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Chapter 1
Optical Properties of Crystalline

Solid Systems

The linear response of a solid to an external electromagnetic field can be described in

connection with two kinds of experiments: the optical absorption spectra for energies

ranging from the infrared to the far vacuum ultraviolet, and the energy-loss determi-

nations of electrons traversing solid samples. Despite the apparent disparity between

the two phenomena, they are in fact closely related.

1.1 Optical properties and plasma effects

The optical properties and electron energy-loss spectra of solidsa provide an impor-

tant tool for studying elementary excitations, such as excitons, lattice vibrations,

magnetic excitations, plasmons, and provide information about the energy band struc-

tures, impurity levels, localized defects. In the experiments performed to determine

these properties one measures, for instance, the reflectivity, absorption, differential

cross-section, from where the dielectric function and the energy-loss function can be

deduced. These kinds of experiments involve external fields characterized by wave-

lengths that are long if compared to the interatomic distance (long-wavelength limit),

and are carried out over a wide range of frequencies.

aFor an exhaustive discussion of optical properties and plasma effects in solids see H. Ehrenreich,

in Proceeding of the International School of Physics “Enrico Fermi”, Course XXXIV, edited by J.

Tauc (Academic Press, Inc., New York, 1966) p. 106.

1



2 Chapter 1. Optical Properties of Crystalline Solid Systems

From the theoretical point of view the most natural quantity to describe the

elementary excitations of the system produced by photons and fast electrons is the

macroscopic complex dielectric tensor ε̃(q, ω), where q is the wavevector describing

the propagation of the light or the momentum lost by the traversing electron, and

ω is the frequency of the light or the energy lost. For isotropic systems there exist

only two independent components of this tensor, the longitudinal and the transverse

dielectric functions,

ε̃ij(q, ω) = ε̃L(q, ω)
qiqj
|q|2 + ε̃T (q, ω)

(
δij −

qiqj
|q|2

)
. (1.1)

The longitudinal component describes the response to longitudinal fields, which are

involved in electron energy-loss experiments, where the scattering cross-section of an

electron traversing a medium is proportional to −Im
{
ε̃−1
L (q, ω)

}
. The transverse

component describes the response to optical fields, which are characterized by small

q ≈ ω/c ≈ 0. In the long-wavelength limit q → 0 the two quantities are equal [1, 2],

thus optical and energy-loss measurements contain the same physical information.

The theoretical description of the propagation of electromagnetic fields in a solid

is provided by the Maxwell equations (c.g.s. units),

∇×B− 1

c

∂E

∂t
=

4πj

c
, (1.2)

∇×E +
1

c

∂B

∂t
= 0, (1.3)

∇ ·E = 4πρ, (1.4)

∇ ·B = 0. (1.5)

Here E=E(r,t) is the electric field and B=B(r,t) is the magnetic induction. In order

to describe the influence of the solid on the electromagnetic field, one identifies three

different kinds of sources of charge ρ = ρ(r, t) and current j = j(r, t) in the system,

ρ = ρext + ρf + ρb,

j = jext + jf + jb.

Here ρext and jext are the free charge contributions describing particles brought from

outside, ρf and jf are contributions from those electrons belonging to the system,

which are relatively free to move, whereas ρb and jb are contributions from electrons

that are tightly bound to the relatively immobile nuclei. We assume that both the

free-charge and bound-charge contributions satisfy the continuity equation

∇ · j +
∂ρ

∂t
= 0.
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By using the above equation for the bound-charge contributions, one can define two

vectors P and M, known as the polarization and the magnetization, respectively, such

that

ρb = −∇ ·P, (1.6)

jb =
∂P

∂t
+ ∇×M. (1.7)

Within the linear response regime the polarization and the magnetization are induced

by the field, and one defines the electric and magnetic susceptibilities according to

P = χeE, (1.8)

M =
χm

1 + 4πχm
B, (1.9)

for isotropic systems. In this regime the free current is proportional to the electric

field via the conductivity tensor σ,

jf = σE. (1.10)

The two Maxwell equations which contain the source terms j and ρ can now be

rewitten as

∇×H− 1

c

∂D

∂t
=

4π(jf + jext)

c
, (1.11)

∇ ·D = 4π(ρf + ρext), (1.12)

with

D = (E + 4πP) = εE, (1.13)

H = (B− 4πM) =
1

µ
B, (1.14)

where the quantities ε and µ are, respectively, the permittivity and permeability of

the medium,

ε = 1 + 4πχe

µ = 1 + 4πχm.

If we consider an isotropic medium in which the charge density is zero, and thus

∇ · E = 0, and j = jf , then Eqs (1.2)-(1.4), (1.10), (1.11), and (1.13)-(1.14) yield a

wave equation for the electric field E,

∇2E =
ε

c2
∂2E

∂t2
+

4πσ

c2
∂E

∂t
, (1.15)



4 Chapter 1. Optical Properties of Crystalline Solid Systems

where we have considered a non-magnetic material for which we can take µ = 1. This

equation has solutions of the following form,

E = E0 exp{i(K̃ · r − ωt)}, (1.16)

where ω is the frequency of the light and K̃ is a complex valued propagation vector

which satisfies the relation

K̃ · K̃ =
εω2

c2
+

4πiσω

c2
= ε̃(ω)

ω2

c2
. (1.17)

Here we have introduced the complex dielectric function ε̃(ω), given as

ε̃(ω) = ε+
i4πσ

ω
= ε1 + iε2. (1.18)

The real part of K̃ can be identified as a wavevector, whereas the imaginary part

accounts for the damping of the wave as it progresses inside the solid. The real part

of the complex dielectric function measures the ability of a medium to polarize in

response to an applied electric field, and thereby to cancel, partially, the field inside

the material. The imaginary part is related to the rate at which energy is absorbed

by the medium. Media with a negative real part are considered to be metals, in

which no propagating electromagnetic waves exist. Those with a positive real part

are dielectrics. In order to obtain the dielectric function from the experiments, it is

convenient to introduce a complex refractive index Ñ , such as

ε̃ = Ñ2 = (n+ ik)2, (1.19)

from where we have the two important relations

ε1 = n2 − k2, (1.20)

ε2 = 2nk, (1.21)

with ε1, ε2, n, and k all frequency-dependent. The quantities n and k are called the

optical constants of the solid, with n the index of refraction and k the extinction

coefficient. These quantities can be obtained from measurements of optical reflection

measurements. Since we have two optical constants, one can measures the reflectivity

at two different angles of incidence. Many measurements of optical properties of solids

involve the normal incidence reflectivity R, which is related to the optical constants

through the simple form

R =

∣∣∣∣∣
1 − Ñ

1 + Ñ

∣∣∣∣∣

2

=
(1 − n)2 + k2

(1 + n)2 + k2
. (1.22)
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In this case we can still obtain the two optical constants provided that the reflectivity

measurements are performed for all optical frequencies. This is because the two

constants are related through Kramers-Kronig dispersion relation,

ε1(ω) = 1 +
2

π
P
∫ ∞

0

ω′ε2(ω
′)

1

ω′2 − ω2
dω′. (1.23)

A given experiment, however, only yields values of the optical constants over a finite

frequency range. This is typically handled by using some model extrapolation for

the optical constants outside the measured frequency range. More accurate and more

reproducible than the conventional reflection measurements are ellipsometry measure-

ments. In this technique one obtains directly the complex dielectric function from the

change in polarization of light upon reflection on the surface of a sample.

A practical tool to sketch simple pictures and rough estimates of properties of

solids is the Drude model. This model assumes that the material contains immobile

positive ions with relatively tightly bound electrons, known as core electrons, and an

“electron gas” of classical, noninteracting valence electrons. These last carries wander

freely through the solid and their motion is damped due to collisions with the ions,

characterized by a relaxation time τ . Within this model the dielectric function can

be expressed as

ε(ω) = εcore +
4πi

ω

Nτ

m∗(1 − iωτ)
. (1.24)

Here we have indicated with ε(ω) the dielectric function ε̃ given in the previous expres-

sions. In the following we will keep this notation. The second term on the right-hand

side of Eq. (1.24) represents the free-carrier contribution, with τ the relaxation time

associated with the scattering mechanism, m∗ the effective mass of the electron, and

N the total carrier density, while εcore contains all the other possible contributions to

the dielectric function. Two limiting cases of Eq. (1.24) are of interest: the low- and

high-frequency response.

In the low-frequency regime (ωτ � 1) Eq. (1.24) becomes

ε(ω) ' εcore +
4πiNτ

m∗ω
. (1.25)

Since the free-carrier contribution show now a ω−1-dependence, it dominates in the

low frequency limit. In this case the optical constants n and k are given as

n+ ik '
√

4πNτ

m∗ω

(1 + i)√
2

. (1.26)
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We see that in the low frequency limit n ≈ k and both are large. In this case the

normal incidence reflectivity given in Eq. (1.22) becomes

R ' 1 − 2

n
. (1.27)

The Drude theory shows that in the low-frequency limit a material with a large

concentration of free carriers (for example a metal) is a perfect reflector.

In the high-frequency regime (ωτ � 1) Eq. (1.24) can be approximated as

ε(ω) ' εcore −
4πN

m∗ω2
. (1.28)

As the frequency increases, the ω−2-dependence of the free-carrier term makes this

contribution less important and other processes will dominate. In the high-frequency

regime the free-carrier contribution to the dielectric function can be neglected and

the complex refraction index becomes real Ñ ' √
εcore. This implies that n > 0 and

k = 0, thus the material behaves like a dielectric.

The characteristic frequency at which a material changes from metallic to insulator

behavior is called plasma frequency ωp, which is defined as the frequency at which

the real part of the dielectric function vanishes, ε1(ωp) = 0. The real and imaginary

parts of the dielectric function, as given in Eq, (1.24), can be expressed as

ε1(ω) = εcore −
4πNτ2

m∗(1 + ω2τ2)
, (1.29)

ε2(ω) =
4π

ω

Nτ

m∗(1 + ω2τ2)
. (1.30)

From Eq. (1.29) it becomes immediately clear that the plasma frequency has the

following form,

ω2
p =

4πN

m∗εcore
− 1

τ2
' 4πN

m∗εcore
. (1.31)

Here we have considered that the term 1/τ 2 on the right-hand side is usually small

compared to the other one. The quantity ωp described by Eq. (1.31) is known as the

screened plasma frequency, since the screening of the free carries is taken into account

through the core dielectric constant εcore of the medium. One can also consider the

unscreened plasma frequency by setting εcore = 1. The reflectivity is small at plasma

frequency. Indeed, around this frequency, ε1 is small and ε2 is often small as well, as

one can verify from the expression (1.30) for ωτ � 1. From Eqs (1.20) and (1.21)

we have that at the plasma frequency ε2(ωp) ' 2n2 (here we have considered n ≈ k),

thus if ε2(ωp) is small also the optical constant n, and consequently the reflectivity
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Figure 1.1: Simple model of a plasma oscillation. Here n and n/Z, with Z the atomic

number, are the total numbers of electrons and of ions, respectively, in the system,

and d is the displacement which is applied to the entire electron gas as a whole. The

shaded region represents the electron gas system before the displacement.

R, tends to be small near ωp. The longer the relaxation time the sharper the plasma

feature in the reflectivity spectum.

The plasma frequency represents the frequency of a longitudinal collective mode

of oscillation in an electron gas. The nature of this mode can be understood in

term of a simple model. Imagine to rigidly displace the entire electron gas system

through a distance d with respect to the fixed positive background of the ions, Fig.

1.1. This displacement establishes a surface charge σ = −Nd on the left surface

and a surface charge σ = +Nd on the right one, with N the electron concentration.

The resulting surface charge gives rise to an electric field inside the system with

magnitude E = 4πNd. This field tends to restore the electron gas system to its

equilibrium position. Consequently a unit of volume N = n/V (here n is the total

number of electrons in the system and V is the total volume) of the electron gas will

obey to the equation of motion

Nmd̈ = −NE = −4πN2d,

which leads to oscillation at the plasma frequency ωp. Many observations have been

made of these plasma oscillations, afforded by the energy losses of fast electrons in

penetrating thin metallic films. Perhaps the most notable is the observation of energy

losses at frequencies that are multiples of ωp, which can be understood if one assumes

that the plasma oscillations in a metal can be represented by a finite set of harmonic

oscillators with angular frequency ωp. According to elementary quantum theory the
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energy of each oscillator must have one of the values given by the expression (n+ 1
2 )ωp,

with n a positive integer. Pines has given the name plasmon to each quantum of

plasma energy [3]. Of course, even in a free-electron metal the losses will not be in

multiples of exactly ωp, due to the dispersion of the frequency of oscillation, which is,

however, slight.

1.2 Bloch functions and energy bands

In this thesis we will describe the optical properties of metallic systems within the

density functional formalism. In the next two chapters we will give an overview of the

fundamental theory and its further development in order to treat the linear response

of extended systems to a general electromagnetic field. The essential feature of this

approach is that one can describe the system by using a one-particle picture. Within

this description, each electron in a solid, moving in a periodic potential U(r + R) =

U(r), for all Bravais lattice vectors R, is described by a Bloch function

ψnk(r) = unk(r) exp(ik · r), (1.32)

where unk(r) has the periodicity of the Bravais lattice. The index n appears in

the Bloch function because for any k there are many solutions to the Schrödinger

equation. This can be understood by considering that the eigenvalue problem is set

in a finite volume, generally commensurate to the primitive cell, due to the use of

periodic boundary conditions for the wavefunction. This leads to an infinite family

of solutions with discretely spaced eigenvalues, which are labelled with the index n.

These energy values are expected to vary continuously with k. We then arrive at a

description of the levels of an electron in a periodic potential in terms of a family

of continuous functions εnk, each with the periodicity of the reciprocal lattice. The

information contained in these functions is referred to as band structure of the solid.

For each n the set of electronic levels specified by εnk is called an energy band. The

ground state of N Bloch electrons is constructed by filling all the one-electron levels

with energies εnk 6 εF , with εF being the Fermi level. This upper level is determined

by requiring the total number of one-electron levels with εnk 6 εF to be equal to the

total number of electrons. Different configurations can results by the filling of these

energy levels. The valence electrons can exactly fill one or more bands, leaving others

empty. If the energy difference between the top of the highest occupied band and the

bottom of the lowest unoccupied band (band gap) is much bigger than kBT (with kB

the Boltzmann constant and T near room temperature), then the crystal will have an

insulating band structure. If, instead, the band gap is comparable to kBT , the crystal

will have an intrinsic semiconducting band structure. Since the number of levels for
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each energy band is equal to the number of primitive cells, a band gap can be expected

only if the number of electrons per primitive cell is even. Even in this case, however,

if the occupied and unoccupied bands overlap in energy along some directions in the

Brillouin zone, then we have two partially occupied bands. In this case the crystal

has a metallic band structure or, if the overlap is small with only few states involved,

a semimetallic one. In the case in which each primitive cell contributes with odd

numbers of electrons, the crystal has a metallic band structure. In Fig. 1.2 we have

reported a schematic representation of these different configurations of the valence

electrons in a solid.

Within this simple picture the elementary electronic excitations, which determine the

behavior of the dielectric function, can be described, in the long-wavelength limit, by

one-particle vertical transitions. There are two kinds of these transitions: interband

and intraband transitions. Interband transitions occur between different (partially)

occupied and unoccupied bands, and their contribution to the dielectric function can

be identified as due to bound-charges. Intraband transitions occur within the same

partially occupied bands, and their contribution to the dielectric function can be

identified as due to free charges. This last kind of transitions is possible only in

metallic band structures, which in addition to fully occupied and unoccupied bands,

are characterized by partially occupied bands as well.

Figure 1.2: Schematic representation of the electron occupation of the energy bands

around the Fermi level in an insulating band structure, a semiconducting band struc-

ture at a finite temperature with carries exited thermally, a semimetallic, and a metal-

lic band structures.
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1.3 Outline of the thesis

This thesis is the result of a research aimed to investigate, understand, and predict op-

tical properties of extended systems by means of rigorous and efficient theoretical ap-

proaches. For these purposes we have used time-dependent current-density-functional

theory. We have formulated the linear response of metals within this theory, we have

included the treatment of relativistic effects by combining this formulation with the

zeroth-order regular approximation, and we have derived a spin-dependent version of

the method, which can allows a future treatment of magnetic response as well. This

thesis is organized as follows.

In chapter 2 the key concepts in density functional theory, from the basic theo-

rems of Hohenberg and Kohn to its extension to the time-dependent current-density-

functional approach, are given.

In chapter 3 we show how the time-dependent current-density formulation for the

linear response of nonmetallic systems by Kootstra et al. needs to be modified in

order to treat metals as well. We applied our formulation to calculate the dielectric

and electron energy-loss function of the noble metals copper and silver.

In chapter 4 we show how relativistic effects can be taken into account within

our theoretical framework. First relativistic density functional theory based on the

4-component current as well as the Dirac-Kohn-Sham equations are described. Then

we introduce the two-component zeroth-order regular approximation (ZORA) used

to treat the dominant scalar and spin-orbit effects in static problems. Finally we give

our derivation of the time-dependent ZORA equations.

In chapter 5 we extend our formulation of the linear response to treat the scalar

relativistic effects within the ZORA formalism. We calculate the response of gold

and we show that, although scalar relativistic effects shift the onset of the interband

absorption from about 3.5 eV to 2.5 eV, thus justifying the yellow color of gold,

spin-orbit effects are expected to be important in the intensity of the absorption.

In chapter 6 we successfully apply our method to calculate the dielectric functions

and the electron energy-loss spectra (EELS) of the group VB and VIB bcc transition

metals V, Nb, Ta, and Cr (in the paramagnetic phase), Mo, W, respectively.

In chapter 7 we include in our formulation the Vignale-Kohn current functional.

Within this approximation the exchange-correlation kernel fxc(r, r
′, ω) used in the

response equations is ω-dependent, unlike within the adiabatic local density approx-

imation used in the calculations of the previous chapters. Relaxation effects due

to electron-electron scattering, which are in part responsible for the low-frequency

Drude-like absorption in metals, can then be taken into account. We show that our

results for the dielectric functions and EELS of the noble metals Cu, Ag, and Au are
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in an overall good agreement with the experiments and that the failures of ALDA are

overcome.

In chapter 8 a spin-dependent version of the linear response formulation is pre-

sented. The method is successfully used to include the spin-orbit coupling within

ZORA in the optical property calculations of the metals Au and W, the semiconduc-

tors ZnTe and CdTe, and the semimetal HgTe.
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Chapter 2
DFT and its Progeny

To describe completely the quantum-mechanical behaviour of a stationary system of

N interacting electrons it is necessary to calculate its many-electron wavefunction. In

principle this may be obtained from the time-independent Schrödinger equation (in

the relativistic case one has to solve the Dirac equation). However, since the motion

of each electron is coupled to that of the other electrons in the system, in practice

the equation is not solvable analytically and approximations are needed. This chapter

is an introduction to the key concepts in the density functional formalism, from the

fundamental Hohenberg-Kohn theorem for stationary systems, to its extension to treat

time-dependent phenomena and transverse fields.

2.1 The main ideas behind DFT

The Schrödinger equation for a stationary system of N interacting electrons can be

written, in the Born-Oppenheimer approximation, as

ĤΨ(r1σ1, r2σ2, ..., rNσN ) = EΨ(r1σ1, r2σ2, ..., rNσN ). (2.1)

Here E is the energy of the system, and Ψ(r1σ1, r2σ2, ..., rNσN ) is the electronic

wavefunction, with ri and σi the space and spin coordinates of the electron i. The

Hamiltonian of the system is defined as

Ĥ = −1

2

∑

i

∇2
i +

1

2

∑

i6=j

1

|ri − rj |
+
∑

i

v(ri). (2.2)

We will use atomic units (~ = me = e = 4πε0 = 1) throughout the thesis. The first

term on the right-hand side of expression (2.2) is the kinetic energy operator T̂ , the

13
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second term represents the Coulomb electron-electron interaction energy operator Ŵ ,

and the last term is the potential energy operator V̂ of the electrons in the external

potential v(r). The Hamiltonian is parametrized by the external potential v(r), thus

the energies E = 〈Ψ|Ĥv |Ψ〉 and the electronic wavefunctions Ψ, which satisfy the

Schrödinger equation (2.1), can be considered functionals of this external potential.

We will denote Ψ = Ψ[v] and E = E[v]. We can now introduce the electron density

ρ(r) of the system through

ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉 = N

∫
|Ψ(rσ1, r2σ2, ..., rNσN )|2dr2...drNdσ1...dσN , (2.3)

in which the density operator ρ̂(r) is defined as

ρ̂(r) =
∑

i

δ(r − ri). (2.4)

Using this density operator, we can write the potential energy due to the external

potential V̂ as

V = 〈Ψ|V̂ |Ψ〉 = 〈Ψ|
∫
ρ̂(r)v(r)dr|Ψ〉 =

∫
ρ(r)v(r)dr. (2.5)

In the next section we will show that there is a one-to-one mapping between the

external potential v(r) and the ground-state density ρ(r). These two quantities can

now be considered to be conjugate variables in the meaning of a Legendre transform,

δE0[v]

δv(r)
= 〈δΨ0[v]

δv(r)
|Ĥv |Ψ0[v]〉 + 〈Ψ0[v]|Ĥv |

δΨ0[v]

δv(r)
〉 + 〈Ψ0[v]|

δĤv

δv(r)
|Ψ0[v]〉

= E0[v]
δ

δv(r)
〈Ψ0[v]|Ψ0[v]〉 + 〈Ψ0[v]|ρ̂(r)|Ψ0[v]〉 = ρ[v](r), (2.6)

where we have used that the wavefunction Ψ0[v] is normalized and the ground-state

eigenfunction of the Hamiltonian Ĥv with energy E0[v]. We can use the density as

basic variable by defining a Legendre transform

F [ρ] = E0[ρ] −
∫
ρ(r)v(r)dr = 〈Ψ0[v]|V̂ + Ŵ |Ψ0[v]〉, (2.7)

where v(r) must be regarded as a functional of ρ(r). The uniqueness of this func-

tional is garanteed by the one-to-one mapping between the external potential and

the ground-state density. The functional F [ρ] is defined for so-called v-representable

densities, i.e., ground-state densities for a Hamiltonian with external potential v [4].

By using the chain rule of differentiation and the result in Eq. (2.6), it immediately

follows that

δF [ρ]

δρ(r)
=

∫
δE0[ρ]

δv(r′)

δv(r′)

δρ(r)
dr′ −

∫
ρ(r′)

δv(r′)

δρ(r)
dr′ − v(r) = −v(r). (2.8)
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2.1.1 The Hohenberg-Kohn theorems

The main objective of density functional theory a is to replace the many-body elec-

tronic wavefunction with the electronic ground-state density as basic quantity [5].

Whereas the many-body wavefunction is dependent on 3N spatial variables and N

spin variables, the density is a function of only three variables and is a simpler quan-

tity to deal with both conceptually and practically. Besides this, a deeper reason for a

density functional formulation is given by Eq. (2.6). The method is in principle exact

and is firmly based on two theorems derived and proved by Hohenberg and Kohn

in 1964 [6]. The first theorem shows that the density ρ of a nondegenerate ground

state uniquely determines the external potential v(r) (up to an arbitrary constant) to

which the many-electron system is subjected. Consequently the density determines

the electronic wavefunction of the system and thus all the electronic properties of

the ground state. The proof of the theorem is rather simple. First we notice that

the external potential v(r) defines a mapping v → ρ, where ρ(r) is the correspond-

ing nondegenerate ground-state density from the Schrödinger equation. The inverse

mapping ρ → v can be proved by reductio ad absurdum. First we show that if two

potentials v(r) and v′(r) differ by more than a constant they will not lead to the same

wavefunction Ψ. From the Schrödinger equation (2.1) we have for the two potentials,

(
T̂ + V̂ + Ŵ

)
|Ψ0〉 = E0|Ψ0〉, (2.9)

(
T̂ + V̂ ′ + Ŵ

)
|Ψ′

0〉 = E′
0|Ψ′

0〉. (2.10)

If Ψ0 and Ψ′
0 were to be the same, then by subtracting (2.10) from (2.9) one would

get

(
V̂ − V̂ ′

)
|Ψ0〉 = (E0 −E′

0) |Ψ0〉, (2.11)

where V̂ and V̂ ′ appear to differ only by a constant if Ψ0 does not vanish. However,

for “reasonably well behaved” potentials, i.e., potentials which do not exhibit infinite

barriers, etc., Ψ0 cannot vanish on a set with nonzero measure by the unique con-

tinuation theorem [7]. So we obtain a contradiction with our initial assumption, and

hence we can conclude that Ψ0 6= Ψ′
0. We can now prove that two potentials v(r) and

v′(r) with corresponding Hamiltonians Ĥ and Ĥ ′ and nondegenerate ground-state

wavefunctions Ψ0 and Ψ′
0 yield two different densities ρ(r) and ρ′(r). By using the

aBooks on this topic are: R. G. Parr and W. Yang, Density Functional Theory of Atoms and

Molecules (Oxford University Press, New York, 1989); R. M. Dreizler and E. K. U. Gross, Density

functional Theory: An Approach to the Quantum Many Body Problem (Springer-Verlag, Berlin,

1990).
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variational principle we have that

E0 = 〈Ψ0|Ĥ |Ψ0〉 < 〈Ψ′
0|Ĥ |Ψ′

0〉 = 〈Ψ′
0|Ĥ ′ + V̂ − V̂ ′|Ψ′

0〉, (2.12)

so that

E0 < E′
0 +

∫
ρ′(r)[v(r) − v′(r)]dr. (2.13)

Similarly, interchanging primed and unprimed quantities, one finds

E′
0 < E0 +

∫
ρ(r)[v′(r) − v(r)]dr. (2.14)

If ρ(r) and ρ′(r) were to be the same, the addition of (2.13) and (2.14) would lead to

the inconsistency

E0 +E′
0 < E0 +E′

0, (2.15)

and consequently we conclude that there cannot exist two different external potentials

v(r) and v′(r) corresponding to the same density ρ(r). This defines our mapping

ρ→ v, and thus the one-to-one mapping v ↔ ρ is constructed. We can then conclude

that the mapping between v, Ψ0, and ρ is one-to-one. The immediate result is that

the total energy of a (Coulomb) many-electron system in an external static potential

can be expressed in terms of the potential energy due to this external potential and

of an energy functional F [ρ] of the ground-state density,

E0[ρ] = 〈Ψ0[ρ]|Ĥ |Ψ0[ρ]〉 =

∫
ρ(r)v(r)dr + F [ρ], (2.16)

with F [ρ] defined in Eq. (2.7). Note that this functional is defined independently of

the external potential v(r), and thus it is a universal functional of the density. This

means that, if the explicit form is known, it can be used for any system. The second

Hohenberg-Kohn theorem states that the exact ground-state density of a system in a

particular external potential v(r) minimizes the energy functional

E0 = min
ρ

{
F [ρ] +

∫
ρ(r)v(r)dr

}
, (2.17)

where E0 is the ground-state energy for the system in an external potential v(r). The

proof uses the variational principle. The previous theorem assures that a trial density

ρ̃(r), such that ρ̃(r) > 0 and
∫
ρ̃(r)dr = N , with N a number of electrons, determines

its own potential ṽ(r), Hamiltonian Ĥ , and wavefunction Ψ̃. This wavefunction can
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be taken as trial function for the problem of interest having external potential v(r).

The variational principle asserts that

〈Ψ̃|Ĥ |Ψ̃〉 = F [ρ̃] +

∫
ρ̃(r)v(r)dr > F [ρ] +

∫
ρ(r)v(r)dr, (2.18)

which proves the second Hohenberg-Kohn theorem. Assuming differentiability of{
F [ρ] +

∫
ρ(r)v(r)dr

}
, this theorem requires that the ground-state density satisfies

the Euler-Lagrange equations

0 =
δ

δρ(r)

{
F [ρ] +

∫
ρ(r)v(r)dr − µ

(∫
ρ(r)dr −N

)}
, (2.19)

where we have introduced the Lagrange multiplier µ to satisfy the constraint that the

density integrates to the correct number of electrons. Although exact, this method

requires in fact approximations to the universal functional, for which no explicit ex-

pressions in terms of the density are known.

2.1.2 The Kohn-Sham equations

A practical scheme to approximate the energy functional has been proposed by Kohn

and Sham who re-introduced the orbitals in the density functional framework [8].

They introduced an auxiliary noninteracting electron system in an effective external

potential vs(r), which reproduces the same ground-state density as in the correspond-

ing interacting system. If vs(r) exists, then the first Hohenberg-Kohn theorem ensures

its uniqueness. In other words the interacting density is assumed to be noninteracting-

v-representable. Like for the interacting system, we can define the energy functional

Es[vs] and its Legendre transform Fs[ρ] along the same lines described above by

putting Ŵ to zero. We obtain

Es[vs] = 〈Ψs[vs]|T̂ + V̂s|Ψs[vs]〉, (2.20)

Fs[ρ] = Es[vs] −
∫
ρ(r)vs(r)dr = 〈Ψs[vs]|T̂ |Ψs[vs]〉, (2.21)

with the derivatives

δEs[vs]

δvs(r)
= ρ(r), (2.22)

δFs[ρ]

δρ(r)
= −vs(r). (2.23)

We can now introduce the exchange-correlation energy functional Exc [ρ], which relates

the functionals F [ρ] and Fs[ρ] of the interacting and the corresponding noninteracting
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systems in the following way,

F [ρ] = Fs[ρ] +
1

2

∫
ρ(r)ρ(r′)

|r − r′| drdr
′ +Exc [ρ], (2.24)

where the second term on the right-hand side represents the classical Hartree electron-

electron interaction energy. By differentiating this expression with respect to the

density ρ(r), the following relation between the external potential and the effective

Kohn-Sham potential can be obtained,

vs(r) = v(r) +

∫
ρ(r′)

|r− r′|dr
′ + vxc(r), (2.25)

where

vxc(r) =
δExc[ρ]

δρ(r)
. (2.26)

Since the state Ψs[vs] is the ground state for a system of noninteracting particles, it

can be written as a single Slater determinant of one-electron orbitals ψi,

Ψs(r1σ1, r2σ2, ..., rNσN ) =
1√
N !




ψ1(r1σ1) · · · ψN (r1σ1)
...

. . .
...

ψ1(rNσN ) · · · ψN (rNσN ),


 , (2.27)

where ψi satisfy the self-consistent Kohn-Sham equations

(
−∇2

2
+ v(r) +

∫
ρ(r′)

|r − r′|dr
′ + vxc(r)

)
ψi(r) = εiψi(r), (2.28)

in which the ground-state density is to be obtained by occupying the N one-electron

orbitals that are lowest in energy,

ρ(r) =

N∑

i=1

|ψi(r)|2. (2.29)

Within the Kohn-Sham scheme one has to approximate, instead of F [ρ], only a small

part of it, Exc[ρ] (and vxc [ρ]), which contains all the many-body effects. A huge

effort is put into finding approximations for the xc energy and potential that can

describe with increasing accuracy the physical and chemical properties of an elec-

tronic system. The existing approximations are for example based on the uniform

electron gas model (local density approximation) [8] or on the slowly varying electron

gas expansion (generalized gradient approximations) [9–12]. Despite their simplicity,

these approximations work very well for many properties and systems, although some

problematic cases exist, which require more advanced approximations.
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2.2 Time-dependent DFT

The many-electron wavefunction of a nonrelativistic many-electron system in a time-

dependent external potential v(r, t) must satisfy the time-dependent Schrödinger

equation,

Ĥ(t)Ψ(r1σ1, r2σ2, ..., rNσN , t) = i
∂

∂t
Ψ(r1σ1, r2σ2, ..., rNσN , t), (2.30)

where the time-dependent Hamiltonian takes the form

Ĥ(t) = −1

2

∑

i

∇2
i +

1

2

∑

i6=j

1

|ri − rj |
+
∑

i

v(ri, t). (2.31)

Analogously to the stationary case, we have the kinetic energy operator T̂ , the

Coulombic electron-electron interaction energy operator Ŵ , and the potential energy

operator V̂ (t) of the electrons in the time-dependent potential v(r, t). In 1984 Runge

and Gross [13] derived the analog of the Hohenberg-Kohn theorem for time-dependent

systems by establishing a one-to-one mapping between time-dependent densities and

time-dependent potentials for a given initial state.

2.2.1 The Runge-Gross proof

The theorem states that the densities ρ(r, t) and ρ′(r, t), evolving from the same

initial state Ψ0 = Ψ(t = t0) under the influence of the two potentials v(r, t) and

v′(r, t) (both expandable in Taylor series around the initial time t = t0), are always

different provided that the two potentials differ by more than a pure function of time,

v(r, t) − v′(r, t) 6= c(t). (2.32)

In this case there is a one-to-one mapping between densities and potentials, and one

can construct a time-dependent version of density functional theory. We give the

essential steps of the demonstration of the theorem, by closely following Ref. [13]. We

will consider the time-dependent density and current-density as

ρ(r, t) = 〈Ψ(t)|ρ̂(r)|Ψ(t)〉, (2.33)

j(r, t) = 〈Ψ(t)|̂j(r)|Ψ(t)〉, (2.34)

in which the density operator ρ̂(r) has been given in (2.4) and the current-density

operator ĵ(r) is defined as

ĵ(r) =
1

2

N∑

i

{−i∇, δ(r− ri)} , (2.35)
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where {Â, B̂} = (ÂB̂ + B̂Â) denotes the anticommutator of two operators Â and B̂.

We first show that the current-densities j(r, t) and j′(r, t) corresponding to the two

different external potentials v(r, t) and v′(r, t) must differ for t > t0. To prove this

we use the condition that the potentials v(r, t) and v′(r, t) can be expanded in Taylor

series around t0,

v(r, t) =
∞∑

k=0

1

k!
vk(r)(t− t0)

k, (2.36)

with a similar expression for v′(r, t) with coefficients v′k(r). Eq. (2.32) implies that

there is a minimum value k > 0 such that

wk(r) = vk(r) − v′k(r) =
∂k

∂tk
(v(r, t) − v′(r, t))

∣∣∣∣
t=t0

6= constant. (2.37)

If now we use the quantum mechanical equation of motion for a Schrödinger operator

Â(t),

d

dt
〈Ψ(t)|Â(t)|Ψ(t)〉 = 〈Ψ(t)| ∂

∂t
Â(t) − i[Â(t), Ĥ(t)]|Ψ(t)〉, (2.38)

for the two current-densities we obtain

∂

∂t
(j(r, t) − j′(r, t))

∣∣∣∣
t=t0

= −i〈Ψ0|[̂j, Ĥ(t0) − Ĥ ′(t0)]|Ψ0〉

= −ρ0(r)∇ (vext(r, t0) − v′ext(r, t0)) , (2.39)

where we have considered that the two Hamiltonians ˆH(t) and Ĥ ′(t) differ only in their

external potentials. Here ρ0(r) = ρ(r, t0) is the initial density. One can repeatedly

use the equation of motion such to arrive at [13]

∂k+1

∂tk+1
(j(r, t) − j′(r, t))

∣∣∣∣
t=t0

= −ρ0(r)∇wk(r) 6= 0. (2.40)

We can conclude that the two current-densities will differ infinitesimally later than

t0, which proves the first part of the theorem. In the second part we extend the proof

to the densities. We make use of the continuity equation,

∂

∂t
ρ(r, t) = −∇ · j(r, t), (2.41)

which, after differentiating k + 1 times, gives for the density difference at t0

∂k+2

∂tk+2
(ρ(r, t) − ρ′(r, t))

∣∣∣∣
t=t0

= ∇ · (ρ0(r)∇wk(r)) . (2.42)
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The right-hand side of this expression can not vanish for the following arguments. We

note that
∫
ρ0(r)|∇wk(r)|2dr =

∮
ρ0(r)wk(r)∇wk(r)ds

−
∫
wk(r)∇ · (ρ0(r)∇wk(r))dr, (2.43)

where we have applied Gauss’ theorem. For finite systems the surface integral will van-

ish, since any realistic potential (i.e., potentials due to normalizable external charge

densities) falls off at least as fast as 1/r at r = ∞, while the density will decay expo-

nentially. Thus ∇ · (ρ0(r)∇wk(r)) can not vanish everywhere otherwise the left-hand

side of Eq. (2.43) would be zero. This in turn would imply that |∇wk(r)|2 = 0, which

is in contradiction to the assumption that wk(r) is not a constant. This completes the

proof of the theorem for finite systems. An important observation is that the density

difference in Eq. (2.42) is linear in the wk(r), and thus it does not vanish already

at first order in v(r, t) − v′(r, t). In particular this implies that the linear density

response function is invertible for switch-on processes.

2.2.2 The time-dependent Kohn-Sham equations

One can prove that the time-dependent density ρ(r, t) obtained from a many-particle

system with Hamiltonian Ĥ(t) and initial state Ψ0 can be reproduced exactly in a

different system evolving from a different initial state Ψ′
0 of finite momentum, under

a different Hamiltonian Ĥ ′(t), with different two-particle interaction and external

potential, provided that the initial density and initial first derivative of the density are

the same in both systems. The external potential of the second system is then uniquely

determined up to a pure function of time. This theorem solves the noninteracting

v-representability problem for the time-dependent case, provided we can find the

appropriate initial state, although it is still unknown whether this initial state can be

chosen to be the ground state for the noninteracting system [14]. It follows that, as in

the stationary case, one can introduce an auxiliary system of noninteracting electrons

which satisfies the time-dependent Kohn-Sham equations

i
∂

∂t
ψi(r, t) =

(
−∇2

2
+ vs(r, t)

)
ψi(r, t), (2.44)

and with density

ρ(r, t) =

N∑

i=1

|ψi(r, t)|2, (2.45)
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which is exactly that of the interacting system. The effective potential vs(r, t) is

uniquely determined up to a purely time-dependent function, and it can be decom-

posed in external, Hartree, and exchange-correlation contributions,

vs(r, t) = v(r, t) +

∫
ρ(r′, t)

|r − r′|dr
′ + vxc(r, t). (2.46)

The time-dependent exchange-correlation potential vxc(r, t) is not obtained as func-

tional derivative of any action functional, but is implicitly defined by this relation.

Indeed, attempts to base time-dependent density functional theory on the station-

ary action have led to paradoxes [15]. However, approximations for the exchange-

correlation potentials can still be constructed based on exact constraints that the

exchange-correlation potential has to satisfy [16]. In particular, the zero-force and

zero-torque theorem, which states that the exchange-correlation potential cannot ex-

ert any net force or torque on the system, and the generalized translational invariance,

which requires that a rigid translation of the current-density implies a rigid transla-

tion of the exchange-correlation potentials. Recently van Leeuwen has shown that the

problems related to the formulation of TDDFT based on the action functional can be

solved by using the Keldysh action functional [15]. This new kind of action functional

is defined on the Keldysh contour [17], in which the physical time is parametrized by

an underlying parameter τ , called pseudotime. In this case the Kohn-Sham potential

can be obtained as functional derivative of the Keldysh action functional.

2.3 Time-dependent current-DFT

In the previous section we have shown that the second part of the Runge-Gross proof

is valid under the conditions of a positive density ρ0(r) and time-dependent potentials

vanishing at the boundary. The proof becomes questionable for extended system in

external longitudinal electric fields. In this case the ground-state density remains

finite everywhere, and we can choose two electric fields E[v](r, t) = ∇v(r, t) and

E′[v′](r, t) = ∇v′(r, t) so that

E[v](r, t) −E′[v′](r, t) =
c(t)

ρ0(r)
, (2.47)

with c(t) an arbitrary function of time, expandable in Taylor series around t = t0.

This immediately follows from Eq. (2.40 ) in the proof of the Runge-Gross theorem.

Although the potentials themselves are not finite, this kind of fields are finite every-

where, hence physically acceptable. They will lead to nonvanishing uniform current-

densities, but to constant densities, since these currents are divergence free. The first
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part of the Runge-Gross theorem still holds in this case, whereas the second part is not

needed if one formulates a density functional theory in terms of the current-density

as fundamental variable. In order to treat also magnetic fields in the time-dependent

density functional framework, Ghosh and Dhara were the first to reformulate the the-

ory in terms of the current-density [18,19]. Following the same line of the Runge-Gross

proof, Ghosh and Dhara showed that the single-particle current-density uniquely de-

termines, up to an arbitrary gauge transformation, the time-dependent scalar and

vector potentials of the system, and hence the many-electron wavefunction. Recently

Vignale has given an alternative formulation of the TDCDFT [20], which closely fol-

low that one given by van Leeuwen for the TDDFT [14], and which is easier and more

complete than the Ghosh-Dhara one. We give here the statement of the theorem and

the essential steps of its proof, by closely following Ref. [20].

2.3.1 Mapping from current-densities to vector potentials

We consider an interacting many-particle system moving in a scalar and vector poten-

tials v(r, t) and A(r, t), which are analytic functions of time around t0. The motion

of the system is governed by the following Hamiltonian ˆH(t),

ˆH(t) =
∑

i

{
1

2
[−i∇i +

1

c
A(ri, t)]

2 + v(ri, t)

}
+
∑

i<j

U(ri − rj), (2.48)

where U(ri − rj) is a two-particle interaction. The density operator takes the same

form as in Eq. (2.4) for the ordinary TDDFT, whereas the current-density operator

is given in term of the velocity operator v̂i = (−i∇i + A(ri, t)/c) as

ĵ(r, t) =
1

2

∑

i

{v̂i(t), δ(r − ri)}. (2.49)

If ρ(r, t) and j(r, t) are the time-dependent density and current-density, respectively,

of the system, then one can prove that the same density and current-density can be

reproduced by another many-particle system evolving under a different Hamiltonian

Ĥ ′(t),

Ĥ ′(t) =
∑

i

{
1

2
[−i∇i +

1

c
A′(ri, t)]

2 + v′(ri, t)

}
+
∑

i<j

U ′(ri − rj), (2.50)

from a different initial state Ψ′
0 which produces the same density and current-density

as Ψ0 at t = t0 in the unprimed system. The potentials v′(r, t) and A′(r, t) are

uniquely determined by v(r, t), A(r, t), Ψ0, and Ψ′
0 up to gauge transformations of
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the form

v′(r, t) → v′(r, t) +
∂Λ(r, t)

∂t
,

A′(r, t) → A′(r, t) + ∇Λ(r, t), (2.51)

with Λ(r, t) a regular function of r and t. One can always make a gauge transformation

of the form (2.51) to eliminate the scalar potential at all times. To obtain this,

we choose Λ(r, t) such that the scalar potential is always zero in both primed and

unprimed systems, i.e., ∂Λ(r, t)/∂t = −v(r, t) at all times, with the initial condition

Λ(r, t0) = 0. The current-density obeys the equation of motion

dj(r, t)

dt
=

∂j(r, t)

∂t
+ i〈[ ˆH(t), ĵ(r, t)]〉 = ρ(r, t)

1

c

∂A(r, t)

∂t

− 1

c
j(r, t) × [∇×A(r, t)] + F(r, t) + ∇ · σ(r, t), (2.52)

with 1/c ∂A(r, t)/∂t and ∇×A(r, t) the external electric and magnetic fields, respec-

tively. The quantities F(r, t) and σ(r, t) represent the internal force density and the

stress tensor, respectively, and are defined as

F(r, t) = −
〈
∑

i

δ(r − ri)
∑

j 6=i

∇ri
U(ri − rj)

〉
, (2.53)

σαβ(r, t) = −
〈

1

4

∑

i

{v̂α, {v̂β , δ(r − ri)}}
〉
. (2.54)

The brackets 〈...〉 represent the expectation value in the unprimed system at time t.

An expression analogue to Eq. (2.52) can be written also for the primed system: the

external electric and magnetic fields, the internal force, and the stress tensor become

now primed. By assumption ρ(r, t) = ρ′(r, t) and j(r, t) = j′(r, t), thus taking the

difference of the two equations we arrive at

ρ(r, t)
1

c

∂∆A(r, t)

∂t
=

1

c
j(r, t) × [∇× ∆A(r, t)] + Q(r, t) −Q′(r, t), (2.55)

where ∆A(r, t) ≡ A′(r, t) −A(r, t) and

Q(r, t) ≡ F(r, t) + ∇ · σ(r, t). (2.56)

Q′(r, t) is the analogue of Q(r, t) in the primed system. If solved, this equation

can give the vector potential A′(r, t) which produces the same current-density as the

vector potential A(r, t) in the unprimed system. However, since A′(r, t) enters the
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equation also implicitly through Q′(r, t), it is not immediate to verify the existence

and uniqueness of the solution of this equation. To overcome this difficulty one can

follow an alternative approach. By hypothesis both A(r, t) and A′(r, t) are expand-

able in Taylor series around t = t0, and the Taylor series of their difference is given

by

∆A(r, t) =

∞∑

k=0

∆Ak(r)(t − t0)
k, (2.57)

with

∆Ak(r) ≡ 1

k!

∂k∆A(r, t)

∂tk

∣∣∣∣
t=t0

. (2.58)

Substituting this expansion in Eq. (2.55) and equating the lth term of the Taylor

expansion on each side of it, we arrive at the final result

ρ0(r)(l + 1)
1

c
∆Al+1(r) = −

l−1∑

k=0

ρl−k(r)(k + 1)
1

c
∆Ak+1(r)

+
1

c

l∑

k=0

{jl−k(r) × [∇× ∆Ak(r)]}

+ [Q(r, t)]l − [Q′(r, t)]l. (2.59)

Here we have considered that all the quantities appearing in Eq. (2.55) admit Taylor

expansion in the neighbourhood of t = t0, as consequence of the analyticity of the

vector potential and the time-dependent Schrödinger equation. In general [f(r, t)]l
indicates the lth coefficient (a function of r alone) in the Taylor expansion of the func-

tion f(r, t). Moreover, we have used the relation [∂∆A(r, t)/∂t]k = (k+1)∆A(r)k+1.

One can show that Eq. (2.59) is a recursion relation for the coefficients ∆Ak(r) of

the Taylor expansion of ∆A(r, t). This means that the coefficient ∆Al+1(r) can be

expressed in terms of ∆Ak(r), with k 6 l. In order this to be true, the right-hand side

of Eq. (2.59) must depend only on the coefficient ∆Ak(r), with k 6 l. This is imme-

diately clear for the terms in which this coefficient appears explicitly. There are also

∆Ak(r)s that enter the equation implicitly through the coefficients of the expansion of

the expectation value of the stress tensor. However, the time-dependent Schrödinger

equation, which is of first order in time, assures that the lth coefficient of the Taylor

expansion of the quantum states Ψ(t) and Ψ′(t) is entirely determined by the coeffi-

cients of order k < l in the expansion of the vector potentials Ak(r, t) and A′
k(r, t),

respectively. We can then conclude that all the quantities on the right-hand side of Eq.

(2.59) are completely determined by the coefficients ∆Ak(r), with k 6 l. To use the
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recursion relation we also need to know the initial state ∆A0(r) = A′(r, t0)−A(r, t0).

This can be retrieved from the equality of densities and current-densities of the primed

and unprimed systems,

〈Ψ(t0)|̂j(r)|Ψ(t0)〉 = 〈Ψ′(t0)|̂j(r)|Ψ′(t0)〉,

which leads to the following expression,

ρ(r, t0)∆A0(r) = 〈Ψ′(t0)|̂jp(r)|Ψ′(t0)〉 − 〈Ψ(t0)|̂jp(r)|Ψ(t0)〉, (2.60)

where ĵp(r) = 1/2
∑

i{−i∇i, δ(r − ri)} is the paramagnetic current-density operator.

The recursion equation (2.59), together with the initial condition (2.60), completely

determine the Taylor expansion of the vector potential A′(r, t) which produces in

the primed system the same current-density that A(r, t) produces in the unprimed

system. The knowledge of these coefficients uniquely defines the potential A′(r, t)

provided that the series itself converges within a nonvanishing convergence radius

tc > 0. Physically, the possibility of a vanishing radius can be safely discounted [20].

Under this assumption, the potential can be computed up to tc and then the process

can be iterated taking tc as initial time.

Two special cases can now be discussed.

In the case in which the unprimed and primed systems are such that U = U ′ and

Ψ(t0) = Ψ′(t0), Eq. (2.60) implies that ∆A0(r) = 0. From Eq. (2.59) it then follows

that ∆Ak(r) = 0 for all k, i.e., A(r, t) = A′(r, t) at all times. This result is the

analogue of the Runge-Gross theorem for the TDCDFT: two vector potentials that

produce the same current-density in two systems evolving from the same initial state

must be the same up to a gauge transformation. In other words the map between

vector potentials and current-densities is invertible.

In the case in which the primed system is a noninteracting one, i.e., U ′ = 0, then

the current-density produced in an interacting system under a vector potential A(r, t)

can be also reproduced in a noninteracting system evolving under a suitable vector

potential A′(r, t). This is possible if Ψ′(t0) is a Slater determinant which produces the

initial density and current-density. It becomes clear that in this case we have a solid

basis for the use of a time-dependent Kohn-Sham formalism. The time-dependent

one-electron Kohn-Sham equations take the form

{
1

2
[−i∇ +

1

c
As(r, t)]

2 + vs(r, t)

}
ψi(r, t) = i

∂

∂t
ψi(r, t). (2.61)

The effective potentials are uniquely determined up to a gauge transformation. In

the Coulomb gauge (∇ · A = 0), they can be decomposed in external, classical, and
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exchange-correlation potentials as follows,

vs(r, t) = v(r, t) +

∫
ρ(r′, t)

|r − r′|dr
′ + vxc(r, t), (2.62)

As(r, t) = A(r, t) +
1

c

∫
jT (r′, t− |r − r′|/c)

|r − r′| dr′ + Axc(r, t), (2.63)

where we have assumed the two-particle interaction to be the repulsive Coulomb

potential. The vector potential defined in terms of the transverse current-density

jT (r, t) accounts for the properly retarded contribution to the total current and for

the retardation effects which have not been included in the instantaneous Coulomb

potential [21]. The density of the real system can be obtained in a similar way as in

TDDFT by using Eq. (2.45). The current is obtained as

j(r, t) = − i

2

N∑

i=1

(ψ∗
i (r, t)∇ψi(r, t) −∇ψ∗

i (r, t)ψi(r, t))

+
1

c
ρ(r, t)As(r, t). (2.64)

Here the first and the second terms on the right-hand side represent the paramagnetic

and diamagnetic currents, respectively. The time-dependent density and current-

density are related via the continuity equation, whereas the initial values are fixed by

the initial state.

2.4 Linear response

One of the main application of time-dependent (current)-density-functional theory is

the study of the dynamics of a system, initially in the ground state, when an external

small perturbation is applied. In the linear regime one considers only terms which

are linear in the perturbation and neglects higher order ones. We consider a system

which at t ≤ t0 is in the ground state Ψ0 of the Hamiltonian Ĥ0. At t = t0 we apply

a small perturbation δĥ(t) and we study the linear response for an arbitrary physical

observable Ô of the system as

δ〈Ô〉(t) = 〈Ψ(t)|Ô|Ψ(t)〉 − 〈Ψ0|Ô|Ψ0〉. (2.65)

Here Ψ(t) is the solution of the time-dependent Schrödinger equation

i
∂

∂t
Ψ(t) = [Ĥ0 + δĥ(t)]Ψ(t). (2.66)

This equation is better treated in the Heisenberg picture relative to Ĥ0, in which wave-

functions and operators are related to the corresponding wavefunctions and operators
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in the Schrödinger picture by an unitary transformation as follows,

ΨH(t) = ei(t−t0)Ĥ0Ψ(t), (2.67)

ÔH(t) = ei(t−t0)Ĥ0Ôe−i(t−t0)Ĥ0 . (2.68)

The wavefunction ΨH(t) satisfies the following equation of motion,

i
∂

∂t
ΨH(t) = δĥH(t)ΨH(t), (2.69)

which can be reformulated as an integral equation

ΨH(t) = Ψ(t0) − i

∫ t

t0

δĥH(t′)ΨH(t′)dt′ (2.70)

Here the causality constraint is automatically incorporated. Note that at t = t0
the wavefunctions in the Heisenberg and Schrödinger pictures are the same. This

integral equation can be solved by iteration. The solution up to the terms linear in

the perturbation is given already by a single iteration, so that, together with Eq.

(2.67), we obtain

Ψ(t) = e−i(t−t0)Ĥ0

[
1 − i

∫ t

t0

δĥH(t′)dt′
]

Ψ0 +O(δĥ2
H ). (2.71)

From this, the linear response equation (2.65) for the observable Ô becomes

δ〈Ô〉(t) = −i
∫ t

t0

〈Ψ0|
[
ÔH(t), δĥH (t′)

]
|Ψ0〉dt′, (2.72)

where [â, b̂] is the commutator of the operators â and b̂. If we consider the perturbation

δĥH(t) to be

δĥH(t) =
∑

i

ÔiH (t)ϕi(t), (2.73)

with ϕi(t) arbitrary time-dependent variables, then the linear response for the oper-

ators Ôi is given as

δ〈Ôi〉(t) = −i
∫ t

t0

〈Ψ0|[ÔiH (t),
∑

j

ÔjH (t′)ϕj(t
′)]|Ψ0〉dt′

=
∑

j

∫ ∞

t0

χij(t, t
′)ϕj(t

′)dt′. (2.74)

Here χij(t, t
′) represent the response functions and are defined as

χij (t, t
′) = −iΘ(t− t′)〈Ψ0|[ÔiH (t), ÔjH (t′)]|Ψ0〉. (2.75)
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The Heaviside step-function Θ(τ) (Θ(τ > 0) = 1,Θ(τ 6) = 0) assures the causality

of the response functions, since the system should not respond to the perturbation

before this is applied. If the set |Ψn〉 is the complete set of eigenstates of Ĥ0, we may

use the closure relation
∑

n |Ψn〉〈Ψn| = 1 and write

χij (t, t
′) = −iΘ(t− t′)

∑

n

{
〈Ψ0|ÔiH (t)|Ψn〉〈Ψn|ÔjH (t′)|Ψ0〉

−〈Ψ0|ÔjH (t′)|Ψn〉〈Ψn|ÔiH (t)|Ψ0〉
}
. (2.76)

Using (2.68) we can write,

〈Ψ0|ÔiH (t)|Ψn〉〈Ψn|ÔjH (t′)|Ψ0〉 = 〈Ψ0|ei(t−t0)H0Ôie
−i(t−t0)H0 |Ψn〉 ×

〈Ψn|ei(t′−t0)H0Ôje
−i(t′−t0)H0 |Ψ0〉

= ei(E0−En)(t−t′)〈Ψ0|Ôi|Ψn〉〈Ψn|Ôj |Ψ0〉,(2.77)

with E0 and En the eigenvalues corresponding to the eigenstates Ψ0 and Ψn, respec-

tively, of the Hamiltonian Ĥ0. A similar expression can be written for the other term

of the commutator in Eq. (2.76). The response functions (2.76) depend thus only on

the difference (t− t′) as follows,

χij (t− t′) = −iΘ(t− t′)
∑

n

{
ei(E0−En)(t−t′)〈Ψ0|Ôi|Ψn〉〈|Ψn|Ôj |Ψ0〉

−e−i(E0−En)(t−t′)〈Ψ0|Ôj |Ψn〉〈Ψn|Ôi|Ψ0〉
}
. (2.78)

Note that this is only true if the operators Ôi and Ôj are time-independent. By using

the following expression for the Heaviside step-function Θ(τ),

Θ(τ) = − 1

2πi
lim

η→0+

∫ ∞

−∞

e−iωτ

ω + iη
dω, (2.79)

we can arrive at

χij(t− t′) = lim
η→0+

∫ ∞

−∞

1

2π
e−iω(t−t′)χij(ω), (2.80)

where

χij(ω) = lim
η→0+

∑

n

{
〈Ψ0|Ôi|Ψn〉〈Ψn|Ôj |Ψ0〉
ω − (En −E0) + iη

− 〈Ψ0|Ôj |Ψn〉〈Ψn|Ôi|Ψ0〉
ω + (En −E0) + iη

}
(2.81)

represent the response functions in the frequency domain. The limit in (2.81) can be

rewritten as

lim
η→0+

1

ω − (En −E0) + iη
= P

(
1

ω − (En − E0)

)
− iπδ(ω − (En −E0)), (2.82)
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where P represents the principal value of the limit. If the system has time-reversal

invariance, then one can choose the quantities 〈Ψ0|Ôi|Ψn〉 real, so that the real and

imaginary parts of the response functions are given by

<{χij(ω)} =
∑

n

〈Ψ0|Ôi|Ψn〉〈Ψn|Ôj |Ψ0〉 ×
{
P

(
1

ω − (En −E0)

)
− P

(
1

ω + (En −E0)

)}
, (2.83)

={χij(ω)} = −π
∑

n

〈Ψ0|Ôi|Ψn〉〈Ψn|Ôj |Ψ0〉 ×

{δ(ω − (En −E0)) − δ(ω + (En − E0))} . (2.84)

2.4.1 Linear response in TDCDFT

Within the TDCDFT framework we can now describe the response of an interact-

ing many-electron system to a time-dependent external perturbation in terms of the

response functions of the corresponding noninteracting Kohn-Sham systems. We con-

sider as initial state the ground state of the stationary Kohn-Sham system corre-

sponding to the external potentials v0(r) = v(r, t0) and A0(r) = A(r, t0) = 0. The

first-order perturbation of the ground state is governed by the perturbation Hamilto-

nian δĥ(r, t) containing all terms linear in the field,

δĥ(r, t) = ρ̂(r)δvs(r, t) +
1

c
ĵ(r) · δAs(r, t), (2.85)

where ρ̂(r) = 1 and ĵ(r) = −i
(
∇−∇†) /2. In chapter 4 we derive the equation of the

linear response by including the spin of electrons as well. The Kohn-Sham perturbing

potentials δvs(r, t) and δAs(r, t) are given by

δvs(r, t) = δv(r, t) +

∫
δρ(r′, t)

|r− r′| dr
′ + δvxc(r, t), (2.86)

δAs(r, t) = δA(r, t) +
1

c

∫
δjT (r′, t− |r− r′|/c)

|r − r′| dr′ + δAxc(r, t). (2.87)

The linear contributions to the exchange-correlation potentials depend on both the

induced density and induced current-density. One can choose the gauge such that

in the exchange-correlation scalar potential only terms linear in the induced density

are retained, whereas all the terms linear in the induced current-density are gauge-

transformed to the exchange-correlation vector potential. The terms linear in the

induced density which contribute to the exchange-correlation vector potential can

be considered as functional of the induced current-density, since density and current

are related by the continuity equation (2.41). Thus the exchange-correlation vector
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potential is a functional of the induced current-density. In this gauge, the linear

contribution to the scalar exchange-correlation potential can be defined via a response

kernel fxc(r, r
′, t− t′) as

δvxc(r, t) =

∫ t

t0

∫
fxc(r, r

′, t− t′)δρ(r′, t′)dr′dt′. (2.88)

The exchange-correlation contribution to the vector potential is given in terms of a

tensor kernel fxc(r, r
′, t− t′) as

δAxc(r, t) =

∫ t

t0

∫
fxc(r, r

′, t− t′) · δj(r′, t′)dr′dt′. (2.89)

The exchange-correlation kernels are, as expected, very complicated functionals of the

density and current-density and need to be approximated. The induced density and

current-density are then obtained, in the linear regime and in the frequency domain,

as

δρ(r, ω) =

∫ {
χs,ρρ(r, r

′, ω) · δvs(r
′, ω)

+
1

c
χs,ρj(r, r

′, ω) · δAs(r
′, ω)

}
dr′ (2.90)

δj(r, ω) =

∫ {
χs,jρ(r, r

′, ω) · δvs(r
′, ω)

+
1

c
[χs,jj(r, r

′, ω) + ρ0δ(r − r′)] · δAs(r
′, ω)

}
dr′, (2.91)

where ρ0(r) is the density in the ground state. The term δjd(r, ω) = ρ0(r)δAs(r, t)/c

is the diamagnetic contribution to the induced current-density, and can be related to

the current-current Kohn-Sham response function χs,jj(r, r
′, ω) via the conductivity

sum rule

χs,jj(r, r
′, ω = 0) + ρ0(r)δ(r − r′) = 0. (2.92)

In this expression we neglect a purely transverse contribution which gives rise to the

weak Landau diamagnetism [1]. In the next chapter we give a detailed description of

this sum-rule. The set of equations (2.86)-(2.91) needs to be solved self-consistently.

To do this we need to approximate the exchange-correlation kernels.

2.4.2 The Adiabatic Local Density Approximation

The simplest approximation to the time-dependent exchange-correlation potentials is

the adiabatic local density approximation (ALDA) [22], which is a straightforward
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extension of the local density approximation used in the stationary case. Within this

approximation one neglects the exchange-correlation vector potential and evaluates

the LDA expression for the ground-state exchange-correlation scalar potential at the

time-dependent local density,

vxc(r, t) = vhomxc (ρ(r, t)) =
d

dρ
(ρehomxc (ρ))

∣∣∣∣
ρ(r,t)

, (2.93)

where ehomxc (ρ) is the exchange-correlation energy per particle of the homogeneous

electron gas with density ρ. The main characteristic of the ALDA is that it is lo-

cal in time as well as in space. This approximation can be expected to be valid in

nearly homogeneous systems in which densities change very slowly in time; in practice,

however, it works quite well also beyond this domain of applicability. When the adia-

batic approximation is used in the linear response approach, the exchange-correlation

response kernel fxc(r, r
′, t, t′) = δvxc(r, t)/δρ(r

′, t′) takes the following simple form,

fALDA
xc (r, r′, t, t′) = δ(t− t′)δ(r − r′)

d2

dρ2
(ρehomxc (ρ))

∣∣∣∣
ρ0(r)

. (2.94)

The kernel is real and local in space and time. When Fourier-transformed, the lo-

cality in time implies that fALDA
xc is frequency-independent. In order to improve

this approximation one can incorporate the frequency-dependence of the exchange-

correlation kernel. But it has been rigorously proved that the frequency-dependent

fxc(r, r
′, ω) is long range in space and that frequency-dependence and locality are in-

compatible in an exchange-correlation potential that is expressed as functional of the

density alone [23]. Vignale and Kohn showed that a consistent local approximation

can be constructed if the theory is formulated in terms of the current-density as dy-

namical basic variable, with the vector potential as conjugate variable [24]. The main

result is that one obtains a local current approximation for the exchange-correlation

kernel for the vector potential.

2.4.3 The Vignale-Kohn functional

The exchange-correlation vector potential can be approximated as a local functional

of the current by using the expression derived by Vignale and Kohn [24,25],

iω

c
δAxc,i(r, ω) = − 1

ρ0(r)

∑

j

∂jσxc,ij(r, ω). (2.95)

Here σxc,ij(r, ω) has the structure of a symmetric viscoelastic stress tensor,

σxc,ij = η̃xc

(
∂jui + ∂iuj −

2

3
δij
∑

k

∂kuk

)
+ ζ̃δij

∑

k

∂kuk, (2.96)
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with u(r, ω) = δj(r, ω)/ρ0(r) the velocity field. The coefficients η̃xc(r, ω) and ζ̃xc(r, ω)

depend on the exchange-correlation energy exc(ρ0) and on the transverse and longi-

tudinal exchange-correlation kernels fxcT (ρ0(r), ω) and fxcL(ρ0(r), ω) of the homoge-

neous electron gas with density ρ0(r). In chapter 7 we give a more detailed discussion

on this functional and we show the performance in the linear response of noble metals.
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Chapter 3
TD-CDFT for the Metallic Response

of Solids

We formulate the linear response of metals within time-dependent current-density-

functional theory. To achieve this, the Kohn-Sham response functions have to include

both interband and intraband transitions with an accurate treatment of the Fermi

surface in the Brillouin-zone integrations. The intraband contributions in particular

have to be evaluated using a wavevector-dependent description. To test the method we

calculate the optical properties of the two noble metals Cu and Ag. In general we find

a good agreement with the experiments for the calculated results obtained within the

adiabatic local density approximation. In order to describe the Drude-like absorption

below the interband onset and the sharp plasma feature in silver exchange-correlation

effects beyond the adiabatic local density approximation are needed.

3.1 Introduction

In time-dependent density-functional theory (TDDFT), developed by Runge and

Gross [13] starting from the original ground-state Hohenberg-Kohn formulation [6,8],

the exact dynamical response of a many-particle system to an external perturbing

time-dependent scalar potential can be obtained using an effective one-particle de-

scription [13, 15, 26, 27]. Many-particle effects enter in the time-dependent version

of the so-called Kohn-Sham scheme [8] through the exchange-correlation contribu-

tion to the self-consistent and time-dependent effective scalar potential. Ghosh and

Dhara [18, 19] extended the Runge-Gross theorem [13] to many-particle systems in

35
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a general time-dependent electromagnetic field. In their description the electron

current-density enters, replacing the electron density of ordinary TDDFT as the fun-

damental dynamical variable, with the vector potential instead of the scalar potential

as its natural conjugate variable [28]. This time-dependent current-density func-

tional approach (TDCDFT) [24,27,29] is particularly well suited for the treatment of

extended systems [30, 31]. When such a system is perturbed by an external electric

field, there will be a macroscopic response caused by charge accumulating at the outer

surface that leads to a macroscopic screening field inside the bulk. The continuity

relation implies that the density change at the surface of the system is accompa-

nied by a current flowing through the interior with a nonzero average value for the

current-density. When treating the response of a crystalline system by using periodic

boundary conditions within TDDFT, the effect of this phenomenon called macro-

scopic polarization cannot be described using the periodic bulk density alone [32],

and one has to introduce additional dynamical variables to account for the surface

charge, c.q. the macroscopic polarization [33] or, equivalently, the macroscopic in-

duced field [34]. In the TDCDFT approach the information on the surface charge is

already contained in a natural way in the periodic current-density. For the longitu-

dinal response of isotropic systems some of the difficulties can be circumvented by

relating the long-wavelength limit of the density-density response to the longitudinal

current-current response [1,2,35,36]. The (current-)density functional approach yields

reasonable results for the dielectric constants and optical dielectric functions of vari-

ous isotropic semiconductors and insulators when it is used within the adiabatic local

density approximation (ALDA) for the exchange-correlation field [30, 31, 37–42], but

more advanced schemes involving long-range kernels [43–48] or equivalently (semi)-

local current functionals [24,25,49] are needed to account for excitonic effects in these

systems. For anisotropic system and when calculating transverse response at q > 0 we

have to use the TDCDFT approach, which can be applied to treat the optical prop-

erties of metals as well. Here, however, one should not only consider the interband

contribution, involving transitions from (partially) occupied to (partially) unoccupied

bands as in nonmetals, but also the intraband contribution due to transitions within

the same band, more specifically, from just below the Fermi level to just above this

level. The latter processes are responsible for the collective plasmon response typical

for simple metallic systems [1]. For the noble metals like Ag and Cu the interplay

between inter- and intraband processes involving d-electrons leads to a strong redshift

of the Drude-like plasmon resonance [50–54].

In this chapter we give a general description of the response of a metallic system to

an external electromagnetic field within the current-density functional scheme [30,31].



3.1. Introduction 37

To achieve this we consider a general q- and ω-dependent perturbation,

δĥ(r, t) = δĥq(r, ω)ei(q·r−ωt), (3.1)

where we choose δĥ−q(r,−ω) = δĥ†q(r, ω) to ensure a real perturbation with δĥq(r, ω)

lattice periodic. We derive the linear response of the system for vanishing q but finite

ω. This is the regime describing optical properties. To evaluate the response in this

limit three steps are essential. First we show that the inter- and intraband processes

behave differently for small q. Then we show that we can still use the microscopic

Coulomb gauge [30] to separate microscopic and macroscopic contributions to the

effective scalar and vector potentials. Finally, we consider the self-consistent-field

equations and show that inter- and intraband contributions to the response decouple

in the optical limit when we make use of the adiabatic local density approximation.

Here we outline the derivation, which can be found in full detail in the next section.

We start by expressing the induced density and current-density using the q-dependent

Kohn-Sham response functions. These take the following general form,

χabq(r, r′, ω) =
1

Nk

∑

k

∑

i,a

(fik − fak+q)

1 + δi,a
×

(ψ∗
ik(r)âqψak+q(r)) (ψ∗

ak+q(r′)b̂−qψik(r′))

εik − εak+q + ω + iη
+ c.c.(−q,−ω),

where η is a positive infinitesimal quantity, âq and b̂q refer to the operators ρ̂q =

e−iq·r or ĵq = −i(e−iq·r∇ − ∇†e−iq·r)/2, and the summation is over the (partially)

occupied bands i and (partially) unoccupied bands a. Only ground-state orbitals

ψnk, orbital energies εnk, and occupation numbers fnk enter in this expression, which

takes into account the conservation of the crystal momentum. The Bloch functions

are normalized on the Wigner-Seitz cell VWS , and the number of k points in the

summation is Nk = VBvK /VWS , in which VBvK is the volume of the Born-von Kármán

cell. The intraband (interband) contribution to the response functions is given by the

terms with a = i (a 6= i) in the summation over i and a. In the intraband case the

factor 1/(1 + δi,a ) corrects for the double counting. Analysis of the q-dependence at

finite ω indicates that the intraband contributions vanish in the limit q → 0 except

for χjjq(r, r′, ω). By considering the reverse order of limits, i.e. by evaluating the

limit ω → 0 before taking q → 0, we retrieve the conductivity sum rule which allows

us to relate the diamagnetic and paramagnetic components of the current-density.

Identifying the various contributions to the response functions makes it possible to

separate the inter- and intraband contributions to the induced density and current-
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density,

δρ(r, ω) = δρinter(r, ω) + δρintra(r, ω), (3.2)

δj(r, ω) = δjinter(r, ω) + δjintra(r, ω).

The equations for the interband contribution to the density and current-density be-

come identical to the original description of Kootstra et al. [30, 31] in the limit of q

to zero. The description of the intraband contribution follows along the same lines as

for the interband case. In the description of Kootstra et al. it is proven to be essen-

tial to choose the gauge such that the macroscopic component of the induced electric

field that is due to the induced density and current-density is completely described

using the vector potential. The scalar potential is thus purely microscopic. One can

then obtain the response to a fixed macroscopic field instead of to an external field

and thus treat the macroscopic optical response exactly [30]. This still holds in our

q-dependent description, where it turns out that the density and current-density have

the same q-dependence as the perturbing field. We can then define the macroscopic

induced density as

δρmac(r, ω) = eiq·r 1

V

∫

V

e−iq·rδρ(r, ω)dr, (3.3)

where V is the unit cell, and similarly we can define the macroscopic current-density.

A careful analysis of the q-dependence at small q, but finite ω, reveals that we can

include in the microscopic scalar potential the contribution due to the intraband part

of the microscopic induced density,

δρintra
mic (r, ω) = δρintra (r, ω) − δρintra

mac (r, ω),

where δρintra
mac (r, ω) is the macroscopic part of the intraband induced density. The

other contributions that lead to a macroscopic field have to be included in the vec-

tor potential. Intraband contributions to both the microscopic scalar potential and

macroscopic vector potential are now identified. The former vanishes in the limit

of q to zero, and the latter is to be included in the definition of the fixed macro-

scopic field. Like in the description of Kootstra et al. we can neglect the very small

microscopic magnetic contribution to the self-consistent field, which is due to the

transverse current. Together with the classical potentials, we also have to consider

the exchange-correlation contribution to the self-consistent field. We find that in the

optical limit only the exchange-correlation contribution of the interband part of the

induced density needs to be included in the microscopic scalar potential to arrive at

the same adiabatic local density approximation (ALDA) used in the ordinary TDDFT

approach. At the same time no exchange-correlation contributions to the macroscopic
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vector potential remain. In this chapter we neglect possible additional contributions

from the induced current [25]. The microscopic effective scalar potential is thus com-

pletely determined by the microscopic interband induced density. Therefore we can

obtain the response in the optical limit by first solving the equations for the inter-

band part of the density and by subsequently obtaining the intraband part. We show

that, whereas the interband density needs a self-consistent solution, in the second

stage the intraband density and the current-density do not need to be calculated

self-consistently. It follows that the intraband current can be obtained completely

independent from the interband density and current-density and vice versa. Note,

however, that for finite q and for exchange-correlation approximations that go beyond

the ALDA the sets of equations are essentially coupled.

The remainder of the chapter is organized as follows. The main aspects of the

implementation are given in a separate section. This implementation is based on the

description of Kootstra et al. [30] for the q-independent nonmetallic case. Here we

focus on the specific case of metals and refer the reader to Ref. [30] for the general

framework used. Finally, we report our results for the dielectric and energy-loss

functions for the crystals of Cu and Ag and compare them with the best available

experimental data [50–54].

3.2 Theory

We treat the dynamic linear response of a metallic crystal to a perturbation de-

scribed by both scalar and vector potentials within the time-dependent current-

density-functional theory (TDCDFT) [18, 19, 24, 27, 29]. In the effective one-electron

scheme of Kohn-Sham [8], noninteracting particles moving in a time-dependent effec-

tive electromagnetic field are described by Bloch functions that are solutions of the

following equation,

i
∂

∂t
ψnk(r, t) =

(
1

2

[
p̂ +

1

c
δAeff (r, t)

]2

+ veff ,0(r) + δveff (r, t)

)
ψnk(r, t). (3.4)

Here veff ,0(r) is the effective scalar potential giving the initial density which we choose

to be the ground-state density. It is, therefore, uniquely determined by the Hohenberg-

Kohn theorem [6]. The time-dependent potentials δveff (r, t) and δAeff (r, t) produce

the exact time-dependent density and current-density for the chosen initial state,

ρ(r, t) =
∑

n,k

fnkψ
∗
nk(r, t)ψnk(r, t), (3.5)
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where fnk are the occupation numbers, and

j(r, t) =
∑

n,k

fnkψ
∗
nk(r, t)̂jψnk(r, t) +

1

c
ρ(r, t)δAeff (r, t). (3.6)

In Eq. (3.6) the first term is the paramagnetic component of the current-density, in

which the auxiliary operator ĵ is defined as −i(∇−∇†)/2 where the dagger indicates

that terms to the left have to be differentiated. The second term is the diamagnetic

component. Since the initial state is the ground state, the occupation numbers fnk

are given by the Fermi-Dirac distribution function fnk = f(εnk) = 2 for εnk ≤ εF
and 0 otherwise, with εnk the ground-state orbital energies and εF the Fermi level.

The time-dependent potentials are uniquely determined up to an arbitrary gauge due

to the Ghosh-Dhara theorem [18, 19]. Both the density and the current-density are

gauge invariant. The first-order perturbation of the ground state is governed by the

perturbation Hamiltonian δĥeff containing all terms linear in the field,

δĥeff (r, t) =
1

2c
(p̂ · δAeff (r, t) + δAeff (r, t) · p̂) + δveff (r, t). (3.7)

We choose the gauge to be the microscopic Coulomb gauge of Kootstra et al. [30] in

which the effective scalar and vector potentials are given by

δveff (r, t) = δvH,mic(r, t) + δvxc(r, t), (3.8)

δAeff (r, t) = −c
∫ t

Emac(r, t
′)dt′ + δAxc(r, t), (3.9)

where δvH,mic(r, t) and δvxc(r, t) are the microscopic component of the Hartree and

exchange-correlation potentials, respectively, and Emac(r, t
′) is the fixed macroscopic

electric field, comprising both the external and the induced macroscopic components.

The latter accounts for the long-range contribution of the Hartree potential, as well as

for the properly retarded macroscopic contribution of the induced transverse current-

density. We can neglect the microscopic part of the induced vector potential consistent

with the Breit approximation used in the ground-state calculation [21, 30, 31, 55]. As

described in the previous section we consider the macroscopic exchange-correlation

contributions to be included in δAeff via δAxc . We work in the frequency domain

for simplicity,

δAeff (r, t) =

∫
e−iωtδAeff (r, ω)dω, (3.10)

and consider a general perturbation characterized by wavevector q and frequency ω,

δAeff (r, ω) = eiq·rδAq,eff (r, ω), (3.11)
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in which δAq,eff (r, ω) is lattice periodic,

δAq,eff (r + R, ω) = δAq,eff (r, ω), (3.12)

for any Bravais lattice vector R. Since the field given by Eqs (3.10) and (3.11) is real,

we have

δAq,eff (r, ω) = δA∗
−q,eff (r,−ω). (3.13)

Similar expressions are assumed for the scalar potential δveff (r, t). In the remainder

we will only consider plane-wavevector potentials, i.e., δAq,eff (r, ω) = δAq,eff (ω),

unless stated otherwise.

3.2.1 Induced density

Using the Bloch theorem we show in App. A that in the linear regime the induced

density can be written as

δρ(r, ω) = eiq·rδρq(r, ω), (3.14)

where δρq(r, ω) is lattice periodic, δρq(r + R, ω) = δρq(r, ω), given by

δρq(r, ω) =
1

Nk

∑

k,k′

δk′,k+q

∑

i,a

(fik − fak′)

1 + δia
×

ψ∗
ik(r)e−iq·rψak′(r)〈ψak′ |δĥ(q, ω)|ψik〉

εik − εak′ + ω + iη

+
1

Nk

∑

k,k′

δk′,k−q

∑

i,a

(fak′ − fik)

1 + δia
×

ψ∗
ak′(r)e−iq·rψik(r)〈ψik|δĥ(q, ω)|ψak′〉

εak′ − εik + ω + iη
, (3.15)

in which we introduced the short-hand notation

δĥ(q, ω) =
−i
2c

(
eiq·r∇−∇†eiq·r) · δAq,eff (ω) + eiq·rδvq,eff (r, ω). (3.16)

For future reference we define the additional short-hand notations, ĵq = −i(e−iq·r∇−
∇†e−iq·r)/2, ρ̂q = e−iq·r. The lattice-periodicity of δρq(r, ω) allows us to define the

macroscopic induced density as

δρmac(r, ω) = eiq·r 1

V

∫

V

δρq(r, ω)dr, (3.17)
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where the average is taken over the unit cell. In Eq. (3.15) the second term is the

complex conjugate of the first one at −q and −ω, so the induced density δρ(r, t) is

real-valued, since δρq(r, ω) = δρ∗−q(r,−ω). Using time-reversal symmetry (see App.

A) we can write Eq. (3.15) as

δρq(r, ω) =
1

Nk

∑

k,k′

∑

i,a

wikak′,+(ω)

{
δk′,k+q(ψ∗

ikρ̂qψak′)〈ψak′ |δĥe(q, ω)|ψik〉 +

δk′,k−q(ψ∗
ak′ ρ̂qψik)〈ψik|δĥe(q, ω)|ψak′〉

}

+
1

Nk

∑

k,k′

∑

i,a

wikak′,−(ω)

{
δk′,k+q(ψ∗

ikρ̂qψak′)〈ψak′ |δĥo(q, ω)|ψik〉 −

δk′,k−q(ψ∗
ak′ ρ̂qψik)〈ψik|δĥo(q, ω)|ψak′〉

}
.(3.18)

Here the r-dependence of the Bloch orbitals has been implied and we have defined

the “even” and “odd” components of the interaction Hamiltonian according to

δĥe(q, ω) =
1

2
[δĥ(q, ω) + δĥ∗(−q,−ω)] = ρ̂−qδvq,eff (r, ω), (3.19)

δĥo(q, ω) =
1

2
[δĥ(q, ω) − δĥ∗(−q,−ω)] =

1

c
ĵ−q · δAq,eff (ω), (3.20)

where δĥ∗(−q,−ω) is the complex conjugate (not the Hermitian adjoint) of δĥ(q, ω)

at negative q and ω. The energy denominators and the occupation numbers in Eq.

(3.15) are contained in the frequency-dependent weights,

wikak′,±(ω) =
fik − fak′

2(1 + δia )

{
1

εik − εak′ + ω + iη
± 1

εik − εak′ − ω − iη

}
. (3.21)

In App. B we show that wikak′,+(ω) and wikak′,−(ω) are related,

wikak′,−(ω) = − εik − εak′

ω
(wikak′,+(ω) − (wikak′,+(0)) (3.22)

wikak′,+(ω) = − εik − εak′

ω
wikak′,−(ω). (3.23)

3.2.2 Induced current-density

For the induced current-density we can derive expressions along the same lines used

for the induced density. The paramagnetic component of the induced current-density

can be obtained as

δjp(r, ω) = eiq·rδjpq(r, ω), (3.24)
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where δjpq(r, ω) is lattice periodic as well, and follows from

δjpq(r, ω) =
1

Nk

∑

k,k′

δk′,k+q

∑

i,a

(fik − fak′)

1 + δia
×

ψ∗
ik ĵqψak′〈ψak′ |δĥ(q, ω)|ψik〉

εik − εak′ + ω + iη

+
1

Nk

∑

k,k′

δk′,k−q

∑

i,a

(fak′ − fik)

1 + δia
×

ψ∗
ak′ ĵqψik〈ψik|δĥ(q, ω)|ψak′〉

εak′ − εik + ω + iη
. (3.25)

Here the second term is the complex conjugate of the first term, but at the negative

q and negative frequency. In the linear regime the diamagnetic contribution is given

by

δjd(r, ω) = eiq·rδjdq(r, ω), (3.26)

where

δjdq(r, ω) =
1

c
ρ0(r)δAq,eff (ω), (3.27)

with ρ0(r) real and lattice periodic. As result one finds also for the induced current-

density the relation δjq(r, ω) = δjpq(r, ω) + δjdq(r, ω) = δj∗−q(r,−ω) and thus a real-

valued current-density δj(r, t). Using again the time-reversal symmetry the induced

paramagnetic current-density can be written in a way very similar to Eq. (3.18),

δjpq(r, ω) =
1

Nk

∑

k,k′

∑

i,a

wikak′,+(ω)

{
δk′,k+q(ψ∗

ik ĵqψak′)〈ψak′ |δĥo(q, ω)|ψik〉 +

δk′,k−q(ψ∗
ak′ ĵqψik)〈ψik|δĥo(q, ω)|ψak′〉)

}

+
1

Nk

∑

k,k′

∑

i,a

wikak′,−(ω)

{
δk′,k+q(ψ∗

ik ĵqψak′)〈ψak′ |δĥe(q, ω)|ψik〉) −

δk′,k−q(ψ∗
ak′ ĵqψik)〈ψik|δĥe(q, ω)|ψak′〉)

}
,(3.28)

where the weights are given by Eq. (3.21). Note that here the “even” and “odd” com-

ponents of the perturbation, defined in Eqs (3.19) and (3.20), have changed positions

with respect to Eq. (3.18).

For the implementation it turns out to be convenient to relate the diamagnetic

component of the induced current-density to the paramagnetic one, and treat both
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contributions on an equal footing. Before doing this we want to refer to the case of a

homogeneous electron gas perturbed by a monochromatic field δA(r, ω) [1]. Indeed

the induced total current-density is then given by

δj(r, ω) =
1

c

∫
χjj(r, r

′, ω)δA(r′, ω)dr′ +
1

c
ρ0(r)δA(r, ω), (3.29)

where the exact current-current response function χjj(r, r
′, ω) only depends on the

distance |r − r′|. Its Fourier transform can be expressed in the following way,

χjj,µν(q, ω) = χL(q, ω)
qµqν
|q|2 + χT (q, ω)(δµν − qµqν

|q|2 ), (3.30)

with the longitudinal and the transverse components χL(q, ω) and χT (q, ω) satisfying

[1]

lim
q→0

χT (q, ω = 0) = −ρ0 (3.31)

χL(q, ω = 0) = −ρ0. (3.32)

For the value of χT (q, ω = 0) at finite q the corrections to this limit are of order q2.

In real space we can therefore write

χjj(r, r
′, 0) = −ρ0δ(r − r′) + 4χT (r, r′, 0), (3.33)

where 4χT (r, r′, 0) is purely transverse, and hence responsible for the weak diamag-

netism first calculated by Landau. Here we deal with two limits, lim q → 0 and lim

ω → 0. The value of χT (q, ω) depends on the order in which one takes the limits, since

it is nonanalytic in the point (0, 0) in the q-ω plane. In order to relate the diamagnetic

and the paramagnetic contributions to the current-current response function, one has

to consider first the limit ω → 0 at finite q, and only then take q → 0, as reported

in Fig. 3.1. Here the term
{
χjj(q → 0, ω = 0) − χjj(q, ω = 0)

}
represents the term

4χT (r, r′, 0) of Eq. (3.33) in its Fourier representation. In the absence of magnetic

fields the vector potential is regular in q = 0 for any ω, hence the term 4χT (q, 0),

which is proportional to q2, does not contribute to the induced current-density for

vanishing q. A relation similar to Eq. (3.33) holds for crystalline systems,

χjjq(r, r′, 0) = −ρ0δ(r − r′) + 4χq(r, r′, 0), (3.34)

where again 4χq(r, r′, 0) is transverse and of the order of q2 [1, 56]. Therefore, we

can introduce the following relation for the diamagnetic current-density,

δjdq(r, ω) = −δj0pq(r, ω) + 4jdq(r, ω), (3.35)
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Figure 3.1: The order of the limits needed to relate diamagnetic and paramagnetic

contributions to the current-current response function.

where δj0pq(r, ω) is the paramagnetic current-density obtained from the static re-

sponse, at finite q, to the dynamic perturbation,

δj0pq(r, ω) =
1

Nk

∑

k,k′

∑

i,a

wikak′,+(0)) ×

{
δk′,k+q(ψ∗

ikĵqψak′)〈ψak′ |δĥo(q, ω)|ψik〉 +

δk′,k−q(ψ∗
ak′ ĵqψik)〈ψik|δĥo(q, ω)|ψak′〉

}
, (3.36)

and 4jdq(r, ω) is by construction equal to δjdq(r, ω) + δj0pq(r, ω), and gives rise to

contributions analogous to the Landau diamagnetism. Since we do not treat magnetic

fields in this derivation, only the first term on the right-hand side of Eq. (3.35) is

considered and 4jdq(r, ω) is neglected in the sequel. Combining Eq. (3.36) with

Eq. (3.28) for the paramagnetic current-density, the induced physical current is then
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obtained from

δjq(r, ω) =
1

Nk

∑

k,k′

∑

i,a

wikak′,−(ω) ×

{
δk′,k+q(ψ∗

ik ĵqψak′)〈ψak′ |δĥe(q, ω)|ψik〉 −

δk′,k−q(ψ∗
ak′ ĵqψik)〈ψik|δĥe(q, ω)|ψak′〉

}

+
1

Nk

∑

k,k′

∑

i,a

(wikak′,+(ω) − wikak′,+(0)) ×

{
δk′,k+q(ψ∗

ik ĵqψak′)〈ψak′ |δĥo(q, ω)|ψik〉 +

δk′,k−q(ψ∗
ak′ ĵqψik)〈ψik|δĥo(q, ω)|ψak′〉

}
. (3.37)

3.2.3 Response functions

Interband contribution

We will first consider the interband contributions to the induced density and current-

density which are obtained from the terms with a 6= i in Eqs (3.18) and (3.37). They

can then be written in the following concise form,

(
δρinter

q

iδjinter
q /ω

)
=

(
χinter

ρρq −iχinter
ρjq /ω

iχinter
jρq /ω (χinter

jjq − χinter,0
jjq )/ω2

)
·
(

δvq,eff

iωδAq,eff /c

)
, (3.38)

by inserting the equations for the “even” and for the “odd” perturbation, Eqs (3.19)

and (3.20). Here the matrix-vector product also includes an integration over a real

space coordinate, where the various response kernels take simple forms by using the

relations (3.22) and (3.23) for wikak′,+(ω) and wikak′,−(ω). For the interband contri-

bution to the density-density response function, χinter
ρρq , we find

χinter
ρρq (r, r′, ω) =

1

Nk

∑

k,k′

∑

ia

wikak′,+(ω) ×

{
δk′k+q(ψ∗

ik(r)ρ̂qψak′(r)) (ψ∗
ak′ (r′)ρ̂′−qψik(r′)) +

δk′k−q(ψ∗
ak′(r)ρ̂qψik(r)) (ψ∗

ik(r′)ρ̂′−qψak′(r′))
}
. (3.39)
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For the contributions to the density-current and current-density response functions,

χinter
ρjq and χinter

jρq , the equations become

− i

ω
χinter

ρjq (r, r′, ω) =
1

Nk

∑

k,k′

∑

ia

wikak′,+(ω) ×

{
δk′k+q(ψ∗

ik(r)ρ̂qψak′(r))
iψ∗

ak′(r′)̂j′−qψik(r′)

εik − εak′

+

δk′k−q(ψ∗
ak′(r)ρ̂qψik(r))

iψ∗
ik(r′)̂j′−qψak′(r′)

εak′ − εik

}
, (3.40)

i

ω
χinter

jρq (r, r′, ω) =
1

Nk

∑

k,k′

∑

ia

wikak′,+(ω) ×

{
δk′k+q

iψ∗
ik(r)̂jqψak′(r)

εak′ − εik
(ψ∗

ak′(r′)ρ̂′−qψik(r′)) +

δk′k−q

iψ∗
ak′(r)̂jqψik(r)

εik − εak′

(ψ∗
ik(r′)ρ̂′−qψak′(r′))

}
, (3.41)

and finally for the interband contribution to the combination of the current-current

response function and its static value, respectively χinter
jjq and χinter,0

jjq , the result is

1

ω2
(χinter

jjq (r, r′, ω) − χinter
jjq (r, r′, ω = 0)) =

1

Nk

∑

k,k′

∑

ia

wikak′,+(ω) ×

{
δk′k+q

iψ∗
ik(r)̂jqψak′(r)

εak′ − εik
⊗
iψ∗

ak′(r′ )̂j′−qψik(r′)

εik − εak′

+

δk′k−q

iψ∗
ak′(r)̂jqψik(r)

εik − εak′

⊗
iψ∗

ik(r′ )̂j′−qψak′(r′)

εak′ − εik

}
. (3.42)

The ω-dependence in the above expressions for the various interband contributions

is governed by the common factor wikak′,+(ω), which is a well-behaved function of

ω and q for ω smaller than the (indirect) energy gap between the different occupied

and unoccupied bands. The various interband contributions to the response functions

have then the following ω-dependence,

χinter
ρρq ∝ 1,

χinter
ρjq , χinter

jρq ∝ ω,

(χinter
jjq − χ0,inter

jjq ) ∝ ω2.

In the limit of vanishing q the set of equations (3.39 - 3.42) reduces to the one used in

the case of nonmetallic crystalline systems [30,31] for which we need to consider only
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fully occupied bands i and fully unoccupied bands a. However, in metallic crystals,

we have to consider also the contribution from partially occupied and/or unoccupied

bands, for which k-space integrations are restricted to just a part of the Brillouin

zone cut off by the Fermi surface.

Intraband contribution

Let us consider now the intraband contributions to Eqs (3.18) and (3.37) that are

given by the terms with a = i in the summation over the energy bands. By changing

variables from {k′,k} = {k− q,k} to {k,k + q} in the second and fourth terms in

Eq. (3.18) we obtain

δρintra
q (r, ω) =

1

Nk

∑

i,k

2wikik+q,+(ω) ×

(ψ∗
ik(r)ρ̂qψik+q(r)) 〈ψik+q|δĥe(q, ω)|ψik〉

+
1

Nk

∑

i,k

2wikik+q,−(ω) ×

(ψ∗
ik(r)ρ̂qψak+q(r)) 〈ψik+q|δĥo(q, ω)|ψik〉, (3.43)

where we have used that wikik+q,±(ω) = ±wik+qik,±(ω). Operating in a similar way

in Eq. (3.37) for the induced current-density we arrive at

δjintra
q (r, ω) =

1

Nk

∑

i,k

2wikik+q,−(ω) ×

(ψ∗
ik(r)̂jqψik+q(r)) 〈ψik+q|δĥe(q, ω)|ψik〉

+
1

Nk

∑

i,k

2(wikak+q,+(ω) − wikik+q,+(0)) ×

(ψ∗
ik(r)̂jqψik+q(r)) 〈ψik+q|δĥo(q, ω)|ψik〉. (3.44)

These expressions can be written in the following concise form,

iω

(
ω/q δρintra

q

δjintra
q

)
=

(
ω2/q2 χintra

ρρq ω/q χintra
ρjq

ω/q χintra
jρq χintra

jjq − χintra,0
jjq

)
·
(

iqδvq,eff

iωδAq,eff /c

)
,

(3.45)

where the various response kernels are given in the following set of equations. For the

intraband contribution to the density-density response kernel, χintra
ρρq , we get

ω2

q2
χintra

ρρq (r, r′, ω) =
2

Nk

∑

ik

ω2

q2
wikik+q,+(ω) ×

(ψ∗
ik(r)ρ̂qψik+q(r)) (ψ∗

ik+q(r′)ρ̂′−qψik(r′)). (3.46)
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Similarly for the contributions to the density-current and current-density kernels,

χintra
ρjq and χintra

jρq , the expressions are

ω

q
χintra

ρjq (r, r′, ω) =
2

Nk

∑

ik

ω2

q

wikik+q,+(ω)

εik+q − εik
×

(ψ∗
ik(r)ρ̂qψik+q(r)) (ψ∗

ik+q(r′ )̂j′−qψik(r′)), (3.47)

ω

q
χintra

jρq (r, r′, ω) =
2

Nk

∑

ik

ω2

q

wikik+q,+(ω)

εik+q − εik
×

(ψ∗
ik(r)̂jqψik+q(r)) (ψ∗

ik+q(r′)ρ̂′−qψik(r′)). (3.48)

Finally, for the intraband contribution to the combination of the current-current re-

sponse function and its static value, respectively χintra
jjq and χintra,0

jjq , we have

χintra
jjq (r, r′, ω) − χintra

jjq (r, r′, ω = 0) =
2

Nk

∑

ik

ω2 wikik+q,+(ω)

(εik+q − εik)2
×

(ψ∗
ik(r)̂jqψik+q(r)) ⊗ (ψ∗

ik+q(r′ )̂j′−qψik(r′)). (3.49)

In this thesis we will only consider the optical limit, i.e., the limit of vanishing q (but

finite ω), for which we can evaluate the weights wikik+q,+(ω) using the two relations

(εik − εik+q) ' −q(∇kεik · q̂), (3.50)

(fik − fik+q) = (f(εik) − f(εik+q)) ' −q df
dε

(∇kεik · q̂). (3.51)

We can then write for the common factor 2ω2/q2wikik+q,+(ω),

2
ω2

q2
wikik+q,+(ω) ' df

dε

ω2(∇kεik · q̂)2

q2(∇kεik · q̂)2 − (ω + iη)2
. (3.52)

The nonanalytic behavior of the intraband response functions at the origin of the q-ω

plane is now made explicit. In the limit of q to zero at finite ω this factor becomes

independent of ω and equal to df/dε (∇kεik ·q̂)2, whereas in the reverse order of limits

the factor is zero. It immediately becomes clear that the intraband response functions

show the following ω and q-dependence at small q but finite ω,

χintra
ρρq ∝ q2/ω2,

χintra
ρjq , χintra

jρq ∝ q/ω,

(χintra
jjq − χ0,intra

jjq ) ∝ 1.
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3.2.4 The SCF equations

In the previous section we derived expressions for the induced density and current-

density as result of a given set of vector and scalar potentials. To complete the

self-consistent-field scheme of Kohn and Sham [8] we have to express the induced

potentials in terms of the induced density and current-density. In order to do this

it is important to separate microscopic and macroscopic components of these den-

sities and to show how they lead to the microscopic and macroscopic contributions

to the induced potentials. We will do this first for the Hartree term and then for

the exchange-correlation contributions. We start by identifying the microscopic and

macroscopic components of the density. Since both the inter- and intraband contri-

butions to δρq(r, ω) are lattice periodic, we can write the total induced density as a

Fourier series expansion,

δρ(r, ω) = eiq·rδρq(r, ω) = eiq·r
∑

G

δρq+G(ω)eiG·r. (3.53)

Here the term with G = 0 is equal to the macroscopic density defined in Eq. (3.17).

The remaining terms with G 6= 0 together constitute the microscopic density. One

usually assumes [2,35] that a similar expansion exists for the Hartree potential which

can then be written as

δvH (r, ω) = 4π eiq·r


δρq+0(ω)

q2
+
∑

G6=0

δρq+G(ω)

|q + G|2 e
iG·r


 . (3.54)

One can then define the microscopic scalar potential δvH ,mic as

δvH ,mic(r, ω) = 4πeiq·r
∑

G6=0

δρq+G(ω)

|q + G|2 e
iG·r, (3.55)

whereas the term eiq·rδvq+0
.
= 4πeiq·rδρq+0/q

2 represents a macroscopic field. In

the TDCDFT approach this term will be gauge transformed to a macroscopic vector

potential,

iω

c
δAH ,mac(r, ω) = ∇(eiq·rδvq+0(ω)) = 4πiq̂

(
δρq+0(ω)

q

)
eiq·r. (3.56)

As Kootstra et al. have shown, this field is sample-shape dependent. In their approach

this contribution is, by construction, already contained in the total macroscopic vector

potential, which describes the macroscopic electric field, and which is kept fixed (Eqs.

(3.8) and (3.9)) [30]. Note that we do not evaluate the microscopic scalar potential

using the Fourier series expansion, as this series converges extremely slowly for real
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densities. Instead we make use of the screening technique described by Kootstra

et al. [30]. In the effective one-electron scheme of Kohn and Sham the effective

potentials
{
δveff , δAeff

}
also contain exchange-correlation contributions. For the

total exchange-correlation scalar potential we write

δvxc(r, ω) =

∫
fxc(r, r

′, ω)δρ(r′, ω)dr′, (3.57)

in which we will use the adiabatic local density approximation (ALDA) for the

exchange-correlation kernel fxc(r, r
′, ω),

fxc(r, r
′, ω) = fALDA

xc (r, r′) = δ(r − r′)
dvLDA

xc (ρ)

dρ

∣∣∣∣
ρ=ρ0(r)

. (3.58)

In our scheme all other exchange-correlation effects are to be included in the exchange-

correlation vector potential. As the induced density is a functional of the induced

current-density through the continuity equation, we can formally write this vector

potential as a pure functional of the induce current-density,

δAxc(r, ω) =

∫
fxc(r, r

′, ω) · δj(r′, ω)dr′. (3.59)

As in Ref. [30], we split also these contributions into microscopic and macroscopic

components. To achieve this we choose to retain only terms linear in the microscopic

induced density in the microscopic exchange-correlation scalar potential, and to gauge

transform all terms linear in the macroscopic induced density and those linear in the

induced current-density to the exchange-correlation vector potential. This is possible

because we consider only the linear response. In this way we keep contact with the

ordinary TDDFT formulation. This vector potential will contain in general both

microscopic and macroscopic components. In the gauge described above the effective

potentials take the following form,

δveff ,mic = δvH,mic + δvALDA
xc [δρmic], (3.60)

δAeff = δAmac + δAxc[δj] −
ic

ω
∇δvALDA

xc [δρmac ]. (3.61)

Using Eq. (3.57) the last term in Eq. (3.61) can be written as

− ic
ω
∇δvALDA

xc [δρmac](r, ω) = − ic
ω

[
(iq + ∇)

dvLDA
xc

dρ
(ρ0(r))

]
δρq+0(ω)eiq·r. (3.62)

In the ALDA approximation used in this chapter we will neglect the exchange-

correlation contribution δAxc[δj] in the effective vector potential, and retain only

the macroscopic part of the other terms. Then Eq. (3.61) becomes

δAeff ,mac(r, ω) = δAmac(r, ω) + cq̂
q

ω

(
1

V

∫

V

dvLDA
xc

dρ
(ρ0(r))dr

)
δρq+0e

iq·r, (3.63)
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where in calculating the cell average the contribution of the gradient in Eq. (3.62)

vanishes due to the lattice-periodicity of the ground-state density ρ0(r).

The separation of the induced potentials in microscopic and macroscopic terms as

discussed above is based on the separation of the induced density into microscopic and

macroscopic components. We will now describe how inter- and intraband processes

contribute to the microscopic and macroscopic parts of the induced density. To achieve

this we refer to Eq. (3.15) and analyze first the factor ψ∗
ik(r)ρ̂qψak+q(r). Using the

expression for the Bloch functions and the definition of the ρ̂q operator, it becomes

evident that this factor is lattice periodic and can be written as a Fourier series

expansion,

ψ∗
ik(r)ρ̂qψak+q(r) = u∗ik(r)e−ik·r e−iq·r uak+q(r)ei(k+q)·r

=
1

V

∑

G

CiaG(q)eiG·r. (3.64)

We can now use the following relation obtained using the k · p method [57],

uak+q(r) = (1 + iαak · q)uak(r) +
∑

n6=a

〈ψnk | p̂ | ψak〉 · q
εak − εnk

· unk(r) + O(q2 ), (3.65)

where, in the nondegenerate case, αak can be chosen to be a continuous and peri-

odic function of k. For the coefficient CiaG=0(q), which determines the value of the

macroscopic density δρq+0(ω), in Eq. (3.53) we then get

CiaG=0(q) =

∫
u∗ik(r)uak+q(r)dr

= (1 + iαak · q)δia +
〈ψik | p̂ | ψak〉 · q

εak − εik
· (1 − δia) + O(q2 ),(3.66)

where we made use of the orthogonality of the Bloch functions. The coefficients

CiaG6=0(q) that determine the microscopic density are in general of order 1. We

consider first the q-dependence of the interband contribution to the macroscopic in-

duced density, by inspecting Eq. (3.38) for δρinter
q and Eqs (3.39) and (3.40) for the

interband contribution to the response functions. In these last two expressions the

weights wikak+q,+ have a leading term of order 1 in the expansion in orders of q, as

i 6= a. From the expressions (3.64) and (3.66) it follows that for i 6= a the uniform

component of the factor ψ∗
ikρ̂qψak+q = CiaG=0(q) is of order q. Hence the interband

contribution to the macroscopic induced density is one order in q higher than the off-

diagonal matrix elements of the perturbations ρ̂−qδvq,eff and iω/c ĵ−q · δAq,eff . The

microscopic part is, on the other hand, of the same order as these matrix elements.

For the intraband case we refer to Eqs (3.45)-(3.47). Here the uniform component
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of ψ∗
ikρ̂qψak+q is of order 1, as here i = a in Eq. (3.66), and also the common fac-

tor ω2/q2wikik+q,+(ω), as defined in Eq. (3.52), is of this order. Together with Eq.

(3.45) we can now conclude that both the microscopic and macroscopic components

of the intraband induced density are two orders in q higher than the diagonal matrix

elements of the perturbation ρ̂−qδvq,eff , and one order in q higher than those of the

perturbation iω/c ĵ−q · δAq,eff . The relations derived above constitute a set of self-

consistent-field equations for the induced density that are depicted schematically in

Fig. 3.2. The self-consistent loops involving the macroscopic effective vector potential

do not need to be completed as we keep this macroscopic potential fixed to calculate

the optical response. Assuming that both the effective microscopic scalar potential

and the effective macroscopic vector potential are of order 1, we can see that the con-

tribution of the interband processes to the microscopic density is of order 1 and that

to the macroscopic density is of order q. In a similar way we can conclude that the

contributions of the intraband processes to the microscopic and macroscopic densities

are both of order q. From Eqs (3.55) and (3.57) within the ALDA it immediately

becomes clear that a microscopic density of order 1 leads to an effective microscopic

scalar potential of order 1, consistent with the initial assumption. On the other hand,

a macroscopic density of order q will lead according to Eq. (3.56) to a macroscopic

contribution to the effective vector potential of order 1, again consistent with the

initial assumption. Within the ALDA the contribution of a macroscopic density of

order q will lead to an exchange-correlation vector potential of order q with a uniform

component of order q2 (Eq. 3.62). The latter two contributions hence vanish in the

optical limit. Using the scaling introduced in Eq. (3.45) all the variables acquire the

same order in q as depicted in Fig. 3.3. Now it also becomes clear that in the optical

limit the self-consistent loops for the microscopic and macroscopic induced density

become decoupled. Since the contribution to the scaled intraband induced density

δρintra
q /q that is due to the microscopic effective scalar potential is of order q, it

vanishes in the optical limit. Accounting for the scaling, the intraband contribution

to the microscopic density is of order q and vanishes for q going to zero. The inter-

band contribution to the scaled macroscopic density δρq,mac/q is, however, of order

1. Therefore we can conclude that the SCF for the microscopic density can be solved

independently from the SCF for the macroscopic density, but that the reverse is not

true. It is now clear how we can solve the optical response of metallic systems within

the ALDA. First, for a given macroscopic vector potential, we need to solve the equa-

tions for the microscopic induced density and microscopic effective scalar potential

self-consistently. With both the perturbing potentials now known, we can calculate

the macroscopic induced density and the induced current-density.
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Figure 3.2: Schematic representation of the self-consistent-field (SCF) calculation

of microscopic and macroscopic parts of the induced density. The leading order in

powers of q is indicated near the variables by the “∝” sign. The arrows indicate the

contributions to each variable, where the “×” sign indicates the order in q gained

through some multiplicative factor. The inter- and intraband contributions to the

induced density both contribute to the microscopic and macroscopic components of

this density. In the microscopic Coulomb gauge only the microscopic density gives rise

to the microscopic effective scalar potential via the microscopic Hartree term and the

ALDA xc-term. The macroscopic density as well as the current-density contribute in

various ways to the effective vector potential. The dashed line indicates that the self-

consistent loop is not completed as we keep the macroscopic effective vector potential

fixed. For more details and discussions see the text.
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Figure 3.3: Schematic representation of the main changes in the calculation of the

intraband induced density after the scaling to δρintra/q and δρmac/q . The symbols

used are similar as in Fig. 3.2. Note that not all the relations are indicated but only

those involving the rescaled variables.

3.2.5 The macroscopic dielectric function

The macroscopic dielectric function ε(q, ω) is a tensor that can be expressed as

ε(q, ω) = 1 + 4πχe(q, ω), (3.67)

where the the macroscopic susceptibility χe(q, ω) can be obtained in terms of the

total induced macroscopic current via

χe(q, ω) · ê =

( −i
ωV

∫
δjq(r, ω)dr

)∣∣∣∣
iω
c

δAmac,q=ê

. (3.68)

In Fig. 3.4 we report schematically the post-SCF calculation for the induced current-

density. In the optical limit, i.e., for q = 0, the expression for the dielectric function

takes a simple form. In the limit of q → 0 the microscopic scalar potential does not

contribute to the intraband current-density. Thus, in this limit and within the ALDA,

the inter- and intraband contributions to the induced current-density can be calcu-

lated independently. From Eq. (3.38) we can obtain the interband contribution to the

electric susceptibility by repeating the SCF calculation for the uniform macroscopic

field in the three Cartesian directions ê,

χinter
e (q = 0, ω) · ê =

( −i
ωV

∫
δjinter

q=0 (r, ω)dr

)∣∣∣∣
iω
c

δAmac,q=0=ê

. (3.69)
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Figure 3.4: Schematic representation of post-SCF calculations of inter- and intra-

band contributions to the induced current-density. Here the dashed line indicates

the additional SCF loop that needs to be considered when taking into account a

current-dependent exchange-correlation functional.

From Eqs (3.45) and (3.63) the macroscopic part of the intraband contribution to the

induced current can be written as

σintra(q = 0, ω) · ê =

(
1

V

∫
δjintra

q=0 (r, ω)dr

)∣∣∣∣
iω
c

δAmac,q=0=ê

, (3.70)

where the intraband contribution to the macroscopic conductivity tensor, σintra (q, ω),

at q = 0 is given by

σintra (q = 0, ω) =
−i
ωV

∫ ∫ (
χintra

jjq=0(r, r′, ω) − χintra,0
jjq=0 (r, r′, ω = 0)

)
drdr′. (3.71)

We can then consider the following expression for the macroscopic dielectric function

at q = 0,

ε(ω) = (1 + 4πχinter
e (ω)) − 4πi

ω
σintra(ω), (3.72)

where the contribution in brackets is defined as the interband part of the dielectric

function.

3.2.6 The energy-loss function

In transmission electron energy-loss spectroscopy one studies the inelastic scattering

of a beam of high energy electrons by a target. The scattering rates obtained in these
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experiments are expressed in terms of the differential cross-section, which is obtained

within the first Born approximation as [58]

d2σ(k,k′, ω)

dΩdω
=

2

πq4
k′

k
S(q, ω). (3.73)

Here k and k′ are the wavevectors of the incident and scattered electron, and q and

ω are the transferred momentum and energy, respectively, with q = k − k′ and ω =

k2/2− k′2/2. The dynamical structure factor S(q, ω) is related to the imaginary part

of the true density-density response function via the fluctuation-dissipation theorem,

S(q, ω) = −2=
∫ ∫

e−iq·(r−r′)χ(r, r′, ω)drdr′. (3.74)

Here the true density-density response function relates the induced density to an

external perturbing scalar field,

δρ(r, ω) =

∫
χ(r, r′, ω)δvext(r

′, ω)dr′. (3.75)

If we choose the external perturbing field as δvext(r, ω) = eiq·r, then the dynamical

structure factor can be expressed as S(q, ω) = =s̃(q, ω), where

s̃(q, ω) = −2

∫
e−iq·rδρ(r, ω)dr

∣∣∣∣
δvext(r,ω)=eiq·r

= −2

∫
δρq(r, ω)dr

∣∣∣∣
δvext,q=1

. (3.76)

Here we used Eq. (3.14) for the induced density and the external potential. In our

scheme we have to work in the microscopic Coulomb gauge and therefore we want

to gauge transform the external macroscopic scalar potential to an external vector

potential: we can have iωδaext(r, ω)/c = q̂ eiq·r if we choose the external scalar

potential as δvext(r, ω) = −i
q e

iq·r. Then the same dynamical structure factor can be

obtained using

s̃(q, ω) = −2iq

∫
δρq(r, ω)dr | iω

c
δAext,q=q̂ . (3.77)

Unlike in the case of the macroscopic dielectric function, here we need to consider

the response to a given external field. Assuming Eq. (3.56) to hold, i.e., neglecting

the sample-shape dependence of the induced field, the total macroscopic field can be

related to the given external field according to

iω

c
δAmac,q(r, ω) = q̂

(
1 +

4πi

qV

∫
δρq(r, ω)dr

)

= q̂

(
1 − 2π

q2V
s̃(q, ω)

)
. (3.78)
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In a completely similar way as for the calculation of the macroscopic dielectric func-

tion, we can now solve the SCF equations for a fixed macroscopic field and calculate

the induced macroscopic density as linear response to this field,

i

2q2V
s̃(q, ω) =

1

V

∫
δρq(r, ω)

q
dr =

iω

c

∫
Fq(r, ω) · δAmac,q(r, ω)dr. (3.79)

By solving the SCF equations we obtain the lattice periodic response function Fq(r, ω).

In the previous section we showed that for a finite macroscopic field the central term

in the equation above is finite for vanishing q, and therefore also the terms on the

left- and right-hand sides will be finite. By inserting Eq. (3.78) in Eq. (3.79) we can

now account for the relation between the macroscopic and external fields to arrive at

i

2q2V
s̃(q, ω) =

∫
Fq(r, ω) · q̂

(
1 + 4πi

i

2q2V
s̃(q, ω)

)
dr, (3.80)

from which we immediately obtain

i

2q2V
s̃(q, ω) =

∫
Fq(r, ω) · q̂ dr

1 − 4πi
∫

Fq(r, ω) · q̂ dr . (3.81)

Using now the definitions of the dynamical structure factor S(q, ω) and the response

function Fq(r, ω), we can write

S(q, ω) = −2q2V <






1

V

∫
δρq(r, ω)

q
dr

1 − 4πi
1

V

∫
δρq(r, ω)

q
dr






∣∣∣∣∣∣∣∣
iω
c

δAmac,q=q̂

. (3.82)

We can now consider the special case q = 0 and show that it is related to the current-

current response function, and hence the macroscopic dielectric function. Using Eqs

(3.64) and (3.66) in Eqs (3.39) and (3.40) one can easily show that the following

relations hold,

lim
q→0

1

q

∫
χinter

ρρq (r, r′, ω)dr =
q̂

ω
·
∫
χinter

jρq=0(r, r′, ω)dr

lim
q→0

1

q

∫
χinter

ρjq (r, r′, ω)dr =

q̂

ω
·
∫

[χinter
jjq=0(r, r′, ω) − χinter

jjq→0(r, r′, ω = 0)]dr. (3.83)

Therefore using Eq. (3.38) we can write

lim
q→0

1

V

∫
δρinter

q (r, ω)

q
dr =

q̂

ω
· 1

V

∫
δjinter

q=0 (r, ω)dr. (3.84)
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A similar relation holds for the intraband contribution. Using again Eqs (3.64) and

(3.66), but now in Eqs (3.46) and (3.47), and using in addition the following relation

[57],

εik+q − εik = q ·
∫
ψ∗

ik(r)̂jqψik+q(r)dr + O(q2), (3.85)

one finds

lim
q→0

ω2

q2

∫
χintra

ρρq (r, r′, ω)dr = lim
q→0

ω

q
q̂ ·
∫
χintra

jρq=0(r, r′, ω)dr,

lim
q→0

ω

q

∫
χintra

ρjq (r, r′, ω)dr =

q̂ ·
∫

(χintra
jjq=0(r, r′, ω) − χintra

jjq→0(r, r′, ω = 0))dr. (3.86)

Therefore, using the Eq. (3.45) we can write

lim
q→0

1

V

∫
δρintra

q (r, ω)

q
dr =

q̂

ω
· 1

V

∫
δjintra

q=0 (r, ω)dr. (3.87)

From Eqs (3.84) and (3.87) the long-wavelength limit of Eq. (3.82) can be written as

lim
q→0

1

2q2V
S(q, ω) = <

{
−iq̂ · −i

ωV

∫
δjq=0(r, ω)dr

1 + 4πq̂ · −i
ωV

∫
δjq=0(r, ω)dr

}∣∣∣∣∣
iω
c

δAmac,q=q̂

. (3.88)

Using the results of the previous section Eqs (3.69)-(3.72), we arrive at the final result

lim
q→0

2π

q2V
S(q, ω) = =

{ −1

q̂ · ε(ω) · q̂

}
. (3.89)

The dynamical structure factor for all q and ω as given in Eq. (3.82) includes all the

local field effects and can be used for both isotropic and anisotropic systems. By

making use of the continuity equation,

∇ · jq(r, ω) + iq · jq(r, ω) − iωρq(r, ω) = 0, (3.90)

we can relate the integral
∫
δρq(r, ω)/qdr in Eq. (3.82) directly to 1/ω

∫
δjq(r, ω)dr

for all q, and hence we generalize Eq. (3.89) with the result

2π

q2V
S(q, ω) = =

{ −1

q̂ · ε(q, ω) · q̂

}
. (3.91)

In particular, in the limit of vanishing q the dynamical structure factor is directly

related to the macroscopic dielectric function according to the relation given above.
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3.3 Implementation

In this section we describe the main new aspects of the implementation for the di-

electric function calculation in metallic systems. For the interband part we closely

follow the implementation for nonmetallic crystalline systems described in Ref. [30].

The main difference here is in the numerical evaluation of the k-space integrals. The

response integrals of the set of equations (3.39)-(3.42) involve integrations over the

(irreducible wedge of the) Brillouin zone, in which the denominator can become singu-

lar. These singularities have been treated, as described in Ref. [30], using a Lehmann-

Taut tetrahedron scheme [59]. With partially occupied bands the numerical evalu-

ation of integrals over tetrahedra in which the first Brillouin zone is partitioned is

restricted to a part cut off by the Fermi surface. Both the energy and the integrand

at the new corners of the truncated simplices are obtained by linear interpolation

within each tetrahedron (see App. C). The intraband contribution to the dielectric

function is completely defined by Eq. (3.71). Inserting Eqs (3.49) and (3.52) and

replacing the summation over the k points by an integral over the Brillouin zone

1/Nk

∑
k → V/8π3

∫
dk, we arrive at

σintra (ω) = lim
q→0

{
−i

8π3ω

∑

i

∫
dk
df

dε

ω2

q2(∇kεik · q̂)2 − (ω + iη)2

〈ψ∗
ik |̂jq|ψik+q〉 ⊗ 〈ψ∗

ik+q |̂j′−q|ψik〉
}
. (3.92)

The integration will be reduced to an integral over the sheets Si of the Fermi surface

originating by the bands i, as the first derivative of the Fermi-Dirac distribution

f(ε) = 2Θ(εF −ε) peaks at ε = εF , df/dε = −2δ(εF −ε). For the frequency-dependent

factor we can use the Cauchy theorem and write

ω2

(∇kεik · q)2 − (ω + iη)2
=

P (ω/q)2

(∇kεik · q̂)2 − (ω/q)2
+

iπ(ω/q)2(δ(∇kεik · q̂ − ω/q) + δ(∇kεik · q̂ + ω/q)). (3.93)

In optical experiments ω/q is of the order of the velocity of light, ω/q ∼ c, which is

much higher than the velocity in the direction of q̂ of valence electrons at the Fermi

surface, ∇kεik · q̂. Thus, the imaginary part in Eq. (3.93) is zero and the real part

reduces to -1 in the limit of q → 0. In other experiments, where ω/q is of the same

order as the Fermi velocity, the imaginary part can become important. In this case

the integrations in the k-space are reduced to integrations over closed loops resulting
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from the intersection of the Fermi surface with a surface of constant velocity (= ω/q)

parallel to q. Using the principal value of Eq. (3.93) in the optical limit, Eq. (3.92)

becomes

σintra (ω) =
−i

4π3ω

∑

i

∫

Si

d2k

|∇kεik|
〈ψ∗

ik |̂j|ψik〉 ⊗ 〈ψ∗
ik |̂j|ψik〉. (3.94)

The integrations over the Fermi surface are evaluated numerically following the linear

tetrahedron method proposed by Wiesenekker and Baerends [60].

3.4 Results and discussion

To test our method we calculated the optical dielectric functions ε(ω) in the spectral

range 0-10 eV and the energy-loss functions −=
{
ε−1
L (ω)

}
in the spectral range 0-40

eV for the isotropic crystals of copper and silver within the adiabatic local density ap-

proximation. Both metals have the fcc lattice type for which we used the experimental

lattice constants 3.61 Å for Cu and 4.09 Å for Ag. All calculations were performed

using a modified version of the ADF-BAND program [30, 31, 61–63]. We made use

of a hybrid valence basis set consisting of Slater-type orbitals (STOs) in combination

with the numerical solutions of a free-atom Herman-Skillman program [64]. Cores

were kept frozen up to 3p and 4p for Cu and Ag, respectively. The spatial resolution

of this basis is equivalent to a STO triple-zeta basis set augmented with two polar-

ization functions. The Herman-Skillman program also provides us with the free-atom

effective potential. The crystal potential was evaluated using an auxiliary basis set

of STO functions to fit the deformation density in the ground-state calculation and

the induced density in the response calculation. For the evaluation of the k-space in-

tegrals we used a quadratic numerical integration scheme with 175 symmetry-unique

sample points in the irreducible wedge of the Brillouin zone, which was constructed

by adopting a Lehmann-Taut tetrahedron scheme [59, 60]. We found that the con-

vergency and accuracy are very similar to the previous formulation for nonmetals

and we checked that our results were converged with respect to k-space sampling

and basis set size. All results shown here were obtained using the Vosko-Wilk-Nusair

parametrization [65] of the LDA exchange-correlation potential, which was also used

to derive the ALDA exchange-correlation kernel. In Fig. 3.5 and Fig. 3.6 the calcu-

lated real and imaginary parts of the dielectric functions of Cu and Ag are compared

with two sets of experimental data well known in literature [50, 51], and with more

recent measurements [52]. The latter data have been obtained using ultrahigh vac-

uum spectroscopic ellipsometry, thus we consider them the best data available. Our

results are in good overall agreement with the experiments. In particular, the onset
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Figure 3.5: Real, ε1(ω), and imaginary, ε2(ω), parts of the dielectric function of Cu.

The bold solid line shows our calculation, the others show the experimental data from

Ref. [50–52].
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Figure 3.6: Real, ε1(ω), and imaginary, ε2(ω), parts of the dielectric function of Ag.

The bold solid line shows our calculation, the others show experimental data from

Ref. [50–52].
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of the interband transitions at ∼ 1.9 eV (experimentally around 2.0 eV) for Cu as

well as the overall shape of ε2 are very well reproduced by our calculations. For Ag

the onset at ∼ 3.7 eV (experimentally around 4.0 eV) is slightly shifted to lower

frequency, but again the main features of ε2 are well described by our method, in

line with the general observation in semiconductors where the absorption gap is un-

derestimated in the LDA. A feature clearly missing in our calculated spectra is the

low-frequency tail in the imaginary part of the dielectric function. In perfect crystals

this contribution comes from the scattering that free-conduction electrons have with

phonons and with other electrons [66, 67]. These phenomena are not described by

the ALDA, where a frequency-independent xc-kernel fxc(r, r
′) is used. In general,

electron correlation effects (beyond ALDA) will lead to a frequency-dependent kernel

fxc(r, r
′, ω) which will, in general, be long range [24]. The electron-phonon interaction

requires the use of a multicomponent-density functional approach [68]. The phonon-

mediated electron correlation effects are then described by an extra contribution to

the fxc(r, r
′, ω) kernel. In particular the long-range frequency-dependent fxc(r, r

′, ω)

can take the form of a local functional of the current-density, which can be included in

our scheme [24,69]. In chapter 7 we will use such a frequency-dependent kernel. The

separation of the inter- and intraband contributions to the dielectric function gives

a deeper insight in the linear response of the two metals, in particular in the role of

bound and conduction electrons and in the identification of the plasma resonances.

Plasmon excitations can be identified by the characteristic maxima in the electron

energy-loss spectra (EELS) occurring at energies where both ε1 and ε2 are small. In

the measured dielectric functions of Ref. [50,51] the Drude theory is used to estimate

the free-electron contribution (intraband contribution). Within this model both the

real and imaginary parts of the dielectric function in the free-electron region depend

on the relaxation time τ and the plasma frequency ωp,

εD1 (ω) = 1 −
ω2

pτ
2

1 + ω2τ2
, (3.95)

εD2 (ω) =
ω2

pτ

ω(1 + ω2τ2)
. (3.96)

Here ω2
p = 4πN/m∗ with N the density of conduction electrons and m∗ their effective

optical mass. In order to compare with our theory within the ALDA approach we

have to consider the expressions (3.95) and (3.96) in the limit of τ to infinity. In this

case, indeed, they become

εD1 (ω) = 1 −
ω2

p

ω2
, (3.97)

εD2 (ω) = 0. (3.98)
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In our treatment the intraband contribution to ε2 is zero, whereas Eqs (3.72) and

(3.94) show that for isotropic systems the intraband contribution to ε1 can be written

as

−4πi

ω
σintra (ω) = − 1

3π2ω2
Tr
∑

i

∫

Si

d2k

|∇kεik|
(∇kεik) ⊗ (∇kεik)

= − 1

3π2ω2

∑

i

∫

Si

d2k∇kεik · n̂, (3.99)

where the gradient ∇kεik = |∇kεik| · n̂ is a vector normal to the Fermi surface. The

integrals over the Fermi surface can be written as an integral over the occupied part

of the Brillouin zone, thus we arrive at

−4πi

ω
σintra (ω) = − 1

6π2ω2

∑

i

∫

BZ

dkfik∇2
kεik. (3.100)

Since the isotropic average effective mass m∗ of the conduction electrons can be de-

fined via N/m∗ = (8π3)−1
∑

i

∫
BZ

dkfik

(
∇2

kεik/3
)
, where N is the density of the

conduction electrons N = (8π3)−1
∑

i

∫
BZ

dkfik, we can write Eq. (3.100) as

−4πi

ω
σintra (ω) = − 1

ω2

4πN

m∗ = −
(ωp

ω

)2

, (3.101)

with indeed ω2
p = 4πN/m∗. In order to compare our results with those obtained us-

ing the Drude model, we plotted 4πχinter and 1− 4πiσintra/ω separately in Fig. 3.7,

together with the decomposition of the experimental data proposed in Refs [50, 51].

We cannot compare with the data of Ref. [52], however, because the few values of the

dielectric functions recorded at frequencies lower than the onset of the interband tran-

sitions makes it difficult to obtain the parameters τ and ωp by fitting the experimental

data. In Fig. 3.8 we report the energy-loss spectra for both metals in the range 0-40

eV. Here calculated and experimental data [50,70] are compared. For both metals the

calculated Drude-like part of the dielectric function crosses zero at frequencies around

8.9 eV and 8.8 eV, in good agreement with the free-electron plasma frequencies 9.3 eV

for Cu and 9.2 eV for Ag found in Ref. [50]. In copper this is the only resonance ob-

served and it has to be interpreted as a free-electron-like resonance [50,53]. However,

in silver ε1 crosses zero three times, at frequencies 3.5 eV, 4.8 eV, and 7.8 eV close to

the experimental values. Sharp energy-loss peaks are experimentally observed near

the first and the third frequency [50, 52, 54]. The peak near the third frequency is a

free-electron-like resonance as it is close to the Drude plasma frequency. Although ε1
becomes zero twice near the onset of the interband transitions, only one peak appears

in the EELS at a frequency near 3.8 eV where ε2 is still small. Whereas the third
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Figure 3.7: The 4πχinter and 1 − 4πiσintra/ω contributions to the real part of the

dielectric function of Cu (left) and Ag (right). Included are the decompositions of the

experimental data using the Drude model as reported in Ref. [50, 51].

resonance is well reproduced in the calculated spectrum, the first one is less intense

than the one observed experimentally. Similar results have been found by Cazalilla

et al. [54]. In order for the first peak to gain intensity it is necessary to have a small

but nonvanishing imaginary part of the dielectric function at the frequency where the

real part crosses the zero axes. As becomes clear from Fig. 3.7 in silver this crossing

occurs where the inter- and intraband contributions compensate, which is always be-

low the peak appearing in the interband contribution to the real part of the dielectric

function corresponding to the absorption onset. In copper the situation is different as

here this compensation will occur in a region around 4.8 eV where the absorption is

already strong. Unlike Cazalilla et al. [54] we expect that the use of more advanced

approximations to the xc-functional in the ground state, although changing the band

structure, will not affect the peak intensity in the case of silver. Instead inclusion of

relaxation effects through the xc-kernel fxc(r, r
′, ω) is expected to strongly influence

this peak. This is in keeping with the observation that the absorption is sensitive to

the introduction of nonintrinsic sources of scattering [71, 72].
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bold solid line shows our calculation, the others show the experimental data from

Ref. [50, 70].

3.5 Conclusions

We have successfully extended the existing time-dependent current-density-functional

approach, originally developed for the calculation of the dielectric response of non-

metallic crystalline systems [30,31], to treat metallic systems. We describe the linear

response of a metallic system to a general q- and ω- dependent external electromag-

netic field and arrive at closed expressions for the q = 0 limit at finite ω. We show

how the macroscopic dielectric function and the energy-loss function can be derived

as a function of q and ω in our scheme. Three steps are essential in this procedure.

First we show how the inter- and intraband contributions to the induced density

and current-density can be separated. Then the microscopic Coulomb gauge is used.

In this gauge the effective scalar potential is completely microscopic and all macro-

scopic contributions due to the inter- and intraband parts of the induced density and
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current-density are gauge transformed to the effective vector potential. Finally, we

consider the limit of vanishing q. Since the macroscopic inter- and intraband parts

of the induced density as well as the microscopic intraband part vanish in the op-

tical limit, they cannot lead to exchange-correlation contributions unless there is a

long-range part in the exchange-correlation functional. Using the local exchange-

correlation functional, there is only a contribution to the exchange-correlation scalar

potential due to the microscopic interband part of the induced density. From the

last step we conclude that, within the ALDA and at q=0, the self-consistent-field

equations describing the inter- and intraband contributions to the response decouple.

In general, however, for q > 0 and when going beyond the ALDA, inter- and intra-

band processes are interconnected. We have applied our approach to calculate the

dielectric function and the energy-loss function for Cu and Ag. Comparison of the

ALDA results with experimental data shows a good overall agreement. Even though

the onset for the interband transitions is shifted to lower frequency for both metals

by about 10 percent, the main features of the spectra are well reproduced above the

onset. Within the ALDA no relaxation processes are included which results in the

absence of the Drude-like absorption tail below the interband onset. For both metals

we obtain a macroscopic dielectric function, with |ε| ≈ 0, near the experimentally

observed Drude-like free electron plasma frequencies. In silver, in addition, a van-

ishing dielectric function is observed at 3.5 eV, just below the interband absorption

edge, and close to the experimental plasma resonance. This is not a free-electron

resonance but the results of the combined response due to inter- and intraband pro-

cesses. In our calculated loss spectrum the intensity of this plasmon peak is strongly

underestimated, which cannot be attributed to the local density approximation for

the xc-potential of the ground state but is the result of the absence of relaxation

processes in our ALDA description.
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Chapter 4
Relativistic DFT

Systems of heavy atoms are not correctly described within a nonrelativistic quantum-

mechanical model. In this case one has to consider the Dirac equation, which sat-

isfies both the postulates of special relativity and those of quantum mechanics. In

this chapter we give the main concepts of a relativistic density functional formulation

and how to reduce the four-component Dirac-Kohn-Sham equations to two-component

pseudorelativistic equations. We discuss in particular the two-component equations

within the zeroth-order regular approximation, we extend this formulation to the time-

domain, and we combine it with our formulation of linear response.

4.1 RDFT from quantum electrodynamics

The appropriate starting point for a fully relativistic description of the electronic

structure of atoms, molecules, clusters, and solids is Quantum Electrodynamics (QED).

However, in general, the QED equations represent a quite complex computational

problem, thus approximations are unavoidable. An approximation is the Dirac equa-

tion. The quantum-mechanical evolution of a system of N interacting electrons in

the presence of time-dependent scalar and vector potentials v(r, t) and A(r, t), re-

spectively, is described by the following Hamiltonian,

N∑

i

(
cα · πi + βc2 + v(ri, t)

)
+
∑

i<j

U(ri − rj), (4.1)

69
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with U(ri−rj) the electron-electron interaction and βc2 the rest mass of the electron.

Here πi = pi + A(ri, t)/c, α is the velocity operator,

α =

(
0 σ

σ 0

)
, (4.2)

with σ the vector of two-by-two Pauli matrices,

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, (4.3)

and β is the four-by-four matrix

β =

(
I 0

0 −I

)
, (4.4)

with I the two-by-two identity matrix. The Dirac Hamiltonian can, thus, be ex-

pressed as a four-by-four matrix which operates on the wavefunction Ψ. This means

that solution of Eq. (4.1) leads to four-component wavefunctions or spinors. The Dirac

equation admits both positive energy solutions, associated with electrons, and neg-

ative energy solutions, associated with positrons, i.e. particles with the same mass

as the electrons, but opposite charge. Normally one is interested in the electronic

states. If the rest mass energy for positive energy states is subtracted from the Dirac

equation (change of gauge), the solutions of interest are those in which the upper two-

component spinor of the wavefunction is predominant. This component is called large

component, while the lower two-component spinor is called small component. The

electron and positron states can be completely decoupled by means of unitary trans-

formations, as, for example, the Fouldy-Wouthuysen transformation. The electronic

states are then described by a two-component Hamiltonian.

4.1.1 The stationary and time-dependent Dirac-Kohn-Sham

equations

Relativistic density functional theory (RDFT) has been formulated within the frame-

work of quantum electrodynamics, where the renormalization procedure provides a

minimum principle which makes possible the relativistic extension of the Hohenberg-

Kohn theorem [73]. Recent reviews of the quantum electrodynamical basis of RDFT

have been given by Engel et al. in Refs [74, 75]. Using the renormalized ground-

state energy E0R and the ground-state four-current jµ
R(r), one can then prove that

there exists a one-to-one correspondence between the class of external potentials just
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differing by gauge transformations, V µ
ext(r) = (vext(r),Aext (r)), (µ = 0, 1, 2, 3), the

associated class of (nondegenerate) ground-state wavefunctions |Φ0〉, and ground-

state four-current jµ
R(r). This means that the ground-state wavefunction is a unique

(and universal) functional of the ground-state four-current. As consequence, also the

ground-state energy of the system is a functional of the ground-state current, E0R[jR].

The exact jµ
R(r) minimizes E0R[jR] under the condition of current conservation, and

thus conservation of the total charge Q,

∑

µ

∂µj
µ
R(r) = 0, (4.5)

1

c

∫
j0R(r)dr = Q, (4.6)

where we use the notation ∂µ = (∂t/c,∇). In order to derive the relativistic Kohn-

Sham equations [76, 77] one has to assume the existence of an auxiliary system of

noninteracting particles in effective potentials V µ
s (r) with exactly the same ground-

state four-current as the interacting system. This assumption has not been examined

in the relativistic case, but one expects analogous statements as in the nonrelativistic

case. Within the relativistic Kohn-Sham scheme the ground-state four-current and

energy can be represented in terms of auxiliary single-particle four-spinors ψi. This

representation in general also includes vacuum polarization contributions. However,

for most RDFT applications these electrodynamical effects are irrelevant, thus we

will neglect them in the following for simplicity (no-pair approximation) [74,75]. The

four-current can then be expressed as

jµ(r) = c
∑

−mc2<εi6εF

ψ†
i (r)α

µψi(r), (4.7)

where εF is the Fermi level of the auxiliary system and the summation is over the

electronic states. In (4.7) the symbol “†” indicates the Hermitian adjoint, and αµ =

(α0,α) is a four-vector of four-by-four matrices, with α0 = I the identity matrix

and α given in (4.2). Within the Kohn-Sham scheme the total ground-state energy

functional E0[j
µ] can be decomposed in terms of the kinetic energy of the auxiliary

system, Ts[j
µ], the external potential energy, Eext [j

µ], the Hartree energy, EH [jµ],

and the exchange-correlation functional, Exc [j
µ],

E0 [jµ] = Ts[j
µ] +Eext [j

µ] +EH [jµ] +Exc [j
µ]. (4.8)

The minimization of the total ground-state energy E0 [jµ] with respect to the single-

particle four-spinors ψk leads to the Dirac-like relativistic KS-equations [74, 75],

{
cα · π + βc2 + vs(r)

}
ψi(r) = εiψi(r), (4.9)
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where π = p + As(r)/c. The Kohn-Sham four-potential V µ
s (r) = (vs(r),As(r))

consists of the external, the Hartree, and the exchange-correlation four-potentials,

respectively,

vs(r) = vext(r) +

∫
dr′

ρ(r′)

|r − r′| + vxc(r), (4.10)

As(r) = Aext(r) +
1

c

∫
dr′

jT (r′)

|r − r′| + Axc(r), (4.11)

where jT (r′) is the transverse current-density (see chapter 2). Here the exchange-

correlation four-potential V µ
xc(r) = (vxc(r),Axc(r)) is defined by the relation

lim
λ→0

Exc[j
µ + λδjµ] −Exc[j

µ]

λ
=

∫
V µ
xc(r)δj

µ(r)dr, (4.12)

where V µ
xc(r) is determined up to a gauge transformation V µ′

xc (r) → V µ
xc(r)+ δµΛxc(r)

as ∫
V µ′
xc (r)δjµ(r)dr =

∫
V µ
xc(r)δj

µ(r)dr −
∫

Λxc(r) (δµδj
µ(r)) dr

=

∫
V µ
xc(r)δj

µ(r)dr. (4.13)

Here we have used the condition of current conservation given in (4.5). The set of

Eqs (4.7), (4.9)-(4.11) has to be solved self-consistently in order to obtain the exact

four-current jµ(r) of the interacting system. One can extend Eq. (4.9) to the time-

domain [78],

{
cα · π + βc2 + vs(r, t)

}
ψi(r, t) = i

∂

∂t
ψi(r, t), (4.14)

where π = p+As(r, t)/c. The four-component current jµ(r, t) is now time-dependent

and it is given by

jµ(r, t) = c
∑

i

ψ†
i (r, t)α

µψi(r, t), (4.15)

where the summation is over states which represent the evolution of the initial occu-

pied electronic states with energies −mc2 < εi 6 εF . The scalar component of the

four-current is the density,

ρ(r, t) = j0(r, t)/c =
∑

i

ψ†
i (r, t)ψi(r, t), (4.16)

whereas the vector component is

j(r, t) = c
∑

i

ψ†
i (r, t)αψi(r, t), (4.17)

where we have used the notation jµ = (cρ, j).
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4.1.2 Gordon decomposition of the four-current

To keep contact with the nonrelativistic density functional approaches, we can make

more explicit the content of the vector current by using the Gordon decomposition.

We rewrite the expression of the vector current as

j(r, t) = c
∑

i

(1

2
ψ†

i (r, t)αψi(r, t) +
1

2
ψ†

i (r, t)αψi(r, t)
)
, (4.18)

and the time-dependent DKS equation (4.14) as

ψi(r, t) = −1

c
βα · πψi(r, t) +

i∂/∂t− vs(r, t)

c2
βψi(r, t). (4.19)

We can then substitute Eq. (4.19) into the first term on the right-hand side of Eq.

(4.18), and its Hermitian adjoint into the second term. After some elementary rear-

rangements exploiting the properties of the matricies α and β, we arrive at

j(r, t) = jp(r.t) + jd(r, t) + ∇× s(r, t) +
∂g(r, t)

∂t
, (4.20)

with

jp(r, t) = − i

2

∑

i

(ψ†
i (r, t) · β∇ψi(r, t) −∇ψ†

i (r, t) · βψi(r, t)), (4.21)

jd(r, t) =
1

c
As(r, t)

∑

i

ψ†
i (r, t)βψi(r, t), (4.22)

s(r, t) =
1

2

∑

i

ψ†
i (r, t) · βΣψi(r, t), (4.23)

g(r, t) = − i

2c

∑

i

ψ†
i (r, t) · βαψi(r, t). (4.24)

The four-by-four matrix Σ in (4.23) is defined as

Σ =

(
σ 0

0 σ

)
. (4.25)

We can conclude that the vector current can be split into the paramagnetic and

diamagnetic components jp(r, t) and jd(r, t), a spin contribution expressed as curl

of the spin density s(r, t), and a term which couples large and small components

of the DKS wavefunction. Two important considerations on Eq. (4.20) need to be

mentioned. First, the contribution to the current due to the term ∂g(r, t)/∂t is of the

order of c−1, unlike the other contributions which are of the order of 1, and it even
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vanishes for stationary systems. The other important point, more subtle, is that only

the Dirac-Kohn-Sham total current is the same as in the real system, while the various

Dirac-Kohn-Sham terms in which the current can be decomposed do not necessarily

have any physical meaning.

4.2 The ZORA equations

Fully relativistic calculations based on a four-component Hamiltonian are time-consuming.

Several two-component formalisms have been developed and one of the most simple

and elegant approaches is the zeroth-order regular approximation (ZORA) [79,80].

4.2.1 Time-independent case

After the gauge transformation vs → vs − c2, the one-electron Dirac-Kohn-Sham

equation for the large and small components of the four-component wavefunction can

be written as follows,

(
vs c σ · π

c σ · π vs − 2c2

)
·
(

φ

χ

)
= ε

(
φ

χ

)
. (4.26)

A two-component Hamiltonian for electronic states can be generated by finding a

unitary transformation U ,

U =




1√

1+X†X

1√
1+X†X

X†

− 1√
1+XX†

X 1√
1+XX†



 , (4.27)

with U−1 = U †, that reduces the Dirac Hamiltonian to a block diagonal form. Foldy

and Wouthuysen introduced a systematic method for progressively decoupling large

and small components [81]. The transformed Hamiltonian UĤDU−1 is block-diagonal

if we choose X̂ to satisfy

−X̂vs − X̂cσ · πX̂ + cσ · π + (vs − 2c2)X̂ = 0. (4.28)

The upper-left block is the Foldy-Wouthuysen Hamiltonian ĤFW ,

ĤFW =
1√

1 + X̂†X̂
× (cσ · πX̂ + X̂†cσ · π − 2c2X̂†X̂ + vs + X̂†vsX̂) ×

1√
1 + X̂†X̂

. (4.29)
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The Foldy-Wouthuysen equation,

HFW ΦFW = εΦFW , (4.30)

has the same one-electron energies ε as the Dirac equation, but generates only the

positive energy spectrum. The wavefunction ΦFW is a two-component wavefunction

that can be related to the large and small components using

(
ΦFW

0

)
= U

(
φ

χ

)
, (4.31)

so that,

ΦFW =
1√

1 + X̂†X̂
φ+

1√
1 + X̂†X̂

X̂†χ, (4.32)

0 = − 1√
1 + X̂X̂†

X̂φ+
1√

1 + X̂X̂†
χ. (4.33)

The last equation is an identity if the operator X̂ satisfies χ = X̂φ. One can then

obtain an expression for this operator from the Dirac equation for the small component

in (4.26),

χ =
1

2c2 + ε− vs
cσ · πφ = X̂φ, (4.34)

where X̂ automatically satisfies the condition (4.28). If we considered 1/
√

1 + X̂†X̂ =∑∞
n=0 an(X̂†X̂)n, and we approximate X̂ by expanding the energy-dependent expres-

sion (2c2 + ε− vs)
−1cσ · π in ε/(2c2 − vs), then the Foldy-Wouthuysen Hamiltonian

will give at zeroth order the ZORA (zeroth-order regular approximation) Hamiltonian

HZORA,

ĤZORA = σ · π c2

2c2 − vs
σ · π + vs. (4.35)

Note that the ε/(2c2 − vs) expansion is valid for Coulomb-like potentials everywhere,

provided that the energy of the particle is not too large, ε < (2c2 − vs), as it is always

the case for chemical applications. Another important observation is that by making

the zeroth-order regular approximation for the operator X̂, the unitary transformation

U is correct only to order ε/(2c2 − vs). Thus the transformed Hamiltonian is not

exactly block-diagonal, but there is a residual coupling that we neglect. The small

component are not completely annihilated as we have assumed in Eq. (4.31). The
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ZORA kinetic operator T ZORA = σ ·πc2/(2c2−vs)σ ·π can be split into a scalar and

a two-component part, so that the one-electron ZORA equation can be written as,

{
π · K(r)

2
π +

K2(r)

4c2
σ · [∇vs × π] − 1

c

K(r)

2
σ · Bs + vs

}
ΦZORA = εΦZORA, (4.36)

where K(r) = (1 − vs(r)/2c
2)−1 and Bs = ∇ × As. The ZORA one-particle wave-

functions ΦZORA are two-component spinors and represent the electron-like solutions

of the Dirac four-component wavefunctions. The last two terms in the equation rep-

resent the spin-orbit coupling and the coupling between the spin and the magnetic

field, respectively.

4.2.2 Time-dependent case

If we want to derive the ZORA equation for time-dependent problems, we have to

start from the time-dependent Dirac equation,

ĤDψ(r, t) = i∂tψ(r, t), (4.37)

where we use the notation ∂t = ∂/∂t. The equations for the large and small compo-

nents are as follows,

vs φ+ cσ · π χ = i∂tφ, (4.38)

cσ · π φ+ (vs − 2c2)χ = i∂tχ. (4.39)

If we express the small component in term of the large component as χ = X̂φ, Eqs

(4.38)-(4.39) become

(
vs + cσ · πX̂

)
φ = i∂tφ, (4.40)

(
cσ · π + (vs − 2c2)X̂

)
φ = i∂t(X̂φ)

= [i∂t, X̂]φ+ iX̂∂tφ. (4.41)

By substituting Eq. (4.40) in Eq. (4.41) we arrive at the following equation of motion,

cσ · π + [vs − i∂t, X̂] − 2c2X̂ − X̂cσ · πX̂ = 0. (4.42)

To solve this equation we isolate a time-independent part (vs,0 − ε) < 2c2 in the

potential vs, with vs,0 an arbitrary function of r and ε an arbitrary constant, so that

we can rewrite,

X̂ =
(
2c2 − vs,0 + ε

)−1
(
cσ · π + Ξ(X̂)

)
, (4.43)
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where we introduce

Ξ(X̂) = [vs − vs,0 + ε− i∂t, X̂] − X̂
(
vs,0 − ε+ cσ · πX̂

)
. (4.44)

We can choose (vs,0 − ε) in such a way that Ξ(X̂) is small when acting on φ, i.e.,

Ξ(X̂)φ = (vs − vs,0 + ε− i∂t)χ, (4.45)

for electron-like states. For example we can choose vs,0 such that (vs − vs,0) is small

everywhere and ε close to the orbital energy of the relevant states. In this way Eq.

(4.43) can be solved by iteration,

X̂n =
(
2c2 − vs,0 + ε

)−1
(
cσ · π + Ξ(X̂n−1)

)
. (4.46)

If we insert an initial term X̂−1 on the right-hand side of Eq. (4.46), then we obtain

on the left-hand side the term X̂0. We can then insert X̂0 on the right-side and obtain

X̂1 and so on. If we take X̂−1 = 0 then X̂0 is similar to the operator used in the

stationary case,

X̂0 =
(
2c2 − vs,0 + ε

)−1
cσ · π. (4.47)

Similar to the stationary case, the time-dependent Dirac equation can be reduced to a

two-component one by using a unitary transformation U which leads to a transformed

equation,
(
UĤDU−1 − U [i∂t, U

−1]
)

Φ(r, t) = i∂tΦ(r, t), (4.48)

where the transformed Hamiltonian is block diagonal. Here Φ(r, t) = Uψ(r, t). The

upper-left part of the transformed Hamiltonian is the two-component time-dependent

Foldy-Wouthuysen Hamiltonian,

ĤFW = vs +
1√

1 + X̂†X̂
×
(
cσ · πX̂ + X̂†cσ · π − 2c2X̂†X̂ − X̂†

[
i∂t − vs, X̂

] )
×

1√
1 + X̂†X̂

−
√

(1 + X̂†X̂) ×
[
i∂t − vs,

1√
1 + X̂†X̂

]
, (4.49)

where we have collected the terms containing the potential vs together with the terms

containing the time derivative i∂t. By using the equation of motion (4.42) to write[
i∂t − vs, X̂

]
= −

[
vs − i∂t, X̂

]
= cσ ·π−2c2X̂−X̂cσ ·πX̂ , Eq. (4.49) can be written

as

ĤFW = vs + cσ · πX̂

+

[
i∂t − vs − cσ · πX̂,

√
1 + X̂†X̂

]
× 1√

1 + X̂†X̂
. (4.50)
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To evaluate the commutator in the last line of Eq. (4.50) we express the square root√
1 + X̂†X̂ in a Taylor expansion

∑∞
n=0 an(X̂†X̂)n. We have that

[
i∂t − vs − cσ · πX̂, (X̂†X̂)n

]
=

n−1∑

m=0

(X̂†X̂)m

([
i∂t − vs − cσ · πX̂, X̂†

]
X̂ +

X̂†
[
i∂t − vs − cσ · πX̂, X̂

])
(X̂†X̂)n−m−1.(4.51)

By using again Eq. (4.42) for
[
i∂t − vs, X̂

]
and for

[
i∂t − vs, X̂

†
]

= −
[
i∂t − vs, X̂

]†
,

and by working out the other two commutators, we arrive at

[
i∂t − vs − cσ · πX̂, (X̂†X̂)n

]
=

n−1∑

m=0

(X̂†X̂)m
(
X̂†cσ · π − cσ · πX̂

)
×

(X̂†X̂)n−m−1(1 + X̂†X̂). (4.52)

By combining (4.50) and (4.52) we arrive at the following expression for the time-

dependent Foldy-Wouthuysen Hamiltonian,

ĤFW = vs +
1

2

(
cσ · πX̂ + X̂†cσ · π

)
+ Ŷ , (4.53)

where the operator Ŷ is given by

Ŷ =
1

2

(
cσ · πX̂ − X̂†cσ · π

)

−
∞∑

n=0

an

n−1∑

m=0

(X̂†X̂)m
(
cσ · πX̂ − X̂†cσ · π

)
×

(X̂†X̂)n−m−1 ×
√

1 + X̂†X̂. (4.54)

The expression (4.53) shows that the time-dependent Foldy-Wouthuysen Hamiltonian

is the sum of a Hermitian part similar to the stationary ZORA Hamiltonian (4.35)

and a remainder Ŷ . In App. D we show that this remainder is Hermitian as well and

of the first order in (X̂†X̂). If we neglect terms of the order of Ξ(X̂) in the expression

(4.43), then X̂ = X̂0 and Ŷ = 0. Using this approximation in Eq. (4.53) we obtain

the time-dependent ZORA Hamiltonian,

ĤZORA = vs + σ · π c2

2c2 − vs,0 + ε
σ · π. (4.55)



4.2. The ZORA equations 79

4.2.3 Gauge invariance

The ZORA equation (4.35) is not gauge invariant under a gauge transformation

vs(r) → vs(r) + ∆, (4.56)

with ∆ a constant. As shown in Ref. [79] the ZORA equation for this potential will not

have eigenvalues which are shifted by the same constant. The equation is, however,

gauge invariant under the combined gauge transformation

As(r) → As(r) + ∇Λ(r),

ΦZORA(r) → ΦZORA(r)e−iΛ(r), (4.57)

where Λ(r) is any scalar function of position only. The time-dependent ZORA equa-

tion (4.55) is, instead, gauge invariant under the transformations

vs(r, t) → vs(r, t) +
∂Λ(r, t)

∂t
,

As(r, t) → As(r, t) + ∇Λ(r, t),

ΦZORA(r, t) → ΦZORA(r, t)e−iΛ(r,t), (4.58)

provided that the potential (vs,0(r) − ε) is kept fixed. Here Λ(r, t) is now a scalar

function of space and time. This means that the time-dependent ZORA equation

is gauge-invariant, but the results depend on the choice of (vs,0(r) − ε). In practical

applications one can demand the potential vs(r, t0) to go to zero at infinity. In this case

one can choose vs,0(r) = vs(r, t0)− vs(r = ∞, t0) and ε = 0, where vs is calculated in

the Coulomb gauge (∇·As(r, t0) = 0), and the gauge-invariance (4.58) is guaranteed,

but it still depends on our particular choice for (vs,0(r) − ε).

4.2.4 The relativistic ZORA density and current operators

The unitary transformation that is used to reduce the four-component Dirac equa-

tion to an effective two-component pseudorelativistic equation represents a picture

change: we pass from the Dirac picture to a new picture, which is appropriately

called Schrödinger picture. This picture change requires that not only the wavefunc-

tion is transformed but also the operators, in order to keep the physics unaltered. For

example, the position operator r̂ represents in the new picture a new physical observ-

able which is called the mean position or mass position r̂mass of the electron [81,82],

while the transformed U r̂U−1 operator represents the original position in the new

picture. Neglecting the picture change results in an error, which is usually small but
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visible for core states [83]. We define the four-current operator in the Dirac picture

as

ĵD
µ (r) = c

∑

i

δ(r − ri)α
µ, (4.59)

where the scalar component is the density operator ρ̂D(r) =
∑

i δ(r − ri)α
0, and

the vector component the current operator ĵD(r) = c
∑

i δ(r − ri)α. If we transform

ρ̂D(r), the Foldy-Wouthuysen density operator ρ̂FW is given by

ρ̂FW (r) =
∑

i

1√
1 + X̂†X̂

(
δ(r − ri) + X̂†δ(r − ri)X̂

) 1√
1 + X̂†X̂

. (4.60)

If we take the operator X̂ to be the ZORA operator X̂0 and we neglect terms of order

of (X̂†X̂) in Eq. (4.60), the approximate ZORA density operator is simply

ρ̂ZORA(r) =
∑

i

δ(r − ri). (4.61)

This amounts to neglect the picture change for the density operator, in line with van

Lenthe et al. [79], who showed that the approximate ZORA density reproduces very

well the Dirac density, in particular for the valence region.

For the transformed current operator we proceed in a similar way, and the Foldy-

Wouthuysen current operator ĵFW
µ (r) is given by

ĵFW
µ (r) =

∑

i

1√
1 + X̂†X̂

(
cδ(r − ri)σµX̂ + cX̂†δ(r − ri)σµ

) 1√
1 + X̂†X̂

. (4.62)

In the zeroth-order regular approximation the ZORA current operator is given by

ĵZORA
µ (r) =

∑

i

(
δ(r − ri)σµ

K(ri)

2
(σ · πi) + (σ · πi)

K(ri)

2
δ(r − ri)σµ

)
. (4.63)

By exploiting the property of the Pauli matrices, σµσν = δµν + i
∑

τ εµντστ , this

expression can be rearranged as

ĵZORA
µ (r) =

∑

iν

(
δ(r − ri)

K(ri)

2
σµσνπiν + σνπiνσµ

K(ri)

2
δ(r − ri)

)

=
∑

iν

(
δ(r − ri)

K(ri)

2
(δµν + i

∑

τ

εµντστ )πiν +

(δµν + i
∑

iτ

ενµτστ )πiν
K(ri)

2
δ(r − ri)

)

=
∑

i

(
δ(r − ri)

K(ri)

2
πiµ + πiµ

K(ri)

2
δ(r − ri)

)
+

(
δ(r − ri)

K(ri)

2
i(pi × σ)µ − i(pi × σ)µ

K(ri)

2
δ(r − ri)

)
.(4.64)
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From this expression it follows that the approximate ZORA current operator can be

decomposed into a paramagnetic, a diamagnetic, and a spin contribution, given by

ĵp(r) = − i

2
K(r)

∑

i

[
δ(r − ri)∇i −∇†

i δ(r − ri)
]
, (4.65)

ĵd(r) =
1

c
K(r)

∑

i

δ(r − ri)As(ri, t), (4.66)

ĵs(r) = K(r)∇× ŝ(r), (4.67)

where

ŝ(r) =
1

2

∑

i

δ(r − ri)σ. (4.68)

It now becomes clear that the composition of the ZORA current-density is similar to

the one obtained in the Gordon decomposition of the Dirac current (see Eq. (4.20)-

(4.24)). Note that one arrives at the same expression (4.64) for the ZORA current

operator by starting from the following anticommutator,

ĵZORA(r) =
1

2

∑

i

{
v̂ZORA

i , δ(r − ri)
}
, (4.69)

with the approximate ZORA velocity operator given as

v̂ZORA
i = −i

[
ri, H

ZORA
i

]
. (4.70)

This relation guarantees the validity of the Thomas-Reiche-Kuhn f -sum rule, which

is used in the form of the conductivity sumrule in our response calculations.

4.2.5 Linear response

We can now combine the ZORA formalism with the time-dependent current-density

formulation of the linear response of solids to a macroscopic field given in chapter 3.

We start from a Kohn-Sham system in the ground-state described by the stationary

ZORA Hamiltonian

ĤZORA
0 =

∑

i

(
veff ,0(ri) + σ · pi

c2

2c2 − veff ,0(ri)
σ · pi

)
, (4.71)

and we study the response of the system to small perturbing potentials δveff (r, t) and

δAeff (r, t). To do this we consider the time-dependent ZORA Hamiltonian (4.55)

with

veff (r, t) = veff ,0(r) + δveff (r, t),

Aeff (r, t) = δAeff (r, t),
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where the effective potentials have been described in chapter 3. We then have

ĤZORA(t) =
∑

i

{
πi ·

K(ri)

2
πi + iσ

(
πi ×

K(ri)

2
πi

)
+ veff ,0(ri) + δveff (ri, t)

}

=
∑

i

{
pi ·

K(ri)

2
pi + veff ,0(ri) + δveff (ri, t)

+
1

2c
[pi ·K(ri)δAeff (ri, t) + δAeff (ri, t) ·K(ri)pi] +

K(ri)

2c
δA2

eff (ri, t)

+
i

2c
[δAeff (ri, t)K(ri)(pi × σ) − (pi × σ)K(ri)δAeff (ri, t)]

}
. (4.72)

This expression can be arranged further as follows,

ĤZORA(t) =
∑

i

(
−∇i ·

K(ri)

2
∇i + veff ,0(ri)

)
+

∫ {
dr
∑

i

δ(r − ri)δveff (r, t)

− i

2c

∑

i

(
δ(r − ri)K(ri)∇i −∇†

iK(ri)δ(r − ri)
)
δAeff (r, t)

+
∑

i

δ(r − ri)
K(ri)

2c2
δA2

eff (r, t) +
K(r)

c
(∇× ŝ(r)) δAeff (r, t)

}
dr, (4.73)

where we have considered p = −i∇, veff (ri, t) =
∫
δ(r−ri)veff (r, t)dr, and Aeff (ri, t) =∫

δ(r − ri)Aeff (r, t)dr. The first two terms on the right-hand side of Eq. (4.73)

represent the ground-state ZORA Hamiltonian (4.71), whereas the remaining terms

represent the perturbation Hamiltonian δĥ(t), which can be written as

δĥ(t) =

∫ (
ρ̂(r)δveff (r, t) +

1

c
ĵp(r) · δAeff (r, t)

+
1

2c2
ρ̂K(r)A2

eff (r, t) +
1

c
ĵs(r) · δAeff (r, t)

)
dr. (4.74)

Note that the last term on the right-hand side of Eq. (4.74) represents the perturbation

due to a magnetic field δBeff (r, t) = ∇× δAeff (r, t),

1

c
ĵs(r) · δAeff (r, t) =−1

c
ŝ(r) (∇×K(r)δAeff (r, t))

=−1

c
ŝ(r) (∇K(r) × δAeff (r, t)) − 1

c
K(r)̂s(r) · δBeff (r, t).(4.75)

We will not treat response to magnetic fields in this thesis, thus δBeff (r, t) = 0.

Furthermore, for the systems of interest here ∇vs,0(r) � 2c2 everywhere except close

to the nuclei. Therefore the term ∇K(r) = K2(r)∇vs,0(r)/(2c
2) is smaller than
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one everywhere, except in a small volume around the nuclei which, however, has a

negligible contribution to the integrals in which it appears. The last term in (4.74)

will thus give a very small contribution to the perturbation. If we do not include

spin-orbit coupling in the time-dependent ZORA Hamiltonian, and we consider only

scalar relativistic effects, then this last term does not appear in the perturbation. We

can conclude that the difference in the perturbation within the scalar ZORA and the

ZORA approaches is small, and that the main effect of the spin-orbit coupling on

the linear response is due to the changes in the ground-state orbital energies. It now

becomes clear how we can solve the linear response for a Kohn-Sham system within the

ZORA approximation. We first solve the time-independent ZORA equation (4.71) to

obtain the ground-state orbitals and orbital energies. Given the perturbation (4.74),

in which we retain only terms linear in the field, we can then evaluate the various

response functions and solve self-consistently the equations describing the induced

density and induced current-density.
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Chapter 5
Optical Response of Gold

We treat the dominant scalar relativistic effects using the zeroth-order regular ap-

proximation in the ground-state density-functional theory calculations, as well as in

the time-dependent response calculations of gold. As well known, relativistic effects

strongly influence the color of gold. We find that the onset of interband transitions is

shifted from around 3.5 eV, obtained in a nonrelativistic calculation, to around 1.9 eV

when relativity is included. With the inclusion of the scalar relativistic effects there

is an overall improvement of both real and imaginary parts of the dielectric function

over the nonrelativistic ones. Nevertheless some important features in the absorption

spectrum are not well reproduced, but can be explained in terms of spin-orbit coupling

effects.

5.1 Introduction

In chapter 3 we have extended the time-dependent current-density-functional theory

(TDCDFT) formulation for the response of nonmetallic crystals [30,31] to treat met-

als [84]. We have shown that this approach works well within the adiabatic local

density approximation for copper and silver. Even though for both metals the onset

for the interband transitions is shifted to lower frequency over about 10 percent, the

main features of the spectra are well reproduced, resulting in an overall good agree-

ment of the dielectric function with the experimental data. When applied to gold

the results are not as good as described above. This can be attributed mainly to the

large relativistic effects that gold exhibits. Indeed, from calculations in atoms [64,85]

and in many other systems [86], it is well known that the nuclear charge of gold is

85
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so large (Z=79) that the relativistic effects become important. The same conclusion

can be expected to hold true for the solid as well. We analyze the influence of rela-

tivistic effects on the linear response by including scalar relativistic effects within the

zeroth-order regular approximation (ZORA) in our full-potential ground-state DFT

as well as in the time-dependent response calculations. We can interpret the absorp-

tion spectrum in terms of direct interband transitions. The inclusion of the scalar

relativistic effects in our ground-state DFT-LDA band structure calculation strongly

stabilizes the s- and p-like conduction bands and, to a lesser extent, destabilizes the

highest occupied d-like valence bands. The band gap between d-like bands and the

conduction bands is, thus, reduced accounting for a redshift of the absorption edge of

gold (associated with transitions from the highest occupied d-like band to the Fermi

level near the high-symmetry points L and X). Similar results have been obtained by

different authors and are well recognized [87–90]. Much more puzzling is the origin

of the other absorption peaks. For example Winsemius et al. [91], analyzing the tem-

perature dependence of the optical properties of Au, found that frequently proposed

assignments of the spectrum in the region 3.6-5.4 eV are not complete. From our anal-

ysis of the absorption spectrum we also find that some of the previous assignments

are not complete. Furthermore not so many discussions have been found in literature

about the high-frequency region of 6-10 eV [88, 89, 92]. We discuss also this spectral

region and find some discrepancies with some previous tentative assignments. The

outline of the chapter is as follows. First we show the way in which scalar relativis-

tic ZORA is implemented in the TDCDFT for the response of metals, following the

same line used by Kootstra et al. [93] for the linear response of nonmetallic systems.

In particular, we treat the intraband contribution to the linear response. The main

aspects of the implementation are briefly explained. Finally, we report our results

for the band structure and dielectric function of the crystal of Au and compare them

with the experimental data found in literature [51,70,92] and with recent ellipsometric

measurements [94].

5.2 Theory

The scalar relativistic (SR) effects have earlier been included in the response calcula-

tion of nonmetallic crystals by Kootstra et al. [93, 95]. We now treat these effects in

the linear response of metals as well by using the zeroth-order regular approximation

(ZORA) as described in chapter 4. In the long-wavelength limit (q → 0) and within

the ALDA, the macroscopic dielectric function of a metal can be defined as [84]

ε(ω) = (1 + 4πχinter
e (ω)) − 4πi

ω
σintra(ω), (5.1)
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where χinter
e (ω) is the interband contribution to the electric susceptibility that can

be derived from the current induced by a macroscopic field Emac = ê via

χinter
e (ω) · ê =

( −i
ωV

∫
δjinter

q=0 (r, ω)dr

)∣∣∣∣
Emac=ê

, (5.2)

and σintra(ω) is the intraband contribution to the macroscopic conductivity tensor at

q = 0,

σintra (ω) =
−i
ωV

∫ ∫ (
χintra

jjq=0(r, r′, ω) − χintra,0
jjq=0 (r, r′, ω = 0)

)
drdr′, (5.3)

which is independent from the interband response within the adiabatic local-density

approximation (ALDA) [84]. The scalar relativistic effects in Eq. (5.2) have been

introduced in the same way described by Kootstra et al [93]. We focus here on the

intraband contribution −4πi/ω σintra(ω) to the dielectric function. The combination

of the current-current response function and its static value, respectively, χintra
jjq and

χintra,0
jjq , in Eq. (5.3) is given at q = 0 by

χintra
jjq=0(r, r′, ω) − χintra

jjq=0(r, r′, ω = 0) =
V

4π3

∑

i

∫

Si

d2k

|∇kεik|
×

(ψ∗
ik(r)̂jψik(r)) ⊗ (ψ∗

ik(r′ )̂j′ψik(r′)), (5.4)

in which i runs over all partially occupied band indices and the integrations are over

the sheets Si of the Fermi-surface originating from the bands i. The Bloch functions

ψik(r) are the solutions of the ground-state ZORA equation with eigenvalues εik,

[
p · c2

2c2 − veff ,0(r)
p + veff ,0(r)

]
ψik(r) = εikψik(r), (5.5)

where p = −i∇, c is the velocity of light, and veff ,0(r) is the self-consistent effective

potential. The operator ĵ has the following scalar ZORA relativistic expression,

ĵZORA = − i

2

(
K(r)∇−∇†K(r)

)
, (5.6)

where K(r) = (1− veff ,0(r)/2c
2)−1. In nonrelativistic response calculations based on

relativistic ground-state calculations the ordinary operator

ĵNR = − i

2

(
∇−∇†) (5.7)

is used. We use the time-dependent extension of the ground-state DFT approach

[30,31,84] to treat the dynamic linear response of metallic crystals to a perturbation
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described by a scalar and a vector effective potential. We choose the gauge to be

the microscopic Coulomb gauge, in which the effective scalar potential is completely

microscopic, i.e., lattice periodic. All macroscopic contributions due to the inter and

intraband parts of the induced density and current-density are gauge transformed to

the effective vector potential. Using the local exchange-correlation approximation and

considering the limit for vanishing q, only a contribution to the exchange-correlation

scalar potential remains due to the microscopic interband part of the induced density.

It then follows that, within the ALDA and at q = 0, the self-consistent-field equations

describing the inter and intraband contributions to the response decouple [84]. These

conditions remain valid also for the scalar relativistic case. Given a fixed effective

vector potential, we first solve the equations for interband contribution to the in-

duced density δρinter (r, ω), using an iterative scheme in which the microscopic scalar

potential is updated at each cycle until self-consictency is established. With the self-

consistent perturbing potentials obtained, we can calculate the inter and intraband

contributions to the dielectric function ε(ω) from the inter and intraband parts of the

induced current-density, δjinter/intra (r, ω). We used this method before to calculate

the dielectric funtion of copper and silver crystals. The results reported in chapter

3 [84] show a reasonable overall agreement with the experimental data for both the

real and imaginary parts of the dielectric functions.

5.3 Results and discussion

We present our results for the optical dielectric function in the spectral range of 0-10

eV of the isotropic crystal of gold. To analyze the importance of relativistic effects

we compare the response calculated by including relativity in both the ground-state

and time-dependent response calculations with those obtained by including the rela-

tivity only in the ground-state calculation, and with nonrelativistic results. The band

structures calculated with and without scalar relativistic effects are also reported in

order to interpret the spectra. We also report the band-structure obtained includ-

ing the spin-orbit coupling in order to estimate its effect on the optical properties.

The gold crystal has the fcc lattice type for which we used the experimental lattice

constant 4.08 Å. All calculations were performed using a modified local version of

the ADF-BAND program [30, 31, 61, 62, 84, 96, 97]. We made use of a hybrid valence

basis set consisting of Slater-type orbitals (STOs) in combination with the numerical

solutions of a relativistic free-atom Herman-Skillman program [64]. Cores were kept

frozen up to 4f . The spatial resolution of this basis is equivalent to a STO triple-zeta

basis set augmented with two polarization functions. The Herman-Skillman program

also provides us with the free-atom effective potential. The crystal potential was
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evaluated using an auxiliary basis set of STO functions to fit the deformation density

in the ground-state calculation and the induced density in the response calculation.

For the evaluation of the k-space integrals we used a quadratic numerical integra-

tion scheme with 175 symmetry-unique sample points in the irreducible wedge of

the Brillouin zone, which was constructed by adopting a Lehmann-Taut tetrahedron

scheme [59, 60]. In all our calculations we use the nonrelativistic local density ap-

proximation (LDA) for the exchange-correlation functional. The use of relativistic

exchange-correlation functionals do not change the cohesive properties and the band

structure beyond the 1 percent level for the 5d transition metal system gold [98]. In

contrast with the 3d transition metals, in the 5d transition metals the generalized

gradient approximations (GGAs) overcorrect the cohesive properties [99, 100]. For

comparison we have performed the calculation of the dielectric function also at the

GGA level, using the exchange-correlation functional proposed by Perdew and Wang

(PW91) [101] and the one by Becke for the exchange [9] and Perdew for the correla-

tion [10] (BP). The results, however, are very similar to those obtained at the LDA

level, in line with the results found by Schmid et al. [98]. All results shown here were

obtained using the Vosko-Wilk-Nusair parametrization [65] of the LDA exchange-

correlation potential, which was also used to derive the ALDA exchange-correlation

kernel.

5.3.1 Dielectric function and band structure

In Fig. 5.1 the nonrelativistic (NR) and scalar relativistic (SR) results calculated for

the real and imaginary parts of the dielectric function of Au are compared with the

experimental data from literature [51, 70, 92] and with recent measurements carried

out using a spectroscopic ellipsometric method [94]. The inclusion of scalar relativistic

effects causes a general redshift of both the real and imaginary parts of the dielectric

function resulting in a reasonable agreement with the experimental data. In partic-

ular, the Drude-like tail in the real part is much better reproduced. We have also

calculated the dielectric function by including the scalar relativistic effects only in the

ground-state calculation and not in the response part. These results are very close to

those with the relativistic effects included also in the response part and are therefore

not depicted in Fig. 5.1. We can conclude that relativistic effects in the response of

gold are mainly due to their influence on the band structure. In Fig. 5.2 we show

the band structures calculated with and without the inclusion of scalar relativistic

effects in the ground-state DFT calculation. In order to facilitate the comparison

between the two band-structures we report all energy levels with respect to the Fermi

energy of the scalar relativistic calculation. The valence bands are numbered at a
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given k -point starting from the lowest band. The occupied bands are predominantly

5d-like, although they show hybridization with the 6s and 6p bands. The d bands are

rather dispersionless and slightly destabilized by the scalar relativistic effects, except

for band 1 at the zone center, which is strongly stabilized around Γ due to the strong

s character. Contrary to the d bands, the sp-conduction bands are strongly stabilized

by relativistic effects. This results in lowering the energy of the half-occupied band

6, which is predominantly p-like near the zone boundary, and with it the Fermi level.

Also band 7, which is predominantly s-like near the zone boundary, is stabilized.

The onset of the interband absorptions that is due to transitions from band 5 to the

Fermi level in the optically active regions around the high-symmetry points L and

X is then redshifted over about 1.6 eV with respect to the nonrelativistic case. This

explains the shift of about 1.6 eV found for the onset and the double-peak feature in

the absorption spectrum upon inclusion of the scalar relativistic effects.
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Figure 5.1: Real (upper graph) and imaginary (lower graph) parts of the dielectric

function of Au. The bold dotted and dotted-dashed lines show our SR and NR results,

the others the experimental data from Ref. [51, 70, 92, 94].
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Figure 5.2: Band structure of gold (Au). The bold and thin lines refer to the scalar

relativistic (SR) and the nonrelativistic (NR) ground-state calculations, respectively.

5.3.2 Analysis and assignment of the absorption spectrum

In order to better understand the origin of the absorption features we calculated the

separate contributions to the absorption spectrum for selected pairs of bands and

for different regions in the Brillouin zone. The various contributions that are due to

direct transitions from the occupied valence bands to the two conduction bands 6 and

7 are shown in Fig. 5.3. We also analyzed our results by calculating the contributions

of the transitions over the wedges of the Brillouin zone covering the L and the X

direction, each accounting for roughly one quarter of the Brillouin-zone volume. This

was done by including an extra weight factor in the Brillouin-zone integration,

wX (k̂) = 〈cos2(2φ) cos2(2θ)〉, (5.8)

wL(k̂) = 〈sin2(2φ) sin2(2θ)〉, (5.9)

where the average is taken over the three possible combinations with either x̂, ŷ,

or ẑ being the polar axis. We find that the onset calculated at 1.9 eV is almost

completely due to transitions from band 5 to band 6, as shown in panel a) of Fig.

5.3. About 60 percent of the intensity of this contribution, which is slightly more
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Figure 5.3: Contributions from various pairs of bands to the ε2 spectrum calculated

over the whole Brillouin zone, panel a), and selecting only the X and L directions,

panel b).

than their combined volume fractions, is due to the regions near X and L, with the

region around X accounting for 35 percent and the region around L for about 25

percent. In addition, we find that there are also small contributions from transitions

from bands 3 and 4 to 6 that are completely due to the region around X. In previous

assignments the experimental absorption edge of gold also has a composite nature

with contributions due to the transitions near X and L (in particular, L3 →L2′ and

X2 →X4′) [88–90]. However, the onsets in the two regions do not coincide. The

experimental onset of the L transitions starts at about 2.5 eV [87,88,90], accounting

for the steep rise in the absorption spectrum, whereas the onset of the X transitions

has been located at about 1.9 eV [90,102], leading to the experimentally observed long

tail which extends below 2 eV. The second experimental absorption peak occurring

between 3.5 and 5 eV, and having a slightly higher intensity, appears in our scalar

relativistic calculation as a broad shoulder between 3 and 5 eV. Around 3.6 eV this

absorption has most frequently been attributed to transitions 6 → 7 near L and at

slightly higher frequencies to transitions near X (in particular, L2′ →L1 and X5 →X4′ ,
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respectively) [88, 89, 103]. Based on their analysis of the temperature dependence of

the dielectric function, Winsemius et al. [91], on the other hand, concluded that

these assignments are not complete. The panel a) of Fig. 5.3 shows that the peak

can be attributed mainly to the transitions 6 → 7 and 4 → 6. The contribution of

transition 6 → 7 comes mostly from the region near L: it has an onset at around

3 eV occurring for k points at the Fermi surface near L and peaks around 4 eV,

which is about the gap between the bands 6 and 7 at L (transition L2′ →L1). The

contribution due to the transitions from band 4 to band 6 is determined for only

about 40 percent by transitions occurring in regions near L and X, which is less

than their volume fraction. The structure at frequencies higher than 6 eV has not

been extensively discussed. However, for the absorption around 8 eV we found some

tentative assignments in literature to the X1 →X4′ [88, 92] as well as to the L1 → εF
transitions [89]. In our calculations this absorption is overestimated and shifted to

lower frequencies. Although the cited transitions contribute to the intensity of the

absorption, we find that these alone cannot account for the absorption in this region,

since also transitions from other occupied valence bands and from different parts of

the Brillouin-zone contribute.

5.3.3 Spin-orbit effects

We expect that some of the discrepancies between our calculations and the experi-

mental data are due to the spin-orbit effects. We cannot yet take into account the

spin-orbit coupling in a full relativistic response calculation. Nevertheless the im-

portance of spin-orbit relativistic effects for the response properties can be estimated

by including the spin-orbit coupling in a relativistic calculation of the ground-state

band structure. In Fig. 5.4 we report the most important changes upon inclusion of

the spin-orbit effects in the relativistic ground-state band structure. Again we report

all energy levels with respect to the Fermi energy of the scalar relativistic calcula-

tion. The spin-orbit coupling causes the splitting of the X5 state into X6+ and X7+ .

As a result the state X2 (X7+ in the double group symmetry), which was lower in

energy than X5 in the scalar relativistic case, becomes higher than both X6+ and

X7+ . Unlike the electric dipole forbidden transition X2 →X4′ , X+
7 →X6− is allowed.

The gap between X2 (X7+) and X4′ (X6−) becomes about 1 eV smaller than the one

found in the scalar relativistic band-structure calculation. We can then expect that

the contribution of transitions in the region near X from band 3 to band 6, in the

scalar relativistic calculation, is shifted in energy to below 2 eV upon inclusion of

spin-orbit coupling. This will result in a tail below the onset of the main absorption

peak as observed in the experiments and as assigned to the transition X2 (X7+) →X4′
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Figure 5.4: Band structure of gold (Au). The thin and bold lines refer to the scalar

relativistic (SR) and the fully relativistic (scalar and spin-orbit effects) ground-state

calculations, respectively.

(X6−) [89,90]. The contribution due to the transitions near X from band 5 to band 6

in the scalar relativistic case is slightly shifted to higher energies as the gap between

X5 (X7+) and X4′ (X6−) increases by 0.2 eV. Although the change is only modest

the shift is enough to decrease the intensity of the first calculated peak and increase

that of the second one. Thus, we can conclude that this transition also contributes to

the second absorption peak, together with the less intense transition L2′ → L1 that

peaks at around 4 eV. Since the position of the latter transition is not affected by

spin-orbit effects, we predict a different order than what is reported in literature. Due

to the splitting in X5, the contribution from transitions 4 → 6 in the region near X is

expected to be blueshifted by about 0.4 eV. This increases the intensity of the second

absorption peak even more. A large splitting involves the upper L3 state lifting the

degeneracy of band 4 and 5 with a magnitude of 0.7 eV. This splitting causes the gap

between band 4 and band 6 at L in the scalar relativistic calculation to become about

0.6 eV larger. As becomes clear from Fig. 5.3, this is not expected to cause drastic

changes in the absorption spectrum, since the contribution of the transitions 4 → 6
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Figure 5.5: Qualitative description of the imaginary part of the dielectric function

as expected upon the inclusion of the spin-orbit coupling in the response calculation.

The experimental results are taken from Ref. [51].

near L is small even though it can contribute to make the second peak even more

visible. The band 5 is lowered in energy by about 0.3 eV with respect to the Fermi

level, thus blueshifting a bit the absorption edge and broadening the first peak. For

the spectral region between 7 and 10 eV it is more complicated to predict which visi-

ble changes can be expected by including also the spin-orbit coupling, because of the

complex composition of the absorption in terms of interband transitions. In Fig. 5.5

we give a qualitative prediction of the dielectric function as it can be expected from

a response calculation including the spin-orbit effects. We modify the contributions

due to the transitions from bands 1-6 to bands 6 and/or 7 in the region near L and X

according to the analysis given above. All contributions are then summed and added

to the unchanged contributions from the remaining part of the Brillouin zone giving

the dielectric function. The modifications that we include are: X5 →X4′ is blueshifted

by about 0.2 and 0.4 eV for the transition 5 → 6 and 4 → 6, respectively, X2 →X4′

is redshifted by 1 eV for the transition 3 → 6, L3 →L2′ is redshifted by 0.3 eV for

the transition 5 → 6 and blueshifted by 0.6 eV for the transition 4 → 6. In the same
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figure we also report the scalar relativistic dielectric function and the experimental

interband contribution to the dielectric function that Johnson and Christy [51] ob-

tained by removing the Drude free-electron contribution from their experimental data.

Several spectral features are better described in the predicted absorption spectrum;

in particular, the composite nature of the absorption edge and the second absorp-

tion maximum become visible. Even though we include only changes in the X and L

contributions that are mainly responsible for the first and second absorption peaks,

we also observe a decrease of the absorption intensity in the region around 8 eV. We

can conclude that a full relativistic response calculation including the spin-orbit cou-

pling is needed for an accurate description of several important spectral features of

the dielectric function. Nevertheless even with the inclusion of the spin-orbit effects

the interband onset and the two features at about 2.5 and 3.5 eV in the interband

region of the absorption spectrum will remain redshifted by about 0.5 eV. Since most

features involve transitions from 5d-like bands to the Fermi level, which is completely

determined by the 6p-like band, this redshift suggests that the 5d bands should be

lowered in energy with respect to the 6p band by roughly the same amount. The pre-

sumably incorrect position of the 5d bands may be due to the incorrect description

of the ground-state exchange-correlation potential by the local density approxima-

tion. The use of standard available GGAs do not alter the position of the 5d bands,

suggesting that more advanced functionals are needed for a correct description. This

finding is in line with the overcorrection of the cohesive properties by standard GGAs

in 5d transition metals [99]. Furthermore a feature clearly missing in our calculated

absorption spectra is the low-frequency Drude-like tail. In perfect crystals this con-

tribution comes from the scattering that free-conduction electrons have with phonons

and with other electrons [66, 67]. These relaxation processes are not included within

the ALDA, where a frequency-independent exchange-correlation (xc) kernel fxc(r, r
′)

is used. To include these effects the use of a frequency-dependent approximation to

this xc kernel that goes beyond the ALDA is needed. Such an fxc(r, r
′, ω) kernel may

also modify the intensity of the interband contribution to the absorption [69].

5.4 Conclusions

We have included scalar relativistic (SR) effects in the time-dependent current-density

treatment of the optical response properties of metals by using the zeroth-order regu-

lar approximation (ZORA). We analyzed our results for the dielectric function of gold

calculated in the spectral range of 0-10 eV with and without SR effects, and we esti-

mated the effect of the spin-orbit coupling. The main effect of including the SR effects

is a strong redshift of the absorption edge and the main spectral features, bringing
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both the real and imaginary parts of the dielectric function closer to the experiments.

Nevertheless some features are not well reproduced: the absorption edge does not

show the long tail observed experimentally below 2 eV and the second absorption

peak appears only as a broad shoulder between 3 and 5 eV. The absorption in the

region between 6 and 10 eV is overestimated. Moreover the interband absorption

is redshifted with respect to the experiments by about 0.5 eV. By including relativ-

ity only in the ground-state DFT calculation or in both the ground-state and the

response calculations we showed that the main influence of the relativistic effects is

through the modification of the band structure in the optically active regions around

X and L. Based on the scalar relativistic band structure, the analysis of the absorp-

tion spectrum shows some deviations from the most frequent assignments reported

in literature. By including the spin-orbit coupling in the ground-state band-structure

calculation we estimated its effect on the absorption features and their assignments.

The general features and the assignments are now in good agreement with the liter-

ature. Therefore, the spin-orbit effects are essential to understand spectral features

in gold. The predicted absorption spectrum remains, however, still redshifted with

respect to the experiments, suggesting that the separation between the 6sp and 5d

bands is underestimated in the local density approximation. The standard GGAs do

not cure this problem and more advanced functionals may be needed. Furthermore a

correct description of the Drude-like absorption in the low-frequency region requires

approximations to the fxc kernel beyond the ALDA.
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Chapter 6
Optical Properties of bcc Transition

Metals

We present a systematic analysis of the optical properties of bcc transition metals in

the groups VB: V, Nb, and Ta, and VIB: paramagnetic Cr, Mo, and W. The calcu-

lated dielectric and electron energy-loss functions are compared with new ellipsometry

measurements and with data reported in literature, showing an overall good agreement.

We calculate separately the inter- and intraband contributions to the absorption and

we show using a k · p analysis that, within the scalar relativistic approximation, inter-

band transitions contribute to the absorption already at frequencies well below 0.5 eV.

This finding makes questionable the Drude-like behavior normally assumed in the ex-

perimental analysis of the linear response. We find that the combination of the Drude

model, in which we use the calculated plasma frequency and an optimized relaxation

time, and the calculated interband response can well describe the experimental spectra.

The electron energy-loss spectra are very well reproduced by our calculations showing

in each metal a dominant plasmon peak at about 22-24 eV, well above the correspond-

ing Drude-like free-electron plasma frequency, and additional features in the range

10-15 eV. We show that the renormalization of the plasma frequency is due to the in-

terplay between inter- and intraband processes, and that the additional features arise

from the rich structure in the dielectric function caused by interband transitions.

99
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6.1 Introduction

The electronic structure of transition metals is in general characterized by the overlap

and hybridization of nearly free-electron-like sp bands with a relatively narrower d -

band complex. This leads to a rather complex Fermi surface with in general multiple

sheets. Moving across a period the binding energy of the d bands drops with respect

to the low-lying sp bands while at the same time the Fermi level rises within the d

bands due to the increasing filling fraction. The width of the d bands first increases,

reaching a maximum for the Cr group where the d bands are approximately half

filled, and then decreases again. At the noble metals the d bands are completely

filled and very narrow. Furthermore, progressing within the same group the width of

the d bands increases. These trends in the band structure have a large influence on

the optical properties of the transition metals. Optical experiments [104–109] have

shown that the high-energy optical properties (~ω & 10 eV) are very similar from

metal to metal, but that the low-energy behavior varies significantly with the filling

of the d bands. Transitions within these bands are responsible for the absorption in

this spectral region. In chapter 3 we have developed a method to treat the linear

response of metal crystals within time-dependent current-density-functional theory

(TDCDFT) [84]. This method gave good results for the dielectric function and the

electron energy-loss function of copper and silver already within the adiabatic local

density approximation (ALDA). Furthermore, by treating the dominant scalar rela-

tivistic effects (using the zeroth-order regular approximation) we obtained reasonable

agreement with experiment also for the dielectric function of gold [110], as shown in

chapter 5. In the case of these noble metals, two main deviations of the calculated

dielectric functions from experiments were pointed out: an increasing redshift of the

whole absorption spectrum passing from Cu via Ag to Au, and the absence of the

low-frequency Drude-like absorption. We speculated that the redshift is mainly due

to the deficiency of the local density approximation in describing the correct position

of the d -band complex with respect to the Fermi level in our ground-state calculation.

The other deviation, instead, is in part a failure of the adiabatic approximation to the

exchange-correlation functional used in the response calculation. The low-frequency

Drude-like absorption is due to relaxation processes such as electron-electron and

electron-phonon scattering. The electron-electron scattering can not be described

within the ALDA in which a frequency-independent exchange-correlation kernel is

used. More advanced frequency-dependent functionals will be needed to describe

these relaxation effects. The inclusion of electron-phonon scattering requires a theory

that goes beyond the pure electron density-functional description [68]. In this chapter

we use our method to investigate the optical properties of the bcc metals from group
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VB: V, Nb, and Ta, and from the adjacent group VIB: Cr (in the paramagnetic phase),

Mo, and W. Unlike the noble metals, where the d bands are completely filled, these

metals have partially filled d bands, thus the analysis of their absorption spectra in

terms of direct transitions between d bands can give an insight into the performance

of the LDA in describing the dispersion and the width of the d bands in 3d, 4d, and

5d metals, and of the ALDA in describing the response properties. Furthermore these

metals show interband absorption already at low frequencies, thus the separation in

intra- and interband contributions to the absorption becomes difficult in the exper-

imental analysis, where one often assumes the Drude-like behavior to hold at low

frequency and well below the range of experimental data. Using the adiabatic local

density approximation together with the long-wavelengh limit within our approach,

we can calculate separately the inter- and intraband contributions to the dielectric

function of these metals. We show that in these metals the interband absorption

remains present at all frequencies, approaching a constant value for frequencies below

'0.5 eV, unless spin-orbit effects are taken into account. In the latter case a small ab-

sorption gap appears. These findings make the straightforward use of the bare Drude

model for the low-frequency range questionable. In order to compare our calculations

with reliable experimental data we performed also spectroscopic ellipsometry in the

energy range between 0.7 and 4.5 eV. The spectra have been acquired at room tem-

perature and ambient pressure. All samples were polished before the measurements

and kept in a nitrogen atmosphere during the spectra acquisition, in order to prevent

oxidization. The experimental procedure is described in more detail in Sec. 6.2. The

rest of the chapter is organized as follows. The theory underlying the dielectric and

electron energy-loss function calculations, and the treatment of the scalar relativistic

effects within the zeroth-order regular approximation are briefly outlined in Sec. 6.3.

Details of the computational method can be found in Sec. 6.4. The optical properties

of the group-VB transition metals V, Nb, and Ta, and of the group-VIB transition

metals Cr, Mo, and W are discussed in Sec. 6.5. Here, by comparing our theoretical

results with our recent ellipsometry measurements and with other experiments found

in literature, we give an insight into the trend of the optical properties of these met-

als with respect to the filling of the d -bands. Finally in Sec. 6.6 we draw conclusions

about the performance of our method and of the exchange-correlation approximations

used.

6.2 Experimental method

The optical constants of the transition metals studied in this chapter have been pub-

lished in literature already several decades ago [104–109,111,112]. As these metals all
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have a bcc unit cell their optical constants are expected to be isotropic. Nestell, John-

son and Christy [111,112] measured polycrystalline thin films evaporated in situ, and

performed reflection and transmission experiments at normal and 60 degrees angle

of incidence to extract the optical constants n and k as a function of photon energy.

Although this approach guarantees a negligible contribution from surface contamina-

tion, in particular from transition-metal oxides, still their optical constants showed

a small but significant thickness dependence. Weaver and co-workers [104–109] mea-

sured the normal incidence reflectivity of polished single crystals and extracted the

dielectric function via a standard Kramers-Kronig procedure. The dielectric func-

tions presented by Weaver et al. deviate from Nestell and Christy’s results mostly on

the low-frequency side. However the reflectivity data that we obtained from Nestell

and Christy’s results agree well with those by Weaver et al. at least up to 3 eV.

This apparent discrepancy may be due to the Drude-like extrapolation model used

in the Kramers-Kronig procedure needed to extract the optical constants from the

reflectivity data. In this chapter we question the validity of this Drude-like extrapo-

lation for low frequency. The various sets of experiments show discrepancies in the

absolute values of the optical constants, most notably for vanadium and chromium.

Here we present our experimental results in the energy range between 0.7 and 4.5 eV

obtained at room temperature using spectroscopic ellipsometry at an angle of inci-

dence of 70 degrees with a resolution of approximately 12 meV. The polycrystalline

samples used had a purity of 99.99 percent and were polished with a diamond sand

paper of 0.1 micron grain size until a mirror-like surface was obtained. During the

polishing process and the measurement the samples were kept in a pure nitrogen flow

in order to prevent the oxidization of the surface. Our measurements are in excel-

lent agreement with the results from Nestell and Christy for V and Cr where the

various sets of experimental data differ most. For the other metals we find results

in between the very similar data reported by Nestell and Christy and Weaver et al..

Some departures at high frequencies between our experiments and those reported by

Nestell, Johnson, and Christy may be due to the non-negligible surface roughness and

the film morphology. Our ellipsometry experiments and the combination of reflection

and transmission measurements by Nestell and Christy directly provide the real and

the imaginary parts of the dielectric function without assuming any model a priori.

Due to the large spectral range of Nestell and Christy’s measurements and to their

good agreement with our results we will consider them to be the reference data.
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6.3 Theory

In chapter 3 we have extended the formulation of the time-dependent current-density-

functional theory describing the linear response of nonmetallic crystals to macroscopic

fields [30, 31] to treat metals as well [84]. In this case not only transitions between

occupied and unoccupied bands (interband contributions) contribute to the linear

response, but also transitions within the same partially occupied band (intraband

contributions) need to be considered. Within the adiabatic local density approxima-

tion (ALDA) and in the long-wavelength limit q → 0 the two contributions remain

separable, and we can calculate the dielectric function using the following expres-

sion [84],

ε(ω) =
(
1 + 4πχinter

e (ω)
)
− 4πi

ω
σintra(ω). (6.1)

Here the contribution in brackets is referred to as the interband part of the dielectric

function and the last term on the right-hand side as the intraband contribution.

The tensor components of the interband contribution to the electric susceptibility

χinter
e (ω) can be obtained by repeating an SCF response calculation of the interband

contribution to the induced current-density for the uniform macroscopic electric field

in the three possible Cartesian directions ê,

χinter
e (ω) · ê =

( −i
ωV

∫
δjinter (r, ω)dr

)∣∣∣∣
Emac=ê

. (6.2)

Analogously, the components of the intraband contribution to the macroscopic con-

ductivity tensor σintra(ω) can be obtained from the intraband part via

σintra(ω) · ê =

(
1

V

∫
δjintra (r, ω)dr

)∣∣∣∣
Emac=ê

. (6.3)

Once having calculated the macroscopic dielectric function ε(ω), we can obtain also

the electron energy-loss spectra by calculating the dynamical structure factor S(q, ω).

This factor expresses the scattering rates in transmission energy-loss spectroscopy

where one studies the inelastic scattering of a beam of high-energy electrons by a

target. This structure factor is related to the imaginary part of the true density-

density response function via the fluctuation-dissipation theorem,

S(q, ω) = −2=
∫ ∫

e−iq·(r−r′)χ(r, r′, ω)drdr′. (6.4)

We retrieve in our approach the well-known result [1] that in the limit of vanishing q

the dynamical structure factor is directly related to the macroscopic dielectric function
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according to the following relation,

lim
q→0

2π

q2V
S(q, ω) = =

{ −1

q̂ · ε(ω) · q̂

}
. (6.5)

We have also included relativistic effects in our formulation [110] by using the zeroth-

order regular approximation (ZORA) [79, 80, 113] as described in chapter 4. Scalar-

relativistic effects are then considered by using the ground-state scalar ZORA equa-

tion,
[
p · c2

2c2 − veff ,0(r)
p + veff ,0(r)

]
ψik(r) = εikψik(r), (6.6)

to get the orbitals and the orbital energies needed in the response calculation, and by

using the relativistic scalar ZORA operator,

ĵZORA = − i

2

(
K(r)∇−∇†K(r)

)
, (6.7)

with K(r) = (1−veff ,0(r)/2c
2)−1, to calculate the induced current-density, and hence

the response functions of Eqs. (6.2) and (6.3). Here c is the velocity of light, veff ,0(r)

is the self-consistent effective potential, and H.a. is the Hermitian adjoint expression.

Spin-orbit effects have been studied only in the ground-state calculations by using the

full ZORA Hamiltonian.

6.4 Computational method

We calculated the optical dielectric functions ε(ω) in the spectral range 0-10 eV for the

isotropic crystals of vanadium, niobium, tantalum, paramagnetic chromium, molyb-

denum, and tungsten in a bcc lattice. We used the experimental lattice constants as

listed in tables 6.1 and 6.2. All calculations were performed using a modified ver-

sion of the ADF-BAND program [30, 31, 61, 62, 84, 96]. We checked that our results

were converged with respect to the basis set size and the sampling density of the

irreducible Brillouin zone. We made use of a hybrid valence basis set consisting of

Slater-type orbitals (STOs) in combination with the numerical solutions of a free-

atom Herman-Skillman program [64]. Cores were kept frozen up to 2p for V and

Cr, 3d for Nb and Mo, and 4f for Ta and W. The spatial resolution of this basis

is equivalent to a STO triple-zeta basis set augmented with two polarization func-

tions. The Herman-Skillman program also provides us with the free-atom effective

potential. The crystal potential was evaluated using an auxiliary basis set of STO

functions to fit the deformation density in the ground-state calculation and the in-

duced density in the response calculation. For the evaluation of the k -space integrals
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in the ground-state calculations we used a quadratic numerical integration scheme,

which was constructed by adopting a Lehmann-Taut tetrahedron method [59,60]. We

found converged results using 84 sample points in the irreducible wedge of the Bril-

louin zone. In the response calculations the singular energy-dependent denominator

in the response integrals is included in the quadrature weights of a linear tetrahedron

method by using an analytic evaluation of the Cauchy principle value and residual

parts. As we will show shortly below, in the scalar relativistic calculations these

metals exhibit interband absorption already in the spectral range 0-0.5 eV, which

involves transitions between bands degenerate at the Fermi level. A dense sampling

of the Brillouin zone is then required in order to accurately describe the dispersions

close to the Fermi surface. Therefore we used 1771 sample points for the response

calculations in the low-frequency spectral region. Nevertheless, the results obtained

for the lowest frequencies will still not be reliable due to the linear interpolation used

in solving the k -space integrals. Therefore we made use of the k · p method of an-

alytic continuation [57] near the points of degeneracy at the Fermi level to analyze

the low-frequency interband transitions and the corresponding low-frequency behav-

ior of the absorption. In all our ground-state calculations we used the local density

approximation (LDA) for the exchange-correlation functional. In general the use of

generalized-gradient approximations (GGAs) to the exchange-correlation functional

is found to improve the ground-state properties of the 3d series [114, 115], whereas

there have been mixed reports of their performance on the 4d and 5d series [116–118].

For comparison we have performed the calculation of the dielectric functions also by

starting from ground states obtained at the GGA level, using the exchange-correlation

functional proposed by Perdew and Wang (PW91) [101] and the one by Becke for the

exchange [9] and Perdew for the correlation [10] (BP). The results, however, are very

similar to those obtained at the LDA level. All results shown here were obtained

using the Vosko-Wilk-Nusair parametrization [65] of the LDA exchange-correlation

potential, which was also used to derive the ALDA exchange-correlation kernel for

the response calculations.

6.5 Results and discussion

6.5.1 Band structure and Fermi surface

In Fig. 6.1 and Fig. 6.2 the calculated ground-state energy bands of V, Nb, and Ta

(in the left panels), and of Cr, Mo, and W (in the right panels) have been displayed

along high-symmetry directions. The energy levels are reported with respect to the

respective Fermi levels, in order to facilitate the comparison between the band struc-
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Figure 6.1: Theoretical LDA ground-state band structures. The left panel shows vana-

dium (solid line) and niobium (dashed line), whereas the right panel shows chromium

(solid line) and molybdenum (dashed line). The band structures reported for Nb and

Mo refer to scalar relativistic calculations.

Figure 6.2: Theoretical scalar relativistic LDA ground-state band structures. The left

panel shows niobium (solid line) and tantalum (dashed line), whereas the right panel

shows molybdenum (solid line) and tungsten (dashed line).
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tures. The valence bands are numbered at a given k point starting from the lowest

band. Across the same group the band structures are quite similar, except that the d

bands are broader, as immediately becomes clear by inspection of the d -band widths

E (H′
25)-E (H12) in Fig. 6.1 and Fig. 6.2. Moving from the 3d series to the 5d series,

the s-like Γ1 state becomes more tightly bound, as result of a stronger stabilization

by relativistic effects. The most noticeable difference between the band structures of

the two groups is the position of the d -like Γ′
25 states, which lie above the Fermi level

for the group-VB metals but below this level for the group-VIB metals. The group-

VB transition metals contain five valence electrons per atom, whereas the group-VIB

ones contain six valence electrons. In the group-VB metals the lowest valence band

and in the group-VIB metals the lowest two bands are completely filled. The sec-

ond and third, respectively, the third, fourth, and fifth bands, are partially filled and

contribute to the Fermi surfaces, which are characterized by multiple sheets. Cross

sections of the Fermi surfaces are shown in Fig. 6.3 for the group-VB metals in the

left panel and for the group-VIB metals in the right panel. The shaded areas indicate

the regions of the Brillouin zone where the transitions between selected pairs of bands

give the strongest contribution to the interband absorption. These couples are 2 → 3,

3 → 4, and 3 → 5 for the group-VB metals, and 4 → 5, 3 → 4, and 3 → 5 for the

group-VIB metals. We will discuss them later in the chapter. In the group-VB metals

closed hole pockets around Γ arise due to band 2, and around the symmetry points N

due to band 3. Furthermore, band 3 gives rise to an open surface with arms in the ∆

directions which is often referred to as the “jungle-gym”. The pocket around Γ and

the jungle-gym show a symmetry-induced degeneracy along the Λ line caused by the

doubly degenerate Λ3 states. This degeneracy will be lifted by spin-orbit effects. The

three metals show also another point of contact inside the ΓHP plane (as depicted in

Fig. 6.3), which is accidental and lifted by spin-orbit effects as well. The hole pockets

situated around the symmetry points N are also found in the group-VIB metals, as

can be expected from the band structures. However, a quite different picture of the

Fermi surface emerges for these metals due to the position of the Γ′
25 states, which

now lie below the Fermi level. Hole pockets around H and an electron pocket around

Γ appear due to bands 3 and 4, respectively. These two surfaces have a point of

contact on the ∆ line as the two bands show a symmetry-induced degeneracy, which

again will be lifted by spin-orbit effects. In addition, another tiny pocket of electrons

occurs along the ∆ lines as contribution from band 5. As we will show later in this

chapter, transitions near the symmetry-induced degeneracies are responsible for the

low-frequency interband absorption.

The analysis shows that the band dispersions of all six metals are very similar.

We observe only minor differences between metals which are adjacent in the Periodic
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Figure 6.3: Theoretical Fermi surface cross sections for V, Nb, Ta (left panel), and

for Cr, Mo, and W (right panel). The Brillouin zones have been plotted at the

correct relative scale. The short dashed, the solid, and long dashed lines represent

the contributions to the Fermi surface due to the bands 2, 3, and 4, respectively. The

shaded areas indicate the regions in the Brillouin zone that contribute most to the

absorption due to the transitions between the respective bands.
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Table, but at the same time we see larger changes within each group, in particular

in the d -band width. The main difference between the group-VB and -VIB metals

is in the filling of the d -bands and, as result, in the topology of the Fermi surfaces.

Since transitions between d -bands are responsible for the main structure in the optical

absorption spectra, we expect to find common features shifting in energy correspond-

ing to the increase of the d -band dispersion within the group. The adjacent group

will have features in common at very similar frequencies, but also different features

will result from the difference in filling of the d -bands and the topology of the Fermi

surface.

6.5.2 Dielectric function
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Figure 6.4: The calculated (bold solid line) and measured dielectric functions for

vanadium, niobium, tantalum, chromium, molybdenum, and tungsten. Our measure-

ments have been performed as described in section 6.1, the other experimental results

are taken from Ref. [104–106, 111, 112]. The theoretical curves reported for Nb, Ta,

Mo, and W are results of scalar relativistic calculations.
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In Fig. 6.4 we report the calculated real and imaginary parts of the dielectric

functions of V, Nb, and Ta in the left panels, and of Cr, Mo, and W in the right

panels. The theoretical results are compared with our ellipsometry measurements and

with other experiments present in literature [104–106, 111, 112]. For the 4d and 5d

metals we found that relativistic effects are important. Therefore the results depicted

for the 4d and 5d metals refer to scalar relativistic calculations. A comparison with

the nonrelativistic calculations of the dielectric functions is reported in Fig. 6.5. Upon

inclusion of scalar relativistic effects the dielectric functions of the group-VB metals

Nb and Ta appear rigidly blueshifted and the intensity of some spectral features

changes significantly with respect to the nonrelativistic spectra. In the group-VIB

metals Mo and W, the absorption bandwidths become broader by including scalar

relativistic effects. In particular for Mo the double-peak structure at about 2 eV then

becomes visible. Similarly the absorption peak at about 1 eV and the main features in

the real part of the dielectric function of Ware now correctly reproduced with respect
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Figure 6.5: Comparison between nonrelativistic and scalar relativistic calculations of

the dielectric functions of niobium, tantalum, molybdenum, and tungsten.
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to the experiments. Spin-orbit effects are not treated at the moment in our response

calculations, but they can be important, in particular for the 5d metals Ta and W.

Indeed our results obtained by treating both the scalar and spin-orbit effects in the

ground-state calculations show that the spin-orbit coupling removes the degeneracy

between, for example, bands 2 and 3 along Λ in the group-VB metals and between

bands 3 and 4 along ∆ in the group-VIB metals. This will effectively remove all points

of contact of the Fermi surface sheets, thus introducing a finite gap in the interband

absorption spectra. In tungsten, for example, transitions near the Fermi surface

between the two bands that would otherwise be degenerate but that are separated

by about 0.60 eV upon inclusion of spin-orbit effects, are expected to be responsible

for the sharp interband absorption onset found experimentally with a maximum at

about 0.42 eV [106]. Our conclusions are in line with the findings of Antonov et

al. [119], who calculated the optical properties of several 5d metals within the random

phase approximation (RPA) and the fully relativistic linear muffin-tin-orbital (LMTO)

method. In the absorption spectrum of tungsten the low-frequency peak and onset are

absent in their calculations which excluded spin-orbit effects, whereas they appear in

the fully relativistic calculation. They associated this to the direct transitions between

the two bands crossing the Fermi level in the neighborhood of the high-symmetry point

H (bands 3 and 4 in our calculations). The degeneracy of these two bands is lifted by

the spin-orbit coupling and a small energy gap appears, resulting in a finite absorption

onset. In our scalar relativistic calculations the use of a linear interpolation for the

evaluation of the k -space integrals in the response calculations might result in an

incorrect description of the response in the very low-frequency region. For this reason

we analyzed the topology of the Fermi surface at the singular points by using the k ·p
method. This analysis indicates a constant interband contribution to the absorption

in the low-frequency region for each of the six metals. We determined the value for the

low-frequency absorption below 0.5 eV by extrapolating the linear relation found at

higher frequencies for the current-current response function versus ω2. In our scalar

relativistic calculations the interband absorption extends all the way down to ~ω = 0

eV. For most metals, however, two regions can be distinguished in the absorption

spectrum, being the low-frequency region in which intraband transitions are assumed

to be dominant and that is well described by a Drude model, and the visible region

where the interband absorption is most important. In the ALDA approach there is

no intraband contribution to the imaginary part of the dielectric function at finite

frequency. Responsible for the Drude-like absorption are relaxation processes which

are not described within the ALDA, in which a frequency-independent exchange-

correlation kernel is used [68]. Therefore we can directly relate the calculated and

experimental absorption spectra only at frequencies higher than ∼1 eV where, for
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the metals studied here, the Drude-like absorption is found to be small [105, 111].

In the low-frequency region the comparison is more problematic. To overcome these

difficulties we add to our calculated interband absorption an intraband contribution

which we found to be well described by a simple Drude model,

ε2(ω) = εinter
2 (ω) + εD2 (ω), (6.8)

where εinter
2 (ω) is the calculated interband contribution to the imaginary part of the

dielectric function and εD2 (ω) is the Drude contribution given by

εD2 (ω) =
ω2

pτ

ω(1 + ω2τ2)
, (6.9)

with ωp the plasma frequency and τ the relaxation time. Normally these two pa-

Table 6.1: Model parameters for the group-VB metals. The plasma frequencies have

been calculated directly from intraband response functions in the ALDA approxima-

tion. The relaxation times have been fitted to experiments in the frequency range 0-1

eV (see text). In our calculations we used the experimental lattice parameters listed

here.

V Nb Ta

a (Å) 3.02 3.30 3.31

ωp (eV) 8.06 9.24 8.88

τ (×10−15 s) 5.0 ± 0.2a 4.09± .12a 6.2± 0.2a

astandard deviation

Table 6.2: Model parameters for the group-VIB metals. The plasma frequencies have

been calculated directly from intraband response functions in the ALDA approxima-

tion. The relaxation times have been fitted to experiments in the frequency range 0-1

eV (see text). In our calculations we used the experimental lattice parameters listed

here.

Cr Mo W

a (Å) 2.88 3.15 3.16

ωp (eV) 6.99 8.66 7.81

τ (×10−15 s) 3.78± 0.03a 5.57± 0.10a 12.2± 0.6a

astandard deviation
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rameters are determined by fitting the bare Drude model to the experimental data

below the onset of the interband transitions, where one assumes that the absorption

is predominantly Drude-like. In the present case, however, the Drude model alone

cannot describe the low-frequency absorption, since even for the lowest frequency in

the experimental window the interband absorption is non-negligible. Our calculated

constant low-frequency absorption will lead to an extra term with a logarithmic di-

vergence at small frequencies in the real part of the dielectric function. Indeed for Nb,

Ta, Mo, and W the plasma frequencies obtained by fitting the bare Drude model to

experiments differ appreciably from the theoretical values [120–122]. This was asso-

ciated with a renormalization of the optical mass by Fermi-liquid effects [120] rather

than to interband processes. We found that Eq. (6.8) still holds and that Eq. (6.9)
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Figure 6.6: Comparison between the measured and calculated interband contribution

to the absorption spectra of vanadium, niobium, tantalum, chromium, molybdenum,

and tungsten. The Drude absorption (intraband contribution to the experimental

absorption, see text) is also reported. The experimental spectra used are taken from

Ref. [111].
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can describe the intraband part of the low-frequency absorption. Here the Drude

parameters are obtained in the following way. We subtract the calculated interband

absorption from the experimental curve (comprising both inter- and intraband con-

tributions) and fit Eq. (6.9) to the remaining part. In this fit we use the calculated

value for ωp, which is directly related to the intraband contribution to the macro-

scopic optical conductivity [84], ω2
p = −4πiω σintra (ω), and we obtain the optimal

relaxation time via a least-squares procedure. The Drude parameters thus obtained

are listed in tables 6.1 and 6.2. In order to test the quality of our calculations we want

to compare the calculated interband absorption with the experiments. To do this we

subtract from the experimental absorption the intraband contribution described by

Eq. (6.9) in which we use the theoretical value for the plasma frequency and the fitted

relaxation time.The result of this procedure is depicted in Fig. 6.6, where we have

also reported the Drude-like tail. We are now ready to assign the spectral features to

interband processes. The position of the main features in the experimental spectra

were obtained by using the extrema in the second derivative of the interband spectrum

and they are given in tables 6.3 and 6.4.

Table 6.3: Position (in eV) of the main features in the experimental and theoretical

spectra and their assignment in terms of transitions between pairs of bands for the

group-VB metals.

Peak V Nb Ta

Expa ALDA Expa ALDA Expa ALDA

2 → 3, A - < 0.5b - < 0.5b - < 0.5b

2 → 3, B,C 0.70 1.15 1.04 1.15c, 1.54 0.85, 1.50d 1.41

3 → 4 1.25-1.48 1.92 2.20 2.31 1.81, 2.86 2.82, 3.34e

3 → 5 2.50 3.11 4.04 4.49 5.33f 5.26

1 → 4, 2 → 5 3.47 3.98 - 5.53 - 6.17

1 → 6 - 6.43 - 7.60 - 9.40g

apeak positions obtained using data from Ref. [111]
bconstant absorption: ε2=5.33, 3.94, and 3.60 for V, Nb, and Ta, respectively
cshoulder
dvery weak shoulders
ehere also the transitions 2→ 4 contribute
fbroad peak
gbroad; here also transitions 3→ 6 contribute
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Table 6.4: Position (in eV) of the main features in the experimental and theoretical spectra and their assignment in terms

of transitions between pairs of bands for the group-VIB metals.

Peak Cr Mo W

Expa ALDA Expa ALDA Expa ALDA

3 → 4, D -, 0.70 <0.5b, 0.77 -, 0.65 <0.5b, 1.08 -, 0.95 <0.5b, 0.90

3 → 4, E 1.24 1.16, 1.80 1.77, 2.34 1.80, 2.31 1.78, 2.20c, 3.40 c 1.90, 2.69, 3.34d

3 → 5 2.32 2.57, 3.08 3.44, 4.08 3.60, 4.11 - , 4.98c , 5.36 3.72, 4.50, 5.40

1 → 4 3.46e 3.85 - 5.39 - 6.81f

1 → 6 5.83e 6.30 - 7.33 - 9.8g

apeak positions obtained using data from Ref. [111]
bconstant absorption: ε2=15.87, 10.27, and 8.33 for Cr, Mo, and W, respectively
cvery week shoulder
dhere also the transitions 3→ 5 contribute
eweak
fweak; here also transitions 2→ 5 and 3→ 6 contribute
ghere also transitions 3→ 6 contribute
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Assignment of the interband spectra

In order to facilitate the comparison of the spectral features we interpreted the ab-

sorption spectra in terms of direct transitions between couples of bands. In Fig. 6.7

we report the main contributions to the absorption spectra. The first and second

peaks common to the 3d and 4d metals can be attributed mainly to the transitions

3 → 4 and 3 → 5, respectively, whereas the shoulder at low frequency is mainly due

to the transitions 2 → 3 for the group-VB metals and to the transitions 4 → 5 for the

group-VIB metals. It becomes clear that in Ta the broad peak centered at about 3.1

eV can be related to the first absorption peak which appears also in the 3d and 4d

metals, whereas the peak at about 1.4 eV can be related to the shoulder present in

the other group-VB metals. We find again that the same couples of bands, which are

mainly responsible for the first absorption peak observed for the group-VIB metals
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Figure 6.7: Assignment of the absorption spectra. The figure shows the total intensity

(bold solid line) and the decomposition in terms of the different contributions due to

direct transitions between the indicated pairs of bands.
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Cr and Mo, are also involved in the absorption spectrum of W below 4 eV. Here

different peaks are visible, revealing that a broader range of energies is covered by

transitions between the two bands in different parts of the Brillouin zone. This is in

keeping with the larger dispersion of the d bands in W as compared to Cr and Mo.

All these metals show strong interband absorption also at very low frequencies, in line

with absorbance measurements on Nb and Mo [123], and calculations on Nb [124].

At frequencies below ∼ 0.5 eV, the interband absorption becomes constant in our

calculation, being larger in the group-VIB than in the group-VB metals. This very

low-frequency interband absorption reveals a degeneracy of energy bands at the Fermi

surface. We will analyze later the topology of the Fermi surface around the points of

degeneracy which are involved in the low-frequency absorption. Unfortunately, not

much experimental data is available at so low frequencies since optical experiments

are difficult to perform as here the reflectivity is close to 1. However, structure in the

low-frequency region ω < 1 eV has been observed in Nb [104, 125], but it has been

found to vary with sample preparation. By analyzing the transition dipole moments

for transitions between pairs of bands we can visualize the regions of the Brillouin

zone where the transitions give the strongest contribution to the interband absorp-

tion. In Fig. 6.3 the shaded areas indicate the regions where transitions give rise to

the strongest absorption. We found that for metals within a group the same areas are

involved, but also that the regions are somewhat more diffuse for the heaviest metals.

In the group-VB metals the absorption below 0.5 eV is due to the transitions

2 → 3 in the region which is indicated as A in Fig. 6.3, near the symmetry-induced

degeneracy. Transitions between the same bands in the regions B and C are the main

contribution to the shoulder at about 1 eV. The absorption in this low-frequency

region is very similar for all three metals as the dispersion of bands 2 and 3 is only

weakly modified within the group. The transitions 3 → 4 and 3 → 5 contribute

mainly in the region just outside the jungle-gym part of the Fermi surface. Here,

however, the corresponding absorption peaks will move within the group towards

higher energies as result of the larger dispersion of the d -bands, and hence of the

increasing energy separation. These trends are clearly visible in the experiments and

are well reproduced in our calculations, be it that the calculated peak positions are a

few tenths to one half of an eV too high.

In the group-VIB metals the transitions 3 → 4 contribute strongly to the low-

frequency absorption in the region D around the point of degeneracy. The high-

frequency part of the absorption that is due to these two bands originates from the

region E. Passing via Mo to W the contribution from D in the ΓHP plane becomes

stronger, resulting in a peak at about 1 eV instead of a shoulder, while the zone E

becomes broader, resulting in a broad absorption over the whole spectral range 0-5



118 Chapter 6. Optical Properties of bcc Transition Metals

eV. The shoulder is also due to transitions 4 → 5 mainly near the line ∆. From the

same region, but also from the regions just outside the pockets around N transitions

3 → 5 give rise to the absorption in the high-frequency side of the spectrum. Again

the increasing dispersion of the d -bands within the group leads to a considerable shift

of the spectral features. The trends in the experimental and theoretical spectra are

again very similar as in the group-VB case. However, here the peak positions are

generally well reproduced except for the high-frequency range in Cr, where the peak

positions are again overestimated by about one half of an eV.

Our assignment of the spectra is in line with those reported in literature [105, 106,

111, 126, 127]. For the group-VB metals the first peak is mainly attributed to the

transitions Σ1 → Σ1, which involves the third and fourth bands along the Σ line. Dif-

ferent transitions might contribute to the second peak: ∆1 → ∆′
2 (1 → 5 transitions),

D4 → D′
1 (2 → 4 transitions), and G1 → G′

4 (1 → 5 transitions). However, this

structure seems to arise from large regions of the Brillouin zone away from symmetry

lines; in particular Pickett et al. [125] found that in Nb and Mo the peak is mainly

due to 3 → 5 transitions near k =
(

1
2 ,

1
4 ,

1
4

)
. In the group-VIB metals the transition

∆5 → ∆′
2 (3, 4 → 5 transitions) contributing to the absorption below 2 eV is common

to the three metals. In Mo and W other transitions along the ∆ line are found in-

volving the third and fourth bands for Mo and W, and the fourth and fifth bands for

W. Bands 3, 4, and 5 along Σ are found to be responsible for the structures at about

2.35 eV in Mo and at about 3.42 eV in W. The second peak in Cr is attributed to the

transitions ∆5 → ∆1 (3 → 6 transitions) and Σ1 → Σ4 (3 → 5 transitions), whereas

in Mo and W bands along F, G, Σ, and Λ, in particular the couples of bands 3 and

4, and 3 and 5, could all be contributing.

Our analysis shows that the spectra of the six metals are in general well reproduced

by our calculations. Nevertheless, the locations of some absorption peaks deviate

from the experimental ones, in particular in the 3d metals. The assignments of the

absorption spectra in terms of d -d transitions and the analysis of the regions in the

Brillouin zone where they mainly occur indicate that transitions from the Fermi level

to virtual bands 4 and 5 yield absorption peaks that are blueshifted with respect to the

experiments. The deviation is mainly observed in the 3d metals and decreases within

a group. In the 4d and 5d group-VIB metals Mo and W these deviations are almost

nonexisting. From the band structures it becomes clear that the energy separation

with the Fermi level of these virtual bands strongly increases, while their dispersions

remain almost unchanged, resulting within a group in a shift of the absorption peaks

towards higher frequencies. On the other hand, absorption peaks are better repro-

duced if they are due to transitions between bands close to the Fermi level, namely

bands 2 and 3, which show very similar dispersions for the metals within the same
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group. These findings suggest that virtual d bands are too weakly bound by using

the local density approximation (or standard gradient corrected approximations) to

the ground-state exchange-correlation functional, in particular in the 3d metals.

k · p analysis of the low-frequency interband transitions

We mentioned above that the linear tetrahedron method is not very reliable to solve

the k-integrals in our response calculations for the absorption spectra in the very low-

frequency region. The low-frequency absorption, indeed, involves bands degenerate at

the Fermi surface, for which a more accurate description of the dispersion is required.

In order to fully understand the low-frequency behavior of the absorption spectra

and the differences between the group-VB and -VIB transition metals, we studied the

interband contribution to the imaginary part of the dielectric function. If we neglect

the local-field effects and the relativistic corrections in our method, this contribution

is given for isotropic systems by [84]

={εinter (ω)} =
1

6π

∑

i,a

∫
dk

∣∣∣〈ψik |̂j|ψak〉
∣∣∣
2

(εik − εak)2
(δ(εik − εak + ω) − δ(εik − εak − ω)) ,

(6.10)

where i labels the occupied states, εik ≤ εF , and a labels the unoccupied states,

εak ≥ εF , with εF the Fermi energy. We analyzed the dispersion of the touching

bands 2 and 3 in group VB and of bands 3 and 4 in group VIB around their points of

degeneracy at the Fermi level (as depicted in Fig. 6.3). At these points the integrand

in Eq. (6.10) becomes singular. To evaluate the integrals in these points we made use

of the k · p method of analytic continuation [57]. In this method the Bloch functions

at k + q can be expressed in terms of the eigenstates at the reference point k using

ψk+q(r) = exp(iq · r)
∑

m

ψmk(r)cmn(q), (6.11)

where the coefficients cmn(q) are solutions of the following eigenvalue equation,

∑

m

[(
1

2
q2 − εnk+q + εmk

)
δlm + 〈ψlk|q · p|ψmk〉

]
cmn(q) = 0, (6.12)

with p = −i∇. The coefficients explicitly depend on the length and direction of q. In

our case the reference points are the points of degeneracy. The corresponding eigen-

values εnk+q give the energy dispersions, which can be expressed in a unidirectional

Taylor series with q ≥ 0 as

εnk+q = εnk + qPn(q̂) +
1

2
q2M−1

n (q̂) + · · · , (6.13)
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where we introduced the group velocity Pn(q̂) and the effective mass Mn(q̂). By

inserting q = 0 in Eq. (6.12), it immediately follows that the coefficients cmn(0)

can only be different from zero if εmk = εnk, hence we can limit the analysis to the

degenerate subspace. By retaining only the terms linear in q it also follows that the

coefficients diagonalize the subblock of the q̂ ·p matrix built by the degenerate states,

resulting in

Pn(q̂) = 〈ψnk+δq|q̂ · p|ψnk+δq〉. (6.14)

For states that remain degenerate to first order in q these coefficients also diagonalize

the corresponding subblock of the effective-mass matrix giving

M−1
n (q̂) = 1 + 2

∑

i,εnk 6=εik

〈ψnk+δq|q̂ · p|ψik〉〈ψik|q̂ · p|ψnk+δq〉
εnk − εik

, (6.15)

which contains the terms of order q2. Here, for notational convenience, we have

introduced the analytically continued eigenstates for the direction q̂,

ψnk+δq =
∑

m

ψmkc
(0)
mn(q̂), (6.16)

where the coefficients c
(0)
mn(q̂) are given by

c(0)mn(q̂) = lim
q→0

cmn(qq̂). (6.17)

Using the same expansion Eq. (6.11) one readily derives

〈ψik+q | ĵ | ψak+q〉 = 〈ψik+δq | ĵ | ψak+δq〉 + qδia +

∑

n,εnk 6=εik

q · 〈ψik+δq|p|ψnk〉〈ψnk|p|ψak+δq〉
εik − εnk

+

∑

n,εnk 6=εak

〈ψik+δq|p|ψnk〉〈ψnk|p|ψak+δq〉 · q
εak − εnk

+ · · ·(6.18)

Details of this analysis for the six bcc metals can be found in App. E. We only

state the results here. We find that in the group-VB metals bands 2 and 3 give

rise to a linear conical intersection with the contact point as result of the symmetry-

induced degeneracy positioned on the line Λ, which is also the axis of the cone. The

degeneracy is lifted to first order in q for directions perpendicular to the axis, but it

remains present for directions along the axis. From the k · p analysis it follows that

the contribution to the absorption at low frequency due to the transitions 2 → 3 is
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constant. Similar results are found also for the point of accidental degeneracy. For

the group-VIB metals the bands 3 and 4 also give rise to a conical intersection with

the axis of the cone along ∆ (taken here as the ŷ direction). However, the degeneracy

is lifted only to second order in q within the x̂ẑ plane, whereas it remains present to

all orders in q along ∆ due to symmetry. The contribution to the absorption at low

frequency due to the transitions 3 → 4 is found to be constant. We conclude that in

our scalar relativistic calculations the interband contribution to the absorption does

not vanish at low frequencies but remains finite in these metals.

6.5.3 Electron energy-loss function

In Fig. 6.8 the calculated energy-loss function at q = 0, ={−ε(ω)−1}, is depicted in

the range 0-40 eV for the six metals together with experiments reported in litera-

ture [104–106, 128]. Three main regions can be identified in the electron energy-loss

spectra (EELS): a low-frequency region up to 10 eV with small EELS intensities, a

medium-frequency range starting with peak structures at about 10 eV and extending

up to about 20 eV, and finally a high-frequency region that is dominated by a single

intense peak at about 24 eV. The main peaks in the medium- and high-frequency re-

gions have been identified as volume plasmons, be it of different nature [104–106]: the

one at high frequency corresponding to the collective motion of all valence electrons

and the medium-frequency ones involving only groups of electrons. For all metals

a single peak in the medium-frequency region is usually identified as plasmon-like,

except for tungsten where a second peak can be seen at about 15.2 eV. In view of

the occurrence of this second peak Weaver et al. [106] indicated that also in the other

group-VIB metals and in the group-VB metals a second plasmon resonance should

appear. Our ALDA calculations reproduce very well the experimental spectra in the

low- and medium-frequency ranges: both the relative intensity and the position of

the plasmon peaks are correctly described. The calculated plasmon-peak in the high-

frequency range, however, is too intense as compared to experiments for the 4d and

5d metals, but it appears at the correct position. Also in the 3d metals the position is

correct, but here we can not comment on the intensity as the experiments are given in

arbitrary units. The main resonances are listed in tables 6.5 and 6.6. The agreement

between calculations and measurements is better for the electron energy-loss func-

tions than for the dielectric functions. Although closely related, the two quantities

depend in a different way on the long-range Coulomb interaction [36]. Whereas the

dielectric function measures the macroscopic response to the macroscopic field, which

includes the long-range screening of the external field, the EELS measures the macro-

scopic response to an unscreened external field. By calculating the self-consistent
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Figure 6.8: Calculated electron energy-loss spectra (bold solid line) for vanadium,

niobium, tantalum, chromium, molybdenum, and tungsten. The experimental results

are taken from Ref. [104–106, 128]. The calculated real and imaginary parts of the

dielectric function are also reported in the range 6-40 eV. The calculated results

reported for Nb, Ta, Mo, and W refer to scalar relativistic calculations.
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Table 6.5: Position (in eV) of the main features in the experimental and theoretical

electron energy-loss spectra for the group-VB metals. Ωp= free-electron-like plasmon

peak; Ω1,2=other main features.

Peak V Nb Ta

Expa ALDA Expa ALDA Expa ALDA

Ωp 23.6 22.7 20.8 21.8 20.7 22.6

Ω1 9.6 10.0 9.7 10.4 8.9 8.8

Ω2 - - 13.0 13.3 13.6 14.0

apeak positions obtained using data from Ref. [104,105,128]

Table 6.6: Position (in eV) of the main features in the experimental and theoretical

electron energy-loss spectra for the group-VB metals. Ωp= free-electron-like plasmon

peak; Ω1,2=other main features.

Peak Cr Nb W

Expa ALDA Expa ALDA Expa ALDA

Ωp 25.7 25.2 24.4 24.5 25.3 25.1

Ω1 12.0 11.7 10.4 10.8 10.0 9.9

Ω2 - - 14.6 15.4 15.2 15.5

apeak positions obtained using data from Ref. [105,106,128]

response to the macroscopic field the long-range part of the Coulomb interaction is

effectively removed from the self-consistent field [30]. In the EELS this dominant

contribution to the self-consistent field remains present. As result the dielectric func-

tion will be more sensitive to the quality of the approximations used for the much

smaller exchange-correlation part of the self-consistent potentials. In many cases the

ALDA approximation already gives a good description of the EELS, whereas more

sophisticated approximations are required to describe correctly the dielectric function.

In all six metals the dominant plasmon resonance appears in the experiments

at much higher frequency than the Drude free-electron plasma frequency. From our

calculations it becomes clear that the shift in energy is completely due to the interplay

between inter- and intraband effects. The free-electron resonance is renormalized

due to the polarizable background that is introduced by the low-frequency interband
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processes. If only intraband processes were to be included, the bulk plasmon resonance

would occur at just below 10 eV. Upon inclusion of interband processes this resonance

is shifted by approximately 10-15 eV to much higher energies. In the low-frequency

region the intraband processes give rise to a very strong response, thus suppressing the

EELS intensity. At about 10 eV, i.e., at the Drude free-electron plasma frequency, the

intraband response is minimal and interband processes start to dominate. Interband

transitions give rise to a rich structure in the dielectric function, which in turn leads

to additional plasmon-like features in the EELS. At frequencies where both ε1 and

ε2 are small such plasmon-like resonances are clearly observed in the calculated and

measured spectra. Even though these resonances are close to the Drude plasma

frequency, they are not free-electron-like resonances in nature, but they are caused

by strongly mixed inter- and intraband processes. These features as well as the

main plasmon resonances are very well reproduced in our calculations, in which local-

field effects are fully included and exchange-correlation effects are treated within the

adiabatic local density approximation.

6.6 Conclusions

We have systematically analyzed the optical properties of the group-VB bcc tran-

sition metals V, Nb, and Ta, and the group-VIB bcc transition metals Cr (in the

paramagnetic phase), Mo, and W by comparing theoretical and experimental results.

The dielectric and electron energy-loss functions of these metals have been calculated

by using our formulation of the linear response of metals within the time-dependent

current-density-functional theory. Our calculations have been compared with our

ellipsometry measurements of the dielectric functions and with other experiments re-

ported in literature. The two sets of experimental data by Nestell, Johnson, and

Christy and by Weaver and co-workers differ mostly on the low-frequency side. We

attribute this discrepancy to the Drude-like extrapolation model used by Weaver et al.

in their Kramers-Kronig procedure, which is needed to extract the optical constants

from the reflectivity data. This is confirmed by the very good agreement up to about

3 eV between the reflectivities that we extracted from the optical constants obtained

by Nestell and Christy with those reported by Weaver et al.. Our experiments are in

good agreement with Nestell and Christy’s data.

We found that metals belonging to the same group show common spectral fea-

tures which are shifted in energy with the increase of the d-band dispersion. On the

other hand, features common to metals which are adjacent in the Periodic Table are

found at similar energies, but also different features result from the different filling of

the d bands. By carefully treating the topology of the Fermi surface, we calculated
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interband absorption already at frequencies below 0.5 eV, and hence deviations from

the Drude behavior that is often assumed in the experimental analysis of the linear

response are expected for these metals. In general both the real and imaginary parts

of the dielectric functions are well reproduced by our calculations. However, some

calculated peaks in the absorption spectra are blueshifted with respect to the exper-

iments, in particular in the 3d metals. We observed that peaks that are mainly due

to transitions between bands close to the Fermi level are reasonably well described

in our calculations. These bands show similar dispersions within a group. Absorp-

tions involving transitions from the Fermi level to virtual bands are calculated at

energies higher than the experimental ones, in particular in the 3d metals. The en-

ergy separation of these virtual bands with the Fermi level strongly changes within

a group while the dispersion roughly remains the same. This finding indicates that

the virtual bands are too weakly bound in the ground state described by using the

LDA and equally by the standard GGAs. A better functional should shift down these

virtuals almost rigidly over ∼0.5 eV with respect to the LDA in order to correctly

describe the response features. The use of exchange-correlation functionals beyond

the adiabatic local density approximation should introduce the relaxation effects in

the response calculations, that is lacking in the ALDA. Such nonadiabatic function-

als are expected to give a better agreement between calculations and experiments by

describing the electron-electron scattering part of the low-frequency Drude-like ab-

sorption and by broadening and smoothing the spectral features as effects of a finite

relaxation time. The EELS are very well reproduced by our method. The six metals

show a dominant plasmon resonance at about 22-24 eV, well above the Drude free-

electron plasma frequency. Our analysis shows that the shift in energy is completely

due to the interplay of inter- and intraband effects. Additional plasmon-like features

are calculated in the range 10-15 eV and are due to the rich structure in the dielectric

functions resulting from interband transitions.
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Chapter 7
Performance of the Vignale-Kohn

Functional in the Linear Response of

Metals

We include the Vignale-Kohn current functional in the formulation of the linear re-

sponse of metallic solids given in chapter 3. Within this approximation the exchange-

correlation kernel fxc(r, r
′, ω) is ω-dependent, thus relaxation effects due to electron-

electron scattering can now be taken into account and some deficiencies of the adia-

batic local density approximation, as the absence of the low-frequency Drude-like ab-

sorption, can be cured. The self-consistent equations for the inter- and intraband con-

tributions to the induced density and current-density, which are completely decoupled

within the ALDA and in the long-wavelength limit, become now coupled. We treat the

dominant scalar relativistic effects using the zeroth-order regular approximation in the

ground-state density-functional theory calculations, as well as in the time-dependent

response calculations. We present our results calculated for the optical properties of

the noble metals Cu, Ag, and Au, and we compare them with measurements found in

literature.

7.1 Introduction

In treating the linear response of metals to a macroscopic electric field one has to

consider both the interband contribution to the response, involving transitions from
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(partially) occupied to (partially) unoccupied bands as in nonmetals, and the intra-

band contribution due to transitions within the same partially occupied bands, more

specifically, from just below the Fermi level to just above this level. In chapter 3 we

have considered the linear response of the system to a general q- and ω-dependent

perturbation. We have found that inter- and intraband processes behave differently

for small q and that the self-consistent-field equations for the inter- and intraband

contributions to the response decouple in the optical limit (vanishing q but finite ω)

when we make use of the adiabatic local density approximation (ALDA). In this ap-

proximation the exchange-correlation scalar potential vxc(r, t) is just a local functional

of the density. Within the ALDA this method yields good results for the dielectric

and the electron energy-loss functions of several transition metals. However the adia-

batic approximation fails in describing the low-frequency Drude-like absorption, which

is missing in all the calculated absorption spectra. This absorption is due to relax-

ation processes such as electron-electron and electron-phonon scattering. The descrip-

tion of the electron-phonon interaction requires the use of a multicomponent-density

functional approach. The electron-electron scattering can be described within our

method by using more advanced exchange-correlation functionals where a frequency-

dependent xc-kernel fxc(r, r
′, ω) is used.

In this chapter we go beyond the ALDA and we employ an exchange-correlation

vector potential, Axc(r, t), which we approximate as a local functional of the current-

density using the expression derived by Vignale and Kohn [24,25]. The evaluation of

the VK expression requires knowledge of some properties of the homogeneous electron

gas, i.e., the exchange-correlation energy exc(ρ0), and the longitudinal and transverse

exchange-correlation kernels, fxcL(ρ0, ω) and fxcT (ρ0, ω), respectively, where ρ0 is the

electron density of the electron gas. Knowledge of the first is already required in the

ALDA and can be obtained from the accurate results of Monte Carlo calculations

[65, 129]. The xc kernels, on the other hand, are not known accurately. There are

two works in which parametrizations are given for both fxcL(ρ0, ω) and fxcT (ρ0, ω).

One work is by Conti, Nifos̀ı, and Tosi (CNT) [131], and the other is by Qian and

Vignale (QV) [130]. An important difference between the paramatrizations of CNT

and QV occurs in the ω → 0 limit of fxcT (ρ0, ω). Whereas fxcT (ρ0, ω) of CNT

vanishes in that limit, the QV parametrization does not, i.e., it has a small but

finite value. The fact that fxcT (ρ0, ω) vanishes in the ω → 0 limit in the case of

the CNT parametrization has the important consequence that the VK expression for

δAxc(r, ω) reduces to that of the ALDA in that limit. The value of fxcT (ρ0, 0) is

related to µxc , the exchange-correlation part of the shear modulus, a quantity that is

known only approximately. In previous work it has been shown that this difference

in behavior of the two parametrizations in the zero-frequency limit leads to very
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different absorption spectra of bulk semiconductors [69]. Whereas spectra obtained

with the CNT parametrization are relatively close to spectra obtained within the

ALDA, spectra obtained with the QV parametrization are very different from the

ALDA results and from the experiments. Since Qian and Vignale give an expression

for their parametrization in which fxcL,T(ρ0, 0) enter, the QV parametrization can

easily be adapted for the case fxcT (ρ0, 0)=0. By using the resulting parametrization

the absorption spectra for silicon are again close to the spectra obtained with the

CNT parametrization and those obtained within the ALDA [69, 132]. In view of the

obtained results mentioned above and the fact that we are mainly interested in the ω-

dependence of the VK functional in order to describe relaxation effects due to electron-

electron scattering, we choose to set fxcT (ρ0, 0)=0 also in the QV parametrization. In

Sec. II we describe the theory we use. We introduce the self-consistent set of equations

which describes the linear response of metallic crystals and how to include the Vignale-

Kohn functional. In the end of the section we give the main equations we use to treat

the dominant scalar relativistic effects within the zeroth order regular approximation

(ZORA). The ZORA formalism will be used to treat the scalar relativistic effects in

the linear response of Au. The main aspects of the implementation are presented

in Sec. III. Finally, we show our results for the dielectric and energy-loss functions

of the crystals of Cu, Ag, and Au, and we compare them with the best available

experimental data [50–52,70, 133–135].

7.2 Theory

7.2.1 Linear response

To derive the linear response of metals to a macroscopic field (see chapter 3) we

consider a general q- and ω-dependent perturbation,

δĥ(q, ω) =
−i
2c

(
eiq·r∇−∇†eiq·r) · δAq,eff (r, ω) + eiq·rδvq,eff (r, ω). (7.1)

In the following we will use the notation ρ̂q = e−iq·r and ĵq = −i(e−iq·r∇−∇†e−iq·r)/

2. The perturbing potentials δveff (r, ω) = eiq·rδvq,eff (r, ω) and δAeff (r, ω) = eiq·r

δAq,eff (r, ω), with δvq,eff (r, ω) and δAq,eff (r, ω) lattice periodic [84], are defined in

the microscopic Coulomb gauge of Kootstra et al. [30] as

δveff (r, ω) = δvH,mic(r, ω) + δvxc(r, ω), (7.2)

δAeff (r, ω) = δAmac(r, ω) + δAxc(r, ω). (7.3)

Here δvH,mic(r, t) and δvxc(r, t) are the microscopic component of the Hartree and

exchange-correlation potentials, respectively, δAmac(r, ω) = −ic/ωEmac(r, ω), with
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Emac(r, ω) the fixed macroscopic electric field, comprising both the external and the

induced macroscopic components, and δAxc(r, ω) is the exchange-correlation vector

potential. The linear response of the system is then obtained for vanishing q but

finite ω, which is the regime describing optical properties. An essential point of the

formulation is that inter- and intraband processes behave differently for small q. At

finite q the equations for the induced density δρ(r, ω) = eiq·rδρq(r, ω) and current-

density δj(r, ω) = eiq·rδjq(r, ω), with δρq(r, ω) and δjq(r, ω) lattice periodic, can be

written in the following concise form,

(
δρinter

q

iδjinter
q /ω

)
=

(
χinter

ρρq −iχinter
ρjq /ω

iχinter
jρq /ω (χinter

jjq − χinter,0
jjq )/ω2

)
·
(

δvq,eff

iωδAq,eff /c

)
, (7.4)

for the interband contributions, and

iω

(
ω/q δρintra

q

δjintra
q

)
=

(
ω2/q2 χintra

ρρq ω/q χintra
ρjq

ω/q χintra
jρq χintra

jjq − χintra,0
jjq

)
·
(

iqδvq,eff

iωδAq,eff /c

)
,

(7.5)

for the intraband part. Here the matrix-vector products also include an integration

over a real space coordinate. All matrix elements in these expressions are finite in the

limits q, ω → 0. The various interband contributions to the response functions have

the following ω-dependence,

χinter
ρρq ∝ 1,

χinter
ρjq , χinter

jρq ∝ ω,

(χinter
jjq − χ0,inter

jjq ) ∝ ω2, (7.6)

whereas the intraband response functions show the following ω and q-dependence at

small q but finite ω,

χintra
ρρq ∝ q2/ω2,

χintra
ρjq , χintra

jρq ∝ q/ω,

(χintra
jjq − χ0,intra

jjq ) ∝ 1.

Inspection of (7.5) makes immediately clear that in the long-wavelengh limit the ef-

fective scalar potential does not contribute to the intraband induced density and

current-density. In chapter 3 we have used δvALDA
xc (r, t) for the exchange-correlation

scalar potential and we have neglected the exchange-correlation vector potential. In

this case the effective vector potential is completely defined by the macroscopic elec-

tric field which is kept fixed. We then need to solve only the equation for the interband
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induced density self-consistently, and afterwards the inter- and intraband contribu-

tions to the induced current can be calculated. Approximations beyond the ALDA

imply a self-consistent solution for both the inter- and intraband induced density and

induced current-density equations, which will be coupled.

7.2.2 The Vignale-Kohn functional

The general expression for the exchange-correlation vector potential is to first order

δAxc(r, ω) =

∫
fxc(r, r

′, ω) · δj(r′, ω)dr′. (7.7)

This expression defines the tensor kernel fxc(r, r
′, ω). By studying a weakly perturbed

electron gas with wavevector k under the influence of an external perturbation with

wavevector q′, Vignale and Kohn derived an approximation for δAxc(r, ω) [24,25]. By

construction the VK functional obeys several exact constraints. The VK functional

satisfies the zero-force and zero-torque constraints, which state that the exchange-

correlation potentials cannot exert a net force or a net torque on the system. Fur-

thermore, it obeys the requirement of generalized translational invariance, which

states that a rigid translation of the current-density implies a rigid translation of

the exchange-correlation potentials. Finally, it satisfies the Onsager symmetry re-

lation, which restricts the form of exchange-correlation kernel fxc(r, r
′, ω). Vignale,

Ullrich, and Conti showed that the complicated VK-expression for δAxc(r, ω) could

be written in the following physically transparent form [136],

iω

c
δAxc,i(r, ω) = ∇δvALDA

xc (r, ω) − 1

ρ0(r)

∑

j

∂jσxc,ij(r, ω), (7.8)

where the first term on the right-hand side is just the linearization of the ALDA xc

scalar potential. Using a gauge transformation this longitudinal part of δAxc(r, ω)

can be included in the scalar potential. The second term is the divergence of a tensor

field σxc(r, ω), which has the structure of a symmetric viscoelastic stress tensor,

σxc,ij = η̃xc

(
∂jui + ∂iuj −

2

3
δij
∑

k

∂kuk

)
+ ζ̃δij

∑

k

∂kuk, (7.9)

where the velocity field u(r, ω) is given by

u(r, ω) =
δj(r, ω)

ρ0(r)
. (7.10)
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The coefficients η̃xc(r, ω) and ζ̃xc(r, ω) are determined by the longitudinal and trans-

verse response coefficients fxcL(ρ0(r), ω) and fxcT (ρ0(r), ω) of the homogeneous elec-

tron gas evaluated at the density ρ0(r),

η̃xc(r, ω) =
i

ω
ρ2
0(r)fxcT (ρ0(r), ω), (7.11)

and

ζ̃xc(r, ω) =
i

ω
ρ2
0(r)

(
fxcL(ρ0(r), ω) − 4

3
fxcT (ρ0(r), ω) − d2exc

dρ2
(ρ0(r))

)
, (7.12)

where exc(ρ0(r)) is the exchange-correlation energy per unit volume of the homo-

geneous electron gas. The quantities η̃xc(r, ω) and ζ̃xc(r, ω) can be interpreted as

viscoelastic coefficients [136,137]. The coefficients fxcL,T (ρ0(r), ω) are defined by the

identity [25, 138]

fxcL,T(ρ0(r), ω) = lim
q′→0

fxcL,T (ρ,q′, ω)|ρ=ρ0(r). (7.13)

Note that fxcL(ρ,q′, ω) is defined in such a way that coincides with fxc(ρ,q
′, ω) from

scalar TDDFT. These exchange-correlation kernels have been extensively studied and

some exact features are well known [130, 131, 137, 139, 140]. In particular Conti and

Vignale [137] obtained the following identities for the three-dimensional electron gas,

lim
ω→0

lim
q′→0

fxcL(q′, ω) =
1

ρ2
0

(
Kxc +

4

3
µxc

)
, (7.14)

lim
ω→0

lim
q′→0

fxcT (q′, ω) =
µxc

ρ2
0

, (7.15)

where Kxc and µxc are the real-valued exchange-correlation parts of the bulk and

shear moduli, respectively. Since Kxc = ρ2
0(d

2exc(ρ0)/dρ
2), from Eqs. (7.14) and

(7.15) one obtains that [136,137]

lim
ω→0

−iωζ̃xc(r, ω)

ρ2
0

= 0, (7.16)

lim
ω→0

−iωη̃xc(r, ω)

ρ2
0

= fxcT (ρ0, 0). (7.17)

Note that only if µxc = 0 the VK expression (7.8) reduces to the ALDA in the limit

ω → 0, otherwise it does not.

Conti, Nifos̀ı, and Tosi (CNT) calculated fxcL,T (ρ0, ω) within a mode coupling

approximation scheme [131]. Furthermore, CNT introduced parametrizations for

ImfxcL,T(ω) that reproduce their numerical results. The real parts of fxcL,T (ρ0, ω)
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can then be obtained from the standard Kramers-Kronig symmetry relations. Their

results reduce to the exact values in the limit ω → ∞, the high-frequency limit of

fxcL(ρ0, ω) being that of Glick and Long [141]. However, they do not reduce to the

exact values in the limit ω → 0 because they invoke the compressibility sum rule for

fxcL(ω),

lim
q′→0

lim
ω→0

fxcL(q′, ω) =
Kxc

ρ2
0

, (7.18)

thereby interchanging the order of the limits with respect to the exact result (7.14).

This is equivalent to the approximation µxc = 0. Because of the uncertainty in the

precise values of µxc, the fact that it is small compared to Kxc and the appeal of a

theory that reduces to the ALDA in the limit ω → 0, they prefer to enforce equality

of the order of limits [131].

Qian and Vignale [130] introduced interpolation formulae for ImfxcL,T (ω) in which

the coefficients were determined by exact constraints in the high- and low-frequency

limits. The real parts of fxcL,T (ρ0, ω) can again been obtained from the Kramers-

Kronig relations. Their results for fxcL,T (ω) reduce to the correct high-frequency

limits as well as to to the correct low-frequency limits (7.14) and (7.15). Further-

more, their results for ImfxcL,T(ω) also have the correct slope in the limit ω → 0,

unlike the CNT results. Since QV give an expression for their parametrization in

which fxcL,T (ρ0, 0) enter, their parametrization can easily be adapted for the case

fxcT (ρ0, 0)=0. For reasons mentioned in the Introduction we, like CNT, prefer to use

a theory that reduces to the ALDA in the limit ω → 0. This means that we will use

the QV parametrization only with µxc = fxcT (ρ0, 0) = 0.

7.2.3 Relativistic corrections

Scalar-relativistic effects can be treated in our formulation by using the zeroth-order

regular approximation (ZORA) [79, 80, 113] as described in chapter 4. In particular

the nonrelativistic operator ĵq will become

ĵZORA
q = − i

2

(
e−iq·rK(r)∇−∇†K(r)e−iq·r) , (7.19)

in scalar ZORA calculations. Here K(r) = (1−veff ,0(r)/2c
2)−1, with c the velocity of

light and veff ,0(r) the ground-state self-consistent effective potential. Furthermore, as

we will show in the next section, in the implementation of the VK functional we will

need the curl of the induced current-density δm(r, ω) = ∇× δj(r, ω). An expression

for δm(r, ω) = e−iq·rδmq(r, ω) can be obtained by taking the curl of the induced

current-density given in Eqs. (7.4) and (7.5). This amounts to the substitution of the



134 Chapter 7. Performance of the VK functional in the Linear response of Metals

operator m̂q = −i(∇† × e−iq·r∇) for ĵq in the corresponding Kohn-Sham response

functions. The scalar ZORA expression for the operator m̂q results to be

m̂ZORA
q = −i(∇† × e−iq·rK(r)∇)

− i

2

(
e−iq·r∇K(r) ×∇ + ∇† × e−iq·r∇K(r)

)
. (7.20)

For the materials discussed in this chapter K(r) ≈ 1 and ∇vs,0(r) � 2c2 everywhere

except close to the nuclei. The term ∇K(r) = K2(r)∇vs,0(r)/(2c
2) is thus smaller

than one everywhere, except in a small volume around the nuclei which, however,

has a negligible contribution to the integrals in which it appears. Therefore we will

neglect the second term on the right-hand side of Eq. (7.20).

7.3 Implementation

Berger et al. [69] have shown that the exchange-correlation vector potentials δAxc(r, ω)

as expressed in Eqs (7.8)-(7.10) can be written in the following more convenient way,

δAxc(r, ω) = − ic
ω
∇δuxc(r, ω) + δaxc(r, ω) + ∇× δbxc(r, ω). (7.21)

Here δuxc(r, ω) is a scalar field, δaxc(r, ω) is a polar vector field, and δbxc(r, ω) is

an axial vector field. These contributions can be chosen to have a form that involves

only the local values of δj(r, ω), ∇·δj(r, ω) = iωδρ(r, ω), and ∇×δj(r, ω) = δm(r, ω).

In this case one can write the following compact matrix vector product,




δuxc

iωδaxc/c

iωδbxc/c


 =




yρρ yρj 0

yjρ yjj yjm
0 ymj ymm


 ·




δρ

iδj/ω

iδm/ω


 , (7.22)
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where matrix entries are given as

yρρ = −iω
4
3 η̃xc + ζ̃xc

ρ2
0

, (7.23)

yρj = yT
jρ = −iω

(
4
3 η̃xc + ζ̃xc

ρ2
0

− 2
η̃′xc
ρ0

)
∇ρ0

ρ0
, (7.24)

yjj = −iω
(

1
3 η̃xc + ζ̃xc

ρ2
0

− 4
η̃′xc
ρ0

+ 2η̃′′xc

)
∇ρ0 ⊗∇ρ0

ρ2
0

−iω
(

2
η̃′xc
ρ0

∇⊗∇ρ0

ρ0
+
η̃xc
ρ2
0

|∇ρ0|2
ρ2
0

I

)
, (7.25)

yjm = yT
mj = −iω η̃xc

ρ2
0

[∇ρ0

ρ0
×
]
, (7.26)

ymm = −iω η̃xc
ρ2
0

I. (7.27)

Here we define the antisymmetric 3 × 3 matrix [∇ρ0/ρ0×]ij = −∑k εijk(∂kρ0)/ρ0,

and η̃′xc(r, ω) and η̃′′xc(r, ω) are the first and second order derivatives of η̃xc(r, ω) with

respect to the ground-state density. The matrix in Eq.(7.22) is a local function of

the ground-state density and its first and second order gradients, and has additional

ω-dependence through the coefficients η̃xc(r, ω) and ζ̃xc(r, ω).

By using Eq. (7.21) the xc contribution to the perturbation (7.1) can be written

as

δĥxc(q, ω) = ρ̂−qδv
ALDA
q,xc (r, ω) + ρ̂−qδuq,xc(r, ω)

+
1

c
ĵ−q · δaq,xc(r, ω) +

1

c
m̂−q · δbq,xc(r, t). (7.28)

The operators ĵq and m̂q have been discussed in Sec. (7.2.3). Using Eq. (7.28) the

self-consistent linear-response equations (7.4) and (7.5) can be written in the following

form,




δρinter
q

iδjinter
q /ω

iδminter
q /ω


 =




χinter
ρρq −iχinter

ρjq /ω −iχinter
ρmq /ω

iχinter
jρq /ω ∆χinter

jjq /ω2 ∆χinter
jmq /ω

2

iχinter
mρq /ω ∆χinter

mjq /ω
2 ∆χinter

mmq/ω
2


 ·




δvq,H ,mic + δvALDA
q,xc,mic + δuq,xc

iω(δAq,mac + δaq,xc)/c

iωδbq,xc/c


 , (7.29)
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for the interband parts, and as

iω




ω/qδρintra
q

δjintra
q

δmintra
q


 =




ω2/q2χintra
ρρq ω/qχintra

ρjq ω/qχintra
ρmq

ω/qχintra
jρq ∆χintra

jjq ∆χintra
jmq

ω/qχintra
mρq ∆χintra

mjq ∆χintra
mmq


 ·




iq(δvqH ,mic + δvALDA
q,xc,mic + δuq,xc)

iω(δAq,mac + δaq,xc)/c

iωδbq,xc/c


 , (7.30)

for the intraband contributions, with ∆χ
inter/intra

abq = (χ
inter/intra

ab (ω)−χinter/intra

ab (ω =

0)). These relations have been written in such a way that all matrix elements are real

and finite in the limit q, ω → 0. The expressions for the response kernels have been

given in chapter 3. The new kernels involving the operator m̂ have the same form as

those involving the operator ĵ, but with the substitution of m̂ for ĵ. In the limit of van-

ishing q the set of equations (7.29) reduces to that one used in the case of nonmetallic

crystalline systems [69] for which we need to consider only fully occupied bands i and

fully unoccupied bands a. In this limit the term iq(δvqH ,mic + δvALDA
q,xc,mic + δuq,xc)

on the right-hand side of Eqs (7.30) vanishes [84], thus the intraband contributions

to the induced density, current-density, and its curl only depend on the response to

the vector potential in the optical limit q → 0. Once the two sets of Eqs (7.29)

and (7.30) are solved, we can calculate the macroscopic dielectric function from

ε(ω) = 1+4πχe(ω), with χe(ω) the electric susceptibility, and the electron energy-loss

function as −={q̂ · ε(ω) · q̂}−1
in the optical limit q → 0 [84]. In chapter 3 we have

shown [84] that within the ALDA and the optical limit the intraband contribution to

the dielectric function is real, thus there is no intraband contribution to the absorp-

tion spectrum within this approximation. By using the Vignale-Kohn functional it is

not possible anymore to separate inter- and intraband contributions to the dielectric

function. Inter and intraband processes are coupled through the exchange-correlation

potentials δuqxc, δaqxc, and δbqxc, which are complex vectors and give rise to the

Drude-like tail on the low-frequency side of the absorption spectrum.

7.4 Results

We calculated the optical dielectric functions ε(ω) and the electron energy-loss func-

tions −={ε(ω)}−1
in the spectral range 0-10 eV for the isotropic crystals of copper,

silver, and gold in a fcc lattice. We used the experimental lattice constants 3.61 Å

for Cu, 4.09 Å for Ag, and 4.08 Å for Au. All calculations were performed using a

modified version of the ADF-BAND program [30, 31, 61–63, 84]. We made use of a
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hybrid valence basis set consisting of Slater-type orbitals (STOs) in combination with

the numerical solutions of a free-atom Herman-Skillman program [64]. Cores were

kept frozen up to 3p for Cu, 4p for Ag, and 4f for Au. The spatial resolution of

this basis is equivalent to a STO triple-zeta basis set augmented with two polariza-

tion functions. The Herman-Skillman program also provides us with the free-atom

effective potential. The crystal potential was evaluated using an auxiliary basis set of

STO functions to fit the deformation density in the ground-state calculation and the

induced density in the response calculation. For the evaluation of the k -space inte-

grals we found converged results using a quadratic (linear for the response calculation)

numerical integration scheme based on 175 sample points in the irreducible wedge of

the Brillouin zone, which was constructed by adopting a Lehmann-Taut tetrahedron

scheme [59,60]. In all our ground-state calculations we used the local density approx-

imation (LDA) for the exchange-correlation functional. In the response calculations

we employed the Vignale-Kohn functional. All results shown here were obtained

using the Vosko-Wilk-Nusair parametrization [65] of the LDA exchange-correlation

potential, which was also used to derive the ALDA exchange-correlation kernel, and

both the QV and CNT parametrizations for the longitudinal and transverse kernels

fxcL/T(ω) which enter the VK expression. In the QV parametrization we used the
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Figure 7.1: The calculated and measured real, ε1(ω), and imaginary, ε2(ω), parts of

the dielectric function of Cu. Experiments are taken from Ref. [52, 133,134].
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Figure 7.2: The calculated and measured real, ε1(ω), and imaginary, ε2(ω), parts of

the dielectric function of Ag. Experiments are taken from Ref. [51, 52, 133].
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Figure 7.3: The calculated and measured real, ε1(ω), and imaginary, ε2(ω), parts of

the dielectric functions of Au. Experiments are taken from Ref. [51, 70, 135]. The

theoretical curves are results of scalar relativistic calculations.
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extra constraint fxcT (ω = 0) = 0. In Figs 7.1-7.3 the real and imaginary parts of

the dielectric functions of Cu, Ag, and Au are reported. The two parametrizations

to the VK functional yield similar results, with the main difference in the Drude-like

absorption tail where the two results are roughly 0.25 eV apart. For convenience we

do not report the ALDA results [84, 110], which are very close to the VK results for

the real part and for the region in the absorption spectra where the interband contri-

bution is dominant. The low-frequency Drude-like absorption is missing in the ALDA

absorption spectra, since ALDA is a functional local in time and, therefore, cannot

describe electron-electron scattering, which is in part responsible for this absorption.

In App. F we analyze the low-frequency behavior of the dielectric function within our

method. There we show that if we use the Vignale-Kohn functional with µxc = 0,

then for frequencies higher than a characteristic frequency ω1, which we defined in

the appendix, the real part of the dielectric function diverges as ω−2, whereas the

imaginary part should decay as ω−3. For frequencies below ω1 the real part of the di-

electric function is finite and the imaginary part diverges as ω−1. If on the other hand

we use the Vignale-Kohn functional with µxc 6= 0, we obtain the same low-frequency

behavior found above with the important difference that for frequencies lower than

a characteristic frequency ω0 < ω1, which we defined in the appendix, the imaginary

part of the dielectric function will go to zero as ω. Therefore, instead of a Drude-like

tail we observe a low-frequency peak around ω1 in the calculated absorption spec-

tra. The low-frequency behavior obtained by using the Vignale-Kohn functional with

µxc = 0 is compatible with the description of the intraband contribution to the dielec-

tric function within the classical Drude model. Within this simple model the real and

imaginary parts of the dielectric functions, ε1(ω) and ε2(ω), respectively, are given by

εD1 (ω) = 1 −
ω2

pτ
2

1 + ω2τ2
, (7.31)

εD2 (ω) =
ω2

pτ

ω(1 + ω2τ2)
, (7.32)

with ωp the plasma frequency and the τ the relaxation time. The latter is in general

frequency-dependent [142–145]. For ωτ � 1, which is true for the near infrared, Eqs.

(7.31) and (7.31) become,

εD1 (ω) = 1 −
ω2

p

ω2
, (7.33)

εD2 (ω) =
ω2

p

ω3τ
. (7.34)

The real part of the dielectric function scales as ω−2, whereas the imaginary part

scales as ω−3 for a frequency-independent τ , in agreement with our calculations. For
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ωτ � 1, the Drude equations reduce to

εD1 (ω) = 1 − ω2
pτ

2, (7.35)

εD2 (ω) =
ω2

pτ

ω
. (7.36)

Again we find a qualitative agreement between the Drude description and our model:

a finite real part and an imaginary part which diverges as ω−1. It is important

to note that in our calculations we only take into account relaxation processes due

to electron-electron scattering, whereas the Drude model also describes relaxation

processes due to other phenomena such as electron-phonon scattering. However, the

analysis given above does not depend on the precise value of τ . Our results are also

in good agreement with the experimental results although the spectra obtained for

gold show some discrepancies, especially the first peak in the absorption spectrum is

not well described. The Drude-like tail in the absorption spectra seems to be well
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Figure 7.4: Electron energy-loss spectra of copper, silver, and gold. The experimental

results are taken from Ref. [50, 51, 70]. The calculated results reported for Au refer

to scalar relativistic calculations.
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described for all the three materials. However, since we only consider relaxation

processes due to electron-electron scattering and not those due to electron-phonon

scattering, our results should be below the experimental ones. We therefore expect

that the results we obtain for the Drude-like tail using the VK functional with the QV

parametrization are the closest to the exact Drude-like tail due to electron-electron

scattering only.

In Fig. 7.4 we have reported the electron energy-loss spectra (EELS) of the three

metals. The EELS of the Cu and Ag are already well described within the ALDA [84],

with one notable discrepancy: this approximation fails to reproduce the finite width

of the sharp plasmon peak at about 3.8 eV in the electron energy-loss spectrum of

silver [50, 70]. This feature is well described by the VK functional with both the

QV and CNT parametrizations for fxcL,T (ω). The appearance of this peak is due to

the fact that now there is a small but non vanishing imaginary part in the dielectric

function at the frequency where the real part crosses the zero axes. Also for gold the

VK performs very similar to ALDA and with a good agreement with the experiments

by using both the parametrizations. For convenience we do not report the ALDA

results. Note that for Au we have obtained the experimental electron energy-loss

spectra from optical measurements.

7.5 Conclusions

In this chapter we have included the Vignale-Kohn expression for the the exchange-

correlation vector potential in our formulation of the linear response of metals within

the time-dependent current-density approach. This functional is nonlocal in time

and therefore relaxation effects due to electron-electron scattering can be taken into

account. The evaluation of the VK functional requires the knowledge of the exchange-

correlation kernels of the homogeneous electron gas fxcL,T(ρ0, ω) as a function of the

density and of the frequency. We have used in this chapter two existing parametriza-

tions of these xc kernels: that one proposed by Qian and Vignale (QV) and the other

one by Conti, Nifos̀ı, and Tosi (CNT). In the optical limit q → 0 and by using the

VK functional the two sets of equations describing the inter- and intraband contri-

butions to the response are coupled. We have calculated the dielectric and electron

energy-loss functions of copper, silver, and gold and we have compared them with

measurements reported in literature and with our previous calculations within the

adiabatic local density approximation. The VK functional yields results which are in

good agreement with the experiments. The real parts of the dielectric functions and

the regions in the absorption spectra where the interband processes are dominant are

similarly described by the two approximations and are close to previous results ob-
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tained within the ALDA. In addition the VK functional reproduces the low-frequency

Drude-like tail in the absorption spectra, which was missing in the previous ALDA

calculations. The electron energy-loss spectra obtained with the VK functional are

close to the spectra obtained within the ALDA with a notable difference in the case

of silver: whereas the first sharp plasmon peak found in the experimental EELS was

absent in the ALDA spectrum, this feature is well described in the spectrum obtained

with the VK functional.



Chapter 8
Effect of the Spin-Orbit Coupling on

the Linear Response of Solids

In this chapter we incorporate the ZORA equations (describing both scalar and spin-

orbit relativistic effects) developed in chapter 4 in the formulation of the linear re-

sponse of solids within TDCDFT. We obtain a spin-dependent version of the linear

response formalism, which makes possible its further extension to the response to

magnetic fields as well. As immediate application we can include the treatment of

spin-orbit coupling in the optical property calculations. We test the method on metal-

lic and nonmetallic systems. First we present the ZORA results for the dielectric

functions of Au and W. With the treatment of the spin-orbit coupling new spectral

features appear that are missing in the scalar ZORA spectra of these two metals, and

that are in agreement with the experiment and with our speculations in chapters 5

and 6. Then we study the linear response of the zincblende semiconductors ZnTe,

CdTe, and semimetal HgTe. We compare nonrelativistic, scalar ZORA, and ZORA

relativistic results to show the impact of the scalar and spin-orbit effects on the spec-

tra. Comparison of our ZORA results with experimental data shows an overall good

agreement.

8.1 Introduction

In chapters 5, 6, and 7 we included the treatment of scalar relativistic effects in

the linear response of heavy metals within the zeroth-order regular approximation

[93, 95, 110]. Although the scalar relativistic effects induced major corrections in the

143
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spectra [110, 146], some important features were still missing due to the neglect of

spin-orbit coupling. For example, in the group VB and VIB bcc transition metals we

have seen that the treatment of spin-orbit coupling is expected to yield an onset in

the interband contribution to the absorption spectrum, while in the scalar relativistic

calculations a constant absorption results at low frequency, even close to ~ω = 0 [146].

In this chapter we will take into account also the effect of spin-orbit coupling in

the linear response of extended systems, following our derivation given in chapter 4.

Besides this immediate application, the inclusion of the spin in the formulation of the

linear response of solids is a first step for the treatment of the magnetic response.

Indeed, the spin-dependent Hamiltonian, which governs the linear perturbation of

the Kohn-Sham ground state, contains the coupling between a spin-density operator

and the magnetic field. At present we do not treat the response to magnetic fields.

We give the ZORA equations, comprising both the dominant scalar relativistic effects

and spin-orbit coupling, which we solve in the ground-state and in the liner response

calculations. The response functions, which depend only on the ground-state orbitals

and orbital energies, are to be changed in order to consider two-component spinors.

To test our method we first calculate the ZORA dielectric functions of Au and W.

As discussed in more detail in chapters 5 and 6, these two metals are expected to

show visible changes in the spectra upon the inclusion of spin-orbit coupling in the

ground-state and response calculations. Indeed the ZORA calculations show a smooth

onset and a better visible second peak in the absorption of Au, and an onset with

a sharp peak at about 0.46 eV in the absorption of W, in good agreement with the

experimental data and with our predictions. We further apply the method to the most

common II-VI semiconductors ZnTe and CdTe, and semimetal HgTe in the zincblende

structure. These compounds have been extensively studied both experimentally and

theoretically [147–157]. Their electronic structure is characterized by a moderately

narrow (.1 eV), fully occupied metal d band-complex inside the valence bands around

7-11 eV below the Fermi level, which are visible in the photoemission spectra of all

II-VI semiconductors [158–160]. The highest-lying d bands play an important role

in the electronic structure and optical properties of these materials. In particular

they affect the fundamental band gap by mixing with the p-like states at the top

of the valence band, resulting in wide and medium energy-gaps of 2.39 eV and 1.59

eV for ZnTe and CdTe, respectively [156]. Magnetoreflection data provide strong

evidence that HgTe is a zero-gap semimetal with inverted band-stucture at Γ point,

i.e., an inverted order of the bands at Γ6 (s-like) and Γ8 (p-like) with a resulting

negative energy-gap of −0.30 eV [156], unlike ZnTe, CdTe, and most other zinc-blende

compounds [147]. Spin-orbit coupling has a strong impact on the electronic structure,

and thus on the optical spectra, of these compounds. Splittings appear at the top
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valence bands and for the sp-like conduction bands at Γ, L, and X high-symmetry

points. The experimental observation of such splittings, usually as double peaks in

the optical spectra, has been very useful in the assignement of the optical spectra

in terms of interband transitions [161]. We show the importance of scalar and spin-

orbit relativistic effects on the ground-state band structures as well as on the optical

properties of the three compounds. While the first two compounds are described

as semiconductors both in nonrelativistic and relativistic calculations, HgTe appears

as semiconductors in nonrelativistic calculations, but as semimetals in a relativistic

description. The changes in the electronic structures due to the inclusion of relativity

has a drastic effect on the dielectric constant and dielectric function of HgTe. In

the frequency range 0-10 eV we find an overall good agreement between the ZORA

results and experiments reported in literature. First we give the main ZORA equations

discussed in chapter 4, which can be used to include relativistic effects in the linear

response of solids within TDCDFT. Next we present our results for the dielectric

functions of Au and W, and for the band structures, the dielectric constants, and

the dielectric functions of ZnTe, CdTe, and HgTe, and compare these with available

experimental data.

8.2 Theory

We combine the ZORA formalism (comprising both scalar and spin-orbit relativistic

effects) with the time-dependent current-density formulation of the linear response of

solids to a macroscopic field. The first-order perturbation of the ground state of a

Kohn-Sham system described by the ZORA equation

HZORAΨik(r) =

[
veff ,0(r) + σ · p c2

2c2 − veff ,0(r)
σ · p

]
Ψik(r), (8.1)

is governed by the perturbation

δĥ(r, t) =

∫ (
ρ̂(r′)δveff (r′, t) +

1

c
ĵp(r

′) · δAeff (r′, t)

+
1

c
K(r′)∇× ŝ(r′) · δAeff (r′, t)

)
dr′, (8.2)

where,

ρ̂(r′) = δ(r − r′), (8.3)

ĵp(r
′) = − i

2

[
ρ̂(r′)K(r′)∇−∇†K(r′)ρ̂(r′)

]
, (8.4)

ŝ(r′) =
1

2
ρ̂(r′)σ. (8.5)
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Here c is the velocity of light, veff ,0(r) is the ground-state self-consistent effective

potential, σ is the vector of Pauli matrices, and K(r) = (1 − veff ,0(r)/2c
2)−1. One

can then calculate the linear response of the system to this perturbation by solving

self-consistently the sets of equations describing the induced density and induced

current-density. These two quantities are expressed in terms of q-dependent Kohn-

Sham response functions, which only depend on the ground-state orbitals, orbital

energies, and occupations numbers,

χabq(r, r′, ω) =
1

Nk

∑

k

∑

ia

(fik − fak+q)

1 + δi,a
×

〈Ψ∗
ik|âq(r)|Ψak+q〉 〈Ψ∗

ak+q|b̂−q(r′)|Ψik〉
εik − εak+q + ω + iη

+ c.c.(−q,−ω), (8.6)

where the summation is over the (partially) occupied bands i , with occupation number

fik = 1, and the unoccupied bands a, with occupation number fik = 0. The operators

âq(r) and b̂q(r) can be either ρ̂q(r) = e−iq·rρ̂(r) or ĵq(r) = ĵpq(r)+e−iq·rK(r)∇×ŝ(r),

with ĵpq(r) = −i
(
ρ̂q(r)K(r)∇−∇†K(r)ρ̂q(r)

)
/2. The Bloch orbitals Ψik(r) are now

two-component spinors and are solutions of the ground-state ZORA equation (8.1).

Note that for scalar relativistic calculations the ground-state Hamiltonian in Eq. (8.1)

does not contain the Pauli vector σ, and the perturbation (8.2) does not contain the

last term on the right-hand side. Furthermore, in the response functions (8.6) the

Bloch orbitals are scalar functions, and the occupation numbers are fik = 2 for occu-

pied bands and fak = 0 for unoccupied bands.

From the macroscopic induced current one can calculate the macroscopic dielectric

function, which (at a wavevector q = 0 and in the adiabatic local density approxima-

tion) can be defined as [84]

ε(ω) = (1 + 4πχinter
e (ω)) − 4πi

ω
σintra(ω). (8.7)

Here the term in bracket on the right-hand side represents the interband contribution

to the dielectric function, while the other term is the intraband contribution. The

former is due to transitions between occupied and unoccupied bands, while the latter

is due to transitions within the same partially occupied bands. Clearly, these last

transitions are not possible in nonmetallic systems, which are characterized by bands

that are either fully occupied or fully unoccupied.
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8.3 Results and discussion

8.3.1 Computational details

We performed ZORA calculations of the dielectric functions of Au and W in the

spectral range 0-10 eV. We used the experimental lattice constants 4.08 Å for Au

in a fcc lattice, and 3.16 Å for W in a bcc lattice. Furthermore, we calculated the

ground-state band structures and the optical dielectric functions ε(ω) in the spectral

range 0-10 eV for the isotropic crystals of ZnTe, CdTe, and HgTe in a zincblebde

lattice. We used the experimental lattice constants 6.09 Å for ZnTe, 6.48 Å for CdTe,

and 6.08 Å for HgTe. All calculations were performed using a modified version of the

ADF-BAND program [30,31, 61–63,84]. We checked that our results were converged

with respect to the basis set size and the sampling density of the irreducible Brillouin

zone. We made use of a hybrid valence basis set consisting of Slater-type orbitals

(STOs) in combination with the numerical solutions of a free-atom Herman-Skillman

program [64]. Cores were kept frozen up to 3p for Zn, 4p for Cd and Te, and 4f for

Hg, Au, and W. The spatial resolution of this basis is equivalent to a STO triple-zeta

basis set augmented with two polarization functions. The Herman-Skillman program

also provides us with the free-atom effective potential. The crystal potential was

evaluated using an auxiliary basis set of STO functions to fit the deformation density

in the ground-state calculation and the induced density in the response calculation.

For the evaluation of the k -space integrals we used a quadratic (linear in the response

calculations) numerical integration scheme, which was constructed by adopting a

Lehmann-Taut tetrahedron method [59, 60]. We found converged results using 175

sample points in the irreducible wedge of the Brillouin zone for Au, W, ZnTe, and for

CdTe and HgTe in the nonrelativistic calculations. Relativistic calculation results for

W in the frequency range 0-3 eV converged using 1771 sample points, and for CdTe

and HgTe using 1695 sample points. All the dielectric constants were obtained by

using 1695 sample points. In all our ground-state calculations we used the Vosko-Wilk-

Nusair parametrization [65] of the LDA exchange-correlation potential, which was also

used to derive the ALDA exchange-correlation kernel for the response calculations.

8.3.2 Metals: spin-orbit effects

The electronic band structures and optical properties of Au and W have been analyzed

in detail in chapters 5 and 6, respectively. In particular, in those chapters, we have

discussed the effect of the scalar relativistic corrections in the linear response of the

two metals. Some deviations from experiments have been attributed to the neglect of

the spin-orbit coupling in the response calculations. Analysis of the band structure
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Figure 8.1: Real (upper graph) and imaginary (lower graph) parts of the dielectric

function of Au. The ZORA relativistic calculations (bold solid lines) are compared

with experimental results (dotted-dashed lines) taken from Ref. [51].
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peak at 0.42 eV in the experimental absorption we have reported only the interband

contribution to the absorption, as extrapolated from experiments in Ref. [106].
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calculated by including scalar and spin-orbit coupling effects, and assignment of the

spectral features in terms of pairs of bands suggested an improvement in the low-

frequency onset of the interband transitions and second main peak in the absorption

of Au, and the appearance of a finite onset and a peak around 0.60 eV in W with the

inclusion of the spin-orbit coupling in the response calculations. Here we present the

results of the dielectric functions of Au and W calculated by including scalar and spin-

orbit effects both in the ground-state and response calculations. Inspection of Figs

8.1 and 8.2 confirm our previous speculations, and show a good agreement with the

experiments. Note that in Fig. 8.2 we report the experimental interband absorption

of W, as extrapolated by Weaver et al. by their experiments [106], in order to show

the onset and peak at 0.42 eV.

8.3.3 Nonmetals: band structures and dielectric functions

In Figs 8.3, 8.4, and 8.5 we report the ground-state band structures of ZnTe, CdTe,

and HgTe, respectively. Each figure comprises results from nonrelativistic, scalar

ZORA relativistic, and ZORA relativistic calculations. In order to facilitate the com-

parison among the three band structures, the energy levels are reported with respect

Figure 8.3: Theoretical LDA ground-state band structures of ZnTe. The thin dotted

lines refer to nonrelativistic calculations, the dashed lines refer to scalar ZORA rela-

tivistic calculations, and the bold solid lines refer to ZORA relativistic calculations.
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Figure 8.4: Theoretical LDA ground-state band structures of CdTe. The thin dot-

ted lines refer to nonrelativistic calculations, the dashed lines refer to scalar ZORA

relativistic calculations, and the bold solid lines refer to ZORA relativistic calculations

Figure 8.5: Theoretical LDA ground-state band structures of HgTe. The thin dot-

ted lines refer to nonrelativistic calculations, the dashed lines refer to scalar ZORA

relativistic calculations, and the bold solid lines refer to ZORA relativistic calculations
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to the respective Fermi levels. The valence and conduction bands are numbered at a

given k point starting from the lowest band. Some particular states at various high-

symmetry points are labeled according to the respective double group representations.

The d-band complexes, which for simplicity we have not reported in the figures, are

located around 6-9 eV below the Fermi energy, and are almost dispersionless. As

expected, scalar relativistic effects shift the band energies with respect to the non-

relativistic results. In ZnTe and CdTe the dispersion of the valence and conduction

bands is similar both in nonrelativistic and scalar relativistic band structures, thus

nonrelativistic and scalar relativistic optical spectra can be expected to differ only in

the energy position of the main spectral features. In HgTe relativistic effects induce

drastic changes in the electronic structure and, thus, in the optical properties: already

the inclusion of scalar relativistic effects changes the character of this compound from

semiconductor, as appears to be in nonrelativistic calculations, to semimetal with an

inverted band order. Indeed, the s-like (6s Hg) states at Γ1v (Γ6 in the double group

representation) are stabilized more than the p-like (5p Te) states at Γ15v (Γ8 in the

double group representation), resulting in a vanishing band gap and an inversion of

the typical band order [162]. The inclusion of spin-orbit coupling leads in particular

Table 8.1: Calculated energy gaps (eV), centers of the d-band energies εd (eV), and

spin-orbit splittings (eV) of valence bands at Γ (∆0) and L (∆1) for ZnTe, CdTe, and

HgTe. The experiments are taken from Ref. [156].

NR SR SR+SO Expa

ZnTe Γ8-Γ6 2.03 0.99 0.71 2.39

εd -7.21 -6.97 -7.29 -9.84

∆0 0.93 0.91

∆1 0.54 0.53

CdTe Γ8-Γ6 1.62 0.45 0.18 1.59

εd -8.45 -8.06 -8.49 -10.49

∆0 0.89 0.90

∆1 0.54 0.54

HgTe Γ8-Γ6 1.52 -0.88 -0.81 -0.30

εd -8.15 -6.84 -6.56 -8.58

∆0 1.12 1.08

∆1 0.57 0.62

adata taken from Ref. [156].
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to a splitting of the states at L3v point (in the single group representation), as well

as along the line Γ15v-L3v, in L6 and L4,5 (in the double group representations), at

Γ15v point in Γ7 and Γ8, and at X5v point in X6 and X7. Some of these splittings are

well visible in the optical spectra as we will shortly show. In table 8.1 we compare

nonrelativistic, scalar ZORA, and ZORA band gaps, centers of the d-band energies

εd, and spin-orbit splittings at Γ15v and L3v with the observed values collected in

Ref. [156] for ZnTe, CdTe, and HgTe. Inspection of this table reveals the well-known

underestimation of the band gap in semiconductors by using the local density ap-

proximation. The inclusion of relativity decreases even more the band gap. In HgTe
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Figure 8.6: Real (upper graph) and imaginary (lower graph) parts of the dielectric

function of ZnTe. In the left panel we compare nonrelativistic calculations (thin

lines), scalar ZORA relativistic calculations (dashed lines), and ZORA relativistic

calculations (bold lines). To facilitate the comparison we have rigidly shifhed upwards

nonrelativistic (ε(ω) + 10) and scalar relativistic (ε(ω) + 5) curves. In the right panel

we compare the ZORA relativistic calculations with the experiments (dotted-dashed

lines) from Ref. [163].
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relativity is essential to describe the negative band gap, which is, however, overes-

timated in the calculations with respect to the observed value. The energies of the

d-band complexes improve with the inclusion of scalar and spin-orbit relativistic ef-

fects in ZnTe and CdTe, whereas in HgTe the nonrelativistic results are the closest to

the experiments. However, in the calculations the d-band complexes are less bound

than the observed ones. This has already been observed in previous calculations on

gold and bcc metals from the groups VB and VIB [110,146], and it is a failure of the

local density approximation. The main important splittings are well reproduced in

our calculations. In Figs 8.6-8.8 we report the calculated and measured [149,163] real
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Figure 8.7: Real (upper graph) and imaginary (lower graph) parts of the dielectric

function of CdTe. In the left panel we compare nonrelativistic calculations (thin

lines), scalar ZORA relativistic calculations (dashed lines), and ZORA relativistic

calculations (bold lines). To facilitate the comparison we have rigidly shifhed upwards

nonrelativistic (ε(ω) + 10) and scalar relativistic (ε(ω) + 5) curves. In the right panel

we compare the ZORA relativistic calculations with the experiments (dotted-dashed

lines) from Ref. [163].
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Figure 8.8: Real (upper graph) and imaginary (lower graph) parts of the dielectric

function of HgTe. In the left panel we compare nonrelativistic calculations (thin

lines), scalar ZORA relativistic calculations (dashed lines), and ZORA relativistic

calculations (bold lines). To facilitate the comparison we have rigidly shifhed upwards

nonrelativistic (ε(ω) + 10) and scalar relativistic (ε(ω) + 5) curves. In the right panel

we compare the ZORA relativistic calculations with the experiments (dotted-dashed

lines) from Ref. [149].

and imaginary parts of the dielectric function for the three compounds. The nonrela-

tivistic, scalar ZORA, and ZORA spectra of ZnTe and CdTe are red-shifted by about

0.6-0.9 eV with respect to the experimental curves. Note that there is not a direct

relation between the shift of the optical spectra and the error in the calculated band

gaps, in line with previous findings [31,93]. In particular the ZORA spectra of CdTe

show a low-frequency peak, whose high intensity is due to the too low frequencies at

which it occurs. The spectra of HgTe reflect the strong impact of relativity on the

electronic-structure: in particular, the relativistic absorption spectra show the onset

at ~ω=0 eV, while the nonrelativistic one shows the onset at a finite frequency and



8.4. Conclusion 155

is quite different from the experiments. In the ZORA spectra all the main spectral

features are present and well described in intensity, although they are red-shifted with

respect to the experimental curves by ∼ 1 eV. The same red-shift is also present in the

scalar ZORA spectra. A striking feature common to the ZORA spectra is the doublet

at about 2.7 eV for ZnTe, 2.5 eV for CdTe, and 1.7 eV for HgTe. This is mainly due to

transitions between bands 5, 6 → 7, 8 and 3, 4 → 7, 8, expected to occur at the L point

and along the Γ-L line [148–150]. Transitions 5, 6 → 9, 10 and 3, 4 → 9, 10 are respon-

sible for the absorptions around 6 eV. The remaining main peak at about 4-5 eV is

mainly due to transitions 5, 6 → 7, 8, which are expected to occur at or close the X

point [148–150]. The calculated and measured [164] dielectric constants are reported

in table 8.2. We find that in the two semiconductors the nonrelativistic results are in

better agreement with the experiments than the relativistic ones. Scalar-ZORA and

ZORA calculations overestimate the dielectric constants. For HgTe, instead, we find

a strong improvement of the calculated dielectric constant if the relativity is included.

Table 8.2: Nonrelativistic, scalar ZORA relativistic, and ZORA relativistic dielectric

constants (eV) calculated for ZnTe, CdTe, and HgTe. The experiments are taken

from Ref. [164].

ZnTe CdTe HgTe

NR 7.71 6.62 6.90

SR 9.21 9.48 24.80

SR+SO 9.49 12.04 21.60

Exp a 7.3 7.2 21.0

adielectric constants taken from Ref. [164]

8.4 Conclusions

In this chapter we have proposed a spin-dependent version of the formulation of the

linear response of solids within TDCDFT. The final goal of this extension is a future

treatment of magnetic response as well. Here we have used the method to include the

spin-orbit coupling, beside the dominant scalar relativistic effects, within the zeroth-

order regular approximation in linear response calculations. We have shown that

our method performs well for both metallic and nonmetallic systems. The calculated

ZORA spectra of Au and W show the predicted spectral features which were missing

in the scalar ZORA calculations discussed in chapter 5 and 6: a smooth onset of the
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interband transitions and a more visible second peak in the absorption spectrum of

Au, and a sharp onset with peak at about 0.46 eV in the absorption spectrum of W,

in agreement with the experiments. We further analyzed the impact of the relativity

in the ground-state and response calculations, in particular the additional changes

induced by the spin-orbit coupling with respect to the scalar relativistic results, of

the semiconductors ZnTe, CdTe, and the semimetal HgTe. The main splittings of

states in the band structures and in the spectral features are very well described. The

local density approximation used in the ground-state calculations underestimates the

band gap due to s- and p-like bands in ZnTe and CdTe. Scalar-relativistic corrections

make this worse, which becomes evident in the bad results for the static dielectric

constants. Relativity is, instead, essential in the case of HgTe, where the ZORA

results are in good agreement with experiments.



Appendix A
Symmetry of the Response Functions

We consider a crystalline system perturbed by a potential δĥ(r, ω) with a periodicity

that is consistent with the Born-von Kármán boundary condition. Using linear re-

sponse theory and the following transformation for the perturbation, δĥ(r′ + R, ω) =

eiq·Rδĥ(r, ω), the first order change in the density is given by

δρ(r, ω) = eiq·rδρq(r, ω), (A.1)

in which the lattice periodic δρq(r + R, ω) = δρq(r, ω) is given by

δρq(r, ω) =
1

Nk

∑

k,k′

∑

n,n′

δk′,k+q(fnk − fn′k′) ×

ψ∗
nk(r)e−iq·rψn′k′(r)〈ψn′k′ |δĥ(q, ω)|ψnk〉

εnk − εn′k′ + ω + iη
. (A.2)

Here η is an infinitesimal quantity. In the following we will use the perturbation

given in Eq. (3.16) and consider the time-reversal symmetry. Since only combinations

of (partially) occupied, i, and (partially) unoccupied, a, orbitals contribute, we can
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write

δρq(r, ω) =
1

Nk

∑

k,k′

δk′,k+q

∑

i,a

(fik − fak′)

1 + δia
×

ψ∗
ik(r)e−iq·rψak′(r)〈ψak′ |δĥ(q, ω)|ψik〉

εik − εak′ + ω + iη

+
1

Nk

∑

k,k′

δk′,k−q

∑

i,a

(fak′ − fik)

1 + δia
×

ψ∗
ak′(r)e−iq·rψik(r)〈ψik|δĥ(q, ω)|ψak′〉

εak′ − εik + ω + iη
. (A.3)

In the second line we interchanged the role of k and k′ and used that δk,k′+q = δk′,k−q.

Furthermore, we introduced the factor 1/(1 + δia ) to correct for the double counting

of the diagonal terms with i = a. Introducing the time-reversed partners of ψik and

ψak′ , namely ψ∗
ik = ψi−k and ψ∗

ak′ = ψa−k′ , for which εik = εi−k, εak′ = εa−k′ and

fik = f(εik) = f(εi−k) = fi−k etc. [57], we can write

δρq(r, ω) =
1

Nk

∑

k,k′

δk′,k+q

∑

i,a

(fik − fak′)

2(1 + δia )
×

ψ∗
ik(r)e−iq·rψak′(r)〈ψak′ |δĥ(q, ω)|ψik〉

εik − εak′ + ω + iη

+
1

Nk

∑

k,k′

δk′,k+q

∑

i,a

(fi−k − fa−k′)

2(1 + δia )
×

ψi−k(r)e−iq·rψ∗
a−k′(r)〈ψ∗

a−k′ |δĥ(q, ω)|ψ∗
i−k〉

εi−k − εa−k′ + ω + iη

+
1

Nk

∑

k,k′

δk′,k−q

∑

i,a

(fik − fak′)

2(1 + δia )
×

ψ∗
ak′(r)e−iq·rψik(r)〈ψik|δĥ(q, ω)|ψak′〉

εik − εak′ − ω − iη

+
1

Nk

∑

k,k′

δk′,k−q

∑

i,a

(fi−k − fa−k′)

2(1 + δia )
×

ψa−k′(r)e−iq·rψ∗
i−k(r)〈ψ∗

i−k|δĥ(q, ω)|ψ∗
a−k′〉

εi−k − εa−k′ − ω − iη
. (A.4)

After a change of variables from −k and −k′ to k and k′ in the second and fourth

terms, we can gather the factors (ψ∗
ike

−iq·rψak′) from the first and fourth terms and
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the factor (ψ∗
ak′e−iq·rψik) from the second and third. Now, using the relations

〈ψ∗
ik|δĥ(q, ω)|ψ∗

ak′〉 = 〈ψik|δĥ∗(q, ω)|ψak′〉∗

= 〈ψak′ |(δĥ∗(q, ω))†|ψik〉
= 〈ψak′ |δĥ∗(−q,−ω)|ψik〉, (A.5)

in which δĥ(q, ω) = δĥ†(−q,−ω), and reorganizing the terms a little, we arrive at Eq.

(3.18). In a fully analogous way, but now taking into account the following relations,

ψ∗
ikĵψak′ = −ψak′ ĵψ∗

ik =
(
ψ∗

ak′ ĵψik

)∗
= −

(
ψikĵψ

∗
ak′

)∗
, (A.6)

we arrive at the response functions for the paramagnetic part of the induced current-

density, Eq. (3.28).
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Appendix B
Integral Weights

We define integral weights w±(∆, ω + iη),

w±(∆, ω + iη) =
1

2

(
1

∆ + ω + iη
± 1

∆ − ω − iη

)
, (B.1)

to be used in the following meaning,

F±(ω) = lim
η→0

∫ ∞

0

d∆ f(∆)w±(∆, ω + iη). (B.2)

It is easy to prove the following algebraic relations,

w+(∆, ω + iη) = − ∆

ω + iη
w−(∆, ω + iη), (B.3)

w−(∆, ω + iη) = − ∆

ω + iη
(w+(∆, ω + iη) − w+(∆, 0)). (B.4)

In order to treat the order of limits correctly, we will write

w+(∆, 0) = w+(∆, iη) +
η2

∆(∆2 + η2)
. (B.5)

The latter term will not contribute to the integral in the limit η → 0, and in this limit

the factor (ω + iη)−1 can be replaced by ω−1. We thus get the simplified relations

w+(∆, ω+) = −∆

ω
w−(∆, ω+), (B.6)

w−(∆, ω+) = −∆

ω
(w+(∆, ω+) − w+(∆, 0+)), (B.7)

where ω+ means that i times a positive infinitesimal is added to the real number ω.
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Appendix C
Integration in the Irreducible

Brillouin Zone

The interband contribution to the Kohn-Sham response functions, as given in Sec.

(3.2.3), involves integrations over the irreducible Brillouin zone, in which the integrand

can become singular. The singular energy-dependent denominator in these response

integrals is then included in the quadrature weights of a linear tetrahedron method

by using an analytic evaluation of the Cauchy principle value and residual parts [30].

To keep it simple, if
∫
f(k)dk is an integral over the Brillouin zone, then for its

quadrature one can write

∫
f(k)dk =

N∑

l=1

4∑

i=1

wkl
i
f(kl

i), (C.1)

where N is the number of tetrahedra in which the Brillouin zone is divided, f(kl
i)

is the value of the function in each corner of the lth tetrahedron, and wkl
i

are the

quadrature weights. If partially occupied bands are involved in these integrals, then

the integration is restricted only to a part of each tetrahedron cut off by the Fermi

surface. The boundary planes ε(k) = εF , with εF the Fermi energy, are shown in Fig.

C.1 for the following three cases: ε1 ≤ εF ≤ ε2 (I); ε3 ≤ εF ≤ ε4 (II); ε2 ≤ εF ≤ ε3
(III). In case I one obtains a small tetrahedron with corners k1, kI

12, kI
13, kI

14, and

energies ε1(k1), ε
I
12(k

I
12), ε

I
13(k

I
13), ε

I
14(k

I
14). The corners kI

1i of the new tretrahedron

are obtained by the following linear expression,

kI
1i = c1k1 + ciki, (C.2)
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where the coefficients c1 and ci are given by

c1 =
εi − εF
εi − ε1

, ci =
εF − ε1
εi − ε1

. (C.3)

One can generate this set of coefficients for each of the N tetrahedra constituting

the Brillouin zone, and use them to linear interpolate the function f(k) over the new

tetrahedra,

∫
f(k)dk =

N∑

l=1

4∑

i,j=1

clijwkl
j
f(kl

i), (C.4)

with kl
i the corners of the lth old tehrahedron, and kl

j the corners of the lth new

tehrahedron. In case I the total number of tetrahedra remains the same and no extra

tetrahedra are generated.

In case II the integral covers almost the whole tetrahedron except the small one

with corners k4, kII
41, kII

42, kII
43 . The troncated tretrahedron gives rise to other three

secondary tetrahedra for which one can proceed as in case I.

In case III the primary tetrahedron is divided in two secondary ones by the shaded

plane in Fig. C.1. One of the two secondary tetrahedra can be treated as in case I,

whereas the other one as in case II.

Figure C.1: Planes ε(k)=εF cutting the basic tetrahedron. The shaded plane (used

for the case III) divides the tetrahedron in two secondary tetrahedra. One can be

treated as in case I and the other as in case II.



Appendix D
Hermiticity of the TD-ZORA

Hamiltonian

We prove now that the time-dependent Foldy-Wouthuysen Hamiltonian (4.53) is Her-

mitian. To do this we show that the remainder Ŷ is Hermitian. If we consider√
1 + X̂†X̂ =

∑
n an(X̂†X̂)n, then we have

Ŷ =
∑

n,k

(anak − 1

2
δn1δk0)

n−1∑

m=0

(X̂†X̂)n−m−1(X̂†cσ · π − cσ · πX̂)(X̂†X̂)m+k.

By introducing p = m+ k with m ≥ 0, and q = n−m− 1 ≥ 0 we can rewrite

Ŷ =
∑

p,q

q∑

m=0

(ap+m+1aq−m − 1

2
δp0δq0)(X̂

†X̂)p(X̂†cσ · π − cσ · πX̂)(X̂†X̂)q .

Using

(

√
1 + X̂†X̂)2 =

∑

n,m

anam(X̂†X̂)n+m = 1 + X̂†X̂, (D.1)

it follows that

k∑

n=0

ak−nan = δk0 + δk1. (D.2)
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Hence

cpq =

q∑

m=0

ap+1+maq−m − 1

2
δp0δq0 =

q∑

m′=0

a(p+q+1)−m′am′ − 1

2
δp0δq0

= δp+q+1,0 + δp+q+1,1 −
p+q+1∑

m′=q+1

a(p+q+1)−m′am′ − 1

2
δp0δq0

=
1

2
δp0δq0 −

p∑

m′′=0

ap−m′′aq+1+m′′

= −cqp.

We can then conclude that Ŷ † = Ŷ . Moreover all diagonal elements cpp = 0, and in

particular c00 = 0. As result Ŷ is of the first order in X̂†X̂.



Appendix E
Fermi-Surface Topology

E.1 Group-VB metals: symmetry-induced degen-

eracy along Λ

We first analyze bands 2 and 3 of the group-VB metals around their point of degen-

eracy along Λ. The results given here are obtained from our numerical ground-state

calculations. By taking the vector q along the Λ direction, q̂‖ = 1/
√

3 (1, 1, 1)T, the

projection along q̂‖ of the momentum matrix p entering in Eq. (6.12) becomes, for

this degenerate subspace,

q̂‖ · p = a
√

3

(
1 0

0 1

)
, (E.1)

with double degenerate eigenvalues λ1 = λ2 = a
√

3. This means that bands 2 and 3

remain degenerate along this direction at least to first order in q as can be expected

from symmetry. We now analyze the angular dependence of the two energy bands in

the direction perpendicular to the ŵ = q̂‖ axis, by considering the vector q as

q̂⊥(φ) = cos(φ)û + sin(φ)v̂, (E.2)

where û = 1/
√

2 (1,−1, 0)T and v̂ = 1/
√

6 (1, 1,−2)T are the other two unit vectors

of the new system of coordinates (û, v̂, ŵ) with the origin in the degeneracy of bands

2 and 3. In this case we obtain

q̂⊥(φ) · p = b

√
3

2

(
0 −ieiφ

ie−iφ 0

)
, (E.3)
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with eigenvalues λ± = ±b
√

3/2 independent from the angle φ, and eigenvectors ĉ± =

1/
√

2 (∓ieiφ, 1)T. As we move away from the Λ symmetry line the degeneracy is lifted

as described by Eq. (6.13): one band increases in energy and the other one decreases

with the same amount independent from the angle φ. We can conclude that bands 2

and 3 give rise to a linear conical intersection with the contact point on the symmetry

line Λ, which is also the axis of the cone. The energy dispersion is then given by

ε±(q‖, q⊥) = εF + a
√

3 q‖ ± b

√
3

2
q⊥ + O(q2⊥, q

2
‖), (E.4)

which is characteristic of a conical intersection. The new eigenvalues εik+q and εak+q

of bands 2 and 3 then give rise to the form

εik+q − εak+q = −b
√

6 q⊥ + O(q2⊥, q
2
‖), (E.5)

where we made use of the cylindrical coordinates (q⊥, q‖, φ). We find for a generic

direction that the off-diagonal elements of the momentum matrix p are a nonzero

constant to zeroth order in q, and thus we obtain

|〈ψik+q | ĵ | ψak+q〉| =

√
3

2
b+ O(q⊥). (E.6)

From our k · p analysis of the degeneracies in the group-VB metals we can evaluate

the integrand in Eq. (6.10), which then becomes

=
{
εinter (ω)

}
∝ 4

3π

∫ 2π

0

dφ

∫ q

0

q⊥dq⊥

∫ |b/a
√

2|q⊥

−|b/a
√

2|q⊥
dq‖ ×

δ
(
−b

√
6q⊥ + ω

)
· 1

4q2⊥
=

2

|a|3
√

3
, (E.7)

where we have considered that the contribution from the Λ line is 8-fold. A similar

accidental conical intersection occurs in the ΓHP plane, and we arrive at similar

conclusions as the case discussed above. Here the intensity is lower than the other

degeneracy, but the contribution is 24-fold.

E.2 Group-VIB metals: symmetry-induced degen-

eracy along ∆

The first two partially occupied bands 3 and 4 show a point of degeneracy along the

∆ symmetry line taken here in the ŷ direction. By taking the vector q along the ∆
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direction, q̂‖ = (0, 1, 0)T, the projection along q̂‖ of the momentum matrix p in Eq.

(6.12) for this degenerate subspace becomes

q̂‖ · p = p‖

(
1 0

0 1

)
, (E.8)

whereas in the x̂ẑ plane we have, with q̂⊥(φ) = cos(φ)x̂ + sin(φ)ẑ,

q̂⊥ · p =

(
0 0

0 0

)
. (E.9)

It is immediately clear that along the ∆ symmetry line the degeneracy is not lifted

and the two energies change linearly with q‖. In the x̂ẑ plane the energies do not

change to first order in q⊥, but the degeneracy may still be lifted to second order.

Therefore we analyze the effective mass matrix, which has the following form in the

symmetry-induced degeneracy along the symmetry line ∆,

M−1
‖ = m−1

‖

(
1 0

0 1

)
, (E.10)

M−1
⊥ (φ) =

(
m̄−1

⊥ + ∆1 cos(2φ) ∆̃2 sin(2φ)

∆̃∗
2 sin(2φ) m̄−1

⊥ − ∆1 cos(2φ)

)
, (E.11)

with m̄⊥, m‖, and ∆1 real numbers, and ∆̃2 a complex number. It is immediate

to verify that in the ŷ direction the degeneracy is not lifted even to second order,

whereas it is lifted in the x̂ẑ plane as becomes clear from the form of the matrix in

Eqs (E.10) and (E.11). The energy dispersion is then given by

ε±(q‖, q⊥, φ) = εF + p‖ · q‖ +
1

2
m−1

‖ · q2‖ +
1

2
m−1

⊥,±(φ) · q2⊥ + O(q3⊥, q
3
‖), (E.12)

where

m−1
⊥,±(φ) = m̄−1

⊥ ±
√

∆2
1 cos2(2φ) + |∆2|2 sin2(2φ). (E.13)

Since |∆2| ≈ ∆1 = ∆, we can consider ∆2 = ∆eiζ without losing the validity of this

analysis. In this case the eigenvectors have the form ĉ± = 1/
√

2 ∓ 2 cos(2φ)(±1 −
cos(2φ),− sin(2φ)e−iζ)T. The new eigenvalues εik+q and εak+q of bands 3 and 4 then

lead to

εik+q − εak+q = −∆ · q2⊥ + O(q3⊥), (E.14)

where we again used the cylindrical coordinates. We find for a generic direction that

the off-diagonal elements of the momentum matrix p are linear in q, and thus we

obtain

|〈ψik+q | ĵ | ψak+q〉| = ∆ · q⊥ + O(q2⊥). (E.15)
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We are now ready to evaluate Eq. (6.10) giving

=
{
εinter (ω)

}
∝ 1

π

∫ 2π

0

dφ

∫ q

0

q⊥dq⊥

∫ α+q2
⊥

α−q2
⊥

dq‖ ×

δ
(
−∆ · q2⊥ + ω

)
· 1

q2⊥
=

1

p‖
, (E.16)

with α± = −1/2(m̄⊥ ± ∆)/p‖. Here we have considered that the contribution from

the ∆ symmetry line is 6-fold.



Appendix F
Low-Frequency Behavior of the

Dielectric Function

We define two vectors P and F as

P =




δρ

iδj/ω

iδm/ω


 , (F.1)

containing the densities, in which the inter- and intraband contributions are added,

i.e., δρ = δρinter + δρintra and similarly for δj and δm, and

F =




0

iωδAmac/c

0


+




δvALDA
Hxc,mic

0

0


+




δuxc

iωδaxc/c

iωδbxc/c


 , (F.2)

which contains all first order contributions to the perturbing potentials. Here the

perturbation F is decomposed into three terms: Fmac containing only the macroscopic

field, Fa containing the adiabatic parts given by the microscopic Hartree potential

and the ALDA exchange-correlation potential, δvALDA
Hxc,mic = δvH ,mic + δvALDA

xc,mic, and

Fd containing the dynamic part of the exchange-correlation vector potential. From

Eqs (7.29) and (7.30) it becomes clear that we can write

P =

(
X inter +

1

ω2
Q† ·X intra ·Q

)
· F, (F.3)
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where

Q =




iq 0 0

0 1 0

0 0 1


 , (F.4)

and X inter and X intra are the matrices of the inter- and intraband Kohn-Sham re-

sponse functions given in Eqs (7.29) and (7.30). In the linear response regime we can

write Fa = Ya · P for the adiabatic part of the potential vector, and Fd = Yd · P for

the dynamic part. Here the matrix Yd is given in (7.22) and Ya is defined as

Ya =




ya 0 0

0 0 0

0 0 0


 , (F.5)

with the frequency independent kernel ya defined by the relation yaδρ = δvALDA
Hxc,mic.

The total perturbing potential is then given by

F = Fmac + (Ya + Yd) ·P. (F.6)

The low-frequency behavior of the matrix Yd is determined by the low-frequency

behavior of the viscoelastic coefficients η̃xc(r, ω) and ζ̃xc(r, ω), which in turn is deter-

mined by the low-frequency behavior of fxcL,T (ω). Since fxcL,T (ω) = f∗
xcL,T (−ω) and

considering the results obtained in Eqs (7.16) and (7.17), we can write the following

expressions for the low-frequency behavior of η̃xc(r, ω) and ζ̃xc(r, ω),

−iωζ̃xc

ρ2
0

= iωA+ ω2B +O(ω3), (F.7)

−iωη̃xc

ρ2
0

=
µxc

ρ2
0

+ iωC + ω2D +O(ω3), (F.8)

where A, B, C, and D are real. Furthermore, Qian and Vignale showed [130] that

the slope of the imaginary parts of fxcL,T (ω) is finite in the limit ω → 0. This means

that in the above expressions A and C are finite. By using Eqs (F.7) and (F.8), we

can write the following low-frequency expansion for Yd,

Yd =
∑

p

(iω)pYd,p, (F.9)

where Yd,p are real and Yd,0 ∝ µxc.

It now becomes clear that we can obtain P by solving Eqs (F.3) and (F.6) self-

consistently. We have carefully formulated these response equations such that a reg-

ular solution can be found for limq→0 P(q) = P, with P the solution of Eq. (F.3) at
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q = 0. In this limit we can write the following low-frequency expression of Eq. (F.3),

[
ω2I −

(
ω2
∑

p

(iω)pX inter
p + X̃ intra

)
·
(
Ya +

∑

p

(iω)pYd,p

)]
· P =

(
ω2
∑

p

(iω)pX inter
p + X̃ intra

)
· Fmac , (F.10)

where, since X inter (ω) = X inter∗(−ω), we have used the series expansion X inter =∑
p(iω)pX inter

p . Here the matricesX inter
2p+1 vanish if ω is below the interband absorption

edge, and the matrix X̃ intra is frequency-independent and defined as

X̃ intra = lim
q→0

Q† ·X intra ·Q =




0 0 0

0 ∆χintra
ρjj ∆χintra

ρjm

0 ∆χintra
ρmj ∆χintra

ρmm


 . (F.11)

All matrices are real-valued. Note that due to their matrix structure the prod-

uct X̃ intra · Ya vanishes. From Eq. (F.10) it immediately becomes clear that the

low-frequency behavior of the solution is largely determined by X̃ intra and the low-

frequency coefficients of Yd.

Since P(ω) = P∗(−ω), we can use the series expansion P =
∑∞

n=n0
(iω)nPn,

where we assume that the expansion truncates at a certain value n0 since we are

interested in the low-frequency behavior of P. We can then write Eq. (F.10) as

( ∞∑

p=0

(iω)pXp

)( ∞∑

n=n0

(iω)nPn

)
=

∞∑

m=0

(iω)mFm, (F.12)

with

Xp = −δp,2I +X inter
p−2 · Ya − X̃ intra · Yd,p +

p−2∑

s=0

X inter
p−s−2 · Yd,s, (F.13)

Fm =
(
−X inter

m−2 + δm,0X̃
intra

)
· Fmac. (F.14)

Note that the odd-indexed potential coefficients vanish, F2m+1 = 0. We want to

mention the first two matrix and vector elements in particular,

X0 = −X̃ intra · Yd,0, F0 = X̃ intra · Fmac (F.15)

X1 = −X̃ intra · Yd,1, F1 = 0. (F.16)

By equating all orders in Eq. (F.12) separately, we obtain the general structure of the

mth -order of the low-frequency expansion of the response equation, which is given by
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the relation
m∑

n=n0

Xm−nPn = Fm (F.17)

with Fm<m0
= 0, in which we need to choose n0 ≤ m0 such that there is a unique

solution. The dimension of the matrices and vectors is d. This infinite set of equations

can be written in the following triangular block matrix form,




X0 0 0 · · ·

X1 X0 0
. . .

X2 X1 X0
. . .

...
. . .

. . .
. . .







Pn0

...

Pm0−1

Pm0

...




=




0
...

0

Fm0

...




,

from which it becomes clear that there is a unique solution if X0 is invertible, with

n0 = m0 and Pn<n0
= 0, generated by

Pn = X−1
0 (Fn −

n−1∑

m=m0

Xn−mPm).

If on the other hand X0 is singular as in our case, we proceed to find a solution by

constructing the singular value decomposition X0 = V DU † with the diagonal matrix

D containing singular values d1 · · · ds = 0 and di>s 6= 0 with s > 0, and the unitary

matrices U and V built from the right and left singular vectors spanning the domain,

null space, and range of X0. We can multiply each line from the left by V †, and thus

remove the first s rows from each diagonal block of the triangular matrix. These rows

become replaced by the first s rows of the line below, yielding again a triangular form,



[
0

D̃U †

]
0 0 · · ·

V †X1

[
0

D̃U †

]
0

. . .

V †X2 V †X1

[
0

D̃U †

]
. . .

...
. . .

. . .
. . .







Pn0

...

Pm0−1

Pm0

...




=




0
...

0

V †Fm0

...




.

Here D̃ is the matrix D with the first s rows removed. The first s lines of the equation

can be removed as these are trivially satisfied. We can do this by defining new blocks

[X ′
n]i,j =

{
[V †Xn]i+s,j for i ≤ d− s

[V †Xn+1]i+s−d,j for i > d− s
(F.18)
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and similarly new vectors

[F′
n]i =

{
[V †Fn]i+s for i ≤ d− s

[V †Fn+1]i+s−d for i > d− s
(F.19)

such that we retrieve the original structure, however in general with a nonzero vector

F′
m0−1. Therefore we have to set m′

0 = m0 − 1. If Fm0
is in the range of X0, then

F′
m0−1 will still be zero and we can set m′

0 = m0. By iterating this procedure k times,

until we have found a diagonal block X ′···′
0 that is invertible, we have constructed a

unique solution that truncates from below at n0 ≥ m0 − k with Pn<n0
= 0.

We will now discuss three separate cases, being the adiabatic approximation, in

which Yd is set to zero, the dynamic exchange-correlation case with vanishing static

limit and hence Yd,0 = 0, but Yd,1 6= 0, and the dynamic case with finite static value

Yd,0 6= 0.

In the simplest case (the adiabatic approximation) we haveX0 = X1 = X2n+1 = 0,

and F2n+1 = 0. From Eq. (F.17) it immediately follows that in this case the equations

for even and odd indexed P decouple, with the partial result P2n+1 = 0. The singular

value decompositions for the first two iterations become trivial, V = U = I andD = 0,

and we obtain n0 = −2 with the unique even-indexed solutions given by

P2n = X−1
2 (F2n+2 −

n−1∑

m=−1

X2(n−m+1)P2m), (F.20)

where we have assumed that X2 is invertible. The susceptibility is therefore purely

real valued and is diverging like ω−2.

In the dynamic case with vanishing static limit for Yd, we have X0 = 0, X1

singular, F0 6= 0 but in the range of X1 (provided that Yd,1 is invertible), and again

F2n+1 = 0. The first iteration is again trivial, with V = U = I and D = 0. In the

second iteration we can remove the singularity of the new diagonal block X ′
0 = X1,

by appying the SVD again. However, if indeed F′
−1 = F0 is in the range of X1

(which is the case if Yd,1 is invertible), then we do not have to decrease m0 further

and we obtain n0 = −1, otherwise we do, and find n0 = −2. Assuming that the

second iteration yields an invertible diagonal block, we have found the solution which

truncates at n0 = −1(−2). We can thus conclude that the susceptibility acquires an

imaginary part that diverges like ω−1, and a real value that is finite, unless the first

order dynamic exchange-correlation kernel Yd,1 is singular.

In the dynamical case with finite static limit an extra complication arises. In the

first iteration the multiplication from the left with V † reduces not only the diagonal

blocks X0, but removes also rows from the subdiagonal blocks. This is due to the fact

that X0(1) is of the form X̃ intra · Yd,0(1) in which X̃ intra is singular as is clear from its
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matrix structure. If the ranges of X0 and X1 coincide (which is the case if Yd,0(1) is

invertible), then an equal amount of rows is removed in the diagonal and subdiagonal

blocks, and also in the vector F0 for invertible Yd,0(1). As always F2n+1 = 0. One can

check readily that in both iterations we do not need to decrease m0, and we find a

solution with n0 = 0, assuming that after the second step an invertible diagonal block

is generated. In this case the susceptibility is real and finite in the low frequency

range. If on the other hand (one of) the matrices Yd,0(1) is singular still a divergence

may result.

The analysis given above forms the basis for understanding the solution at finite

frequency. Retaining only the lowest order terms of the interband response function

in Eq. (F.10) it becomes clear that we can consider the contribution of Yd,0(1) as small

perturbations if ω � ω0(1), where

ω0 =

√
|| X−1

2 X0 || (F.21)

and

ω1 =|| X−1
2 X1 || (F.22)

are two characteristic frequencies defined in terms of the X-matrices given in Eq.

(F.13). Here || A ||= maxi |λi| indicates the spectral norm of the matrix A, being

equal to its largest eigenvalue. The first order correction to the adiabatic solution

gives

P ≈
(
− 1

ω2
X−1

2 − 1

ω4
X−1

2 (iωX1 +X0)X
−1
2

)
(ω2X inter + X̃ intra)Fmac,

and leads to an imaginary part for the susceptibility that decays like 1/ω3 for ω < ωp

as then ω2 || X inter ||<|| X̃ intra ||. For ω . ω0(1) the contributions of Yd,0(1) become

dominant and determine the solutions as in the analysis given above. Going from high

to low frequency we expect a transition from the adiabatic to the dynamic case at

around max(ω0, ω1), and if ω0 < ω1 from the dynamic behavior with vanishing static

limit to the case with finite static limit at around ω0. The results of this analysis are

summarized in the following,

χe(ω) ∝





α1 + iωβ2 for ω < ω0

α′
1 + iβ′

2/ω for ω0 < ω < ω1

α′′
1/ω

2 + iβ′′
2 /ω

3 for ω > ω0, ω1

(F.23)

As special case ω0 = 0 if µxc = 0.



Summary

Materials have been used throughout history for their structural properties, e.g. duc-

tility, elasticity, hardness etc., and later also for their physical properties, i.e., for

their characteristic response to external perturbances. These last properties have

been investigated in this thesis by using quatumechanics. The mutual interactions

of the many-particles which constitute matter complicate its theoretical description

enormously. Time-dependent density-functional theory provides a powerful tool to

investigate these dynamic properties in atoms, molecules, and clusters. Indeed this

theory maps the many-particle problem of interacting electrons in a time-dependent

external field onto an auxiliary system of noninteracting particles in an effective field.

The many-particle effects enter through so-called exchange-correlation contributions

to the effective potentials describing this field. These effective potentials are uniquely

determined by the time-dependent density for a given initial state. Essential in this

formulation is that the time-dependent density is exactly the same in the real and

auxiliary system. The time-dependent density can thus be obtained from the auxiliary

system once we know the effective potentials, which in turn are functionals of the time-

dependent density. This requires a self-consistent procedure in which one updates the

approximate densities and potentials in an iterative way. In this thesis we have only

considered systems, initially in the ground state, which are perturbed only weakly by

an external electromagnetic field. In this so-called linear response regime the induced

density is proportional to the applied field. The exchange-correlation potentials de-

pend on the density in a nontrivial way: the potentials at time t and position r depend

in general on the density at all earlier times t′ and at all positions r′. In the linear

response regime this relation is expressed through a so-called exchange-correlation

response kernel. The most common approximation for the exchange-correlation po-

tentials is the adiabatic local density approximation (ALDA), in which these potentials
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are instantaneous and local functionals of the density. The scenario becomes more

complicated for solids, which can be treated as ’open’ systems, i.e., systems without

boundary. To fully describe these systems, the density is replaced by the current-

density leading to time-dependent current-density-functional theory (TDCDFT). In

this thesis we have formulated the linear response of metallic crystalline systems to

an electric field within this theoretical framework. The method gives already reason-

able results for the dielectric and electron energy-loss functions within the ALDA.

Although this approximation describes well the interband region of the spectra, it is

less satisfying in the intraband region, where relaxation processes, such as electron-

electron and electron-phonon scattering, become more important. Indeed the ALDA

fails to reproduce the Drude-like tail in the absorption spectra. Approximations to

the exchange-correlation potentials which are local-functionals of the current-density

and hence nonlocal-functionals of the density can be included in a natural way in

our formulation. In these approximations the exchange-correlation kernels can have

memory, and thus relaxation processes due to electron-electron scattering can be taken

into account. Other types of deviations from experiments can be observed in systems

containing heavy elements, if relativistic corrections are neglected. Our method can

treat scalar relativistic effects and spin-orbit coupling both in the ground-state and

response calculations by using the zeroth-order regular approximation (ZORA). The

spin-dependent formulation of the method, which allows to treat spin-orbit coupling,

represents a first step to describe the linear response to an external magnetic field.

In chapter 1 we have given a brief introduction to optical properties of solids,

namely the dielectric function and the electron energy-loss function. These two quan-

tities describe the response of the system to a macroscopic and to an external electric

field, respectively. Although the experiments which measure these two quantities can

appear so different, they actually contain the same information in the long-wavelength

limit, i.e., for external fields characterized by wavelengths that are long if compared

to the interatomic distance. In chapter 2 an overview of the theoretical framework

used has been presented. Time-dependent current-density-functional theory is an ex-

tension of the earlier density functional theory. What makes a density functional

approach so attractive for theoretical analysis is the use of the density as basic quan-

tity. The density, rather than the many-particle wavefunction, is used to describe

a quantumechanical system, since the ground-state properties of the system can be

expressed as functional of this quantity. First we have discussed the fundamental

theorems of Hohenberg and Kohn and the practical set of one-particle equations in-

troduced later by Kohn and Sham. These equations describe an auxiliary system of

noninteracting particles in an effective potential which reproduces the same density as

in the real interacting system. We have then described the formulation of a density
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functional approach for systems subjected to time-dependent external longitudinal

fields, by giving the statement and the proof of the Runge-Gross theorem. Finally

we have introduced time-dependent current-density-functional theory, that allows to

treat also transverse fields and to treat the linear response in extended systems. The

theory was first formulated by Ghosh and Dhara, but we have reported the main steps

of a more recent demonstration given by Vignale. The current-density is the basic

variable and uniquely determines the scalar and vector potentials which act on the

system. This approach has been used by Kootstra et al. to formulate in an elegant

way the linear response of nonmetallic systems to a macroscopic electric field. The

dynamical response of the system is described by solving the time-dependent one-

electron Kohn-Sham equations for the auxiliary noninteracting system in effective

induced scalar and vector potentials which give the same density and current-density

of the real system. One can express the density and the current-density induced by

the perturbing potentials in terms of Kohn-Sham response functions, which only de-

pend on the ground-state orbitals and orbital energies. Upon solving self-consistently

the set of equations that describe the induced density and current-density, the di-

electric function can be calculated from the macroscopic current. We have extended

this formulation in order to treat the linear response of metallic crystalline systems

as well. The derivation of the method is given in chapter 3. In treating the re-

sponse of a metal to an external perturbation the Kohn-Sham response functions

have to include both interband and intraband transitions with accurate treatment

of the Fermi surface in the Brillouin-zone integrations. The intraband contributions,

in particular, have to be evaluated using a wavevector-dependent description. To

achieve this we have considered a general perturbation with wavevector q and fre-

quency ω, and we have derived the linear response of the system for vanishing q,

but finite ω. This is the regime describing optical properties. We have found that

within the ALDA and in the optical limit q → 0 we can solve separately the self-

consistent-field equations which describe the inter- and intraband contributions to

the response. Upon solving these equations, one can calculate the dielectric function

ε(ω) = [1 + 4πχinter
e (ω)]− 4πi/ω σintra (ω), with χinter

e (ω) the interband contribution

to the electric susceptibility, and σintra (ω) the intraband contribution to the macro-

scopic conductivity tensor. We have also shown that we retrieve in our approach the

well-known relation between the electron energy-loss function and the dielectric func-

tion, i.e., 2π/(q2V )S(q, ω) = ={−1/εL(q, ω)}, with S(q, ω) the dynamical structure

factor, and εL(q, ω) the longitudinal dielectric function. We have applied the method

to calculate the dielectric and electron energy-loss functions of copper and silver and

the agreement with the experiments is very good. However, strong deviations from

the experimental spectra can be expected for heavy metals. Here relativistic effects
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play an important role. In chapter 4 we have given an introduction to a relativistic

formulation of density functional theory, which is based on quantum electrodynamics.

Analogously to the nonrelativistic stationary case, one can prove a one-to-one map-

ping between the external four-component potential and the four-component current

of the system. We have described how to arrive at the Dirac-Kohn-Sham equations

and how to reduce the four-component Hamiltonian to a two-component pseudorela-

tivistic one by using the zeroth-order regular approximation. The ZORA Hamiltonian

contains, already at zeroth order, the dominant relativistic effects. In chapter 5 we

have combined this approach with our formulation of linear response and we have

calculated the dielectric function of gold. We have shown that in a nonrelativis-

tic calculation gold has the onset of interband absorption at about 3.5 eV, while the

treatment of scalar relativistic effects red-shifts the onset at ∼1.9 eV, very close to the

experiments, thus explaining the yellow color of gold. In chapter 6 we have analyzed

in detail the band structures, the Fermi cross-sections, and the optical properties of

the group VB and VIB bcc transition metals V, Nb, Ta, and (paramagnetic) Cr, Mo,

and W, respectively. Here it becomes clear how accurate and versatile our method is.

Some deviations from experiments can be due to the neglect of spin-orbit coupling.

In the chapter 8 we have presented a preliminary spin-dependent formulation of the

method, which has the aim to treat the linear response to magnetic fields as well. As

immediate application we have included the spin-orbit coupling both in the ground-

state and response calculations. We have shown the main changes that need to be

done in the response functions in order to be expressed in terms of two-component

spinors. We have tested the method on metallic and nonmetallic systems. The ZORA

calculations of the dielectric functions of Au and W show some spectral features which

were missing in the scalar ZORA spectra, and are in agreement with our predictions

(chapters 5 and 6) and with the experiments. We have analyzed the impact of the rel-

ativity on the ground state and optical properties of ZnTe, CdTe, and HgTe. Whereas

the first two of the series are semiconductors both in nonrelativistic and relativistic

calculations, HgTe becomes a semimetal when relativity is considered. The inclusion

of spin-orbit coupling is immediately visible in the spectra, since a splitting of the

low-frequency peak appears, which reproduces very well the experiments, although

the spectra are red-shifted by ∼ 1 eV with respect to the experiments.

Although the calculated spectra are in overall good agreement with experiments,

the low-frequency Drude like absorption is missing in our calculations. This absorp-

tion is due to relaxation processes, and thus cannot be described within the adiabatic

local density approximation where the response kernel is instantaneous. In chapter

7 we have used a functional which goes beyond the ALDA: the exchange-correlation

vector potential is approximated as a local functional of the current-density using the
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expression derived by Vignale and Kohn. The self-consistent-field equations describ-

ing the inter- and intraband contributions to the response become coupled. Within

this approximation the response kernel has memory, hence it can take into account

relaxation processes due to electron-electron scattering. We have calculated the di-

electric and electron energy-loss functions of the noble metals Cu, Ag, and Au and

our results reproduce reasonably well the experiments.
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Materialen zijn de hele geschiedenis door gebruikt voor hun structurele eigenschap-

pen, b.v. rekbaarheid, elasticiteit, hardheid, enz., en later ook voor hun fysieke eigen-

schappen, d.w.z. voor hun kenmerkende reactie op externe verstoringen. Deze laatste

eigenschappen zijn in dit proefschrift onderzocht door gebruik te maken van kwantum-

mechanica. De wederzijdse wisselwerking van de vele deeltjes waaruit materie bestaat

compliceert de theoretische beschrijving aanzienlijk. Tijdsafhankelijke dichtheidsfunc-

tionaaltheorie is een krachtig hulpmiddel om eigenschappen van atomen, moleculen, en

clusters te onderzoeken. Deze theorie brengt inderdaad het veeldeeltjesprobleem van

wisselwerkende elektronen in een tijdsafhankelijk extern veld over op een hulpsysteem

van deeltjes zonder wisselwerking in een effectief veld. De veeldeeltjeseffecten worden

meegenomen in de zogenaamde uitwisseling-correlatiebijdragen aan de effectieve po-

tentialen die dit veld beschrijven. Voor een gegeven begintoestand zijn deze effectieve

potentialen uniek bepaald door de tijdsafhankelijke dichtheid. Essentieel in deze for-

mulering is dat de tijdsafhankelijke dichtheid exact hetzelfde is in het echte systeem als

in het hulpsysteem. De tijdsafhankelijke dichtheid kan aldus worden verkregen met be-

hulp van dit hulpsysteem zodra we de effectieve potentialen kennen, die op hun beurt

functionalen van de dichtheid zijn. Dit behoeft een zelfconsistente procedure waarin

de benaderde dichtheden en potentialen op een iteratieve manier worden bijgewerkt.

In dit proefschrift hebben we alleen systemen beschouwd, die zich aanvankelijk in

de grondtoestand bevinden en die slechts zwak verstoord worden door een extern

elektromagnetisch veld. In dit zogenaamde lineaire-reponsregime is de gëınduceerde

dichtheid evenredig met het aangelegde veld. De uitwisseling-correlatiepotentialen

hangen op een niet-triviale manier van de dichtheid af: de potentialen op tijd t en

positie r hangen in het algemeen af van de dichtheid op eerdere tijden t′ en van alle

posities r′. In het lineaire-responsregime wordt deze relatie uitgedrukt in een zoge-

183
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naamde uitwisseling-correlatieresponskern. De meest gebruikelijke benadering voor

de uitwisseling-correlatiepotentialen is de adiabatische lokale dichtheidsbenadering

(ALDA), waarin deze potentialen instantane en lokale functionalen van de dichtheid

zijn. Het scenario wordt ingewikkelder voor vaste stoffen, die behandelt kunnen

worden als ’open’ systemen, d.w.z. systemen zonder randen. Om deze systemen

volledig te kunnen beschrijven wordt de dichtheid vervangen door de stroomdichtheid

wat leidt tot tijdsafhankelijke stroomdichtheidsfunctionaaltheorie (TDCDFT). In dit

proefschrift hebben we de lineaire respons van metallische kristallijne systemen op

een elektrisch veld geformuleerd binnen dit theoretische raamwerk. Deze methode

levert al redelijke resultaten op voor de diëlektrische functies en elektronenergiev-

erliesfuncties binnen de ALDA. Hoewel deze methode het interbandgedeelte van de

spectra goed beschrijft stelt zij minder tevreden voor het intrabandgedeelte waar

relaxatieprocessen zoals elektron-elektron- en elektron-fononverstrooiing belangrijker

worden. De Drude-achtige staart van het absorptiespectrum ontbreekt inderdaad in

de ALDA-beschrijving. Benaderingen voor de uitwisseling-correlatiepotentialen die

lokale functionalen zijn van de stroomdichtheid en daardoor niet-lokale functies van

de dichtheid kunnen op een natuurlijke manier in onze formulering worden opgenomen.

In deze benaderingen kunnen de uitwisseling-correlatiekernen geheugen hebben en al-

dus kan rekening gehouden worden met relaxatieprocessen ten gevolge van elektron-

elektronverstrooiing. Andere soorten afwijkingen van experimentele resultaten kun-

nen optreden in systemen met zware elementen wanneer relativistische correcties

worden verwaarloosd. Onze methode kan scalaire relativistische effecten en spin-

baankoppeling behandelen zowel in de grondtoestands- als in de responsberekenin-

gen door gebruik te maken van de nulde-orde reguliere benadering (ZORA). De

spinafhankelijke formulering van deze methode, die toestaat om spin-baankoppeling

te behandelen, vertegenwoordigt een eerste stap om de lineaire respons ten gevolge

van een extern magnetisch veld te beschrijven.

In hoofdstuk 1 geven we een korte introductie over de optische eigenschappen

van vaste stoffen, namelijk de diëlektrische functie en de elektronenergieverliesfunc-

tie. Deze twee grootheden beschrijven de respons van het systeem op respectievelijk

een macroscopisch en een extern elektrisch veld. Hoewel de experimenten die deze

twee grootheden meten erg verschillend kunnen lijken, bevatten ze dezelfde informatie

in de limiet van lange golflengte, d.w.z. voor externe velden die gekarakteriseerd

worden door golflengten die lang zijn vergeleken met de interatomaire afstand. In

hoofdstuk 2 hebben we een overzicht van het gebruikte theoretische raamwerk gepre-

senteerd. Tijdsafhankelijke stroomdichtheidsfunctionaaltheorie is een uitbreiding van

de eerder geformuleerde dichtheidsfunctionaaltheorie. Wat een dichtheidsfunctionaal-

benadering zo aantrekkelijke maakt voor theoretische analyse is het gebruik van de
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dichtheid als basisgrootheid. De dichtheid, eerder dan de veeldeeltjesgolffunctie, wordt

gebruikt om een kwantummechanisch systeem te beschrijven, aangezien de grondtoe-

standseigenschappen van het systeem kunnen worden uitgedrukt als functionaal van

deze grootheid. In de eerste plaats hebben we de fundamentele theorema’s van Hohen-

berg en Kohn bediscussieert alsmede de praktische set van ééndeeltjesvergelijkingen

die later door Kohn en Sham gëıntroduceerd zijn. Deze vergelijkingen beschrijven

een hulpsysteem van deeltjes zonder wisselwerking in een effectieve potentiaal die de

dichtheid reproduceert van het echte systeem. We hebben vervolgens de formuler-

ing van een dichtheidsfunctionaalaanpak beschreven voor systemen die onderhevig

zijn aan tijdsafhankelijke longitudinale velden door de uitdrukking en het bewijs van

het Runge-Gross theorema te geven. Uiteindelijk hebben we dan tijdsafhankelijke

stroomdichtheidsfunctionaaltheorie gëıntroduceerd die ons toestaat om ook transver-

sale velden te behandelen en om de lineaire respons in systemen met periodiciteit te

behandelen. Deze theorie is als eerste geformuleerd door Ghosh en Dhara, maar we

hebben de belangrijkste stappen in een recenter bewijs van Vignale gepresenteerd. De

stroomdichtheid is de basisvariabele en bepaalt uniek de scalaire potentiaal en de vec-

torpotentiaal die op het systeem werken. Deze aanpak is gebruikt door Kootstra et al.

om op een elegante manier de lineaire respons van niet-metallische systemen op een

macroscopisch elektrisch veld te formuleren. De dynamische respons van het systeem

wordt beschreven door het oplossen van de tijdsafhankelijke éénelektronvergelijkingen

voor het Kohn-Sham hulpsysteem van deeltjes zonder wisselwerking in een effec-

tieve gëınduceerde scalaire potentiaal en vectorpotentiaal die dezelfde dichtheid en

stroomdichtheid geven als het echte systeem. De dichtheid en stroomdichtheid die

gëınduceerd worden door de verstorende potentialen kunnen worden uitgedrukt in

termen van de Kohn-Sham responsfuncties die alleen van de grondtoestandsorbitalen

en hun energieën afhangen. Wanneer de set van vergelijkingen die de gëınduceerde

dichtheid en stroomdichtheid beschrijven zelfconsistent opgelost is kan de diëlektrische

functie uitgerekend worden met de macroscopische stroomdichtheid. We hebben deze

formulering uitgebreid opdat we ook de lineaire respons van metallische kristallijne

systemen kunnen behandelen. De afleiding van de methode wordt gegeven in hoofd-

stuk 3. In de behandeling van de respons van een metaal op een externe verstoring

moeten de Kohn-Sham responsfuncties zowel de interband- als de intrabandbijdragen

met nauwkeurige behandeling van het Fermi-oppervlak in de Brillouinzone-integraties

bevatten. In het bijzonder moeten de intrabandbijdragen worden geëvalueerd ge-

bruik makend van een beschrijving die afhangt van de golfvector. Om dit te bereiken

hebben we een algemene verstoring met golfvector q en frequentie ω beschouwd en

hebben we de lineaire respons van het systeem voor verdwijnende q, maar eindige

ω afgeleid. Dit is het regime waarin optische eigenschappen worden beschreven.
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We hebben gevonden dat binnen de ALDA en in de optische limiet q → 0 we

de zelfconsistentveld-vergelijkingen die de inter- en intrabandbijdragen aan de re-

sponse beschrijven afzonderlijk kunnen oplossen. Wanneer deze vergelijkingen zijn

opgelost, kan de diëlektrische functie ε(ω) = [1 + 4πχinter
e (ω)] − 4πi/ω σintra (ω) wor-

den berekend, waar χinter
e (ω) de interbandbijdrage aan de elektrische susceptibiliteit

is en σintra (ω) de intrabandbijdrage aan de macroscopische geleidingstensor is. We

hebben ook laten zien dat we in onze aanpak de bekende relatie tussen de elektronen-

ergieverliesfunctie en de diëlektrische functie terugvinden, d.w.z. 2π/(q2V )S(q, ω) =

={−1/εL(q, ω)}, waarin S(q, ω) de dynamische structuurfactor is en εL(q, ω) de lon-

gitudinale diëlektrische functie. We hebben de methode toegepast om de diëlektrische

functies en de elektronenergieverliesfuncties van koper en zilver te berekenen en de

overeenkomst met de experimentele resultaten is erg goed. Echter, sterke afwi-

jkingen van de experimentele spectra kunnen verwacht worden voor zware metalen.

Hier spelen relativistische effecten een belangrijke rol. In hoofdstuk 4 hebben we

een introductie gegeven over een relativistische formulering van dichtheidsfunction-

aaltheorie, die gebaseerd is op kwantumelektrodynamica. Analoog aan het niet-

relativistische stationaire geval kan een één-op-één correspondentie tussen de externe

vier-componentenpotentiaal en de vier-componentenstroomdichtheid van het systeem

worden bewezen. We hebben beschreven op welke manier de Dirac-Kohn-Sham-

vergelijkingen kunnen worden verkregen en op welke manier de vier-componenten-

Hamiltoniaan naar een pseudorelativistische tweecomponenten-Hamiltoniaan kan wor-

den gereduceerd door de nulde-orde reguliere benadering te gebruiken. Al in de nulde

orde bevat de ZORA-Hamiltoniaan de dominante relativistische effecten. In hoofd-

stuk 5 hebben we deze aanpak gecombineerd met onze lineaire-responsformulering en

hebben we de diëlektrische functie van goud berekend. We hebben laten zien dat in

een niet-relativistische berekening het begin van de interbandabsorptie van goud bij

ongeveer 3.5 eV ligt, terwijl het begin van deze absorptie bij ∼1.9 eV ligt wanneer

scalaire relativistische effecten worden meegenomen in de berekening. Dit verklaart

aldus de gele kleur van goud. In hoofdstuk 6 hebben we in detail de bandstructuren,

de Fermi-doorsneden en de optische eigenschappen van de groep VB bcc transitie-

metalen V, Nb, Ta en de groep VIB bcc transitiemetalen (paramagnetisch) Cr, Mo,

en W geanalyseerd. Hier wordt duidelijk hoe nauwkeurig en veelzijdig onze methode

is. Enkele afwijkingen van de experimentele resultaten kunnen het gevolg zijn van

het verwaarlozen van spin-baankoppeling. In hoofdstuk 8 hebben we een voorlopige

spinafhankelijke formulering van de methode gepresenteerd, die ook als doel heeft om

de lineaire respons ten gevolge van magnetische velden te behandelen. Als onmid-

dellijke toepassing hebben we de spin-baankoppeling in zowel de grondtoestand als

de responsberekening meegenomen. We hebben de voornaamste veranderingen laten



Samenvatting 187

zien die gedaan moeten worden in de responsfuncties om ze uit te drukken in termen

van twee-componentenspinoren. We hebben de methode getest op metallische en niet-

metallische systemen. De ZORA-berekeningen van de diëlektrische functies van Au en

W laten enkele spectrale kenmerken zien die ontbraken in de scalaire-ZORA-spectra,

en zijn in overeenkomst met onze voorspellingen (hoofdstukken 5 en 6) en met de

experimentele resultaten. We hebben het effect van de relativiteit op de grondtoe-

standseigenschappen en optische eigenschappen van ZnTe, CdTe, en HgTe geanaly-

seerd. Terwijl de eerste twee materialen van deze serie halfgeleiders zijn in zowel

de niet-relativistische als de relativistische berekeningen, wordt HgTe een halfmetaal

wanneer relativiteit wordt meegenomen. Het meenemen van spin-baankoppeling is

onmiddellijk zichtbaar in de spectra, aangezien er een splitsing van de piek in het

lage-frequentiegebied optreedt die erg goed de experimentele resultaten reproduceert,

hoewel de spectra ∼ 1 eV zijn opgeschoven naar lagere frequentie ten opzichte van de

experimentele resultaten.

Hoewel de berekende spectra in het algemeen in goede overeenstemming zijn

met de experimentele resultaten ontbreekt de Drude-achtige absorptie in het lage-

frequentiegebied in onze berekeningen. Deze absorptie is het gevolg van relaxatiepro-

cessen en kan dus niet beschreven worden binnen de adiabatische lokale dichtheidsbe-

nadering waarin de responskern instantaan is. In hoofdstuk 7 hebben we een functio-

naal gebruikt die verder gaat dan de ALDA: de uitwisseling-correlatievectorpotentiaal

wordt benaderd door een lokale functionaal van de stroomdichtheid gebruik makend

van de uitdrukking die is afgeleid door Vignale en Kohn. De zelfconsistentveld-

vergelijkingen die de inter- en intrabandbijdragen aan de respons beschrijven zijn

nu gekoppeld. Binnen deze benadering heeft de responskern geheugen, om die re-

den kan deze kern relaxatieprocessen ten gevolge van elektron-elektronverstrooiing in

beschouwing nemen. We hebben de diëlektrische functies en elektronenergieverlies-

functies van de edelmetalen Cu, Ag en Au berekend en onze resultaten reproduceren

de experimentele resultaten redelijk goed.
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