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I’m driving through the desert I,
met a man

Who told me of his crazy plan
He’d been walking there

for 20 days
He was going to walk on

for 20 more.

Dave Matthews Band
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Symbols & Abbreviations

T , β Temperature, β = (kBT )−1

µ Chemical Potential

f (ε) Fermi-Dirac distribution: f (ε) =
(
eε/kBT + 1

)−1

f (ε; µ) idem, energy relative to µ: f (ε; µ) =
(
e(ε−µ)/kBT + 1

)−1

DFT Density Functional Theory
NEGF Non-Equilibrium Green’s Functions
SCF Self-Consistent Field
WBL Wide-Band Limit
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
EA Electron Affinity
IP Ionization Potential
KS Kohn-Sham
TB Tight-Binding
EM Extended Molecule
DIIS Direct Inversion of Iterative Subspaces
CDIIS Constrained DIIS
CDFT Constrained Density Functional Theory
MCBJ Mechanically Controlled Break Junction
EBJ Electromigrated Break Junction
ICE Image-charge Effect

SZ Single-ζ (basis set)
DZ Double-ζ
TZP Triple-ζ-plus-polarization
TZ2P Triple-ζ-double-polarization
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1
Introduction

In this chapter we introduce the field of molecular electronics, and link it to the broader
discipline of quantum transport. We note the major open questions in the context of
the advances in the field over the past decade, and outline the organization of the work
presented in this thesis.

1
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2 1. Introduction

1.1 Molecular Electronics

The scientific motivation for work in the field of molecular electronics is typically
based on one of three viewpoints.
The first is the field’s promise as a way of bypassing problems in traditional sil-

icon (computing) technology, which arise when scaling down to structures of only a
few nanometers. There, thermal dissipation problems and a lack of reliability in fab-
rication set a “atomic-scale limit” to the remaining achievable gains in performance. 1

The hope is that molecules as active components in devices can be mass-produced
cheaply through synthetic chemistry, and can be designed to have low enough acti-
vation energies that thermal dissipation becomes a less critical issue.

The second motivation comes from the scope for exploiting molecular function-
ality in devices, originating in the versatility of design by synthetic chemistry. 2,3

Whereas in semiconductors the main functionality comes from intrinsic electronic
structure and tuning the concentration of dopants, in molecules one can experiment
with resonant vs. off-resonant transport, 4–7 mechanical and electrical switching,8–10

spin as an information carrier, 11–15 molecular magnetism, 16,17 the absorption and
emission of light, 18,19 and interplay between all of the above, besides the introduction
of traditional functionality such as transistor/rectifier characteristics, as originally
suggested by Aviram & Ratner. 20

The third viewpoint however, is that using molecules and designing devices
on this scale creates a fascinating playground for exploring fundamental physics.
Devices demonstrated in recent years combine functionality and structural design as
building blocks, and exploit electrical, vibrational, magnetic and optical effects, often
intertwined with one another, and intrinsically quantum mechanical in nature.

These three motivations clearly aren’t mutually exclusive, and while different
parts of the molecular electronics community approach their work from one view-
point more dominantly than another, they clearly reinforce each other.

We will focus particularly on single-molecule– rather than bulk devices (where
the functionality of a particular molecule is less important than the behavior of the
molecules collectively). In this case, the path to the current state of the art began
with developing experimental techniques to contact the molecule. These include
scanning-tunneling microscopy (STM), 21–23 mechanically controlled break-junctions
(MCBJs) 24–26 and electromigrated break-junctions (EBJs). 27–30

With these developments it became possible to observe conductance plateaus
down to a single conductance quantum (1G0 = 2e2

h ≈ 7.75 · 10−5Ω−1) as a function
of “breaking” the junction by progressively narrowing a constriction down to a single
atomic channel. With a molecule in the junction acting as a conducting pathway,
this same 1G0 plateau can be observed in resonant transport, while in general,
statistical analysis of measurements can be used to resolve sub-G0 conductance
peaks, corresponding to off-resonant molecular transport. 31–33

With the addition of a gate electrode coupled only electrostatically to the device,
three-terminal transistor configurations became possible, first in EBJs 28,34 and later



1.1. Molecular Electronics 3

{{1
in MCBJs as well. 33,35 These allowed the taking of stability diagrams, differential
conductance plotted vs. both gate and bias-voltage: ∂I

∂V (V,Vg), which were a first
step in distinguishing true molecular junctions from setups contaminated by the
presence of gold grains. 28,29 Gold grains were a large problem, as they give rise to
features remarkably similar to those occurring in molecular transport junctions in
current-voltage or I(V) measurements, but luckily they can be distinguished more
clearly with the extra information contained in stability diagrams.

These advances led to further development of techniques for “molecular finger-
printing,” such as the identification of molecules by their vibrational modes, 36,37 as
well as spin-dependent effects in magnetic molecules, 13,38 which in turn suggested
the possibility of “molecular spintronics.” 15

Facing the future, there are a number of challenges that are currently being
addressed. The first is identification; answering the dual questions of whether a
molecular junction has indeed been formed, and whether this is truly a single-
molecule junction, when that is the stated goal. The most promising approaches in
that direction appear to lie along the lines of molecular fingerprinting, backed by
solid theoretical modeling, which is a first motivation for the work in this thesis.

A second challenge is to overcome the lack of reproducibility in the experiments,
which are often characterized by low experimental yields and an approach best
characterized by “loving the one you have, rather than having the one you love.”
If identification can be handled satisfactorily, this does not get in the way of doing
beautiful physics with the devices obtained (witness the rapid growth of the field
over the past decade), but it does hinder the path forward to the first motivation:
integration with computing technology.

The problem of how to integrate such (single-) molecular devices in a scalable
mass-production approach to device fabrication is in many ways still an open ques-
tion. While we cannot hope to address this in theoretical work, it is our hope that a
better understanding of the origins of molecular-device functionality and the role of
the metal-molecule interface, which we can address, will contribute to the solution
of this problem in the (near) future.

Returning to the domain of theory, we observe that at the nanometer scale,
the classical description of charge transport (Ohm’s law) is supplanted by the con-
sequences of quantum mechanics for charge transport. When the functionality of
the device at the (quantum-)chemical level is paramount, we need a microscopic
understanding from first principles.

Problems in this field are often treated using either “toy models” focusing on
only the essential physics, or more computationally intensive “atomistic” or “ab initio
models” which attempt to take the full chemical complexity of the metal-molecule
systems into account.a These are considered large systems, because a full description

aNote that throughout this thesis we intend ab initio in the sense used by physicists, indicating parameter-
free methods based on only a description of the chemical constituents of the system, their positions
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requires treating the combination of electrodes and the molecule(s): systems on the
order of a few thousand electrons in total. Precisely this challenging problem is also a
most interesting one: treating quantum charge transport in molecular systems where
the chemistry matters. A viable approach to this is the subject of the present work,
and we briefly introduce the main ideas of quantum transport in the next section,
to set the stage.

1.2 Quantum Transport

Let us introduce a few of the main ideas of quantum transport qualitatively. We
want to describe the transport of electrons through some nanoscale junction,

which we may refer to as an “active,” “scattering,” or “device” region equivalently,
with the electrons being injected from and absorbed back into very large (macro-
scopic) reservoirs, both in thermodynamic equilibrium very far away from the junc-
tion, but usually at different chemical potentials.

Our aim is to study molecular electronics in this framework, and we will generally
discuss transport in the Landauer picture, 39,40 with the active region in the device
being one or more molecules connected to two conducting electrodes or contacts.
These are each open to reservoirs of electrons. The formalism is based on three key
assumptions:

1. There are no dynamical correlations between the electrons in the system,
though they may still interact at a mean-field level.

2. Transport is assumed to take place in an ideal steady-state, corresponding to
the long-time limit of the dynamics of the device.

3. The reservoirs to which the device region is coupled are in equilibrium, though
usually at different chemical potentials and/or temperatures (which is relevant
for thermoelectric effects), with distributions given by the Fermi-Dirac function

fi(ε) =
(
e(ε−µi)/kBTi + 1

)−1
for the ith reservoir.

It is essential that the first assumption still allows for Coulomb interactions between
the electrons to be accounted for in a mean-field picture, lending itself to electronic
structure methods such as density-functional theory, which we discuss in Chapter 2.

Under these assumptions it can be shown that, as discussed in detail in the
textbooks by Datta, 41 Di Ventra 42 and Nazarov and Blanter, 43 the resulting trans-
port through the device is captured in two quantities of interest: a generally bias-
dependent transmission T (ε,Vb), where the bias Vb = (µ1 − µ2) /e, and the steady-

and possibly the chemical potentials of the electrodes, and not the sense used by chemists, indicating
typically post Hartree-Fock methods of increasing sophistication.
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state current I, given by the Landauer formula:

I(Vb) =
2e
h

∫ ∞

−∞

dε [ f1(ε) − f2(ε)]T (ε,Vb). (1.1)

In the zero-bias limit this yields the zero-bias current (to first order in (µ1 − µ2)):

I =
2e2

h
T (ε = ε f )Vb ,

with ε f the Fermi energy of the electrodes, and 2e2

h again the conductance quantum.b

Note also that this describes ballistic transport, rather than the diffusive transport
regime (resulting from scattering on impurities) which leads to Ohm’s law. As such
the conductance quantum (or equivalently the implication of a minimum resistance)
reflects that the conductance is determined by the number of channels available for
transport, and not by material properties.

The Landauer picture of transport also lends itself well to application in the
Green’s function formulation of transport, which is fully equivalent to the scattering
approach usually used to derive Eq. (1.1) for effective single-particle problems. It can
also be extended in powerful ways beyond an effective single-particle theory, and
we discuss it in Chapter 2 as the basis of our computational approach to molecular
transport.

1.3 Outline

The molecular transport calculations discussed in this thesis are based on the
combination of density functional theory (DFT) with the non-equilibrium Green’s

function (NEGF) formalism for transport, developed within the Landauer formalism.
As noted above, treating the quantum-chemistry at an ab initio or first-principles level
implies large-scale calculations. In order to make these feasible, we have implemented
this formalism as a custom, scalable extension to the ADF/BAND quantum-chemistry
package. 44–47 In this thesis we will report on the framework, the implementation, and
its validation, before considering studies of novel systems performed with our code.
The thesis is organized as follows.

Chapter 2 discusses the theoretical framework behind our implementation schemat-
ically, focusing on the combination of density functional theory calculations with the
non-equilibrium Green’s function formalism for transport.

In Chapter 3 we outline the actual implementation of the method in detail,
commenting on some subtle points in relation to the BAND code, which are critical
to the efficiency of the calculations.

Chapters 4–5 discuss calculations performed for validation of the method and
our implementation. In the one-dimensional case we present benchmark results

bAssuming T (ε = µ1) ≈ T (ε = µ2) ≈ T (ε f ) in the limit where the difference between the chemical
potentials goes to zero in such a way that both go to the Fermi energy of the electron gas at equilibrium.
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on lithium (Li) and aluminum (Al) monatomic chain systems. In the general three-
dimensional case we discuss the benchmark calculations of benzene-dithiol (BDT)
and oligo-phenylene-ethynylene-dithiols (OPE’s) on gold (Au) electrodes in two-terminal
geometries.

In Chapter 6, we study a device based on tetraphenyl-porphyrin molecules sand-
wiched between gold contacts in a mechanically-controlled break junction (MCBJ)
geometry. For this system we discuss the importance of interface effects, in par-
ticular image-charge effects, which dramatically influence the level alignment at the
interface, and thereby transport. In this study we also make use of a rudimentary im-
plementation of a gate field, as a first approximation to a true three-terminal device
geometry.

Finally, in Chapter 7, we turn our attention to the performance of simplifying
approximations to full transport calculations, where we will show that the balance
between the importance of the molecule and the metal-molecule interface, respec-
tively, determines the quality of approximate transport calculations for molecular
systems.

A number of important details, which are not essential to the main thesis, are
discussed in the appendices. Appendix A discusses the determination of surface
Green’s functions and self-energies of the electrodes in molecular devices. Next,
in Appendix B we discuss the technique for peak decompositions we will use to
study transmissions through the devices. Appendix C discusses transport through
one dimensional tight-binding chains, with which we will compare the computa-
tional results for monatomic wires. In Appendix D we describe our constrained
DIIS algorithm, which can drastically accelerate the alignment stage of the transport
calculations. For reference, Appendix E outlines the structure and dependencies
of the code in the multi-stage calculation, and Appendix F provides sample input
files for each stage. Finally, in Appendix G the context and valorization of the
implementation work underlying this thesis is discussed.
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2
Theoretical Framework

The ab initio molecular transport calculations discussed in this thesis are based on the
DFT+NEGF approach to molecular transport. This chapter outlines the density functional
theory (DFT) and non-equilibrium Green’s functions (NEGF) formalisms, and then dis-
cusses the assumptions behind their combined use, as well as the consequent limitations
to the computational results presented in the following chapters.
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In this chapter we lay out the theoretical framework on which our computational
methods are built. We summarize the essential features of our two main theoret-

ical tools, density-functional theory (DFT) and the non-equilibrium Green’s function
(NEGF) formalism, and then discuss the way we combine them into an effective
single-particle theory of molecular transport. This has been implemented as an
integral part of the BAND DFT code for extended systems (sister-code to the ADF
molecular DFT code), as described in detail in the next chapter.

2.1 DFT+NEGF

In recent years, approaches to molecular transport based on density-functional the-
ory (DFT) in combination with the non-equilibrium Green’s function formalism

(NEGF) have received considerable attention in the literature, driven by the rapid
progress in experimental work on realizing single-molecule nano-devices. 1–4 A num-
ber of research codes, 5–7 as well as the SIESTA,8–10 TurboMole 11–14 and SMEAGOL 15

production codes have been developed.
The attractiveness of the combined approach is based on the strengths of DFT for

treating realistic atomistic and molecular transport configurations self-consistently,
starting from an ab initio quantum chemical description. DFT is the workhorse
of state-of-the-art quantum chemistry calculations, 16 with advanced uses achieving
quantitative accuracy in predicting the chemical structure and properties of novel
molecular systems. This strength is then combined with an intuitive mapping to the
Landauer expression for the conductance and current of Eq. (1.1), through the very
powerful Green’s function formalism for transport. 17,18

Concretely, the DFT+NEGF approach we take effectively removes the heart of the
DFT code, and replaces the closed-system density (obtained from a diagonalizing
the DFT Hamiltonian) with one derived from the NEGF formalism, for the molecular
device in the presence of semi-infinite contacts. Already at the simplest local-density
approximation (LDA) level of density-functional theory, this is known to work well
for transport in the strongly-coupled regime 19,20 and through off-resonant transport
levels. 21 It has, for example, been used successfully to describe transport through
metallic wires and non-conjugated hydrocarbons (alkanes). 19,21–23

The strengths of DFT in this approach are, however, balanced by known weak-
nesses of the often-used LDA, which introduces self-interaction errors 24–26 and incor-
rect charging behavior due to the lack of a correct derivative discontinuity. 27–29 The
failure of common exchange correlation functionals to predict excited many-body
states, as well as their mean-field character, hampers a proper handling of dynamic
Coulomb correlations. This renders the method less suitable for weakly-coupled sys-
tems, particularly when one or more resonances are present inside the bias-window.

Nonetheless, despite the attractiveness of conceptually better-founded methods
such as the GW approximation for dynamical response, 30,31 computational tractability
has favored the popularity of the DFT+NEGF approach, especially when combined
with LDA, or better: GGA functionals (which scale an order of magnitude more effi-
ciently than methods based on the Hartree-Fock or GW approximations, cf. section
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3.11). The approach has, for example, led to a better understanding of charge transport
in thiolated phenyl systems 14,20,32,33 and single-molecule magnets, 34,35 among other
systems of interest. Recent work on e.g. self-interaction corrections, 25,26 accounting
for lead-renormalization and dielectric effects 4,36–38 and better functionals for the
description of molecule-substrate interfaces, 39 also strongly suggest that some of the
problematic issues related to the neglect of dynamical correlations can be handled
satisfactorily for many systems.

It is in this spirit that we will outline the DFT and NEGF approaches in the present
chapter. In Chapter 3, we will discuss the combination of them into a DFT+NEGF
method, as implemented in the BAND periodic-system DFT code, 40–42 which enables
us to study novel single-molecule systems in subsequent chapters. A number of
unique features of BAND, in particular the freedom to choose the number of dimen-
sions in which periodicity is imposed, enables us to perform accurate modeling of
the contacts, as well as (in principle) the electric potential in the presence of a gate.
This should help to resolve a number of the issues critical to the full understanding
of experimental results, although a full treatment of the Coulomb potential in the
presence of a gate electrode has not yet been implemented in our method.

2.2 Density Functional Theory

The total Hamiltonian of a system of interacting electrons labeled i with masses
me, moving in the presence of fixed nuclei I with masses MI and charge ZI , is

given by:

Ĥtot = −
~2

2me

∑
i

∇2
i +

1
2

∑
i, j

e2

|ri − r j|
−

∑
i,J

ZJe2

|ri − RJ |
−

∑
I

~2

2MI
∇2

I +
1
2

∑
I,J

ZIZJe2

|RI − RJ |
.

(2.1)

First, the Born-Oppenheimer approximation is made, which assumes that because
of the difference in time-scales between the dynamics of the electrons (fast) and the
nuclei (slow), the eigenstates are separable: 43

Ψ(~r, ~R) ≈ Ψe(~r)Ψn(~R),

where ~r the vector of the set {ri} of (vector) electron coordinates, and ~R likewise for
the nuclei. This leads us to consider the dynamics of the electrons in a quasi-static
background potential determined by the nuclei. Consequently we solve the usual
Schrödinger equation for only the electrons:

i~
∂Ψe

∂t
= Ĥ Ψe, (2.2)
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with Ĥ now given by:

Ĥ = −
~2

2me

∑
i

∇2
i +

1
2

∑
i, j

e2

|ri − r j|
−

∑
i,J

ZJe2

|ri − RJ |
,

or using atomic units, for which ~2/me = e = 4πε0 = 1:

Ĥ = −
1
2

∑
i

∇2
i +

1
2

∑
i, j

1
|ri − r j|

−
∑
i,J

ZJ

|ri − RJ |
. (2.3)

The unit of energy is 1 Hartree ≈ 27.211 eV. In this Hamiltonian we recognize:

• a kinetic term T̂ = − 1
2
∑

i ∇
2
i ,

• an interaction potential V̂int = 1
2
∑

i, j
1

|ri−r j |
, and

• an external potential due to the nuclei V̂ext = −
∑

i,J
ZJ
|ri−RJ |

.

This is a prototypical many-body problem, and the difficulty in solving it lies in the
electrostatic interaction potential, which is an inherently long-ranged two-particle
interaction. Usually we write this Hamiltonian as Ĥ = Ĥse+Ĥint, where Ĥse = T̂ +V̂ext

can be thought of as a single electron Hamiltonian, and Ĥint = V̂int as the many-body
interaction Hamiltonian.

The solutions to the single-electron Hamiltonian for n fermionic particles can be
written as an antisymmetrized product of n single-particle wavefunctions:a

Φm(~r) =
1
√

n!

∣∣∣∣∣∣∣∣∣∣∣∣
φm1 (r1) φm1 (r2) · · · φm1 (rn)
φm2 (r1) φm2 (r2) · · · φm2 (rn)

...
...

. . .
...

φmn (r1) φmn (r2) · · · φmn (rn)

∣∣∣∣∣∣∣∣∣∣∣∣ (2.4)

which is a Slater determinant, with m the vector of the set {mi} of quantum numbers
describing the electrons (spin, etc.). The set of all such Slater determinants that can
be constructed from a complete single-particle basis form a complete basis of the
many-fermion Hilbert space, 44 and thus the interacting many-electron wavefunction
can be written as a linear combination of these basis-functions:

Ψe(~r) =
∑

m
cmΦm(~r) . (2.5)

The key idea behind Density Functional Theory (DFT) is to replace this many-
body Hamiltonian by a single-particle Hamiltonian, which is a functional of only

aAs such, it accounts for exchange, but not many-body correlation effects, and is thus itself still a single-
particle wavefunction.
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the ground-state density (from which all other properties may be obtained). This
means that instead of a wavefunction depending on 3N coordinates, we can now
characterize the ground state by its density n(r), a function of only 3 coordinates.
That this is possible, for the general many-body problem, is the content of the
Hohenberg-Kohn theorems.

2.2.1 The Hohenberg-Kohn Theorems
Our approach will be to construct an energy-functional of a single variable (the
density), which leads to an appropriate single-body problem for the ground-state of
the interacting system. This is possible because of the Hohenberg-Kohn the theorems,
proved by the eponymous in 1964, 45 which we state here in the formulation of
Martin: 43

1. For any system of interacting particles in an external potential Vext(r), this
potential (and so the Hamiltonian) is determined uniquely (up to a constant)
by the ground state density n0(r). Consequently, as all properties of the system
are governed by the Hamiltonian, they are completely determined given only
this ground-state density.

2. A functional E[n(r)] can be defined for the energy, which is valid for any such
potential Vext(r), such that the global minimum of the functional is the ground-
state energy of the system. Consequently, the density n(r) which minimizes
this functional is the ground-state density n0(r), and minimization of E[n(r)]
alone is enough to fully determine the exact ground-state energy and density.

It is important to point out that the Hamiltonian (2.3) contains a universal inter-
action term, plus an external potential which is specific to a particular system. In the
next section we see that the effect of the interactions in the system can be captured
by a universal potential which does not depend on this external potential.

A further comment is in order on the meaning of exact density functional theory.
The above theorems restate the many-body problem in terms of the ground-state den-
sity, but we cannot yet exploit this because the form of the energy functional which
yields the exact ground-state is unknown (and in practice will be approximated). If it
were known, however, this functional would fully determine the Hamiltonian, and so
also determine all other properties of the system, including the excitations, though
these would not correspond to the minimum of the energy functional. 43

2.2.2 The Kohn-Sham Equations
In order to make DFT practicable we must make a further step, in replacing the
original many-body problem by an equivalent independent single-particle problem.
This combination of independent single particles with an interacting density is the
crux of the Kohn-Sham Ansatz. 46 The Ansatz, specifically, is that for any Vext, the
ground state density of the original interacting system is equal to that of an auxiliary
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non-interacting system. This is referred to as “non-interacting V-representability,”
though no rigorous proofs for this exist to date.

Formally, we write the energy EKS as a density-functional:

n(r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1

|ψσi (r)|2, (2.6a)

Ts = −
1
2

∑
σ

Nσ∑
i=1

〈ψσi |∇
2|ψσi 〉 =

1
2

∑
σ

Nσ∑
i=1

∫
d3r |∇ψσi (r)|2, (2.6b)

EH[n] =
1
2

∫
d3r

∫
d3r′

n(r)n(r′)
|r − r′|

, (2.6c)

EKS = Ts[n] +

∫
d3r Vext(r)n(r) + EH[n] + EII + Exc[n] (2.6d)

with the density n(r) obtained from summing over all occupied spin-orbitals ψσi ,
Ts the single-particle kinetic energy,b EH[n(r)] the Hartree energy, EII the ion-ion
interactions between nuclei, and Exc[n(r)] the exchange-correlation energy. The latter
in principle carries the property of exchange antisymmetry for fermions, in addition
to the many-body correlations as they are expressed through the density, and in
practice is where the approximation to the unknown exchange-correlation energy
enters our considerations.

The auxiliary single-particle Hamiltonian and Kohn-Sham equations are derived
from this by taking the variation of this energy with respect to the orbitals:

δEKS

δψσ∗i (r)
=

δTs

δψσ∗i (r)
+

[
δEext

δn(r, σ)
+

δEH

δn(r, σ)
+

δExc

δn(r, σ)

]
δn(r, σ)
δψσ∗i (r)

,

using the chain rule, and subjection to the orthonormalization 〈ψσi |ψ
σ′

j 〉 = δi jδσσ′ .
This variation yields the Kohn-Sham equation (a time-independent Schrödinger-like
equation) whose solution (see e.g. Martin 43 or Jones & Gunnarsson 47) gives the
Kohn-Sham eigenvaluesc εσi and orbitals ψσj (r):

HKS ψσi (r) = εσi ψσi (r),

with the Kohn-Sham Hamiltonian given by:

HKS = −
1
2
∇2 −

∑
n

Zn

|r − rn|
+

∫
d3r′

n(r′)
|r − r′|

+ Vxc[n](r) (2.7)

= −
1
2
∇2 + Vext(r) + VH[n](r) + Vxc[n](r).

bFormally, the definition of Exc[n] also contains 〈T̂ 〉[n(r)] − Ts , since Ts as defined in Eq. (2.6) is a
function of the orbitals rather than the density, while the full many-body kinetic energy is a function of
n(r) by the HK theorems.

cThese are in fact the Lagrange multipliers for the orthonormalization constraint.
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Considering the density to be fixed on the right-hand side, this Hamiltonian
describes independent particles moving in an effective potential Veff = Vext(r) +

VH[n](r) + Vxc[n](r). The expression recalls the single-electron terms T̂ + V̂ext of
Eq. (2.3), but with the interaction term included, split into a Hartree potential VH[n] =
δEH [n]
δn(r,σ) and an exchange-correlation potential Vxc[n] = δExc[n]

δn(r,σ) , which corrects the
mean-field Hartree interaction for many-body exchange- and correlation effects.

The density, in turn, is constructed from the orbitals, the single-particle eigen-
functions of this Hamiltonian: n(r) =

∑
occ

∑
σ |ψ

σ
i (r)|2. However, these themselves

depend on the solution of the eigenvalue problem, and this cyclical dependency is
resolved using a self-consistent field (SCF) approach, where the density is frozen to
find the orbitals, from which a new density is calculated, which is iterated back and
forth until convergence.

Such a formulation becomes a set of matrix-vector equations once we choose a
basis {φi(r)}, in which case the KS Hamiltonian Eq. (2.7) is referred to as the “Fock”
matrix. The eigenvalues εσi obtained by solving the eigenvalue problem have an in-
terpretation suggestive of the differential analogue of chemical potentials: derivatives
of the total energy with respect to the occupation nσi of a state, which is the content
of the Slater-Janak theorem: 48

εσi =
dEtotal

dnσi
=

∫
d3r

δEtotal

δn(r, σ)
dn(r, σ)

dnσi
. (2.8)

For the exact exchange-correlation, it is also true that the eigenvalue εHOMO of the
highest occupied molecular orbital (HOMO) corresponds to the negative of molecule’s
ionization potential, the true chemical potential of the level, though this is generally
not true.

Ahead of the discussion on the limits of the DFT+NEGF approach in section
2.5, we note the issue of derivative discontinuity 27,28 here. Vxc[n], introduced above
as the exchange-correlation potential, should have discontinuous jumps with the
occupations of states, at integer values of these occupations. This is especially
relevant in the limit where transport is through a weakly-coupled device-region, for
which the dominant mechanism will likely be single-electron tunneling. However,
when the exchange correlation energy is a continuous function of the density, this
may not be the case, yielding problems with the interpretation of the εσi as addition
and removal energies (chemical potentials) associated with discrete states with integer
occupation.

2.2.3 Exchange-Correlation Functionals
In the Kohn-Sham energy functional Eq. (2.6d), a vital part of the energy is the
exchange-correlation term, which captures all many-body interactions beyond the
mean-field Coulomb interaction of the Hartree term. In some cases it can be found
exactly (in particular for the homogeneous electron gas), but in all practical quantum-
chemistry calculations it is approximated. The results of calculations are tied to
the quality of the approximation, which remains true when we discuss combined
DFT+NEGF approaches later.
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The simplest approximation is the local density approximation (LDA), 46 or more
generally the local spin-density approximation (LSDA) when the Kohn-Sham equations
are generalized to include spin. This assumes that the exchange-correlation energy
density εLDAxc at each point in space is the same as that of a homogeneous electron
gas at the same density:

Exc[n(r)] =

∫
d3r εLDAxc [n(r)] · n(r),

for which exchange and correlation expressions are available. 43 The major flaw in
LDA is spurious self-interaction via the Hartree term, which in the Hartree-Fock
method would be exactly canceled by the (non-local) exchange interaction.d In a local
approximation to exchange, the cancellation is only approximate. The error made
may be negligible for extended, homogeneous systems, but tends to be important in
more confined systems such as atoms and molecules.

It turns out that LDA still works relatively well in solids (particularly when the
electron density is in fact relatively homogeneous), but fares less well in describing
molecules (overestimating binding energies), which motivated the development of
generalized gradient approximations to the XC functional. These are expansions in
gradients of the local density, fxc

(
n(r),∇n(r),∇2n(r), . . .

)
, modified such that certain

fundamental requirements are satisfied. Well-known ones are the PW91 49 and PBE 50

functionals, which usually produce sufficient accuracy for chemical calculations.
Later, hybrid functionals were introduced, which replace a fraction of the GGA

exchange term by Hartree-Fock exchange, leading to the development of e.g. the
B3LYP functional. 51,52 This is now considered the standard for predictive accuracy in
DFT calculations, although less popular in the condensed matter physics community
due to its ad hoc nature and the fact that it restores the dependency of the Hamilto-
nian on the orbitals rather than only the density. The preference there (in particular
for extended systems) remains PBE GGA, which together with LDA and B3LYP, may
be considered the “standard approximations.”

Attempts have also been made to directly correct for spurious self-interaction,
rather than the inclusion of exact exchange. This typically leads to approximate,
orbital-dependent corrections to existing functionals, 25,26,53 which we will not make
use of in the present work.

2.3 Green’s Functions

We now proceed to discuss the main ideas behind the non-equilibrium Green’s
function (NEGF) formalism, and its application to transport. The discussion

that follows may be found in considerably expanded detail in many pedagogical and
research texts. 54–59

dIn the Hartree-Fock approach, an exchange or “Fock” term is added to the Hartree potential which we
have introduced, which exactly cancels the self-interaction error made in the latter.
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The Schrödinger equation in Eq. (2.2) can be written in the form:

L̂Ψ(r, t) = f (t) with:

L̂ = i~ ∂t − Ĥ (2.9)

a linear differential operator and f (t) = 0. A Green’s function can be defined which
is the impulse response of the system to this linear operator, satisfying:

L̂Ĝ(t) = 1̂δ(t), (2.10)

which has a formal solution, split into a forward time and backward time part by
introducing the Heaviside (or step-) function θ(x):

Ĝ+(t) = −θ(t)
i
~

e−iĤt/~, (2.11a)

Ĝ−(t) = θ(−t)
i
~

e−iĤt/~. (2.11b)

These are the retarded and advanced Green’s functions, such that Ĝ+ propagates a
state vector |Ψ(t)〉 forward in time, and Ĝ− the reverse:

|Ψ(t)〉 = i~Ĝ+(t − t0)|Ψ(t0)〉 ∀t > t0 , (2.12)

|Ψ(t)〉 = −i~Ĝ−(t − t0)|Ψ(t0)〉 ∀t < t0 . (2.13)

Since the Hamiltonian is Hermitian, we also have that:(
Ĝ+(t)

)†
= Ĝ−(−t) .

In transport our particles propagate from reservoirs into an active region, which
is coupled to the unperturbed dynamics contained (for both, in the absence of the
coupling) in Ĥ0 by an interaction potential V̂ , such that Ĥ = Ĥ0 + V̂ . For the
unperturbed part of the Hamiltonian we define the advanced/retarded pair Ĝ±0 , the
inverse of which satisfies:

i~ ∂t − Ĥ0 = 1̂δ(t)
(
Ĝ±0

)−1
,

such that for the full retarded/advanced pair:

1̂δ(t)Ĝ±(t) = 1̂δ(t)Ĝ±0 (t) + Ĝ±0 (t) V̂(t) Ĝ±(t) .

Focusing only on the retarded Green’s function for the moment, we find that on
integrating over time:e

Ĝ+(t − t0) = Ĝ+
0 (t − t0) +

∫ t

t0
dt′ Ĝ+

0 (t′ − t0)V̂Ĝ+(t′ − t0). (2.14)

eTime dependence of V̂ suppressed for compactness.
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This is the Lippmann-Schwinger equation. Iterating this equation we obtain the
series expansion:

Ĝ+(t − t0) = Ĝ+
0 (t − t0) +

∫ t

t0
dt′ Ĝ+

0 (t − t′)V̂Ĝ+
0 (t′ − t0)

+

∫ t

t0
dt′

∫ t′

t0
dt′′ Ĝ+

0 (t − t′) V̂ Ĝ+
0 (t′ − t′′) V̂ Ĝ+

0 (t′′ − t0) + · · ·

Each term includes an increasing number of interactions with V̂ , integrated over all
intermediate times at which they may have occurred. If the series converges, we
write the resulting effective interaction as a self-energy Σ̂+(t′ − t′′), such that:

Ĝ+(t − t0) = Ĝ+
0 (t − t0) +

∫ t

t0
dt′

∫ t′

t0
dt′′ Ĝ+

0 (t − t′)Σ̂+(t′ − t′′)Ĝ+(t′′ − t0). (2.15)

This is the Dyson equation.

If we Fourier-transform the retarded/advanced Green’s function, we find the com-
plementary expressions in the energy/frequency domain:

Ĝ±(ε) = lim
η→0

∫ ∞

−∞

d(t − t0) ei ε(t−t0)
~ Ĝ±(t − t0) e∓

η(t−t0)
~ ,

where an infinitesimal real η > 0 has been added to ensure convergence of the
integral. On substituting Eq. (2.11) we obtain the propagator in energy space:

Ĝ±(ε) = lim
η→0

1̂
(ε ± iη) 1̂ − Ĥ

. (2.16)

Note that the singularities of Ĝ(ε) correspond precisely to the spectrum of Ĥ, and
due to η these poles are shifted off the real line slightly, into the negative complex
half-plane for Ĝ+ and into the positive complex half-plane for Ĝ−. The two Green’s
functions in Fourier space are related by:(

Ĝ+(ε)
)†

= Ĝ−(ε).

Next, turning to the Lippmann-Schwinger equation, we find that:

Ĝ±(ε) = Ĝ±0 (ε) + Ĝ±0 (ε) V̂ Ĝ±(ε), (2.17)

while the Dyson equation is Fourier transformed to:

Ĝ±(ε) = Ĝ±0 (ε) + Ĝ±0 (ε) Σ̂± Ĝ±(ε). (2.18)

This can be turned into an explicit equation for the full propagator: Ĝ±(ε) =((
Ĝ±0 (ε)

)−1
− Σ̂±(ε)

)−1
, which we use repeatedly.
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We now turn to the particular case where the perturbation V̂ represents the
coupling to a reservoir contact c to a molecular device m. The general structure of
the self-energies can then be derived by considering the Schrödinger equation for
the system and the reservoir:(

1̂ 0
0 1̂

)
=

(
ε1̂ − Ĥm V̂†

V̂ ε1̂ − Ĥc

) (
Ĝ±m Ĝ±mc
Ĝ±cm Ĝ±c

)
. (2.19)

From this it is easily found that:

Ĝ±m(ε) =
1̂

ε1̂ − Ĥm − V̂† 1̂
ε1̂−Ĥc

V̂
, (2.20)

where the final term in the denominator is the self-energy Σ̂±. This may be explicitly
written as a Dyson equation by introducing the unperturbed propagators Ĝ±c,0 and

Ĝ±m,0 of the reservoir and molecular device regions respectively:

Σ̂±(ε) = V† Ĝ±c,0(ε) V̂ , (2.21)

Ĝ±m(ε) =

((
Ĝ±m,0(ε)

)−1
− Σ̂±(ε)

)−1
. (2.22)

The coupling operators are defined as

Γ̂i(ε) = i
(
Σ̂+

i (ε) − Σ̂−i (ε)
)

= −2Im
{
Σ̂+

i (ε)
}

(2.23)

for the ith reservoir. Note that the Γ̂i are the non-Hermitian part of the self-energies
Σ̂+

i , the existence of which corresponds to the open nature of the system, allowing
particles to move in and out of the molecular region.

For application of the formalism within a DFT+NEGF context, we are primarily
interested in density operators and matrices, and we now directly define the spectral
function:

Â(ε) = i
(
Ĝ+(ε) − Ĝ−(ε)

)
, (2.24)

which acts like a density of states operator in the sense that it counts the available
states. Evaluated in a positional basis, we obtain the density correlation:

ρ(r, r′, ε) ≡
1

2π
〈r|Â(ε)|r′〉 = i

G+(r, r′, ε) −G−(r, r′, ε)
2π

= −
1
π

Im
{
G+(r, r′, ε)

}
(2.25)

which, traced over energy (and expressed in a discrete basis) yields the density matrix
ρ. Setting r′ = r yields the local density of states (LDOS), which can be integrated to
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yield the density of states (DOS):

D(r, ε) = −
1
π

Im
{
G+(r, r, ε)

}
, (2.26)

D(ε) = −
1
π

∫
r
d3r Im

{
G+(r, r, ε)

}
. (2.27)

In a discrete basis (e.g. in a DFT code), the latter becomes a trace over all basis-
functions. If we integrate Eq. (2.26) over energy instead we obtain the spatial density:

n(r) =

∫
dε D(r, ε) . (2.28)

The derivation of the current as I = Tr
[
ρ̂ Ĵ

]
with Ĵ the quantum mechanical

current operator is involved, 17 and we will only give enough details to make it
plausible in what follows. For full details we refer to the textbooks noted at the
start of the present section, but for our purposes it is enough to note that it can be
shown60 that the spectral function is given by:

Â(ε) = Ĝ+(ε) Γ̂(ε) Ĝ−(ε)

with Γ̂ as in Eq. (2.23). By specifying Γ̂ further for each reservoir i, the total spectral
function may be split into parts Âi(ε) = Ĝ+(ε) Γ̂i(ε) Ĝ−(ε) such that:

Â(ε) = i
(
Ĝ+(ε) − Ĝ−(ε)

)
= Â1(ε) + Â2(ε)

in the two reservoir case. These “left-” and “right-”contact spectral functions describe
the in- and outflow from each reservoir when there is no direct coupling between
them, each populated according to their respective Fermi distributions. It can then
be shown that: 18,60

I =
2e
h

∫
dε Tr

[
Γ̂1(ε)Â2(ε)

] [
f (ε; µ1) − f (ε; µ2)

]
at contact 1 or

=
2e
h

∫
dε Tr

[
Γ̂2(ε)Â1(ε)

] [
f (ε; µ1) − f (ε; µ2)

]
at contact 2. (2.29)

We expand these and identify with the Landauer transmission T (ε) of Eq. (1.1) to
findf T (ε) = Tr

[
Γ̂1 Ĝ+(ε) Γ̂2(ε) Ĝ−(ε)

]
, such that in this formalism the Landauer

current becomes:

I =
2e
h

∫ ∞

−∞

dε
[
f (ε; µ1) − f (ε; µ2)

]
Tr

[
Γ̂1(ε) Ĝ+(ε) Γ̂2(ε)Ĝ−(ε)

]
. (2.30)

The bias dependence is implicit in the Σ̂+
i (ε; µi) (and therefore the Γ̂i(ε)), and explicit

in the distributions f (ε; µi) for each reservoir.

fThe equivalence of the results of Eq. (2.29) are contained in the cyclic invariance of the trace.
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The departure from equilibrium in the above expressions enters by the fact that
the reservoirs, while locally in equilibrium and thus described by a chemical potential
µi and a Fermi distribution, are not in equilibrium with each other, and so the charge
flow from reservoir 1 to 2 will not equal the reverse flow from reservoir 2 to 1 (which
is already taken into account in Eq. (2.29) where I = Iin − Iout). Hence µ1 , µ2 leads
to a net current in expression (2.30).

We have already noted that the density (matrix) obtained from the spectral func-
tion is the essential tool in the NEGF formalism, particularly as used to obtain the
(non-equilibrium) density necessary to couple NEGF with DFT. Out of equilibrium,
the density is obtained not from the simple form of Eq. (2.26), but from the spectral
function rewritten using the contact spectral functions introduced above:

Â(ε) = Ĝ+(ε) Γ̂1(ε) Ĝ−(ε) + Ĝ+(ε) Γ̂2(ε) Ĝ−(ε) ,

which in matrix-vector notation ultimately yields an expression for the density matrix
ρ of the form:

ρ =
1

2π

∫
dε [GΓ1G† f (ε; µ1) + GΓ2G† f (ε; µ2)]

as we will discuss in Chapter 3.

2.4 Two Limits

Before continuing our discussion, we pause to acknowledge a significant point
remarked by Evers et al. 13,61 In incorporating NEGF into a DFT calculation we

have made a choice about what it means to combine the methodologies, when in
fact there are two options:

1. Calculate the DFT Hamiltonian operator from the converged density of an ex-
tended molecule, and then use this ĤKS in an external Green’s function method
for transport. In this approach to obtaining n(r), when the limit of increasing
(well-conducting) contact size is taken (in the extended molecule), the details
of the interface become less and less important due to screening, and the
necessary boundary conditions effectively reduce to “sufficiently absorbing.”

2. Calculate the density from the Green’s function formalism during the self-
consistency cycle of a DFT calculation, allowing the (non-equilibrium) “ground-
state” to adjust to transport. Then again take the limit of increasing size of the
contacts contained in the extended molecule, where the same limiting result
is true, though the convergence may be quicker.

That we choose the second option in our main implementation is based on the
hope that with increasing system size, it converges to the “true” (Landauer) steady-
state transport more quickly. As the calculations are exposed to the effects of the
open contacts at an earlier conceptual stage, this is not unreasonable, but we remark
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that the other side of the coin is that we may pay some price in terms of stability
in the convergence of the method due to our choice to add significant complexity to
the SCF cycle itself.

2.5 Limitations and Strengths of DFT+NEGF

We now consider how well this combined approach should perform, and the
limitations imposed by basing it on DFT.

As we have previously remarked, DFT is the workhorse of quantum-chemistry
calculations. 16 In transport calculations, the goal of combining it with the non-
equilibrium Green’s function (NEGF) method is to describe a molecule (and part
of the metal electrodes) embedded between semi-infinite metal leads as an open
system.9,10,13,15,62

Kohn-Sham DFT involves the calculation of the Hartree potential, which takes
static polarization into account. However, it does not describe polarization effects
induced by changes in the charge distribution such as those which occur during
transport. Together with the presence of spurious self-interactions, 24 this is respon-
sible for the incorrect predictions for one- and two-particle excitations (band gaps
and exciton energies, respectively). This can at least partly be formulated in terms of
a lack of a correct derivative discontinuity in the DFT functional. 27,28

In weakly-coupled systems, where the (integer) charge fluctuations are substantial,
these shortcomings become apparent. In this limit, transport is dominated by a set of
transporting levels which correspond to transitions between the discrete many-body
states of the isolated molecule. These transitions show up as peaks in the spectral
density, with a width determined by the coupling to the leads. If the molecule is
(approximately) neutral at zero bias, the HOMO and LUMO orbitals are the main
candidate channels for low-bias transport.

In the gas phase, the difference between the HOMO and the ionization potential
(IP), and between the LUMO and the electron affinity (EA), can easily be obtained
as the difference between the DFT orbital levels and the corresponding chemical
potentials from ∆SCF calculations. 47 Neaton et al. 36 have suggested that these dif-
ferences are similar for the molecule in the junction, which leads to the so-called
‘scissors-operator’ procedure, where the transmission peaks corresponding to HOMO
and LUMO are corrected statically by a shift obtained from gas phase.

The polarization effects due to the contacts give an additional difference be-
tween gas phase and junction, and it is these last effects that we focus on in Chapter
6. Kaasbjerg & Flensberg 38 and Mowbray & Thygesen 37 have shown that such an
approach significantly corrects the calculated transport gap, which (together with
the scissors operator) brings it into much better agreement with experimental ob-
servations, particularly when a gate is present near the molecule (which provides
additional screening). 38

However, since we can obtain good ground-state charge distributions using DFT
for a given charge state, we will now show how we incorporate these into an appro-
priate generalization of the simple case discussed previously, Eqs. (6.1)-(6.2).
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Notwithstanding justified criticism against using DFT for transport (which we
acknowledge in the following chapters), it should not be forgotten that DFT is arguably
the single most effective computational tool ever developed for understanding the
properties of molecules, solids and liquids. While in practice we must use imperfect
functionals, there is a lot that can be learned from DFT+NEGF approaches, although
the interpretation and the use of the results is often nontrivial. Methods more reliable
than DFT exist (e.g. GW calculations, configuration interaction calculations, exact-
exchange methods), but these are typically at least an order of magnitude worse in
scaling with the size of the problem.

For a recent overview, we refer to the excellent, accessible review by Kieron
Burke, 16 and the older one by Jones & Gunnarsson. 47 Standard textbooks in the field
are those by Parr & Yang,63 Dreizler & Gross64 and Martin 43 respectively.

2.6 Chemistry with ADF, Transport with BAND

For our concrete implementation of this molecular transport method, we have
chosen to build on the ADF/BAND quantum chemistry package. The underlying

DFT code in which it is implemented, BAND, 40 is a periodic structure code which
uses a local basis, rather than the more common plane-wave basis used for studying
extended systems. This comes from its kinship with the ADF molecular code. 42

Additionally, it uses a combination of Slater-type (STO) and numerical atomic orbitals
(NAO) as basis-functions,g which behave much better at the wavefunction cusp near
the nucleus, as well as in the long tail (in contrast to the use of Gaussian or plane-
wave basis sets). Such basis sets are available from the single-ζ (SZ) through triple-
ζ-plus-double-polarization (TZ2P) quality for most atoms in the periodic table.

A second feature that played a role in the decision to build on BAND in the
present work is the concept of variable periodicity. BAND can handle not only fully
3D extended systems (bulk crystals), but also 2D (planar materials, e.g. graphene65),
1D (atomic chains) and 0D systems (effectively gas-phase “molecular” calculations,
as in ADF). This flexibility allows us to first model 3D bulk electrodes, and later
incorporate them into transport calculations either with (1D-3D) or without periodic
boundary conditions (0D), at our discretion.

Both codes allow for the incorporation of relativistic effects at the level of the
zero-order regular approximation (ZORA),66,67 either in scalar relativistic form or via
full spin-orbit coupling. The former, in particular, should not be neglected in model-
ing metals such as gold (Au) commonly used for the electrodes in molecular transport
experiments, as the size of the nucleus increases.

A number of techniques for computational speedup are also inherited by our
implementation:

gSTO’s are optimal fits of functions of type φ(r) = xaybzce−ζr to the Slater orbitals introduced in Eq. 2.4.
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• The code is parallelized and has been tuned on high-performance computing
systems based on Intel and IBM architectures. For details of the parallelization
in general, we refer to te Velde et al. 42 Note however, that since publication,
the original SPMDh approach has been supplanted by a robust shared-memory
approach, allowing calculations to scale to considerably larger systems without
exceeding the memory capacity of a typical modern workstation.i

• Linear-scaling techniques68 have been implemented in order to significantly
speed up large calculations, and have been demonstrated on the architectures
noted in the previous point.69,70

• The code allows for the use of frozen-cores in calculations to efficiently treat
the inner atomic shells, but does not require it, which conversely allows for
all-electron calculations, if desired.

Two techniques in particular have, however, not yet been exploited in the work
presented in this thesis:

• Space-group symmetry is used by BAND to reduce the computational effort in
performing integrations over the Brillouin zone. This should allow significant
computational speedup for the systems we consider as well, but its extension
to our method has not yet been implemented.

• Calculations beyond the Γ-point approximation (k = 0) are parallelized in
BAND’s implementation. We do not make use of this, and the natural path for
the implementation of beyond-Γ-point calculations in treating the electrodes
may not make use of it either.

It bears remarking that this localized-basis approach using STO/NAO basis sets
is, in principle, a competing approach to both plane-wave and Gaussian-basis codes.
The choices made in using the ADF/BAND package:

• Make the code perhaps slightly less computationally efficient in handling large
extended systems than plane-wave codes, but make it significantly more suit-
able for handling the molecular device region in a transport junction, where
the charge density is significantly more localized in nature. The BAND code
uses essentially the same basis sets as its gas-phase molecular counterpart,
ADF, making DFT results extremely comparable between the two.

• On the other hand, compared with Gaussian basis sets, the code trades more
expensive 3D integrations (e.g. in evaluating the Coulomb and XC-potentials)
against the fact that STO/NAO’s are both physically better motivated, and cause
the electronic wavefunctions and density to have more correct behavior near

hSingle Process Multiple Data
iTypically 8-16 cores running at roughly 3 GHz, as of 2012.
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the nuclei and in the tails. Moreover, they allow efficient evaluation, with
roughly a factor 3 fewer basis-functions than the number of Gaussians.68

Finally, we also note our extensive use of electronic structure and geometry-
optimization calculations using the ADF code, performed in order to gain insight into
the molecules of interest in this thesis.
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3
A DFT+NEGF Transport

Implementation

We present a novel implementation of the first-principles approach to molecular charge
transport, combining density function theory (DFT) with the non-equilibrium Green’s
function (NEGF) formalism. We have implemented this in the ADF/BAND quantum
chemistry package. This chapter focuses solely on the implementation, adding previ-
ously unpublished details of complementary techniques, such as the implementation of
density-constrained convergence acceleration, constant gating of the molecular region,
wide-band limit (WBL) approximations and post self-consistent transport calculations.

Parts of this chapter have been published in J. Phys. Chem. C (2012)
at http://dx.doi.org/10.1021/jp3044225.
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34 3. A DFT+NEGF Transport Implementation

This chapter will expand on the key implementation issues faced in developing
our molecular transport method. As the reader will recall from section 2.6, the

underlying DFT code in which the DFT+NEGF method is implemented, BAND, 1–3 is
a periodic structure code which uses a local basis and a combination of Slater-type
(STO) and numerical atomic orbital (NAO) basis sets. These are usually complemented
by frozen-core approximations of the inner electron shells of the atoms in the system.
Smooth radial confinement of the basis-functions can be applied using a Fermi-Dirac
function of the distance from the nucleus. The code also supports variable period-
icity, ranging from 0D (none), 1D (chain), 2D (slab) and finally to 3D (bulk) geometries.

The normal “path” of the multi-stage transport calculation is roughly:

1. Calculation of infinite bulk contacts’ Hamiltonian HKS,

2. Determination of a tight-binding representation of the converged HKS,

3. Calculation of the self-energies Σ1,2(ε) of semi-infinite bulk contacts,

4. Alignment of the leads with the central extended-molecule region composed
of bulk material,

5. Transport calculation proper, with extended-molecule region now comprising
the molecule coupled to part of the electrodes.

We begin by outlining the way we implement the NEGF formalism of Chapter 2 in
matrix-vector notation in §3.1. Then, we discuss the partitioning of the model system
in §3.2, the treatment of the Hamiltonian obtained from the periodic band-structure
calculation in §3.3, and how we obtain surface Green’s functions and self-energies
coupling the infinite leads to an “extended molecule" in §3.4. The evaluation of
the equilibrium density matrix is outlined in §3.5, which is necessary for any full
alignment or zero-bias transport calculation. In §3.6 we then discuss the alignment
of the potential between computational stages, and its deeper physical relation with
the accurate determination of the Fermi-levels of the contacts. The details of the non-
equilibrium two-terminal calculations are treated in §3.7, and in §3.8 we discuss our
implementation of gating, as a rudimentary model for three-terminal calculations.

The code can also be used to perform two types of approximate transport calcula-
tions: post-SCF transport calculations are discussed in §3.9, and the implementation
of wide-band limit (WBL) calculations are discussed in §3.10. The chapter then closes
with a brief discussion of scaling and performance in §3.11.

Finally, as we discuss only implementation in this chapter and not the code itself,
we note that the code structure and flow is discussed briefly as Appendix E, and
that we include sample input files in Appendix F. Besides these, our constrained DIIS
algorithm extension may also be of interest, and is included as Appendix D.
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Figure 3.1: Schematic geometry of the extended molecule (physical molecule and portion of the contacts
to which it is attached) and semi-infinite bulk portion of the contacts.

3.1 Modeling Overview
In order to model the molecular system and the contacts to which it is connected
using ab initio techniques, we need to reduce the size of the system being modeled
from a molecule between infinitely large contacts to something more manageable.
To this end we use the “extended molecule” (EM) scheme, 4,5 illustrated in Fig. 3.1.
The system is partitioned into a central extended molecule comprised of the actual
molecule and some connecting parts of the leads on each side. This extended
molecule, in turn, is then connected to true semi-infinite bulk leads via a well-
defined metal-metal interface. Thus, in our model the leads are described by a
finite-dimensional Hamiltonian Ĥ corresponding to a portion of true bulk metal,
corrected by a self-energy Σ̂ containing the response of the leads.

The key benefits of modeling the system in this way are first that we are able to
place the interface between the leads and the active portion of the single-molecule
system between metal layers, an interface which is much better understood than
the complex molecule-metal binding geometries which may occur. The details of
these binding geometries may then be varied, without the need to recalculate the
contributions from the bulk contacts. A subtler point is that, as argued by Evers et
al.6,7, this approach allows us to increase the size of the extended molecule in order
to test convergence to transport properties which correspond to truly bulk-reservoir
electrodes, which they have shown for tight-binding chains and cluster Au electrodes
of varying sizes. Furthermore, the metallic parts of the extended molecule allow us
to take simple polarization effects in the leads into account. Finally, the approach
allows us to obtain the propagator for the entire extended molecule in a simple way,
which we derived in the operator formalism of section 2.3 and implement here.

To treat the metallic contacts, a calculation is first performed in the band-
structure DFT code BAND to obtain the Fock matrix for a bulk unit cell from the
self-consistent density via the Kohn-Sham Hamiltonian of Eq. (2.7). The density is
constructed from the occupied Kohn-Sham orbitals as n(r) =

∑
iocc |ψi(r)|2, but in

the following, it should be kept in mind that the Kohn-Sham Hamiltonian implicitly
depends on the bias voltage Vb, the spin and the electron density n(r), which we
will usually omit for compactness of notation.
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In BAND we represent the Hamiltonian (2.7) in a non-orthogonal basis, and so
obtain the Fock matrix as HKS = [〈φi|ĤKS|φ j〉] and the overlap matrix as SKS =

[〈φi|φ j〉]. From the Fock and overlap matrices for the bulk leads we calculate the
(matrix) surface Green’s functions Gc(ε) by an efficient recursion algorithm.8,9 We
then find the corresponding (matrix) self-energies Σc=1,2(ε) ∼ τGc(ε) τ† of the two
contacts and τ the coupling between layers in the leads. These are then combined
with the Hamiltonian of the extended molecule to find the full Green’s function:

GEM(ε) =

(
ε SEM − HEM − (Σ1(ε) + Σ2(ε))

)−1
. (3.1)

where G(ε), Σ1,2(ε) refer to the retarded (causal) Green’s function and self-energies,
respectively. The Green’s functions are then used in a modified self-consistent field
(SCF) approach based on the density derived from the Green’s function:

φ(0)
j (r)→ n(0)(r)→ HKS + Σ1 + Σ2 → G(ε)→ ρ→ n(1)(r)→

HKS + Σ1 + Σ2 → G(ε)→ ρ→ n(2)(r)→ . . . (3.2)

which may be compared to the usual SCF cycle in DFT:

φ(0)
j (r)→ n(0)(r)→ HKS → φ(1)

j (r)→ n(1)(r)→ HKS . . .

If we assume that the contacts each couple only with the central extended molecule,
then we can simplify the general Green’s function formalism and obtain the density
matrix from the Green’s function at each iteration as an integral over the real-valued
energies:

ρ =
1

2π

∫
dε [ G(ε)Γ1(ε)G†(ε) f (ε, µ1) + G(ε)Γ2(ε)G†(ε) f (ε, µ2) ] . (3.3)

Γ(ε) is defined as i
(
Σ(ε) − Σ†(ε)

)
for each contact. µ1 and µ2 are the chemical

potential of source and drain electrodes. The bias voltage follows as Vb =
µ1−µ2

e .
This is general to the case of differing chemical potentials (e.g. biased devices or

different contact materials), but doesn’t take e.g. direct coupling between leads into
account. In the equilibrium case with a single chemical potential in both leads, the
expression further simplifies to:

ρ = −
1
π

∫
dε Im {G(ε)} f (ε, µ) . (3.4)

When the SCF cycle (3.2) converges, some interesting properties of the molecular
system may be evaluated, using the converged G(ε) to obtain e.g. the density of
states (DOS) by:

D(ε) = −
1
π

Tr [ Im {G(ε) } S ] , (3.5)
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and the current by a Landauer-like expression, with T (ε) ∼ Tr
[
Γ1GΓ2G†

]
such that:

I =
2e
h

∫
dε Tr

[
Γ1(ε)G(ε)Γ2(ε)G†(ε)

]
( f (ε, µ1) − f (ε, µ2)) . (3.6)

The integral above is over the real line, but can be performed much more efficiently
by using analytic continuation and complex contour integration, 10 which we discuss
in the next chapter.

An important technical issue is that the offset of the potential cannot be expected
to be the same in the junction geometry as that used for the bulk metal calculation
for the contacts, due both to the controlled approximation in the tight-binding fit,
and the much larger intrinsic issue of a floating-potential effect in the periodic
band-structure code. The latter arises because in any band-structure DFT code
the potential, and thus the Hamiltonian, are only determined up to some additive
constant, i.e. H and H + ∆φS give the same spectrum for an (energy-independent)
constant offset ∆φ. However, as our approach to transport involves several stages
(bulk calculation of contacts, self-energy calculation, self-consistent alignment and
transport calculation), we must take care to ensure that the (arbitrary) offset in the
potential is consistent across all stages.

To find the offset ∆φ, an alignment calculation is carried out next, such that for
the contacts in the transport calculation, it holds that:

HKS ≈ HTB + ∆φ · STB ,

to within some acceptable tolerance. Once converged, we proceed to the calculation
of an arbitrary molecular system, which may be under bias.

3.2 System Partitioning

The partitioning illustrated in Fig. 3.1 is made precise in terms of the operators
in the formalism in Fig. 3.2. The partitioning of the Hamiltonian into extended

molecule (Hm) plus contacts (Hc = H1 ⊕ H2) is as follows:

H =

 Hm τ†1 τ†2
τ1 H1 0
τ2 0 H2

 ≡
(

Hm τ†

τ Hc

)
(3.7)

such that the Green’s function for the entire system is determined by inverting:

(ε S − H)G(ε) = I . (3.8)

The specific approximation behind this partitioning is that we require the full
Hamiltonian for contacts and extended molecule to be correct in the Kohn-Sham
sense at each iteration, while the density matrix need only be correct for the extended
molecule. This is justified by its spatial separation from the (expected) field- and
charge-errors at the outer edges of the finite system. The errors there, in turn, are
minimized by replacing H1,2 by the stored bulk operators, as we discuss in section
3.6.
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Figure 3.2: Schematic geometry of the extended molecule and semi-infinite bulk portion of the contacts
indicating the regions on which each operator in the formalism is active

3.3 The Tight-binding Representation

From the bulk calculation, the Fock matrix is known with respect to BAND’s basis-
functions for many Bloch boundary conditions, represented by a dense set of

Bloch wavevectors k inside the Brillouin zone. We search for a tight-binding Fock
matrix, given in terms of BAND’s localized basis-functions, which reproduces BAND’s
Fock matrices as closely as possible.

The basis-functions are denoted
∣∣∣φαi 〉 , where i denotes a unit cell and α denotes

a particular orbital type:
〈r|φαi 〉 = φα(r − rαi ).

Here, rαi is the position of the atom in unit cell i about which the α-orbital is
centered. Taking the cell index i = 0 without loss of generality, we denote the
real-space tight-binding matrix elements in relation to k-space as:

HTB

αβ(k) =
∑
R j

HTB

iα, jβ eik·R j , (3.9)

The requirement that the matrix on the left-hand side is equivalent to Band’s Fock
operator suggests that:

F =
∑
αβ

∑
l

∣∣∣HTB

αβ(kl) − HKS

αβ(kl)
∣∣∣2 ,

be minimized with respect to the real-space matrix elements HTB
iα, jβ.

This minimization is done using the L-BFGS algorithm, 11 with a cut-off radius
which is increased as needed to meet a user-specified tolerance for the fit. As each
element of the tight-binding fit is calculated using only the lattice positions and the
reference value of the Fock matrix, it can be calculated independently, so that this
calculation is trivially parallelized, with linear scaling in the number of cores.

We emphasize, however, that we make a tight-binding fit HTB of HKS in terms
of the (known) lattice of the contact, as opposed to switching to a traditional tight-
binding model for the electronic structure. These TB Fock and overlap matrices,
together with the lattice, then form the input for our calculation of the surface
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Figure 3.3: Narrow tube (NT) in the infinite contact based on a single unit cell. Partitioning based
on principal layers, which due to electronic screening interact only with neighboring principal layers
(discussed in section 3.4).
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Narrow
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Figure 3.4: Wide tube (WT) in the infinite contact based on an `× ` grid of unit cells in the surface plane.
Compare Fig. 3.3 for the relation with the narrow tube.
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Green’s functions.

We now have a set of Fock and overlap matrices corresponding to k-vectors in
the Brillouin zone, from which we can calculate self-energies, for a ‘tube’ extending
into the contact as in Fig. 3.3. From these, we can calculate self-energies on the
same grid of k-vectors. We assume the number of k vectors in the Brillouin zone
to be N2. From these matrices, it is then possible to calculate their counterparts for
a wider tube with periodic boundary conditions, cf. Fig. 3.4. We now denote the
original (narrow) tube by NT, and the wide tube as WT.

We assume that the 2D unit cell of the wide tube is an integer multiple (` × `) of
that of the narrow tube. Within the narrow tube, we can write the Fourier transform
of the matrix M (which may be the Hamiltonian or the overlap matrix) for any wave
vector k as

MNT
αβ (k) =

∑
r‖

Mαβ(r‖)eik·r‖ ,

where the sum
∑

r‖ is over all relative positions rαi − rβj within the large volume

corresponding to the N2 k-vectors in the two-dimensional BZ in the surface plane.
Taking the wide tube with periodic boundary conditions (i.e. at the Γ-point), we

have
MWT
αβ (r‖) =

∑
RWT

Mαβ(r‖ + RWT) ,

where RWT is any m · aw
1 + n · aw

2 , linear combination of wide-tube basis vectors
(aw

i = `an
i in terms of the NT basis vectors). This equation expresses the periodicity

of MWT. On the other hand we can write:

Mαβ(r‖ + RWT) =
(2π)2

Ω

∫
d2k Mαβ(k)eik·(r‖+RWT).

Combining these two ingredients, we can write

MWT
αβ (r) =

∑
RWT

1
N2

∑
kBZ

Mαβ(kBZ)eik·(r‖+RWT).

The sum over the wide tube vectors RWT singles out the reciprocal lattice vectors
(lying inside the NT Brillouin zone) of the wide tube:∑

RWT

eik·RWT
=

N2

`2

∑
KWT ∈ BZNT

δ(k − KWT),

from which we immediately have:

MWT
αβ (r‖) =

1
`2

∑
KWT ∈ BZNT

MNT
αβ (KWT)eiKWT·r‖ .

This expression tells us how to obtain the matrix elements between any two points
inside the wide tube from the matrix elements on the reciprocal lattice points of the
WT, lying inside the Brillouin zone of the NT.
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3.4 Surface Green’s Function & Self-Energies

Expanding Eq. (3.8) for the matrix Green’s function in the case of a non-orthogonal
basis yields the matrix relation:(

I 0
0 I

)
=

(
εSm − Hm εS†τ − τ†
εSτ − τ εSc − Hc

) (
Gm Gmc

Gcm Gc

)
(3.10)

(omitting the ε-dependence from the Green’s functions on the right-hand side). From
this follow closed expressions for the propagator Gm of the extended molecule using
self-energies, in the presence of a contact:

Gm =
(
εSm − Hm − (εS†τ − τ

†) Gc (εSτ − τ)
)−1

, (3.11)

and we identify:

Σc ≡ (εS†τ − τ
†) Gc (εSτ − τ)

as the self-energy of the contacts, which may be split as Σ1 + Σ2.a For two contacts
we specify the propagator further as G(ε) = (εS m − Hm − Σ1 − Σ2)−1, and it is this
subsystem which we subsequently focus on.

Two further remarks are important before continuing. First, we note that the
determination of Σc only requires knowing the surface couplings in (Gc)i j ∈ surf, which
makes this practical to implement in a DFT code with localized basis functions (such
as BAND). Second, we note that while the above is an exact description within the
limits of the one-electron picture (i.e. neglecting electron-electron interaction beyond
the mean-field level), in practice when calculating by an approximate method such
as an actual DFT implementation, we need to be aware of the consequences of the
limited spatial extent of the extended molecule, which may be felt by the central
region due to the Hartree term in the potential if it is insufficiently screened. Gener-
ally, for metals, the screening is strong enough to justify the approach for contacts
of a few atomic layers deep.

Now, our approach to obtaining the Green’s function G(ε) relies on the fact
that the metallic system has a finite interaction-range in real-space due to electronic
screening. This implies a local– and neighbor-coupling structure of the Fock matrices
which is tridiagonally structured as (τ, h, τ†) in a basis organized into adjacent layers
of atoms, and a similarly tridiagonally structured (sτ, s, s†τ) overlap matrix.

We introduce the concept of “principal layers,” because it is well known that
electronic screening limits the interaction range of the Coulomb potential to just a
few atomic layers in a metal. 12 This implies that we can give a description in terms
of blocks of 3-4 atomic layers called a “principal layer,” which interact only with the

aIn the literature Σ = τgτ† is often used as the definition of the self-energy; then τ corresponds precisely
to our (εS τ − τ) expression for the coupling of device and contact.
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neighboring principal layers, as in Figs. 3.3–3.4. Together with the use of localized
basis-functions, this allows us to use the structure of a Hamiltonian matrix as in
Eq. (3.12) corresponding to principal and adjacent (interacting) layers, as illustrated
in Fig. 3.3.

H =


h τ† 0 · · ·

τ h τ† 0 · · ·

0 τ h τ† 0
... 0

. . .
. . .

. . .

 . (3.12)

We consider the metal as being composed of an infinite number of layers in
space, and then find the relation between elements of the Green’s function for 2k

and 2k+1 principal layers by recursively eliminating the layers in between.8,9

From this we obtain the Green’s function for the surface and the bulk of an
infinite contact, and can study the latter’s convergence with respect to the bulk
calculation in BAND. This method is easily extended to evaluation over a Monkhorst-
Pack grid 13 in k-space, and parallelized in energy. This approach converges quickly,
and a sample calculation of the surface and bulk DOS is illustrated in Fig. 3.5 for
different grid densities in k-space in the plane of the contacts. In principle this k-
space dependence also carries over to the alignment and transport calculations, and
in the previous section we discussed a method for the construction of an expanded
self-energy for the contacts. However, we will present only calculations in the Γ-point
approximation in the remainder of this thesis, excluding the present chapter.

The key computational steps in this stage of the calculation are the complex
contour integrals over the Green’s functions (expressions (3.3)–(3.4)), which are a
more efficient way 10 to evaluate the density matrix from the Green’s function than
direct integration over the real line. The reason for the latter is that in general G(ε)
may have poles quite near the real axis, necessitating a very dense integration grid,
while the contour may be taken safely away from these in the upper half of the
complex plane, drastically reducing the computational effort. The algorithmic details
of the implementation of this calculation are discussed further in Appendix A.

We pre-calculate the contours themselves and the corresponding self-energies
Σ1,2(εi) over all points on the contour {εi}, given that the self-energies can be calcu-
lated independently for each energy point on the contour.

3.5 Evaluating the Density Matrix

In the next section we will consider the alignment calculation, which like any
transport calculation requires the density matrix ρ. As we remarked in section 2.1,

this integral over the real line can be more efficiently obtained by complex contour
integration, as detailed by Zeller et al. 10

As in Eq. (3.4):

ρ = −
1
π

∫ ∞

−∞

dε Im {G(ε)} f (ε, µ) ,
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Figure 3.5: Convergence of the bulk aluminum DOS with increasingly dense grid in k-space. Top: bulk
DOS from the Green’s function (red) compared with normal DFT calculations (green): convergence for
finer k-grids. Bottom: surface DOS for a [111]–cut surface (from the surface Green’s function), which cannot
be obtained directly from DFT. DFT calculations performed with the LDA functional, using a DZP-quality
basis set.

Figure 3.6: Contour in the complex plane which yields equivalent integral over the real line. Key parameters
are the bottom of the valence band εb , the chemical potential µ and the offset ∆ of the line segment which
passes between the complex Fermi poles. δ is the offset of the line for the non-equilibrium calculations,
which is much closer to the real axis.
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where the integral is over the real line. In typical calculations the infinitesimal η
shifts the poles of G(ε) off the real line, but they may still be close enough to cause
singularities. To handle these one might take a very dense grid of integration points,
but they can instead be avoided by integrating over a contour as illustrated in Fig. 3.6,
which avoids the poles entirely:

∫ ∞

−∞

dε Im {G(ε)} f (ε, µ)︸                   ︷︷                   ︸
g(z)dz

= −

∫
C

dz Im {G(z)} f (z, µ) − 2πi
∑

i

Resg(ai)

with z correpsonding to ε in the analytic continuation of g(z) = Im {G(z)} f (z, µ) into
the complex plane. The poles enclosed by the contour are solely those of the Fermi
function, located at µ + iπ kBT (2n + 1) for all integer n > 0, since the poles of the
integrand lie strictly below the real axis. The residues are simply −kBT .

In the non-equilibrium case this approach doesn’t work, however, since the ex-
pressions for the density matrix (Eqs. (3.15)–(3.16)) will be shown to depend on the
coupling matrices Γ1,2(ε) which has a pole structure which cannot be similarly pre-
dicted to be localized to e.g. below/above the real axis. In that case a very dense grid
of integration points will have to be used. This is illustrated in Fig. 3.6 as well, with
an offset δ corresponding to the smoothing.

3.6 Alignment: Determination of the Fermi Level

As noted above, the zero of the potential is not uniquely determined in this type of
DFT calculation. As our approach to transport involves a sequence of relatively

independent computations (bulk calculation of contacts, self-energy calculation, self-
consistent alignment and transport calculation), we must ensure that the (arbitrary)
offset in the potential is consistent across all stages, keeping in mind that the self-
energies also implicitly reference the chemical potential of their respective contact:
Σ1,2(εi; µ1,2). A number of codes take different approaches to this, 14,15 but we are not
aware of any approach that has handled the problem self-consistently to date.

In order to ensure the alignment of the potentials in the leads (and their self-
energies) with those of the extended molecule, we first note that there is a natural
criterion for determining the offset: the charge neutrality of bulk material. Clearly,
the chemical potential is directly related to the number of electrons in the metal.
Consequently, when the unbiased extended molecule is itself composed of the same
material as the contacts, we can self-consistently determine the offset by requiring
the (valence) charge on the extended molecule to equal the bulk (valence) charge for
the same number of atoms. We tune this charge by iteratively shifting the poten-
tial during the SCF until the criterion is met. We have also implemented a novel
constrained-DIIS (CDIIS) scheme in our code to accelerate the convergence of this
alignment procedure for difficult systems; it is briefly outlined in Appendix D.

Our approach is to split the shift into the two components illustrated in Fig. 3.7.
The first is the offset between the bulk run (periodic cell, used to construct the
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Contact 1 Contact 2
Extended Molecule

Figure 3.7: Differing computational stages’ zeros of the potential induce differing chemical potentials, which
are reconciled in alignment. Shown is the analog of Fig. 3.2, where we now include the contact offset ∆φ0
and fine-tuning of charge-neutrality ∆φ1 as discussed, yielding a consistent µtrue after alignment.

self-energies for the semi-infinite contacts) and the alignment run (longitudinally
aperiodic transport geometry composed of contacts + extended molecule). This
offset is estimated at each iteration as follows:

∆φ0 =
1

nbas

∑
i∈C1⊕C2

(
HTB

ii − HKS

ii

)
S ii

, (3.13)

where nbas = nC1
bas + nC2

bas is the dimension of the basis of the Hamiltonian for the
two contacts and HTB and HKS refer to the tight-binding representation of these bulk
contact Hamiltonians and the transport geometry’s contact Hamiltonians respectively
(cf. Fig. 3.1). We now shift the system by the offset: HKS → HKS + ∆φ0 SKS. Next,
we overwrite the Hamiltonian and overlap matrix SKS of the contact regions by those
obtained from the bulk calculations, which do not suffer from edge effects and
are now aligned with the rest of the system. This is updated at each iteration,
allowing for fluctuations in the density-dependent potential V[n(r)](r), such that the
extended system is always as close as possible to precisely aligned with the bulk
contacts’ potential.b

The second shift is the correction to the extended system which brings the
Fermi level into alignment with the implicit chemical potential encoded in the open-
boundary self-energies. We obtain it by determining the density matrix from the
Green’s function for the extended system via equation (3.4), which yields the valence
charge in the extended molecule region by tracing over the relevant basis functions as
QEM ≡ Tr

[
ρS

]
EM. This is in practice typically not charge-neutral. To achieve QEM →

Q0
EM, the latter the correct (valence) charge, we use an offset which is calculated

iteratively to ensure charge neutrality:

∆φ(k+1)
1 = ∆φ(k)

1 + α
(
Tr

[
ρS

]
EM − Q0

EM

)
(3.14)

until convergence is achieved. The shifts ∆φ1 are applied to the entire system. Note
that the parameter α has the dimensions of a capacitance, and indeed can be chosen

bConvergence of these shifts is thus a natural heuristic for the proper alignment of the system with this
algorithm.
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proportional to the inverse of the density of states, evaluated at the Fermi-energy. In
practice, such an implementation easily becomes numerically unstable, and we have
opted for a fixed, small mixing parameter α instead.

Both shifts, ∆φ0, ∆φ1, must converge for the alignment stage to be considered
successful. This procedure may be accelerated by extending the DIIS scheme 16 as
outlined in Appendix D, and we illustrate a representative performance of the ac-
celerated method in Fig. D.1 for a one-dimensional Al chain, as well as in figures
Figs. 4.14-4.15 for Au contacts. Moreover, for each set of contacts we discuss, we
check that re-running the alignment “bulk” geometry as a zero-bias transport calcu-
lation using the shifts calculated as static inputs indeed results in charge-neutrality
in the extended molecule.

To summarize, when the SCF calculation converges, we have obtained two po-
tential shifts: the contact shift ∆φ0 and the charge-neutrality shift ∆φ1. The former
is a runtime iterative adjustment to ensure that the active region of the transporting
system is aligned to the bulk Hamiltonians with which the contacts are overwritten,
while the latter is a runtime constant which ensures that the potential of the entire
system is such that a bulk extended molecule is precisely charge neutral. This in
turn determines the Fermi level completely. The alignment calculation is separate
from our transport calculations, and performed just once for every new set of (deep)
contacts.

The subtlety of our approach lies in realizing that by aligning the transport sys-
tem to the bulk calculation, we tie it to the picture of contacts as reservoirs with
well-defined chemical potentials. Consequently, from this point onward the Fermi
level is no longer an estimated quantity, but an exactly fixed quantity, stemming
directly from the bulk periodic contact calculation.

The procedure outlined here performs well in practice, correcting the offsets
illustrated in Fig. 3.7, and produces a PDOS on the extended molecule which matches
the PDOS of the bulk contacts very well, cf. sections 4.1–4.2. The resulting electronic
structure, moreover, compares well with a bulk calculation of the true periodic
system, as shown in appendix 4.4.

3.7 Non-Equilibrium Calculations

The procedure described in the previous section yields the “total shift” ∆φ =

∆φ0 + ∆φ1, and from this point on ∆φ1 is a constant shift applied at every
iteration during a transport run. However, in order to treat the non-equilibrium
transport case, we also need to consider both the effects of the applied bias and
fields, and the calculation of the non-equilibrium density from the NEGF formalism.

The system in the transport run is, as we have outlined, shifted from the unmod-
ified HKS for the extended molecule with contacts to the correct potential zero as
H+ (∆φ0 +∆φ1)S. To this we add the bias φb(r) and (possibly) gate φg(r) fields being
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applied to extended molecule region.c The potential profile implementing these fields
is usually a ramp whose end points lie sufficiently far from the electrodes’ surface for
the layers of contact material in between to sufficiently screen the local distortions
and produce the correct self-consistent potential drop within the extended-molecule
region. We discuss this further for the case of biased gold-phenyl-gold junctions in
section 5.1.3.

In order to calculate the current in the presence of a bias voltage, we need to
calculate the non-equilibrium density matrix. Our approach is splitting expression
(3.3) into the equilibrium term we have used thus far, and a new non-equilibrium
correction, given by the following expressions (3.15)-(3.16), analogous to the approach
of Stokbro et al.: 14

ρ =
1

2π

∫
dε [G(ε)Γ1G†(ε) f (ε, µ1) + G(ε)Γ2G†(ε) f (ε, µ2)],

which may be worked out to yield:

ρ = −
1
π

∫
dε f (ε, µ1)Im {G(ε)}︸                             ︷︷                             ︸

ρAeq

+
1

2π

∫
dε [ f (ε, µ1) − f (ε, µ2)]G(ε)Γ2(ε) G†(ε)︸                                                       ︷︷                                                       ︸

ρAneq

(3.15)

or equivalently:

ρ = −
1
π

∫
dε f (ε, µ2)Im {G(ε)}︸                             ︷︷                             ︸

ρBeq

+
1

2π

∫
dε [ f (ε, µ2) − f (ε, µ1)]G(ε)Γ1(ε) G†(ε)︸                                                       ︷︷                                                       ︸

ρBneq

. (3.16)

ρAeq,neq and ρBeq,neq are two equivalent ways of obtaining the equilibrium and non-
equilibrium density matrix, from which we obtain the terms by a weighted average.

The equilibrium terms’ integrals may be evaluated as before by complex contour
integration, but it is important to observe that the argument underpinning the ana-
lytic continuation into the complex plane was the localization of the poles of G(ε) in
the lower half-plane. This is no longer true for the more complicated pole structure
of terms like G(ε)Γ1(ε) G(ε)†, and so the non-equilibrium integral must be evaluated
along a dense grid as near to the real axis as is reasonable, while avoiding numerical
inaccuracies due to nearby poles.

cNot to the deep contacts and self-energies, which are already at the right chemical potentials.
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Figure 3.8: Effect of gating the molecular levels in the junction by a gate voltage Vg that couples as −βVg
in the potential.

3.8 Gate Fields

In order to realize the gating of the system, we have implemented a simple approach
which serves as a (relatively crude) first approximation to a realistic three-terminal

transistor geometry (where the active region is not only coupled to a source and
drain electrode, but also capacitatively coupled to a gate electrode).

The most basic gate implementation is the same as an alignment- or contact
shift:

Hm 7→ Hm + φgSm (3.17)

where Hm, Sm are the submatrices corresponding to the molecule only, not the full
extended molecule. φg = −βVg with β the gate coupling and Vg the bias applied
to the gate electrode, such that for Vg > 0 there is an additional attractive poten-
tial felt by electrons in molecular levels, which lowers the levels relative to when
Vg = 0. After shifting, we check the effect on the charge distribution first by calcu-

lating Qm(φg) = Tr
[
ρ(φg) Sm

]
, the number of charges on the molecule proper. This

should be the largest contribution to the changing charge on the extended molecule
QEM, as the influx of electrons in the leads will compensate any stray effect felt on
the metal side of the metal-molecule interface.

As we illustrate in Fig. 3.8, for HOMO-dominated transport, (sufficient) φg < 0
should push the unoccupied levels below ε f , causing the number of electrons on
the molecule to increase, if there are unoccupied levels nearby. If not, there will
be little to no effect. By contrast, again for HOMO-dominated transport, φg > 0
will push the levels over ε f , progressively depopulating the molecule. Conversely, in
the case of LUMO-dominated transport, the directions of the shifts are the same,
but we may now shift a LUMO-like peak (electron transport) to a HOMO-like peak
(hole transport), assuming that the gap between occupied and unoccupied levels is
sufficiently large as to not involve the occupied levels for modest gate fields.

This effect manifests itself in transport through a particular level in the following
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ways. The distance of the level with respect to the Fermi level of the metal is a
measure for how far off-resonant the reference state (level at zero gate- and bias
voltage) is, and so:

1. The next (occupied or unoccupied) level can be brought into resonance by
applying a bias, in which case the bias applied is proportional to that distance.
Gating the level changes the distance, and thus the bias necessary to address
the level in resonant transport.

2. Consequently, even if we leave the junction unbiased, we can still achieve
resonant transport purely by gating, by shifting the nearest unoccupied level
down, or the nearest occupied level up into resonance at with the Fermi energy
of the leads.

The shortcoming of this implementation of the gate field is that it is formulated
as a direct shift of part of the Fock matrix, i.e. applied to the basis-functions directly.
This means that we miss some geometry-related effects, and in particular:

1. Do not model the screening of the potential profile near the metal contacts,
except implicitly via the adjustment of the density to Vg during the SCF cal-
culation. To model this explicitly, one would need to actually physically model
the gate field in the potential, either with an empirical profile, or by modeling
a third atomistic contact geometry, backed by an appropriate gate dielectric.

2. Miss the effect that the field isn’t necessarily uniform over a molecule with a
“vertical” profile, as it assumes that the field couples equally strongly to the
top and bottom of the molecule, despite the gate being located significantly
below the junction (in experiments).

With respect to the first point, our implementation is ready to be extended with a
pre-calculated empirical potential profile (parametric in Vg), but dielectric screening is
more complicated, if we want to obtain, rather than impose the real potential profile.
While this might be addressed in future work, and is extremely relevant to a fully
ab initio treatment of a three-terminal junction, it is not essential to simply studying
qualitative gating effects on molecular level alignment. This can in principle be
addressed as we have currently implemented gating, and has previously been shown
to yield useful alignment and charging information by Stadler and collaborators. 17,18

We will discuss calculations performed using this extension of our method in
detail in Chapter 6.

3.9 Post-SCF Transport Calculations

Our implementation also allows Post-SCF transport calculations, which correspond
to the first approach in section 2.4, where a closed-system DFT calculation is

performed, and the resulting Fock matrix passed to an implementation of the NEGF
formalism after the full SCF procedure has converged.
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This may better converge difficult systems due to a simpler physical system in the
SCF cycles (only the extended molecule in isolation). The converged result may then
be used as a better starting point for a further Full-SCF calculation if desired. This
convergence improvement is in fact the main motivation for this class of methods,
as they use the same number of atoms as a Full-SCF calculations, and so do not
noticeably reduce the computational cost of the calculation.

Rather than using the DFT+NEGF cycle of Eq. (3.2), the system is first converged
in isolation using the normal DFT self-consistent procedure (without transport ex-
tensions). After this, the converged density and Fock matrix are corrected with a
one-off estimate of ∆φ0 from the contacts as in section 3.6, and the full system is
again corrected by the stored fine-tuning ∆φ1, after which transport properties are
derived from the resulting Green’s function:

ψ(0)
j (r)→ n(0)(r)→ HKS → ψ(1)

j (r)→ n(1)(r)→ HKS → · · ·

· · · → HKS + (∆φ0 + ∆φ1)S→ GPSCF(ε)→ TPSCF(ε)

Implicit in this implementation, however, is the comparison with the contacts HTB

corresponding to the self-energies Σ1,2(ε) (to obtain ∆φ0), which are then together
used to construct the Green’s functions from which the transmission and current are
obtained by Eq. (2.30). We use the full self-energiesd to calculate Γ1,2(ε) in:

TPSCF(ε) ∼ Tr
[
Γ1(ε) GPSCF(ε)Γ2(ε) G†PSCF(ε)

]
.

This is not a strictly Post-SCF calculation as commonly understood, as we sub-
stitute bulk contacts for the results from what is effectively a cluster calculation.
However, in our experience it performs better than a “pure” Post-SCF approach, pro-
ducing results very similar to the Full-SCF results we will present, as the description
of the contacts then matches the self-energies which are added in transport. How-
ever, this default behavior can be turned off to make the method a pure Post-SCF
approach.

The latter has been used for calculations such as those presented in Chapter 7.
However, the implementation benchmarked there is the essentially identical code by
J. S. Seldenthuis in ADF, as opposed to our implementation in BAND, which is faster
due to other implementation differences between the codes themselves, which are
beyond the scope of our work.

3.10 Wide-Band Limit Approximations

The theory behind the wide-band limit (WBL) approximation for the self-energies
of the contacts is actually an (extreme) simplification of the full treatment of the

self-energies outlined previously in Chapter 2 and section 3.4, which we discuss in

dIn principle these Σ may also be substituted by ΣWBL by combining the input keys, cf. §3.10.
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more detail in Chapter 7. For the moment we note our implementation of the usual
parameter-based WBL:

Σ = iΓ S (3.18)

in a non-orthogonal basis, with Γ a user-defined parameter. We have also imple-
mented a more subtle non-parametric option:

Σ = Σ(ε f ) (3.19)

where the self-energy of the contacts is frozen at the Fermi level. To the best of our
knowledge this has not been previously used in the literature. While not strictly a
wide-band limit approximation in that it doesn’t derive from assuming a flat DOS
(in a non-orthogonal basis), it does freeze the structure of Σ(ε) across the entire
energy-band to the structure at the Fermi level ε f . This is motivated by the spirit of
the WBL approximation: that the structure of the contacts DOS near the Fermi level
is sufficiently flat as to replace it by the WBL DOS and self-energies.

Two further remarks are in order:

1. These approximations to the self-energies, in particular the usual Σ = iΓ S, do
not apply in the non-equilibrium case, as they do not account properly for the
difference in Fermi energies of the leads, which are encoded precisely in Σ(ε)
in our method.

2. Our implementation allows a further flexibility: it can be run after convergence
of the SCF procedure, i.e. after either a Post- or Full-SCF calculation, such that
the density and Fock matrix of the extended molecule region are correctly
converged in the presence of open leads, and the WBL approximation is made
only for the contacts which couple to the EM. This is implemented purely for
testing purposes, as it does not correspond to a consistent physical description.

We discuss the performance of such approximations extensively in Chapter 7, but
remark that as with the Post-SCF approach the implementation benchmarked there
is the essentially identical implementation of Eq. (3.18) by J. S. Seldenthuis in ADF,
as opposed to our implementation in BAND, as the former performs better due to
implementation differences between ADF and BAND which we do not control. We
also discuss a number of interesting details of the WBL further for one-dimensional
systems, where analytical results can be obtained, in Appendix C.3.

3.11 Computational Cost & Scaling

In the development of the approach described in this chapter, significant effort has
been put into ensuring good performance on high-performance computing archi-

tectures, which we address here and in Appendix D. There are two basic aspects to
the computational cost of atomistic quantum-chemistry methods such as DFT, and
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their extension to quantum transport by combination with the NEGF formalism.

First, rather than studying the cost of a single computation, we are interested in
the scaling with number of atoms, or rather with the number of basis-functions used
to describe them. In a local-basis approach, the basis-functions are associated with
a given atom’s electrons, and there are N ≡ nbas =

∑natoms

i=1 nbas
i total basis-functions,

where nbasi is the number of basis-functions per atom. This nbas, which we refer to as
N in discussing the scaling, determines the size of the vectors and matrices in the
problem, and so we immediately turn to the question of which computational step
dominates the effort in a DFT calculation.

In normal DFT calculations, from the perspective of linear algebra, the most ex-
pensive single step is expected to be the diagonalization of the Fock matrix in order
to obtain the Kohn-Sham eigenvalues and orbitals, which has an O

(
N3

)
scaling in

terms of basis-functions. In the DFT+NEGF formalism, the most expensive step be-
comes the inversion of matrices (to obtain Green’s functions), which would still have
O

(
N3

)
scaling in basis-functions, but with a different (significantly larger) prefactor.

However, in practice this is not the computationally dominant step: there are in
fact a number of steps which depend critically on the number of discrete integration
grid points P � N. The most important entail: 19

• Determination of the fit functions for the density: O
(
N2

)
• Evaluating potentials and similar spatial functions in the grid points: O (PN)

• Setting up the Fock matrix (integration): O
(
PN2

)
Taken together, these completely dominate the effort of the single eigenvalue prob-
lem to be solved for realistic systems. Performance tuning these necessary parts of
the computational method is highly non-trivial, and the goal has recently been to
achieve near-O (N) scaling by implementing precisely these steps more efficiently.
This has been addressed, e.g., in the work of Soler et al. 20 on the SIESTA package
and Fonseca Guerra et al. 19 on the ADF package.

Next, there is a second metric for the scaling of such a code which deserves
separate attention from an implementation perspective. Large scientific codes are
usually run on large multi-core workstations,e and should ideally scale to high-
performance architectures,f ideally with O (M) scaling in the number of cores M.

Achieving this is mostly a function of the combination of exploiting the (implicit)
parallelism of a problem, together with optimizing load-balancing across distributed
processors, memory and disk. The prefactor of this scaling is also an issue, and
it turns out that there may be different regimes of (piecewise) linear scaling as the
number of cores increases, as is the case for the ADF package. 21,22 The key point re-
mains that the problem must contain sufficient implicit parallelism in order to make

e8-16 cores typical as of 2012.
f32-1024 cores per job typical as of 2012.
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such scaling feasible, and some parts of the problem in DFT and the DFT+NEGF
approach to molecular transport do enable this.

We now summarize the highlights in our implementation in the ADF package:

• In the DFT calculations, particularly for solids, a trivial parallelization in k-
space is possible when there is no k-dependent scattering physics present.
However, in our current implementation we do not exploit this in the DFT+NEGF
calculations since they are performed exclusively at the Γ-point: k = 0.

• In the tight-binding representations of the contact Fock and overlap matrices,
trivial parallelization is likewise possible since the matrix elements clearly do
not depend on each other, and so can be fit independently. [cf. section 3.3]

• In the NEGF calculations of transport properties, key quantities are deter-
mined by complex contour integrals over independent energy points. When
discretized to a grid of energy points εi, this again lends itself to trivial paral-
lelization, which we exploit. [cf. section 3.5]

• However, other keys steps are not so trivially parallelized, such as the diagonal-
ization of large matrices, 11 and likewise for the inversion of such matrices. In
the NEGF calculations, such inversions of a Green’s function is run in parallel
for different εi, exploiting the independence of discrete energy grid-points just
mentioned. [cf. section 2.1]

• Complex matrix traces such as those occurring in the calculations of partial
DOS plots and in the Landauer expression for the transmission and current,
Eq. (1.1), have been optimized to significantly reduce the amount of linear
algebra flops required. [cf. section 2.1]

• Memory management for load-balancing has also been taken into account
in the recently introduced shared-memory implementation of large arrays in
ADF/BAND, and also by us in our treatment of the large Σ-matrices. We use a
scheme where the data is redistributed to temporary files held by each node
in a calculation, containing only the data-points needed on the node. This
avoids the bottleneck of a single node doing all the I/O to load these matrices
at each iteration of a run. [cf. section 3.4]

• We have also addressed the load-imbalance inherent in the calculation of the
Green’s functions, by interleaving the energy-points on the calculation grid
across the cores, rather than distributing them in blocks. This helps to balance
the surface Green’s function calculations, where convergence effort may vary
significantly depending on the proximity of poles in the calculation, which is
an energy-local effect leading to significant imbalance if repeated “difficult”
points are handled by the same processor. [cf. section 3.4]
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• We have also implemented a “defer” option to load the self-energies only at
calculation time, which should help accelerate the code on machines with
limited memory and relatively fast disks, by avoiding the paging of large arrays
in- and out of memory at runtime.
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4
Validation: Modeling Metal

Contacts

We now discuss the first major test of our methods, on simple one- and three-dimensional
metal contacts. We consider lithium, aluminum and gold as contact materials. Since we
use gold contacts extensively in the work presented in this thesis, we give only a prelim-
inary discussion here, and revisit them in the context of results for prototype molecular
devices in Chapter 5.

Parts of this chapter have been published in J. Phys. Chem. C (2012)
at http://dx.doi.org/10.1021/jp3044225.
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Figure 4.1: DOS of a lithium chain, with a lattice spacing of 2.88Å, SZ basis and GGA exchange-correlation
functional. Figure also illustrates the results with and without radial confinement of the basis functions
(to 4.6Å before a smooth Fermi-Dirac cutoff).

In this chapter, we discuss validation calculations on lithium and aluminum sys-
tems in one dimension, and three-dimensional gold systems with and without

transverse periodic boundary conditions. These are not intended to achieve quan-
titative chemical accuracy, and in fact we will typically limit ourselves to the LDA
approximation in the calculations. Rather, we intend to validate the results generated
by our code against chemical intuition for such relatively simple systems, which (gold
in particular) will later become building blocks of our model single-molecule devices.

4.1 Lithium Chains

We begin with a discussion of one of the most trivially simple metals in the peri-
odic table, lithium (Li), which has the simplest chemical structure of the metals

we consider. Its DOS is discussed in the literature for one- and three-dimensional
structures, 1–4 and we illustrate a calculation (using BAND) of the monatomic chain
we will focus on in Fig. 4.1. For reference, we use a GGA functional (there is no dif-
ference with the results using LDA). Using a single-ζ (SZ) basis captures the physics
of the outermost valence electron which gives rise to a single band with van Hove
singularities at the edges.

In section 3.6 we outlined the use of a self-consistent procedure to fix the po-
tential zero and the Fermi level consistently for the full system of extended molecule
with contacts, by requiring charge neutrality of a bulk “extended molecule.” If we
apply this to the one-dimensional Li chain, we obtain a charge-density profile and
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Figure 4.2: Bulk charge density profile (solid) and HOMO wavefunction (hatched) calculated in a bulk 1D
chain (top) and the converged alignment configuration for our finite extended system (bottom). Both were
calculated using LDA and a SZ basis set. Edge effects on the outer atoms on the finite chain are clearly
visible, but in the inner extended-molecule region there is excellent agreement, including the 4-atom
periodicity of the wavefunction.

HOMO wavefunction as illustrated in Fig. 4.2, where these are compared with the
bulk result obtained from a conventional periodic DFT calculation, using the LDA
exchange-correlation functional and a single-ζ (SZ) basis for Li. The lattice spacing
(2.876 Å) for the cell was obtained by energy minimization, using the same LDA
functional and basis for consistency.

The exact 4-atom periodicity observed in Fig. 4.2 is a signature result: we can
derive the “HOMO” level (the highest occupied state in the infinite system) from a
model of fermion sites in a finite chain by filling the outer s-orbital of Li at each
site. Take a M + 1-site chain of length L, with lattice constant a, which will hold
2(M + 1) electrons. Each electron will sit in a band formed by a standing wave
pattern because of the periodic boundary conditions, and so:

ψn(x) = ei πnx/L .

The states may be labeled by the 2(M + 1) set of kn = ± πn
L instead, where the

maximum value of N is M/2 such that:

λmax =
2π

kmax
∼ 4a (4.1)

Consequently, the wavelength of the highest occupied mode in the infinite chain is
4 lattice spacings, which is exactly what we see in Fig. 4.2.

The PDOS and transmission are illustrated in Fig. 4.3, where we note that the
transmission has a clear plateau at G0 corresponding to the transmission through a
single channel over the range of energy corresponding to nonzero density of states in
the chain. The prediction of the wavefunction shape of the highest occupied mode is
general for a single electron in an outermost atomic shell without degeneracy, such
as the Li 2s orbital, as opposed to the Al chain (see below). We also note oscillations
in the DOS and transmission, which likely reflect the finite extent of the contacts
(the edges acting as scattering potentials), and the bad screening of a 1D chain in
particular.
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Figure 4.3: (a) Zero-bias transmission through and (b) density of states of the 1D Li chain (using a SZ basis
set), showing a single s−band enabling transport, over an energy range corresponding to the (projected)
DOS on each part of the model structure.
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We next performed a zero-bias transport calculation with a H2 molecule placed
in between the chain contacts. We calculate the transmission and PDOS for the
structure under zero bias, see Fig. 4.4. We observe that the transmission is reduced
in the presence of the H2, an effect of H2 partially interrupting the transport path
through the s-orbitals in 1s22s1 Li chain (transmission ∼ 1, effectively an ideal Lan-
dauer conductance channel). The H2 LUMO does have an s-orbital character, and so
there is transport as it does in fact couple more broadly to a number of Li states,
but its coupling to the Li is different, so that the transmission becomes somewhat
attenuated at different energies along the band. On the high-energy side of the DOS
plots, we also note a lone peak in the extended-molecule DOS: this corresponds to
the LUMO orbital of H2, and since its resonance is beyond the limited extent of the
Li chain’s DOS, it should not couple in transport. That is indeed what we observe in
the transmission: the lack of a feature at the corresponding energy in the top panel
of Fig. 4.4. The HOMO and LUMO+1 levels, by contrast, are considerably further away,
and do not couple at all.

4.2 Aluminum Chains

A similar analysis can be performed for experimentally more realistic Al chains.
The key difference is the addition of electrons, which in this case contribute both

s− and p−bands for transport, as we now discuss.
For reference, we again first give a “bulk” one-dimensional calculation with lateral

periodic boundary conditions in Fig. 4.5. We see that there are still van Hove
singularities, and that the calculation without confinement is again lower in energy,
but also that there are richer features. This calculation will be our reference, but
since we are not primarily interested in its full complexity we will focus on slightly
different technical settings for validation.

We thus treat transport through a homogeneous chain, and then one-dimensional
Al contacts to a H2 molecule, with calculations performed using LDA and a DZP-
quality basis set on all atoms. The alignment procedure discussed in the main text
converges well, and is significantly accelerated by the constrained DIIS extension we
discuss in section 4.4 and Appendix D, and which we illustrate in Fig. D.1.

The resulting charge density and HOMO wavefunction again compare very well
to the bulk 1D calculation, likewise performed with BAND and illustrated in Fig. 4.7.
This also mirrors what we observed earlier in Fig. 4.2 for Li chains. Considering the
projected DOS on the different spatial segments of the calculation in Fig. 4.6, we
note that the features line up well over the contact regions and the (bulk) extended
molecule, with the usual van Hove singularities at the edges of the bands, which
are easily identified as the s− and p−bands of Al, corresponding to 1G0 and 3G0
conduction channels respectively.

Turning to the orbitals, in Fig. 4.7 we observe a signature 12-atom periodicity,
analogous to the 4-atom periodicity observed previously in Li. Reconsidering the
occupation of the highest level of a chain of fermion sites, we now fill the outer
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Figure 4.4: (a) Zero-bias transmission through and (b) density of states of the 1D Li chain with an H2
molecule (using a SZ basis set on Li, DZ basis on H2). We see a decline of the transmission when a H2
molecule is placed in the junction. Given the small size of the molecule, its primary effect is to slightly
weaken the coupling in the chain.
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Figure 4.5: DOS of a aluminum chain, with an optimized lattice spacing of 2.83Å, DZ basis and GGA
exchange-correlation functional. Figure also illustrates the results with and without radial confinement of
the basis functions (to 4.6Å before a smooth Fermi-Dirac cutoff).

3-fold degenerate 3p-orbitals of Al. The argument outlined earlier then leads us to
conclude that λmax ∼ 12a (compare Eq. (4.1)): the wavelength of the highest occupied
mode should be precisely 12 lattice spacings, which we indeed find.

The converged Al alignment calculation fixes the correct Fermi level for a trans-
port calculation, with the extended-molecule geometry shown in Fig. 4.9. The effects
of inserting a H2 molecule in the chain of Fig. 4.6 are reflected in the PDOS for each
part of the system in Fig. 4.8, where we see that they are slightly deformed from
their characteristic bulk shapes. In particular, there is a satellite peak corresponding
to the 1s1 HOMO state on the molecule, and a hump in the extended molecule DOS
near 5 eV corresponding to a transmission resonance through the 1s2 LUMO state
of H2, orbitals illustrated in Fig. 4.9. There, we recognize the origin of the sharpness
of the decoupled HOMO peak, in contrast to the broadened LUMO peak which has
more strongly hybridized with the leads.

As a three dimensional bulk crystal, aluminum is structurally quite similar to gold,
with both having face-centered cubic (FCC) lattice structures and lattice constants of
4.05Å resp. 4.08Å. We now turn to Au, for present purposes perhaps the most
important metal system.
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Figure 4.6: (a) Zero-bias transmission through and (b) density of states of the Al chain. Note the position
of the Fermi level (thin vertical line near 0 eV), determined as offset by 85 meV from the original bulk
calculation by our self-consistent alignment procedure.

Figure 4.7: Bulk charge density profile (solid) and HOMO wavefunction (hatched) calculated in the con-
verged alignment configuration for our finite extended Al system, illustrating the 12-atom periodicity of
the wavefunction discussed in the text.
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Figure 4.8: (a) Zero-bias transmission through and (b) density of states of the Al–H2–Al junction, together
with the T (ε) characteristic of the junction, which is now entirely determined by the H2 molecule in the
gap, as compared with Fig. 4.6.

(a)

(b)

Figure 4.9: Wavefunctions of the (a) HOMO and (b) LUMO orbitals of H2 in zero-bias transport between
Al leads. The LUMO level would be most relevant to transport, corresponding to the resonance in Fig. 4.8.
The HOMO, by contrast, does not hybridize, but shows up as the leftmost peak in that figure, near −8 eV.
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(a) Regular Stacking

(b) Smooth Stacking

Figure 4.10: Stacking geometries of the gold contacts used. (a) The regular stacking, which is also used
when transverse periodic boundary conditions are applied. (b) The smooth stacking used to simulate the
needle-like contacts used in break-junction experiments.
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4.3 Gold Contacts

Before proceeding to transport calculations using “bulky” Au contacts, which will
be a building block in all following sections, we first discuss their construction.

We will emphasize, in particular, the difference between applying transverse periodic
boundary conditions and their omission. We begin the discussion with Fig. 4.11 (and
refer ahead to Fig. 5.1), where we illustrate 3 representative geometries one might
use for the contacts, and the transmission through their bulk structure (without
molecules) in Fig. 4.11. These are all FCC stacked with a (111) face perpendicular to
the axis, and we compare a transverse 2 × 2–atom surface with the 3 × 3–surface
case, the latter both with and without periodic boundary conditions. Calculations
were performed with the LDA functional and a SZ basis with 11 valence electrons.

In section 4.4 we show the convergence of the alignment shifts (Figs. 4.14–4.13),
with the conclusion that in contrast to the case without periodic boundary condi-
tions, the shifts obtained in order to converge the extended-molecule structure with
periodic boundary conditions can be quite large.a

It appears that for the case of periodic boundary conditions, the bulk run in
BAND is significantly offset in potential with respect to the alignment and transport
runs. The strong difference with the alignment run argues for fixing the Fermi
level via the correction ∆φ0 + ∆φ1 (as opposed to simply neglecting a numerical
error incorrectly assumed small). The continuing difference in the transport run
further argues for a dynamic (runtime) correction ∆φ0, as implemented, rather than
assuming a static correction ∆φ0 in transport.

In Fig. 4.11, the typical transmission characteristics of these “bulk” junctions ex-
hibit clear conductance plateaus, as we expect from what is essentially a “bulky”
monatomic chain. We note that the number of channels found is similar near
the Fermi level, while further away, in particular in the region from -8 to -2 eV, the
structure without periodic boundary conditions is considerably noisier, and has fewer
channels. This may be due in part to the electrons moving to the surface bound-
aries in the structure without periodic boundary conditions, effectively reducing the
number of transport channels.

4.4 Alignment & Validation

We now discuss the validation of the alignment procedure and the constrained
DIIS algorithm we have implemented, outlined in Appendix D.

For Al chains, we previously illustrated the result of alignment in Figs. 4.6–4.7,
and the density of states projected onto the different segments of the calculation
is shown in Fig. 4.12. We conclude from these that the calculations reproduce the
bulk results well. The major features line up over the contact regions and the ex-
tended molecule, and the calculations reproduce easily identified s− and p−bands

aWe emphasize that this is an algorithmically-determined rather than an arbitrarily imposed shift, and
that as we illustrate in Fig. 4.13, the PDOS indicate that the structure is correctly converged.
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Figure 4.11: Transmission through the “bulk” Au contacts (LDA calculations using a SZ, 11e basis per atom).
(a) with– and (b) without periodic boundary conditions. Note the transmission plateaus at integer units of
the conductance quantization G0 , as we expect from a system that is essentially a larger-diameter version
of a single Au-atom chain.
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Figure 4.12: Alignment PDOS for infinite Al chain contacts (periodic along transport direction), compared
with the bulk calculation of the same chain contacts. LDA-level DFT calculations, with a double-ζ basis
used; k-dependent calculations beyond the Γ-point approximation are necessary to reproduce the feature
near 2 eV in the bulk system.

corresponding to 1G0 and 3G0 conduction channels respectively. We will return to
the physics of such one dimensional systems later in Chapter 7, where we discuss Al
chains in the context of different approximations to the fully self-consistent calcula-
tions we use here.

We next turn our consideration to the case of “bulky” Au contacts. In Fig. 4.10,
we showed representative geometries, which were all FCC stacked with a (111) face
perpendicular to the transport direction. Here we compare alignment of different
sized transverse surfaces, and for a 3 × 3–surface the results both with and without
periodic boundary conditions.

In the systems without periodic boundary conditions, we find comparable offsets
in Fig. 4.14. By contrast, in Fig. 4.15 we immediately see that for periodic bound-
ary conditions–contacts, the shifts necessary to align the “bulk” extended-molecule
structure with the bulk contacts are quite large, while the fine-tuning for charge
neutrality is comparable to the cases without periodic boundary conditions. We em-
phasize that this is an algorithmically-determined shift, and that as we illustrate in
Fig. 4.13, the agreement of the PDOS for the different spatial segments indicates that
the structure is correctly converged.

Having examined the alignment, convergence and bulk structure of the extended-
molecules in different cases, we now proceed to single-molecule calculations. We will
mainly use 3×3 surfaces of Au, both with and without periodic boundary conditions.
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Figure 4.13: Converged PDOS for 2 × 2 Au contacts and “bulk” extended molecule, as compared with the
bulk DOS for Au with the same basis set; agreement is also typical for larger contacts.
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Figure 4.14: Alignment shift convergence for Au contacts without periodic boundary conditions, for 2 × 2,
3× 3 and 4× 4 contacts. (a) the contact shift (zero of the potential) ∆φ0 , and (b) the alignment shift ∆φ1 .
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Figure 4.15: Alignment shift convergence for Au contacts with periodic boundary conditions, for 2× 2 and
3 × 3 contacts. (a) The contact shift (zero of the potential) ∆φ0 , which is much larger in magnitude for
the case where periodic boundary conditions are applied, contrasts with (b) the alignment shift ∆φ1 , of
similar magnitude as those in Fig. 4.14.
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5
Validation: Transport Through

Phenyl Systems

We next discuss a second major test of our methods, on phenyl-ring systems. We consider
discuss the prototype which has been perhaps most thoroughly studied in the literature:
a benzenedithiol (BDT) single-molecule device. We show the agreement of our results
with the literature, and illustrate where they diverge due to subtle modeling choices.
Increasing chemical complexity from these single-ring systems, we next study conjugated
multi-ring systems. We focus on the next few systems from the oligophenylene-ethynylene
family, with 2 (OPE-2) and 3 rings (OPE-3) in particular.

Parts of this chapter have been published in J. Phys. Chem. C (2012)
at http://dx.doi.org/10.1021/jp3044225.
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5.1 Benzenedithiol Single-Molecule Junctions

We begin with the well-studied “test case” of a gold-benzenedithiol-gold (Au-
BDT-Au) junction, 1–6 and will pay particular attention to the effects of contact

geometry and boundary conditions on the results obtained.

5.1.1 Transport with Smooth Non-Periodic Contacts
We consider Au-BDT-Au junctions with contacts designed in the same way as in the
previous chapter, with Au (111) faces consisting of 2 × 2 and 3 × 3 atoms, illustrated
in Fig. 5.1. Except where stated otherwise, we perform transport calculations in our
code and gas-phase calculations in ADF using the LDA functional with a SZ basis on
the Au contacts and a TZP basis on the molecule. In Fig. 5.2 we present the results
of our calculations without periodic boundary conditions.

We first note that on increasing the size of the surface perpendicular to transport,
there is a relatively quick convergence to a recognizable result with a broad HOMO-
like peak below ε f , followed by a 2–3 eV low-conductance gap separating it from a
LUMO peak beyond the gap, around 2 eV. This confirms that the size of contacts
does matter to the calculation, though the major features already become established
for modest contact sizes.

Fig. 5.3 shows the main orbitals derived from the BDT molecule, labeled by their
correspondence to the gas-phase orbitals. We use these in order to construct Fig. 5.4,
showing the compositions of the peaks in the transmission through the Au–BDT–Au
junction near ε f .

We have determined these by using a fragment-decomposition technique, out-
lined in Appendix B, in which we project the eigenstates of the transport calculation
onto the orbitals of a molecular fragment. As a fragment we use the gas-phase
BDT molecule geometry with thiolate bonds to a single Au atom on each side (out-
ermost H’s of the gas-phase BDT are removed, leaving an Au–S bond), as expected
for the preferred bonding of a molecule ending on a thiol group, e.g. BDT, to an Au
surface. 7–9

We can identify the orbitals of the fragment with those of either the BDT molecule
or radical, and this flexibility also provides extra information on the complicated
orbital compositions which we find in the junction. We find that adding the Au
adatoms induces the formation of hybrid Au–BDT–Au states which may couple well
in transport, labeled HA and HB in Fig. 5.3, to reflect their energy ordering as the
“apparent” HOMO and HOMO-1 states on the fragment. We discuss their role in more
detail later. The rest of the states in Fig. 5.3 are labeled by their correspondence to the
orbitals of gas-phase BDT. We now focus on the geometry of Fig. 5.2b in particular,
as we later use it to model OPE-2 and OPE-3 as well.

We find that the broad HOMO-resonance appears to be mainly composed of 2
separate peaks, which we identify by our decomposition analysis as the HOMO and
HOMO-1 peaks of the gas-phase BDT molecule, with a bit of HOMO-3 playing a role
as well. HA and HB also appear here. In the fragment they are split by about 120
meV, and appear as a result of hybridization with Au, or more generally, for collinear
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(a)

(b)

(c)

Figure 5.1: Au contacts’ geometry for (a) the 2 × 2 surface case, (b) the 3 × 3 surface case, both with
hollow-site binding with 2.40 Å Au-S distance. (c) An alternate 3×3 surface used in calculations with bias,
resp. with periodic boundary conditions, cf. Fig. 5.5b. Calculations typically performed using the LDA
functional and a SZ basis with 11 valence electrons.
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(b) 3 × 3 contacts

Figure 5.2: Transmission through the Au-BDT-Au junction, using (a) 2×2 and (b) 3×3 Au contacts without
periodic boundary conditions. We see that the transport gap opens, becoming recognizably linked to the
smooth structure visible below in Fig. 5.5b for the case of periodic boundary conditions. The main peaks
map between the two sets of calculations, and we illustrate the orbitals that play the dominant role for
the 3 × 3 case in Fig. 5.3 below.



5.1. Benzenedithiol Single-Molecule Junctions 79

{{5

(a) LUMO+1, acts as LUMO (b) LUMO, does not couple

(c) HOMO (d) HA : apparent HOMO state on fragment

(e) HB : apparent HOMO-1 state on fragment (f) HOMO-1

(g) HOMO-2, does not couple (h) HOMO-3, couples below -2eV

Figure 5.3: Transport-coupled orbitals of the BDT junction as compared with the gas-phase molecular
levels when decoupled from contacts, ordered by decreasing energy. (a)–(c) and (f)–(h) label the fragment’s
transport-coupled orbitals nearest the Fermi level which directly map onto the orbitals of the gas-phase
molecule, while (d)–(e) are two examples of intermediate states that are the present in the radical but not
the neutral BDT molecule, and survive the thiolate coupling to Au adatoms instead of the terminal -SH
bond.
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(a) Transmission and decomposition with gas-phase orbitals only
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(b) Transmission and decomposition with HA , HB (“apparent” HOMO and HOMO-1
orbitals) also included

Figure 5.4: Transmission and peak decompositions for the 3 × 3 Au–BDT–Au junction. Distance between
clearest frontier peaks at -0.26 eV and 1.68 eV suggests an effective gap of roughly 1.93 eV. (a) Illustrates
the decomposition onto the main gas-phase orbitals, while (b) also includes the HA and HB orbitals of
Fig. 5.3d and Fig. 5.3e.
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termination on the thiol (i.e. they also occur when the -SH bond in gas-phase BDT is
collinear). This suggests that they may represent a bonding/anti-bonding pair which
interferes nearly perfectly destructively, and as a result does not contribute much to
transport. 10,11 In this context we further note that despite the ∼ 120 meV splitting,
they indeed consistently appear in roughly equal measure in each contribution in
Fig. 5.4b, once coupled to Au. The LUMO and HOMO-2 states, by contrast, are suffi-
ciently localized to the center of the molecule that they do not couple in transport;
rather, for the unoccupied states it is the LUMO+1 which appears as the lowest unoc-
cupied transport peak above the transport gap. We return to this point in discussing
the OPE-series in the next section. We do find the HOMO-2 peak present in our de-
composition around -2.45 eV, as a considerably purer state, consistent with the lack
of coupling to the Au contacts. By contrast, the HOMO-3 has an orbital structure
which suggests coupling in transport, and it is present, mixed with the HOMO and
HOMO-1 states, in Fig. 5.4. This may suggest an analogy to the HOMO-2 states of the
OPE-series.

Finally, we also remark on the presence of some small discontinuities in the
transmissions in Fig. 5.2, in the 3 × 3 case near e.g. -0.4 eV, -0.1 eV and 0.5 eV. We
have investigated these using the projected DOS on the molecule proper, extended
molecule and deep contacts. We find that these are not numerical artifacts, but
rather are related to effects in the potential in the contacts. While these may be
relevant for very sharp, needle-like contacts, they would probably not play a role for
relatively large, bulk-like electrodes.

While we remarked that the results of Fig. 5.2 indicate a gradual convergence
towards a “bulk” face result (the single benzenedithiol atom coupled to an infinite
plane of Au on each side), they should be distinguished from the “classic” Au–BDT–
Au junction results calculated using DFT+NEGF in the literature. 1–3 The difference is
the absence of periodic boundary conditions here, a relatively important modeling
decision not typically discussed in the early literature, in large part because few
codes allow for explicitly breaking transverse periodicity. We illustrate this difference
explicitly in Fig. 5.5a below, which should be compared with Fig. 5.2b. The impli-
cations of the use of periodic boundary conditions for a junction with such a small
face evident in Fig. 5.5b, where we see that the model in this case is qualitatively
more similar to a self-assembled monolayer than to a true single-molecule configura-
tion. Conversely, the geometry without periodic boundary conditions are particularly
useful for modeling the small, needle-shaped contacts used in break-junction exper-
iments. This difference has consequences for the conductance of the system, 12 but
for larger inter-molecular separation this need not be an issue per se, as long as the
system being modeled is not actually needle-like in geometry.
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Figure 5.5: (a) Transmission through the Au–BDT–Au junction with periodic boundary conditions, com-
pared with the previous result without periodic boundary conditions, Fig. 5.2. (b) Implied geometry of
the model 3 × 3 Au–BDT–Au junction, using periodic boundary conditions. Overall, we observe a further
opening of the gap and a broadening of the HOMO-like peaks, which themselves are reduced in magnitude
back to G0 transmission.
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5.1.2 Transport with Periodic Contacts
Finally, for Fig. 5.5a we find the same general picture in terms of peaks (compositions
not illustrated). The predominance of the HOMO, HOMO-1 and their “apparent”
counterpart states in transport is, moreover, in excellent agreement with the findings
of Stokbro and others. 3,13

Our work indicates that the convergence towards this bulk result is primarily
dependent on having a sufficient number of transport channels available in the
contacts to couple to, as in Fig. 4.11. This has implications for contacts which
do not couple to as many channels, where a broad peak from the strongly-coupled
regime may break apart into a number of narrower (less strongly-coupled) resonances,
though still enabling transport. A noteworthy feature is that the transmission at the
Fermi level T (ε f ) may be significantly reduced, bringing the value closer to the
experimental one, 14,15 where one typically would expect to be in the weakly– rather
than strongly-coupled regime.

We would argue, however, that since the experiments typically take place in the
weakly-coupled regime, detailed understanding of the nearby peak structure and
peak compositions (in terms of the original molecular levels) is far more useful than
the single (often quoted, and disputed) number T (ε f ).

5.1.3 Transport under Bias
Let us also briefly consider calculations of transport through BDT under bias, using
the perpendicular-face contacts of Fig. 5.1c, and the same basis set as before. In
Fig. 5.6a we show the potential drop averaged transverse to the transport direction,
and observe that the potential is already relatively stable within a few layers of the
extended molecule’s inner surface. The potential drop is mostly over the thiol end-
groups, which may be contrasted with a slightly lower slope of the potential averaged
over the core benzene fragment within the extended molecule region, in agreement
with the results of Datta et al. 16 and Xue and Ratner. 17

We also illustrate the influence of adjusting the location at which the ramp begins
further back into the junction. We see that the largest charge accumulation at the
interface occurs when the ramp is initiated between the first layers at −0.5d from
the innermost Au layer (where d is the interlayer spacing of 2.88Å), suggesting that
it should begin further back to avoid this. However, we see that as we move the
ramp further back, the junction has more difficulty screening the applied potential,
reflected in the longer extent of its deviation from ±250mV deeper into the con-
tacts. This implies practical limitations on minimum junction depth, which are likely
more relevant in our models without periodic boundary conditions, given their lower
capacity to screen high fields inside the conducting leads.

In Fig. 5.10 we plot the transmission on logarithmic scale, compared with the
zero-bias calculation of Fig. 5.2b. We see that the main effect is the shift in Fermi
level and the attenuation of the peaks, as is commonly observed in the presence of
an electric field. There do not appear to be further large changes for this relatively
small bias, and all prominent features are still clearly recognizable.
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Figure 5.6: (a) Potential drop with fixed ramps starting at 0.5d, 1.5d, and 2.5d from the innermost Au layer
of the device region, where d=2.88Å the interlayer spacing. 500mV bias is applied, results are relative to a
zero-bias self-consistent calculation. Molecule with nearest Au neighbors indicated, together with vertical
black lines showing position of subsequent layers of Au. Note the decreased slope of the potential drop
over the benzene ring, as compared with the Au-S bond region. (b) Transmission through the biased 3× 3
Au–BDT–Au junction, as compared with the unbiased result, both without periodic boundary conditions.
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Figure 5.7: Transmission through the Au-BDT-Au junction, using (a) 2 × 2, (b) 3 × 3 and (c) 4 × 4 “badly-
coupled” Au contacts without periodic boundary conditions; cf. Fig. 5.1.

5.1.4 Transport with Badly-Coupled Contacts
The results we have presented so far show the effectiveness of the method when we
apply it to a system with good coupling of the contacts to the molecule, as reflected
in the transmission of the alignment geometry, which resembles that of the system
with transverse periodic boundary conditions, subject to the caveats pointed out in
the previous section. However, there is a subtle point thus far omitted in the discus-
sion which we should consider here, given that it does not appear to be discussed in
the literature, to the best of the author’s knowledge.

Consider the Au-BDT-Au junction as stacked in Fig. 4.10a. In Fig. 5.7 we present
the results without periodic boundary conditions. The contacts used are designed in
the same way as in the previous section, with Au (111) faces with 2 × 2, 3 × 3 and
4 × 4 atoms respectively.

These results do indicate a gradual convergence towards a “bulk” face result (as we
see a gap opening between clusters of peaks in Fig. 5.7), for large faces of Au on each
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side of a single benzenedithiol molecule. However, we emphasize that these results
are (clearly) not directly the comparable with the “classic” Au-BDT-Au junction results
calculated by DFT+NEGF in the literature, 1–3 or even for the results shown previously
in section 5.1.1. This is due to the fact that there are far fewer transmission channels
through Au with these contacts, as compared with the smooth contacts we have
discussed previously in section 4.3.

In the bottom figure 5.10 we plot the transmission on logarithmic scale, for
biased calculations with these “non-smooth” contacts. We again compare with the
zero-bias calculation of figure 5.2b, and see that while the bias induces significant
changes in the structure of peaks, particularly in the gap, the main peaks for the
occupied, HOMO-like levels on the left and unoccupied, LUMO-like levels on the
right is still clearly present, and not significantly shifted in energy. The lowest of the
four peaks is split , indicating a difference in the coupling of the HOMO and HOMO-1
orbitals, while the third and fourth are strongly suppressed, suggesting distortion of
the orbitals’ coupling to Au. The “hidden” plateau right above the Fermi level is
suppressed as well, but a feature near 0.4 eV in the gap is amplified, as is a feature
near 1.2 eV, which appears to shift with bias as well.

The fact that most peaks do not shift in energy implies that the states on the
molecule dominanting transport do not shift strongly at low bias, which is consistent
with the very symmetric nature of the orbitals identified as responsible previously.
In fact, for symmetric coupling to the leads, we would expect the structure to
remain unchanged, and so suggest that the features (e.g. near 1.2 eV) which do
shift somewhat are most likely associated with the metal contacts rather than the
molecular eigenstates.

5.2 OPE-n Single-Molecule Junctions

We now proceed by considering the first two of the thiol-anchored oligophenylene-
ethynylene family of molecules. Except where stated otherwise, we again per-

form transport calculations in our code and gas-phase calculations in ADF using the
LDA functional with a SZ basis on the Au contacts and a TZP basis on the molecule.
We show the results of modeling OPE-2 and OPE-3 single-molecule junctions, with 2
and 3 phenyl rings respectively; the junction geometries are illustrated in Fig. 5.11a–b
respectively. These calculations use the same contacts as with BDT, and therefore
have a common and well-determined Fermi level ε f , as discussed previously. These
molecules have also been studied experimentally as promising benchmark systems
in molecular electronics. 18–21

5.2.1 Transport through OPE-2
The transmission through a junction composed of OPE-2 coupled to 3 × 3 atom Au
(111) face contacts is illustrated in Fig. 5.12, where the peak decompositions are con-
structed as outlined above for BDT. The fragment states to which the figure refers
are illustrated in Fig. 5.13, again labeled according to the gas-phase OPE-2 molecule’s
orbitals. In combination with these orbitals, we analyze the nature of transport, and
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Figure 5.8: Transmission through the (a) 3×3 Au–OPE-2–Au junction, and (b) 3×3 Au–OPE-3–Au junction,
without periodic boundary conditions, for “badly-coupled” contacts.
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Figure 5.9: Comparison of transmissions on a logarithmic scale showing evolution of main features near
the Fermi level as the molecule in the junction is substituted by 1 to 3 phenyl-ring variants.
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Figure 5.10: Transmission through a biased 3 × 3 Au-BDT-Au junction, without periodic boundary condi-
tions, for “badly-coupled” contacts.
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(a) Au–OPE-2–Au Junction Geometry

(b) Au–OPE-3–Au Junction Geometry

Figure 5.11: Geometry of 3× 3 atom (111) surface-bound (a) Au–OPE-2–Au and (b) Au–OPE-3–Au junctions,
both without periodic boundary conditions. Hollow-site binding with 2.40 Å Au-S distance, compare
Fig. 5.1.
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Figure 5.12: Peak compositions near ε f = 0 eV for the Au–OPE-2–Au junction. Distance between clearest
frontier peaks at -0.25 eV and 1.33 eV suggests an effective gap of roughly 1.6 eV.
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(a) LUMO, cf. Fig. 5.3 (b) HOMO

(c) HA : apparent HOMO state on fragment (d) HB : apparent HOMO-1 state on fragment

(e) HOMO-1 (f) HOMO-2

Figure 5.13: (a)–(f) Fragment transport-coupled orbitals nearest the Fermi level (compare Fig. 5.3). We
note again HA and HB , the “apparent” HOMO and HOMO-1 states, which are now better localized at the
interface and whose wavefunctions do not extend all the way across the molecule.
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Figure 5.14: Peak compositions near ε f = 0 eV for the Au–OPE-3–Au junction. Distance between clearest
frontier peaks at -0.25 eV and 1.52 eV suggests an effective gap of roughly 1.8 eV.

the relation to the single-phenyl BDT system discussed previously.

The electronic structure near ε f immediately recalls the results for the BDT
junction. We again find a broad resonance, now split over three peaks below the
Fermi level which are identified with the HOMO-2, –1 and HOMO states. The broad
peaks are further composed of mixtures with the HA and HB states of the Au-OPE
fragments and Au-derived states that are mainly localized at the Au-S bond. Beyond
the transport gap, at 1.5 eV, we again find a peak which is identified predominantly
with the gas-phase LUMO. This is a state which on the OPE-2 (and OPE-3) junction
has an orbital symmetry that immediately recalls the LUMO+1 of BDT. The LUMO+1
states on these two molecules, conversely, recall the LUMO of BDT, and do not play
a strong role in transport due to the localization of electrons away from the contacts.

5.2.2 Transport through OPE-3 and Beyond
For OPE-3, the transmission is illustrated in Fig. 5.14 together with the peak decom-
positions. The orbitals referred to are illustrated in Fig. 5.15, which further confirms
the picture nature of transport in this family. When comparing with the Au–BDT–Au
and Au–OPE-2–Au junctions’ results, it appears that the gap slightly reopens. This,
however, still appears to be part of a progression towards a smaller transport gap for
the longer molecules, following the trend towards smaller HOMO-LUMO gap. This
is illustrated in the log-scale plot of Fig. 5.16, where we show the transmission for
OPE-4 and OPE-5 junctions as well.

Again, it is the gas-phase HOMO which dominates the conductance near the
Fermi level, with the HOMO-1 and HOMO-2 below it composing the lower-lying
peaks. The LUMO dominates beyond the transport gap around 1.5–2 eV. The LUMO
of OPE-3 again recalls the LUMO+1 orbital of BDT found to compose the “effective
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(a) LUMO (b) HOMO

(c) HA : apparent HOMO state on fragment (d) HB : apparent HOMO-1 state on fragment

(e) HOMO-1 (f) HOMO-2

Figure 5.15: (a)–(f) Fragment transport-coupled orbitals nearest the Fermi level (compare figures Fig. 5.3
and Fig. 5.13). We again note HA and HB , again the “apparent” HOMO and HOMO-1 states, and analogues
of Fig. 5.13 (c)–(d) which are again localized mostly near the S atom, and as with OPE-2 have wavefunctions
which do not extend all the way across the molecule.
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Figure 5.16: Comparison of transmissions on log-scale showing evolution of main features near the Fermi
level as molecule in junction is varied from 1 to 3 phenyl rings. Opening of the transport gap is visible, as
well as narrowing of the peaks near ε f and a general spectral shift backwards of the HOMO-like peaks.
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LUMO” peak there, and so we confirm the role of the orbital symmetries between
the respective “LUMO,” HOMO, HOMO-1 and HOMO-2 states for each of the three
molecules.

The HA and HB states, cf. Fig. 5.15, are likewise present in all 3 junctions,
but as the molecule becomes larger, they become more localized in nature than
conjugated, and so should play progressively less of a role in transport through
the longer molecules of the family. However, in practice, we find them present in
roughly similar proportion to the HOMO and HOMO-1 states in the broad peaks right
below ε f in our decompositions for all 3 systems, as well as in the low-conductance
transport gap, which suggests that, as argued above, these two states may not really
be contributing to transport.

The big picture then, appears to be a slightly erratic change of the gap, which
seems to converge from the third or fourth member of the OPE−n family on, nar-
rowing the gap as the number of phenyl-rings in the junction molecule increases. As
pointed out by Ke et al., 22 this should converge to a gap similar to the infinite-OPE-
chain band gap of ∼ 1.7 eV,a dominated by the molecular orbitals as the influence
of the contacts begins to decrease with wire length. We remark that using carbon
nanotube contacts, they observe similarly erratic behavior where the gap-size is con-
cerned. Finally, we remark on the clear trend towards steadily lower values of T (ε f )
as the molecular wire length increases, also visible in Fig. 5.16.

5.3 Conclusions

In concluding this chapter, we conclude both our work on phenyl systems, and
the implementation and validation of our DFT+NEGF method in the ADF quantum

chemistry package. A few remarks are in order.
A combination of the NEGF approach with a DFT description of the bulk contacts

is a flexible, efficient and scalable computational method for transport calculations
on realistic geometries of single-molecule devices. A key advantage of our implemen-
tation is the ability to break periodicity in 1-3 dimensions within a band-structure
code, which allows accurate simulation of the metal contacts for different systems,
while allowing us to simulate geometries akin to e.g. mechanically controlled break
junctions without the need to impose periodic boundary conditions.

We have studied one-dimensional chains and found transport behavior that is
in line with what is expected based on simple theoretical considerations, and then
extended our scope to three-dimensional junctions involving a series of phenyl-ring
molecules from the OPE-family with related gas-phase electronic structures. For
benzenedithiol we recover the signature transmission characteristic with periodic
boundary conditions, but if we go beyond this by breaking periodicity we gain
a deeper understanding of the more complex transmission-peak structure, as the
simple broad HOMO-like peak is separated into smaller peaks that we identify with

aThe value of ∆ ∼ 1.72 eV calculated by us using the BAND code, with 1D periodicity using LDA with
a TZP basis set to match the transport calculations; compare ∼ 1.5 eV as calculated using GGA with
unspecified basis set, by Ke et al.
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particular molecular orbitals hybridizing with Au in transport. This may better reflect
what happens in experiments with sharp nanocontacts.

Such characteristic features are seen to evolve in a clear way for the OPE-based
molecular wires as well, with the orbitals determining transport near the Fermi level
clearly related to the orbital symmetries we identify across the family of molecules.
In particular, we see a related cluster of occupied orbitals near ε f which dominate
transport. As we consider progressively longer molecular wires, we find an at first
erratic trend, leading finally to convergence in reducing the transport gap between
these and the lowest unoccupied-level resonances. Finally, in the low-bias regime,
we find that for the simplest phenyl junction the symmetry of coupling ensures that
we find no significant spectral shifts, but we do find amplification and attenuation
of specific transmission features.

In looking towards the future, we note first the utility of the implementation of a
gate, 23,24 an end to which we have previously outlined some preliminary work which
will feature prominently in the analysis in the following chapter. Beyond this, we
envision an extension to a model for the weak-coupling regime using discrete-charge-
state Green’s functions, along the lines of recent work by Mirjani and Thijssen, 25 for
which we anticipate the utility of our underlying charge-constrained (DIIS) algorithm,
here used (only) for convergence acceleration.
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6
Transport Through Porphyrin

Systems

We extend our transport method with a complementary approach which accounts for
image-charge effects at a metal-molecule interface. A simple model allows us to calculate
the adjustment of the molecular transport levels due to the polarization of the electrodes
as the device is (dis)charged. We apply our approach to a detailed study of image-charge
effects in the porphyrin-derivative devices recently studied experimentally by Perrin et
al. 1

Parts of this chapter have been submitted to Nat. Nano; other parts are in preparation for submission.
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Understanding the physics determining charge transport at interfaces between
metal electrodes and molecules is critical to progress in the field of molecular

electronics. In a molecular device, the alignment of frontier molecular orbital levels
relative to the metals’ Fermi energies determines the contribution of the different
channels available for transport. Due to their proximity to the electrodes, the levels
themselves are shifted relative to those of the molecule in gas phase, and may
hybridize with electrode levels as well. Together, level alignment and hybridization
determine electron transport in the molecular junction.

In this chapter we describe an approach to investigating these effects based on
density-functional theory (DFT) 2 and the non-equilibrium Green’s functions (NEGF)
formalism. 3–11 DFT is frequently used in calculations of charge transport because
of its efficiency, and because computationally it scales well to realistic nanoscale
junction sizes. It does suffers from a few drawbacks, however, the most important
of which are poor predictions of one- and two-particle excitations. 2,12 A standard
tool for one-particle excitations, the ∆SCF method, 2 gives quite good predictions for
addition energies and ionization potentials. The reason for the failure of DFT to
predict excitation energies from a single neutral-state calculation is mainly due to
the inclusion of spurious self-interactions, 13,14 and the omission of dynamic polar-
ization effects. 15,16 Both effects are captured in GW calculations, 16–18 usually within
the COHSEX approach, 15 and time-dependent density-functional theory (TDDFT). 19–21

However, these are rather computationally expensive and not (yet) feasible for large
systems, in contrast to DFT-based approaches.

Approximate methods have been proposed and used with some success to ad-
dress the shortcomings of DFT in predicting the excitations. These include the
use of a scissors-operator 22,23 and simple image-charge models based on atomic
charges, 16,23–25 used to address the location of resonant levels in the transport region
of the molecular device.

Here, we focus on the latter and argue that image charges used in an electrostatic-
energy calculation should be taken from the molecule in the presence of contacts
rather than from the gas phase. These are calculated from different charge states
of the molecule as charge is added and removed, which we address by using a gate
field to shift the molecular levels in the presence of the contacts. In section 6.1 we
provide a brief introduction to static and dynamical interface effects, which alter the
alignment between molecular levels and the Fermi energy of a metal surface. We
then outline our method for the calculation of static and dynamical image-charge
effects. In section 6.2, we apply our method to the Zn-porphyrin devices studied in
recent experiments by Perrin et al., 1 which illustrates the importance of static and
dynamical image-charge effects. There, we also compare our results with various
other simplified approaches which have been proposed and applied in the study of
image-charge effects in molecular devices. 22,23,25

Our approach is broadly applicable to understanding the level alignment essen-
tial to transport at organic-metallic interfaces, and allows us to obtain a detailed
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quantum-chemical understanding of the device at considerably lower computational
expense than more sophisticated approaches.

6.1 Interface Effects and Polarization
We illustrate the most important physical effects as a molecule approaches a clean
metal surface in Fig. 6.1, following Ishii et al.. 26 There is a net positive charge just
inside the surface and a net negative charge just outside it due to “spill-out” of the
wavefunctions of the electrons in the metal. The resulting dipole raises the potential
at the surface to Vs which lies above the vacuum level V∞ far from the metal. This
causes the Fermi energy and the surface work function φm to differ.

When a metal-molecule junction is formed, two different kinds of effects occur.
The first are effects due to interface dipoles created in the process of physi– or
chemisorption, and the static image-charge effect we will introduce in the next
section. These have in common that, similar to applying an electrostatic gate to the
molecule, they all induce a similar “rigid” shift of the molecular levels. The second
class of effects are those which shift occupied and unoccupied molecular levels
differently, causing the gap between them to close (“renormalize”) as the molecule
approaches the surface. When combined with the static effects this yields the
combined adjustment of levels illustrated in Fig. 6.1a. We discuss these two classes
of effects further in the next sections.

6.1.1 Static Interface Effects
Level alignment at an interface is mainly driven by surface- and interface dipoles. 26–30

First, if the molecule is physisorbed onto the surface the electron cloud of the
molecule will “push-back” the spill-out (known as the “pillow effect”). 31,32 Second,
in molecules which chemisorb rather than physisorb at the interface, formation of
the bond causes charge transfer, which alters the surface dipole substantially. Third,
there is also a “zero-bias” or “static” image-charge effect (SICE), which is generated by
the charge distribution of the (possibly neutral) molecule which is felt by any charge
added to/removed from the molecule during transport.

These effects together are combined in a rigid correction ∆ to Vs (in princi-
ple is distance-dependent), and contribute to a static background potential which
raises/lowers the molecular potential-well relative to the gas-phase (as in Fig. 6.1b).
They are similar to electrostatically gating the molecule. In principle DFT captures
at least part of this shift, but evaluating the dependence on the molecule-metal
separation requires many separate DFT calculations. Oszwaldowski, Vazquez et al.
have introduced a related many-body method based on DFT 33 for capturing some
of this dependence, deriving from dipole and pillow effects. Our focus, however,
will be on the contribution of the static image-charge effect to ∆, and the following
considerations guide us:

• The length scale over which the changes to the energy landscape due to a
surface dipole layer take place is related to the extent of the surface dipole
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+ -
Levels far from Contacts

(a)

+ - + -

(b)

+ - + -

(c)

Figure 6.1: Energy landscape during the formation of a metal-molecule interface. (a) Combined static
and dynamical image-charge effects on molecular levels at a single interface, relative to the molecule
in isolation far away. These are a superposition of (b) and (c), where in (b) the surface dipole (shaded
red/green) raises the background potential by Vs − V∞ . The static image-charge effect, intrinsic molecular
and interface dipoles shift the molecular levels back by ∆, while electrostatic gating shifts by βVg . (c)
Levels are also subject to renormalization of the gap between the electron affinity εEA and the ionization
potential εIP levels, where the prime indicates the position after the shift.
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layer formed at the metal surface. This is typically the scale of the electrode in
a mechanically controlled break-junction (MCBJ) experiment, on the order of 5
nm.a This scale is also relevant for the other static interface effects, as they
are all typcially induced by proximity of the molecular charge distribution to
the metal surface.

• In a chemisorbed system, the shift is driven by charge transfer, which replaces
the intrinsic surface dipole.

• The static image-charge effect can be a significant component of ∆, as re-
marked above.

• The magnitude of ∆ is suggested by the measurements summarized by Ishii:
roughly 0.5−1 eV, typically a negative correction on an Au substrate for H2TPP
and ZnTPP films (without thiols). 26,28

Measurements by Koch et al. 34–36 on thin-films with different molecules support
these considerations: they find a constant-shift region very near the interface, fol-
lowed by a linear shift of ∼ 1 eV over a range of roughly 8 Å beyond which a regime
with constant ∆ sets in.

6.1.2 Dynamical Interface Effects
Note that the effects in the preceding section shift all molecular levels in the same
direction, which is in contrast with the closing (“renormalization”) of the energy
separation (“gap”) between occupied and unoccupied levels we discuss in this section.
We are concerned with the chemical potentials associated with charge addition and
removal, derived from the frontier molecular orbitals, and will refer to these as the
highest occupied and lowest unoccupied levels in analogy with the gas-phase HOMO
and LUMO. The gap between these levels in the junction is the “transport gap,” in
analogy with the HOMO-LUMO gap (which omits charging effects). It maps directly
to the electron affinity (EA) and ionization potential (IP) of the molecule in gas-
phase, which are altered by the proximity to the metal electrodes. As a result of the
polarization of the electrodes as charge is added to or removed from the molecule,
the transport gap becomes smaller with decreasing metal-molecule separation, as
illustrated in Fig. 6.1c, which we refer to as the “transport-induced” or “dynamical”
image-charge effect (DICE).

It has been extensively discussed in the literature that transport-gap renormal-
ization is indeed described by the dynamical image-charge effect, 15,16,18,22,37 and the
polarization response to charge added near a metal surface, for smaller molecular
systems, was shown by Neaton et al. 16 to be generally well-fit by an image-potential
of the form − 1

4x beyond the image plane of the metal contact. To see how the
image-charge effect leads to a reduction of the HOMO-LUMO gap, consider a single

aEstimated from the fits of the junction area in Perrin et al.’s experiments 1 , which fit this as 28 nm2 and
considered the range of 10 − 50 nm2 as representative.
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1st Images

2nd Images

y

x

Figure 6.2: Point charges between parallel plates, leading to an infinite series of image charges (first set of
images in yellow, second set (images of images) in blue, etc). Note the δqi added to the charges qi of the
Nth charge state, in going to the (N + 1)st charge state: these also induce a series of repeated images.

point-charge δq = ±e added to a neutral N electron system, near an infinite con-

ducting plate. The charge addition induces an additional energy term − δq
2

4x , with x
the distance from the plate, which decreases the ionization potential:

IP ≡ EN−1 − EN 7→ (EN−1 −
δq2

4x
) − EN , (6.1)

and raises the HOMO-like occupied level εIP = −IP relative to the vacuum level V∞.
Similarly, it increases the electron affinity:

EA ≡ EN − EN+1 7→ EN − (EN+1 −
δq2

4x
) , (6.2)

and lowers the LUMO-like unoccupied level εEA = −EA relative to the vacuum level
V∞. Together, these effects renormalize the transport gap: IP− EA = EN+1 + EN−1 −

2EN − 2 δq2

4x .
The effects are important in most nanoscale molecular systems, as has been

argued on both experimental 24,38,39 and theoretical grounds recently. 16,18,22,23,25,37 Ac-
counting for it is thus crucial for understanding and designing future molecular
devices.

6.1.3 Full Image-Charge Effect Model
Following Kaasbjerg & Flensberg 25 and Mowbray & Thygesen 23, we simplify the
image-charge effects for the full spatial charge density by considering atomic point
charges. These are calculated from the charge states with N − 1, N (neutral) and
N + 1 electrons on the molecule. The atomic charges are denoted q j, and are located
at r j. Their images are denoted as qI

j = −q j, located at rI
j. When the total charge on
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the molecule changes, the atomic charges change by δq j, which induce additional
image charges δqI

j. The correction to a molecular level for a change in the charge
state is then:

∆ICE =
∑
i, j

δqiq j

|ri − r j|
+

∑
i, j

δqiqI
j

|ri − rI
j|

+
∑
i< j

δqiδqI
j

|ri − rI
j|

−
∑

i

δqiqi

|ri − rI
i |︸   ︷︷   ︸

2xi

−
∑

i

δq2
i

2|ri − rI
i |︸    ︷︷    ︸

4xi

+
∑

i

Uself(δqi) (6.3)

which is derived by considering the work involved in assembling the point-charge
configuration.

The superscript I implies a summation over the images: a single image for the
single-plane case, and an infinite series for planes which face and mirror each other,
as in Fig. 6.2. This series is discussed for two facing planes in Appendix 6.2.5.

The first term is the direct Coulomb interaction of δqi with the resident charge
distribution {q j}. Terms two and four, involving qI

j, account for the contribution
of the static reference configuration, which we refer to as the static image-charge
effect. Terms three and five, by contrast, are the dynamical effect due to a charge
being added or removed only, and hence called the dynamical image-charge effect.b

Eq. (6.3) not only accounts for the gap renormalization but also for the contribution
of the static polarization to the rigid shift ∆ introduced earlier. Note that terms two
and four can be combined into a single expression, and likewise terms three and five.
Term six corrects for the energy effects of adding charge an atom of the molecule,
modeled by atomic charges, when there is already resident charge.c Like the first
term, this does not dependent on the distance to the image plane, and so will be
ignored.

When there is only one plane, and we neglect the self-interaction, the image-
charge effect reduces to:

∆ICE = −
2q δq + δq2

4x
,

where we recognize the extra term representing the static image-charge effect, when
compared with Eq. (6.1). As an example, suppose the resident charges add up
to roughly q ≈ 1

3δq, δq = ±e in magnitude, rather than charge neutral. Using
this simple one-plane model, we find a significantly stronger effect than when the

resident charges are ignored: ∆ICE(x) = −
(1+ 2

3 )
4x e2.

bNote that terms 4 and 5 split out the diagonal elements of terms 2 and 3 for the geometry in Fig. 6.2.
cTo describe this properly in quantum mechanics requires taking the orbital structure into account and
correcting for self-interaction errors made by DFT, which are being ignored in an atomic point-charge
model.
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6.1.4 Molecular Charge Distributions
To evaluate the model in the previous section, we need the atomic charges for
different molecular charge states. For this, several charge decomposition techniques
are available. 40 We prefer Hirshfeld or Voronoi decompositions due to their nature
as spatial decompositions, as opposed to the basis-set decomposition involved in
Mulliken decompositions. Two approaches will be compared in section 6.2 of this
chapter:

1. Using the charge distributions of the N and N ± 1 electron charge states
in gas-phase, where one electron is added to or removed from the molecule
without taking the interactions with the electrodes into account. This is the
approach taken by e.g. Mowbray et al., 23 with the additional assumption
motivated by Hybertsen et al. 15 and Neaton et al. 22 that taking only the atomic
charges involved in addressing the IP already captures the image effects for
both occupied and unoccupied levels.

2. Starting from the reference charge state of the molecule in a junction, i.e. the
state in the absence of bias or gate fields. The molecule is then gated by a
constant field, such that the charge is changed by ±e. As in the previous
approach, this yields three sets of atomic charges, but now in a description
with the interaction with the electrodes taken into account. To the best of our
knowledge, this approach has not previously been reported in the literature.

In section 6.2.4 we compare the methods for the specific case of Perrin et al.’s
Zn-porphyrin single-molecule experiments, and argue that the extra physics captured
in the second approach is essential for understanding low-bias transport.

6.1.5 Image-Charge Calculation Summary
Before applying our method to a concrete example, we summarize the steps:

1. A set of DFT+NEGF transport calculations is performed with a geometry that
models the junctions in the experiments. Rather than performing a single
transport calculation, we perform three. In these calculations a gate field is
applied to the molecule in the junction, tuned such that it has a charge corre-
sponding to ±1e relative to the (partially charged) reference state, characterized
by zero bias and gate voltage.

2. The charge-distributions from these calculations are then used in our image-
charge model (6.3), yielding a distance-dependent trend for the static and
dynamical image-charge effects.

3. The effects are calculated for infinite-plane electrodes. We have also estimated
the reduction of the effects for more realistic electrode geometries. This is
performed only once, to obtain a single correction factor which reduces the
magnitude of the calculated level shifts.
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For comparison, DFT calculations of the molecule in gas-phase are also per-
formed, in order to understand the nature of the molecular levels and the baseline
atomic charge distribution which is altered by proximity to the electrodes. The
link between the two situations is made by inspection of which gas-phase levels
contribute to the peaks in the transmission. This yields additional insight into the
transport process in general, and the image-charge effect in particular.

6.2 Au-ZnTPPdt Molecular Devices

We now proceed to a non-trivial application of the method, which allows for a
comparison with recent experiments that reveal image-charge effects on both

occupied and unoccupied molecular levels.

6.2.1 Experimental Results
We first discuss the recent experimental findings of Perrin et al. 1 who studied
thiol-terminated zinc-porphyrin molecules [Zn(5,15-di(p-thiolphenyl)-10,20-di(p-tolyl)-
porphyrin)], abbreviated as ZnTPPdT. The molecules were chosen because they offer
great architectural flexibility and rich optical properties, as is well-established in the
literature. These aspects also motivated previous studies by Perrin et al. 41,42

The experiments were carried out in a mechanically-controlled break-junction
(MCBJ) setup, as in Fig. 6.3. 43,44 Fig. 6.3a illustrates the setup schematically. Pressure
is slowly applied along the green arrows, which when balanced against the counter
support causes the electrodes to move closer together or apart in a controlled way.
This allows one to make and break contact on a nanometer scale, sufficiently small
to create gaps in which to trap single molecules, which then bridge the separated
electrodes and close the electrical circuit. The experiments take place under cryo-
genic conditions in vacuum, which dramatically reduce the presence of impurities,
and allow study of quantum mechanical effects which would otherwise be “washed
out” by thermal noise.

Current-voltage characteristics (IV’s) can be taken as a function of electrode spac-
ing in two- and three-terminal MCBJ’s, while in the case of three-terminal devices the
dependence on the gate voltage can also be measured, yielding stability diagrams.
Physical realizations of the two device types are shown in Fig. 6.3b as colorized
scanning electron microscope (SEM) pictures.

The derivative of an IV, the differential conductance ( ∂I
∂V ), is the main instrument

used to study such molecular devices. Peaks in the differential conductance typically
correspond to resonant transport through a molecular level, which may have been
brought into resonance with the chemical potentials of the leads by either gating
or biasing the device. In a typical ∂I

∂V , resonances indicating transport through a
single level will correspond to two peaks: one at positive and one at negative bias.
When considered as a function of the spacing of the electrodes, these resonances
show a marked “mechanical gating” effect, where a level shift is induced by a change
in the metal-molecule distance The efficiency of the effect can be expressed by a
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mechanical gate coupling (MGC): the change in bias voltage needed to address the
resonance with varying electrode separation (in units of V/nm).

We show experimental data for the observed mechanically-induced shifts in
Fig. 6.5, where the measurements show a distance-dependent resonance, again ex-
pressed as the bias required to address the level in transport. A linear fit of the
resonance positions was used to find the MGC.

Histograms and basic statistics of the observed MGC’s are plotted in Figs. 6.6b–
6.6c, which show that there is a (sometimes) large spread in the observed MGC, but
that each sample has its own characteristic distribution. Various jumps in the reso-
nance position are also visible in Fig. 6.6a, which are presumably caused by changes
in the geometrical configuration. As ZnTPPdT is not a rod-like molecule, it can form
molecular junctions with various geometries, as has been reported previously for
similar molecules. 42 In the experiments a wide range of shifts is found, but generally
they are in the range of 0.2 − 1 V/nm (where V = Vb, the bias voltage).d Combined
with a typical range of 0.5 nm over which the junctions formed are stable, this means
that levels shift observably over roughly 50 − 250 meV in energy, if we assume the
bias voltage to drop symmetrically.

By itself these observations would not, however, determine whether the reso-
nance is associated with a HOMO-like (initially occupied) or a LUMO-like (initially
unoccupied) level. To establish those associations, the gate electrode was used to
determine the electrostatic gate coupling (EGC), defined as the shift in voltage of the
conductance peak per unit gate voltage applied (units of V V−1).

This is illustrated in Fig. 6.4, which shows a positive EGC corresponding to
HOMO-like occupied levels (gating moves them away from the Fermi level, thus a
larger bias is needed to address them), and a negative EGC corresponding to LUMO-
like unoccupied levels (gating moves them towards the Fermi level, reducing the bias
necessary to address them).

On average the couplings appear to be on the around 0.51 ± 0.33 V/nm (corre-
sponding to 0.25± 0.16 eV/nm, assuming a symmetric bias drop over the molecule),
but the histograms in Fig. 6.6 indicate that there can be a significant spread in the
observed MGC over different opening and closing traces. This probably reflects the
occurrence of some conformational changes in the junction during measurements
separated in time.

Moreover, when identification of the level using the gate is added, we find that
individual samples can exhibit significantly large occupied/unoccupied level shift
asymmetries, as we illustrate in Fig. 6.5 (0.40 V/nm vs. 0.18 V/nm). However, the
number of samples is too small to draw general conclusions, despite the stability
of the effects in individual samples. This stability is nonetheless remarkable, and is
illustrated for a number of consecutive making/breaking cycles in Fig. 6.6a.

dThe distance between the molecule and the electrodes is roughly half this on either side, implying that
the one-sided shift magnitude is doubled.
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(a)

(b)

Figure 6.3: (a) Illustration of the measurement setup in a MCBJ experiment. (b) Colorized SEM picture of
one of the device fabricated for the measurements reported by Perrin et al., 1 with and without an Al gate
electrode underlying the Au break-junction (a three- and two-terminal device, respectively)
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Figure 6.4: Representative measurement on Au-ZnTPPdt, 1 showing electrostatic gate coupling of (a) oc-
cupied or HOMO-like levels (moving outwards) and (b) unoccupied or LUMO-like levels (moving inwards)
respectively.

Figure 6.5: (a) Representative measurement on Au-ZnTPPdt, 1 showing (a) HOMO-like mechanical gate-
coupling (MGC) of occupied levels, and (b) LUMO-like MGC of an unoccupied level, respectively. Note the
dilation of the y-axis in the case of LUMO-like resonances. Both move inwards towards the Fermi level
with decreasing distance.
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Figure 6.6: (a) Representative measurement, 1 showing reproducibility of observed MGC’s over repeated
making and breaking of the junction. (b)–(c) Histograms, means and standard deviations of the (absolute
value of the) observed MGC for repeated measurements on two experimental samples.
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We will now show that our approach yields trends matching the experiment, and
predicts an asymmetry in the shifts found between occupied and unoccupied levels.
While it produces results for an idealized geometry, these can be corrected to yield
better quantitative estimates for more realistic geometries, as we will show.

6.2.2 ZnTPPdt Electronic Structure
To apply our method to this molecular system, we first consider the electronic
structure of the molecules in gas phase. Geometry optimizations were performed,
using ADF, 45,46 for the ZnTPPdT molecule in gas-phase, as well as Au-ZnTPPdT-Au
fragments. These fragments are the simplest approach to a thiolated Au-ZnTPPdT
system: two Au ad-atoms stabilize the molecule, in the place of the H’s detached from
the terminating thiol groups. We discuss the details in section 6.3. The geometries
are illustrated in Fig. 6.7 and the resulting electronic structure is shown schematically
in Fig. 6.8 for the three relevant gas-phase charge states.

The relevant molecular levels for transport in Fig. 6.8 are those which are near
the Fermi level of the Au electrodes. We show the levels HOMO-2 through LUMO+1
for the fragment and gas-phase systems in Figs. 6.9 and 6.19 respectively. Most
levels are characterized by an orbital wave-function which extends at least somewhat
onto the arms which connect the molecule to the electrodes, and the coupling from
the arms to the electrodes almost fully determines the relevance of the orbital for
transport. The HOMO-like levels extend more onto the arms than the LUMO, and as
is suggested by the fragments in Fig. 6.9, also hybridize more strongly with the gold,
in Fig. 6.11.

Most of the fragment orbitals can be related to gas-phase orbitals by considering
their symmetry on the molecule. For a number of levels, the correspondence is
less trivial, such as for those formed in the gap between the gas-phase HOMO and
LUMO due to hybridization with the gold (cf. Fig. 6.10). Their charge density is
located mostly on the arms, and they appear to be stabilized by the interface. In the
following, we will refer to these levels without gas-phase counterparts as “interface
levels”; the remaining levels will be denoted by the character of the corresponding
gas-phase orbitals: HOMO, LUMO, etc.

Finally, with regard to the gas-phase HOMO-LUMO gap, by means of ∆SCF calcu-
lations (taking energy differences between two calculations for charge states N,N +1)
we find it to be 1.8 eV in our LDA and GGA calculations and 2.7 eV using the B3LYP
functional, consistent with the reports of Park et al. 47, and in general agreement with
their redox measurements of roughly 2.2 eV. In the experiments, assuming a sym-
metric bias drop over the junction, this would require a bias on the order of 4 V to
be applied, which is beyond the experimentally accessible range of the MCBJ-based
devices in Perrin et al.’s experiments.

6.2.3 Transport through ZnTPPdt Junctions
Our Au-ZnTPPdT binding geometry is based on a phenyl ring bonded to a gold sur-
face via a thiolate bond, 48–51 as shown in Fig. 6.7c. In the calculations, ZnTPPdT’s
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(a) ZnTPPdT Geometry (b) Au-ZnTPPdT Fragment Geometry

(c) Au-ZnTPPdT Junction Geometry

Figure 6.7: Geometries of ZnTPPdT in (a) gas-phase and (b) as a fragment. Metal ions are pink-grey.
(c) Typical binding geometry. Left Au atoms show placement relative to a (111) surface layer, right atoms
show the positions of nearest neighbors participating in the hollow-site Au-S binding. In the transport
calculations bulk-like contacts are present on both sides.
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LUMO, 
LUMO+1

(131-132)

HOMO (130)

HOMO-1 (129)

(126-127)

HOMO-2 (128)

Figure 6.8: Highest occupied and lowest unoccupied level structure of the ZnTPPdT molecule in gas
phase, from a DFT calculation with 260 valence electrons (lower-lying levels treated in the frozen-core
approximation). The corresponding orbitals are illustrated in Figs. 6.9 and 6.19.

binding is characterized by chemisorption, with significant charge transfer to the
thiols, which act as acceptors. This is in agreement with the literature on such bind-
ings. 52–56 The calculations are performed with a perpendicular hollow-site binding to
a FCC (111) surface, though we discuss tilt and other departures from the perpendic-
ular geometry further in section 6.2.6. We nonetheless emphasize that this choice
is in no way essential: it is merely representative of what is thought to be a typical
single-molecule device geometry.

We performed a series of calculations for varying gate fields, and show the cases
where roughly ±e is added to/removed from the reference state in the junction in
Fig. 6.12. We extract the (Hirshfeld) projected charges on different parts of the system,
which indicate that at zero gate-field, the reference state has a net charge of −0.05e,
with roughly −0.34e on the thiols and +0.29e on the rest of the molecule. The latter
is dominated by the core Zn ion.

All calculations were performed using a TZP-basis of numerical atomic orbitals
on the molecule, using the LDA functional in our implementation of NEGF-based
transport in the ADF/Band quantum chemistry package, 11,57,58 with thiols located at
a 2.59 Å from the electrodes. For further details about the calculations, see the
appendix at the end of this chapter.

We study the composition of the transmission peaks found in our transport
calculations using the decomposition technique of Appendix B, in which we project
the transporting levels from the DFT+NEGF calculation onto orbitals of the Au-
ZnTPPdT fragment, illustrated in Fig. 6.9. Fig. 6.10 shows the transmission of a
typical transport calculation for the MCBJ geometry of Fig. 6.7c, using a representative
nearest neighbor Au-S distance of 3.08 Å, corresponding to a 2.59 Å offset from the
electrodes in a 24.26Å gap. We observe a cluster of HOMO-like peaks near ε f (defined
as 0 eV), some features in the gap near 0.4 eV, and the nearly-degenerate LUMO and
LUMO+1 around 1.7 eV.



6.2. Au-ZnTPPdt Molecular Devices 113

{{6

(a) LUMO+1 (b) LUMO

(c) Typical “Interface Level” A (d) Typical “Interface Level” B

(e) HOMO

(f) HOMO-1 (g) HOMO-2

Figure 6.9: Orbitals of gas-phase Au-ZnTPPdT-Au Fragment. (c)–(d) Typical interface levels which form
on hybridizing with Au: 6 total between the analogue of the gas-phase HOMO and LUMO (cf. Fig. 6.19),
forming three sets of bonding/anti-bonding pairs, of which two sets with HOMO character and one set
with LUMO character.
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(a) Peaks decomposition with molecular orbital levels
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(b) Peaks decomposition with interface levels

Figure 6.10: (a) Composition of peaks in transport, constructed by projection onto fragment molecular
orbitals. A state with value 1 is a decoupled state (completely un-hybridized, e.g. HOMO–4 through –7),
while HOMO, HOMO-1 and –2 are strongly hybridized with each other and the Au electrodes (30-50%
representation in the junction levels, with the rest originating from Au). The LUMO and LUMO+1 peaks
are likewise strongly mixed with each other, but couple much less to Au, reflected in the much narrower
transport peaks near 1.7 eV. (b) As in (a) for the interface levels rather than the levels directly identifiable
with gas-phase molecular levels.
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(a) Hybridized HOMO for (N + 1)e in Junction

(b) Hybridized HOMO in MCBJ geometry

(c) Hybridized HOMO for (N − 1)e in Junction

Figure 6.11: Hybridization in the Au-ZnTPPdT junction: effective HOMO levels relative to the Fermi energy,
gated such that (a) is the HOMO when there are roughly N + 1 electrons on the molecule in the junction
(interface state-like), (b) roughly N electrons (HOMO-like, reference state has Vg = 0 eV, net charge is
−0.05e but +0.29e on the molecule excluding the negative thiols, cf. Fig. 6.12) and (c) roughly N − 1
electrons (also HOMO-like, as HOMO is double occupied in neutral ground-state).
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Figure 6.12: Partial charges for the three gated transport levels (the reference state and gated such that the
net charge is ≈ ±e), showing the difference in charging the molecule, thiols and molecule-without-thiols
as the gating is varied (roughly ±50 meV). At zero-field, the molecule is roughly neutral, with negative
thiols and a positive core.

The HOMO and two nearest occupied levels dominate transport near ε f , with the
HOMO appearing as a broad peak while HOMO-1 and HOMO-2 mostly contribute
to a lower lying, less-coupled state. HOMO-3 and below do not contribute much to
transport (appearing as levels which do not hybridize). The peaks right below the
Fermi level derive mostly from the HOMO,e with significant amounts of interface
levels (cf. section 6.2.2) mixed in. Fig. 6.10b shows the role of the 6 interface levels
labeled LA,B, H1

A,B and H2
A,B, derived from hybridization of HOMO and LUMO with the

gold. The levels in the fragment appear to be of a bonding/anti-bonding character,
with splittings on the order of 0.1 eV. The charge density deviates most strongly
from neutral near the interface due to the chemisorption-induced charge transfer.
The hybridization associated with the chemisorption is responsible for the smearing
of the sharp resonances of molecular levels into broader peaks in transport near ε f .
Our conclusions from these calculations may be summarized as follows:

• It is unlikely that the LUMO level is available within the experimental bias-
window of roughly ±0.75 eV, given that zero-bias transport is HOMO-dominated,
with the LUMO resonance at 1.7 eV above the Fermi energy in Fig. 6.10. More
accurate calculations of the EA with GGA and B3LYP functionals in the ∆SCF
approach, yields values for the addition energy IP−EA in the range of 1.8−2.7
eV.

• The dominant spectral feature just above ε f is a resonance with a distinct

eIdentified by analyzing the orbital symmetries of the wavefunctions of these levels.
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HOMO-derived interface level’s orbital character remarked earlier. Its presence
in the transport gap suggests it as the likely mechanism for accessible LUMO-
like behavior.

6.2.4 Image-Charge Calculations
The most relevant molecular levels (cf. Fig. 6.19) are likely to be the HOMO-derived
levels near the Fermi level of the Au electrodes, and not the orbitals derived from
the gas-phase LUMO. Consequently, as argued by Perrin et al., 1 we conclude that
when both electron and hole transport are observed, the reference state (at zero
bias and gate) is one in which the molecule has already lost some charge (though
not necessarily a full electron, due to partial charge-transfer at the interface). This
suggests that the atomic charges in a junction geometry (obtained from a NEGF+DFT
calculation) will lead to more representative results than when gas-phase charges are
used.

Charge distributions for the higher and lower charge states are obtained by gat-
ing the levels nearest ε f across roughly ≈ 100 meV relative to the reference state,
changing the net charge by ≈ ±e. Fig. 6.13 shows the resulting charge distribu-
tions, comparing the results from gas-phase with those for a gated single-molecule
junction.

We apply the image model, Eq. (6.3), summing the electrostatic interactions with
all image charges for the device geometry between two parallel plates (cf. section
6.2.5). The resulting shifts as a function of distance are plotted in Fig. 6.14b with
uncertainty bands accounting for a ±0.25 Å uncertainty in the position of the image
plane, taken at 1 Å outside the outermost plane of metal atom centers (Fig. 6.14a),
consistent with the literature. 22,59–61 Our calculations predict MGC’s in the range of
0.5 − 1.4 eV/nm for an occupied level and 0.2 − 1.1 eV/nm for an unoccupied level
(in opposite directions), depending on electrode separation (cf. Fig. 6.14b).

Fig. 6.15 compares the image-charge effects above with those calculated from
atomic charges taken in gas-phase. As the gap closes, the image effects derived
from the charges in the junction become significantly stronger, due to the relatively
strongly-charged thiols being brought closer to the contacts. For large electrode sep-
arations, on the other hand, the trend of the unoccupied level, in particular, is quite
similar for charges from gas-phase and in the junction.

The shifts shown in Fig. 6.14b can be split into static and dynamical image-charge
terms (cf. Fig. 6.14c). In section 6.1 we introduced ∆, the correction to the background
potential, and argued that it should have a common “static” effect on both occupied
and unoccupied levels, in the range of −0.5 to −1 eV for H2TPP and ZnTPP films. 26,28

For samples in which the reference state is (partially) charged, we expected the static
image-charge effect (SICE) to contribute substantially to this ∆-shift. In Fig. 6.14c, we
indeed find that the SICE is relatively constant as a function of distance, and has a
magnitude of roughly 0.35 to 0.45 eV, though there is some distance dependence
that contribute to the overall trend of the image-charge effects.
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(a)

(b)

Figure 6.13: Difference in charge distribution in the N + 1 relative to the N electron charge states. Red
indicates the increase of negative charge when adding an electron; blue the decrease. Differences for
(a) gas-phase DFT calculations (LUMO like difference) and (b) for gated DFT+NEGF transport calculations
(recalling the interface levels of Fig. 6.9).
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(a) Geometry for Image-Charge Shifts
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(b) Transport Gap Renormalization
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Figure 6.14: (a) Geometry used in the image-charge model, and (b) shifts predicted by the model (with
uncertainties) showing the occupied- and unoccupied-levels both shifting towards ε f with MGC’s (the
derivative with distance) in the range of 0.2 − 1.4 eV/nm, expressed in the symmetrically applied bias.
(c) Splitting of shift of Eq. (6.3) into static and dynamical terms. Derivatives are of the same order, but
the dynamical terms dominate. Static terms give same trend for both levels, while dynamical terms
show opposite behavior, with net asymmetry causing the occupied level to shift more strongly, as in the
experiment.
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Figure 6.15: Comparison of results for total image-charge corrections using charges from gas-phase calcu-
lations of ZnTPPdT, and from calculations on the ZnTPPdT molecular junction.

The sign, however, may be negative or positive, depending on the details of the
charge distribution on the molecule, which can be understood as follows. If we
consider just the (negative) charging of the thiols, we would expect positive image
charges to dominate, lowering the potential for charge addition to the molecule
in the junction. This is already clear in the image model for a single site near
a metal surface. We can simplify the analysis of our more complicated molecule
by introducing a 3-site toy-model as in Fig. 6.16. We take equal negative charges
near the interface, representing the thiols at the extremes of the molecule, and a
positive “core” in between. We find ∆SICE < 0 for charges similar to our Hirshfeld
decomposition. However, for electrode separations and bindings where the charges
on the thiols are not as dominant, we can find an opposite sign for the SICE. This
then agrees with what we find for the full atomic charge distribution in Fig. 6.14c.

This observation is particularly relevant in the context of the experiments, since
Fig. 6.5 suggests an asymmetry such that the occupied level shifts more strongly
than the unoccupied one. If the dynamical image-charge effect is dominated by the
charging of the thiols near the interfaces, it may be roughly symmetric (recalling the
image-charge effect for a single charge), as Fig. 6.14c suggests. The model’s predic-
tion of asymmetry in the trends in the experiments is, in this case, due to the static
image-charge effect. In order to explain the measurements in Fig. 6.3, ∆SICE > 0
is then essential, and both such a 3-site model and our full transport calculations
suggest that it can occur in some (though not all) metal-molecule configurations and
charge states.f

fDepending on, among other things, the junction geometry and electrode separation, as they are reflected
in the exact location of the HOMO-like transmission peaks relative to ε f .
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Figure 6.16: 3-site charging model, where the images of the charges nearest the interface dominate the
static image-charge effect as charge is added, indicated by yellow dashed lines.

We conclude that image-charge effects explain the distance-dependent renormal-
ization of the position of the molecular orbital levels with respect to the Fermi level
of the electrodes. Our calculations reveal that the static image-charge effect con-
tributes to the MGC to an extent comparable with the dynamical effect (roughly half
as strong), as expected for a charged reference state. We emphasize that agreement
between theory and experiment is found assuming a partially charged reference state
for the molecule in the junction. Taking the reference state to be the gas-phase neu-
tral state suppresses the asymmetry between the shifts for occupied and unoccupied
levels, as is clear in Fig. 6.15. This supports our conclusion that for the measurements
of Fig. 6.3 an interface-stabilized level of the fragment has lost some charge, as is
suggested by the peak above the Fermi level in our transport calculations, and that
this level is being addressed in electron transport through the unoccupied state.

6.2.5 Kaasbjerg & Mowbray Models
For comparison with our results, we have implemented the previously noted model
by Kaasbjerg 25 as follows:

∆EK =
∑
σ,τ

∑
i, j

qiq j · σ
εr + τ

εr + 1
τ

( direct Coulomb when σ = τ = 1︷                                             ︸︸                                             ︷
1√

(xi − σx j)2 + (yi − τy j)2 + (zi − z j)2

+

∞∑
n=1

( 1√
(xi − σx j − 2nL)2 + (yi − τy j)2 + (zi − z j)2

+
1√

(xi − σx j + 2nL)2 + (yi − τy j)2 + (zi − z j)2

))
, (6.4)

where the image terms that we are concerned with correspond to τ = 1, σ =

1, εr+τ
εr+1 = 1. In Kaasbjerg’s formulation in terms of classical Green’s functions, the
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Figure 6.17: Comparison of our model with Mowbray’s (equivalently, Kaasbjerg’s) approach, using (a)
neutral-state resident charges {qi} in the junction, and (b) the charged-state’s added charges {δqi} in the
junction.

direct term is dropped and one proceeds with only the Green’s function G̃(xi, x j)
corresponding to the induced potential: all the terms minus the direct one. Then
φinducedi =

∑
j q j G̃(xi, x j) and ∆E = 1

2
∑

i qiφ
induced
i where we recover the usual factor

1
2 associated with double counting when assembling the charges in the induced
potential field. Mowbray includes this factor 1

2 explicitly, while Kaasbjerg recovers it
when going from the potential to the associated energy for the charges in the field.
In Mowbray’s 23 very similar approach:

∆EM = −
1
2

∑
i, j

qiq j

∞∑
n=1

( 1√
(xi + x j − 2nL)2 + (yi − y j)2 + (zi − z j)2

+
1√

(xi + x j + 2(n − 1)L)2 + (yi − y j)2 + (zi − z j)2

−
1√

(xi − x j − 2nL)2 + (yi − y j)2 + (zi − z j)2

−
1√

(xi − x j + 2nL)2 + (yi − y j)2 + (zi − z j)2

)
. (6.5)

We see that the two models map onto one another, with the extra offset in the
second of Mowbray’s summed terms corresponding to the n = 1 term. Numerically,
correcting for this gives perfect agreement, without it we get the correct behavior
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for the 2(n − 1)L = 0 term and the large–n asymptotics, and the numbers are
generally close in between. In evaluating our Eq. (6.3), we convolve the charge terms
in the numerator with the same kernel as the two models just discussed (specifically,
Eq. (6.5)).

If we consider only the difference between charge states, we are assuming qi = 0
in the above expressions. Making this substitution we recover precisely:

∑
j,k

δq j · δqI
k

|r j − rI
k |
−

∑
j

δq2
j

4x j
(6.6)

which are the terms corresponding to the buildup of image charges in the absence
of a resident charge distribution. This yields exactly the terms outlined by Kaasbjerg
& Flensberg when summed over all repeated images between two infinite planes.
We thus find that Eq. (6.3) is an extension of their approach, where the charge
distribution in the reference charge-state is explicitly taken into account in the static-
image-charge effect. As with their work, we account for the gap renormalization
at the interface, but in addition also add the contribution of the static polarization
to the rigid shift ∆, allowing for an asymmetry in the shifts of the occupied and
unoccupied levels respectively.

Finally, in Fig. 6.17 we make the comparison between these models and ours,
using the neutral-state resident charges (in the junction), finding that the behavior
is significantly different. On the other hand, we compare the use of our model
with charges corresponding to a partially charged the molecule in the junction. We
then find much better agreement, with a roughly constant shift corresponding to
the omission of the static image-charge effect in the latter approach, which reports
symmetric shifts of occupied and unoccupied levels.

6.2.6 Orientation and Finite-Size Corrections
So far, we have assumed that the molecule is oriented with its ‘arm’ perpendicular
to an infinite, flat surface. In this section we investigate the effect of deviations from
this idealized situation.

Though it is possible in general, we do not expect that the molecule lies flat
(angle ∼ 0◦) on the surface, as no highly asymmetric bias-coupling was observed
in these experiments. We have investigated the dependence on the orientation by
repeating the procedure for different angles between the lateral axis of the molecule
and the surface, finding only a weak dependence of the MGC with angle.

At low angles (where the molecule lies nearly flat) there may be different charging
patterns due to different charge-injection pathways made possible by the proximity
of the rest of the molecule to the contact surface, modifying this conclusion.

A second issue is that in the MCBJ experiments, we do not expect to have large
“parallel plate” electrodes, but more needle-like few-atom contacts. This implies that
the capacity for screening by the electrons available locally is reduced, and so the
image-charge effects will be smaller than in the infinite plane case.
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(a)

(b) (c) (d)

Figure 6.18: (a) Image charge correction (reduction in magnitude) as a function of electrode radius for the
charge distributions obtained when applying a positive and a negative gate with a point charge e in the
center of the junction. (b–d) Geometry used in COMSOL to calculate the image charge correction for an
electrode radius of 0.2 nm, 1 nm, and 3 nm respectively.
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To investigate this difference, we have used the finite element electrostatic solver
in COMSOL Multiphysics 4.2 and calculated the reduction of the electrostatic energy
of the point charges as a function of electrode size, using elliptical electrodes of a
few Å across (the expected size of a few-atom contact in a MCBJ experiment).

The electrodes were modeled as ellipsoids with the semi-axis in the transport
direction fixed at 1 nm. The semi-axes perpendicular to transport were varied from
0.2 nm to 5 nm, as illustrated in Fig. 6.18(b)–(c). Using this electrode geometry, we
first calculate the reduction of the image effect for a point charge e in the center of
the junction as a function of electrode size, which goes to a “large electrode limit,”
comparable with the planar contact results. For needle-like few-atom contacts, a 0.5
nm radius would be reasonable, and we find a reduction of the image-charge effect
by roughly a factor of 1.5 on comparing the energy reduction at this radius with the
large electrode limit in Fig. 6.18a.

For comparison, we have also calculated the reduction for the full atomic charges
for the ZnTPPdT molecule. Again, we find reductions on the same order. These
calculations imply that for needle-like electrodes in a break-junction experiment, the
range of MGC predicted by the image-charge model would be reduced from 0.2−1.4
eV/nm to the range 0.1 − 0.9 eV/nm, in better quantitative agreement with the
experiments.

6.3 Conclusions

In summary, we have presented a method for calculating the image-charge effects
which change the alignment of the occupied and unoccupied levels in molecular

devices with the Fermi levels of the electrodes. Our approach is based on modeling
the charge distribution of the molecule in the junction, in different charge states,
using atomic point-charges. It is essential to use these rather than their gas-phase
equivalents for two reasons. First, the relevant charge states have a different char-
acter in gas-phase molecules and molecules in a junction, due to the formation of
“interface levels” in the latter. These are stabilized by the metal-molecule interface,
and have no counterpart in the gas phase. Second, unlike in the gas phase, the
reference state in the junction (at zero bias and gate) can carry a net charge, which
implies a significant contribution to the reduction of the metal work function upon
chemisorption of a molecule.

In Perrin et al.’s 1 experiments on Au-ZnTPPdT in gated mechanically-controlled
break junctions, a distance-dependent shift of the levels nearest the metal Fermi
level is observed. This can be described by our approach, which corrects these
levels by static and dynamical image-charge effects that strongly depend on distance.
The agreement of our model with the experimentally determined shifts is within a
factor of two. More importantly, we find that the qualitative trend matches the
experimental observations, predicting an asymmetry whereby the occupied levels
shift more strongly than the unoccupied levels, in agreement with the experiments.

Standard DFT+NEGF calculations do not take dynamical image-charge effects into
account, but do account for at least the part of the rigid shift of the surface work-
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function that includes the static image-charge effect. There is distance dependence
of the static-image charge contribution, however, which is accounted for by our
model calculations. It is particularly strong when the reference state of the system
is charged, and the sign of this charge then determines the trend of the overall
correction.

Together with the dynamical image-charge effects, which have often been sus-
pected of playing a critical role in transport experiments, we arrive at an intuitive
overall picture by the combined use of electronic structure theory, transport theory
and a detailed model of image-charge induced spectral adjustment. The different
computational tools allow us to illuminate the structure underlying the behavior in
transport near the Fermi level, and provide an efficient way to evaluate these effects
in novel chemical systems.

Computational Details

All quantum-chemical calculations in this chapter were performed using the ADF/Band
package, while the NEGF formalism for modeling transport has been imple-

mented by us in the ADF/Band quantum chemistry package, and was used to obtain
the conductance as a function of energy for representative junctions discussed below.

In analyzing Au-ZnTPPdT junctions, we use a TZP basis on the molecule, and SZ
on the Au atoms in DFT. Results were converged to energy changes of less than 10−3

hartree per step, together with energy gradients of less than 10−3 hartree/Å maximum
and < 6.7 ·10−4 hartree/Å RMS. Transport calculations were likewise performed using
a TZP-basis of numerical atomic orbitals on ZnTPPdT and a SZ-basis on Au, using
the LDA functional in our transport implementation. Note also that while we show
LDA results, GGA-level calculations with the PBE functionals do not qualitatively alter
the results shown.

The relevant geometries are illustrated in Fig. 6.7. The resulting orbitals of the
gas-phase molecule are shown in Fig. 6.19, while the results for the fragment used in
the transport calculations was previously shown in Fig. 6.9.

We next modeled the image-charge effects central to this chapter using small
models implemented in Python, which take the results of the preceding quantum
chemical calculations as inputs. These were then further supplemented by a study
of electrode size effects using the COMSOL finite-element electrostatics package.
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(a) LUMO+1 (b) LUMO

(c) HOMO

(d) HOMO-1 (e) HOMO-2

Figure 6.19: Orbitals of gas-phase ZnTPPdT
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7
Evaluating Transport

Approximations

The transport properties of nanoscale systems are notoriously expensive to calculate,
which makes it tempting to use rather drastic approximations. However, few studies
have compared the accuracy and performance of the different schemes in use. In
this chapter we put the commonly-used wide-band limit approximation, and more
sophisticated post–self-consistent transport calculations under the microscope, to see
how they fare when compared to fully self-consistent transport calculations.

Parts of this chapter have been submitted to J. Chem. Phys.
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In recent years, approaches to molecular transport based on density-functional
theory (DFT) in combination with the non-equilibrium Green’s function formalism

(NEGF) have received considerable attention in the literature, driven by the rapid
progress in experimental work on realizing molecular nano-devices. 1–4 A number
of codes 5–11 have been developed, including our own implementation within the
ADF/BAND quantum chemistry package. 12–16

As the methods have matured, scalability and the computational effort involved
in studying progressively larger molecular systems have become important issues. In
recent years, the focus of the field has shifted towards systems where the molecule
predominantly determines the transport properties, rather than the metal-molecule
interface. Examples include systems where quantum interference plays a role. 17–20

This necessitates accurate quantum chemical modeling of the molecule, while the
details of the electrodes may be of lesser importance to transport. Several ap-
proximations exist that trade sophistication for efficiency in the description of the
electrodes, 21–25 but to the best of our knowledge, there have been no systematic
studies of the quality of the results obtained with such approximations.

In this chapter we consider methods that treat the molecule at the ab initio level
of quantum chemical DFT, but vary in the treatment of the electrodes. The most
common approach is to use a wide-band limit (WBL) description, which amounts
to taking the density of states (DOS) in the electrodes to be constant (see below).
In order to account for the effects of the metal-molecule interface, parts of the
electrodes can be included in the DFT calculation, resulting in a so-called “extended
molecule.”

In the more sophisticated approaches the effect of semi-infinite electrodes is
included via self-energies in the self-consistent DFT calculation of the extended
molecule. However, this requires the use of a DFT package capable of transport
calculations. A common simplifying approach is therefore to perform the DFT cal-
culations on the extended molecule without the self-energies, and only add them
afterwards in the calculation of the transport properties. This has the advantage that
it can be implemented as a post-processing step which does not require modification
of the underlying DFT code (e.g. the ARTAIOS package 26). Since the open-system
character of an extended molecule with self-energies can lead to convergence prob-
lems, the closed-system character of this approximation may be advantageous.

Here, we explore the limits of these approximations, both with and without a
bias voltage applied over the molecular junction. We first briefly review the trans-
port formalism which is based on non-equilibrium Green’s functions (NEGF). We then
introduce the hierarchy of approximations we consider, and compare their computa-
tional expense. We evaluate their quality by applying the methods to several junctions
containing on phenyl-derivatives, both fully-conjugated and with broken conjugation.

Although the WBL approximation works well for systems with bulk metal elec-
trodes, it is known to break down for one-dimensional systems. We will show this
explicitly in the case of a monatomic chain, but this can be an issue in other (quasi-)
one-dimensional systems such as carbon nanotubes. Our results provide an un-
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derstanding of the applicability and performance of the various approximations for
different types of metal-molecule junctions.

7.1 The Wide-Band Limit

As we have outlined previously, in transport theory the device is typically par-
titioned into electrodes (or leads) and a transport region between them, cf.

Figs. 3.1–3.2. In the Landauer-Büttiker formalism, the current through a junction
is given by

I =
2e
h

∫
dε

[
fL(ε, µL) − fR(ε, µR)

]
T (ε) , (7.1)

where fL(ε) and fR(ε) are the Fermi distributions in the left and right electrodes
respectively. These are kept at chemical potentials differing by the bias voltage
Vb = (µL − µR)/e. T (ε) is the transmission, which is given by:

T (ε) = Tr
[
ΓL(ε) G(ε)ΓR(ε) G†(ε)

]
, (7.2)

where ΓL(ε) and ΓR(ε) are the couplings to the electrodes and G(ε) and G†(ε) are
the retarded and advanced Green’s functions of the transport region, respectively.
The retarded Green’s function is

G(ε) =
[
εS − H − ΣL(ε) − ΣR(ε)

]−1
, (7.3)

where S is the overlap matrix of the molecule, H the Hamiltonian, and ΣL(ε) and
ΣR(ε) are the self-energies due to the contacts. They can be written as: 27,28

ΣL,R(ε) = ΛL,R(ε) −
i
2
ΓL,R(ε) , (7.4)

where both ΛL,R and ΓL,R are real (Hermitian). The real part of the self-energy, Λ(ε),
induces a shift of the orbital resonances (i.e. the poles of the Green’s function), while
Γ(ε) leads to a broadening. In the case of a monatomic chain, the self-energies can
be calculated analytically (cf. Appendix C.3).

It seems natural to identify the transport region with the molecule, in which
case the self-energy is defined on the molecule, specifically near its interface with
the metal. However, the self-energy then strongly depends on the contact geometry
of the junction and the metal is not allowed to deform its electron density self-
consistently near the interface in the presence of the molecule.

Therefore, it is common to include part of the electrodes in the transport region,
which becomes a so-called “extended molecule” as introduced in Chapter 3. This
defining the self-energy near a metal-metal interface deeper inside the contacts. This
makes it possible to use a bulk calculation for the leads to obtain the self-energies,
which has the added benefit that they only have to be calculated once for a given
electrode, and do not depend on the molecule.
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The imaginary part of the self-energy has the following form: 27,28

ΓL,R
nm (ε) = 2π

∑
k

VL,R
k,n VL,R

k,m
∗
δ (ε − εk) , (7.5)

where VL,R
k,n couples an electron with momentum state k in the electrodes to an

orbital n on the molecule. Near the Fermi energy, VL,R
k,n are generally slowly-varying

functions of the momentum k. 29 We can therefore write:

ΓL,R
nm (ε) ≈ 2πVL,R

n VL,R
m
∗
∑

k

δ (ε − εk) = 2πVL,R
n VL,R

m
∗
ρ(ε) , (7.6)

where ρ(ε) is the DOS in the electrode. For metals such as gold, the DOS is approx-
imately constant near the Fermi energy. To a first approximation, we can therefore
take Γ to be independent of ε. In combination with neglecting the level-shift Λ(ε),
we obtain the “wide-band limit approximation” (WBL). For a non-orthogonal basis,
this yields a self-energy of the form:

ΣL,R = −
i
2

ΓL,R S , (7.7)

where we have effectively replaced the complexity of the full self-energy by a single
parameter ΓL,R. Although ΓL , ΓR in general, in this paper we take them to be the
same.

Computationally, the main advantage of the WBL is that the eigenspace of the
Green’s function (Eq. (7.3)) becomes independent of the energy ε.a We can therefore
diagonalize the Green’s function before evaluating the transport properties, dramati-
cally reducing the computational cost.

7.2 Transport Methods

We evaluate four different approximations by comparing their results for a typical
metal-molecule-metal junction, within the NEGF+DFT approach. In decreasing

order of sophistication and computational expense, these are:

1. Full-SCF: A fully self-consistent transport calculation, where the full self-
energies of the metal electrodes are taken into account during the calculation.
This corresponds to the steady state of an open system. This approach allows
us to include a bias voltage by varying the chemical potential of the electrodes.

2. Post-SCF: A calculation of a closed system, consisting only of the extended
molecule, which includes a finite part of the electrodes. The self-energy of the
semi-infinite electrodes is then added after reaching convergence, in order to
enable the calculation of transport properties.

aTechnically, this only holds for an orthonormal basis, but it is always possible to transform to such a
basis using Löwdin orthogonalization. 30
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a)

b)

c)

Contacts

WBL Contacts

WBL Contacts

Extended Molecule

Extended Molecule

Molecule

Methods 1 and 2

Method 3

Methods 4

Figure 7.1: Illustration of geometries corresponding to the four approximations discussed in section 7.2.
a) Full- and Post-SCF methods, with bulk contacts attached to extended molecule region, and full Σ’s
corresponding to semi-infinite contacts behind these. b) WBL-Metal approach, with WBL Σ’s attached
to the extended molecule at a metal-metal interface. c) WBL-Molecule approach with WBL Σ’s attached
directly to the molecule.

3. WBL-Metal: Similar to Post-SCF, but instead of using the full self-energies in
the calculation of the transport properties, the wide-band limit is employed at
a metal-metal interface in the electrode.

4. WBL-Molecule: Similar to WBL-Metal, but here the wide-band self-energies
are coupled directly to the molecule, and no metal atoms are actually present
in the calculation.

The corresponding implications for the geometry of the models are illustrated
in Fig. 7.1.

In the Full-SCF method the bias voltage is applied by varying the chemical
potential in the electrodes and simultaneously introducing an electric field inside
the junction. Because the calculation is done self-consistently, this yields the correct
potential profile in the junction. This cannot be achieved by the other methods, but
the effect of the bias voltage can be approximated by introducing an electric field over
the molecule. In practice this only works for the isolated molecule, since applying
it over an extended molecule tends to lead to convergence difficulties. Finite-bias
calculations are therefore only feasible with the Full-SCF and WBL-Molecule methods.

In molecular junctions the magnitude of the field is typically of the order of
1 V/nm. Since this is much smaller than the internal field of the molecule, the
perturbation of the Hamiltonian is effectively linear in the field. In practice, the
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Method Electrodes
(Extended)
Molecule

Transport
Properties

Full-SCF 36 min 2.5 hrs 33 min
Post-SCF 23 min 4 min 16 min
WBL-Metal – 4 min 13 s∗

WBL-Molecule – 7 s 1 s∗

Table 7.1: Comparison of computational expense of the four approaches applied to a typical molecular
junction. All calculations have been performed on an 8 core 3 GHz Intel Xeon workstation. ∗The
calculations of the transport properties with the WBL methods have been performed on a single core.

Hamiltonian therefore only has to be calculated twice: at zero and at maximum bias.
For other voltages the Hamiltonian can then be obtained by linear interpolation.
Since the cost of the transport calculation is negligible in the case of WBL-Molecule
(cf. Table 7.1), this makes efficient evaluation of the full current-voltage (I-V) charac-
teristics feasible.

Table 7.1 summarizes the computational expense of the four methods for a typ-
ical molecular junction (illustrated in Fig. 7.2a and discussed in the next section).
Timings for the electrode calculations include both DFT and the evaluation of the
self-energies. These are not required for the WBL methods, and for the Full-SCF and
Post-SCF calculations only need to be performed once, and are therefore never a
bottleneck. The difference in run time between Full-SCF and Post-SCF is due to the
underlying DFT code (cf. Appendix 7.5 for details).

There are large differences between the timings of the (extended) molecule cal-
culations. The difference between Full-SCF and Post-SCF is caused by the fact that
calculating the electron density of an open system requires integrating the Green’s
function at every cycle in the DFT calculation. 16 The remainder of the difference is
again due to the underlying DFT code. The Post-SCF and WBL-Metal methods use
the same calculation of the extended molecule and therefore have the same timings,
while the difference with the WBL-Molecule method is due to the absence of the
electrodes.

The calculation of the transport properties is similar for Full-SCF and Post-SCF,
resulting in comparable timings. In the WBL methods, on the other hand, the
Green’s function can be diagonalized independent of energy (cf. section 7.1), leading
to a speedup of more than two orders of magnitude.

We will now compare the quality of the different methods by applying them to
typical molecular junctions with gold (Au) electrodes, and investigate the effect of the
bias voltage on the transmission. For molecular junctions with bulk electrodes both
WBL methods give good agreement with the more sophisticated methods. However,
in the case of one-dimensional systems it breaks down, as we will demonstrate
explicitly for a monatomic aluminum (Al) chain.
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7.3 Metal-Molecule-Metal Junctions

Fig. 7.2 shows the transmission of a single benzenedithiol (BDT) molecule sand-
wiched between two Au FCC (111) surfaces. 27 Au atoms are included on either

side in the extended molecule (Fig. 7.2a). In order to approximate the geometric con-
figuration of single-molecule break-junction experiments, we do not employ periodic
boundary conditions (PBCs), but rather use needle-like (“non-PBC”) electrodes, 16 as
illustrated in Fig. 7.2a, and previously discussed in Chapter 3. We do however, briefly
consider the difference in the DOS between these cases in Fig. 7.2b.

The Full-SCF calculation (black lines in the panels of Fig. 7.2a) shows a broad
peak structure slightly below the Fermi energy (set to 0 eV), corresponding to the
HOMO and lower orbitals, and a narrower peak for the LUMO. The HOMO-LUMO
gap in the transmission is approximately 2.5 eV. This transmission is typical for BDT
calculations in the literature.6,7,16,31,32 The red line shows the Post-SCF result, where
the HOMO-LUMO gap is the same, but the peaks are slightly broadened with respect
to the Full-SCF calculation.

The blue line in Fig. 7.2a shows the transmission calculated with the WBL-Metal
approach. The peak structure of the HOMOs and the LUMO corresponds well to the
Full-SCF and Post-SCF results, but there is a slight over-estimation of the HOMO-
LUMO gap.

The reason that the WBL works well in this particular case is that the density
of states of bulk Au is essentially constant near the Fermi energy. This is shown in
Fig. 7.2b (red line). Although for non-PBC contacts the DOS (green line) does show
some peak structure near the Fermi energy reminiscent of the van Hove singularities
occurring in one-dimensional systems (cf. Appendix C.3), the self-energy of the
contacts is nearly constant (Fig. 7.2b). At higher energies (above 2 eV), the DOS
and self-energies are no longer approximately constant, and the transmissions of the
different approaches begin to diverge.

In the WBL, the magnitude of the imaginary part, which causes a broadening of
the peaks, determines the quality of the approximation. This is shown in Fig. 7.3,
where we have plotted the transmission for several values of Γ. We find that a
value of 2 eV yields the best results. Note that this fit parameter corresponds to the
coupling of a metal-metal interface, and is therefore independent of the molecule in
the junction.

Finally, the bottom left panel of Fig. 7.2a (green line) shows the WBL-Molecule
result. Although the transmission reproduces the double-peak structure of the HO-
MOs and the sharper peak of the LUMO, but the gaps between the orbitals are
overestimated (relative to a Full-SCF calculation) by roughly a factor of 2. This is a
result of the fact that the calculation is performed on a molecule in gas-phase. This
misses hybridization of the molecular levels with the electrodes, which is found to
significantly reduce the gap in the other approaches. Note also that, by omitting
the electrodes, in WBL-Molecule calculations there is no clear definition of the Fermi
energy; hence the transmission has been shifted to align the HOMO-peak with that
of the Full-SCF calculation.
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Figure 7.2: (a) Transmission of an Au-BDT-Au junction (top left) calculated with four different approxima-
tions (see text). The Fermi energy is set to 0 eV, and the WBL-Molecule transmission is shifted by −0.5 eV
to align the HOMO peak with that of the Full-SCF calculation. Γ = 2 eV the WBL-Metal and Γ = 0.5 eV in
the WBL-Molecule calculations. (b) Top: DOS of bulk Au calculated with and without periodic boundary
conditions. Bottom: Magnitude of the real and imaginary parts of the self-energy of bulk Au without
PBCs. The magnitude is defined as the average of the diagonal elements of Σ(ε).
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Figure 7.3: Transmission of BDT calculated with the WBL-Metal approximation for different values of the
(scalar) coupling strength Γ (compare Fig. 7.2a).

For small molecules, the transmission is dominated by the metal-molecule inter-
face, and WBL-Molecule is a poor approximation. For larger molecules, especially
ones where the conductance is small (for example, due to broken conjugation), the
transmission is instead dominated by properties of the molecule, and the use of
WBL-Molecule becomes appropriate. This is especially clear in the case of finite-bias
calculations.

Fig. 7.4 shows the transmission of two oligophenylene-ethynylene (OPE-2) deriva-
tives as a function of bias voltage, calculated with the Full-SCF and WBL-Molecule
methods. On the left, the transmission of the fully conjugated OPE-2 molecule is
shown. In the Full-SCF calculation two HOMO peaks are visible near the Fermi en-
ergy. Upon application of a bias voltage, the peaks move apart and their magnitude
decreases. This effect is not reproduced in the WBL-Molecule calculation, where only
the HOMO peak shifts and drops in magnitude. As with BDT, the WBL-Molecule
approximation overestimates the splitting between the two peaks.

When we break the conjugation (right-hand side of Fig. 7.4c), only one peak is
visible close to the Fermi energy at zero bias, which splits into two peaks for higher
bias voltages. Moreover, even at zero bias, the transmission is significantly less than
one. This effect is reproduced in the WBL-Molecule calculation, although the height
of the peak is overestimated.

These differences between the two cases can be understood by considering how
the bias voltage is distributed over the junction. For a conjugated molecule where the
π-electron cloud is easily deformed, resulting in a high polarizability, the voltage drop
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Figure 7.4: Transmissions under bias through (a) conjugated and (b) non-conjugated variants of the OPE-2
molecule. (c) Left panels show transmissions for conjugated molecule using the Full-SCF (top) and WBL-
Molecule (bottom) approaches. Right panels show the same for broken conjugation, where only a single
resonance is visible and the WBL-Molecule approach performs better.
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Figure 7.5: (a) Transmission of a monatomic Al chain, calculated with both the Full-SCF and WBL-Metal
approaches. The latter uses a coupling of Γ = 0.5 eV. (b) Real and imaginary parts of the trace of the
self-energy, showing a nearly-perfect superposition of the behavior discussed in Appendix C.3.

occurs at the metal-molecule interface. Since this interface is not taken into account
in the WBL-Molecule calculation, its results do not agree with the Full-SCF approach.
When we break the conjugation, we introduce a barrier, and the voltage drop will
occur primarily inside the molecule. 33 Since the molecule is accurately modeled in
the WBL-Molecule approach, the Full-SCF result is qualitatively reproduced.

Analysis of the levels involved in transport reveals that the HOMO and HOMO-1
are composed of bonding and anti-bonding combinations of orbitals located on of
the phenyl rings. In the case of the conjugated OPE-2, the coupling is strong (388
meV for WBL-Molecule), and the peaks are split at zero bias. In the case of broken
conjugation, the coupling is much weaker (70 meV), resulting in the appearance of
a single peak at low bias. Additionally the low coupling causes a reduction in the
magnitude of the transmission.

7.4 Monatomic Chains

In the case of bulk contacts the WBL-Metal approximation shows good quantita-
tive agreement with the Full-SCF approach. However, this approximation breaks

down in the limit of one-dimensional electrodes. In this case the DOS is no longer
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approximately constant, but shows Van Hove singularities. 34 We show this explicitly
for a monatomic chain, which can be calculated analytically in the tight-binding
approximation (cf. Appendix C.3).

Fig. 7.5a shows the transmission of a monatomic aluminum (Al) chain, calculated
with the Full-SCF (red line) and WBL-Metal (green line) approaches. The Full-SCF
transmission shows two plateaus, one at a transmission of 1, with a small dip at −2
eV, and one at a transmission of 3. Although the WBL-Metal approach reproduces
the maxima of the transmission and the dip at −2 eV, it does not reproduce the
plateaus, but it oscillates instead.

This behavior can be understood by considering the self-energy shown in Fig. 7.5b.
For each plateau, Λ(ε) has a linear, and Γ(ε) a semi-elliptical energy-dependence (cf.
Appendix C.3). Λ(ε) induces an energy-dependent shift of the peaks which merges
them into a plateau. Although Γ(ε) is approximately constant at its maximum, the
fact that it drops to zero at the band edge of the chain is responsible for the step-
function behavior of the transmission. Neither of these effects is captured by the
wide-band limit approach, and so the transmission remains a series of broadened
peaks.

7.5 Conclusions

In conclusion, we have compared four different approaches commonly used in
transport calculations, which vary in sophistication and computational expense.

The cheapest of these is the wide-band limit approximation for an isolated molecule
(WBL-Molecule), for which the total calculation takes only a few seconds on a modern
workstation. Including part of the electrodes in the extended molecule (WBL-Metal)
increases the computational cost of the DFT calculation to a few minutes. When the
self-energies of the electrodes are included in the transport calculation in a non self-
consistent way (Post-SCF), the latter becomes the bottleneck. Due to the open nature
of the system, including the self-energies in the DFT calculation as well (Full-SCF)
can increase the computation time to several hours.

The Full-SCF approach has the benefit that it takes the metal-molecule interface
into account in a self-consistent way, and allows for the application of a finite bias
voltage. The Post-SCF approach quantitatively reproduces the zero-bias transmission,
but does not allow for finite bias-voltage calculations. The WBL-Metal approach also
gives rather good results for a molecule coupled to three-dimensional electrodes, but
it breaks down for one-dimensional electrodes. Finally, the WBL-Molecule approach
qualitatively reproduces the main features of the transmission, and in cases where
the transmission is dominated by the properties of the molecule, can even reproduce
the bias-voltage dependence. However, the estimated energy-gaps can be off by a
significant amount due to the omission of interface effects such as chemisorption.

In practice we recommend starting with the WBL-Molecule approach as it is
computationally very cheap on any modern workstation. Additionally, lack of hy-
bridization of the orbitals with the electrodes greatly simplifies the analysis of the
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features in the transmission. This is especially important for molecules which are
expected to exhibit interference effects.

For quantitative predictions, the WBL-Metal, Post-SCF and Full-SCF approaches
give similar results at zero bias. If a dedicated transport code is available, we
recommend the Full-SCF approach (which also accounts for the application of a bias
voltage); if not, the other approaches can be implemented as post-processing steps
after a conventional DFT calculation. However, with WBL-Metal care must be taken
when modeling junctions using 1D or 2D electrodes (such as carbon nanotubes 35,36

or graphene 37), and more generally electrodes with a more complicated electronic
structure near the Fermi energy.
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Computational Details

All DFT calculations in this chapter have been performed with the Amsterdam Den-
sity Functional (ADF) quantum-chemistry package, 12–16 using the LDA exchange-

correlation potential.b A single-ζ (SZ) basis-set was used for the electrodes, and a
triple-ζ polarized (TZP) basis-set was used for the molecule, although we find similar
results with a DZP basis.

For the electrodes, we use non-periodic contacts with a FCC (111) surface consist-
ing of 3×3 Au atoms (cf. Fig. 7.2a). The thiolated molecules are situated perpendicular
to this surface above a hollow site with a Au–S distance of 2.40 Å.

We have implemented the Full-SCF method in the periodic band-structure code
BAND, which is a part of ADF. The Post-SCF and WBL-Metal methods have both been
implemented in the GREEN module in ADF, while the WBL-Molecule method is a
simple Python program. Complementary Post-SCF and WBL-Metal method imple-
mentations are also present in the transport component in the BAND code.

In the Full- and Post-SCF methods, the self-energies are obtained from a calcu-
lation of bulk electrodes. These are modeled as a stack of principal layers, each of
which consists of three 3 × 3 atomic layers. In the Post-SCF and WBL-Metal calcula-
tions, the extended molecule includes a principal layer on either side of the molecule,
for a total of 54 Au atoms. For technical reasons, a Full-SCF calculation contains 90
Au atoms. 16 Finally, in the WBL-Molecule approach, the WBL self-energies are cou-
pled directly to the pz orbital on the thiols, which our studies indicate to be the
dominant charge-injection pathway into the molecular system.

bUsing the PBE GGA potential shifts the transmission slightly, but otherwise leaves the spectrum un-
changed.
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A
Surface Green’s Functions

We give a more concrete picture of the recursion algorithm for obtaining the Green’s
function of the contacts’ surface, which we use in order to derive the (mean-field) self-
energies Σ1,2(ε) of the semi-infinite contacts.

The method described in this appendix has been implemented in the module SGF in the Amsterdam
Density Functional (ADF) quantum chemistry package. 1,2
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Recall the key idea behind the method, previously discussed in §3.4: we describe a
semi-infinite electrode in k–space using tight-binding representation of HKS, with

an infinite surface. We consider the metal as being composed of an infinite number
of layers in space, and then find the relation between elements of the Green’s function
for 2k and 2k+1 principal layers by recursively eliminating the layers in between. The
following is then a restatement of the algorithm developed by Sancho et al. 3 and
formulated by Henk & Schattke roughly as we now do. 4

A.1 The Surface Green’s Function Algorithm
This approach allows us to treat the structure of Σ, which we obtain from the surface
Green’s functions, without approximations such as the wide-band limit or absorbing
boundary conditions, and that it converges quickly, for realistic structures.

• The use of localized basis functions allows a restructured matrix corresponding
to principal and adjacent (interacting) layers, as in Figs. 3.3–3.4:

H =


h τ 0 · · ·

τ† h τ 0 · · ·

0 τ† h τ 0
... 0

. . .
. . .

. . .


We suppress (sub)matrix notation for simplicity, but each element in this matrix
will in general be a submatrix of H, rather than a scalar.

• Multiplying this by the (undetermined) matrix Green’s function gives us a series
of equations:

(ε − h)g00 = I + τ g10

(ε − h)g10 = τ†g00 + τ g20

. . .

(ε − h)gn0 = τ†gn−1,0 + τ gn+1,0

• This inspires a 2k layer recursion, starting with:(
ε − h − τ(ε − h)−1τ†

)
g00 = I + τ(ε − h)−1τ g20

which allows us to link a surface Green’s function to one two layers apart,
which generalizes as follows. Note first that g20, for example, is the correlation
between layers 2 and 0 (the edge of the semi-infinite contact).
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Applying that idea iteratively (starting from the correlation between layers 0 and n),
we find:

(ε − h∗i )g00 = I + αi g2i·n, 0 −→ I ,

(ε − hi)g2i·n, 0 = βi g2i·(n−1), 0 + αi g2i·(n+1), 0 −→ 0 ,
(ε − hi)g2i·n, 2i·n = I + βi g2i·(n−1), 2i·n + αi g2i·(n+1), 2i·n −→ I ,

where the large i limits indicated by the arrows follow as the correlation between
exponentially separated layers g2i·n, 0 drops to zero. In this relation, the coefficients
are recursively related as follows:

h0 = h ,

h∗i = h∗i−1 + αi−1(ε − h∗i )−1βi−1 ,

hi = hi−1 + αi−1(ε − hi)−1βi−1 + βi−1(ε − hi)−1αi−1 ,

α0 = τ ,

αi = αi−1(ε − hi)−1αi−1 ,

β0 = τ† ,

βi = βi−1(ε − hi)−1βi−1 .

On convergence, this yields Gc = limn→∞ g00 from which we construct self-energy
matrices as in section 3.4: Σc ≡ (εS†τ − τ

†) Gc (εSτ − τ).
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B
Transmission Peak

Decompositions

We determine the compositions of peaks in the transmission by using a fragment-
decomposition technique, in which we project the eigenstates of the transport calculation
onto the orbitals of a molecular fragment DFT calculation.
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In order to understand the composition of the peaks present in the transmission
through a junction, we represent the contribution of the fragments orbitals to the

transmission peaks as follows.

From a DFT calculation of the fragment in BAND we store the eigensystem
{ε j, |φ j〉} of the fragment. We then perform the transport calculation in band,
obtaining the transmission from

T (ε) = Tr
[
Γ1(ε)G(ε)Γ2(ε)G†(ε)

]
which contains the Green’s function

G(ε) =

(
ε S − H − (Σ1(ε) + Σ2(ε))

)−1
.

At the end of the SCF calculation, in addition to calculating transport properties,
BAND also diagonalizes the (aligned) Fock matrix H to obtain a discrete set of trans-
porting levels {εi, |ψi〉}.

We use the fragment-calculation functionality of the ADF package to project
the subset of molecular levels of interest (HOMO, LUMO, etc.) onto the full set of
transporting levels, and obtain a table of the projections |〈ψi|φ j〉|, which are the
“peak decompositions”a we referred to in the main text in Chapters 5 and 6. Each
component 0 ≤ |〈ψi|φ j|〉 ≤ 1 tells us to what extent the transporting level is composed
of the |φ j〉, which we then visualize (e.g. in Fig. 5.4) as a stacked bar chart. The bar
chart is overlaid onto the transmission, with each bar centered at the corresponding
εi.

The correspondence between this discrete set of decompositions and the trans-
mission T (ε) is not exactly one-to-one, given that the spectrum εi is that of the
Fock matrix H, while the running variable ε in the transmission corresponds to the
spectrum of G(ε), which includes the effect of Σ1(ε) and Σ2(ε). It is nonetheless a
rather good correspondence, as verified by considering the levels |ψi〉 nearest the ε
of a given peak in the transmission.

aStrictly speaking, because we do not project onto the density matrix obtained from the Green’s function,
it is a fragment projection, rather than a true peak decomposition, since the peaks are obtained from
the full G(ε).



C
One Dimensional Chains

Generalizing from the simplest two-dot or two-level system, we derive the Hamiltonian,
the spectrum and the self-energies of a monatomic chain.
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C.1 A Two-Level System

One dot is characterized by an energy level ε. The simplest model for two equiv-
alent dots would be having a degenerate state on each at ε, where degeneracy

is then broken by the coupling τ between them, leading to energies ε1,2 = ε ± τ, and
such that the total energy of the system remains ε1 + ε2 = 2ε. This result is found
simply by writing:

Ĥ = ε(d†1d1 + d†2d2) + τd†1d2 + τ∗d†2d1 (C.1)

=

(
ε τ
τ∗ ε

)
(C.2)

in the basis of creation and annihilation operators. Diagonalizing the matrix yields
the eigenvalues above for real τ. For three dots, we may take the same model, but it
is more interesting to consider the infinite chain for our purposes, because we want
to see what the progressive splittings by interaction do as the number of sites grows
large. Note that we should recover the bands of an infinite periodic system, as in
introductory solid-state physics, in this limit.

C.2 Spectrum of a Monatomic Chain
Consider a chain spaced by a lattice-spacing a. Assuming levels initially at ε0 and
hopping transport via only nearest-neighbor couplings τ, Eq. (C.1) generalizes to the
Hamiltonian:

Ĥ =

∞∑
m=−∞

ε0d†mdm + τd†m−1dm + τ∗d†mdm−1 (C.3)

As an ansatz, we take a traveling wave solution, which in real space is ψ(x) = eikx ≡

eik·ma for a lattice. We will solve the eigenvalue problem Ĥ|ψ〉 = ε|ψ〉, for which we
need a second quantization version of our ansatz ψ(x). It is constructed from the
set of functions:

{eik·ma|m〉}m such that:

|ψ〉 =

∞∑
m=−∞

eik·ma|m〉 (C.4)

Note that this preserves the property:

〈ψ|ψ〉 =

∞∑
m=−∞

〈m|m〉 = 〈ψ(x)|ψ(x)〉
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Substituting we find

Ĥ|ψ〉 =
∑

m

ε0eikma|m〉 + τeikma|m − 1〉 + τ∗eik(m−1)a|m〉 (C.5a)

=
∑

m

ε0eikma|m〉 + τeik(m−1)aeika|m − 1〉 + τ∗eikmae−ika|m〉 (C.5b)

=
∑

m

(
ε0 + τeika + τ∗e−ika

)
eikma|m〉 (C.5c)

Thus for the simple case of real τ we find energies for the infinite chain of

ε(k) = ε0 + 2τ cos(ka) . (C.6)

C.3 Self-Energy of a Monatomic Chain

In the case of a monatomic chain in the tight-binding approximation, it is possible
to go further and obtain the self-energy, DOS and transmission analytically. 1,2 For

two atoms, the Green’s function is given by:

G =

(
ε − ε0 τ
τ ε − ε0

)−1

=
1

(ε − ε0)2 − τ2

(
ε − ε0 −τ
−τ ε − ε0

)
, (C.7)

where ε0 is the energy of the sites, and τ the coupling between them. The diagonal
elements, i.e. the Green’s functions of the single atoms, are given by:

g =

(
ε − ε0 −

τ2

ε − ε0

)−1

=
(
g−1

0 − Σ
)−1

,

where g0 = (ε − ε0)−1 is the Green’s function of an isolated atom and Σ = τg0τ. For
an infinite chain, we obtain the Green’s function of the atoms by letting g0 7→ g in
Σ. Solving for g yields:

g(ε) =
1
τ2

 ε − ε0

2
±

√(
ε − ε0

2

)2
− τ2

 , (C.8)

from which we obtain the self-energy:

Σ = τ g τ =
ε − ε0

2
±

√(
ε − ε0

2

)2
− τ2 (C.9)

≡ Λ −
i
2

Γ ,

and the full Green’s function G(ε) (from which transport properties like D(ε) and
T (ε) in Fig. C.1) from:

G(ε) =

(
g(ε)−1 − Σ(ε)

)−1
.
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Figure C.1: (a) Transmission through a single-site monatomic chain, (b) corresponding DOS and (c) analyt-
ical form of the real and imaginary parts of the self-energy.
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When |ε − ε0| < 2τ, this can be split into real and imaginary parts (see Eq. 7.4):

Λ(ε) =
ε − ε0

2
, (C.10)

Γ(ε) =

√
(2τ)2 − (ε − ε0)2 . (C.11)

These correspond to a linear shift of the orbital energies and a semi-elliptical de-
pendence of the broadening on ε. The combination of these terms results in a unit
transmission in a band of width 4τ around ε0 (see Fig. C.1c). Beyond the band edges,
the transmission drops to zero since Γ(ε) = 0 and Λ(ε) decays quadratically. Note
that although the DOS is approximately constant around ε0, it exhibits singularities
at the band edge (so-called van Hove singularities).
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D
Acceleration of Convergence

We discuss our extension of the DIIS algorithm in the presence of charge constraints, as
used in the alignment stage of our calculations.

The method described in this appendix has been implemented as the Transport CDIIS keys in the
BAND code modified for transport calculations, part of the Amsterdam Density Functional (ADF) quantum
chemistry package. 1–5
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D.1 Constrained Direct Inversion of Iterative Subspaces

We outline our expansion on the technique introduced by Pulay6 for the ac-
celeration of self–consistent field algorithms by direct inversion of iterative

subspaces (DIIS). We have extended this to the specific case of handling a charge
constraint in the quantum chemical system, the charge on the extended molecule
during the self–consistent alignment calculation.

While beyond the scope of this thesis to explore, we also remark the strong
similarity of this approach to the method of Wu and Van Voorhis for reformulating
constrained DFT (CDFT). 7,8

D.2 ADF/BAND’s SCF Implementation

Take some vector “input” V , typically a potential or a density; operated on by e.g.
the Fock matrix, but in any case by a linear operator F(V) = V ′ giving us the

“output” value. After n iterations we can construct the set {(V (i),V (i) ′)}n−1
i=0 .

Now consider iteration n. We want as “input” V (n) =
∑n−1

i=0 ciV (i), subject to the
constraint

∑
i ci = 1 on the weights, which will give as “output” V (n) ′ ≡ F(V (n)) =∑n−1

i=0 ciV (i) ′. Note that any modifications we make later should preserve this linearity.

To evaluate the quality of this result a metric is required, which is obtained by
first defining an error relative to the converged situation F(V) = V .

V (n) − V (n) ′ =
∑

i

ci(V (i) ′ − V (i)) . (D.1)

This induces a norm:

‖V (n) ′ − V (n)‖ =
∑

i

∑
j

cic j〈V (i) ′ − V (i)|V ( j) ′ − V ( j)〉 (D.2)

= c>Bc ;

where c = (c0, c1, . . . , cn−1) and B =

[
bi j ≡ 〈V (i) ′ − V (i)|V ( j) ′ − V ( j)〉

]
. This norm is

then minimized in the cost function

J = c>Bc − λc>1

such that ∇cJ = 0 implies that Bc = λ1, which is a simple linear algebra problem.
Solving it determines the optimal coefficients c for forming V (n), and the Lagrange
multiplier λ is found by first solving for c̃ = B−11 such that c = λc̃. The constraint∑

i ci = 1 =
∑

i λc̃i then sets the value of the multiplier:
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λ =
1∑
i ci

(D.3)

So far this is just Pulay’s scheme:6 nothing more, nothing less. In the BAND im-
plementation this is extended by forming the new trial vector not from the original
vectors V (i) only, but instead from the mixed vectors

V (i)
γ = V (i) + γ

(
F(V (i)) − V (i)

)
= (1 − γ)V (i) + γF(V (i))

such that V (n) =
∑n−1

i=0 ciV
(i)
γ instead.

This allows DIIS to be used at every step by growing the vector space, in contrast
to Pulay’s scheme where V (n) ∈ span{V (i)}n−1

i=0 by definition, such that you need to do
normal (i.e. non-DIIS) iterations in between to avoid linear dependence.

D.3 Extending DIIS

In normal Pulay DIIS the SCF process is cast as a linear(-izable) mapping F(V) of
some vector V , which in DFT are typically the Fock operator and the density of

the system (in discretized real space) respectively. Normally one would simply have:

V (n+1) = F
(
V (n)

)
(D.4)

for the n + 1st iteration, and iterate until convergence. Pulay’s insight was to seek the
optimal combination of a history of previous iterations (an iterative subspace):

V (n) =

n−1∑
i=0

ciV (i) (D.5)

subject to
∑

i ci = 1 for normalization of the result. Let the iterates V (n) denote the
input to the Fock operator, and denote the output by V (n)

∗ = F
(
V (n)

)
. Then we have

also constructed a history

V (n)
∗ =

n−1∑
i=0

ciV
(i)
∗ ,
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trivially. To quantify the quality of this linear combination, a norm is again intro-
duced on the error:

V (n)
∗ − V (n) =

n−1∑
i

ci

(
V (i)
∗ − V (i)

)
such that (D.6)

‖V (n)
∗ − V (n)‖ =

n−1∑
i

n−1∑
j

cic j〈V
(i)
∗ − V (i)|V ( j)

∗ − V ( j)〉

= c>Bc (D.7)

where c = (c0, . . . , cn−1)> and B has elements bi j = 〈V (i)
∗ − V (i)|V ( j)

∗ − V ( j)〉 formed
by an inner product. This can be recast as a cost function including the constraint:

J = c>Bc − λc>1 , (D.8)

minimized by:

∇J = 0 3 Bc = λ1 . (D.9)

with Lagrange multiplier λ =
(∑

i ci
)−1.

During and alignment run we extend this approach as follows. Our goal is to
allow the SCF cycle, using the DIIS algorithm, to become aware of the constraint that
at convergence,

Tr
[
ρS

]
EM → Q0

EM

should hold, with Q0
EM the correct bulk (valence) charge on the EM composed of bulk

material. Observing that this is already in the same units of charge as the relevant
vector V , the DIIS approach can be extended, defining the excess charge on the
extended molecule Qx ≡ Tr

[
ρS

]
EM − Q0

EM, as follows:

V → (V, Qx ) (D.10)

i.e. extending the vector by a single scalar, and

bi j → bi j +
(
Q(i)

x∗ − Q(i)
x

) (
Q( j)

x∗ − Q( j)
x

)
, (D.11)

where B preserves its meaning as the matrix of error norms or correlations. Note
that DIIS convergence implies that the vector (i.e. the density) becomes stationary,
and likewise for the excess charge. We can also choose to use bi j + Q(i)

x Q( j)
x instead,

which is the formally more desirable condition that the excess charge go to 0 directly,
but then we depart somewhat from the spirit of the Pulay approach.



D.4. Convergence of the CDIIS shifts 167

{{D-0.02

-0.01

 0

 0.01

0 20 40 60 80 100

E
n

e
rg

y
 (

a
.u

.)

SCF Iteration

Contact Shift, Normal
Alignment Shift, Normal

Contact Shift, CDIIS
Alignment Shift, CDIIS

Figure D.1: Convergence of alignment shifts for the Al chain: ∆φ0,1 with and without CDIIS. Note the
significantly better performance of the CDIIS procedure.

D.4 Convergence of the CDIIS shifts

The last issue to address in discussing DIIS itself is the idea of freezing. There is a
noticeable iteration lag between arriving at stable alignment offsets ∆φ0,1 for the

Hamiltonians, and the overall convergence of the density which terminates the SCF
cycle. The straightforward approach is to test whether the shifts have converged, and
once they have, to freeze them and release DIIS.

The algorithm is straightforward, but the criterion for convergence is a subtle
issue. We have used a criterion on the charge relative to a 5-point moving average,
within a tolerance of e.g. 10−4 a.u. (∼ 25 meV).

~∆0 ≡
1
5

i0∑
i=i0−4

(
∆φ(i)

0
∆φ(i)

1

)
, where i0 is the current iteration (D.12)

∆φtol ≥

(
∆φ(i)

0
∆φ(i)

1

)
− ~∆0, ∀i ∈ {i0 − 4, i0} is the condition being tested. (D.13)

We remark that in principle ∆φ0 is always floating, and so shouldn’t matter.
Nonetheless in practice we find it to be a strong indicator of convergence, motivating
its use in this way. In Fig. D.1 we illustrate the effect of CDIIS on the convergence
speed of the alignment calculation for an Al chain, cutting the number of required
iterations roughly in half.
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E
Code Hierarchy

Transport

Alignment

Tight-binding
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Green's Function

Bulk Calculation

Calculation StageGeometry

Figure E.1: Calculation flow with corresponding schematic geometries. Arrows indicate flow of calculation
outputs between different stages.

E.1 Calculation Stages

The normal “path” of the multi-stage transport calculation is as follows, as dis-
cussed in Chapter 3.
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1. Calculation of infinite bulk contacts’ Hamiltonian HKS,

2. Determination of a tight-binding representation of the converged HKS,

3. Calculation of the self-energies Σ1,2(ε) of semi-infinite bulk contacts,

4. Alignment of the leads with the central extended-molecule region composed
of bulk material,

5. Transport calculation proper, with extended-molecule region now comprising
the molecule coupled to part of the electrodes.

In Fig. E.1 we outline this flow as before, but with the accompanying geometry “types”
to indicate the differences at each stage.

E.2 Code Organization

The code for the tight-binding and surface Green’s function calculations are com-
bined in the SGF module in the ADF package, which is implemented as an

independent utility, broken down by code file in Table E.1. It takes the outputs of
a bulk calculation as inputs, and generates the TB Hamiltonian and overlap matri-
ces HTB, STB self-energy matrices Σ1,2(ε), and diagnostic plots such as the real and
imaginary traces of the self-energies and densities of states as outputs. The matrices
generated are then used as inputs to an alignment or transport calculation. The
structure of the NEGF transport implementation in the BAND code is as outlined in
Table E.2.



E.2. Code Organization 171

{{E

Location File Comment

init/ Initialization code
bytes.f90
inputt.f90
sgfinit.f90 Setup environment
sgfkey.f90 Define keys

io/
rqsurface.f90 Read surface Green’s function keys
rqtb.f90 Read tight-binding keys

lbfgs/ L-BFGS Solver 1

lb1.d
lb2.d
lbfgs.d
mcsrch.d
mcstep.d

misc/ Utility code
fldl.f90
numtag.f90 Convert tags
readmat.f90 Load matrices
sgfinv.f90 Invert matrix for Green’s function

nolib/ Control routines
ctllst.f90
isParallelProgram.f90
kfexit.f90
nolib.f90
sgfexit.f90
stopit.f90

surface/ SGF Code
calcgf.f90 Green’s functions
mmulcc.f90 Complex matrix multiplies
ppdatacollect.f90 Parallel data routines
surface.f90 SGF driver
surfacemodule.f90 Module data

tb/ Tight-binding Main Code
randmodule.f90 Random numbers
readbanddata.f90 Read BAND output
tb.f90 Tight-binding driver
tbmodule.f90 Module data

sgf.f90 Driver Code
sgfmodule.f90 Module Code

Table E.1: Organization of the SGF module code, locations relative to root of the ADF package tree.
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Location File Comment

options: NEGF Options Definition & Loading
options/DefNEGF.d90 Define keys
options/DefineOptions.d90 Definitions loader
util/ctllst.d90
io/getinp.d90 Read keys

diis/ (C-)DIIS code
pulay.dmod1 Main Pulay-based DIIS routine
plymat.dmod1 Pulay matrix constructor

kpnt/ k-points Code
gemtry.d90
NEGFKPoints.dmod1 Alternate path for NEGF

negftransport/ NEGF Main Code
NEGFDebug.f90 Diagnostic code
NEGFPMat.f90 Density matrix code
NEGFPotential.f90 Potential code
NEGFSelfEnergies.f90 Self-energies code
NEGFTransport.f90 Transport variables
NEGFUtilities.f90 Utility routines
PPNEGFData.f90 Data-parallelization routines

scf/ SCF Iteration Driver
scf.f90 SCF Driver Code
eigsys.f90 Eigensystem driver
eigsolve.f90 Eigensystem diagonalization
FockMatrixEvaluator.f90 Fock matrix, hooks to potential code

Table E.2: Organization of the NEGF code for the implementation in BAND.
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E.3 Keys

TRANSPORT Perform transport calculation

TRANSPORT%TRANSDIR Transport direction
TRANSPORT%PLOT Control plot frequency (DOS and Transmission)
TRANSPORT%NEMATOMS Number of atoms considered as extended molecule for alignment
TRANSPORT%CONTACTSHIFT Sets baseline offset ∆φ0
TRANSPORT%OFFSETSHIFT Sets permanent offset ∆φ1
TRANSPORT%NOSHIFTFLOAT Turns off ∆φ0 floating in transport, makes it permanent
TRANSPORT%FREEZESTOP Controls how/when ∆φ0 float starts in transport (-1 = Never: Post-SCF Calculation)
TRANSPORT%TESTMATCH Do extensive testing of HMAT matches
TRANSPORT%WBLFLAT Activate Wide Band Limit, using Σ = iΓ S, and set Γ

TRANSPORT%WBL Activate Wide Band Limit, using Σ(ε f )
TRANSPORT%WBLIMONLY Do “WBL” Σ(ε f ) with only imaginary part
TRANSPORT%WBLPLOTONLY Turn WBL of any kind off in SCF cycle, but do use in plots
TRANSPORT%DEFERSIGMA Load Σ’s on the fly
TRANSPORT%HMATMIXSTEPS controls over how many steps to mix in bulk HMats after FreezeStop

ALIGN Alignment of the potential of the system

ALIGN%MIX Alignment mixing parameter
ALIGN%STARTALIGN Start cycle of alignment procedure
ALIGN%PMATSHIFT Use shifting of ρ-matrix as convergence aid
ALIGN%CDIIS Use constrained DIIS
ALIGN%CDIISDAMP Damping for constrained DIIS
ALIGN%CDIISPRINT Print CDIIS details during run
ALIGN%EMCHARGE True EM valence charge for alignment

BIAS Bias

BIAS%phi1 Potential at contact 1
BIAS%phi2 Potential at contact 2
BIAS%X1 x1 Measurement coordinates in contact 1
BIAS%Y1 y1
BIAS%Z1 z1
BIAS%X2 x2 Measurement coordinates in contact 2
BIAS%Y2 y2
BIAS%Z2 z2
BIAS%DELTAX δx Measurement box size
BIAS%DELTAY δy
BIAS%DELTAZ δz
BIAS%TC1 Transport coordinate 1
BIAS%TC2 Transport coordinate 2
BIAS%PLOT Control plot frequency (DOS and Transmission)
BIAS%ITERATIVE Apply bias ramp iteratively instead of fixed
BIAS%BLOCK Apply bias as block in contacts, rather than a ramp

GATE Gate

GATE%PHI Potential of gate field
GATE%PLOT Control plot frequency (DOS and Transmission)
GATE%BASFNC Last basis function on metal atoms
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CDFT Constrained DFT Implementation in Transport

CDFT%BASFNC Last basis function on metal atoms (remaining = molecule)
CDFT%QExcess Excess charge
CDFT%CDFTMix Mixing strength
CDFT%Field Field strength
CDFT%BasisLim Sets basis-function to start constraining from
CDFT%StartCDFT Sets starting iteration

GMIX Mixing ρ-matrix depending on charge

GMIX%STOPMIX Number of iterations to apply mixing procedure
GMIX%EXTRAMIX Extra mixing factor
GMIX%MINMIX Minimum mixing factor

References
[1] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes (Cambridge Uni-

versity Press, 2007), 3rd ed., the Art of Scientific Computing.



F
Sample Input Files

Input files with discussion of most important keys. The reference for the remaining keys
is the official BAND documentation, as maintained online by SCM, (currently) available
at http://www.scm.com/Doc/Doc2012/ .
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We first note some generally important keys.

• Generally useful debugging keys are: PRINT TIMING, PRINT KOPS, PRINT OCCUP,
PRINT ORBITALS; these print information which may be of considerable use in
understanding a difficult or badly-performing calculation.

• Generally useful functionality keys are: SCF, DIIS, CDIIS. These control the
self-consistency cycle, the DIIS convergence acceleration algorithm in general,
and the constrained-DIIS procedure in an alignment calculation (cf. Appendix
D) respectively.

• Typically necessary keys in transport are: SYMMETRY 1, ALLOW CHARGEERROR.
The first forces the system to be one dimensional, which is the starting point
for all calculations which are not intended to model a system with two- or
three-dimensional periodic boundary conditions. The second stops the code
from enforcing charge-neutrality, which is neither necessary nor guaranteed in
our approach to transport, as discussed in Chapter 3.

• Taking a sufficiently large unit cell makes a 1D calculation effectively zero-
dimensional. This can in fact be forced by controlling the screening cut-off via
the key SCREENING in relation to the definition of LATTICE, and verified by the
keyword CELLS in the resulting output.
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F.1 Bulk Calculation

We show the input for a bulk calculation for a one-dimensional Al chain, which
we have discussed in Chapters 4 and 7. Note particularly the instruction

StoreHamiltonian. Also, we use an orbital cutoff to ensure the validity of the
principal layers approach in the next step, but the value should be tuned to ensure
that we’re still modeling a physical system.

Title AluminiumWire BULK

UNITS
length Angstrom
angle Degree

END

DEFINE
d=2.83

END

XC
LDA VWN

END

BASIS
NONORTHOGONALSCFBASIS

END

ACCURACY 4.5
KSpace 7

PRINT KOPS
PRINT OCCUP

STOREHAMILTONIAN

SCF
PMatrix

END

DOS

FILE dos1.plt
ENERGIES 500
MIN -0.4
MAX 0.4

END

LATTICE
d

END

ATOMS Al
0.0

END

AtomType Al
DIRAC Al
VALENCE
5 3
1S
2S
2P
3S
3P 1

SUBEND
BASISFUNCTIONS
3S 1.05
3P 1.35

SUBEND
FITFUNCTIONS
1S 23.00
2S 21.89
2S 12.96

3S 11.37
3S 7.30
4S 6.24
4S 4.23
4S 2.86
5S 2.43
5S 1.71
5S 1.20
2P 16.15
3P 11.98
4P 8.86
4P 5.24
5P 3.90
5P 2.43
5P 1.51
3D 12.41
4D 8.67
4D 4.85
5D 3.43
5D 2.03
5D 1.20
4F 5.00
4F 3.00
5G 4.00

SUBEND
CONFINEMENT
Radius 4.6
Delta 0.3

SUBEND
END

END INPUT

The second contact is run by changing the input key LATTICE to:

LATTICE
-d

END
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F.2 Tight-binding Representation

Next is the tight-binding representation of the Fock matrix, which takes greendata1.dat
(from the stored output of the bulk calculation of the first electrode, generated

by the StoreHamiltonian key) as input and provides OutputTB1.dat as output. Note
that the settings commented out have been implemented as default values now, and
so are only needed when intending to change the defaults. Further, we require the
option IODIM specifying whether the calculation is one- or three-dimensional, so that
certain matrices can be allocated correctly internally.

cp greendata1.dat greendata.dat
$ADFBIN/sgf << eor

TIGHTBINDING

XTOL 1E-6
MaxRange 6E0
MaxMerit 1E-10
IODIM 1

END
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F.3 Self-Energy Calculation

The following stage is the surface Green’s function calculation, which generates
and stores large, binary, Σ matrix key-files. NLayers sets the number of atomic

layers (which correspond to the bulk calculation above) in a principal layer, and will
correspond to the contact geometry in the next section.
KGrid sets the grid in k-space, which becomes denser for higher values, corre-

sponding to a larger wide cell in the plane transverse to transport.a The rest are
technical parameters controlling the complex contour integration, and the energy
points to store Σ for, and control the biasb as needed later for transport.

cp OutputTB1.dat OutputTB.dat
$ADFBIN/sgf << eor

SURFACEGF

Nlayers 4
TransDir 1
KGrid 1
NFPoles 2
NArcPts 50
NEqLinePts 100
NNonEqLPts 200

KT 0.001
Delta 0.002
Eta 0.00001
CPMargin 10.0

NDOSPts 1000
MinDOS -0.4
MaxDOS 0.4

MinValence -1.0
MuUpper 0.0
MuLower -0.1
Phi1 0.00
Phi2 0.00
BANDMU -0.0401

Contact 1
NE 3

END

aA larger electrode surface, i.e. more atoms in the simulation: 3 × 3 vs. 2 × 2, etc.
bThe bias, moreover, needs to be set the same in the input for both contacts (only one is shown), as we
will calculate two contours per contact which must match!



{{F

180 F. Sample Input Files

F.4 Alignment Calculation

The next input is an alignment run, where the bias is kept at 0 V and the
“molecule" is just bulk material. Adjusting these to the correct molecular device

geometry would make it a transport run. Note the correspondence of the orbital
cutoff to that used in the bulk calculation. Also, we take KSpace = 1, i.e. the Γ-point
approximation; our calculation can yield higher k results, depending on the settings
in the surface calculation, but this is implemented separately from BAND’s KSpace
key, and the setting here is the one currently relevant to transport.

$ADFBIN/band << eor
Title AluminiumWire ALIGN

Units
length Angstrom
angle Degree

END

XC
LDA VWN

END

Define
d=2.83

END

LATTICE
25*d

END

Accuracy 4.5
KSpace 1

PRINT TIMING
SYMMETRY 1
ALLOW CHARGEERROR

TRANSPORT
TRANSDIR 1
PLOT 1000
NEMAtoms 6

END

ALIGN
MIX 0.001
STARTALIGN 5
CDIIS

END

BIAS
phi1 0.0
phi2 0.0
deltax 0.1*d
deltay 1*d
deltaz 1*d

X1 -5.0*d
X2 5.0*d
PLOT 10

END

SCF
PMATRIX

END

DIIS
NCycleDamp 5
DIMIX 0.15

END

ATOMS Al
! LEFT Contact = 1
! Ordering surface inwards
-3.5*d
-4.5*d
-5.5*d
-6.5*d+.0001

! RIGHT Contact = 2
! Ordering surface inwards
3.5*d
4.5*d
5.5*d
6.5*d+.0001

! Molecule
-2.5*d
-1.5*d
-0.5*d
0.5*d
1.5*d
2.5*d

END

AtomType Al
DIRAC Al
VALENCE
5 3
1S
2S
2P

3S
3P 1

SUBEND
BASISFUNCTIONS
3S 1.05
3P 1.35

SUBEND
FITFUNCTIONS
1S 23.00
2S 21.89
2S 12.96
3S 11.37
3S 7.30
4S 6.24
4S 4.23
4S 2.86
5S 2.43
5S 1.71
5S 1.20
2P 16.15
3P 11.98
4P 8.86
4P 5.24
5P 3.90
5P 2.43
5P 1.51
3D 12.41
4D 8.67
4D 4.85
5D 3.43
5D 2.03
5D 1.20
4F 5.00
4F 3.00
5G 4.00

SUBEND
CONFINEMENT
Radius 4.6
Delta 0.3

SUBEND
END

END Input
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F.5 Transport Calculations

The simplest transport calculation is as the alignment calculation in the previous
section, but with the key ALIGNMENT omitted, and the geometry extended with

the molecule’s atoms. Additionally, a specification of the converged alignment shifts
∆φ0, ∆φ1 is added to the TRANSPORT key:

TRANSPORT
TRANSDIR 1
PLOT 1000
NEMAtoms 30
CONTACTSHIFT -4.0962761E-03
OFFSETSHIFT 8.1191692E-04

END

If corresponding self-energies have been calculated, an adjusted bias may be
specified as well:

BIAS
phi1 50.0/27211.0
phi2 -50.0/27211.0
deltax 0.1*d
deltay 1*d
deltaz 1*d
X1 -5.0*d
X2 5.0*d
PLOT 1000

END

where in this example a 100 meV bias has been applied symmetrically. If run
without change to the geometry, the code can also be used to test the validity of

the aligned result.

F.6 Gated Calculations

In order to gate the molecule, as discussed in section 3.8, the following key is added
in a transport run:

Gate
PHI 5e-2
BASFNC 90*6
PLOT 1000

End

The BASFNC key specifies the number of basis functions corresponding to the metal
electrode atoms,c such that the basis functions from BasFnc+1 : N correspond to the

molecule. This is required both to apply the gate as a constant shift βVg S in the
Fock matrix, and to trace out a PDOS on the molecule proper rather than just on the
extended molecule.

It should also be exploited in an un-gated system to calculate the latter, simply
by setting the gate field to zero.

cAt time of writing, this is nontrivial to obtain directly from BAND’s internal variable sets, and so has been
implemented as specified-by-user.
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F.7 Post-SCF Calculations

Post-SCF calculations are implemented via a very simple extension of the Transport
key, which has a subkey FreezeStop to control a temporary freezing of the po-

tential shifts at the start of a run in order to aid convergence. Doing all transport
Post-SCF is implemented by setting FreezeStop to -1 (“infinity”, rather than the
default value 0), such that a BAND calculation is run through convergence:

TRANSPORT
TRANSDIR 1
PLOT 1000
NEMAtoms 30
CONTACTSHIFT -4.0962761E-03
OFFSETSHIFT 8.1191692E-04
FreezeStop -1

END

F.8 Wide-Band Limit Calculations

A WBL calculation is similarly implemented as a modification to the Transport
key, for which there are also a number of debug options:

TRANSPORT
Plot 1000
NEMAtoms 20
Transdir 1
ContactShift -6.2317643E-03
OffsetShift 2.0129368E-03
Freezestop 0
WBLFlat 0.05
WBLPlotOnly

END

Here, the setting WBL turns the wide-band limit approximation on while a special
trick, WBLPlotOnly, instructs the code to only apply it in the calculation of transport
properties after convergence, but not during a converging run. Provided as an
example only, WBLPlotOnly is not a necessary part of a WBL run.



G
Valorization

We close with a brief comment on the context of the development work underlying
this thesis, performed in collaboration with industrial partner Scientific Computing &
Modelling N.V.
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It is perhaps unusual for a theorist to say something concrete about the valoriza-
tion of his or her research, given that the perception of isolated, monastic work

appreciated only by the initiated is often only slightly exaggerated. This, fortunately,
has not been the experience of my Ph.D.

Instead, the work performed has been, beginning to end, integrated into the ex-
isting source code of the BAND density functional theory code, part of the larger
Amsterdam Density Functional (ADF) software package. This is a high-performance
commercial quantum chemistry code, covering both the gas-phase and solid-state
ends of the spectrum in terms of physics/chemistry. On the basis of an agreement
between J.M. Thijssen on behalf of the TU Delft, with Scientific Computing and Mod-
elling (SCM) N.V., we obtained access to the entire ADF codebase in exchange for
contributing all development work on our molecular transport implementation.

The transport code outlined in this thesis has since been integrated with the
ADF package and is in principle available to developers already. It is expected to be
released to the wider audience of all academic and industrial users as part of the
ADF2013 release in the coming year.

This undertaking is of course valorization in a broader sense than a spin-off
from the research group in which the work was performed. It is perhaps better
understood as a public-private partnership, with the caveat that the resulting software
is not publicly available under an open-source licensing arrangement. Nonetheless,
the advantages for the user community, both academic and non-academic (primarily
chemical, pharmaceutical and materials-science based research & development) are
that:

• The code is, on release, immediately available as an extension of a well-known,
widely-used software package;

• The code will be maintained in the future, regardless of the developments
within the particular research group in which it originated, and

• The code can be developed further by essentially any other interested party
on the same terms, through future such public-private partnerships with SCM,
which are in fact a part of their standard business model.

In light of these points, it is hoped that this valorization arrangement will give the
work described here a longer useful lifespan than might normally be the case for an
academic code, and expose it to a significantly larger potential user community.



Summary

In this thesis we discuss ab initio studies of quantum transport through molecular
devices, using a combination of techniques from quantum chemistry and many-
body physics. The promise of such molecular devices lies partly in the promise
for alternative solutions to problems of heat dissipation and reliable fabrication of
devices at the nano-scale. However, as a technological pathway, it also opens up
possibilities of combining many other degrees of freedom into functional device
design, such as spin, electrical and mechanical switching, vibrational and optical
excitations and their coupling to electronic transport, just to name a few. These all
ultimately originate in the versatility of design by synthetic chemistry. While they
introduce beautiful opportunities for theoretical study, they also demand a versatile,
scalable tool set.

The molecular transport calculations discussed here are based on the “DFT+NEGF”
approach to molecular transport, precisely to this end. We first outline the density
functional theory (DFT) and non-equilibrium Green’s functions (NEGF) formalisms.
We discuss the assumptions behind their combined use, as well as consequent lim-
itations to the computational results we have obtained. We then present a novel
implementation of the first-principles approach to molecular charge transport, com-
bining DFT with the NEGF formalism. This has been implemented as a custom, scal-
able extension of the ADF/BAND quantum chemistry package originally developed
in the theoretical chemistry group at the VU University Amsterdam, and currently
developed and commercialized by Scientific Computing and Modelling N.V.

We first discuss solely the implementation, adding details of complementary tech-
niques such as the implementation of density-constrained convergence acceleration,
constant gating of the molecular region, wide-band limit (WBL) approximations and
post self-consistent transport calculations. Our implementation allows us to compare
contacts with– and without periodic boundary conditions, the latter being particu-
larly useful for modeling the needle-like electrodes used in mechanically-controlled
break-junction experiments.

We next discuss the first major test of our methods, on simple one- and three-
dimensional metal contacts. We consider lithium, aluminum and gold as contact
materials. For the monatomic chains we find excellent agreement with intuitive
results from elementary solid-state physics. Our results on the gold nano-contacts
indicate that the geometry of finite contacts has significant consequences for the
transmission through them, which remains true as they couple to a molecular device.

We then proceed to the second major test of our methods, on phenyl-ring sys-
tems. We consider the prototype which has been perhaps most thoroughly studied in
the literature: a benzenedithiol (BDT) single-molecule device. We focus particularly
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on where our results diverge from previous studies in the literature due to subtle
modeling choices. The primary drivers are on the one hand the distinction between
periodic and non-periodic boundary conditions, and on the other hand (within the
latter class), the geometry of the narrow tube-like contacts used. We find good agree-
ment with previous studies provided we use the same, periodic, boundary conditions
– appropriate for large bulk-like electrodes. Without periodic boundary conditions
our results diverge, to a degree depending on the shape of the contacts used.

Increasing chemical complexity from these single-ring systems, we next study
conjugated multi-ring systems. We focus on the next few systems from the oligo-
phenylene-ethynylene family, with two (OPE-2) and three rings (OPE-3) in particular,
where we find that the same qualitative results hold, for both types of contacts.

We then turn to more complex systems such as the porphyrin-derivative devices
recently studied experimentally by Perrin et al. To address the polarization effects
suspected to be behind the mechanical gating effects observed in the experiments,
we extend our transport method with a complementary approach which accounts
for image-charge effects at a metal-molecule interface. The resulting simple model
allows us to calculate the adjustment of the transport levels due to the polarization
of the device electrodes, as charge is added to and removed from the molecule. For
this we use the charge distributions of the molecule between two metal electrodes in
several charge states, rather than in gas-phase. These are obtained from our transport
code by simulating the effects of charging using a gate field in the potential. We find
good agreement with the renormalization of the HOMO-LUMO gap observed in the
experiments, which cannot be explained by competing effects such as charge-transfer
or the formation of static– and interface dipoles.

Finally, we address the fact that the transport properties of nano-scale systems
are notoriously expensive to calculate in their full chemical detail. This makes it
tempting to use rather drastic approximations, but few studies have compared the
accuracy and performance of the different schemes in use. In our final chapter
we put the commonly-used WBL approximation and more sophisticated post–self-
consistent transport calculations under the microscope to see how they compare
with fully self-consistent transport calculations.

We find reasonably good agreement between all schemes for systems in which the
molecule (and not the metal-molecule interface) dominates the transport properties.
We find that for systems where the interface dominates transport, (part of) the
electrodes need to be included in the calculation. The WBL yields good results if the
electrodes have a constant density of states near the Fermi energy. Typically its use
is limited when the device is biased, but provided the voltage drop occurs primarily
inside the molecule, the approximate method still provides results in reasonable
agreement with fully self-consistent calculations.



Samenvatting

In dit proefschrift bespreken wij ab initio studies van kwantumtransport door molec-
ulaire schakelingen, gebruikmakende van technieken uit de kwantumchemie en veel-
deeltjes fysica. De belofte van dergelijke moleculaire schakelingen ligt deels aan
de mogelijkheid tot alternatieve oplossingen voor de uitdagingen op gebied van
warmteafvoer en fabricage in apparaten op nanometer-schaal. Echter, als technolo-
gisch vooruitzicht schept het ook de mogelijkheid om vele andere vrijheidsgraden in
een functioneel ontwerp te combineren, zoals spin, elektrisch en mechanisch schake-
len, trillings- en optische excitaties en hun koppeling aan elektronisch transport, om
slechts een paar te noemen. Deze vinden uiteindelijk allemaal hun oorsprong in
de veelzijdigheid van de synthetische chemie. Hoewel ze leiden tot prachtige mo-
gelijkheden voor theoretisch onderzoek, eisen ze ook een veelzijdige, schaalbare
gereedschapskist.

De berekeningen van moleculair transport die hier besproken worden zijn juist
daarom gebaseerd op de “DFT+NEGF” benadering. We geven eerst een overzicht van
de dichtheidsfunctionaaltheorie (DFT) en non-equilibrium Green’s functies (NEGF)
formalismen. We bespreken de veronderstellingen achter het combineren ervan,
alsmede de daaruit voortvloeiende beperkingen van de rekenkundige resultaten die
we hebben behaald. Vervolgens geven we een nieuwe implementatie van een dergeli-
jke model voor moleculair ladingstransport, door DFT met het NEGF formalisme te
combineren. Dit model is geïmplementeerd als een schaalbare uitbreiding van het
ADF/BAND kwantumchemiepakket, ooit ontwikkeld in de theoretische chemie groep
aan de Vrije Universiteit, en momenteel verder ontwikkeld en gecommercialiseerd
door Scientific Computing and Modelling N.V.

We behandelen eerst de implementatie, onder bespreking van nuttige details van
complementaire technieken zoals dichtheids-beperkte versnelling van de convergen-
tie, constante gating van het moleculair gebied, breedbandlimiet (WBL) benaderingen
en post zelf-consistente transportberekeningen. Onze implementatie stelt ons in staat
contacten te vergelijken met en zonder periodieke randvoorwaarden, waarbij de laat-
ste vooral nuttig zijn bij het modelleren van de naaldvormige elektrodes die gevormd
worden in experimenten met mechanische breekjuncties.

We bespreken vervolgens als eerste grote test van onze methode eenvoudige
een– en drie-dimensionale metalen elektroden van lithium, aluminium en goud.
Bij de monatomische ketens vinden we zeer goede overeenstemming met intuïtieve
resultaten uit de vastestoffysica. Onze resultaten voor gouden nanocontacten tonen
aan dat de geometrie van eindige contacten belangrijke consequenties heeft voor de
transmissie, die van belang blijven bij integratie in een moleculaire schakeling.

Hierna bestuderen we als tweede grote test moleculen met fenylgroepen. We
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beschouwen eerst het meest uitvoerig bestudeerde referentiesysteem: een benzeen-
dithiol enkel-molecuul schakeling. Wij zijn met name geïnteresseerd in waar onze re-
sultaten afwijken van eerdere studies in de literatuur, als gevolg van subtiele modeller-
ingskeuzes. De belangrijkste factoren zijn enerzijds het verschil tussen de periodieke
en niet-periodieke randvoorwaarden en anderzijds bij laatstgenoemde, de geometrie
van de naaldvormige contacten. We vinden goede overeenstemming met eerdere
studies wanneer we dezelfde periodieke randvoorwaarden gebruiken – geschikt voor
grote bulkachtige elektroden. Zonder periodieke randvoorwaarden verschillen onze
resultaten in een mate afhankelijk van de vorm van de gebruikte contacten. Wanneer
we de chemische complexiteit laten toenemen, vervolgen we onze studie met gecon-
jugeerde moleculen met meerdere fenylgroepen. Wij richten ons op systemen uit de
oligo-fenyleen-ethynyleen (OPE-n) familie, met twee resp. drie fenylgroepen, waar we
kwalitatief dezelfde resultaten vinden voor beide soorten contacten.

We richten ons vervolgens op complexere systemen zoals de porfyrine-derivaten
die recent door Perrin et al. experimenteel bestudeerd zijn. Daarbij zijn mechanische-
gating effecten waargenomen, waarvan vermoed wordt dat deze door polarisatiever-
schijnselen te verklaren zijn. Wij breiden onze transportmethode uit met een com-
plementaire benadering die rekening houdt met beeldladingsverschijnselen nabij een
metaal-molecuul grensvlak. Dit eenvoudige model stelt ons in staat de aanpassing
van de transportniveaus als gevolg van de polarisatie van de elektroden te bereke-
nen, bij op/ontlading van het molecuul. Hierbij worden de ladingsverdelingen van het
molecuul tussen twee metalen elektroden in meerdere ladingstoestanden gebruikt, in
plaats van die in de gasfase. We berekenen deze met onze transport code door het
effect van op/ontladen te simuleren met een gate veld in de potentiaal. Dit stemt
goed overeen met de renormalisatie van de HOMO-LUMO gap die in de experimenten
wordt geconstateerd, welke niet verklaard kan worden door concurrerende effecten
zoals ladingsoverdracht of de vorming van statische– en interface dipolen.

Tenslotte richten we ons op het feit dat de transporteigenschappen van zulke
systemen berucht duur zijn om in hun volledige chemische detail door te rekenen.
Dit maakt het verleidelijk om soms drastische benaderingen te doen, maar er zijn
maar weinig studies die de nauwkeurigheid en prestaties van zulke benaderingen
vergelijken. In het laatste hoofdstuk nemen we de veelgebruikte WBL benadering en
geavanceerdere post zelf-consistente berekeningen onder de loep om te beoordelen
hoe deze zich vergelijken met een volledig zelf-consistente transport berekening.

We vinden redelijk goede overeenstemming tussen alle benaderingen wanneer
het molecuul (en niet het metaal-molecuul grensvlak) de transporteigenschappen
domineert. Echter, voor systemen waarbij het grensvlak domineert, dient (een deel
van) het contactgebied te worden opgenomen in de berekening. De WBL levert
goede resultaten wanneer de elektroden karakteriseerbaar zijn door een constante
toestandsdichtheid nabij de Fermi energie. Het nuttige gebruik ervan is beperkter
wanneer het apparaat onder spanning staat, maar op voorwaarde dat de spanningsval
voornamelijk plaatsvindt in het molecuul, kan de benadering alsnog resultaten leveren
die in redelijke overeenstemming zijn met volledig zelf-consistente berekeningen.
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Personal
And then we came to the end. Skipped here, didn’t you? That’s okay.

I have no story to tell but mine, so let me, in fact, tell a story. I came to Delft
in 2000, determined to be an aerospace engineer, and now I finish a doctorate in
physics, ever surprised by life. But only two things matter to me: what I have learned
and who I have met. To everyone I might here forget, my apologies.

I joined the theory group in the winter of 2007, but that’s not the start of the story.
The start is getting bored on the only down-time in aerospace engineering, spring
2003, and taking a quantum mechanics class with Leo Kouwenhoven. Fascinating,
intelligible, and just hints of something deep. Time for a change, so I signed up
for the whole undergrad program right after the summer. Fast-forward to 2005, and
I’m in Herre’s lab, just split from QT, burning the midnight oil on single-molecule
experiments with Edgar, and mocked as a failed gamer by Benoît. Good times, but
MED comes later.

Put physics on hold, and hit fast-forward again to find myself back from 21st

Street, graduating in math and engineering, and talking to Jos T. about putting those
computational skills to use on the theory side of single-molecule transport. This
sounded like a good idea, and while you took a chance on me, the converse is also
true. Yet of all the decisions I’ve taken, this I don’t regret: choosing to learn from you.
A master teacher: doctor, in the truest sense of the word. In fact, my memory won’t
be Delft, but rather breakfast at the Unicorn in Evanston, over coffee and bagels,
talking physics old and new.

So in 2007, one day after defending my thesis, I joined the theory group, and
found something entirely different from the lab, from math, and let alone from
engineering. But some fun guys helped me settle in quickly. Omar (ghost-of-the-
asylum), Xuhui, Fabian, Jeroen, Marnix, Stefan, Henri, Hongduo and Jiang, thanks for
the welcome to the theory group. Moosa, R.I.P.

The constants of the group have of course been the staff. Miriam with boundless
enthusiasm, Yaroslav with kind and well-considered words, Gerrit with the laughter
of a man enjoying his life and career thoroughly, and Yuli. Yuli, who sees much more
in the lives of the group than most realize, and who taught me the limits of engaging
my need to explain myself. More can and should be said, but I will leave that to his
own students.

Nevertheless the group changed over time, and new people joined. Let us speak
of the ladies, who I begin by mentioning in one breath. Fatemeh M., Alina, Mireia,
Fateme J. and Kim, you have no idea how much of a breath of fresh air you were
to the group when you joined. Later came many other fascinating people, but I’m
telling a story, not giving a history lesson.

Fatemeh, we shared a boss, but sadly, so little collaboration. On the other hand,
I see the wisdom in you keeping a nice, safe distance from the work I was doing.
Conferences were always fun together, and in the end it turns out we had so much
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in common. I wish you and Ali all good things in the careers to come ..
Alina, in long walks and shared coffees are deep things rooted; such time is

never wasted, only spent. Mireia, the committed, the activist, but also the Catalan
with whom I spoke my best Portuguese, such as it was. Se quiser podemos ter essa
conversa sobre religião, que parecia estar tão preocupado em ofender-me; deixe-me
saber.

Having spoken of one, there is also another Fateme. The Fateme I never under-
stood, until you told me a story of two psychologists. And then everything made
sense. It’s been real, and fun, and even, as the Americans would say, real fun. I wish
you patience and perseverance through the end of this journey, because you already
know deep down: impossible is nothing.

As for Kim, a kindred spirit. I have no other way to describe you. From Michigan
to Den Haag, and a year hence, probably back. And for free, in meeting you, I
met Erin, with whom I have learned, taught, laughed, and eaten spectacularly well
(usually thanks to Kim, and Tungky besides). Kim, Fateme, Erin and Tungky: perhaps
our paths lead to Toronto, as all paths possibly do ..

But mentioning Tungky brings us to island people.

First there are the ones from Down Under, dear Gemma (my “other” favorite
chemist) and the great Doctor Phil. But being counseled by Dr. Phil (on the best
surfing spots) leads to us teaching the ICCP course, and from there we meet Tungky,
who sadly never got to join us in the snows of Michigan.

Now there’s something about people from the islands, and we all recognize each
other. Tungky, my friend, it’s been a pleasure talking life, over a hot stove filled with
food so good it came with disclaimers of liability for everyone’s health.

And if we’re going to talk about islands and food anyways, too bad Patricia, that
we never bet a burger on my finishing a Ph.D., but Mike made up for it in spades
in introducing us to Cantine Mousel in Luxembourg. Quant à toi mon demi-frère,
et ta chère mère, j’espère bien que nous nous verrons desormais plus souvent, de
préférence aux Antilles.

In the same vein there was our postdoc Toni, also ever in for good food and good
drink, and good physics besides, but an island man if ever I met one. Every time
some poor naive colleague would say something that could be taken an island way,
he knew exactly what I was thinking, and so I discovered that this isn’t limited to the
Caribbean at all ..

Now Marnix and Stefan set the tone of the early group, although they probably
didn’t realize it. Guys, your openness and friendship always made your office a great
place to kick back and trade nerdy jokes. Stefan, in particular, I will also thank for
the honor of bretzels with weißwurst in the morning snow in Munich. Fabian, you
tried to balance the group but failed whenever your inner nerd peeked out, and if
this piques you, do remember that a language nerd, a travel nerd and a food nerd,
are all still nerds.
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And speaking of nerds, we arrive at the man in pink himself, Xuhui. Man, I owe
to you my deeper interest in finance, but you may not realize the encouragement you
gave in science as I made a sharp transition to physicist. Thank you. You have been
a friend I did not expect, and I meant what I said when Noura arrived. Together with
Vera, you three are always welcome at my door, wherever it may be.

Now under this heading I should continue, but a case apart is Ciprian, who
dances on the thin grey line that divides the world. I hope that you will pick sides
one day, when you find something worth fighting for. In the meanwhile, I leave you
some easter eggs to enjoy.

Rakesh joined the group around the same time as Toni, and was more staff
than postdoc in truth. Moreover, it was great having you around both in Delft and
Den Haag, and to see you and Nicole do the impossible. You took this long list of
physicists, threw them in a room with a bunch of artists, and let chemistry happen.
Amazing parties resulted. I still owe you for the cooking lessons, to say nothing of
introducing me to Graham, Louella and Eleonore: my life has been enriched by our
exchanges, of which there have surely been too few ..

François was an unusual character, and to him I owe some deep insight into
physics, and my introduction to the Canard Enchaîné. Merci de m’avoir régalé de ton
ironie français, mais je te remercie aussi pour notre conversation de ce matin dans
le train de Paris, qui a éclairé beaucoup pour moi.

Some of the newer guys I have only just started getting to know, but so far there’s
still hope for the group .. The elders who stay awhile, such Antonio, Mihajlo, Peng,
Hujun and Berlinson. But also the younger generation. Subtle Frans, finally relieving
me of the burden of being the group’s “Dutchman,” Dima, (Chairman) Yan-Ting, the
ever-energetic life of the party Akash, and Rodrigo who takes a sound mind in a
sound body to a whole new level: please bear witness that you’re both the present
and the future of the group!

Having spoken about the people who sojourned long with us, I will also mention
some who passed through more briefly. Rutger, met more often at festivals than
colloquia, Kevin, perhaps the most laid-back office-mate of all, and Schaafsma: de
lange gesprekken over geloof en politiek waren altijd de moeite waard. Then Bas &
Sasja, who announced spring to the group, and Rianne, who I shoulda never let go to
St. Maarten. Joost de G. who we “introduced” to spices, Omer who rocked on down
I-94 with me, and Guen, the entrepreneur I expect to see in Silicon Valley some day:
it’s been fun.

So ending the theoretical tale I come to my office mates. Drostie: physicist,
hacker, dreamer, and voted most likely to found his own religion two years running;
it’s been a pleasure. And Marcin, someone I nearly missed out on getting to know
better, which I’d surely regret. I fear that you may yet contribute extensively to my
knowledge of all things alcoholic and behavioral. Cheers to you and Cecile.

Then finally Gio, my brother. You give me pause. I have spoken much but also
listened, and learned, so much from both you and Keti. Zoetermeer was a good place
for us by fours and sixes more than once, but the walks have done me just as well.
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May the road always rise up to meet you ..

Sitting between the groups at opposite ends of the corridor, I will also thank, and
thank sincerely, the secretaries who kept everything running. You made my life much
easier than it had to be (truly a rare occurrence). Yvonne en Marjolein bij theorie
enerzijds, Monique, Irma en Maria bij MED anderzijds, echt bedankt voor alle hulp,
suggesties en ondersteuning. De TU heeft niet door wat jullie waard zijn.

So having talked about one surrogate family, I can do no less in addressing
another. MED, home of the “glorious leader” (all Edgar’s terminology, of course).
Such a shame that he shot down Bo’s full-faculty salute. Herre, you will give that
intreerede one day, and all of us will be waiting ..

Unofficially though, I am possibly the current oldest ghost haunting MED, since I
outrank even Seldenthuis. Good times in the lab with Edgar and Benoît led to a more
distant relationship from the halls of theory, but the advent of “my friend!!” Diana
quickly cured that. Moreover, I always felt like Seldenthuis’ office was my second
home anyways, so it’s not like I wasn’t around. But I had to hide at times, hunted
by the Franco-Serbian alliance .. though in seriousness, the collaboration with you,
Diana, and Mickael, our rock climbing physics-ninja, was a highlight of the Ph.D. Let
it also be said that the “little rounds” were always fun, though I thought that after
August I would have to miss them. Turns out “de Bank” believes in them too ..

Now Manohar, Samir and Alexander .. what happens in Dallas, stays in Dallas,
but you guys taught me a new motto that deserves to be shared: “the random is good;
embrace the random.” Sasha, much luck to you and your family in the wonderful
world of technology in Eindhoven. Samir, keep me in the loop on where you end up
in science, and may the random be with you always.

And then I come to Ferry, my favorite chemist. As if I’m the only one who’s
ever said that to you. But truly man, you were the octopus, with so many projects
running simultaneously, you made the rest of us feel bad. Much luck and success in
Boston, where I know you’re already no doubt at the start of something big.

Then there was Christian, a subtle man, and perhaps the kindest I know. To-
gether with Dapeng, you guys made a great team in physics and comedy (“yes”), but
Christian, I swear I’ve never heard you utter a harsh word about anyone. I hope to
make up failing to see Nature London as soon as possible, lest it be about me.

Ben, Ronald, Hidde, Harold, Warner, Carlos, Andres, Michele, and the rest, I’m
impressed with how you’ve managed to keep some of the original spirit of the group,
while giving it some flavor of your own, and it’s good to see Gary and Sander settled
in as well. I hope that you will all succeed in passing what you take from the
super-postdocs and ghosts on to new generations to come.

Yet at the end of this story, I find Jos, our unusually tall, blonde and dutch-
accented American. We began at nearly the same time, and seems like we’ve always
been working on something or other together. There was Evanston and Chicago,
more than once, and Mons, and Copenhagen, and Switzerland, to say nothing of all
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the talks we gave on the other guy’s research. For both of us the future is uncharted,
but I sincerely hope we’ll work together again, and finally sit down one Sunday as
well.

Two friends remain, who should not pass without mention. Chris, we’ve been
scheming since we were 15, from redirecting traffic and filtering lakes to building
hovercrafts and Tesla coils, and I still feel like we could simply trade places at my
defense without a care in the world. Thanks for being there. Joost, who cannot
be here, thanks for how hard you tried, and irmão, muito obrigado por tudo nestes
últimos anos, ainda que nos tivéssemos visto muito pouco.

So now I will say something for myself, which is an acknowledgment of another
kind. Life isn’t easy, but in the name of everyone who’s been through the past 6
years with our (extended) family, let me recall “what we say to death, when we meet
him in the street. Not today.”

There is bitter and sweet, but all that I might want to say on the subject is
summed up better than I ever could by the preacher: “[there is] a time to weep,
and a time to laugh; a time to mourn, and a time to dance.” In my time in the
Netherlands, there have been ample amounts of each, and in each of the four I have
found new friendship, and fallen in love again with life. In the time to weep, thank
you Kim and Erin. In the time to laugh, thank you to all the friends who have walked
by my side (trippin’ all the way) and in particular, Marlo & Bas, Chris, Joost, Big
Mike, Chicco, van Delden, Pieter & Paul, Li & Nuno. In the time of mourning, Vela,
Percey and Johnny Z, and alas recently Eric, Jessika and Little Mary too. Finally, in
the dancing first Perle, Joost, Meltem and Dorien, and later Vanessa, Chris and Mel,
then Alina, and once again Perle.

Tenslotte aan Vanessa, en de familie .. waar, en wie zou ik zijn zonder jullie
warmte, diepte, knuffels, luisterend oor, en alles waarin jullie mij hebben gevormd,
orkaan na storm, van wijs-neus tot weledelgestrenge tong. Wie had ooit gedacht dat
we zo lang in Nederland zouden blijven, ondanks de blijvende drang om zo snel
mogelijk weg te wezen? En sterker nog, dat er een heus jaar is geweest waarin we
zelfs allemaal “gezellig” in Nederland hebben gewoond. Daar zijn we ook met elkaar
doorheen gekomen, en dat mag best gezegd worden!

Daarom, naast alles anders: diep bedankt voor jullie steun, ik hou van jullie.



Postscript

And having said enough, there remain two things.

First, to express my deep joy to the people who’ve been a part of my life for the
past 5 years; the second, to those who have understood me best, and also least.

How we danced through the night,
with the hackers and painters

Physicists, sculptors, minds and bodies as one
Speaking, then laughing and pushing our limits

Pinay and Caribe,
Indian, Catalan.

We danced and we drank and we dreamed of the future
When all now inside us
might well memory be

So we opened our hearts and we spun one another
and we danced through the night,

just us, subtle makers.

December 2011

Not all who seek, desire the same ends,
Not all who speak, say the same by common tongue,

And not all who wander, are lost.

July 2012
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Kindness in words creates confidence.
Kindness in thinking creates profoundness.

Kindness in giving creates love.

Lao Tzu
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