Hands-on Transition State Search

- Getting started building molecules
- Running basic calculations & settings
- Transition states (TSs)
 - Finding & characterizing TSs
 - Activation strain model & EDA
 - ETS-NOCV
- Best practices & recommendations
- Properties demo: IR, NMR, EPR, UV/VIS?

ADFjobs: job bookkeeping

Building molecules

www.scm.com/doc/Tutorials/GUI_overview/Building_Molecules.html

- Import: SMILES, xyz, cif, pdb, ...
- Included library + building tools (step 7 tutorial = TM complexes)
- Nanoparticles: start from periodic => cut a cluster

• Excercise: Build a small molecule of choice and optimize (default settings)

Basic calculations & settings

Transition states

- 1. Get close to the transition state
- 2. Good guess for the transition mode

How to get a good guess geometry?

- Intuition*) + constrained optimization
- Linear transit
- Nudged elastic band
- *) e.g. from literature, geometry from a previous TS

How to get a good guess for the transition mode?

- Transition State Reaction Coordinate (TSRC)
- Hessian: full, partial, or mobile-block, maybe smaller basis & lower accuracy?

Remember: a TS has 1 and only 1 negative Hessian eigenvalue

Example: Pd-catalysed oxidative addition

Goal: find reactant and transition states, understand

- Get a good geometry: LT, previous geometry, NEB
- Good Hessian: TSRC, partial Hessian
- Bonding analysis: Activation Strain Model (ASM)
- Example: Pd catalyzed oxidative addition: Wolters & Bickelhaupt

Chem. Eur. J. 15, 6112 (2009)

Good geometry guess: 1. LT

- 1. Build $(CH_3)(H)Pd(PH_3)_2$ start with ML_4 complex
- 2. Optimize product (Oxaddproduct_PdPH32.adf)
- 3. Set up a linear transit to reduce C-H (LT_from_adduct.adf)

Good Hessian: 1. TSRC

- 1. View linear transit result: ADFmovie -> view conv. geom. only
- 2. Click highest point; File => Update geometry in input
- 3. Change number of transition points to 0, remove constraint
- 4. Change preset to Transition State Search, click details (...)
- 5. Select C + H to add to TSRC (TSsearch_1LT.adf)

Get a guess Hessian: 2.-4.

- 2. Partial Hessian (partialhess_low.adf) e.g. H, C, Pd
- 3. Mobile Block Hessian (MBH_PdCH₄_low.adf)
 - define regions first. E.g. treat $Pd(PH_3)_2$ as mobile block
- 4. Less accurate xc, basis set, numerical settings (lowHess.adf)
 - Can be combined with 1. & 2.
- 5. Restart with Hessian (TS_MBH.adf, TS_pHess.adf, TS_lowHess.adf)

Calculate frequencies

- Update geometry from TS run
- Change preset to frequency, click (...) for details
- In the Scan frequency range, set the lower limit to -100 or -50
 - This will rescan low-lying imaginary modes numerically

Calculate ΔE#, ΔH#, ΔG#

- Get the binding energy for reactants CH₄ + Pd(PH₃)₂
 - First optimize reactants separately, run frequencies for ZPE
 - Read from logfile, outputfile, use PLAMS / adfreport, or use report tool in GUI

Note: ADF uses a fragment-based approach: binding energies are with respect to (atomic) fragments

- $\Delta E^{\#} = E(TS) E(reactants)$, same for H, G (add ZPEs, pV term, S)
- Find relevant results on t21?
 - KFBrowser => expert mode
 - (adfreport -h result.t21 non-exhaustive)

Good geometry guess: 2. NEB

- 1. Optimize reactant state complex CH₄....Pd(PH₃)₂
- 2. Set up a NEB via ASE from reactant to product (TS_NEB.adf)
- 3. Don't run through to the end. Stop and update geometry (highest point)

Geometry guess: 3. intuition

- Start from a TS from a comparable reaction (e.g. change ligands)
- 1. Take TS or product from $Pd(PH_3)_2$
- 2. Make a bidentate ligand (diphosphinoethane, dpe)
- 3. Run with a <u>constraint</u>: C-H distance ~1.8A (Bidentate_GeoCst.adf) (may use sloppy accuracy as well, or get xyz from literature)
- Run your TS with TSRC or other Hessian (Bidentate_TS.adf)

Bonding analysis: ASM, EDA, NOCV

Activation Strain Model Bickelhaupt & co. based on Fragment MOs

C–H stretch / Å
EDA along the reaction path
Bite-Angle Effect: Activation Strain analyses:

- HOMO-LUMO interaction marginally improved
- But: strain reduced by building it into catalyst

Exercise: check Pd(PH₃)₂ vs Pd(diphosphinoethane) TSs: C-H distance, EDA

Rev. Comput. Chem. 2000, 15, 1; Chem. Soc. Rev. 2014, 43, 4953; WIRES Comput. Mol. Sci. 2015, 5, 324

Energy decomposition analysis

$$\Delta E = \Delta E_{\text{prep}} + \Delta E_{\text{int}}$$

Rev. Comput. Chem. 2000, 15, 1

- $\Delta E_{\text{steric}} = \Delta V_{\text{elstat}} + \Delta E_{\text{pauli}}$
- ΔE_{oi} = decomposed in irreps.

Extensions:

- ETS-NOCV: orbital interactions + deformation density M. Mitoraj et al., J. Chem. Theor. Comput. 5, 962 (2009)
- Periodic EDA: M. Raupach & R. Tonner, J. Chem. Phys. 142, 194105 (2015)): molecule-surface interactions

Energy decomposition analysis

- 1. Define your fragments (regions)
- 2. Run your EDA or ETS-NOCV calculation
 - Single point calculation; check 'Use fragments' in MultiLevel tab
 - (Select ETS-NOCV type calculation in Properties => ETS-NOCV)
 - Results: ADFouput => Properties => Bonding Energy Decomposition
- 3. Optimize fragments to get $\Delta E_{\text{prep}} = E_{\text{(fragments, relaxed)}} E_{\text{(fragments in complex)}}$

Energy decomposition analysis

ADFreport to get EDA results (EDA.adf) (add distance#labels#10#14)

	Pd(PH3)2	Pd(dpe)
Bonding Energy	-59.16	-59.62
Pauli Repulsion	186.41	178.66
Electrostatic Interaction	-155.27	-150.37
Steric Interaction	31.14	28.29
Orbital Interaction	-89.16	-86.90
C(10)-H(14)	1.804	1.786

Strain built into bidentate

- Reduces activation strain
- Earlier TS
- Lower ∆E[#]

ETS-NOCV

- Select closed-shell ETS-NOCV & run (ETSNOCV.adf)
- Visualize deformation densities in ADFview play with settings

More (workshop) materials:

https://www.scm.com/adf-modeling-suite/wizard/teaching/adf-teaching-materials/https://www.scm.com/adf-modeling-suite/adf-hands-on-workshops/

Accuracy Recommendations

- Relativity: always use ZORA
 - For most systems + properties scalar relativistic (SR) suffices
 - Spin-orbit coupling (SOC) may be necessary for
 - Spectroscopy 4d, 5d elements (energy 5d? Ir < 1kcal/mol)(*)
 - Geometries 6s, 6p elements (and beyond)
- xc functional: check experiments & literature(*)
 - \circ Dispersion corrections: D3, or D3(BJ) good pragmatic options (may not affect $\Delta E^{\#}$
 - GGAs are faster in ADF than hybrids, and most have analytical frequencies
 - GGAs are usually as good or better than hybrids for geometries
 - Hybrids may give better (TS) energies, for TM catalysis GGAs usually OK
 - o Good options: PBE-D3, BPD3(*). mGGAs: MN15L, S12g, M06L
- Basis sets: STOs converge faster than GTOs(*)
 - Geometries: DZP (=TZP for TM), or TZP. DZ not good enough
 - o Energies: TZP or TZ2P, small or no core. Large core not good enough for TM energies.
 - Core spectroscopy: QZ4P
- Numerical accuracy: normal or good (higher for mGGAs, spectroscopy?)
- (*) J. Comp. Chem. 34, 870–878 (2013): Ir-catalyzed water oxidation, test basis set convergence

Basis set convergence

Some more tips

- QUILD has more options for initial Hessians (ihopt) + updates (ihupd)
 - \circ Uses a Hessian check by default (check a 2^{nd} small negative => freq + scan?)
- Solvent effects?
 - COSMO, SM12 (single point), COSMO-RS
 - Advanced: multi-layer (QM/MM, QUILD), embedding SCRF, FDE
- Save your settings (xc, basis set, etc.) + job type as template in ADFinput
- Use ADFprepare to make multiple jobs
 - Convergence tests http://www.scm.com/doc/Tutorials/ADF/Generating_a_batch_of_jobs.html
- Use ADFreport to get your results (GUI or cmd line scripting)
 - Commandline ADFreport allows further python / shell scripting
 - PLAMS: python workflows
 - See the scripting materials on: https://www.scm.com/adf-modeling-suite/wizard/teaching/adf-teaching-materials/

Contact us at support@scm.com. with any questions or problems

