

SpinOrbitalsType finally stores the MO coefficients in the array eigbas, the orbital
energies in eps, and the occupations numbers in froc.

In calculations that include spin-orbit coupling, the situation is complicated by the
use of double group symmetry. In this case, the MO coefficients for one irrep are not
stored in the attribute sp of IrrepsOrbitalsType, but instead the array relorbs
keeps a list of RelSpinOrbitalsType for each relativistic symmetry and for each spin.

RelSpinOrbitalsType stores the real and imaginary MO coefficients in calculations
including spin-orbit coupling in eigbasr and eigbasi, respectively. In addition, the
orbital energies are kept in epsr, and the occupation numbers in frocr.

B.3. Initialization of fragments

In the main program of Adf (source code file adf.d), an instance of
FragmentsArrayType is created, which is passed as an argument to all relevant sub-
routines of Adf. This FragmentsArray contains both the list of the initial fragments
in the array fragments, and the active fragment, which is the system that is used
in the actual calculation (i.e., the nonfrozen subsystem composed of all nonfrozen
fragments), in activeFragment.

In the following, the several steps in the initialization of the initial fragments in
fragments and of the active fragment in activeFragment are explained. An overview
of these steps and of the relevant subroutines is given in Table B.1.
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B.3.1. Initialization of the initial fragments

The initialization of the initial fragments is called from the subroutine geoinp, where
the geometry and related information are read from the input file. First, the subrou-
tine ftypes determines the number of fragments that are present and their types from
the ATOMS input key and initializes the FragmentTypes in the list of initial fragments
(the array fragments). Next, the subroutines frgfls and rqfrag read the FRAGMENTS
input key and initialize the names of the corresponding fragment files as well as the
other fragment settings specified there. In particular, the fragment-specific FDE op-
tions are read in rqfrag and the corresponding attributes of the initial fragments are
initialized accordingly.

In the following step, for all initial fragments the atomtypeIndices and atomIndices
(of the fragment geometry geom) are set up in the subroutine initAtomtypeIndices.
This subroutine employs the information read from the ATOMS block earlier to save
for each atom type and for each atom of the initial fragments the number of the
corresponding atom / atom type in the overall geometry (as it is stored in an instance
of GeometryType).

Finally, the subroutine readFragments is used to read the information on the ini-
tial fragments from the fragment files. This includes the geometry of the fragment
(atomic charges, and masses, and atomic coordinates of the initial fragment), the ba-
sis functions, core functions and coefficients, fit functions, as well as the fit coefficients
and MOs of the initial fragment. For reading this data, the readBla methods of the
corresponding ADTs are used.

In CREATE mode (when an initial atomic fragment is created), ReadFragments-
CreateMode is used instead, which relies on the readBlaCreateMode methods of the
corresponding ADTs. Instead of reading the data from a fragment files, this will read
the required information from the CREATE atomic data file.

B.3.2. Initialization of the fragment geometries

After the atomic coordinates of the fragments, as they were initially oriented during
their creation, have been read in from the corresponding fragment file (to
geom%initialCoordinates), and the indices of the corresponding atom types and
atoms in the overall geometry (geom%atomTypeIndices and geom%atomIndices) have
been initialized, the subroutine initFragmentGeometries is used to initialize the co-
ordinates of the fragments as they are oriented in the overall geometry
(geom%Coordinates).

The subroutine initFragmentGeometries takes as arguments the FragmentsArray-
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Type containing the list of initial fragments and the GeometryType giving the overall
geometry. For each fragment, it then initializes the coordinates of the atoms in the ro-
tated fragments (geom%Coordinates) to those of the corresponding atoms in the over-
all geometry. By comparing the initial coordinates of the fragment (geom%initial-
Coordinates) to those of the rotated copies of the fragment (geom%Coordinates),
the affine transformations (rotation matrices and translation vectors) in frgmap are
set up. Note that one initial fragment, represented by one FragmentType, can be used
multiple times (see the attribute NumFrag), i.e., there can be more than one affine
transformation per initial fragment.

Using frgmap, the initial fit coefficients (initialFitCoefs) are then rotated to those
of the rotated fragments (FitCoefs) by the subroutine rotateFitCoefs. Similarly,
the subroutine rotateMOs is used to rotate the initial MO coefficients initialMOs to
those of the rotated fragments (MOs).

B.3.3. Initialization of the active fragment

After the initial fragments (in the array fragments) have been initialized, the subrou-
tine initActiveFragment is used to initialize the active fragment (in activeFrag-
ment). The active fragment is assembled by adding all nonfrozen fragments, i.e., the
active fragment is a single fragment containing all nonfrozen fragments.

The geometry, basis functions, fit functions, core functions and core coefficients, as
well as the initial fit coefficients are obtained by adding those of the nonfrozen initial
fragments. This is done by employing the addBla methods of the corresponding
ADTs. For frozen fragments for which the USEBASIS option has been specified, the
basis functions and fit functions are also included in the active fragment, but the
electrons and the nuclear charges of the frozen fragments are not included.

However, not all information on the active fragment can be obtained by a simple
“addition” of the initial fragments. In particular everything that is related to the
symmetry of the active fragment (symmetry information, A1 fit combinations, MO
information) has to be initialized considering the full active fragment. Since the
symmetry handling of Adf is currently very cumbersome, these steps have not been
rewritten to use the newly introduced ADTs. Instead, these subroutines still operate
on global variables and the corresponding parts of the active fragment are initial-
ized by copying the needed information from the global variables initialized by these
subroutines.

Therefore, after initActiveFragment has initialized the active fragment, some other
subroutines have to be called to initialized the remaining parts. To initialize the
electronic configuration of the active fragment (in particular the number of alpha
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and beta electrons in spin-unrestricted calculations), initElectronicConfiguration
has to be called. The symmetry information of the active fragment (in sym) can be
initialized using initActiveFragmentSymmetry after the symmetry information in
the global variables has been set up by maisya. The A1 fit combinations (a part
of fit) are set up by initActiveFragmentA1Fit after the A1 fit combinations have
been obtained by symfit, and the MOs of the active fragment (in initialMOs and
MOs) are initialized by initActiveFragmentOrbitals, after the symmetrized MO
combinations have been obtained by symorb.

B.3.4. Initialization of global variables

Even though this would be desirable, the newly introduced ADTs are currently not
used in all parts of Adf, and a large number of subroutines still relies on data in global
variables instead. These global variables are initialized by the subroutine inputf,
which uses the data stored in the active fragment for this purpose. This way, it
is ensured that both the active fragment and the global variables contain the same
information and can be used alongside.

In this step, care has to be taken in the conversion between variables in the active
fragment ADT and those in global variables. The latter always contain all atoms
and atom types that are present in the overall geometry, while the active fragment
only contains atoms and atom types of the nonfrozen fragment. Therefore, differ-
ent numberings are used for the atoms and atom types, and the mapping between
them is given by geom%atomIndices and geom%atomtypeIndices, respectively. In
inputf and also in initActiveFragmentSymmetry, initActiveFragmentA1Fit, and
initActiveFragmentOrbitals these different numberings are considered. Details
can be found in the comments in the code.

B.3.5. Initialization passes

The initialization of the fragments described above is performed in several passes. An
overview of the different steps in this process is given in Table B.2.

The first stage of the initialization is performed only once at the beginning of Adf.
In this step, the initial fragments are read in, their geometries are initialized, and the
active fragment is set up for the first time (except for the parts that depend on the
symmetry information).

Each time, the initial fragments change (e.g., when performing freeze-and-thaw iter-
ations in an FDE calculation), DoInits must be called. This will re-initializes the
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active fragment by calling initActiveFragment, and the global variables are initial-
ized again using inputf using the new active fragment.

Each time the overall geometry changes (e.g., in a geometry optimization), the geome-
tries of the rotated initial fragments are re-initialized by calling initFragmentGeo-
metries, and subsequently, the active fragment is initialized again using initActive-
Fragment to update its geometry. These initialization steps are invoked at the begin-
ning of DoSinglePoint.

Finally, in the preparation for the SCF procedure, DoSCFPreps invokes the initializa-
tion of the parts of the active fragment that rely on data in global variables (i.e., the
symmetry information, the A1 fit combinations, and the MOs).

B.4. Important FDE subroutines

In this section, a brief overview of the most important subroutines of the FDE imple-
mentation is given, and it is briefly explained how these subroutines work and how
they can be used in future developments. Most of the subroutines mentioned below
rely on other subroutines, details can be found in the code itself and in the comments
contained within the code.

In particular, the input reading and initialization of the global FDE options will be
discussed, followed by a description of the subroutine relevant for the construction of
the integration grid in FDE calculations. Furthermore, the construction of the frozen
density and of the individual terms of the embedding potential will be explained.
Finally, the subroutine responsible for performing freeze-and-thaw iterations (RELAX
option) is briefly discussed. An overview of the subroutines described here is given in
Table B.3.

B.4.1. Input reading and initialization

All general initialization that is specific to FDE calculations is performed in the
FrozenDensity module. This module also contains the global variables which store
general setting related to FDE (such as the kinetic-energy functional used, and other
options chosen in the FDE input key).

The subroutine InitFrozen initializes these variables to default values. It should be
called in all calculations and from all programs using libtc. The initializations specific
to FDE calculations are invoked from the subroutine InputFrozen, which is called
by Adf at the very beginning of all calculations when the input file is processed.
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It checks for the FDE input key and in case this is present, calls ReadFrozenKey for
processing it. Any new FDE input options should be added in this subroutine. The
FDE header and related output are printed by the subroutine PrintFrozenInfo.

The FDE-related processing of other part of the input file (in particular of the
FRAGMENTS input key) as well as the initialization of the fragment ADTs is explained
in the previous section.

B.4.2. Generation of the integration grid

The generation of the integration grid in FDE calculations relies on the subroutine
genpt, which is also employed in standard Adf calculations. This subroutine takes a
arguments a FragmentType specifying the active fragment, for which the integrations
grid is constructed (only the geometry and basis and fit function information will be
used). In addition, a list of point charges can be given, which will also be considered
in the construction of the integration grid. However, for point charges, additional
integration points will only be generated when they are not too far away (the cut-
off depends of the most diffuse basis function used) from the atoms in the active
fragment.

In FDE calculations, the wrapper routine genptFD is used to control the generation
of the integration grid. This subroutines calls genpt which a suitable active fragment
and point charges.

In the case the option ONEGRID is used, only the nonfrozen subsystem will be used as
active fragment for the generation of the integration points, resulting in an integra-
tion grid that is centered on the nonfrozen subsystem only. However, this is usually
not sufficient to integration the nuclear attraction part of the embedding potential
accurately.

If the option FULLGRID is used, all fragments (frozen and nonfrozen) are added to a
temporary “total fragment” which is then used as the active fragment in the genera-
tion of the integration grid. This results in an integration grid that extends over both
the nonfrozen and the frozen fragments and that is identical to the grid that would
be employed in a supermolecular calculation. However, while this can be useful for
benchmarking, such an integration grid is usually too large.

For the generation of the default grid for FDE calculation,CJ4 the nonfrozen subsystem
only is used as the active fragment in the generation of the integration points. In
addition, point charges corresponding to all atoms in the frozen fragments will be
added to the list which is passed to genpt. This will result in the use of the defaults
for point charges for the frozen fragments, leading to an integration grid centered on
the nonfrozen system, which included additional integration points only for atoms of
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the frozen environment which are close to the nonfrozen subsystem.

In the case that freeze-and-thaw cycles are performed (i.e., the RELAX option is used
for one ore more fragments), a new integration grid will be generated before each
freeze-and-thaw cycles, i.e., each time another nonfrozen subsystem is used.

B.4.3. Construction of the frozen density

The frozen density, which is needed for the evaluation of the nonadditive kinetic-
energy component and of the nonadditive exchange-correlation component of the em-
bedding potential, is constructed using the subroutine GetFrozenDensity.

This subroutine calculates the frozen density, and—if requested—its first and sec-
ond derivatives, in a block of integration points. It loops over all frozen fragments
and calculates (depending on the FDEdenstype attribute of the fragments) either
the exact or the fitted density of each fragment using GetExactFragmentDensity
or GetFittedFragmentDensity, respectively. The densities of these individual frag-
ments are then added.

Both GetExactFragmentDensity and GetFittedFragmentDensity employ distance
cut-off to achieve linear-scaling of the construction of the fragment densities,CJ4,125

and fragments that are too far away from the current block of integration points are
skipped completely. Usually, the construction of the fitted density is faster than the
construction of the exact density (roughly by a factor of 2).

Depending on the argument nspin, either an unrestricted or a restricted frozen density
is constructed. In case a spin-unrestricted fragment is used in the construction of a
spin-restricted frozen density, the spin densities are added. Similarly, in the case of
a spin-restricted calculation in the construction of a spin-unrestricted frozen density
calculation, the fragment density is distributed equally over both spins.

Finally, to avoid problems with inaccurate fit densities, it is ensured that the resulting
frozen density is non-negative in all grid points.
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B.4.4. Construction of the embedding potential

The FDE embedding potential for the (nonfrozen) subsystem i due to all other (frozen)
subsystems j 6= i is given by,

v
(i)
emb[ρ1, . . . , ρN ] =

∑
j 6=i

vnuc
j (r) +

∑
j 6=i

∫
ρj(r′)
|r − r′|

dr′

+
δExc[ρ]

δρ

∣∣∣∣
ρ=ρtot(r)

− δExc[ρ]
δρ

∣∣∣∣
ρ=ρi(r)

+
δTs[ρ]

δρ

∣∣∣∣
ρ=ρtot(r)

− δTs[ρ]
δρ

∣∣∣∣
ρ=ρi(r)

,

(B.1)

where ρtot =
∑

i ρi. It consists of the potential of the nuclei in the frozen subsystems,
the Coulomb potential of the electron densities of the frozen subsystems, a nonad-
ditive exchange-correlation component and a nonadditive kinetic-energy component.
The first two parts (i.e., the nuclear and the electric Coulomb potentials) are constant
during the SCF procedure for the nonfrozen subsystem and thus only have to be de-
termined once. However, the exchange-correlation and the kinetic-energy component
depend on the electron density of the nonfrozen subsystem and, therefore, have to be
evaluated in each SCF cycle.

The constant parts of the embedding potential are evaluated together with the other
constant parts of the total potential (nuclear potential of the nonfrozen subsystem, po-
tential due to point charges and electric field) in the subroutine CalcConstantPoten-
tials. This makes use of the subroutines CalcNuclearPotential and CalcCore-
Potential, which evaluate the nuclear and frozen core potential, respectively, of the
atoms in a specific fragment in a block of integration points.

The Coulomb potential of the electrons of the frozen subsystems is evaluated using
the subroutine CalcFrozenElectronPotential. This performs a loop over all frozen
fragments and adds the Coulomb potentials of the electrons in these fragments. The
Coulomb potential is evaluated using the fitted density,CJ4 and distance cut-offs are
used to achieve linear scaling.

The remaining parts of the embedding potential that depends on the density of the
nonfrozen subsystem is evaluated by the subroutine embinscf, which is called in
each SCF cycle by focky, which builds the Fock matrix. The subroutine embinscf
provides the exchange-correlation and kinetic energy components of the embedding
potential in a block of integration points. In the first SCF iteration, it obtains the
frozen electron density using GetFrozenDensity, which is stored on file for use in
the following iterations. The exchange-correlation component is then evaluated using
CalcNonadditiveXCPotential, and the kinetic-energy component is evaluated using
CalcKineticEnergyPotential.
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B.4.5. Freeze-and-thaw iterations

If the RELAX option is used for one or more frozen fragments, it is necessary to per-
form freeze-and-thaw iterations, in which these frozen fragements are thawed. These
freeze-and-thaw iterations are taken care of by the subroutine DoEmbeddingSCF, which
replaces the standard subroutine DoSCF in FDE calculations.

First, DoSCF is called to perform an initial calculation on the nonfrozen subsystem.
The active fragment activeFragment obtained in this calculation is then saved in the
list of initial fragments, and the previously nonfrozen initial fragments are marked as
inactive (which means that they will be completely ignored in the following). At
this point, the list of initial fragments (fragments) contains the “main fragment”
(obtained from the first calculation) and the frozen fragments (and the remaining
initial fragments, which are inactive and will be ignored).

Following this initial step, the freeze-and-thaw cycles are performed. The main frag-
ment is marked as frozen, and one initially frozen fragment is marked as nonfrozen.
Using DoInits, the new active fragment is initialized, and a calculations on this frag-
ment is performed by calling DoSCF. The resulting active fragment is then used to
replace the previously frozen initial fragment. This is repeated for all frozen frag-
ments for which the RELAX option has been specified. When all these fragments have
been handled, the initially nonfrozen fragment (the main fragment that was save in
the first step) is marked as nonfrozen again, and another calculation on this fragment
is performed. If required, this freeze-and-thaw step is repeated until the densities of
all fragments are converged, or until the maximum number of freeze-and-thaw cycles
has been reached. A simplified flow chart of DoEmbeddingSCF is show in Fig. B.2.

Several additional options are taken care of during these freeze-and-thaw iterations.
If requested, the exchange-correlation potential that is used in the SCF procedure is
changed, and in case the USEBASIS option is specified for a frozen fragment, additional
tricks are employed. Details can be found in the code itself.
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Figure B.2.: Simplified flow chart showing how freeze-and-thaw cycles are per-
formed in the subroutine DoEmbeddingSCF

perform SCF on main fragment
using DoSCF

save main fragment

perform SCF on fragment i
using DoSCF

make fragment i nonfrozen
and initialize active fragment 

using DoInits

update initial fragment i

for all frozen  fragments i 
with RELAX option
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done

Yes No

make main fragment frozen

make fragment i frozen again
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using DoSCF
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Jülich, 2000, 257–277, url: http://www.fz-juelich.de/nic-series.

[5] H. M. Senn and W. Thiel, “QM/MM Methods for Biological Systems”, Top.
Curr. Chem. 268 (2007), 173–290.

[6] S. Humbel, S. Sieber, and K. Morokuma, “The IMOMO method: Integration of
different levels of molecular orbital approximations for geometry optimization
of large systems: Test for n-butane conformation and SN2 reaction: RCl+Cl−”,
J. Chem. Phys. 105 (1996), 1959–1967.

[7] M. Svensson, S. Humbel, R. Froese, T. Matsubara, S. Sieber, and K. Mo-
rokuma, “ONIOM: A Multilayered Integrated MO + MM Method for Geome-
try Optimizations and Single Point Energy Predictions. A Test for Diels-Alder
Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition”, J. Phys. Chem. 100
(1996), 19357–19363.

[8] T. A. Wesolowski and A. Warshel, “Frozen Density Functional Approach for
ab Initio Calculations of Solvated Molecules”, J. Phys. Chem. 97 (1993),
8050–8053.

[9] D. Bakowies and W. Thiel, “Hybrid Models for Combined Quantum Me-
chanical and Molecular Mechanical Approaches”, J. Phys. Chem. 100 (1996),
10580–10594.

[10] S. Borini, D. Maynau, and S. Evangelisti, “A combined freeze-and-cut strat-
egy for the description of large molecular systems using a localized orbitals
approach”, J. Comput. Chem. 26 (2005), 1042–1051.

[11] T. M. Henderson, “Embedding wave function theory in density functional
theory”, J. Chem. Phys. 125 (2006), 014105.

241

http://www.fz-juelich.de/nic-series


References

[12] P. Strange, Relativistic Quantum Mechanics, Cambridge University Press,
Cambridge, 1998.

[13] K. G. Dyall and K. Fægri Jr., Introduction to Relativistic Quantum Chemistry,
Oxford University Press, New York, 2007.

[14] C. Cohen-Tannoudji, B. Dui, and F. Laloë, Quantenmechanik, Teil 1 und 2,
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Bei Jochen und Jana möchte ich mich dafür bedanken, dass ich auf eurem Sofa immer
willkommen bin, und dass Ihr auch in schwierigen Zeiten immer für mich da gewesen

260



seid.

Anna, die mich fast während der gesamten Zeit meiner Doktorarbeit begleitet hat,
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