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Introduction

In the late 1990s there was a commercial in the Netherlands for a herbal energy drink with the

slogan: “It works because of herbs!” As a scientist one immediately wonders when hearing this

slogan: What are these “magic herbs” and why are these herbs supposed to work? Even though

we will explore a completely different matter in this thesis, we will see at the end of this

introduction that the question that we will try to answer in this thesis is very similar.

In this thesis we will explore the response of molecules to an external perturbation (an electric

field). One of the reasons to study these properties is that they have a direct relation with the

design of new compounds for optics and photonics applications. To calculate these response

properties we solve the time-dependent Schrödinger equation using time-dependent current-

density-functional theory. Here we will introduce this method and its approximations. We will

start with explaining the basics behind ground state density functional theory and then move to

the time-dependent case.

The starting point for any (nonrelativistic) quantum chemical calculation on a stationary

isolated N-electron system is the time-independent Schrödinger equation given by

 
Ĥ x1,x2 ,…,xN( ) = E x1,x2 ,…,xN( ) , (0.1)

where E is the electronic energy, 
 
x1,x2 ,…,xN( )  

is the many-electron wave function, and Ĥ

is the Hamilton operator. The wave function is a function of the space and spin coordinates of

the N electrons and describes the correlated motion of these N interacting particles. In 1964

Hohenberg and Kohn [1] discovered that alternatively one can fully describe a stationary state

by its ground state density. Even the many-body wave function itself can be obtained from this

quantity. The advantages of using the density instead of the wave function are clear, the density

is an intuitive and physically observable quantity and it only depends on three spatial

coordinates instead of 3N spatial coordinates. They also showed that the total energy can be

written as a density functional and that the exact ground state energy can be found by

minimization of this functional. It were Kohn and Sham [2] who showed that it is possible to

obtain the interacting density from a system of noninteracting particles, the Kohn-Sham system.

The electrons then obey a simple one-particle Schrödinger equation but with an effective

potential,
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eff r( ) = ext r( ) + H r( ) + xc r( ) (0.2)

where the first term is the external potential, the second term includes the classical part of the

electron-electron interaction, and the final term contains everything else. This exchange-

correlation (xc) potential is unknown and needs to be approximated. Finding a good functional

is one of the greatest challenges of density functional theory. The simplest functional is the local

density approximation (LDA) [2], which is based upon the theory of the homogeneous electron

gas.

Density functional theory (DFT) as described above can be extended to describe time-

dependent systems (TDDFT) [3] and it can be used to describe response properties of a system

in an external electric field. It is of course also possible that one wants to include the coupling to

a time-dependent magnetic field. In this case a time-dependent vector potential enters the theory

and the current density appears in the theory. This led to the development of time-dependent

Figure 0-1. The top figure depicts a block of density that is compressed. In this case the density changes,
but the rotation of the current density does not; the response is purely longitudinal. The second picture
shows what happens if shear stresses work on our block, the density remains the same, but the rotation of
the current density is nonzero. In this case the response is purely transverse.
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current DFT (TDCDFT) [4-6]. The coupling to magnetic fields is not the only reason to use

TDCDFT. Consider, for example, a solid in an electric field using periodic boundary conditions.

The basic argument is that a uniform macroscopic current cannot be described by TDDFT for

this system, as in that case the density does not change anywhere in the bulk but only at the

surface [7]. Another reason to use TDCDFT comes from the fact that we know that any field can

be split in a longitudinal and transverse part,

A = AL + AT (0.3)

where

AT = 0

AL = 0
(0.4)

For example in isotropic systems the response for these fields will result in longitudinal and

transverse current densities. In Figure 0-1 we show that in case of the transverse response the

density does not change in the bulk of the system, it only changes at the surface. It turns out that

these surface effects influence the response of the bulk region. If the system is very large, we

can only describe this effect with a very nonlocal functional or by taking the current density into

account. There is another very important reason to use TDCDFT and that is that Vignale and

Kohn [8,9] showed that there is no local density approximation for the scalar xc-potential at

finite frequency, but there is a consistent local approximation for a vector xc-potential in terms

of the current density. Besides making this observation they also derived an expression for this

vector xc-potential, the Vignale-Kohn (VK) functional. In this thesis we will look at the static

response of finite systems. So why should we use current DFT?

The simplest xc-potential within TDDFT is the adiabatic local density approximation

(ALDA), which is a direct extension of the ground state LDA functional. Even though this

functional is very simple, it turns out to give very good results in general. However, there are

also failures. A very clear failure is the large overestimation of the static polarizability of long

molecular chains [10,11] compared with other, wave function based methods. We give the

results for polyacetylene in Figure 0-2. The ALDA, but also more advanced generalized gradient

approximations (GGA), is unable to describe the highly nonlocal exchange and correlation

effects found in these systems [10,11].
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A lot of research has been done to

improve the ALDA because for these large

systems it is often not possible to do an

accurate wave function based calculation.

The only correlated calculations that have

been done on the larger oligomers of some

systems are MP2 calculations [13-15]. One

way to overcome the shortcomings of the

ALDA within DFT is to employ optimized

effective potentials (OEP) [16-19] or

approximations to this potential [20,21].

Basis of the success of these exchange-only

potentials is their explicit dependence on the

orbitals, which allows for a nonlocal

dependence on the density. However, these approaches are currently restricted to the exchange-

only approximation.

We see from Figure 0-1 that for large systems, such as these polymeric systems, the influence

of the surface on the response can only be described by such nonlocal functionals or by taking

the current density into account. As mentioned above Vignale and Kohn showed that it is indeed

possible to describe nonlocal effects by using a vector xc-potential that depends on the current

density. It turns out that this VK-functional does have a contribution in the static limit and gives

a large correction to the ALDA for the static polarizability of polyacetylene (see Figure 0-2) and

we obtain values close to available MP2 results. As we shall show in this thesis we find similar

results for other -conjugated systems.

We see for polyacetylene that the VK-functional works well. But does it work for all systems?

And does it work for all response properties? Another major question is: Why does it work? Is it

because of some “magic herbs”, or can we find a better explanation?

These are the questions we will explore in this thesis.

Outline of this thesis
In Chapter 1 ground state density functional theory (DFT) is introduced. We first give the

theorems that were proven by Hohenberg and Kohn in the 1960s and are the foundation of DFT

[1]. The important result that follows from these theorems is that if one wants to fully describe a

Figure 0-2. ALDA and VK static axial polarizability
of polyacetylene compared with restricted Hartree-
Fock [12] and MP2 [13] results.
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stationary electronic system, it is sufficient to know the ground state density. We also give the

practical scheme that Kohn and Sham [2] devised on the basis of a noninteracting many particle

system (the “Kohn-Sham” system) and that allows us to actually do DFT calculations.

In Chapter 2 we show how the ground state DFT formalism can be extended to the time-

dependent regime (TDDFT). In the 1980s Runge and Gross showed that there is a time-

dependent version of the Hohenberg-Kohn theorems [3] that allows us to write down time-

dependent versions of the Kohn-Sham equations. Ghosh and Dhara [4,5] later showed that it is

also possible to prove the Hohenberg-Kohn theorems in the case of time-dependent current-

density-functional theory (TDCDFT). In this thesis we do not give this proof by Ghosh and

Dhara, but instead we give a more elegant proof by Vignale [6].

In Chapter 3 we show how to obtain response properties like static and frequency dependent

polarizabilities and excitation energies within the framework of linear response theory. We

closely follow the method of Casida (Ref. [22]) for TDDFT and extend this method to the case

of TDCDFT.

The fact that we are using TDCDFT allows us to use a functional that is dependent on the

current density. In Chapter 4 we thoroughly describe such a functional, namely the VK-

functional [8,9,23,24]. Since this functional can be cast in the form of a hydrodynamic equation,

we also give some background on hydrodynamics and elasticity. We then give some of the

historic motivation behind the derivation of the VK-functional, followed by a short overview of

how this functional was derived. We also give the functional in its spin-dependent form. We use

the functional only in the static limit ( 0 ) and we show what the consequences are of taking

this limit on the VK-functional. We shortly comment on the validity of using this functional for

finite and inhomogeneous systems like atoms and molecules.

In Chapter 5 we show how we implemented the linear response equations of TDCDFT and

the VK-functional in the Amsterdam Density Functional program package (ADF) [25]. Since

the implementation of the linear response equations TDDFT is explained in depth by Stan van

Gisbergen [26] we concentrate on the changes that need to be made to include the current-

dependent formalism.

In Chapter 6 we give our results for the static polarizabilities of a large number of oligomers,

including the model hydrogen chain. These are the results that we published in Phys. Rev. Lett.

88, 186401 (2002) and J. Chem. Phys. 118, 1044 (2003). We show that by treating the exchange-

correlation effects using the VK-functional we are able to obtain polarizabilities in good

agreement with accurate wave function methods. The VK-functional achieves large corrections
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to the adiabatic local-density approximation (ALDA) that is known to overestimate the

polarizability considerably for conjugated oligomers. Moreover the large N behavior of VK as

described by a power law is found to be in good agreement with reference data. The only

molecular chain that we studied for which the VK-functional does not give a large correction is

the model hydrogen chain.

From the good results for the conjugated oligomers we expect that also the polarizability of

the much larger tubular fullerenes will improve. In Chapter 7 we give our results for the tubular

fullerenes C60+i 10, where i = 0–5, and the closely related [5,5] carbon nanotube that we published

in Chem. Phys. Lett. 395, 274 (2004). Comparing the results obtained within the conventional

ALDA with those obtained using the VK-functional it is found that the extra long-range

exchange-correlation effects described by the current-density functional are important to

consider, especially for the longest fullerenes. For the systems studied the TDCDFT results are

in good agreement with available experimental results, and the agreement with available ab

initio self-consistent-field results and results from a point–dipole interaction model is much

better than when using the ALDA.

Apart from the polarizability we also studied excitation energies of several systems.  In

Chapter 8 we study a variety of singlet excitations for a benchmark set of molecules.  The 

excitation energies obtained with the VK-functional are in good agreement with experiment and

other theoretical results and they are in general an improvement upon the adiabatic local density

approximation. In case of the n  transitions the VK-functional fails, giving results that are

strongly overestimated compared to experimental results and theoretical reference data. The

benchmark set also contains some other types of excitations for which neither clear failures nor

improvements are observed. We published this data in J. Chem. Phys. 120, 8353 (2004).

In Chapter 9 we study the  singlet excitations of several -conjugated oligomers and the

lowest singlet excitations of the hydrogen chain. From our results for the polarizability of these

systems we expect a large effect when using the VK-functional.  By studying the dependence of

the excitation spectrum on the chain length we conclude that the reduction of the static

polarizability when using the VK-functional has two origins. First, the excitation energies of

transitions with a large transition dipole are shifted upward. Second, the HOMO-LUMO

character and oscillator strength of the lowest transition within the ALDA are transferred to

higher transitions. The lowest transitions that have considerable oscillator strength obtained with

the VK-functional have excitation energies that are in most cases in better agreement with
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available reference data then the ALDA. We published this data in J. Chem. Phys. 121, 10707

(2004).

The VK failures observed in the molecular systems are reproduced in the much simpler case

of atoms. In Chapter 10 we perform a thorough analysis of the VK-functional for atoms. For

these systems the VK-functional can be rewritten in spherical coordinates, simplifying the

analysis. We show a graph of the VK exchange-correlation electric field of a 2s 3s transition in

B+ and we show the effect of the VK-functional on transitions in several other atoms. We find

that for the s p transitions the excitation energy is strongly overestimated with VK. This is also

what follows from an independent study by Ullrich and Burke [27]. A slight modification of the

transverse exchange-correlation kernel in the high-density region strongly reduces the error for

the s p transitions, while keeping the s s transitions in agreement with experiment. Using this

simple modified kernel for transitions in molecules shows that the excitation energies for the

n  transitions are strongly reduced, sometime leading to a large underestimation, while the

 transitions obtained with the VK-functional remain in agreement with experiment and

other theoretical results. For the polyacetylene oligomers we still find a large correction for the

axial static polarizability with the modified kernel compared to the ALDA. Surprisingly,

modifying the transverse kernel leads to a larger correction of the axial static polarizability of

the model hydrogen chain, giving results closer to other theoretical values.





 Chapter 1

Introduction to density functional

theory

Prior to describing time-dependent density functional theory, we give a short overview of the

ground state density functional theory (DFT) formalism. A recent fundamental overview of

ground state DFT can be found in Ref. [28]. Books on this topic include Refs. [29] and [30].

1.1 Solving the Schrödinger equation
We would like to solve the time-independent Schrödinger equation for an isolated N-electron

system in the Born-Oppenheimer nonrelativistic approximation, given by

 
Ĥ x1,x2 ,…,xN( ) = E x1,x2 ,…,xN( ) , (1.1)

where E is the electronic energy, 
 
x1,x2 ,…,xN( )  

is the N-electron wave function, and Ĥ  is

the Hamilton operator given by

Ĥ = T̂ + V̂ + Ŵ . (1.2)

In this equation T̂  is the kinetic energy operator, V̂  the external potential, and Ŵ  the two-

particle interaction. The coordinates xi  of electron i consist of space coordinates ri  and spin

coordinate i . Atomic units 
 

= me = e = 4 0 = 1( )  will be used throughout this thesis. The

separate terms of Eq. (1.2) are explicitly given by:

T̂ = 1
2 i

2( )
i=1

N

(1.3)

V̂ = ri( )
i=1

N

(1.4)
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Ŵ =
1

ri rji< j

N

, (1.5)

where the two-particle interaction Ŵ  is the Coulomb potential. We define the density operator

by,

ˆ r( ) = r ri( )
i=1

N

. (1.6)

Eq. (1.4) can be written in terms of this density operator as:

V̂ = r( ) ˆ r( )dr , (1.7)

its expectation value being:

 

V̂ = x1,x2 ,…,xN( )V̂ x1,x2 ,…,xN( )dx1dx2…dxN

= r( ) r( )dr
, (1.8)

where we have introduced the Dirac bracket notation. The last equation contains the electron

density, which is the expectation value of the density operator

 

r( ) = ˆ r( )

= N r 1,…, rN N( )
2
dr2…drNd 1…d N

. (1.9)

When a system is in a state , which does not necessarily satisfies Eq. (1.1), the expectation

value for the energy (i.e. the average of many measurements of the energy) is given by

E [ ] =
Ĥ

. (1.10)

Since each measurement gives one of the eigenvalues of the Hamiltonian operator Ĥ  it follows

that

E [ ] E0 (1.11)

where E0  is the energy of the ground state. Minimization of the functional E [ ]  will give a

true ground state wave function 0 and energy
 
E [ ] = E0  

(more information about functionals

can be found in Appendix A). To ensure that the final  will be normalized we use the method
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of Lagrange multipliers in our minimization. Minimizing the quantity Ĥ E[ ]

instead of just Ĥ , where E is the Lagrange multiplier, satisfies the constraint

= 1 . The Euler-Lagrange equations can be restated in a form that is equivalent to the

Schrödinger equation where the Lagrange multipliers can be identified as the energy eigenvalues

,

E = Ĥ E = 0 . (1.12)

Note that the energy is now a functional of N and r( ) . Equation (1.12) must be solved for 

as a function of E, then E needs to be adjusted until normalization is achieved. This variational

procedure is the starting point of many ab initio quantum chemical methods. These methods

expand the wave function  in a finite set of basis functions and use the variational procedure to

find the coefficients of this expansion. Since it is usually not possible to work with a complete

set of basis functions approximations need to be made. The simplest ab initio quantum chemical

method is the Hartree-Fock approximation where one tries to find the best single Slater

determinant that minimizes Eq. (1.10). Going beyond the ansatz of a single-determinant wave

function can reduce the limitations of the Hartree-Fock method. Such approaches include many-

body perturbation techniques and the linear mixing of many determinants (called configuration

interaction) [31]. In the next section we discuss another quantum chemical method that has the

electron density as the basic variable instead of the wave function, this method is density

functional theory (DFT).

1.2 The Hohenberg-Kohn theorems

The advantage of DFT is that it is not necessary to calculate the complicated N-electron wave
function 

 
x1,x2 ,…,xN( ) . Instead one can restrict oneself to calculating the much simpler

electron density r( ) , a fact that was first proven by Hohenberg and Kohn [1]. Their first

Hohenberg-Kohn theorem states that the density r( )  of a nondegenerate ground state uniquely

determines the external potential r( )  up to an arbitrary constant. From this theorem it follows

that r( )  determines the ground state wave function  and through it all electronic properties.

We proof this theorem in Appendix B.1. The consequence of the one-to-one mapping between
the wave function  and the density r( )  is that the ground state density uniquely determines

the expectation value of any operator Ô
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[ ] Ô [ ] = O [ ] . (1.13)

With this result we can define a universal Hohenberg-Kohn functional FHK ,which is

independent of the potential V̂ , as

FHK [ ] = [ ] T̂ + Ŵ [ ] (1.14)

and we find for the ground state energy functional E [ ]

E [ ] = r( ) r( )dr + FHK [ ] . (1.15)

The second Hohenberg-Kohn theorem states that for a trial density 
 
r( )  such that 

 
r( ) 0

and
  

r( )dr = N ,

 
E0 = E 0 0[ ] E

0
[ ] . (1.16)

This is the analogue of the variational principle for wave functions. This means that the exact

ground state energy can be found by minimization of the energy functional

 

E0 = minE 0
[ ] . (1.17)

An important point within DFT that we have not addressed up to now is the so-called -

representability problem. A density is defined to be -representable if it is the density associated

with the anti-symmetric ground-state wave function of a Hamiltonian of the form (1.2) with

some external potential . The functional FHK , for example, is only defined on the set of -

representable densities. The -representability problem deals with the question of what

constraints one has to put on the density to make sure it is -representable. This problem is

discussed in more detail in Refs. [30] and [32]. In the following we will assume our densities to

be -representable.

1.3 The Kohn-Sham equations
While the Hohenberg-Kohn theorem shows it is possible to use the ground state density to

calculate properties of the system, it does not provide a way of finding the ground state density.

Kohn and Sham provided a route to this [2]. The practical scheme that Kohn and Sham devised

is based on a hypothetical system of noninteracting electrons, chosen in such a way that the

density of this system is identical to the exact density of the physical system under
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consideration. It also reintroduces the concept of orbitals into the theory as we shall later see. An

elegant way to derive these so-called Kohn-Sham equations is by means of Legendre transforms

as derived by Van Leeuwen [28], which we give here. A more traditional way of deriving these

equations is by means of the Euler-Lagrange equation as can be found in many textbooks on this

subject (for example Refs. [29] and [30]).

We start our derivation with the Schrödinger equation,

T̂ + V̂ + Ŵ( ) [ ] = E [ ] [ ] , (1.18)

where the ground state energy E [ ]  and the wave function [ ]  are considered to be

functionals of the external potential and the two-particle interaction Ŵ  is kept fixed. Instead of

this equation we can also write,

E [ ] = [ ] Ĥ [ ] . (1.19)

The goal is to go from the potential as the basic variable to the electron density. The reason why

this is possible is that the density and the potential are conjugate variables, which means that the

contribution of the external potential to the total energy occurs only via an integral of the

potential times the density. We can now take the functional derivative (see appendix A for the

definition) of the energy functional E [ ]  with respect to the potential ,

E

r( )
=

r( )
Ĥ + Ĥ

r( )
+

Ĥ

r( )

= E [ ]
r( )

+ ˆ r( )

= ˆ r( ) = r( )

, (1.20)

where we made explicit use of the fact that [ ]  satisfies the Schrödinger equation with

Ĥ = Ĥ [ ]  as well as the normalization condition = 1 , and that the external potential is

defined as in Eq. (1.7). To go to the density as the basic variable we can use the technique of

Legendre transforms. We can define the following Legendre transforms,

F [ ] = E [ ] r( ) r( )dr = [ ] T̂ + Ŵ [ ] , (1.21)

where  should now be regarded as a functional of . We have already shown that the

uniqueness of the mapping between  and  is guaranteed by the first Hohenberg-Kohn theorem.
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Again F [ ]  is only defined for the set of -representable densities, but as mentioned before we

assume all our densities are -representable. Using the relation derived in Eq. (1.20) it follows

that,

F

r( )
=

E

r( )

r( )
r( )

dr
r( )

r( ) r( )dr

= r( )
r( )
r( )

dr r( )
r( )
r( )

dr
r( )
r( )

r( )dr

= r r( ) r( )dr = r( )

. (1.22)

As mentioned above we consider a system of noninteracting particles in order to derive the

Kohn-Sham equations. Analogous to the hypothetical system described above, we can write the

following energy functional for this system with effective external potential s and

noninteracting wave function
 
[ s ] ,

Es s[ ] = s[ ] T̂ + V̂s s[ ] , (1.23)

with Legendre transform,

Fs [ ] = Es s[ ] r( ) s r( )dr = s[ ] T̂ s[ ] (1.24)

and derivatives

Es

s r( )
= r( ) (1.25)

Fs
r( )

= s r( ) . (1.26)

The Fs [ ]  in equation (1.24) is nothing more than the kinetic energy of the noninteracting

system. Therefore we will from now on denote this quantity by Ts [ ] . We can now define the

so-called exchange-correlation functional Exc [ ]  by,

F [ ] = Ts [ ] + 1
2

r( ) r( )
r r

drdr + Exc [ ] . (1.27)
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Here we assume that the noninteracting system is chosen such that its density corresponds with

the ground state density of the interacting system. Functional differentiating Eq. (1.27) with

respect to the density r( )  gives,

s r( ) = r( ) +
r( )

r r
dr + xc r( ) , (1.28)

where,

xc r( ) =
Exc
r( )

(1.29)

defines the exchange-correlation potential. We can write the ground state wave function of a

nondegenerate noninteracting system [ s ]  as the antisymmetrized product of single particle

orbitals i r( )  (i.e. a Slater determinant). Combining Eqs. (1.21) and (1.27) we obtain,

E [ ] =
1

2 i r( ) 2
i r( )dr

i=1

N

+ r( ) r( )dr

+
1

2

r( ) r( )
r r

drdr + Exc [ ]

. (1.30)

We also obtain a one-particle Schrödinger equation,

1

2
2
+ r( ) +

r( )
r r

dr + xc r( ) i r( ) = i i r( ) (1.31)

and

r( ) = i r( )
2

i=1

N

. (1.32)

Equations (1.30), (1.31), and (1.32) constitute the ground state Kohn-Sham equations [2]. These

equations reduce the problem of finding the ground state density to finding a good

approximation for the exchange-correlation energy. Since s r( )  depends on r( )  the equations

need to be solved self-consistently. From a guessed density one can obtain s r( )  and then find a

new r( )  from (1.31) and (1.32). One can then continue the cycle by finding a new s r( )  from

this density and continue until self-consistency is reached.
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1.4 Approximate exchange-correlation functionals
The simplest approximation one can make for the exchange-correlation energy is the local

density approximation (LDA). In this approximation the exchange-correlation energy functional

is given by

Exc
LDA [ ] = r( ) xc

hom. r( )( )dr , (1.33)

where xc
hom. ( )  is the exchange-correlation energy per particle for a homogeneous electron gas

evaluated at the local density r( ) . In this way the system is treated locally as a homogeneous

electron gas. It would be expected that this approximation would only be successful for systems

with a slowly varying density, but is turns out that the LDA is very successful even for very

inhomogeneous systems such as atoms and molecules. The functional xc
hom. ( )  can be split into

an exchange and a correlation part. The exchange part is given by the Dirac exchange-energy

functional [33],

x ( ) =
3

4
3

1 3

. (1.34)

Accurate values for the correlation part c ( )  have been obtained by quantum Monte-Carlo

calculations and have been fitted to analytical functions. The parameterization of Vosko, Wilk,

and Nusair (VWN) [34] is implemented in many quantum chemical codes. Even though the

LDA is successful, it has many shortcomings. For example, it neglects all nonlocal effects. It is

therefore not to be expected that the LDA works in cases where the density varies strongly. Also

the exchange part of the functional does not exactly cancel the self-energy part of the Hartree

term, which leads to incorrect asymptotic behavior for finite systems.

Including gradients of the density in the functional can make a considerable improvement

upon the LDA. A successful way to construct these gradient expanded functionals is by use of

the generalized gradient approximation (GGA) [35-37]. These GGA functionals can be written

as,

Exc
GGA [ ] = r( ) xc

GGA r( ), r( )( )dr . (1.35)

The function xc
GGA  is usually an analytic function with parameters that are fitted to experiment

or determined by exact sum rules. The GGAs already give accurate results for many properties

and systems. A newer class of GGAs are the meta-GGAs [38] that depend explicitly on the
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kinetic energy density of the Kohn-Sham system. These more flexible functionals are not only

dependent on the density but also on the Kohn-Sham orbitals. The GGAs and meta-GGAs

improve upon the LDA but they still do not have the correct asymptotic behavior. Van Leeuwen

and Baerends proposed a density functional that does have the correct asymptotic behavior [39].

Another density functional that has a correct asymptotic behavior is developed with the method

of statistical averaging of (model) orbital potentials (SAOP) [40]. This potential is especially

constructed for the calculation of molecular response properties and its shape reflects the atomic

shell structure.

Many more functionals have been developed, and the development of more accurate

functionals is an ongoing process.





 Chapter 2

Time-dependent (current-)density-

functional theory

In this chapter we describe the time-dependent (current-)density-functional theory (TDCDFT).

We also describe how to obtain response properties such as polarizabilities and excitation

energies from this theory. Gross, Dobson, and Petersilka give a thorough description of time-

dependent density-functional theory (TDDFT) in their review paper [41]. Van Leeuwen gives a

more fundamental description of the theory [42]. Other reviews are given by Casida Refs. [22]

and [43].

2.1 The Runge-Gross theorem
The first Hohenberg-Kohn theorem states that the density r( )  of a nondegenerate ground

state uniquely determines the external potential r( )  up to an arbitrary constant. Within time-

dependent density functional theory we need to prove the existence of an exact mapping

between the external potential and the time-dependent density r, t( ) . Runge and Gross proved

this relation [3]. The proof is based directly on the time-dependent Schrödinger equation,

i
t

t( ) = Ĥ t( ) t( ) . (2.1)

We give the full proof of Runge and Gross in Appendix B.2. Here we give a short outline of this

proof. We will always work in the Schrödinger picture unless stated otherwise. The time-

dependent Hamilton operator accounts for the possibility of a time dependent potential V̂ t( ) .

 An important constraint on the proof is that we consider only densities r, t( )  that evolve

from a fixed initial state 0  due to some potential r, t( ) . The initial time t0 is assumed to be

finite and the potentials r, t( )  are assumed to have a Taylor expansion around t0. This

condition of Taylor expandability excludes potentials that are switched-on adiabatically from

t0 = . In order to establish the time-dependent equivalent of the first Hohenberg-Kohn

theorem we need to show that two densities r, t( )  and r, t( )  evolving from a common
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initial state 0  under influence of two potentials r, t( )  and r, t( )  always differ provided

that the potentials differ by more than a purely time-dependent function,

r, t( ) r, t( ) + c t( ) . (2.2)

If this is true, there is a one-to-one mapping between time-dependent densities and potentials

and a time-dependent density functional theory can be constructed. The first step in the proof is

to show that the corresponding current densities j r, t( )  and j r, t( )  differ for t > t0 . Using the

quantum mechanical equation of motion for the expectation value of an operator
 
Â t( ) ,

t
t( ) Â t( ) t( ) = t( )

Â

t
i Â t( ), Ĥ t( ) t( ) . (2.3)

and the fact that the wave functions  and  evolve from a common initial state, one

obtains [3],

t
j r, t( ) j r, t( )( )

t=t0

= i 0 ĵp r( ), Ĥ t0( ) Ĥ t0( ) 0

= 0 r( ) r, t0( ) r, t0( )( )
, (2.4)

with initial density 0 r( ) = r, t0( ) . The paramagnetic current density operator is given by

ĵp r( ) =
1

2i ri
r ri( ) + r ri( ) ri( )

i=1

N

. (2.5)

After repeated use of the equation of motion one finds,

k+1

t k+1
j r, t( ) j r, t( )( )

t=t0

= 0 r( ) wk r( ) (2.6)

where

wk r( ) =
k

t k
r, t( ) r, t( )( )

t=t0

. (2.7)

If Eq. (2.2) holds there must be some lowest k for which

k+1

t k+1
j r, t( ) j r, t( )( )

t=t0

0 , (2.8)
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and hence the current densities start to differ for t > t0 .

This first part of the proof establishes a one-to-one correspondence between the ( -

representable) current density and the potential. To show that there is also a one-to-one

correspondence between the density and the potential we can make use of the continuity

equation,

t
r, t( ) r, t( )( ) = j r, t( ) j r, t( )( ) (2.9)

and obtain

k+2

t k+2
r, t( ) r, t( )( )

t=t0

= 0 r( ) wk r( )( ) . (2.10)

To prove that r, t( )  and r, t( )  become different infinitesimally later than t0 we need to show

that the right hand side of Eq. (2.10) cannot vanish identically. This proof is done by reductio ad

absurdum: Assume that 0 r( ) wk r( )( ) 0  and evaluate the integral

 

0 r( ) wk r( )
2
dr = wk r( ) 0 r( ) wk r( )( )dr

+ 0 r( )wk r( ) wk r( )( ) dS

0

, (2.11)

where Gauss’ theorem has been used. The surface integral vanishes for physically realistic

potentials because for such potentials the wk r( )  fall off at least as 1/r and the density decays

exponentially. Together with our assumption that the first integral on the right hand side is zero

this means that the integral on the left hand side must vanish. Since the integrand is semi definite

positive,

0 r( ) wk r( )
2

0  (2.12)

and 0 r( ) > 0  everywhere, which means that wk r( )
2
= 0  in contradiction to wk r( ) const. .

This completes the proof.

Another important point that follows from Eq. (2.10) is that the difference of r, t( )  and

r, t( )  is linear in wk r( ) . This means that the density difference is already nonvanishing to

first order in r, t( ) r, t( )( ) . A consequence of this is that it ensures the invertibility of

linear response operators [42].
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2.2 The time-dependent Kohn-Sham equations
Just like in case of the ground state we can consider a system of noninteracting particles with

the same density as the fully interacting system and we assume noninteracting -

representability. The one-to-one correspondence of time-dependent densities and time-dependent

potentials then allows us to write down the time-dependent analog of the Kohn-Sham equations,

1

2
2
+ s r, t( ) i r, t( ) = i

t i r, t( ) (2.13)

where the density,

r, t( ) = i r, t( )
2

i=1

N

(2.14)

is that of the interacting system. The Kohn-Sham potential can be written as,

s r, t( ) = r, t( ) + H r, t( ) + xc r, t( ) (2.15)

where r, t( )  is the external time-dependent field and the Hartree potential is defined as,

H r, t( ) =
r , t( )
r r

dr . (2.16)

Equation (2.15) defines the time-dependent xc-potential xc r, t( ) . Since s r, t( )  depends on

r, t( )  a self-consistent procedure needs to be used to solve the equations.

In Chapter 1 we showed that approximate solutions to the Schrödinger equation can be found

by using the variational principle. For the time-dependent case one could correspondingly use

the stationary action principle. But as is shown in Ref. [42] this action principle cannot be used

in TDDFT. In this reference it is also shown that one can define an extended type of action

functional and to define this action functional one has to use the time contour method due to

Keldysh [44].

2.3 Time-dependent exchange-correlation functionals
The simplest approximation one can make for the exchange-correlation functional in the time-

dependent case is the adiabatic local density approximation (ALDA), which is a straightforward

extension of the local density approximation (LDA). In this approximation the static LDA

functional is used for the dynamical properties, but evaluated at the time-dependent density
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xc

ALDA r, t( ) = xc

hom. r, t( )( ) =
d

d
xc

hom. ( )( )
= r ,t( )

(2.17)

where xc
hom. ( )  is again the exchange-correlation energy per particle for a homogeneous

electron gas. From this definition one would expect that the ALDA is only a good approximation

for nearly homogeneous densities. But it turns out that the ALDA gives rather accurate results

even in atoms and molecules where the density varies rapidly (many references are given in Ref.

[41]). A quantity that will be important when we study linear response properties (Chapter 3) is

the exchange-correlation kernel. It is defined as the functional derivative

fxc r, r , t, t( ) = xc r, t( )
r , t( )

. (2.18)

For the ALDA one obtains,

fxc
ALDA r, r , t, t( ) = t t( ) r r( )

d 2

d 2 xc
hom. ( )( )

= 0 r( )

. (2.19)

It should be noted that the Fourier-transformed quantity

fxc
ALDA r, r ;( ) = r r( )

d 2

d 2 xc
hom. ( )( )

= 0 r( )

(2.20)

has no frequency dependence.

Even though the ALDA gives good results in general, in some cases this simple

approximation does not suffice. An important example is the static axial polarizability of

conjugated oligomers, which is greatly overestimated within the ALDA. The local

approximation and also more advanced generalized gradient approximations are unable to

describe the highly nonlocal exchange and correlation effects found in these quasi-one-

dimensional systems [10,11]. A solution to this problem is to employ optimized effective

potentials [17] derived from the energy functional that includes exact exchange (see Refs. [18]

and [19] and references therein), or approximations to this potential such as the Krieger-Li-

Iafrate [20] and common-energy-denominator approximations [21,45].

We will show in this thesis that another way to improve the results of the ALDA is to use a

current dependent functional in conjunction with time-dependent current-density-functional

theory. One of such functionals is the VK-functional, which is an important subject of this thesis
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and will be discussed in Chapter 4. In the next section we describe the foundations of time-

dependent current-density-functional theory.

2.4 Time-dependent current-density-functional theory
Dhara and Ghosh [4,5] adapted the time-dependent density-functional formalism to many-

electron systems subjected to external electromagnetic fields with arbitrary time-dependence.

This theory was originally developed to include magnetic fields [46] but as we shall show later

in this thesis it can also be important to include the current in case of an electric field. Recently

Vignale [6] derived this theorem in a different way, this is the proof we give here.

The derivation is again based on the time-dependent Schrödinger equation (2.1) but with a

modified Hamiltonian,

Ĥ t( ) =
1

2
i i + A ri , t( )( )

2
+ ri , t( )

i=1

N

+ U ri , rj( )
i< j

(2.21)

where r, t( )  and A r, t( )  are external scalar and vector potentials which are Taylor expandable

in a neighborhood of t = 0, and U ri , rj( )  is a two-particle interaction. Let r, t( )  and j r, t( )  be

the density and current density that evolve under Ĥ  from a given initial state 0 . One can

proof that the same density and current density can be obtained from another many-particle

system with Hamiltonian,

Ĥ t( ) =
1

2
i i + A ri , t( )( )

2
+ ri , t( )

i=1

N

+ U ri , rj( )
i< j

(2.22)

starting from an initial state 0  that gives the same r, 0( )  and j r, 0( )  as 0 . Note that

this Hamiltonian does not only have different potentials, but we also allow the two-particle

interaction U to be different. The potentials r, t( )  and A r, t( )  are uniquely determined by

r, t( ) , A r, t( ) , 0 , and 0  up to a gauge transformation

r, t( ) r, t( )
t

(2.23)

A r, t( ) A r, t( ) + r, t( ) , (2.24)

where  is an arbitrary function of r and t that satisfies the initial condition r, 0( ) = 0 .

The first step in the proof is that a gauge transformation will be made that eliminates the

scalar potential at all times. This can be done by choosing,
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t
r, t( ) = r, t( ),     r, 0( ) = 0 (2.25)

and we assume that such a transformation has also been done in the primed system. The current

density operator of the unprimed system is given by

ĵ r, t( ) =
1

2
v i t( ), r ri( ){ }

i

(2.26)

where the anti-commutator is denoted as Â, B̂{ } ÂB̂ + B̂Â . The velocity operator is given by,

v i t( ) = i i + A ri , t( ) . (2.27)

When calculating the expectation value of Eq. (2.26) and performing a partial integration, the

delta function disappears and one recovers a more common expression for the current density.

Analogous expressions to Eqs. (2.26) and (2.27) can be written down for the primed system.

The current density obeys the following equation of motion [6]

dj r, t( )
dt

=
j r, t( )
t

+ i H t( ), ĵ r, t( )

= r, t( )
A r, t( )
t

j r, t( ) A r, t( )( ) + F r, t( ) + r, t( )

, (2.28)

where we recognize that A t  is the electric field and A  the magnetic field. In this

equation 
 
…  denotes the expectation value of the unprimed system at time t, and the stress

tensor r, t( )  and the internal force density F r, t( )  are defined as,

r, t( ) = 1
4 v̂ , v̂ , r ri( ){ }{ }

i

(2.29)

F r, t( ) = r ri( ) ri
U ri rj( )

j ii

(2.30)

and the divergence of the stress tensor is a vector with components

[ r, t( )] = r, t( ) r . If the same density and current density are indeed obtained

from the primed system, one has,

dj r, t( )
dt

= r, t( )
A r, t( )

t
j r, t( ) A r, t( )( ) + F r, t( ) + r, t( ) (2.31)
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where 
 
…  denotes the average in the quantum state of the primed system at time t. Subtracting

Eqs. (2.28) and (2.31) one obtains,

r, t( )
A r, t( )
t

= j r, t( ) A r, t( )( ) +Q r, t( ) Q r, t( ) (2.32)

where A r, t( ) A r, t( ) A r, t( )  and

Q r, t( ) F r, t( ) + r, t( ) (2.33)

while Q r, t( )  is the primed counterpart of Q r, t( ) . Equation (2.32) determines the vector

potential A r, t( )  that produces the same current density as A r, t( ) . The only question that

remains to be answered is whether a solution to this equation exists and whether it is unique. It

is not straightforward to prove the existence and uniqueness of the solution because A r, t( )

also enters the equation in an implicit way through Q r, t( ) . Since we assume that A r, t( )  and

A r, t( )  are Taylor expandable around t = 0, the difference is Taylor expandable too. One can

therefore write,

A r, t( ) =
1

k!

k A r( )
t k

t=0

t k

k=0

= Ak r( ) t k

k=0

. (2.34)

Substituting this into Eq. (2.32) and keeping only terms of order tl one obtains,

l k r( )
A r, t( )
t

kk=0

l

= jl k r( ) Ak r( )( ){ }
k=0

l

+ Q r, t( )
l

Q r, t( )
l

(2.35)

where k r( )  and jk r( )  denote the kth coefficients in the Taylor expansions of the density and

current density around t = 0. In general we denote [ f t( )]l  as the lth coefficient in the Taylor

expansion of a function f t( )  around t = 0. Since the vector potential and the time-dependent

Schrödinger equation (Eq. (2.1)) are analytic one is allowed to do these Taylor expansions. Eq.

(2.34) can be rewritten using,

A r, t( )
t

k

= k +1( ) Ak+1 r( ) (2.36)

yielding
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0 r( ) l +1( ) Al+1 r( ) = l k r( ) k +1( ) Ak+1 r( )
k=0

l 1

+ jl k r( ) Ak r( )( ){ }
k=0

l

+ Q r, t( )
l

Q r, t( )
l

(2.37)

This equation is a recursion relation for the coefficients of the Taylor expansion of A r, t( )  if

Al+1 r( )  is expressed in terms of Ak r( )  with k  l. That this is the case is immediately clear

for the terms in which Ak r( )  appears explicitly. But there are also implicit Ak s that are

contained in the coefficients of the expansion of the expectation value of the stress tensor. From

the time-dependent Schrödinger equation (2.1) it can be seen that the lth coefficient in the Taylor

expansion of t( )  and t( )  is entirely determined by coefficients of order k < l  in the

Taylor expansion of A and A . From this it follows that all the quantities on the right hand side

of Eq. (2.37) are completely determined by the coefficients Ak r( )  with k l . In order to

make this recursion relation work the initial value of A , A0 r( ) = A r, 0( ) A r, 0( ) , still

needs to be determined. Since the densities and current densities of the primed and unprimed

systems are equal it immediately follows that,

r, 0( ) A0 r( ) = 0( ) ĵp r( ) 0( ) 0( ) ĵp r( ) 0( ) (2.38)

where ĵp  is the paramagnetic current density as defined in Eq. (2.5) and has the same form for

the primed and unprimed system. The recursion relation (2.37) together with the initial condition

(2.38) completely determines the Taylor expansion of the vector potential A r, t( )  that yields, in

the primed system, the same current density that A r, t( )  yields in the unprimed one. It was

assumed that knowledge of the coefficients of the Taylor expansion of A r, t( )  is equivalent to a

knowledge of the function A r, t( )  itself, provided that this series converges within a non-

vanishing convergence radius tc > 0 . If this is the case A r, t( )  is uniquely determined, since

under this assumption the solution for A r, t( )  can be computed up to tc and then the process

can be iterated taking tc as the initial time. Since under reasonable assumptions the convergence

radius will not be zero for physical systems [6] this guarantees that the solution for A r, t( )  is

indeed unique.

In the case that the primed system coincides with the unprimed system, i.e. U =U  and

0( ) = 0( ) , Eq. (2.38) implies that A0 r( ) = 0 . It then follows from Eq. (2.37) that

Ak r( ) = 0  for all k, so A r( ) = A r( )  at all times. This is a statement of the Runge-Gross

theorem for TDCDFT: it states that two vector potentials that produce the same current density
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starting from the same initial state of a many-particle system must necessarily coincide, up to a

gauge transformation. It follows that the map from vector potentials to current densities is

invertible.

If the primed system is noninteracting, i.e. U = 0 , this theorem shows that the current

density produced by a vector potential A in an interacting many-particle system can also be

obtained in a noninteracting system, under the action of a suitable vector potential A . The

theorem therefore provides a solid basis for the use of the time-dependent Kohn-Sham

equations. These Kohn-Sham equations are given by,

1

2
i + As r, t( )

2
+ s r, t( ) i r, t( ) = i

t i r, t( ) (2.39)

j r, t( ) =
1

2i i r, t( ) i r, t( ) i r, t( ) i r, t( )( )
i=1

N

+ i r, t( )
2
As r, t( )

i=1

N
. (2.40)

where j r, t( )  is the current of the interacting system. These equations again need to be solved in

a self-consistent fashion.

It remains to find a good approximation for the effective vector potential, which is uniquely

determined by the initial state of the Kohn-Sham system as well as by the external potentials. As

mentioned before we will go into more detail on such a functional in Chapter 4. In the next

chapter we first describe how to obtain linear response properties such as polarizabilities,

excitation energies, and oscillator strengths within the framework of time-dependent current-

density-functional theory.



 Chapter 3

Linear response within time-

dependent current-density-functional

theory

In the previous chapter we introduced the basic equations of time-dependent (current) density

functional theory. In this chapter we show how to obtain properties like static and frequency

dependent polarizabilities and excitation energies within the framework of linear response

theory. From now on we only consider current-density-functional theory. Extensive discussions

on linear response theory within ordinary TDDFT can be found in Refs. [22,42,43 ].

3.1 Linear response theory
We wish to describe the response of our system to a small external perturbation. This

perturbation can for example be an external field. Consider a time-independent Hamiltonian Ĥ 0

with an arbitrary time-dependent perturbation Ĥ t( ) = Ĥ 0 + Ĥ1 t( ) . The change of the

expectation value of a time-independent operator Â  as a result of this perturbation is

A Â (t) = (t) Â (t) 0 Â 0 (3.1)

where 0  is the ground state wave function corresponding to Ĥ 0  and t( )  is the solution of

the time-dependent Schrödinger equation with the full Hamiltonian Ĥ t( ) . It is convenient to

move to the Heisenberg picture with respect to Ĥ 0 , giving for t( ) ,

t( )
H
= eiĤ0t t( ) . (3.2)

The time-evolution of this wave function can then be obtained through the following equation of

motion,

i
t

t( )
H
= Ĥ1 t( )H t( )

H
, (3.3)
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where

Ĥ1 t( )H = eiĤ0t Ĥ1 t( )e iĤ0t . (3.4)

Equation (3.3) is identical to

t( )
H
= 0 i Ĥ1 t( )H t( )

H
dt

0

t

. (3.5)

We can now insert Eq. (3.5) in the right hand side of this same equation and generate a series in

orders of Ĥ1 . Since we want to do linear response we drop all terms of higher order and obtain

t( )
H
= 0 i Ĥ1 t( )H 0 dt

0

t

+O Ĥ1
2( ) . (3.6)

The expectation value of the operator Â  as a function of time is given by

H t( ) Â H t( ) = 0 Â 0

i 0 Â t( )H , Ĥ1 t( )H 0 dt
0

t
+O Ĥ1

2( )
(3.7)

where â, b̂  is the commutator of operators â  and b̂ . The idea of linear response theory is that

Ĥ1  represents a small perturbation on the system and that terms quadratic (or higher order) in

Ĥ1  are negligible. For the change of the expectation value of the operator Â  we then have

A t( ) A1 t( ) = i 0 Â t( )H , Ĥ1 t( )H 0 dt
0

t
(3.8)

Now consider the following perturbation,

Ĥ1 t( )H = Q̂i t( )H i t( )
i

(3.9)

where the Q̂i t( )  are arbitrary time-dependent operators and the i t( )  arbitrary time-dependent

functions. Then the change of the expectation value of the operator Q̂i t( )  is given by

Qi t( ) = i 0 Q̂i t( )H , Q̂j t( )H j t( )
j

0 dt
0

t

= ij t, t( ) j t( )dt
0j

. (3.10)

Here ij t, t( )  is the response function given by
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ij t, t( ) = i t t( ) 0 Q̂i t( )H ,Q̂j t( )H 0 (3.11)

where t t( )  is the Heaviside step function that allows us to extend the integration range to

infinity and therefore ensures causality (i.e. ij t t( ) = 0  for t < t ). Now we can insert the

resolution of the identity and go back to the Schrödinger picture to obtain

0 Q̂i t( )H Q̂j t( )H 0 = 0 Q̂i t( )H m m Q̂j t( )H 0
m

= 0 e
iĤ0tQ̂ie

iĤ0t
m m eiĤ0t Q̂je

iĤ0t
0

m

= ei E0 Em( ) t t( )
0 Q̂i m m Q̂j 0

m

, (3.12)

where m  is the exact eigenstate and Em  the exact eigenvalue of the operator Ĥ 0 . A similar

expression is obtained for the other part of the commutator. From this it follows that the

response function only depends on the time difference t t( ) . We obtain for the response

function

ij t t( ) = i t t( ) ei E0 Em( ) t t( )
0 Q̂i m m Q̂j 0{

m

ei Em E0( ) t t( )
0 Q̂j m m Q̂i 0 }

. (3.13)

A Fourier transform with respect to t t( )  gives the response function in the frequency

domain,

( ) = lim
0+

0 Q̂i m m Q̂j 0

Em E0( ) + i
0 Q̂j m m Q̂i 0

+ Em E0( ) + im

, (3.14)

where use has been made of the integral representation of the Heaviside function,

( ) =
1

2 i
lim
0+

e i

+ i
d . (3.15)

Eq. (3.14) is the spectral or Lehmann [47] representation of the response function. We see from

the Lehmann representation that the poles of the response function correspond to the excitation

energies of the system.

3.2 Linear response within TDCDFT
In many works on TDDFT only the density response is considered. One of the reasons to keep

our description so general is because we want to describe the response of both the density and



TIME-DEPENDENT CURRENT-DFT FOR MOLECULES40

the current density. We use the general description of the previous section, but for the Kohn-

Sham system of noninteracting particles.

To keep the description as general as possible we include the spin-dependence. We are only

allowed to use a spin-dependent description if the Runge-Gross theorem can be proven for the

spin-dependent case. It turns out that this is indeed so in the case of collinear spins [48]. The

time- and spin-dependent Kohn-Sham equations within TDCDFT are

1

2
i + As, r, t( )

2
+ s, r, t( ) n r, t( ) = i

t n r, t( ) , (3.16)

where  indicates the spin component. The full Hamiltonian is given by,

Ĥ t( ) = ĥ ri , t( )
i=1

N

(3.17)

and

ĥ r, t( ) =
1

2
i + As, r, t( )

2
+ s, r, t( ) . (3.18)

We now consider the following perturbation,

Ĥ1 t( ) = ĵp, r( ) As, r, t( ) +
1

2
ˆ r( ) As,

2 r, t( ) ˆ r( ) s, r, t( ) dr , (3.19)

where the density operator is defined in Eq. (1.6) and the (physical) current density operator in

Eq. (2.5). Comparing this perturbation with Eq. (3.9) and using the theory of the previous

section we obtain for the induced density and the induced current density of the noninteracting

system (in the frequency domain),

s, r,( ) = j r, r ,( ) As, r ,( )dr{

+ r, r ,( ) s, r ,( )dr }
(3.20)

js, r,( ) = jj r, r ,( ) + 0, r( ) r r( )( ) As, r ,( )dr{

+ j r, r ,( ) s, r ,( )dr }
. (3.21)
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In Eq. (3.21) an extra diamagnetic term enters as a consequence of the fact that we now consider

a time-dependent vector potential, while in the previous section we assumed that our vector

potential was time-independent. The response functions are given by

AB r, r ,( ) = nn nn( ) n r( ) Â n r( ) n r( ) B̂ n r( )

n n( ) + + in,n

(3.22)

where n  and n  run over all orbitals. In this equation the density operator ˆ = 1  and the

paramagnetic current operator ĵp = i †( ) 2  can be substituted for the operators Â  and

B̂ , and the nn  are the occupation numbers of the Kohn-Sham orbitals. The diamagnetic term in

Eq. (3.21) can also be included by making use of the conductivity sum rule,

jj
s, r, r ', 0( )

ij
+ 0, r( ) ij r r '( ) = 0 (3.23)

where 0, r( )  is the spin-restricted ground state density for which 0, r( ) = 0, r( ) = 0 r( ) 2 .

This sum rule is exact for the longitudinal component, but neglects the very small Landau

diamagnetic contribution for the transverse component [49]. Using this sum rule we obtain,

js, r,( ) = jj r, r ,( ) jj r, r , 0( )( ) As, r ,( )dr{

+ j r, r ,( ) s, r ,( )dr }
. (3.24)

The induced density and current density of Eqs. (3.20) and (3.21) (or (3.24)) are derived for

the noninteracting Kohn-Sham system. From the extended Runge-Gross theorem we know that

there exists a s  and a As  such that the change in the density and current density of the

interacting and noninteracting systems will be identical:

r,( ) = s, r,( ) (3.25)

j r,( ) = js, r,( ) . (3.26)

We now have a way to obtain the exact induced density and current density using TDCDFT.

Until now we still have a general formalism. At this point we introduce some assumptions

and a gauge, which we will use in all of the following. Our first assumption is that we work in

the spin-restricted case and that there are no fractional occupation numbers. So nn = nn = 1  for

the occupied states and nn = nn = 0
 
for the unoccupied states. Since, for atoms and molecules,

the spectrum is discrete below the ionization level we can set the infinitesimal  in Eq. (3.22) to
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zero. Another choice we make is that we choose Kohn-Sham orbitals that are real valued. This

can always be done if the ground state of the system is time reversal invariant (i.e. in the absence

of a magnetic field). We can now rewrite the response function as,

AB r, r ,( ) = i r( ) Â a r( ) a r( ) B̂ i r( )

i a( ) +i,a

+ i r( ) Â a r( ) a r( ) B̂ i r( )

i a( )

(3.27)

where i runs over the occupied orbitals and a over the unoccupied orbitals,  and  are the

corresponding spin variables. We also need to make a choice for the gauge of the potentials s

and As . We can write the first order changes in the scalar and vector potential as,

s, r,( ) = H r,( ) + xc, r,( ) (3.28)

and

As, r,( ) = Aext r,( ) + Axc, r,( ) , (3.29)

where H r,( )  represents the first order change in the Hartree potential, Aext r,( )  is the

external field, and xc, r,( )  and Axc, r,( )  are the first order changes in the spin

dependent scalar and vector exchange-correlation (xc) potentials. We have chosen the gauge in

such a way that the external field is completely represented by the vector potential and that the

induced Hartree potential is described by the scalar potential H . For this gauge choice

ext r,( ) = 0  and A ind r,( ) = 0  if we neglect retardations [50] and microscopic magnetic

effects. This is consistent with the neglect of the Breit [51,52] corrections in the ground-state

calculation. We choose our gauge such that only terms linear in r,( )  and r,( )  are

retained in xc, r,( ) , while all terms linear in j r,( )  and j r,( )  are gauge

transformed to Axc, r,( ) . In this way we keep contact with the ordinary TDDFT

formulation. Since we work in the spin-restricted case and none of the operators operate on the

spin, the continuity equation j r,( ) i r,( ) = 0  holds for each spin component

separately. Therefore we can consider r,( )  as a functional of j r,( )  and

Axc, j , j[ ]  is a functional of j r,( )  and j r,( )  only. The first order changes in the

xc-contribution can be given in the form

xc, r,( ) = fxc r, r ,( ) r ,( )dr (3.30)
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and

Axc, r,( ) = fxc r, r ,( ) j r ,( )dr . (3.31)

where we defined fxc  and fxc , the spin-dependent scalar and tensor xc-kernels.

We see that our expressions for the induced density and current density (Eqs. (3.20) and

(3.24)) are dependent on the scalar and vector potentials. These scalar and vector potentials are

themselves dependent on the induced density and current density. Therefore we need to solve the

response equations in a self-consistent way.

3.3 The polarizability
The reason to develop linear response theory within TDCDFT is that we want to use it to

calculate (first order) properties as the polarizability and the excitation spectrum. We first show

how to obtain the polarizability.

When a molecule is placed in an electric field it acquires an induced dipole moment given by

the following relationship

µ ( ) = r r,( )dr . (3.32)

Since we work in the spin-restricted case we dropped the spin index here. Using the continuity

equation j r,( ) i r,( ) = 0  we can write the induced dipole moment in terms of the

induced current density,

µ ( ) =
i

j r,( )dr . (3.33)

In linear response the dipole moment and the polarizability are related by

µi ( ) = µi
(0)

+ ij ( )Eext, j ( )
j

, (3.34)

where µ (0)  is the static dipole moment, and ij ( )  are the elements of the polarizability tensor.

From Eq. (3.33) we see that the polarizability tensor can be calculated once we have obtained
j r,( )  for a given external field Eext ( ) . If we consider an external field with only a

component in the j direction, only one term contributes in Eq. (3.34), and we obtain

ij ( ) =
i 1

Eext, j ( )
ji r,( )dr . (3.35)
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3.4 The excitation spectrum

3.4.1 Splitting of the problem in a singlet and triplet part

Before we show how to obtain the excitation energies and oscillator strengths, we show that it

is possible to split our problem in a singlet and triplet part. We start from the fact that we can

show (Appendix E) that for a spin restricted ground state with S2 0 = Sz 0 = 0 , the

following equalities hold for the response functions =  and = . We also know

that

fHxc 1, 2( ) = s
1 1, 2( ) 1 1, 2( ) (3.36)

where 1, 2( )  stands for the space and time coordinates of particles 1 and 2 (so we went back to

the time domain) and fHxc  is the response kernel including the Hartree term. From this it follows

that fxc = fxc  and fxc = fxc  and similarly for the tensor kernels fxc = fxc  and fxc = fxc .

From these observations we can show that we can split our problem in a singlet and triplet

part. In order to do this we first recognize that the Hartree-xc response kernel has the same

structure as the response function.  We can write the response function in the form

1, 2( ) = s 1, 3( ) + s 1, 2( ) fHxc 3, 4( ) 4, 2( )d3d4 . (3.37)

We can write out the sum in the following way

= s + s fHxc + s fHxc + s fHxc + s fHxc (3.38)

= s + s fHxc + s fHxc + s fHxc + s fHxc (3.39)

where we used a short notation leaving out the integral sign. Adding and subtracting the above

equations and using the symmetry relations defined above we can rewrite these equations as

+ = s + s + s + s( ) fHxc + fHxc( ) +( ) (3.40)

= s s + s s( ) fHxc fHxc( )( ) . (3.41)

Now

+ =
1

2
+ + +( ) =

1

2
1, 2( ) (3.42)
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where

1, 2( ) = i t1 t2( ) 0
ˆ r1, t1( ), ˆ r2 , t2( ) 0 (3.43)

and ˆ r( ) = ˆ r( ) + ˆ r( )  is the total density operator. Similarly we find for the minus

combination,

=
1

2
+( ) =

1

2 mm 1, 2( ) (3.44)

where

mm 1, 2( ) = i t1 t2( ) 0 m̂z r1, t1( ), m̂z r2 , t2( ) 0 (3.45)

and m̂z r( ) = ˆ r( ) ˆ r( )  is the spin polarization density operator. The original response

function therefore splits into two equations,

1, 2( ) = s 1, 2( ) +
1

2 s 1, 3( ) fHxc 3, 4( ) + fHxc 3, 4( )( ) 4, 2( )d3d4 (3.46)

mm 1, 2( ) = s,mm 1, 2( ) +
1

2 s,mm 1, 3( ) fHxc 3, 4( ) fHxc 3, 4( )( ) mm 4, 2( )d3d4 . (3.47)

So we have the usual density-density response function 1, 2( ) = 1( ) 2( ) ; the poles of

which correspond to what in Casida’s work are denoted as singlet excitations. This can be

understood from the fact that the matrix elements of ˆ  are only nonzero for states with S = 0

(as we showed in Appendix E). The other response function describes the change in spin-density

due to an applied magnetic field in the z-direction, i.e. mm 1, 2( ) = mz 1( ) Bz 2( ) . Its poles

correspond to what in Casida’s work are denoted as triplet excitations. This can be understood

from the fact that the matrix elements of m̂z  only couple to states with S = 1  (as we showed in

Appendix E). In the next section we use this possibility to split our equations in a singlet and

triplet part.

3.4.2 The excitation energies

For obtaining the excitation spectrum we closely follow the method of Casida (Ref. [22]) for

TDDFT. We extend this method to the case of TDCDFT within the approximations we stated at

the end of section 3.2. In this section we first show how to obtain the excitation energies.
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We can rewrite the total spin integrated induced density and induced current density (Eqs.

(3.20) and (3.24)) in the following form

r,( ) = i r( ) a r( ) ai ( ) + a r( ) i r( ) ia ( )
i,a

, (3.48)

j r,( ) =
i a( ) i r( ) ĵp a r( ) ai ( )

i,a

+
i a( ) a r( ) ĵp i r( ) ia ( )

. (3.49)

We have defined a so-called “ -matrix”

ai ( ) =
1

i a( ) + i a( ) a r( ) ĵp i r( ) As, r,( )dr

+ a r( ) s, r,( ) i r( )dr

(3.50)

and we define ia ( ) = ai ( ) . In Appendix C we show in more detail how we come to this

form of the -matrix. Inserting the definitions for As  and s  (Eqs. (3.28) and (3.29)) in Eq.

(3.50) and substituting  and j  with Eqs. (3.48) and (3.49) we obtain

ai ( ) =
1

i a( ) + i a( ) a r( ) ĵp i r( ) Aext, r,( )dr

+ Kai,bj ( ) bj ( ) + Kai, jb ( ) jb ( )( )
jb

(3.51)

where we have defined an in general frequency dependent coupling matrix,

  

Kia, jb ( ) = i r( ) a r( )
1

r r
+ fxc r, r ,( ) b r( ) j r( )drdr

+

2

i a( ) j b( ) i r( ) ĵp a r( ) fxc r, r ,( ) b r( ) ĵp j r( )drdr

. (3.52)

If the ALDA is used for the scalar exchange-correlation kernel fxc  and if for the tensor

exchange-correlation kernel fxc  one approximates fxc r,r ,( ) = c r,r( ) 2 , where

c r,r( ) = lim
0

2fxc r,r ,( ) , then the coupling matrix becomes frequency independent. We shall

see in Chapter 4 that this approximation is the leading term in the current-dependent VK-
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functional in the limit 0 . Therefore we will use this approximation in the following. In

general, however, the tensor xc-kernel will have a more complicated frequency dependence. In

order to preserve the causal structure of the response equations the Kramers-Kronig relation

requires that the kernel will have both real and imaginary components. In our approximation we

assume that the imaginary component is small and can be neglected for the calculation of

excitation energies. This approximation is in keeping with a weak frequency dependence of the

real part of 2fxc r,r ,( )  and is reasonable for frequencies much smaller than the local plasma

frequency p = 4 0  of the relevant density region. For molecules, this relevant region is the

often valence region with rs 1  ( rs = 3 4 0
3 ) that corresponds to p 47 eV , which is

much larger than typical excitation energies we will study.

 Using the definition ai ( ) = ia ( )  we can write an equation for ia ( )  similar to Eq.

(3.51) and rewrite the equations for ai ( )  and ia ( )  to obtain the following set of linear

equations:

ij ab a i( ) +( ) + Kia, jb jb ( )
jb

+ Kia,bj bj ( )
jb

=
i a( ) i r( ) ĵp a r( ) Aext, r,( )dr

, (3.53)

and

ij ab a i( )( ) + Kai,bj bj ( ) + Kai, jb jb ( )
jbjb

=
i a( ) a r( ) ĵp i r( ) Aext, r,( )dr

. (3.54)

In analogy with Ref. [22] we can put these equations in a form that originates from time-

dependent Hartree-Fock theory,

 

A B

B A

1 0

0 1

X

Y
=

Aext

Aext

. (3.55)

The matrices are given by

Xjb = jb ( ) (3.56)

Yjb = bj ( ) (3.57)
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Aia , jb = ab ij a i( ) + Kia , jb (3.58)

Bia , jb = Kia ,bj (3.59)

 

Aext ia
=

i a( ) i r( ) ĵp a r( ) Aext, r,( )dr (3.60)

 

Aext ia
=

i a( ) a r( ) ĵp i r( ) Aext, r,( )dr . (3.61)

We already showed that the poles of the response function correspond to the excitation energies.

At these resonances an infinitely small perturbation can cause an infinitely large density change.

In the above description this can only occur if the matrix on the left of Eq. (3.55) has a zero

eigenvalue at the excitation energy. This leads to,

A B

B A

X

Y
=

1 0

0 1

X

Y
. (3.62)

If we assume a closed-shell system for which i = i  for all i, we can split this matrix equation

in a singlet and triplet part by the unitary transformation,

XS

XT
=
1

2

1 1

1 1

X

X
 (3.63)

YS

YT
=
1

2

1 1

1 1

Y

Y
. (3.64)

After some algebra (see Appendix D) we obtain,

CS /T DS /T( )
1 2
CS /T

+ DS /T( ) CS /T DS /T( )
1 2
XS /T

+ YS /T( )

=
2 XS /T

+ YS /T( )
(3.65)

where XS T
+ YS T( ) = CS T DS T( )

1 2
XS T

+ YS T( )  and

Cia, jb
S /T Dia, jb

S /T( ) = ab ij a i( ) (3.66)

Cia, jb
S

+ Dia, jb
S( ) = 2 Kia, jb + Kia, jb( ) (3.67)
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Cia, jb
T

+ Dia, jb
T( ) = 2 Kia, jb Kia, jb( ) . (3.68)

We used K = K  and K = K . Eq. (3.65) is a Hermitian eigenvalue equation of the

following form:

S /TFn
S /T

= n
2Fn

S /T (3.69)

where the n  are the excitation energies. The  matrices are given by,

ia, jb
S

= ab ij a i( )
2
+ 2 a i Kia, jb + Kia, jb( ) b j (3.70)

ia, jb
T

= ab ij a i( )
2
+ 2 a i Kia, jb Kia, jb( ) b j . (3.71)

The elements of F are given by

Fia
S
=
1

2

1

a i

ia + ai( ) (3.72)

Fia
T

=
1

2

1

a i

ia ai( ) . (3.73)

If the F’s are renormalized, which we assume from this point onward, they form a complete

orthonormal set,

FnFn
†

n

= 1 . (3.74)

So, once we have obtained the coupling matrix we can form the  matrices for the singlet and

triplet case and find the excitation energies from Eq. (3.69).

3.4.3 The oscillator strengths

We would also like to determine the oscillator strengths corresponding to the excitations. If

we know the Kohn-Sham response function and the xc-kernel (vector or scalar) we know the

true response function from Eq. (3.37). From the response function we can in principle obtain

the excitation energies and oscillator strengths directly.

In the following we will derive equations to obtain the oscillator strengths that are convenient

to implement and closely follow the derivation by Casida [22]. For this we go back to Eq. (3.55)

for which we can write the separate equations as
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AX + BY + X = Aext

BX + AY X = Aext

. (3.75)

If we add and subtract the above equations, we obtain,

 

A + B( ) X + Y( ) + X Y( ) = Aext + Aext

A B( ) X Y( ) + X + Y( ) = Aext Aext

. (3.76)

If we assume a real perturbation (like an electric field) we obtain

 

A + B( ) X + Y( ) + X Y( ) = 2 Aext

A B( ) X Y( ) + X + Y( ) = 0
(3.77)

which we can combine into

 

A + B( ) 2 A B( )
1 X + Y( ) = 2 Aext . (3.78)

We note at this point that

1

2
Xjb +Yjb( ) =

1

2 jb ( ) + bj ( )( ) =
1

2 jb ( ) + jb ( )( ) , (3.79)

which is the Fourier transform of the real part of jb t( ) . We can now substitute

X + Y( ) = 2 Re( )( )  in Eq. (3.78) and obtain

 

A + B( ) 2 A B( )
1
Re( )( ) = Aext . (3.80)

Defining the diagonal matrix S = A B( )
1

 and multiplying from the left with S 1 2 ,

 
S 1 2 A + B( ) 2S S 1 2S1 2 Re( )( ) = S 1 2 Aext (3.81)

so

 
S 1 2 A + B( )S 1 2 2 S1 2 Re( )( ) = S 1 2 Aext (3.82)

and hence

 
Re( )( ) = S 1 2 S 1 2 A + B( )S 1 2 2 1

S 1 2 Aext . (3.83)

We finally obtain,
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Re( )( ) = S 1 2 21

1
S 1 2 Aext . (3.84)

We have now written the Fourier transform of the real part of jb t( )  in terms of the  matrix

(note that in this case the matrix is not split in its singlet and triplet parts). The polarizability can

be written in terms of Re( )( )  by substituting Eq. (3.49) for j  in Eq. (3.35) and making

use of the relations Eext = i Aext  and

i r( ) r̂ a r( )dr =
i

a i( ) i r( ) ĵp a r( )dr . (3.85)

We then find [22]

xz ( ) = 2x†S 1 2 21
1
S 1 2z (3.86)

where

xia = i r( ) x̂ a r( )dr (3.87)

and similar expressions are obtained for the other Cartesian coordinates. In our case  is

frequency independent and we can use the following spectral expansion,

21
1
=

FnFn
†

n
2 2

n

. (3.88)

The sum over states (SOS) expression for the polarizability is given by

xz ( ) = 2
En E0( ) 0 x̂ n n ẑ 0

En E0( )
2 2

n

, (3.89)

where E0  and En  are the (true) energies of the ground and excited states respectively, and 0

and n  are the wave functions of the respective states. The SOS expression for the average

polarizability is

( ) =
fn

n
2 2

n

, (3.90)

where n = En E0 . If we now use the spectral expansion in Eq. (3.86) and compare the result

with Eqs. (3.89) and (3.90) we find for the transition dipole moment in the x-direction

0 x̂ n = x†S-1 2Fn n
1 2 . (3.91)
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The oscillator strengths are then given by

fn =
2

3
x†S 1 2Fn

2
+ y†S 1 2Fn

2
+ z†S 1 2Fn

2

( ) . (3.92)

According to the Thomas-Reiche-Kuhn (TRK) sum rule the sum of the oscillator strengths

equals the number of electrons (see for example Ref. [53]). This sum rule can be used as an

indication of the quality of the basis set.

Until now we made no reference to any wave function, but we would like to be able to

calculate which orbitals contribute to a particular excitation. We need to make some assumptions

on the ground state wave function in order to assign the states n  . Casida [22] proposes to

assume that 0  is a single determinant, , of Kohn-Sham orbitals and that the matrix elements

of the dipole operator are linearly independent. Eq. (3.91) then becomes (in the notation of

second quantization),

 
S 1 2Fn( )

ia
= a i Fn

= n
1 2 âi

† âa n

(3.93)

where âi
†  and âa  are Fermi operators. This determines the coefficients of the singly excited

configurations in the following expansion of the excited state:

 

n =
a i

n

Fia
n âa

† âi +…

ia

ni na >0

. (3.94)

Within the RESPONSE code of the Amsterdam Density Functional program package (see

Chapter 5)), which we use for our calculations, a further assumption is made. Namely that the

excitation energies are close to the Kohn-Sham orbital energy differences, thus that the Fia
n  can

be interpreted as the expansion coefficients in Eq. (3.94). This assumption is not expected to

have a large effect on the qualitative trends of the assignments.

We have now derived everything we need to obtain the excitation spectrum within TDCDFT.

In the next chapter we concentrate on a particular choice for the vector xc-potential, namely the

VK-functional.



 Chapter 4

The Vignale-Kohn functional

In this chapter we go into more detail on one particular current-dependent functional, namely

the VK-functional [8,9,23,24]. Since the exchange-correlation field in the VK theory is similar in

form to the viscoelastic force that appears in the Navier-Stokes equation, we first give a short

overview of the theory of viscoelastic fluids. We then give an overview of the origins of the VK-

functional and we give the functional in its spin-independent and spin-dependent forms.

4.1 Introduction
Vignale and Kohn [8,9] derived their functional completely on the basis of the properties of

the inhomogeneous electron gas. Later Vignale, Ullrich and Conti [23] showed that this vector

exchange-correlation potential can be recast in the form that can be recognized from the theory

of viscoelasticity. In view of this we first give a short review of the theory of fluid mechanics

and elasticity in Sections 4.2 and 4.3, and the combined theory of viscoelasticity in Section 4.4.

In Section 4.5 we give the historic motivation of the development of the VK-functional. The

rest of this chapter contains an overview of the original derivation of the functional, the spin

dependent form of the VK-functional, and the functional in the static limit.

4.2 Fluid mechanics
In this section we establish the equations of motion that govern the state of a moving fluid. A

detailed description of the theory of fluid mechanics can for example be found in Ref. [54]. The

phenomena considered in fluid mechanics are macroscopic; this means that the fluid is regarded

as a continuous medium. This means that if we speak of a small volume element we mean an

element that is small compared to the volume of the body under consideration, but large

compared to the distances between the molecules. We can mathematically describe the state of a

moving fluid by functions that give the distribution of the fluid velocity v r, t( )  and of any two

thermodynamic quantities relevant to the fluid (for example the pressure p r, t( )  and the density

r, t( ) ). It is important to note that v r, t( )  is the velocity of the fluid at a given point r in space
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and at a given time t. So it refers to fixed points in space and not to specific particles of the fluid.

These remarks also apply to other quantities like the pressure and density.

The equation that expresses the conservation of matter is the continuity equation,

j =
t

, (4.1)

where j = v  is the mass flux density. The equation of continuity is valid for any fluid. The

equation of motion of the fluid is Euler’s equation

v
t
+ v( )v = p + Fext , (4.2)

where p is the pressure and the external forces per unit volume are contained in Fext , the body

force. Euler’s equation is only valid for an ideal fluid, in which thermal conductivity and

viscosity are unimportant. Euler’s equation can alternatively be written in the following form,

t
vi( ) = ik

xkk

, (4.3)

where we have ignored the body force. ik  is the momentum flux density tensor given by

ik = p ik + vivk . (4.4)

In order to obtain equations describing the motion of a viscous fluid, we have to include

additional terms in the equation of motion of an ideal fluid. The momentum flux for the ideal

fluid represents a completely reversible transfer of momentum, due to the mechanical transport

of the different particles of fluid from place to place and to the pressure forces acting in the

fluid. The viscosity causes another, irreversible, transfer of momentum from points where the

velocity is large to points where it is small. The equation of motion of a viscous fluid may be

obtained by adding a term ik  to the momentum flux, which gives the irreversible transfer of

momentum in the fluid. We thus obtain

ik = p ik + vivk ik = vivk ik . (4.5)

Where

ik = p ik + ik (4.6)

is called the stress tensor, and ik  the viscous stress tensor. Since friction can only occur if

different fluid particles move with different velocities, ik  must depend on the space derivatives
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of the velocity. If the velocity gradients are small, we may suppose that the momentum transfer

due to viscosity depends only on the first derivatives of the velocity and is a linear function of

these derivatives. We know that ik  must vanish for v = constant since in that case there is no

internal friction in the fluid. For the same reason v = r  must vanish (where  is the

angular velocity) when the fluid is in uniform rotation. The latter condition is true for the

following sums:

vi
xk

+
vk
xi

. (4.7)

So ik  must contain these symmetrical combinations of the velocity derivatives. The most

general tensor of rank two that satisfies the above conditions is

ik =
vi
xk

+
vk
xi

2

3 ik

vl
xll

+ ik

vl
xll

, (4.8)

where  and  are the coefficients of viscosity. If the fluid is isotropic these coefficients are

independent of velocity. The coefficients are both positive.

The equations of motion can now be obtained by adding ik xk  to the right hand side of

Euler’s equation. We then obtain

vi
t
+ vk

vi
xkk

=
p

t
+ Fi

ext

+
xk

vi
xk

+
vk
xi

2

3 ik

vl
xllk

+
xi

vl
xll

. (4.9)

The quantities  and  are functions of pressure and temperature and are in general not

constant throughout the fluid. If we assume that they do not change noticeably in the fluid and

can be regarded as constants, we can write the equations of motion in vector form as

Dv
Dt

=
v
t
+ v( )v = p + Fext + 2v + +

1

3
v( ) , (4.10)

where D Dt is the convective derivative. This is the Navier-Stokes equation.
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4.3 Elasticity
In the previous section we established the equations of motion of a fluid. We can also regard a

solid body as a continuous media. It is the theory of elasticity that deals with the mechanics of

solid bodies. A detailed description of the theory of elasticity can for example be found in Ref.

[55].

When dealing with an elastic material instead of a liquid, we need consider the displacement

vector u instead of the velocity v. The displacement vector describes the deformation of a body

and is given by

ui = xi xi

where the xi  refers to the original coordinates and xi  to the coordinates of the displaced points.

When the body is deformed the change in an element of length is given by the symmetrical

strain tensor uik ,

uik =
1

2

ui
xk

+
uk
xi

+
ul
xi

ul
xkl

. (4.11)

Except for some special cases, a small deformation will also mean that ui  and its derivatives are

small. If the first derivative is already small, than the last term of Eq. (4.11) will be even smaller.

So for small deformations we only need to keep the linear terms,

uik =
1

2

ui
xk

+
uk
xi

. (4.12)

After a deformation, the body will try to go back to its equilibrium state. The internal forces that

arise when the body returns to equilibrium are called internal stresses. The external volume force

density and these internal stresses give the total volume force density,

Fi = Fi
ext

+
ik

xkk

. (4.13)

The tensor ik  is, just like in the previous section, called the stress tensor. The form of the stress

tensor for an elastic body is of course different from that of a liquid.

The change in volume in a deformation is given by the sum uii , if this sum is zero; the

volume of the body is unchanged by the deformation. If only the shape of the body changes and

its volume stays constant the deformation is called a pure shear. The opposite of this is a

deformation that changes the volume of the body, but not its shape. The tensor of such a
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deformation is uik = constant ik , this deformation is called a hydrostatic compression. We can

describe any deformation by the sum of a pure shear and a hydrostatic compression. For this we

can use the identity

uik = uik
1

3 ikull
l

+
1

3 ikull
l

, (4.14)

where the first part clearly is a pure shear and the second part is the hydrostatic compression.

Using this decomposition and assuming we are dealing with a homogeneous isotropic body, we

can find that the stress tensor is given in terms of the strain tensor by [55]

ik = 2µ uik
1

3 ikull
l

+ K ikull

= µ
ui
xk

+
uk
xi

2

3
µ ik

ul
xll

+ K ik

ul
xll

= µ
ui
xk

+
uk
xi

2

3 ik

ul
xll

+ K ik

ul
xll

, (4.15)

where K is the bulk modulus or modulus of hydrostatic compression and µ  is the shear modulus

or modulus of rigidity. Substituting this stress tensor in Eq. (4.13) we obtain (in vector notation)

D2u
Dt 2

= Fext + µ 2u + K +
1

3
µ u( ) . (4.16)

The similarity between this equation and Eq. (4.10) is obvious.

4.4 A unified viscoelastic description
In the previous two sections we described two seemingly very different systems, a fluid and a

solid body. The first being described by the coefficients of viscosity  and , the latter being

described by the bulk modulus K and the shear modulus µ . In highly viscous fluids the sharp

distinction between a fluid and a solid vanishes. Let us regard such a fluid that is elastically

deformed during short intervals of time. When the deformation ceases, shear stresses remain in

the fluid, although these are damped in the course of time. We indicate the time during which

stresses are damped by . Let the fluid be subjected to external forces that vary periodically in

time with frequency . If the period 1  is large compared with the relaxation time, i.e.

 1 , the fluid will behave as a viscous fluid. In this regime µ ( )  is negligible and ( )

and ( )  are finite. If the frequency is sufficiently large, i.e. 
 1 , the fluid will behave as
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an amorphous solid. In this regime the viscosities are small and µ ( )  has a finite value. The

bulk modulus does not show a significant dependence on frequency in both cases.

In the previous section we obtained the equation of motion for a solid, Eq. (4.16). On the left

hand side of this equation, we have the convective derivative,

D2u
Dt 2

=
Dv
Dt

=
v
t
+ v( )v . (4.17)

The quantity v( )v  is of second order in the velocity, since we look at the linear response of

our system we obtain for Eq. (4.16),

2u
t 2

= Fext + µ 2u + K +
1

3
µ u( ) . (4.18)

Let us consider time-dependent forces of the form

F r, t( ) =
1

2( )
4 F q,( )ei q r t( )dqd , (4.19)

which induce time-dependent displacements

u r, t( ) =
1

2( )
4 u q,( )ei q r t( )dqd . (4.20)

We can write the force as the time derivative of a vector potential A,

F r, t( ) =
A r, t( )
t

(4.21)

and introduce the current density

j r, t( ) =
u r, t( )
t

. (4.22)

Fourier transforming Eq. (4.18) we obtain,

i j q,( ) = i A q,( ) + µ
1 q2

i
j q,( )

+ K +
1

3
µ
1 q q j q,( )( )

i

. (4.23)
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In the same way we can rewrite the Navier-Stokes equation, Eq. (4.10). Eventually we want

to obtain a uniform expression for a viscoelastic body, therefore we would like to rewrite the

pressure term in Eq. (4.10) in terms of the bulk modulus K = p . We can rewrite the

pressure term using the continuity equation

q,( ) =
q
j q,( ) (4.24)

to obtain

p q,( ) =
K

q,( ) =
K
q
q j q,( )

i
. (4.25)

The Navier-Stokes equation can than be rewritten as,

i j q,( ) = i A q,( ) i
1 q2

i
j q,( )

+ K i
1

3

1 q q j q,( )( )
i

. (4.26)

Equation (4.26) only differs from Eq. (4.23) in the following: (i) The shear modulus µ  is

replaced by the imaginary quantity i , which vanishes at = 0 . (ii) The bulk modulus K

acquires an imaginary part i .

We can now combine Eqs. (4.23) and (4.26) to obtain the expression for the viscoelastic case,

 

i j q,( ) = i A q,( ) + µ ( )
1 q2

i
j q,( )

+ K ( ) +
1

3
µ ( )

1 q q j q,( )( )
i

(4.27)

where we defined the complex frequency-dependent viscoelastic coefficients,

 
K ( ) = K ( ) i ( ) (4.28)

 
µ ( ) = µ ( ) i ( ) . (4.29)

An important difference between a solid and a fluid is that a solid has an essentially real 
 
µ  and

the fluid has an essentially imaginary 
 
µ .
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4.5 Historic motivation for the development of the VK-functional
In Chapter 3 we saw that in the case of linear response the scalar xc-potential is given by

xc r,( ) = fxc r, r ,( ) r ,( )dr (4.30)

where the xc-kernel fxc  is a functional of the ground state density 0 r( ) . The simplest

approximation for this xc-kernel is the frequency independent adiabatic local density

approximation (ALDA) of Eq. (2.19). The ALDA is only valid when the external potential is

slowly varying in time as well as in space. In a first step towards overcoming the restriction to

slow variation in time, Gross and Kohn (GK) [56] considered the case where both 0 r( )  and

r( )  are sufficiently slowly varying functions of r. Their approximation was designed to

preserve the local relationship between xc  and the density, while including retardation in time.

They proposed the following form of the xc-kernel,

xc
GK r,( ) = fxc

hom. ; 0 r( )( ) r,( ) (4.31)

where fxc
hom.  is the xc-kernel of the homogeneous electron gas and

fxc
hom. ; 0 r( )( ) = fxc

hom. r r ; 0 r( )( )dr . This is a frequency dependent function that for

= 0  reduces to the ALDA. Later Dobson [57] found that this approximation violates the so-

called harmonic potential theorem (HPT) according to which the density follows rigidly the

classical motion of the center of mass when subjected to a static harmonic potential Kr2 2 .

Dobson observed that the HPT could be satisfied by requiring that the GK approximation be

applied in a frame of reference that is moving with the local velocity of the electron fluid. This

led to the following approximation [57]

xc
Dobson r,( ) = fxc

hom. ; 0 r( )( ) r,( ) 0 r( ) j r,( )
i 0 r( )

+ fxc
hom.

= 0; 0 r( )( ) 0 r( ) j r,( )
i 0 r( )

. (4.32)

So this xc-potential is a functional of the density and the current density. The fact that the

current density enters in the Dobson functional is especially interesting since the current density

on a point in the system can probe a rigid translation of the system itself. It is a local indicator of

a nonlocal effect.

In order to gain more insight in the problem with the GK potential the theory was studied

under transformation to an accelerated frame of reference. Vignale [58] observed for such
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transformations that, if r, t( ) = r + x t( ), t( ) , where r, t( )  is an arbitrary time-dependent

density and x t( )  is an arbitrary time-dependent vector, the xc-potentials associated with the

densities r, t( )  and r, t( )  must satisfy the symmetry relation

xc ;r, t[ ] = xc ;r + x t( ), t . (4.33)

This symmetry relation is violated by Eq. (4.31). From this relation it can also be deduced that

fxc  for a non-uniform system is of long range in space and does not admit a gradient expansion

[59]. Therefore a local-density approximation for the time-dependent xc-potential in general

does not exist. Vignale and Kohn showed [8] that this result is a consequence of the choice to

represent the xc-potential as a functional of the density.

4.6 The VK-functional
The arguments in the previous section suggest the development of a functional that is

dependent on the current density. This implies moving to time-dependent current-density

functional theory (Chapter 2 and Chapter 3). In Chapter 3 we saw that in the case of linear

response the vector xc-potential is given by

Axc r,( ) = fxc r, r ,( ) j r ,( )dr . (4.34)

where we choose to work in the same gauge as Vignale and Kohn [8,9], in which everything is

contained in the vector potential. The tensor xc-kernel fxc r, r ,( )  is defined as

fxc,ij r, r ,( ) = s,ij
1 r, r ,( ) ij

1 r, r ,( ) +
1
2 i

1

r r j (4.35)

where s  and  are the response functions for the noninteracting Kohn-Sham system and the

interacting system respectively. It is clear that this tensor xc-kernel is the central unknown

quantity. Vignale and Kohn [8,9] derived some exact properties for this kernel and from these

found an expression for the exchange-correlation vector potential. It goes beyond the scope of

this thesis to show the complete derivation of their functional. Therefore we only show some

important steps and considerations in this section.

Vignale and Kohn first derived some properties of fxc  for the case of the homogeneous

electron gas. For this system it is convenient to work with the Fourier transform with respect to

r r  and t. Using the fact that any field can be split up in a longitudinal and transverse part

and the properties of the homogeneous electron gas, one can show that the xc-kernel has the

following structure,
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fxc,ij
hom. k,( ) =

1
2 fxcL k,( ) kik j + fxcT k,( ) k

2

ij kik j( ) (4.36)

where fxcL  and fxcT  are the longitudinal and transverse response kernels and are properties of

the homogeneous electron gas. Their Fourier transform is given by

f k,( ) = f r, t( )e i k r t( )drdt . (4.37)

One can show that in the limit k 0  the functions fxcL(T)  are finite functions of the frequency

lim
k 0

fxcL T( ) k,( ) = fxcL T( ) ( ) . (4.38)

With this relation one obtains that

fxc,ij
hom. k,( ) =

1
2 fxcL ( ) kik j + fxcT ( ) k

2

ij kik j( ) (4.39)

is a good approximation in the limit of small wave vector k, which for fixed frequency means

that 
 
k kF  and 

 
k F  where kF  and F  are the Fermi momentum and velocity.

In the second part of the derivation Vignale and Kohn consider a weakly modulated electron

gas that has the following ground state density,

0 r( ) = 1+ 2 cos q r( )( ) (4.40)

The parameter  measures the amplitude of the density oscillation and q measures the

wavelength of the oscillation, so together they determine the inhomogeneity of the system. In

their derivation Vignale and Kohn assume that this system is slowly varying (
 
q kF , F )

and almost uniform (
 

1 ). The objective is to find the exact fxc  for this system to first order

in .

The density is periodic in the direction a; 0 r + a( ) = 0 r( )  for q a = 2 m  where m is an

integer. The xc-kernel has the same periodicity,

fxc,ij r + a, r + a,( ) = fxc,ij r, r ,( ) (4.41)

One can then show that fxc  has the expansion

fxc,ij r, r ,( ) =
1

2( )
3 fxc,ij k + mq,k,( )ei k+mq( ) re ik r dk
m=

(4.42)

where the coefficients are defined as
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fxc,ij k + mq,k,( ) =
1

V
fxc,ij r, r ,( )e i k+mq( ) reik r drdr (4.43)

where V is the volume of the system. To first order in  only the coefficients with m = 0,±1

contribute to the expansion of Eq. (4.42). For m = 0  one obtains

fxc,ij k,k,( ) = fxc
hom. k,( ) (4.44)

to first order in . The only task that remains is to find an expression for fxc k ± q,k,( ) . The

form of this function is completely determined by Eq. (4.39) and a set of exact relations for the

xc-kernel. The first of these relations is the Onsager symmetry relation,

fxc,ij k + mq,k,( ) = fxc, ji k, k mq,( ) (4.45)

that is valid if the unperturbed system has time-reversal symmetry (i.e. in the absence of

magnetic fields). The second relation is referred to by Vignale and Kohn as the Ward identity,

lim
q 0

fxc,ij k + q,k,( ) =
fxc,ij
hom. k,( )

. (4.46)

There are two more relations that arise from the fact that the xc-field does not apply forces or

torques to the system. From these zero-force and zero-torque theorems it follows that

lim
k 0

fxc,ij k + q,k,( ) = fxcL ( )qiqj + fxcT ( ) q2 ij qiq j( ) (4.47)

lim
k 0

ljk

fxc,ij k + q,k,( )

kkj ,k

= fxcL ( ) 3 fxcT ( ) lkiqk
k

. (4.48)

From these relations the following expression for fxc k + q,k,( )  is obtained;

fxc,ij k + q,k,( ) = 2 fxcL ( ) fxcT ( )( )qiqj

+ fxcT ( ) ijq
2 fxcT ( )

ijk k + q( )

+A ,( ) ki + qi( ) kj B ,( ) ki k j + qj( )

(4.49)

where

A ,( ) = 2
fxcT ( ) fxcL ( )

+ 3 fxcT ( ) fxcL ( ) (4.50)
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B ,( ) =
fxcT ( )

+ 3 fxcT ( ) fxcL ( ) . (4.51)

The vector xc-potential is then given as,

Axc,i r,( ) = fxc,ij r, r ,( ) j j r ,( )dr
j

=
1

2( )
3 fxc,ij

hom. k,( ) j j k,( )eik rdk
j

+
1

2( )
3 ei q r fxc,ij k + q,k,( ) j j k,( )eik rdk

j=±1

(4.52)

where the expansion of Eq. (4.42) has been used and the Fourier transform of the current density

is defined as

j j k,( ) = j j r ,( )e ik r dr . (4.53)

The vector xc-potential of Eq. (4.52) satisfies the HPT and is a local functional of the current

density.

Inserting the explicit forms of Eq. (4.39) and Eq. (4.49) into Eq. (4.52) and using the explicit

for of the density modulation of Eq. (4.40) the expression for the VK-functional in the form

derived by Vignale, Ullrich and Conti is obtained[23]

i Axc,i r,( ) = i xc
ALDA 1

0 r( ) j xc,ij r,( )
j

(4.54)

where the tensor xc  is given by

 

xc,ij r,( ) = xc ; 0( ) iu j r,( ) + jui r,( )
2

3 ij u r,( )

+ xc ; 0( ) ij u r,( )

(4.55)

u = j 0  is the velocity field and the coefficients are given by

 
xc ; 0( ) = 0

2

i
fxcT ; 0( ) (4.56)

 

xc ; 0( ) = 0
2

i
fxcL ; 0( )

4

3
fxcT ; 0( ) fxcL = 0; 0( ) . (4.57)
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In the first sections of this chapter we outlined the theory of viscoelasticity. We can now

immediately see that Eq. (4.55) is of the form of a viscoelastic stress tensor with viscosity

coefficients 
 
xc ; 0( )  and 

 
xc ; 0( ) .

4.7 The spin-dependent VK-functional
We also want to use the VK-functional for the calculation of singlet and triplet excitation

energies. For this it is necessary to consider the spin dependent VK-functional [60,61].

Before we consider the spin dependent VK-functional for an inhomogeneous system, we

consider first the case of the homogeneous electron gas. We denote the spin variable by . In the

case of the homogeneous electron gas the scalar and vector xc-kernels, fxc r, r ',( )  and

fxc r, r ',( ) , merely depend on the separation r r ' . If we Fourier transform fxc r, r ',( )

with respect to r r '  one arrives at the following form (compare with Eq. (4.36)):

fxc,ij
hom., k,( ) =

1
2 fxcL k,( ) kik j + fxcT k,( ) k2 ij kik j( ) . (4.58)

This defines the longitudinal and transverse spin-dependent xc-kernels fxcL k,( )  and

fxcT k,( ) . Qian and Vignale showed that for the homogeneous electron gas the small k

expansion of these kernels is given by [60,61],

 

fxcL(T) k,( )
A ( )
k2

2

4
+ BL(T) ( ) +O k2( ) , (4.59)

where A ( )  and BL(T) ( )  are complex functions of the frequency, 0 r( ) = 0,
r( ) + 0,

r( ) ,

and = +1  for spin-up and = 1  for spin-down. The first term is divergent for k 0 ,

therefore we shall denote A ( )  the singular component and BL(T) ( )  the regular component.

Note that for spin restricted singlet excitations we need to sum over all spin variables, in that

case the contribution of A ( )  vanishes.

One can now try to develop a spin-dependent VK-functional. The spin-dependent vector xc-

potential is related to the induced current density by

Axc, r,( ) = fxc r, r ,( ) j r ,( )dr . (4.60)

In an isotropic electron gas one can split the transverse and longitudinal components and obtain,

after a Fourier transformation,
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Axc,
L (T ) k,( ) =

k2

2 fxc,L(T) k,( ) j L (T ) k,( )dr (4.61)

where the factor k2 2  exactly cancels the small k singularity in Eq. (4.59). One can now

substitute Eq. (4.59) in Eq. (4.61) and go through similar calculations as were done to derive the

spin-independent VK equation [62,63]. One then obtains the following spin dependent version

of the VK-functional [60,61]

i Axc, r,( ) = xc,
ALDA r,( ) + i Axc,

viscoel. r,( )

i 2A ( )
4

j r,( )
. (4.62)

For an inhomogeneous electron gas (with 
 
k kF , F  and 

 
1 ) one can replace

0 r( )  in Eq. (4.62) (and Eq. (4.59)). This is allowed because the zero-force, zero-torque,

Onsager, and Ward identities are still valid so one can do the same analysis as in the previous

section and obtain [62],

Exc, r,( ) = xc,
ALDA r,( ) + i Axc,

viscoel. r,( )

i 0 r( )
2
A ( )

4 0, r( ) 0, r( )
j r,( )

(4.63)

where we used the relation between the electric field and the vector potential; E = i A . For the

spin-restricted singlet case this expression reduces to the spin-independent VK-functional of Eq.

(4.54). The first term in Eq. (4.63) is the ALDA contribution and the second term is related to

the spin-dependent viscoelastic stress tensor xc, r,( )  by,

Axc, ,i
viscoel. r,( ) =

i

0 r( ) j xc, ,ij r,( )
j

, (4.64)

 

xc, ,ij r,( ) = xc r,( ) ju ,i r,( ) + iu , j r,( )
2

3 ij u r,( )

+ xc r,( ) ij u r,( )}
. (4.65)

where u r,( ) = j r,( ) 0, r( ) . The coefficients 
 xc ( )  and 

 xc ( )  are related to the

regular component of the xc-kernel of the homogeneous electron gas by the following relations

[60],
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xc ( ) = 0, 0,

i
BT ( ) , (4.66)

 

xc ( ) = 0, 0,

i
BL ( )

4

3
BT ( )

2
xc

0, 0,

, (4.67)

where xc 0( )  is the xc-energy per unit volume of the homogeneous electron gas of density 0 .

The third term in Eq. (4.63) is new in the spin dependent formulation and comes directly from

the 1 k2  singularity in Eq. (4.59). The essential feature of this new term is that it produces

damping of the spin-current proportional to the relative velocity between up- and down-spin

electrons [60]. Whenever the up- and down-spin currents travel with different average velocities

they exert friction on each other, this is known as “spin drag”[64]. However we will see that in

the limit of 0  (which is the limit we will work in) this term disappears.

4.8 The coefficients  and  and the static limit
In this section we further specify the coefficients 

 xc ( )  and 
 xc ( )  (spin-dependent and

spin-independent) and the singular part of the spin-dependent VK-functional and we show their

forms in the static limit ( 0 ). From now we work only in this limit.

The static limit can only be used if indeed the frequency dependence of the longitudinal and

transverse xc-kernels of the electron gas is weak. For frequencies much smaller than the local

plasma frequency p = 4 0  of the relevant density region, this approximation is reasonable

[65,66]. For molecules, this relevant region is often the valence region with rs 1  that

corresponds to p 47 eV , which is much larger than typical excitation energies. There is also

a technical reason for taking the static limit: we can presently only include real valued xc-

kernels (Chapter 5). Furthermore including only the frequency dependence of the real part of the

electron gas kernel without the imaginary part will destroy the causal structure of the response

equations. It should be kept in mind that the VK-functional is derived in order to obtain a local

approximation for the scalar xc-kernel at finite frequency.  We do not expect large changes to our

results if we would include frequency dependence. This is also supported by recent work on

infinite polyacetylene chains and crystals by Berger, De Boeij and Van Leeuwen [67], where the

dielectric function changes only slightly when introducing frequency dependence. It is not

immediately clear that the VK-functional can have a considerable contribution in the limit

0 .

Let us first consider the spin-independent case. The viscosity coefficients are given by
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xc ( ) = 0

2

i
fxcT ( ) , (4.68)

 

xc ( ) = 0
2

i
fxcL ( )

4

3
fxcT ( )

d 2 xc 0( )
d 0

2 , (4.69)

where xc 0( )  is the xc-energy per unit volume of the homogeneous electron gas of density

0 . We need expressions for the longitudinal and transverse response kernels fxcL(T) ( ) , which

are smooth functions for small frequencies [66]. It turns out that when taking the limit to zero

frequency it is very important to keep track of the order of the limits 0  and k 0 . If one

takes the limit 0  first for the longitudinal xc-kernel this leads to

lim
k 0

fxcL k, = 0( ) =
d 2 xc

d 0
2 , (4.70)

but the fxcL(T) ( )  are defined by taking the limit k 0  first. Conti and Vignale showed that the

following rigorous low frequency limits can be obtained from an analysis of the transport

equation in the Landau theory of Fermi liquids [49],

lim
0
fxcL ( )

4

3
fxcT ( )

d 2 xc 0( )
d 0

2 = 0 (4.71)

lim
0
fxcT ( ) =

2EF

5 0

F2
s 5 F1

s 3

1+ F1
s 3

. (4.72)

where EF = kF
2 2  is the Fermi energy and the Fl

s/a  are the Landau parameters. From these

relations we see that lim 0 fxcL ( ) d 2 xc d 0
2 . We also see from these equations that

 xc ( )  vanishes for 0  but the shear modulus 
 xc ( )  remains finite. The strange fact

that the shear modulus does not vanish in the limit of 0  (unlike in ordinary liquids) is a

result of taking this order of limits. The VK-functional has a contribution even in the static limit.

It remains to find values for fxcT 0; 0( ) . Nifosì, Conti and Tosi [68] did a mode-coupling

calculation for the electron gas and obtained values for the shear modulus µxc  for a number of

rs  values. We can then use that fxcT 0( ) = µxc 0
2  and obtain values for fxcT 0; 0( )  at these rs

values. To obtain values for any rs  we do a cubic spline interpolation taking into account the

exact exchange-only quadratic behavior for small rs  ( fxcT ( ) = 3 10kF
2  [9]). More details on

this procedure and the values for fxcT 0; 0( )  can be found in section 5.5. More recently Qian
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and Vignale [66] used the explicit values of the Landau parameters obtained in Ref. [69] to

obtain values for µxc , we also use these values in some of our calculations.

In the spin-dependent case we do not only need to find expressions for 
 xc ( )  and

 xc ( ) in the limit 0 , but also for the singular component A ( ) . For 0

Im A ( ) 3  and Re A ( ) 2  so lim 0 A ( ) = 0 . For the regular component BL(T) ( )

we have the exact relation [60] lim 0{(BL ( ) 4BT ( ) 3 2
xc 0, 0, ) } = 0 ,

hence the coefficient 
 xc ( )  also vanishes in this limit. Therefore we only need to consider

 xc ( )  for which we have the following singlet and triplet combinations [60]:

 

xc
S ( ) = 0, 0,

i
BT ( )

= 0
2

i
fxc
T ( ) = xc ( )

(4.73)

 

xc
T ( ) = 0, 0,

i
BT ( )

= 0
2

i
BT ( )

(4.74)

respectively called the density-density and spin-spin channels by Qian, Constantinescu and

Vignale [61]. Eq. (4.74) defines BT ( ) . The coefficient 
 xc

S ( )  is identical to the 
 xc ( )  of

the spin-independent case, the only new thing that we need is lim 0 B
T ( ) . This quantity is

also related to the Landau parameters,

BT 0( ) =
2EF

0

F2
a 25 F1

s 15

1+ F1
s 3

. (4.75)

We can now use the explicit values of the Landau parameters F2
a  and F1

s  [69] and again do a

cubic spline interpolation taking into account the exact quadratic behavior for small rs . We give

the values for BT 0( )  at the values for rs  for which the Landau parameters are known in Chapter

5.

4.9 Application to molecules
In this thesis we apply the VK-functional in order to calculate the excitation energies and

polarizability of molecules. It is not immediately clear that the VK-functional is valid for these

finite systems. In any case the VK-functional satisfies some important constraints with arbitrary
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time-dependence and inhomogeneity, as occur for molecules in external fields. These are the

zero-force and zero-torque theorems and the HPT [9].

We showed in this chapter that the VK-functional is valid under the constraint that

k,q << kF , F , which is the region above the particle hole continuum. For the wave vector of

the applied optical field the constraints k << kF , F  are trivially met for molecular systems as

k = c << kF  and the speed of light c >> F . For the inhomogeneity wave vector q = n0 n0
the situation is less clear. In the valence region we have q kF  and q F 1 , whereas in the

asymptotic outer region q >> kF  and q F << 1 . We should point out, however, that for finite

systems, like molecules, the essential response features do not change much with frequency

below the excitation gap gap . If we take this gap  as the characteristic frequency, then both

constraints are not strongly violated in the outer valence region. Moreover, it should be noted

that the particle-hole regime (the regime in the (q- ) plane where the noninteracting response

function 0 q,( )  has poles), for which the VK derivation is not justified, is to a large extent

taken into account by the explicit evaluation of the Kohn-Sham response functions.

In view of these arguments we consider it worthwhile to explore the merits of the VK-

functional for molecular systems. As we will show in this thesis the VK-functional can yield

excellent results for these systems, but we will also see cases for which the VK-functional fails.



 Chapter 5

Implementation

In this chapter we describe how we implemented the linear response equations of Chapter 3 and

the VK-functional (Chapter 4) in the Amsterdam Density Functional program package (ADF)

[25]. Since the implementation of the linear response equations for time-dependent density

functional theory is thoroughly explained by Stan van Gisbergen [26] we concentrate on the

changes that need to be made to include the current-dependent formalism.

5.1 The ADF RESPONSE code
Here we give a short outline of the implementation of the linear density response equations in

the Amsterdam Density Functional program package (ADF) [25] RESPONSE code. A more

extended discussion can be found in the Ph.D. thesis of Stan van Gisbergen [26] and in Ref.

[70].

ADF is a quantum chemical program that makes use of the fact that one can expand the

molecular orbitals as a linear combination of atomic orbitals (LCAO). In contrast to most

quantum chemical programs ADF uses Slater-type orbitals (STOs) instead of Gaussian orbitals

(GTOs) for these atomic orbitals (AOs). The STOs resemble the atomic orbitals more closely,

since they have a cusp at the nucleus and decay more slowly in the outer region of the atom.

Because the STOs better resemble the atomic orbitals, less are needed to obtain a good accuracy

for the calculations. Using STOs does yield awkward multi-center integrals in the evaluation of

the Coulomb potential. This is remedied in ADF by employing an auxiliary set of fit functions.

Like the basis functions, the fit functions are Slater-type exponential functions centered on the

atoms. The true density, a sum of products of basis functions, is then approximated by a linear

combination of the fit functions. Within this approximation the Coulomb potential belonging to

the fitted density can be obtained analytically [71].

The ground state DFT calculation will provide one-particle eigenfunctions, the Kohn-Sham

(KS) orbitals. In the time-dependent code we will evaluate matrix elements between these KS

orbitals. Since they can be expanded in AOs we can also choose to evaluate the matrix elements

between the AOs. The use of KS orbitals has the advantage that the full molecular symmetry can
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be exploited, saving memory and CPU time for highly symmetric systems. When one uses AOs

distance effects can be used, neglecting the overlap between AOs centered on nuclei that are far

apart. This approach is better suited for large systems of low symmetry. In our implementation

of the TDCDFT equations and the VK-functional, we choose to use the KS orbitals. Therefore

we concentrate on this approach. The RESPONSE code provides both options. More

information on the implementation of the AO approach can be found in the references

mentioned above. We note that all orbitals in ADF are real valued.

We will first explain the implementation of the ordinary (current density independent)

TDDFT equations. The equations that are solved in TDDFT are basically the same as we derived

for TDCDFT in Chapter 3, only with a different -matrix and coupling matrix, and no

reference is made to the current density. The -matrix and coupling matrix of TDDFT are given

by

ai ( ) =
1

i a( ) + a r( ) s, r,( ) i r( )dr (5.1)

Kia, jb ( ) = i r( ) a r( )
1

r r
+ fxc r, r ,( ) b r( ) j r( )drdr . (5.2)

This -matrix and coupling matrix can then be used in the linear response theory of Chapter 3.

The equations for the excitation energies and polarizability can be solved using a ‘direct’

method. This requires storing all matrix elements of the coupling matrix K, which implies

storing and calculating all Nocc
2 Nvirt

2  matrix elements. For large molecules and basis sets this

quickly becomes unfeasible. Also solving the set of linear equations (for the polarizability) and

the eigenvalue problem (for the excitation energies) requires Nocc
3 Nvirt

3  floating point

operations, which is again unfeasible for large systems. Therefore the equations are solved in an

iterative manner. The linear equations from which we obtain the polarizability are solved using

the Direct Inversion in the Iterative Subspace (DIIS) method originating from Pulay [72,73]. We

need to find an accurate trial vector for this method. A reliable starting point is setting the

coupling matrix to zero, leading to the so-called uncoupled polarizability, which is usually a

good estimate of the polarizability. The eigenvalue problem from which we obtain the excitation

energies, is solved using the Davidson algorithm [74]. With this method one only obtains a

selected number of (usually the lowest) eigenvalues. Again accurate trial vectors need to be

found and setting the coupling matrix to zero turns out to be a reliable starting point also in this
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case. The excitation energies in the first cycle of the iteration are in that case equal to the KS

orbital energy differences.

Both iterative procedures merely require repeated matrix-vector multiplications. Due to the

special structure of the response kernel, we do not need to construct the full coupling matrix at

any time. Several methods have been implemented in order to make these multiplications more

efficient. One of these is expanding the KS orbitals in the basis functions (the AOs). As

mentioned, even though this method is implemented, we will not use it for our extension to

TDCDFT. We refer to Ref. [70] for a thorough review of this procedure.  In order to further

reduce computational cost use can be made of full molecular symmetry. The big advantages of

using the full molecular symmetry are the reduction of the number of integration points and the

number of integrals to be calculated. Only the integration points that belong to a symmetry-

unique wedge need to be used. This reduces the number of integration points by the number of

group operators. The number of integrals is also considerably reduced using the knowledge of

the irreducible representations of the orbitals and operators. Only the matrix elements that

belong to the completely symmetrical representation (e.g. the A1 representation) will be nonzero.

A third advantage of using the molecular symmetry is that only equivalent symmetry blocks (for

excitation energy calculations) and equivalent external fields (for polarizability calculations)

need to be treated at the same time. A detailed account on how the molecular symmetry is

implemented can again be found in Ref. [70].

Another method that is used to increase computational efficiency is parallelization. The major

part of this parallelization is achieved by domain decomposition, i.e. subdivision of number of

integration points in blocks and distributing these blocks over the different processors. Each

processor performs his part of the numerical integration and in the end all the results are

combined.

In the latest versions of ADF several linear scaling techniques have been implemented, we

will not use these in our implementation of the TDCDFT equations and will therefore not go

into further detail on this.

5.2 Implementation of the TDCDFT equations
In order to include the current density in the RESPONSE code, we only need to change the

-matrix and the coupling matrix. The extra terms that we need to calculate are the matrix

elements of the paramagnetic current density (Eq. (2.5)) and a current dependent functional. In
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the next sections we go into detail on how we included the current dependent VK-functional.

Here we give some details about the implementation of the TDCDFT equations.

There is a simple relation between the matrix elements of the current density and the dipole

matrix elements,

i

a i( ) i r( ) ĵp a r( )dr = i r( ) r̂ a r( )dr , (5.3)

which means that we can use similar routines to calculate the paramagnetic current matrix

elements as are already included to calculate the dipole matrix elements.

Another point that we need to take care of in our implementation is that in ADF all functions

that are calculated are real valued. Within TDCDFT we automatically have to deal with

imaginary functions. For example, since the orbitals are chosen to be real valued, the matrix

elements of the paramagnetic current density will be purely imaginary. But there is a “trick” that

we can use, such that we can use real valued functions throughout. We can write the induced

density as,

r,( ) = j r, r ,( )
i
Es, r ,( )dr

+ r, r ,( ) s, r ,( )dr }
(5.4)

where we used that Es, r,( ) = i As, r,( ) . We will use in the following Eext ( ) = i ê ,

where ê  is a unit vector. The scalar potential is given by

s, r,( ) =
1

r r
+ fxc r, r ,( ) r ,( )dr . (5.5)

We now use the fact that we can write any function as a combination of a real valued and a pure

imaginary part,

r,( ) = r,( ) + i r,( ) (5.6)

s, r,( ) = s, r,( ) + i s, r,( ) (5.7)

Substituting Eqs. (5.6) and (5.7) in Eqs. (5.4) and (5.5), and separating the real and imaginary

parts, we obtain

r,( ) = r, r ,( ) s, r ,( )dr (5.8)
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i r,( ) = i j r, r ,( )
1
Es, r ,( )dr

+i r, r ,( ) s, r ,( )dr }
(5.9)

s, r,( ) =
1

r r
+ fxc r, r ,( ) r ,( )dr (5.10)

i s, r,( ) = i
1

r r
+ fxc r, r ,( ) r ,( )dr . (5.11)

Equations (5.8) and (5.10) have the trivial solution r,( ) = s, r,( ) = 0 , we are then left

with Eqs. (5.9) and (5.11),

r,( ) = j r, r ,( )
1
Es, r ,( )dr

+ r, r ,( ) s, r ,( )dr }
(5.12)

s, r,( ) =
1

r r
+ fxc r, r ,( ) r ,( )dr . (5.13)

From this it follows that if we use r,( ) = i r,( )  we can rewrite all our equations in

terms of real functions only. With this definition of the induced density, the induced current

density will also be real valued. The procedure described above is still valid when we include

the VK-functional. The physical reason that r,( )  is purely imaginary is that we do not

include dissipation in our theory, so the current must be 90 degrees out of phase with the electric

field. This implies that the density must be in phase with the electric field.

5.3 Implementation of the spin-independent VK-functional
The most extensive part of our implementation is the inclusion of the VK-functional,

Exc r,( ) = xc
ALDA r,( ) + i Axc

viscoel. r,( ) , (5.14)

Axc,i
viscoel. r,( ) =

i

0 r( )
j xc,ij r,( )

j

. (5.15)



TIME-DEPENDENT CURRENT-DFT FOR MOLECULES76

In this section we consider the implementation of the spin-independent VK-functional, in the

next section we show what changes need to be made to include the spin-dependence. From Eq.

(3.50) we see that we only need to calculate the matrix elements between the Kohn-Sham

orbitals and the perturbation to obtain the induced density and the induced current density. We

do not need to calculate the VK vector potential explicitly. We choose a gauge in which the

ALDA contribution of the VK-functional is part of the scalar potential (we are always allowed to

choose such a gauge). The matrix elements of the remaining contribution can then be expressed

as

Hia ( ) = a

1

2
ĵp Axc

viscoel. r,( ) + Axc
viscoel. r,( ) ĵp( ) i . (5.16)

In order to evaluate Eq. (5.16) it is convenient to define the velocity field elements v as

v ia r( ) =
jia r( )

0 r( )
, (5.17)

where the transition current elements are defined as

jia r( ) =
i

2 a r( ) i r( ) i r( ) a r( )( ) . (5.18)

Arjan Berger has shown in his Master thesis [75] that using some vector identities, integration

by parts and the fact that total differentials integrate to zero due to Gauss’ integral theorem, the

contribution to the interaction containing all terms linear in 
 
xc 0 r( ),( )  can be evaluated as

 

Hia ( ) =
i

v ia r( )( ) xc 0 r( ),( ) u r,( )( )dr

+
4i

3
v ia r( )( ) xc 0 r( ),( ) u r,( )( )dr

+
2i

v ia r( )( ) xc 0 r( ),( ) u r,( )dr

+
2i

v ia r( ) xc 0 r( ),( ) u r,( )dr

+
2i

v ia r( ) xc 0 r( ),( ) u r,( )( )dr
.

(5.19)

Similarly for the terms linear in 
 
xc 0 r( ),( )  we obtain

 

Hia ( ) =
i

v ia r( )( ) xc 0 r( ),( ) u r,( )( )dr . (5.20)
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From these expressions we see that we only need to evaluate the velocity fields v ia  and u  as

well as their divergence and curl. Moreover we need to calculate the first and second derivatives

of the functions 
 
xc 0 r( ),( )  and 

 
xc 0 r( ),( ) . Since they are simple functions of the

density these derivatives can be evaluated once we know the first and second derivatives of the

ground state density. For our calculations we use the VK-functional in the static limit ( 0 ),

as we explained in Chapter 4 the coefficient 
 xc ( )  vanishes in this limit ( 0 ) and we

only need to consider Eq. (5.19). We obtain the following equations for the divergence and curl

of v ia :

v ia r( ) =
1

0 r( )
i i a( ) a r( ) i r( ) 0 r( )

0 r( )
jia r( ) , (5.21)

v ia r( ) =
1

0 r( )
i a r( ) i r( ){ } 0 r( )

0 r( )
jia r( ) . (5.22)

Here we have explicitly used that the orbitals are eigenstates of the ground state Kohn-Sham

Hamiltonian. These expressions only involve first order derivatives of the orbitals. For the

divergence and curl of u we obtain

u r,( ) =
1

0 r( )
i r,( ) 0 r( )

0 r( )
j r,( ) , 

u r,( ) =
1

0 r( )
m r,( ) j r,( ) 0 r( )

0 r( )
. 

We used the continuity equation j r,( ) i r,( ) = 0  to relate the divergence of the

induced current to the induced density. The curl of the current, m r,( ) = j r,( ) , is

obtained by

m r,( ) = mj r, r ,( ) mj r, r , 0( )( ) As r ,( )dr

+ m r, r ,( ) s r ,( )dr (5.23)

Here the response functions mj r,( )  and m r,( )  can be obtained from Eq. (3.27) by

substituting the operator m̂ = i †( ) . From the previous discussion we see that we can

evaluate the matrix elements of the VK-functional once we have the induced density , the

induced current j , and its curl m . The equations (3.20), (3.21), and (5.23) become a coupled
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set. Note that in this way we have avoided the explicit evaluation of orbital derivatives higher

than first order. By including the ALDA in the scalar potential instead of in the vector potential

we also avoid evaluation of the gradient of  and conform to standard implementations of

TDDFT.

As we mentioned in Section 5.1 in ADF the exact ground state density, expressed as one and

two-center products of basis functions, is represented by an expansion in one-center functions

only [76]. This is done to facilitate the calculation of the Coulomb potential, but also to enable

the evaluation of the first and second order derivatives of the density. A drawback, however, is

that this fitted density can become zero or negative due to the incompleteness of the basis, which

is unphysical. This poses problems for the evaluation of terms of the form, 0 0  and

0 0 . To prevent this problem, the absolute value of the fitted density is used and a small

offset is introduced. The fitted density is replaced by 0
safe

= 0
fit
+  with = 1.0 10 3 . We

checked that the value of  did not have a significant influence on the results while ensuring

the stability of the calculation.

Until now we have made no comments on our choice of the external electric field. Our initial

choice for the external electric field was Eext ( ) = i ê j . This choice makes sure that we do

not divide by  in our set of linear equations, but this choice means that we need to obtain the

polarizability tensor via,

ij ( ) =
1
2 ji r,( )dr

E( )= i ê j

. (5.24)

From this expression the disadvantage of our choice is immediately clear. We cannot obtain the

static polarizability directly in this way. Our solution was to calculate the polarizability at

several frequencies close to zero and extrapolate the result to the static limit. In this way we

obtained the results in Refs. [77] and [78]. An alternative, and better, solution is to use the

external field Eext ( ) = iê j  for > 0  (and with a reversed sign for frequencies smaller than

zero to ensure real valued electrical fields in the time domain). To avoid terms that include 1

we need to rewrite some equations. The equation for the induced density remains unchanged,

but for the induced current density and its curl we write

1
j r,( ) =

i
2 jj r, r ,( ) jj r, r , 0( )( ) Es r ,( )dr

+
1

j r, r ,( ) s r ,( )dr
(5.25)
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1
m r,( ) =

i
2 mj r, r ,( ) mj r, r , 0( )( ) Es r ,( )dr

+
1

m r, r ,( ) s r ,( )dr
. (5.26)

Terms like j  and jj r, r ,( ) jj r, r , 0( )( ) 2  remain finite in the limit 0  and

can be evaluated directly. In this way we can directly calculate the static polarizability from

( )ij =
1

ji r,( ) dr
E= iê j

. (5.27)

This is the approach we used in our other works [79-83]. The difference between the results

obtained with these two methods is negligibly small.

5.4 The spin-dependent case
We showed in Chapter 4 that in case of spin-restricted singlet excitations we could use the

same formulation for the VK-functional as for the spin-independent case. We also showed that

in the case of triplet excitation energies in the static limit the only thing that essentially changes

when using the VK-functional is the
 xc . We discuss our choices for 

 xc  in the next section.

5.5 The response kernels
The only part of the VK-functional (Eqs. (4.54) and (4.63)) that needs to be specified are the

coefficients 
 xc ( )  and 

 xc ( ) . We saw in Chapter 4 that these coefficients are related to the

regular component of the xc-kernel of the homogeneous electron gas by the following relations

[60],

 
xc ( ) = 0, r( ) 0, r( )

i
BT ( ) , (5.28)

 

xc ( ) = 0, r( ) 0, r( )

i
BL ( )

4

3
BT ( )

2
xc

0, 0,

, (5.29)

We work in the static limit and in Chapter 4 we showed that the coefficient 
 xc ( )  vanishes

in this limit and that we need to consider the following singlet and triplet combinations of the

 xc ( )
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xc
S ( ) = 0, 0,

i
BT ( )

= 0
2

i
fxc
T ( ) = xc ( )

(5.30)

 

xc
T ( ) = 0, 0,

i
BT ( )

= 0
2

i
BT ( )

(5.31)

The 
 xc

S ( )  is identical to the 
 xc ( )  of the spin-independent case. Since we work in the static

limit, we need to find expressions for fxcT 0( )  and BT 0( ) .

It remains to find values for fxcT 0; 0( ) . Nifosì, Conti and Tosi [68] did a mode-coupling

calculation for the electron gas and obtained values for the shear modulus µxc  for a number of

rs  values. We can then use that fxcT 0( ) = µxc 0
2  and obtain values for fxcT 0; 0( )  at these rs

values. To obtain values for any rs  we do a cubic spline interpolation taking into account the

exact exchange-only quadratic behavior for small rs  ( fxcT ( ) = 3 10kF
2  [9]). More details on

this procedure and the values for fxcT 0; 0( )  can be found in section 5.5. More recently Qian

and Vignale [66] used the explicit values of the Landau parameters obtained in Ref. [69] to

obtain values for µxc , we also use these values in some of our calculations.

The transverse and longitudinal response

kernels fxcL ( )  and fxcT ( )  have been

investigated for the electron gas [63,65,68,84].

They are smooth functions for small

frequencies [66]. In order to implement the

VK-functional in the static limit we only need

to obtain the values of the exchange-

correlation kernel fxcT 0( )  as a function of

0 . Nifosì, Conti and Tosi (NCT) [68] did a

mode-coupling calculation for the electron gas

and obtained values for the shear modulus

µxc  for a number of rs  values

( rs 3 4( )
1 3

). More recently Qian and

Vignale (QV) [66] used explicit values of the

Landau parameters obtained in Ref. [69] to

Figure 5-1. The static response kernel fxcT 0( )  in

[a.u.] as a function of rs .
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obtain values for µxc . We show these values in Table 5-1. We only show the NCT and QV

values for rs 5  since only these are needed for the molecular calculations. We can then use

that fxcT 0( ) = µxc 0
2  and obtain values for fxcT 0; 0( )  at these rs  values. To obtain values for

any rs  we do a cubic spline interpolation in the range 0-5 for the rs  values, taking into account

the exact exchange-only quadratic behavior for small rs  ( fxcT ( ) = 3 10kF
2  [9]). For values

rs > 5  we keep fxcT 0( )  constant and equal to its value at rs = 5 . We checked that changing the

behavior of fxcT 0( )  for rs > 5  did not influence our results. In Figure 5-1 the values for fxcT 0( )

are plotted against rs  for rs 5 .

The known values of BT 0( )  [60,69] for rs 5  are also given in Table 5-1. In order to obtain

the values for BT 0( )  for all rs  we use the same interpolation scheme as described above for

fxcT 0( ) .

Table 5-1. fxcT 0( )  and BT 0( )  in a.u.

rs 1 2 3 4 5

fxcT 0( )  NCT 0.09286 0.21341 0.27897 0.02902 0.0029

fxcT 0( )  QV 0.10702 0.31605 0.60404 0.97114 1.40975

BT 0( ) 0.11811 0.34376 0.63792 1.00457 1.43329





 Chapter 6

The static polarizability of oligomers

In this chapter we show our results for the static polarizability of oligomers of several polymeric

systems. The systems we study in this chapter are the model hydrogen chain (H2n) and the

conjugated systems polyacetylene (PA), polydiacetylene (PDA), polybutatriene (PBT), polyyne

(PY), polythiophene (PT), polyethylene (PE), polysilane (PSi), polysilene (PSi2), and

polymethineimine (PMI). These results are presented in Refs. [77] and [78].

6.1 Introduction
So far TDDFT has been applied mainly within the adiabatic local density approximation

(ALDA) in which the exchange-correlation (xc) potential xc is simply a local functional of the

electron density. However, this approximation was shown to fail dramatically for the case of

long molecular chains. For this case large overestimations of the polarizabilities and

hyperpolarizabilities have been observed [10,11,77]. The reason for the failure of the ALDA is

precisely its locality. In this approximation the potential depends only on the local density.

Therefore the potential in the center of the molecular chain is insensitive to changes in the

charges at the endpoints of the chain. For the exact exchange-correlation potential, however,

these endpoint charges turn out to have important global effects. In particular it gives rise to a

counteracting xc-field, i.e. an xc-potential that increases linearly along the molecular chain

[11,85,86]. The induced density does not show an increase along the chain. Therefore such a

counteracting term cannot be reproduced by a simple local approximation for xc and this causes

the overestimation of the polarizability by the ALDA. To obtain such global changes in xc as a

functional of the electron density, the functional must be nonlocal [87].

Nonlocal density functionals that do describe the counteracting field are, for example, the

exchange-only Krieger-Li-Iafrate (KLI) [20] approximation and the common energy

denominator approximation (CEDA) [21,45]. The orbital dependent KLI potential already

improves the polarizability of the much discussed model hydrogen chain H2n (see for example

Refs. [88], [89], and references therein) compared to the local density approximation (LDA) and

generalized gradient approximations (GGAs) [11,21]. The CEDA is based on the common
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energy denominator approximation for the static orbital Green’s function. The polarizabilities

obtained for the model hydrogen chain using the CEDA improve the KLI results [21]. Basis of

the success of these exchange-only potentials is their explicit dependence on the orbitals, which

allows for a nonlocal dependence on the density. Currently these approaches are restricted to the

exchange-only approximation.

Another way to include nonlocality, which, in addition, allows for transverse external fields,

is by the use of current functionals. This is the method we explained in the previous chapters.

Using the current j as a local indicator of global changes in the system is essential for the

calculation of the macroscopic polarization of solids [90-93], which is impossible to obtain from

an infinite system calculation based on pure density functional theory [87,94-96]. As we have

shown in the previous chapters, the variable conjugate to the current density is the vector

potential, in analogy to the scalar potential being conjugate to the electron density. In the Kohn-

Sham approach to time-dependent current-density functional theory (TDCDFT) this vector

potential also has an xc-component A xc. This vector xc-potential is needed to satisfy the

constraint that not only the true density is obtained in the noninteracting Kohn-Sham system, but

now also the true current density. The longitudinal part of the current is completely determined

by the density through the continuity equation. Therefore Axc is needed to fix the transverse part

of the current. Once an approximation is given for Axc, the Kohn-Sham equations can be solved

self-consistently. However, few approximations are known. Vignale and Kohn (see Chapter 4)

were the first to propose such an approximation [8,9]. Their motivation was to develop an xc-

functional that is nonlocal in time, but still local in space. It was found that nonlocality in time

implies ultranonlocality in space, if one insists on using the density as the basic variable.

However, a dynamical xc-functional that is nonlocal in time but local in space, can be

constructed in terms of the current density. They did a careful analysis of the weakly

inhomogeneous electron gas and arrived at an expression [8,9,23,24] for the induced xc-electric

field. This expression has been applied successfully to plasmon linewidths in quantum wells

[62,97] and in simplified form to calculate optical spectra of solids [7].

In this chapter we study several systems that are nonconjugated (polyethylene and the model

hydrogen chain), -conjugated (polysilane), or -conjugated oligomers (polyacetylene,

polythiophene, polyyne, polymethineimine, polysilene, polydiacetylene, and polybutatriene).
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6.2 Computational details
We studied ten systems for which the traditional TDDFT/ALDA method is known to fail. The

choice of these systems was further guided by the availability of comparative accurate many-

body results, as well as their chemical and physical importance [98]. We studied the model

hydrogen chain (H2n) and the conjugated systems polyacetylene (PA), polydiacetylene (PDA),

polybutatriene (PBT), polyyne (PY), polythiophene (PT), polyethylene (PE), polysilane (PSi),

polysilene (PSi2), and polymethineimine (PMI). These systems differ in their degree of bond

order and chemical composition.

All calculations were performed with our modified version of ADF [25,99-103]. In these

calculations we used the standard ADF basis set TZ2P (old basis V), which is a triple-zeta Slater

type basis set augmented with two polarization functions. Cores were kept frozen for carbon and

nitrogen up to 1s and for sulfur and silicon up to 2p. These basis sets are sufficiently large for

our purpose of comparison.

In all calculations the ground state has been calculated with the LDA functional in the VWN

parameterization [34]. The response calculations themselves were done with the standard

adiabatic local density approximation (ALDA) and the VK-functional. For the latter we use a

parameterization of the viscoelastic coefficient based on results of Conti et al. [65] for the

transverse response of the homogeneous electron gas [77]. From now on we denote these

calculations simply as ALDA and VK instead of LDA/ALDA and LDA/VK.

We compare our VK results to other (ab initio) calculations from the literature.  Therefore we

attempted in all cases to use a geometry equal or at least very close to the geometries used in the

reference calculations. In each case we used a fixed monomer geometry for all oligomers of a

specific type. These monomer geometries are equal to the converged geometries  (with respect

to chain length) from the references. Note that in some references geometries have been

optimized per oligomer. The monomer geometries we used are depicted in the insets of Figure

6-1 till Figure 6-11 for PA [12], PY [104], PT [105], PMI [106], PDA [107], PBT [107], PE

[108], PSi [108], PSi2 [109], and the model hydrogen chain [88]. The literature results of

polyacetylene [12,13] are obtained with geometries that are optimized for each oligomer, our

monomer geometry is equal to their converged geometry. In case of polydiacetylene oligomers

the literature results [107] are optimized for 1-7 units, in case of 8 units and up they add

converged units to the center of the oligomer. We used their converged unit as our monomer

geometry. The polythiophene geometry we used is slightly different from that in Ref. [105]. The

polymethineimine geometry was obtained from Ref. [106], where we used their type A trans-
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transoïd polymethineimine geometry for the monomer. The PSi2 geometry was obtained from

[109] where we chose the geometry of the central units and a value of 1.500 Å for the Si-H bond

length. The equilibrium bond length of the diatomic silylidyne molecule (HSi) is 1.5201Å [110],

the Si-H bond length in several other silicon compounds is about 1.48Å [110]. The polarizability

differs less than 0.5% by changing the Si-H distance from 1.500Å to 1.480Å.

The axial polarizability per oligomer unit can be obtained with several methods, for example

by simply dividing the axial polarizability by the number of units or by subtracting the

polarizability of the oligomer with N-1 units from that with N units. The results for these

methods are not identical. We divided the axial polarizability by the number of units. In cases

from literature where originally other methods were used, the results were recalculated to be in

accordance with our method.

6.3 Results

6.3.1 Polyacetylene

The prototype of a conjugated polymeric system is polyacetylene (PA). In Figure 6-1 we

compare our VK and ALDA results for the static axial polarizability for PA with restricted

Figure 6-1. ALDA and VK static axial polarizability
of polyacetylene compared with restricted Hartree-
Fock [12] and MP2 [13] results.

 Figure 6-2. ALDA and VK static axial
polarizability of polyyne compared with time-
dependent Hartree-Fock (TDHF) and correlated
second-order polarization propagator approximation
(SOPPA) results [104].
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Hartree-Fock calculations [12] and MP2 results [13]. We see that the VK-functional gives a

huge correction of the ALDA results. The VK results lie close to Hartree-Fock results and are in

good agreement with the MP2 values.

6.3.2 Polyyne

A system that is related to PA is polyyne (PY). Since PY has triple bonds we expect it to have

a higher polarizability than PA. We show the results for PY in Figure 6-2 together with Hartree-

Fock results [111]. By comparing the two systems we see that the ALDA results for PY lie lower

that those for PA but the PY polarizabilities obtained with VK lie indeed at higher values than

those of PA.

6.3.3 Polythiophene

A larger system we studied is polythiophene (PT). It is the first system we study that has a

heteroatom (sulfur) in the backbone. Below we will also discuss polymethineimine that has a

nitrogen atom in the backbone. It can be seen from Figure 6-3 that the VK results lie close to the

coupled perturbed Hartree-Fock values [105], contrary to the ALDA results.

Figure 6-3. ALDA and VK static axial polarizability
of polythiophene compared with coupled perturbed
Hartree-Fock results [105] using the 3-21G and 6-
31G** atomic basis sets.

Figure 6-4. ALDA and VK static axial polarizability
of polymethineimine compared with coupled
Hartree-Fock (HF) [106] and MP2 [112] results.
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6.3.4 Polymethineimine

A system that is isoelectronic with PA is polymethineimine (PMI). Our ALDA and VK results

are depicted in Figure 6-4 and compared with coupled Hartree-Fock results [106], we also

compare to MP2 results with a slightly different geometry [112]. The VK results are on top of

these MP2 results and give a large correction to ALDA. This is very similar to the results we

observed for PA.

The MP2 results were obtained with a somewhat different geometry, namely the type B

geometry from Ref. [106]. To see what the effect of a change in geometry is on our results, we

did calculations on PMI oligomers of the type B geometry with 5 and 10 units and found a

reduction in the axial polarizability of 3.9% and 5.7% respectively, compared to type A. In case

of HF the changes are larger, with percentages of 8.1% and 12.8% respectively. This shows that,

at least for this system, VK is not very sensitive to geometry changes. Therefore we believe that

it is justified to compare our VK results with the MP2 results.

Recent MP2 results are very close to our values [113] for the shorter chain lengths. For the

longer chains they start to deviate slightly from the VK values, but it should be noted that these

MP2 results that have been obtained with an optimized geometry for each oligomer and not with

a fixed monomer geometry. The MP2 values for the dimer and tetramer, with values of 26.3 a.u.

and 37.2 a.u. per oligomer unit, are according to the authors of Ref. [113] within 1% of

CCSD(T) values and are on top of the VK values.
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6.3.5 The polydiacetylenes: polydiacetylene and polybutatriene

Systems, in which HF is very sensitive to the geometry whereas VK is not, are the

polydiacetylenes. Depending on the nature of their side groups, polydiacetylenes can occur in a

structure ranging from the acetylenic [CR=CR’-C C]N to the butatrienic [CR=C=C=CR’]N
form. PDA and polybutatriene (PBT) with R=R’=H are interesting systems to compare. These

systems are tautomers of which PDA turns out to be the stable configuration. In Figure 6-5 we

compare our ALDA and VK results for PDA with available coupled Hartree-Fock results [107].

The ALDA again strongly overestimates the polarizability and VK gives a reduction. The VK

results are in good agreement with the HF values. In Figure 6-6 we compare our ALDA and VK

results for PBT with available coupled Hartree-Fock results [107]. The ALDA results again

severely overestimate the polarizability. Again VK gives a huge reduction of this polarizability

but the values are much smaller than the HF results. Apparently the ultranonlocal effects treated

by VK are very important in this system.

Figure 6-5. ALDA and VK static axial
polarizability of polydiacetylene compared with
coupled Hartree-Fock results [107].

Figure 6-6. ALDA and VK static axial
polarizability of polybutatriene compared with
coupled Hartree-Fock (HF) [107] results.



TIME-DEPENDENT CURRENT-DFT FOR MOLECULES90

The difference between the axial polarizabilities for VK and HF in PBT is very different from

what we observed for PDA, where the VK and HF results are in close agreement. In Figure 6-7

the results for PDA and PBT are compared for VK and HF [107]. The VK results for PBT and

PDA are very similar, the values for PBT being somewhat bigger. Note that the HF results for

PBT give a surprisingly large value for the axial polarizability compared with the HF results for

PDA. The disagreement between HF and VK for PBT raises the question which method gives

the most accurate results. Other HF results are available for infinite chains [114] and for the

average polarizability small oligomers [115]. Champagne and Öhrn [114] did CPHF calculations

on the infinite PDA and PBT systems. The values for the axial polarizability per oligomer unit

are 134.4 a.u. for PDA and 626.4 a.u. for PBT with HF using the minimal STO-3G basis. Again

the PBT value is much higher than the PDA value. These values are smaller than found by

Perpète et al. [107] for the longer oligomers. It should be noted that the infinite chain

calculations were done in a minimal STO-3G basis set. These results are in disagreement with

the results for PBT of Bodart et al.  [115] for the average polarizability

= xx + yy + zz( ) 3 , obtained with finite-field HF within the minimal STO-3G basis set.

Since for these polymeric systems the dominant contribution to the average polarizability is in

the axial direction, we may compare these values with the value for the axial polarizability. The

value of the average polarizability we obtained with VK (63.49 a.u. per unit) for the three-unit

oligomer agrees with their value (61.61 a.u. per unit). Accurate benchmark results [116,117]

obtained with the coupled-cluster (CCSD(T))

method in a double-zeta basis set with one

polarization function, are available for the

monomer and dimer of PDA and PBT in the

same geometry as used by us. These results

are presented in Table 5-1. From this table it is

clear that the PDA results for VK, CPHF, and

CCSD(T) are close to each other. Much larger

differences are found for the PBT case, where

the CCSD(T) values are in between the HF

and VK values. Unfortunately no accurate

results are available for the longer oligomers.

This does not allow us to make further

conclusions on the accuracy of the VK vs. HF

Figure 6-7. Results for the static axial polarizability
of polydiacetylene and polybutatriene are
compared for VK and coupled Hartree-Fock (HF)
[107].
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results in case of PBT. No direct experimental results are available for this system. Perpète et al.

[107] estimated the polarizabilities of PDA and PBT using the experimental values for the

polydiacetylenes PTS (R=R’=CH2OSO2C6H4CH3) and TDCU (R=R’=(CH2)4OCONHC6H5).

They derived a value of 383 a.u. for PDA and 402 a.u. for PBT for the axial polarizability per

oligomer unit for infinite chains. These values indicate that the PBT values are only slightly

bigger than the PDA results. They are in the same range as our VK results and much smaller

than the HF results for PBT. More insight in this issue can be obtained from accurate correlated

ab initio methods applied to longer oligomers, which leaves an interesting future challenge.

6.3.6 Polyethylene

We studied polyethylene (PE) in its linear zigzag form. The ALDA and VK results are

depicted in Figure 6-8 and compared with coupled perturbed Hartree-Fock results [108].

Contrary to the case of conjugated polymers we see that ALDA, VK, and HF curves run almost

parallel. Remarkable is that ALDA does not give a large overestimation of the polarizability for

the longer oligomers. VK only gives a small and reasonably constant correction to the ALDA

results. The experimental average polarizability for the monomer is 29.62 a.u. [118]. This is

close to the ALDA result with a very large basis set (30.74 a.u. Ref. [119]). Our VK value for

the average polarizability of the monomer is 26.69 a.u.. These values for the average

polarizability are already considerably larger than the HF value of 21.49 a.u.. Polarizabilities

obtained with more accurate methods are therefore expected to be closer to the experimental as

well as ALDA and VK values. Since VK gives a small correction on the ALDA, apparently

nonlocal effects described by VK are not important in this system. This is consistent with low

electron mobility in PE.

Table 6-1. The axial polarizabilities per oligomer unit in atomic units (a.u.) of the monomer and dimer of
PDA and PBT at different levels of theory.

ALDA VK HFa CCSD(T)b

PDA monomer 78.71 67.32 66.71 65.03
dimer 129.13 94.30 97.36 92.5

PBT monomer 102.94 85.21 100.31 92.06
dimer 172.96 117.13 162.19 136.1

aRef. [107]   bRef. [117]



TIME-DEPENDENT CURRENT-DFT FOR MOLECULES92

6.3.7 Polysilane

The silicon analog of PE is polysilane (PSi). Unlike in PE there is experimental and

theoretical evidence for -conjugation in PSi (see for example Ref. [108] and [109] and

references therein). Our results are displayed in Figure 6-9. The polarizability per unit increases

more steeply with chain length for ALDA than for HF, although the overestimation is not as

severe as in the -conjugated systems. In contrast to what we observed for PE, VK gives a large

correction in PSi, which brings the results closer to the available CPHF results [108]. Apparently

nonlocal effects described by VK are important for this system.

6.3.8 Polysilene

The silicon analog of PA is polysilene (PSi2). Because PSi already has a high polarizability

the PSi2 molecule is expected to be even more polarizable. Coupled Hartree-Fock calculations

confirm this assertion [109]. In Figure 6-10 these HF results are compared with our ALDA and

VK results. As expected the ALDA strongly overestimates the polarizability per unit and

increases steeply with chain length (more than linearly). In this case VK drastically modifies the

results, which is indicative of very large nonlocal effects. Going from PE, via PA and PSi, to

PSi2 we see an increase in the polarizability. Within this series we also observe the trend that the

Figure 6-8. ALDA and VK static axial
polarizability of polyethylene compared with
coupled Hartree-Fock (HF) [108] results.

Figure 6-9. ALDA and VK static axial
polarizability of polysilane compared with coupled
Hartree-Fock (HF) [108] results.
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ALDA overestimation increases and the VK corrections become larger. It therefore seems that

high electron mobility and nonlocal effects are connected.

6.3.9 The model hydrogen chain

An important exception to this observation seems to be the model hydrogen chain, H2n. We

show the ALDA and VK results in Figure 6-11, and compare our results with coupled Hartree-

Fock (HF), MP4, and coupled-cluster (CCSD(T)) results [88]. In this system the ALDA

overestimates the polarizability considerably and VK gives only a slight correction. This calls

for an explanation. We observe that the induced current is too large since the same is true for the

VK polarizability. Hence the counteracting xc-electric field that is introduced by VK is not large

enough to get the correct polarizability as obtained from CCSD(T) and MP4. From Eq. (4.54)

we see that the counteracting field is proportional to the induced current. If the VK-functional is

able to incorporate all nonlocal effects then we can conclude that the proportionality coefficient

fxcT 0( )  is too small for this system. To investigate the dependence of VK on the size of the

induced current we study model hydrogen chains by varying the bond length alternation (BLA).

The BLA is defined as the difference in length between adjacent bonds. By increasing the bond-

length alternation of the hydrogen chain, the system ranges from a metallic one-dimensional

chain (BLA = 0 a.u.) to a Peierls distorted semiconductor or insulator (BLA >> 1a.u.). For the

Figure 6-10. ALDA and VK static axial
polarizability of polysilene compared with coupled
Hartree-Fock [109] results.

Figure 6-11. ALDA and VK static axial polarizability
of the model hydrogen chain compared with coupled
Hartree-Fock (HF), MP4, and coupled-cluster
(CCSD(T)) results [88].
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case BLA = 0 a.u. we expect large induced currents and hence a large counteracting field.

However, even in this case we only found a reduction in the order of 30% for 15 H2 units. At

this point we suggest two possible reasons for the failure of VK for model hydrogen chain. It is

possible that the VK-functional has the right form but that the density behavior of the

coefficients is insufficient. On the other hand, it could be that the form of the VK-functional is

too restricted to treat all xc-effects that affect the polarizability. Later we will do some more

analysis of this system.

6.4 Discussion
A clear picture emerges from the systems studied so far. For all systems where ALDA

overestimates the polarizability, the VK correction is large, except for the model hydrogen chain.

The general trend observed in hydrocarbons, is that the static polarizability decreases as one

goes beyond the HF approximation [13,88,104]. We find the same trend for most VK results in

relation to HF, which may indicate that the VK results are in general close to MP2.

The classical interpretation of conjugation is that there is a special distinction between

delocalized systems of electrons in conjugated molecules and localized two center bonds in

nonconjugated molecules [120]. However, more important for the behavior of the polarization of

polymers is not the conjugation but the electron delocalization or mobility, which is measured by

the polarizability. For the purpose of an overall comparison of the performance of the VK-

functional, it is therefore desirable to classify the systems according to their polarizability. We

found that the following power law can very well describe the polarizability as a function of the

chain length:

 N( ) = AN ,  1 3( )  (6.1)

where N is the number of monomer units. The same power law has been used before in the

fitting of the polarizability of oligomer chains [109]. We determined the exponent by a least

squares fitting procedure to a straight line for a log-log plot, thereby weighing the Nth data point

by N. This power law has been derived on the basis of Hückel [121,122], electron gas [123], and

Hubbard models [124]. The exponent = 3  corresponds to the limit of free electrons on a rod,

whereas the exponent = 1  is derived for a Hubbard model with infinite on-site repulsion, i.e.

the limit of localized electrons. We can therefore consider the parameter  as a measure for the

degree of delocalization, and order the systems accordingly. Of course our molecules differ from

these idealized model systems and one may argue that for example an offset is needed to account
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for the end groups. We do not expect that such modifications of the power law will substantially

change the value found for the exponents, especially since end group effects become small for

the long chains. Since all the systems we study are insulators, one would expect the

polarizability to grow linear in the limit of large N. The chain lengths we studied are not long

enough to see this effect, so we will in general obtain values of > 1 .

As a first example we can look at the model hydrogen chain with different BLAs.  The

exponents we found are presented in Table 5-1. For BLA = 0 a.u. we find a value of = 2.37

for the ALDA, which is close to the free electron limit. For the other extreme, BLA = 2 a.u., we

find = 1.17  for the ALDA, which is close to the limit of localized electrons. For the model

hydrogen chain the VK turns out to reduce this exponent only slightly. It is clear that, at least for

BLA = 0.5 a.u. and BLA = 2 a.u., the VK is unable to introduce a sufficient amount of

localization in H2n. The HF exponents, on the other hand, agree well with MP4 and CCSD(T).

In Table 6-3 we give the exponents for the other systems studied here, together with the

values obtained from the cited reference data. We observe that VK in general gives a reduction

of the exponent in agreement with the HF values, except for PBT and PSi2. Note, however, that

for PSi2 the HF exponent is only based on 4 data points. Where comparative data are available,

both the VK and HF exponents are in good agreement with correlated wave function methods.

The HF values for the polarizability itself are, however, larger than those of the correlated

methods due to a larger prefactor A in Eq. (6.1).

Earlier we observed the trend in the polarizabilities in going from PE, via PA and PSi, to PSi2,

that the ALDA overestimation increases and the VK correction becomes larger. However the

exponents reveal that with growing chain length the PA chains will ultimately be more

polarizable than the PSi chains. In view of this, the correct order for the polarizability in the very

long chain limit should be PE-PSi-PA-PSi2. The same order is observed as we look at the

reduction of the ALDA exponents by VK. According to our definition of localization by means

of the exponents of the power law, we can state that the electron delocalization is most

prominent in PSi2 and nearly absent in PE, which is in accordance with intuitive views.

Table 6-2. Exponents  for the model hydrogen chain H2n with different bond length alternations (BLAs).

Exponents are calculated from the values found in the figure in this article. Here ALDA-VK denotes the
difference between the ALDA and VK exponents.
BLA (a.u.) ALDA VK ALDA-VK CHF MP4 CCSD(T)
0 2.37 2.12 0.25
0.5 1.73 1.66 0.07 1.49 1.50 1.48
2 1.17 1.16 0.01 1.10 1.09 1.09
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In summary we can say that the ALDA exponents are more reduced by the VK if they are

larger. The VK exponents are in good agreement with HF methods and beyond, except for the

model hydrogen chain.

In all the graphs of the polarizability we show that convergence of the polarizability towards

an infinite chain results seems to be very slow. This is partly because of the way we plot our

results. We chose to plot N( ) = N( ) N  which is a natural way of finding the polarizability

per oligomers unit. Another way is to take the difference between consecutive oligomers

N( ) = N( ) N 1( ) . In this way the effect of the end groups of the chains is mostly

removed and it converges much faster than our method of choice.

6.5 Conclusions
We have applied TDCDFT to a range of finite oligomers. By treating the xc-effects using the

current functional derived by Vignale and Kohn we were able to obtain polarizabilities in good

agreement with accurate wave function methods. The VK-functional achieves large corrections

to the ALDA. The latter was known to overestimate the polarizability considerably for

conjugated oligomers. Moreover the large N behavior of VK as described by a power law was

found to be in good agreement with reference data. For the model hydrogen chain we indicated

that further improvements are probably needed in the VK-functional, in particular with regard to

the density dependence of the static viscoelastic coefficients.

Table 6-3. Exponents  for various oligomers. Exponents are calculated from the values found in the

figures in this article. Here ALDA-VK denotes the difference between the ALDA and VK exponents.
System ALDA VK ALDA-VK HF MP2/SOPPAa

PE 1.09 1.07 0.02 1.09
PSi 1.31 1.14 0.17 1.23
PY 1.75 1.50 0.25 1.41 1.43
PT 1.76 1.39 0.37 1.44
PMI 1.81 1.35 0.46 1.36 1.39
PDA 1.85 1.40 0.45 1.43
PA 1.94 1.41 0.53 1.52 1.52
PBT 2.19 1.27 0.92 1.70
PSi2 2.23 1.48 0.75 1.68b

a MP2 results for PA and PMI, SOPPA results for PY
b This value is based on only 4 data points



 Chapter 7

Size-scaling of the polarizability of

tubular fullerenes

In this chapter we present a study of the static polarizability for the tubular fullerenes C60+i 10,

where i = 0...5, and the closely related [5,5] carbon nanotube, using time-dependent (current)-

density-functional theory. Comparing the results obtained within the conventional adiabatic

local-density approximation with those obtained using the VK current-dependent exchange-

correlation functional it is found that the extra long-range exchange-correlation effects

described by the current-density functional are important to consider, especially for the longest

fullerenes. For all systems studied the current-density functional results are in good agreement

with experiment, and the agreement with available ab initio self-consistent-field results and

results from a point–dipole interaction model is much better than when using the adiabatic

local-density functional.

7.1 Introduction
The dipole–dipole polarizability of an atomic cluster is next to being determined by its

chemical composition also strongly influenced by the size and shape of the cluster.

Characterizing these clusters by evaluating the dependence of the polarizability on the cluster

geometry has therefore been an important research area [125-134]. The reason for the strong

dependence is easily understood using an interacting point–dipole model of the cluster. As the

self-consistent local fields acting upon the polarizable atoms will depend strongly on the

arrangement of the atoms, so will the resulting induced dipole moments, which constitute the

total response of the system. By adding more and more atoms to the cluster the effective

polarizability per atom, which links the mean induced dipole moment per atom to the average

local field, should converge towards a bulk value. This value is related to the experimental

susceptibility of the bulk material via the famous Lorentz–Lorenz relation [134]. Typical

systems studied are alkali-metal clusters [125-127] and semi-conductor clusters [128-130].

Another class is formed by the all-carbon clusters, which have attracted a lot of attention since
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their discovery, such as the fullerenes [135] and the carbon nanotubes [136]. In this chapter, we

investigate the size dependence of the polarizability for the tubular fullerenes C60+i 10, where i =

0...5. These tubular fullerenes can be considered to be capped [5,5] carbon nanotubes as is

illustrated in Figure 7-1.

We use time-dependent (current)-density-functional theory (TDCDFT) in this study. In the

previous chapter we saw that the adiabatic local density approximation (ALDA) for the induced

exchange-correlation effects tends to overestimate the polarizability and hyperpolarizability of

conjugated polymers, especially for the longer oligomer chains [10,11]. The local approximation

and also more advanced generalized gradient approximations (GGA) are unable to describe the

highly nonlocal exchange and correlation effects found in these systems [10,11]. One way to

overcome these shortcomings is to employ optimized effective potentials [17-19] or

approximations to this potential [20,21]. We found in the previous chapter a successful

alternative approach towards the solution of this problem by using TDCDFT with the VK-

functional. With this method, the results obtained for the prototype conjugated polymers like

polyacetylene are in excellent agreement with ab initio quantum chemical methods. The reason

for choosing the tubular family of fullerenes in this study is that we can determine to what extent

the highly nonlocal exchange-correlation effects are important for these fullerenes. If long-range

effects are indeed important, it is expected from the studies of the conjugated polymers that

Figure 7-1. Structure of the C110 tubular fullerene.
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these contributions become more important with increasing tube length. The aim is both to

investigate the size dependence of the polarizability for larger fullerenes and to assess the

quality of the density- and current-density-dependent approximations for treating these all-

carbon molecules within DFT.

For the smallest fullerene, C60, a reasonably accurate experimental value and some theoretical

calculations are available for the static polarizability. In comparing the various results it is found

that the conventional DFT result of 543.8 a.u. reported in literature [137] is slightly higher than

the ab initio self-consistent-field (SCF) result of 506.7 a.u. [138] and the result from the point

dipole interaction (PDI) model of 522.9 a.u. [139]. All these results are in agreement, within the

experimental uncertainty, with the experimental value of 516.2 ± 54 a.u. [131]. Other studies

also indicate that conventional DFT predicts a polarizability for C60 that is larger than obtained

with ab initio methods [140]. It is therefore interesting to investigate if some of the differences

between the conventional DFT results and ab initio SCF results for the C60 molecule are caused

by highly nonlocal exchange-correlation effects.

7.2 Computational details
We performed the TDCDFT calculations within the linear response formulation. The

calculations of the polarizability were done using the ALDA and the VK approximation for

exchange-correlation functionals, with the use of a modified version of the Amsterdam Density

Functional (ADF) program package [25,71]. For the ALDA calculations we used a ground-state

description obtained within the statistical averaging of (model) orbital potentials method

(SAOP) [40], which is a shape-corrected potential constructed for the calculation of molecular

response properties. The SAOP ground-state potential usually gives superior results for the

(hyper)polarizability compared with LDA and GGA potentials [40]. The VK response

calculations, on the other hand, were performed using the standard LDA description of the

ground state, as this description is compatible with the VK-functional. The structures of the

fullerenes C60-C100 were taken from [141] and the structure of C110 from [142]. The structure of

C100 was relaxed in order to obtain the correct symmetry. For the model PDI calculations, the

structures used were optimized at the PM3 level and taken from [142], which is consistent with

the PDI model parameterization [143].



TIME-DEPENDENT CURRENT-DFT FOR MOLECULES100

7.3 Results and discussion
We compare our results with experimental data, with results obtained using wave function

methods, and with results obtained using the PDI model [139,143]. Experimental results for the

dipole–dipole polarizabilities of the C60 and C70 molecules have recently been obtained in the gas

phase with the use of molecular beam experiments [131-133]. For C60 a value of 516.2 ± 54 a.u.

was reported for the static polarizability [131], and a value of 533 ± 27 a.u. was measured for the

polarizability at the frequency 0.0428 a.u. (k = 1064 nm) [132]. For both the static and the

frequency-dependent polarizability, the experimental results are in good agreement with recent

quantum chemical calculations [137,138] and results from a frequency-dependent PDI model

[139,143]. For C70 an experimental value of 688 ± 94 a.u. was reported for the static value [133]

whereas the ab initio SCF result is 605.9 a.u.

[138]. Thus far there have been no DFT

calculations reported for the polarizability of

the fullerenes larger than C60.

We first study the basis-set dependence of

the results for the mean polarizability,

 
= 1

3 2 +( )  with  and  indicating the

directions along and perpendicular to the long

axis of the molecule, that are obtained using

the SAOP/ALDA combination of ground state

and response potentials. The basis sets used

are the standard ADF basis set of double-zeta

plus polarization function (DZP) quality, the

valence triple-zeta plus polarization function

Table 7-1. Mean static dipole-dipole polarizability (in a.u.) of tubular fullerenes calculated using TDDFT
within the SAOP/ALDA approximation for a double-zeta plus polarization (DZP), valence triple-zeta
plus polarization (TZP), and augmented TZP basis (TZP+).
Fullerenea DZP TZP TZP+
C60 D5d 512.8 545.5 581.6
C70 D5 631.5 669.8 707.6
C80 D5 729.3 772.0 811.7
C90 D5h 841.1 887.6 932.5
C100 D5 976.1 1026.4 1073.2
C110 D5h 1126.5 1183.2 1235.0
a The symmetry used in the calculations.

Figure 7-2. Mean polarizability in a.u. of the
tubular fullerenes calculated using TDDFT with
SAOP and different basis sets.
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(TZP) quality, and the TZP basis augmented with additional first-order field-induced

polarization functions (TZP+) [144]. The TZP+ basis set is expected to give results for the

polarizability, which are close to the basis-set limit [144]. Attempts to go beyond the TZP+

quality induced linear dependency of the basis set, effectively reducing the accuracy of the

calculations. In Table 7-1 we present the mean polarizability for the tubular fullerenes calculated

using the SAOP/ALDA potentials and different basis sets. The results are also plotted in Figure

7-2. From these results we see that the mean polarizability for each fullerene gradually increases

in going from DZP to TZP+. We also see that for the larger fullerenes the difference in the

polarizability obtained with TZP and TZP+ becomes smaller. From Figure 7-2 we see that the

size-dependence of the polarizability for the fullerenes is similar for the different basis sets used.

Therefore we do not expect that basis-set effects will affect our conclusions regarding the size

dependence. Since TZP+ is expected to give results close to the basis-set limit we use this basis

set in the remainder.

We can now study the results for the mean value and the two tensor components separately of

the static polarizability as function of the fullerene size for the SAOP/ALDA and LDA/VK

combinations. In Table 7-2 we present results for , 
 

, and  for the various fullerenes. The

results for the tensor components 
 

 and  have been plotted in Figure 7-3 as function of the

system size for the SAOP/ALDA and LDA/VK approximations. In the same figure we have also

plotted the results obtained with the PDI model. From the results in Table 7-2 and Figure 7-3 we

see that for all fullerenes the polarizabilities obtained using LDA/VK are smaller than those

obtained using SAOP/ALDA, and that the LDA/VK results are in close agreement with the PDI

model calculations. Furthermore, we see that the differences are larger in the direction along the

tube and that there is an increase in the difference as the size of the fullerenes becomes longer.

Table 7-2. Static dipole-dipole polarizability for tubular fullerenes (in a.u.) obtained using TDCDFT
within the SAOP/ALDA and LDA/VK approximations and using the PDI model. Given are the tensor
components along (

 
) and perpendicular ( ) to the long axis, together with the mean value ( ).

 

SAOP/
ALDA

LDA/
VK

PDI SAOP/
ALDA

LDA/
VK

PDI SAOP/
ALDA

LDA/
VK

PDI

C60 581.60 533.59 522.76 581.60 533.59 522.76 581.60 533.59 522.77
C70 758.90 683.44 668.82 681.89 620.00 591.82 707.56 641.14 617.49
C80 947.33 836.76 814.11 743.87 677.63 665.87 811.68 730.67 715.28
C90 1160.1 1005.5 977.55 818.67 752.95 735.98 932.47 837.14 816.50
C100 1420.4 1193.8 - 899.57 821.75 - 1073.2 945.76 -
C110 1698.2 1392.3 1328.8 1003.4 913.16 876.86 1235.0 1072.9 1027.5
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For 
 

 we see that the difference is 10% for

C60 whereas for C110 this is 22%. Especially

the values for 
 

 obtained with

SAOP/ALDA deviate more and more from

the LDA/VK and the PDI results as the

fullerene size increases. These results

confirm that the highly nonlocal exchange-

correlation effects added by the VK-

functional become increasingly important in

the longer fullerenes. In Figure 7-3 we see

that the size-dependence of the

perpendicular component,  is nearly

linear, with some scattering due to the

geometries used. We see that the

SAOP/ALDA results are about 65 a.u. larger

than the LDA/VK results, independently from the size.

The literature LDA/ALDA value of 543.8 a.u. [137] for C60 was obtained in a modified TZP

basis, which is in excellent agreement with the corresponding SAOP/ALDA value of 545.5 a.u.

for the TZP basis. The higher SAOP/ALDA value of 581.60 a.u. obtained in the TZP+ basis is

therefore mainly caused by basis set effect. This is further supported by the fact that we obtain a

value of 604.47 a.u. with LDA/ALDA using the same TZP+ basis. The experimental results for

the static polarizability of C60 is 516 ± 54 a.u. [131], which is in close agreement with the SCF

result of 506.7 a.u. [138], and the PDI result of 522.6 a.u. [139]. Comparing the results from the

present work, the value of 581.60 a.u. obtained using SAOP/ALDA and 533.6 a.u. using

LDA/VK, we see that the correction due to the VK potential (8%) brings the polarizability in

close agreement with experimental, Hartree-Fock and PDI results, whereas the SAOP/ALDA

and LDA/ALDA results are much larger, and lay outside the experimental uncertainty range.

For C70 the experimental result of 688 ± 94 a.u. [133] is in fair agreement with the SCF result

of 605.9 a.u. [138] and all results from the present study: 617.5 a.u. for the PDI model, 707.6

a.u. with SAOP/ALDA and 641.14 a.u. with LDA/VK. Again we see that the VK result is in

better agreement with the SCF and PDI results, and about 10% smaller than the SAOP/ALDA

value. Both the SAOP/ALDA and the LDA/VK values are nonetheless well within the

uncertainty range of 94 a.u. in the experimental result. The better agreement with the SCF result

Figure 7-3. The polarizability in a.u. for the
fullerenes as a function of the number of Carbon
atoms.
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is, however, an indication that the LDA/VK result is more accurate, according to the rule of

thumb that was found in the case of conjugated polymers [77,78].

In order to estimate the effect of going to very large tube lengths we also calculated the

polarizability per unit cell for a [5,5] carbon nanotube of infinite length. For the [5,5] carbon

nanotube the unit cell consists of 20 carbon atoms. The calculations were done using the

periodic structure version of the ADF program (BAND) [101,145], which uses the same

methodology and basis-set types. The TDCDFT part [90,146] of this code was modified to

include the VK-functional. Since the infinite [5,5] carbon nanotube has a semi-metallic band

structure, we carefully checked that our results for the response calculations were converged

with respect to the reciprocal space sampling. We used a valence triple-zeta basis with two

polarization functions, and a k-space sampling of 19 points in the one-dimensional irreducible

wedge. As the SAOP is not available in the periodic structure code, we obtained the

LDA/ALDA and LDA/VK results, and compare with the finite system results discussed above.

Therefore we estimate the polarizability per unit cell,  by calculating the difference in the

polarizability multiplied by two, (i) = 2{ (C60+i 10 ) (C60+(i 1) 10 )} , with i = 1–5. The

results for 
 

 and the average value for  are presented in Table 7-3 together with the

values for the periodic structure calculations. The values for the polarizability per unit cell

estimated from the finite fullerenes should extrapolate for large i to an asymptotic value in

agreement with the results obtained for the infinite nanotube. For the perpendicular component

that depends linearly on the size, we get an average value for  of 152 a.u. using the

LDA/VK results, which is about 10% smaller than the SAOP/ALDA result of 169 a.u. and

which agrees quite well with the DPI model result of 142 a.u. The periodic structure calculation

gives a similar reduction of 15%, from 150 a.u. (LDA/ALDA) to 128 a.u. (LDA/VK). For the

parallel component of the polarizability per unit 
 

 we see a qualitatively different behavior,

with the SAOP/ALDA result growing more steeply with system size than the LDA/VK results.

The latter agree very well with the PDI model calculations. The SAOP/ALDA result is about

18% larger than the LDA/VK result for C60, which grows to 40% for C110 and even 47% for the

infinite nanotube result. These features are in accordance with the trends observed in the

conjugated polymers [77,78].
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7.4 Conclusion
In conclusion, we have presented accurate density functional response calculations for the

static dipole– dipole polarizability of the tubular fullerenes C60+i 10 where i = 0–5, and for the

closely related [5,5] nanotube. This was done by using a large basis set and both the

conventional adiabatic local-density exchange-correlation functional and the more advanced

VK-functional describing long-range effects that cannot be included in the local-density

functionals. The importance of the highly nonlocal exchange-correlation effects was exemplified

by comparing the results for the fullerenes as function of the system size. For the C60 and C70

fullerenes, it was found that the current-functional results were in good agreement with

experiment, and in much better agreement with available ab initio SCF results and model PDI

results than the adiabatic local-density functional results. The excellent agreement with the

model PDI results for the longer fullerenes suggests that the nonlocal xc-effects need to be

included in the description of the polarizability. The neglect of these effects can be expected to

give large deviations, up to 40–50% (10–15%) for the larger fullerenes and the [5,5] carbon

nanotube, in the longitudinal (perpendicular) polarizability per unit cell.

Table 7-3. The SAOP/ALDA, LDA/VK, and PDI results for the polarizability (in a.u.) per unit cell,
(i) = 2{ (C60+i 10 ) (C60+(i 1) 10 )} . The component parallel to the long axis of the fullerenes is

given as function of the number i of half unit cells, each containing 10 Carbon atoms. The average for
the perpendicular component is calculated using the first five values. The values with i =  correspond
to the [5,5] Carbon nanotube results. The LDA/ALDA result for the nanotube given in brackets can be
used as estimate for the extrapolated SAOP/ALDA value.
i

 
i( )

SAOP/
ALDA

LDA/
VK

PDI SAOP/
ALDA

LDA/
VK

PDI

1 345.6 299.7 282.1 - - -
2 376.8 306.6 290.6 - - -
3 425.4 337.5 326.9 - - -
4 520.6 376.5 - - - -
5 555.8 397.0 351.3 168.7 151.8 141.6

(643.7) 438.4 - (150.2) 128.3 -



 Chapter 8

Excitation energies for a benchmark

set of molecules

In this chapter we study a variety of singlet excitations for a benchmark set of molecules. The

 transitions obtained with the VK-functional are in good agreement with experiment and

other theoretical results and they are in general an improvement upon the adiabatic local

density approximation. In case of the n  transitions the VK-functional fails, giving results

that strongly overestimate the excitation energies obtained in experiment and with other

theoretical methods. The benchmark set also contains some other types of excitations for which

no clear failures or improvements are observed.

8.1 Introduction
In Chapter 6 we saw that the static axial polarizability of conjugated oligomers is greatly

overestimated within the ALDA. This local approximation and also more advanced generalized

gradient approximations are unable to describe the highly nonlocal exchange and correlation

effects found in these quasi-one-dimensional systems [10,11]. One route to overcome these

shortcomings is to employ optimized effective potentials [17] derived from the energy functional

that includes exact exchange (see Refs. [16], [18] and [19] and references therein), or

approximations to this potential such as the Krieger-Li-Iafrate [20] and common-energy-

denominator approximations [21,45].

In Chapter 6 we found that there is a successful alternative approach towards the solution of

this longstanding problem by using time-dependent current-density-functional theory, in which

we describe ultranonlocal exchange-correlation effects within a local current description. For

this we used the VK current-functional. Vignale and Kohn were the first to propose such a

functional [8,9] in which the current density is used as a local indicator of global changes. From

a careful analysis of the weakly inhomogeneous perturbed electron gas they arrived at an

expression [8,9,23,24] for the first-order induced exchange-correlation contributions in the form

of a viscoelastic stress field.
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For the prototype polyacetylene and many other systems the results obtained significantly

improved upon the ALDA results and were in excellent agreement with high level ab initio

quantum chemical methods. However, we also observed that a similar large correction was not

obtained for a hydrogen chain having alternating bond lengths that is seen as a theoretical model

for conjugated systems (see Ref. [88] and references therein). This indicates that the VK-

functional is not able to describe all features necessary for a correct description of the axial

polarizability.

To test the VK-functional further, we calculated excitation energies for a collection of

molecules and analyze the way in which the VK-functional modifies the ALDA results for the

excitation properties. This benchmark set mainly consists of the collection of molecular

excitations devised by Parac and Grimme [147] to benchmark their multireference second-order

Møller-Plesset (MRMP2) method. They chose a set for which accurate experimental data are

available and such that a broad range of chemical structures with states of nontrivial electronic

character is covered. For our purpose we added three other excitations to this set: the prototype

 excitation in ethene and the prototype n  excitation in formaldehyde, and finally as

example of an excitation in a molecular chain the 1 1Bu  excitation in trans-1,3,5,7,9-

decapentaene.

In this chapter we present and discuss our results for this benchmark set of molecules. In the

next chapter we study the excitation energies for the long molecular chains as a function of

chain length.

8.2 Computational details
We want to test the performance of the VK-functional for different types of excitations. For

this purpose we use an augmented benchmark set [147]. We show the molecules in Figure 8-1.
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All calculations were performed with our modified version of ADF [25,99-103].

We optimized the geometries within the standard ADF TZ2P basis set, which is a triple-zeta

Slater type basis set augmented with two polarization functions. Cores were kept frozen for

carbon, oxygen, and nitrogen up to 1s and for phosphorus, sodium, silicon, chromium, and iron

up to 2p. Geometry optimizations were performed with a generalized gradient approximated

potential (GGA) by Becke [35] for exchange and Perdew [148] for correlation (BP functional).

For the excitation energy calculations a larger basis set was used. We used the standard ADF

ET-pVQZ basis, which is an even-tempered Slater type basis set of quadruple-zeta quality. For

pyrrole and hexamethyldisilane, for which we study Rydberg type excitations, we used the

standard ADF ET-QZ3P-1DIFFUSE basis, which is an even-tempered Slater type basis set of

quadruple-zeta quality with diffuse functions.

Figure 8-1. Overview of the studied molecules with their structure and orientation in case there is an
ambiguity.
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In all excitation energy calculations the ground state has been calculated with the LDA

functional in the VWN parameterization [34]. The actual response calculations were done with

the standard adiabatic local density approximation (ALDA) and with the VK-functional. For the

latter we use the parameterizations of the viscoelastic coefficient based on results of Conti et al.

[65] for the transverse response of the homogeneous electron gas [77], we denote this by NCT.

As we explained in Section 5.5 we can also use different values for the transverse response

kernel as obtained by Qian and Vignale [66], which we denote by QV. More information on

these parameterizations can be found in Chapter 5. We denote these calculations simply as

ALDA and VK (NCT or QV) instead of LDA/ALDA and LDA/VK.

In the excitation energy calculations the numerical integration accuracy was set to at least five

decimals.

8.3 Results
In the following we discuss our results for the benchmark set. We have divided this part into

three main sections. The first section contains the  transitions, the second section the n

transitions, and the final section contains the remaining transitions in the benchmark set. The

reason for this division is that it turns out that the  and n  transitions form distinct

classes as far as the behavior of the VK-functional is concerned.

8.3.1 The  transitions

The excitation energies for the  transitions are shown in Table 8-1.

8.3.1.1  Ethene

The prototype of a  transition is the transition to the 1 1B1u state in Ethene (known as the

V-N transition). It turns out that the experimental energy of 7.66 eV [149] is difficult to

reproduce even with highly accurate ab initio wave function methods (for a discussion and

references see Ref. [150]). It is generally agreed that this experimental value does not

correspond to a vertical transition [151]. Therefore a theoretical estimate of 8 eV is generally

used to compare results with [152,153]. Davidson and Jarz cki [154] derived equations to relate

the vertical excitation to the average energy of the observed value. They obtain a value of 7.8 eV

for the 1 1B1u state. The multireference singles-doubles configuration interaction (MRSDCI)

results of 7.94 eV calculated by Lindh and Roos [150] and the more recent equation-of-motion

singles doubles triples coupled-cluster results (EOM-CCSDT-3, where the 3 means that an
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iterative method is used for the triple excitations) by Watts, Gwaltney and Bartlett [152] of 7.89

eV lie close to these values. We obtain a value of 7.55 eV with the ALDA and a value of 8.05 eV

with VK/NCT and 8.13 with VK/QV. The VK value we obtain is in reasonable agreement with

the estimates for the experimental value, the NCT value being the closest to experiment.

8.3.1.2 Anthracene

For anthracene we focus on two transitions of  character, the HOMO LUMO

transition and the transition resulting from the nearly degenerate HOMO-1 LUMO and

HOMO LUMO+1 states. These states are labeled in the literature [169] by La (short-axis

polarized) and Lb (long-axis polarized). The absorption spectrum of anthracene [155,156,170]

Table 8-1. This table shows the excitation energies of transitions with  character. All values are in eV.
Molecule State Exp. MR

-MP2a
CC2a Other

theory
ALDA VK

NCT
VK
QV

1. C2H4 11B1u 7.66b 7.94c;
7.89d

7.55 8.05 8.13

2. C14H10 11B1u (La) 3.43e; 3.60f 3.69 3.99 4.57g 2.86 3.53 3.62
11B2u (Lb) 3.47e; 3.64f 3.35 3.93 5.29g 3.57 3.61 3.63

3. C8H7N 2 1A  (Lb) 4.37h 4.25 4.93 4.43i 4.34j 4.66 4.67

3 1A  (La) 4.77h 4.95 4.33 4.73i 4.59j 4.74 5.18
4. C20H14N4 11B1u (Qx) 1.98-2.02k 1.67 2.32 1.63l 2.18 2.23 2.24

11B2u (Qy) 2.33-2.42k 2.33 2.71 2.11l 2.30 2.34 2.35
21B2u (By) 3.13-3.33k 3.28 3.66 3.08l 2.99 3.10 3.11
21B1u (Bx) 3.13-3.33k 3.08 3.57 3.12l 2.97 3.45 3.49

5. C16H10N2O2 1 1Bu 2.30m 2.10 2.36 1.96n 1.93 2.89 2.99
6. C10H12 1 1Bu 4.02o 4.33p;

4.05q
3.26 4.33 4.46

a Ref. [147].
b Ref. [149].
c MRSDCI results from Ref. [150].
d EOM-CCSDT-3 results from Ref. [152].
e Ref. [155], these are the (extrapolated) results for the free molecule.
f Ref. [156], these values have been corrected for solvent effects.
g CASSCF results from Ref. [157].
h Ref. [158].
i CASPT2 results from Ref. [159].
j The character of these states is La for the 2 1A  state and Lb for the 3 1A  state.
k From Ref. [160], Ref. [161], and Ref. [162].
l CASPT2 results from Ref. [163].
m Vapor spectra from Ref. [164].
n CASPT2 results from Ref. [165].
o Gas phase measurements from Ref. [166].
p CIS results from Ref. [167].
q MRMP results from Ref. [168], these values have been corrected for the basis set and active space effects
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shows that the transition to the 11B2u state (Lb band) is hidden under the more intense 11B1u state

(La band). Using two-photon spectra the Lb band could be assigned with more certainty (see Ref.

[155] for a discussion on this matter). Wolf and Hollneicher [155] did measurements on

anthracene in several solvents, from this they found the solvent shift and extrapolated their

values to the free molecule. This shows that the splitting between the La and Lb band in the free

molecule should be very small. Grimme and Parac [156] also have corrected experimental data

for solvent effects and obtained values for the excitation energies that are even closer to our VK

values. They also find a small splitting of the La and Lb band. Our VK results show a small

splitting and the values are also in good agreement with experiment and other theoretical values.

The ALDA results give a splitting that is too large and the position of the La band is

underestimated with ALDA, while the position of the Lb band is already in reasonable

agreement with experiment. The order of the transitions is predicted correctly with TDDFT

contrary to the CC2 [147] and MRMP2 [147] results. The CASSCF [157] results strongly

overestimate the excitation energies.

8.3.1.3  Indole

For indole we again focus on the La (3 1A ) and Lb (2 1A ) bands. The VK results for the Lb

and La bands are in good agreement with experiment [158] and CASPT2 [159] results. The

ALDA results for the 2 1A  state and the 3 1A  state are also in good agreement, but the ALDA

assigns the 2 1A  state to the HOMO LUMO transition (La) and the 3 1A  state to a transition

consisting of contributions from HOMO-1 LUMO and HOMO LUMO+1 transitions (Lb).

The ALDA thus predicts the wrong ordering of the transitions. The VK corrects for this by

giving the correct character without changing the energies too much. The VK/QV value for the

La band is considerably shifted compared to VK/NCT, leading to worse absolute values, but a

better La-Lb splitting. The VK/NCT value is again the one that is closer to experiment.

8.3.1.4  Free base porphin

An extensive study of free base porphin (FBP) with TDDFT has already been performed

using ADF by van Gisbergen et al. [171]. They studied the excitation energies using the LDA,

the BP xc-functional and the Van Leeuwen/Baerends model xc-potential (LB94) [39] in the

ground-state part of their calculations. From this study it turned out that there was not much

difference between the results obtained with the different ground-state functionals. They found

that the BP results support the interpretation of the spectrum by Edwards et al. [160] and the
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CASPT2 interpretation [159]. We discuss how the VK-functional affects these results. Like the

study by Parac and Grimme [147], we studied the first four excitation energies. The lowest two

form the Q bands of experiment. After these two distinct bands, the spectrum shows a broad

band with a distinct shoulder. These are called the B and N bands. There is still much debate on

the assignment of these higher excitations. More information about this and references can be

found in Ref. [171]. Since the purpose of this paper is to see how well VK performs, we will not

discuss the assignment of the two higher excitations.

The lowest two Q bands are called Qx and Qy according to their polarization. These bands are

formed by the transition to the 11B1u and 11B2u states. The VK-functional does not have a big

effect on the excitation energies of these states compared to the ALDA. The splitting between

the states is small with VK just like with the ALDA. The splitting is 0.11 eV with both VK/NCT

and VK/QV. The experimental gas phase splitting is 0.44 eV.

The energy of the 21B2u state is hardly affected by going from ALDA to VK while the energy

of the 21B1u state is raised in energy by almost 0.5 eV with VK. The VK value for these states lie

close to the experimental values for the broad B band.

8.3.1.5  Indigo

The lowest  transition in indigo is the transition to the 11Bu state. The ALDA

underestimates the experimental value of 2.30 eV [164] by 0.37 eV. The VK shifts this

excitation energy upward, but the correction is too large leading to an overestimation compared

to the experimental value (by 0.59 eV with VK/NCT and 0.69 eV with VK/QV) and the other

theoretical results [147,165].

8.3.1.6 Trans-1,3,5,7,9-decapentaene

In our previous studies [77,78] we saw that the VK corrects the large overestimation of the

static polarizability of oligomer chains obtained by the ALDA. It is expected that the VK-

functional will also have a large effect on the excitation energies of these systems. In the next

chapter we study the excitation energies of these oligomers in more detail. Here we focus on

trans-1,3,5,7,9-decapentaene. For this molecule experimental values [166] and MRMP [168]

and CIS [167] results are available, while we observed already in this short chain a correction by

VK of the static polarizability. The ALDA considerably underestimates the excitation energy for

this molecule (more than 1 eV). The VK corrects the underestimation and we obtain with

VK/NCT a value close to the experimental, CIS, and MRMP values.
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8.3.2 Discussion of the  transitions

In nearly all cases studied we see an improvement by using the VK-functional, with indigo

being the only exception where there is an overestimation by VK/NCT of 0.59 eV and VK/QV

of 0.69 eV, which is larger then the underestimation by the ALDA of 0.37 eV. For ethene the

ALDA and VK results lie equally far from the experiment and other theoretical energies. The

correction is most profound for the molecular chain trans-1,3,5,7,9-decapentaene, where we

observe an increase of more than 1 eV for the 1 1Bu in going from ALDA to VK, the VK value

being close to experiment and other theory. Another nice result of the VK-functional is that is

gives the correct ordering of the La and Lb states for indole, contrary to the ALDA.

In all cases we see that the VK slightly overestimates the excitation energies compared with

experimental and other theoretical results. Since the VK/QV values are in all cases higher than

the VK/NCT values, the VK/NCT are the better results for the systems studied.

Until now we have not looked explicitly at the oscillator strengths. All the  excitations

studied are dipole allowed and have finite oscillator strength. In Table 8-2 we show the oscillator

strengths for the various transitions together with the absolute difference in excitation energy

obtained with ALDA and VK/NCT, EALDA-VK . We also give the transition dipole moments and

their orientation. We see that in all cases except anthracene the oscillator strength is reduced

with VK, where we took the correct order of the La and Lb transitions in account,  If one looks at

the four excitations of porphin, it can be seen that the larger the ALDA oscillator strength the

Table 8-2. Oscillator strengths, transition dipole moments and their correlation to the difference
between the ALDA and VK (NCT) excitation energies for the  transitions. The direction of the
transition dipole moment is denoted in italic. The oscillator strengths and transition dipole moments are
in a.u. and the excitation energy differences are in eV.
Molecule State Oscillator strengths Transition dipole moments EALDA-VK

ALDA VK ALDA VK
1. C2H4 11B1u 0.32 0.32 1.31 z 1.29 z 0.50
2. C14H10 11B1u 0.033 0.019 0.69 z 0.47 z 0.68

11B2u <0.001 <0.001 0.039 y 0.078 y 0.05
3. C8H7N 2 1A 0.050 0.006 0.46 x; 0.51 y 0.20 x; 0.11 y 0.32

3 1A 0.017 0.035 0.37 x; 0.11 y 0.42 x; 0.36 y 0.15
4. C20H14N4 1 1B1u <0.001 <0.001 0.12 z 0.026 z 0.05

1 1B2u 0.001 <0.001 0.14 y 0.041 y 0.04
2 1B2u 0.034 <0.001 0.68 y 0.035 y 0.11
2 1B1u 0.11 0.004 1.26 z 0.22 z 0.48

5.C16H10N2O2 1 1Bu 0.22 0.13 2.07 x; 0.65 y 1.30 x; 0.38 y 0.96
6. C10H12 1 1Bu 1.78 1.50 4.71 x; 0.28 y 3.75 x; 0.15 y 1.07



EXCITATION ENERGIES FOR A BENCHMARK SET OF MOLECULES 113

larger the effect of VK on this transition. This trend can also be observed for the excitations of

anthracene and indole. More generally we can state that the larger the transition dipole moment

obtained within the ALDA is along the long axis of the molecule the larger the VK correction

will be for that excitation. In case of porphin this is true for both the y and z direction. This

indicates that the larger the current in the axial molecular direction the larger the VK correction.

This may indicate that the VK-functional is able to include for these excitations the

counteracting field that the ALDA fails to describe.

8.3.3 The n  Transitions

The results for the n  transitions are shown in Table 8-3.

8.3.3.1  Formaldehyde

The prototype of a n  transition is the transition to the 1 1A2 state in formaldehyde. This

state has a clear valence character and can be clearly identified in the absorption spectrum. The

coupled-cluster CCSD value is 4.04 eV [172]. Our calculations give a value of 3.68 eV for

ALDA and 8.3 eV for VK for this transition. This is a large overestimation by VK.

8.3.3.2  Pyridazine

The lowest excitation in pyridazine is the transition to the 1 1B1 state. This excitation has been

experimentally found at 3.30 eV [173]. The ALDA underestimates this value by 0.35 eV. The

VK-functional overestimates strongly with a value of 7 eV.

8.3.3.3 Benzocyclobutenedione

The n  transitions to the 1 1B1 and 1 1A2 states have been observed for

benzocyclobutenedione in n-hexane solution [174]. The ALDA again underestimates the

experimental and theoretical values. The VK-functional leads to an overestimation by more than

2 eV for both excitations.
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8.3.3.4 Benzaldehyde

For benzaldehyde the vertical transition to the 1 1A˝ state is not directly observed. A value of

3.8 eV is estimated on the basis of the experimentally obtained band origin [178] and the

CASPT2 difference between the vertical and adiabatic transitions [179]. The ALDA

underestimates this value by 0.72 eV and also underestimates the other theoretical results. The

VK/NCT functional overestimates by 0.66 eV and VK/QV by 0.71 eV.

8.3.3.5  C5

As the final example of a n  transition the transition to the 1 1
u state of the highly

unsaturated C5 molecule is studied. The ALDA underestimates the experimental value [180] by

0.28 eV. The VK-functional overestimates this value by more than 3 eV.

8.3.4 Discussion of the n  transitions

All the n  transitions are strongly overestimated by the VK-functional except for

benzaldehyde for which the overestimation is not as severe. Again the VK/QV values lie slightly

higher than the VK/NCT values, leading to even greater overestimations for VK/QV.

Table 8-3. This table shows the excitation energies of transitions with n  character. All values are in eV
Molecule State Exp. MRMP2a CC2a Other

theory
ALDA VK

NCT
VK
QV

1. H2CO 11A2 3.79b; 4.07c 4.04d 3.68 8.34 8.38
2. C4H4N2 1 1B1 3.30e 3.62 3.87 3.48f 2.95 7.03 7.05
3. C8H4O2 1 1B1 2.79g 2.68 2.99 2.01 4.67 4.73

1 1A2 3.49g 3.62 3.83 2.76 5.27 5.30
4. C7H6O 1 1A˝ 3.8h 3.98 3.92 3.71i 3.08 4.46 4.51
5. C5 1 1

u 2.78j 2.61 3.35 2.90j 2.50 6.74 6.76
a Ref. [147].
b Electron impact spectroscopy values from Ref. [175].
c Ref. [176].
d CCSD results from Ref. [172].
e Ref. [173].
f CASPT2 results from Ref. [177].
g Absorption spectra in n-hexane solution from Ref. [174].
h This value is estimated on the basis of the experimentally obtained band origin (at 3.34 eV, Ref. [178]) and
the CASPT2 difference between the vertical and adiabatic transition (3.71 eV – 3.27 eV = 0.44 eV, Ref.
[179]).
i CASPT2 results from Ref. [179].
j Gas phase measurements by Motylewski, Vaizert and Giezen and MRCI results from Ref. [180].
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8.3.5 Miscellaneous transitions

The remaining results are given in Table 8-4. As an example of a system having excitations

involving  orbitals the covalently bound P4 cluster and the metallic Na4 cluster are studied. As a

severe test some low-lying excited states involving d orbitals of the transition metal complexes

ferrocene and chromiumhexacarbonyl are considered. Finally we study Rydberg states in pyrrole

and hexamethyldisilane.

8.3.5.1 P4

The first dipole-allowed transition in P4 is the transition to the 1 1T2 state. It is experimentally

located at 5.6 eV [181]. The ALDA underestimates this value by 0.45 eV, but the VK corrects to

a value of 5.69 eV for VK/NCT and 5.71 eV for VK/QV. These values are very close to the

experiment.

8.3.5.2 Na4

The optically allowed 1 1B1u state of the Na4 cluster is another example of a system involving

 orbitals. However, in this case the system contains only metal atoms. The experimental

excitation energy is located at 1.81 eV. The ALDA value of 1.79 eV lies very close to this value.

The VK overestimates by 0.8 eV.
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8.3.5.3 Ferrocene

For ferrocene in the D5d symmetry the transition to the 1 1E1g state is studied. The value found

experimentally for this transition is 2.81 eV [184]. The ALDA results are reasonably close to the

experiment and other theoretical results. The VK strongly overestimates by more than 2 eV.

8.3.5.4 Chromiumhexacarbonyl

Another example of a transition metal compound is chromiumhexacarbonyl. Two d

charge transfer excitations are present in the test set. These excitations appear in the spectra

[185] as two strong bands with maxima at 4.43 eV and 5.41 eV. The ALDA underestimates the

transition to the 1 1T1u state and overestimates the transition to the 2 1T1u state. The VK again

shifts these excitation energies to higher values. The excitation energy for the 1 1T1u state

obtained with VK is in good agreement with the experiment and other theoretical values (except

for CC2 which underestimates both excitations [147]), the VK/NCT being closest to experiment.

The 2 1T1u excitation is already overestimated by the ALDA and the VK-functional makes this

even worse.

Table 8-4. This table shows the excitation energies of transitions with various character, see the text for
more detail. All values are in eV
Molecule State Exp. MR

-MP2a
CC2a Other

theory
ALDA VK

NCT
VK
QV

1. P4 1 1T2 5.6b 5.38 5.52 5.15 5.69 5.71
2. Na4 11B1u 1.81c 1.85 1.83 1.74d 1.79 2.60 2.63
3. C10H10Fe 11E1g 2.81e 2.85 2.65 2.93 5.17 5.21
4. Cr(CO)6 1 1T1u 4.43f 4.56 3.96 4.54-4.11g 4.14 4.62 4.75

2 1T1u 5.41f 5.42 4.36 5.07-5.20g 5.68 6.31 6.44
5. C4H5N 11A2 5.22h 5.26 5.14 5.10j 4.81 5.04 5.05

11B1 5.86i 6.00 5.80 5.85j 5.20 5.29 5.31
6. Si2(CH3)6 11Eu 6.35k 6.52 5.72 5.32 5.55 5.56
a Ref. [147].
b Absorption spectra in solid argon from Ref. [181].
c Photo depletion spectra from Ref. [182].
d CI results from Ref. [183].
e Absorption spectra from Ref. [184].
f Vapor spectra from Ref. [185].
g CASPT2 results from Ref. [186].
h Ref. [176].
i Vapor spectra from Ref. [187].
j CC3 results from Ref. [188].
k Electron energy loss spectra from Ref. [189].
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8.3.5.5 Pyrrole

For pyrrole the first two low-lying Rydberg-type transitions are studied. These are

experimentally observed at 5.22 eV [176] and 5.86 eV [187].  The ALDA underestimates these

values and the other theoretical results. The VK increases the ALDA values but not enough; the

VK values still underestimate the experiment.

8.3.5.6 Hexamethyldisilane

Another example of a Rydberg excitation is the transition to the 11Eu state in

hexamethyldisilane. The value found experimentally is 6.35 eV [189]. With the ALDA we find

5.32 eV, which is an underestimation of more than 1 eV. With VK this value is raised to 5.5 eV,

which is still a strong underestimation.

8.3.6 Discussion of the miscellaneous transitions

Except for the case of ferrocene the excitation energy shifts due to VK are moderate

sometimes improving, sometimes worsening the results. The shift due to VK is upward in all

cases, VK/QV giving the highest values. Except for the transition to the 2 1T1u state in

chromiumhexacarbonyl and the transition to the 1 1E1g state of ferrocene the ALDA always

underestimates. The too high excitation energies cannot be corrected by including a

counteracting field term through the VK-functional. The VK shift in the transition metal

complex chromiumhexacarbonyl is not very large, contrary to the case of ferrocene for which

the transition to the 1 1E1g state is strongly overestimated by VK. The Rydberg excitation

energies are still underestimated with VK, but it should be noted that for these excitations use of

an asymptotically correct functional such as the LB94 [39] functional is necessary to obtain

good results. A large correction is not necessary for these systems when the LB94 is used in the

ground state, indicating that the fact that VK does not correct the ALDA a lot in case of the

Rydberg states is not a failure of the VK.

8.4 Conclusion
In this chapter we applied TDCDFT to a benchmark set of molecules and considered

excitations of various nature. For the tensor xc-kernel we used the VK approximation in the

static limit. As we mentioned in section 4.8 the static limit can only be used if the frequency

dependence of the longitudinal and transverse xc-kernels of the electron gas is weak. For

molecules this is the case if the frequency is much smaller than the local plasma frequency.  For
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the valence region of molecules the plasma frequency corresponds to p 47 eV , which is

much larger than typical excitation energies we studied here.

The  excitation energies obtained with VK improve the ALDA results in all cases

except indigo. This is in line with the results obtained for the polarizabilities in the -conjugated

systems [77,78], For the n  excitation energies and the transition to the 1 1E1g state of

ferrocene the VK dramatically fails. For the other type of excitations contained in the benchmark

set no clear picture emerged: sometimes the VK improves and sometimes it worsens upon the

ALDA, but in general no large effects were observed. Using the QV parameterization with VK

instead of the NCT usually only slightly raises the excitation energy. This usually leads to

slightly worse results compared with experiment.

A possible explanation that the VK-functional behaves differently for different kinds of

transitions may be found in the fact that the functional is derived for a system that is very

different from the ones we study. The VK-functional was derived by an expansion to second

order in wave vectors k and q, which characterize the Fourier component of the current-current

response function for the electron gas and the wavelength of the inhomogeneity, respectively.

This expansion was shown to be valid in the regime k,q << kF , / vF  where kF  is the Fermi

momentum and vF  the Fermi velocity of the electron gas. This is the region above the particle-

hole continuum. For the wave vector of the applied optical field the constraints k << kF , / vF
are trivially met as k = / c << kF , and the speed of light c >> vF . However, since we consider

excitations in molecular systems, the self-consistent perturbing field associated with a given

excitation will vary on a length scale that is determined by the inhomogeneity of the induced

density and current density describing the excitation, and hence by the particular orbital

structure of the transitions involved. An optimistic estimate for this perturbing field will be

k 2 / L , with L the characteristic size of the molecule, but a more realistic value would be to

consider k q , i.e. of the same order as the inhomogeneity. For the wave vector characterizing

the inhomogeneity of the ground-state density, we have q = 0 / 0 . In the core and valence

region q is of the same order as kF  and 1 / vF  [39,190], whereas in the asymptotic outer region

q >> kF  and q << 1 / vF . The constraints on the wave vector q are violated, although not

strongly, almost everywhere in the molecule, while the extent of the violation of the constraints

on k will depend on the particular excitation considered.

One should keep in mind that meeting the constraints on k and q in itself does not justify the

use of an xc-functional derived for the weakly inhomogeneous metallic electron gas to

inhomogeneous systems with an excitation gap. This problem is not unique to the VK-
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functional, but is already present for the local density approximation and for the gradient

corrections.  However, the VK-functional satisfies two important constraints, which are valid for

systems with arbitrary time dependence and inhomogeneity (such as molecules in external

fields), stating that in linear response the xc-electric field does not exert any forces or torques on

the system. Another exact property, which is satisfied for any system, is that under rigid

translation of the center of mass, described by position vector x ( ) , the xc-potential is also

translated over this vector. This immediately implies that the VK-functional satisfies the so-

called harmonic potential theorem [57,58]. In view of these exact properties one may hope that

the VK-functional is still applicable to the inhomogeneous systems with an excitation gap such

as molecules. The particle-hole regime, for which the VK derivation is not justified, is to a large

extent taken into account by the explicit evaluation of the Kohn-Sham response functions.

It is our observation that for the  transitions the results obtained are much improved

when including the VK contribution to the exchange-correlation potentials. For the 

transitions the region where the xc-field contributes most to the matrix elements is neither close

to the nuclei nor in the remote outer region: the induced current associated with such transitions

is mainly in the -system in the direction of the long axis of the molecules, and it is more or less

uniform along this axis. Even though the equilibrium density is far from homogeneous ( q kF )

in the relevant region, the density gradient is mostly in a direction perpendicular to the induced

current. We may speculate that this remnant of a weak inhomogeneity might result in the xc-

functional to behave in a graceful manner. A similar argument cannot be used for the n

transitions, for which we observe that the VK-functional severely fails to describe these

transitions correctly. The systems studied are however too complicated to analyze this

conjecture. We propose to study simpler systems, that are chemically relevant, and that can be

analyzed to a larger extent. As turns out the VK-functional also fails for some transitions in

atoms. C.A. Ullrich has done an independent study

of excitation energies of atoms with the VK-functional. He obtained excitation energies using

the so-called single pole approximation, in which only the diagonal elements of the coupling

Table 8-5. This table shows the lowest two excitation energies of transitions for the beryllium atom. All
values are in eV

Transition Exp.a ALDA results by
C.A. Ullrichb

VK results by
C.A. Ullrichb

ALDA VK
NCT

VK
QV

2s  2p 5.27 5.07 6.23 4.83 6.03 6.14

2s  3s 6.77 5.62 5.66 6.53 6.55 6.58
a Ref. [191].   b Ref. [27].
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matrix are included. His results [27] show that also in the case of atoms there are certain

excitations that are strongly overcorrected by VK while others remain nearly unchanged. For

example in case of beryllium (Table 8-5) the 2p  2 s excitation energy is strongly

overestimated by VK, while the 3s  2s excitation energy is shifted only slightly by VK,

improving over the ALDA result. We see a similar effect for our implementation of the VK-

functional, which takes into account all matrix elements of the coupling matrix: the large shift

observed for the 2p  2s excitation energy in the single pole approximation is reduced by taking

into account off-diagonal elements but it is still 0.8 eV too large. For the 3s  2s excitation both

methods find a small shift, our result being closest to experiment because our ALDA value is

already much closer to this value. We hope to get more insight in the range of applicability of

the VK-functional in molecules, and to find the cause of its failure for particular transitions, by

studying atoms in more detail. We will do this in Chapter 10.



 Chapter 9

Excitation energies of oligomers

In this chapter we study the  singlet excitations of the -conjugated oligomers of

polyacetylene, polydiacetylene, polybutatriene, polythiophene, poly(para-phenylene vinylene)

and the lowest singlet excitations of the hydrogen chain. By studying the dependence of the

excitation spectrum on the chain length we conclude that the reduction of the static

polarizability when using the VK-functional has two origins. First, the excitation energies of

transitions with a large transition dipole are shifted upward. Second, the HOMO-LUMO

character and oscillator strength of the lowest transition within the adiabatic local density

approximation is transferred to higher transitions. The lowest transitions that have a

considerable oscillator strength obtained with the VK-functional have excitation energies that

are in most cases in better agreement with available reference data than the adiabatic local

density approximation.

9.1 Introduction
In Chapter 6 we showed that we can use time-dependent current-density-functional theory

(TDCDFT) in order to go towards the solution of this longstanding problem of the

overestimation of the static polarizability of long molecular chains. With this method we

describe ultranonlocal exchange-correlation effects using a functional that is dependent on the

current density. Vignale and Kohn proposed such a functional [8,9] in which the current-density

is used as a local indicator of global changes. From a careful analysis of the weakly

inhomogeneous perturbed electron gas they arrived at an expression [8,9,23,24] for the first-

order induced exchange-correlation contributions in the form of a viscoelastic stress field.

Within the VK-functional we use a parameterization of the viscoelastic coefficient based on

results of Conti et al. [65] for the transverse response of the homogeneous electron gas [77]. For

the prototype polyacetylene and many other linear conjugated oligomers the results obtained

using this VK-functional significantly improved upon the ALDA results, and were in excellent

agreement with high level ab initio quantum chemical methods. However, we also observed that

a similar large correction was not obtained for a hydrogen chain with alternating bond lengths,



TIME-DEPENDENT CURRENT-DFT FOR MOLECULES122

which is seen as a theoretical model for conjugated systems (see Ref. [88] and references

therein). This indicates that the VK-functional in the parameterization we use is not able to

describe all features necessary for a correct treatment of the axial polarizability.

In Chapter 8 we calculated the excitation energies of a benchmark set of molecules. We

studied several types of transitions. In most cases, the excitation energies of the 

transitions obtained with the VK-functional were found to improve much upon the ALDA

values, giving results close to other values available from literature. We also found that the

n  energies were strongly overestimated with VK and that for some other types of excitations

the picture that emerges was less clear. In the -conjugated systems studied here the low-lying

 transitions determine for a large part the axial polarizability. We therefore expect that the

reduction in the polarizability for these systems is linked to a modification of the 

excitations.

In this chapter we study the lowest dipole-allowed singlet excitations of the oligomers of

polyacetylene, polydiacetylene, polybutatriene, polythiophene, poly(para-phenylene vinylene),

and the hydrogen chain. The singlet excitations considered here are all of the  type except

for the hydrogen chain. We compare our results with available experimental and ab initio data.

From the results for the  excitations of the small molecules and the excellent VK results

for the polarizabilities of -conjugated oligomers, we may expect a large improvement with VK

upon the calculated ALDA excitation spectra.

9.2 Computational Details
All calculations were performed with our modified version of ADF [25,99-103].

For the oligomers of polyacetylene (PA), polydiacetylene (PDA), polybutatriene (PBT),

polythiophene (PT) and the hydrogen chain we use the same geometry as we used in Chapter 6.

This is the first chapter in which we study the poly(para-phenylene vinylene) (PPV) and

polyacene (PAC) oligomers. We did a geometry optimization for these oligomers with a

generalized gradient approximated potential (GGA) by Becke [35] for exchange and Perdew

[148] for correlation (BP functional). We forced the oligomer geometries to be planar (Cs

symmetry).

All calculations were done within the standard ADF TZ2P basis set, which is a triple-zeta

Slater type basis set augmented with two polarization functions. Cores were kept frozen for

carbon up to 1s and for sulfur up to 2p.
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In all excitation energy calculations the ground state has been calculated with the LDA

functional in the VWN parameterization [34]. The response calculations themselves were done

with the adiabatic local density approximation (ALDA) derived from the ground-state LDA

expression and the VK-functional. For the latter we use for the singlet transitions a

parameterization of the viscoelastic coefficient based on results of Conti et al. [65] for the

transverse response of the homogeneous electron gas [77]. For the triplet excitation energies we

use the parameterization of Qian and Vignale [60]. From now on we denote these calculations

simply as ALDA and VK instead of LDA/ALDA and LDA/VK.

9.3 Results
In Sections 9.3.1 till 9.3.7 we show our results for the excitation energies of several molecular

chains. In Section 9.3.2 we discuss our results for the triplet excitation energies of

polyacetylene.
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9.3.1 Polyacetylene

We discuss the prototype polyacetylene (PA) chain. In Ref. [77] we obtained axial

polarizabilities for the PA oligomers that were very close to the available MP2 results if we use

the VK-functional, but that were considerably overestimated when using the ALDA functional.

In Figure 9-1 we plot the ALDA and VK results for the (dipole allowed) 1Bu excitation energies

and corresponding oscillator strengths against the number of oligomer (C2H2) units. We compare

our data with experimental results [193] and CCSD-EOM results [192]. The 1 1Bu excitation

energies obtained within the ALDA are close to the CCSD results for the small chain lengths (3-

4 units), but for the longer chains the excitation energies are underestimated. The

underestimation for the longest chain of 15 units is 1.39 eV. This result is consistent with the fact

that the ALDA overestimates the polarizability as can be seen from the sum-over-states (SOS)

expression for the polarizability,

Figure 9-1. ALDA and VK singlet excitation
energies and oscillator strengths of polyacetylene
oligomers compared with CCSD-EOM [192] and
experimental results. Exp. and Exp. 2 are both
absorption spectra from Ref. [193].

Figure 9-2. ALDA and VK HOMO-LUMO
character and transition dipole moments for
polyacetylene oligomers.
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( ) =
fn

n
2 2

n

(9.1)

where n  are the excitation energies and fn  the oscillator strengths. The reduction of the static

polarizability by using the VK-functional has to be a result of a decrease of the oscillator

strength of the lowest transitions or an increase of their excitation energies, or both. We

therefore expect that the excitation energies calculated with VK will improve upon the ALDA.

Indeed the VK results for the 1 1Bu excitation energy are higher than the ALDA results and lie

closer to the CCSD results, but from 10 units onward they also underestimate the CCSD results.

If we look at the oscillator strengths we see that the ALDA oscillator strength of the 1 1Bu

transition rises, although less steeply for larger chain lengths. This contributes to the large

overestimation of the polarizability in case of the ALDA. The VK oscillator strength for the 1
1Bu transition also rises in the beginning but drops again after 5 units. The 2 1Bu transition has

almost zero oscillator strength for all chain lengths, and for this excitation the effect of VK on

the excitation energies is almost zero with values lying very close to the ALDA values. We have

therefore not added this excitation to the graph. The oscillator strength of the 3 1Bu transition

with VK rises at the point where the 1 1Bu oscillator strength drops. The 3 1Bu oscillator strength

drops from 10 units onward, but then the 7 1Bu transition takes over. The 4 1Bu, 5 1Bu and 6 1Bu

transitions have again an oscillator strength close to zero and the VK excitation energies are

close to their corresponding ALDA values. In Figure 9-2 we show the HOMO-LUMO character

and the transition dipole moment in the axial direction of the 1Bu transition. The transition dipole

moment, which is mainly in the axial direction, follows the same trend as the oscillator

strengths. If we look at the HOMO-LUMO character we find that the 1 1Bu transition has almost

100% HOMO-LUMO within the ALDA. The character of the 1 1Bu transition with VK is also

close to 100% HOMO-LUMO for the small chains, but when the chains become longer more

states mix in. Just like in case of the oscillator strength it are the 3 1Bu and later the 7 1Bu

transitions that gain HOMO-LUMO character. We see that the excitations with a large spectral

weight are not the lowest transitions with VK and they move to higher energy as the chain

becomes longer. These transitions with the largest spectral weight lie close to the CCSD results.

This is consistent with the fact that we find much lower polarizabilities for PA with VK.
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9.3.2 Triplet excitation energies of

polyacetylene

For polyacetylene we also calculated the

triplet 3Bu excitation energies. We show our

results in Figure 9-3. Since the triplet

excitation energies have no oscillator strength

we plot the % HOMO-LUMO character

instead. We have also added the difference

between the Kohn-Sham HOMO and LUMO

orbital energies.

From the graph we see that the ALDA

values lie close to the experimental [195,196]

and CIS [194] results. They also lie very close

the Kohn-Sham HOMO-LUMO gap. The VK-

functional has a large effect, just like in the

singlet case. But in this case the effect of VK

is unwanted since the ALDA values are

already close to experimental and CIS values.

Apart from the fact that the excitation energies

lie much higher than the ALDA values, the

HOMO-LUMO character is transferred to the 3 3Bu and later the 7 3Bu transitions.

The reason of this large effect of VK is that the static values of BT , presented in Table 5-1,

are very close to the values of fxcT 0( ) . Therefore we can expect a similar effect of VK for both

the singlet and triplet excitation energies. Since there is not much qualitative difference between

the singlet and triplet energies and there is hardly any reference data available for the triplet

energies, we will not give the triplet energies for the other systems.

9.3.3 Polydiacetylene and polybutatriene

In Ref. [78] we made a comparison for the polarizabilities of the oligomers of polydiacetylene

(PDA) and polybutatriene (PBT). We found that the polarizabilities obtained with VK of these

two systems are very similar. The value per oligomer unit, which can be estimated from the

experimental values for the polydiacetylene-like PTS (R=R’=CH2OSO2C6H4CH3) and

polybutatriene-like TDCU (R=R’=(CH2)4OCONHC6H5), are also found to be close together

Figure 9-3. ALDA and VK triplet excitation
energies and % HOMO-LUMO character of
polyacetylene oligomers compared with CIS [194]
and experimental results [195,196] and the Kohn-
Sham HOMO-LUMO gap.
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[107]. The Hartree-Fock polarizabilities for these systems were very different, the PDA result

lying close to our VK values but the PBT value being much larger for the larger chains. Some

CASSCF and CASPT2 results for the 1 1A’ excitation energies of PDA and the 1 1Bu excitation

energies of PDA were available from the literature for the shorter chains [197]. The CASPT2

values are considered the most accurate according to Ref. [197]. There are also CCSD results

available for the monomers [117]. We show these results together with our VK and ALDA

results in Figure 9-4 and Figure 9-5. The oligomer unit is for both molecules a C4H2 unit. The

trends observed for the ALDA and VK excitation energies, oscillator strengths, HOMO-LUMO

character and axial transition dipole moments are again similar to the previous examples. In case

of PDA the CASPT2 and CASSCF results for the excitation energies lie close to the VK values

with the largest oscillator strength. For PBT CASSCF results lie close to the VK results with the

largest oscillator strength, but here the CASPT2 results lie closer to the ALDA. The literature

data for PBT are widely spread for the longer chain lengths, and we cannot make any

conclusions on whether the VK results improve upon the ALDA. As can be seen from Figure

9-5 the oscillator strength for the 3 1Bu transition of butatriene (1 unit of PBT) with VK is larger

than the oscillator strength of the 1 1Bu transition, but it turns out that the stronger 3 1Bu

excitation does not correspond to a HOMO-LUMO excitation with VK. The major contribution

to this transition is from the HOMO-1 LUMO+1. Therefore the 3 1Bu transition of VK should

be compared with the 3 1Bu transition of the ALDA (7.58 eV for the excitation energy and 1.21

a.u. for the oscillator strength).
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9.3.4 Polythiophene

In Figure 9-6 we show the excitation energies and oscillator strengths for the 1 1Bu (even

number of thiophene rings) and 1 1B2 (odd number of thiophene rings) transitions of

polythiophene (PT) against the number of SC4H2 units. The ALDA and VK results show the

same behavior as observed for PA. The oscillator strength of the 1 1Bu/
1B2 transition of VK drops

for longer chain lengths and the spectral weight is transferred to the 3 1Bu/
1B2 and 4 1Bu/

1B2

transitions. The 2 1Bu/
1B2 in between again has almost zero oscillator strength and the VK

excitation energies lie close to the ALDA values. For the axial transition dipole moment and the

HOMO-LUMO character we see the same trends as for polyacetylene, specifically the axial

transition dipole moment shows the same trend as the oscillator strength and with VK the

HOMO-LUMO character is transferred from the 1 1Bu/
1B2 to the 3 1Bu/

1B2 and later to the 4
1Bu/

1B2 transition. If we compare our results with the available CIS [198] and experimental [199-

201] results it is clear that the ALDA underestimates the excitation energies for the long chain

Figure 9-4. ALDA and VK singlet excitation
energies and osci l lator  s trengths of
polydiacetylene oligomers compared with
CASSCF [197] CASPT2 [197], and STEOM-
CCSD [117] results.

Figure 9-5. ALDA and VK singlet excitation
energies and oscillator strengths of polybutatriene
oligomers compared with CASSCF and CASPT2
results [197].
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lengths. The VK results for the transitions with the largest oscillator strengths lie close to the

CIS and experimental results, which is consistent with our earlier observations for the

polarizability [77].

9.3.5 Poly(para-phenylene vinylene)

In Figure 9-7 we show the results for poly(para-phenylene vinylene) (PPV). We choose the

trans-stilbene molecule to be zero PPV units, a new unit is obtained by adding a styrene unit

between the trans-stilbene. It is immediately clear from the figures that with VK many states

mix in. We see again the same trends as for the other systems studied. The ALDA values for the

excitation energies strongly underestimate the experimental [203] and RCIS [202] results,

especially for the longer chain lengths. The excitation energies with VK for the transitions with

the largest oscillator strengths are all in between the experimental and RCIS results, the longer

chains being closer to the experimental values.

Figure 9-6. ALDA and VK singlet excitation
energies and oscillator strengths of polythiophene
oligomers compared with CIS [198] and
experimental results (monomer and dimer from
Ref. [199] tetramer and seximer from Ref. [200],
and octamer from Ref. [201]).

Figure 9-7. ALDA and VK singlet excitation
energies and oscillator strengths of poly(para-
phenylene vinylene) oligomers compared with
RCIS [202] and experimental [203] results.
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9.3.6 Polyacene

In Figure 9-8 we show our results for the 1B2u transition of polyacene (PAC) and in Figure 9-9

we show our results for the 1B3u transition. One phenyl ring is chosen to be one unit (so

naphthalene is two units). The 1B2u transition is largely a HOMO LUMO transition and is

known as the La state. The 1B3u transition is known as the Lb state and is of shared HOMO-

1 LUMO and HOMO LUMO+1 character. For both transition experimental data is available

up to 8 rings [156] and we also compare with available CC2 data [156]. For the 3 1B2u transition

we only show the values for 3 and more rings. This is because the 3 1B2u transition of

naphthalene has relatively high oscillator strength, but this transition is not of the La type.

Including it would only make the graph unclear. For the La state we see that the ALDA again

underestimates the literature values. The VK values for the 1 1B2u lie close to the literature

values for the smaller chains, but for the larger chains they start to overestimate and the 3 1B2u

state starts to mix in. For the Lb state we see that the ALDA and VK values lie very close

together and are close to the experimental values.

Figure 9-8. ALDA and VK singlet excitation
energies and oscillator strengths of the La state of
polyacene oligomers compared with CC2 and
experimental results [156].

Figure 9-9. ALDA and VK singlet excitation
energies and oscillator strengths of the Lb state of
polyacene oligomers compared with CC2 and
experimental results [156].
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From the graphs we see that VK has a much larger effect on the La state than on the Lb state.

This can be explained by looking at the transition dipole moment. The HOMO LUMO

transition of the La state has a large transition dipole moment along the short axis of the

molecule (not along the chain direction). The HOMO-1 LUMO and HOMO LUMO+1 have

large transition dipole moments along the long axis of the molecule, but these transition dipole

moments counteract each other. The Lb state therefore has only a small net transition dipole

moment along the chain direction. This explains the small effect of the VK-functional.

An important point that is not immediately clear from the graph is the ordering of the La and

Lb states. For naphthalene the experiment tells us [169] that the Lb state should be below the La

state, while for anthracene and onwards the La state should be below the Lb state. Within the

ALDA the La state is always below the Lb state even for anthracene. VK corrects for this

discrepancy and predicts the right ordering of the La and Lb states.
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9.3.7 The model hydrogen chain

Finally we studied the hydrogen chain. In Ref. [77] we showed that VK only has a minor

effect on the polarizability of the model hydrogen chain. In Figure 9-10 and Figure 9-11 we

show our results for the 1A2u transition for ALDA and VK. To our knowledge no literature

results are available for this system. We see that VK has hardly any effect on the excitation

energies of the hydrogen chain. For the really long chains the 3 1A2u transition takes over from

the 1 1A2u transition for VK but the effect is small. If we look at the HOMO-LUMO character we

see that even for the long chains the HOMO-LUMO character is still >90% with VK.

9.4 Discussion
For all systems studied here we see the same trends. With VK the oscillator strength, axial

transition dipole moment and HOMO-LUMO character are transferred to higher states. In all

cases the excitation energies obtained with VK lie higher than the ALDA values. Except for the

model hydrogen chain and PBT the excitation energies obtained with VK that have the largest

Figure 9-10. ALDA and VK singlet excitation
energies and oscillator strengths of the hydrogen
chain.

Figure 9-11. ALDA and VK HOMO-LUMO
character and transition dipole moments for the
hydrogen chain.
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spectral weight are closer to the available

literature results. This explains why we

obtain lower values for the polarizability

with VK. However the individual excitation

energies and oscillator strengths are not

correctly described with VK.

In Figure 9-12 we again show the

excitation energies and oscillator strengths

of PA, but this time we added all transitions

up to 4 1Bu for both ALDA and VK (to keep

the graph readable we do not show the

higher transitions). The ALDA and VK

energies for the 2 1Bu and 4 1Bu transitions

lie very close together. As mentioned the

oscillator strengths for these transitions are

very small. The 1 1Bu transition of VK

moves away from the 1 1Bu transition of the

ALDA until it comes close to the 2 1Bu

transition. We see that at this point the 3 1Bu transition starts to move away from the ALDA, as if

the 1 1Bu transition “pushes through” the 2 1Bu transition. We observe the same phenomenon

when the 3 1Bu transition “pushes through” the 4 1Bu, 5 1Bu and 6 1Bu transitions and becomes the

7 1Bu transition. We saw in Ref. [79,80] that in case of  transitions a large oscillator

strength (and a large transition dipole moment) means a large VK effect. This is exactly what we

observe here. The excitation energies with little oscillator strength do not shift compared to the

ALDA and the transitions with a large oscillator strength have a large shift compared to the

ALDA. We see the same for the other systems studied. We also see in Figure 9-12 that the 3 1Bu

transition within the ALDA gains oscillator strength for the long chains. With VK this excitation

gets mixed in with several higher states and it is difficult to see which VK state corresponds with

the 3 1Bu transition within the ALDA.

In all systems studied here the excitations with large oscillator strengths also have a large

axial transition dipole moment. This means that there is a large global displacement of charge

along the long axis of the molecule, which means a large current flow and a large VK effect. The

excitations for which the oscillator strengths and transition dipole moments are small have only

Figure 9-12. ALDA and VK excitation energies and
oscillator strengths of polyacetylene.
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a small global charge displacement (small current) and therefore the VK effect is small. The

problem with VK seems to be that the transitions with small oscillator strengths do not shift

upward like the transitions that do have large oscillator strengths. When transitions with large

and small oscillator strength become close in energy, they can mix and the oscillator strength

becomes distributed over these states. The mean weighed average of the excitation energies is

however roughly at the correct position.

Finally we looked at the triplet 3Bu transition in polyacetylene. We saw again a large effect of

VK and HOMO-LUMO character being transferred to higher transitions. But in this case the

effect of VK is unwanted, the ALDA values are already close to experimental and CIS values.

The reason of this large effect of VK is that the static values of BT , presented in Table 5-1, are

very close to the values of fxcT 0( ) . Therefore we can expect a similar effect of VK for both the

singlet and triplet excitation energies. This is indeed what we find.

9.5 Conclusion
We calculated the excitation spectra for several -conjugated oligomers with the VK-

functional. For these systems we found in our previous studies [77,78] that the axial

polarizability obtained with VK lies close to the literature values, while the ALDA strongly

overestimates. Previously we also studied the  transitions of some small -conjugated

systems and found an improvement of the excitation energy when using VK. In this work we

find that the excitation energies, underestimated within the ALDA, are always increased by VK.

For the triplet case we saw that the VK overestimates the excitation energies. For the singlet

case we find that VK transfers the oscillator strength to higher excitations but that the transitions

with small oscillator strengths do not shift upward like the transitions that do have large

oscillator strengths. This leads to the fact that individual excitation energies and oscillator

strengths are not correctly described with VK. We did observe that the VK singlet transitions

that have the largest spectral weight lie close to the available literature results for all systems

except PBT and the hydrogen chain.



 Chapter 10

Analysis of the VK-functional:

The atomic case

In this chapter we rewrite the VK-functional in spherical coordinates and do some analysis for

atomic systems. On the basis of our findings we modify the exchange-correlation kernel and we

see that a small modification has a large effect. At the end of this chapter we give some general

conclusions on the Vignale-Kohn functional based on our findings in this thesis.

10.1 Introduction
In Chapter 8 we saw that the VK-functional does not give equally good results for different

types of transitions. While the excitation energies for the  transitions obtained with the

VK-functional are in good agreement with experiment and other theoretical results, the

excitation energies of the n  transitions are strongly overestimated compared with the

experimental and other theoretical results.

Ullrich and Burke [27] showed that a similar problem is found in atoms. They derived a

simplified procedure for calculating the excitation energies, which is an extension of the so-

called small-matrix approximation (SMA) and used this in combination with the full frequency

dependent VK-functional. They observed that the VK-functional gives a small improvement for

the s s transitions, but strongly overestimates the s p excitation energies. They conclude that

there are two sources to this problem. The first source is that the currents associated with the

s p excitations are highly nonuniform and, in particular, change direction between atomic

shells. This can be a problem since the VK-functional is formally only justified if the system

under consideration has a slowly varying ground state density and if the currents associated with

a particular excitation are slowly varying on the scale of the local kF . As a second source they

suggest that the so-called exchange-correlation kernels of the homogeneous electron gas, fxcL
and fxcT , are incompletely known, in particular in the high-density atomic core regions.

In this chapter we will also conduct a study of excitation energies in atoms. We will use the

full time-dependent current-density-functional formalism (TDCDFT), but just like in the rest of



TIME-DEPENDENT CURRENT-DFT FOR MOLECULES136

this thesis we use the VK-functional in the static limit. We will first rewrite the VK-functional

for a particular transition in spherical coordinates, which will simplify the analysis. We will then

analyze the VK-functional for different transitions in atoms.

10.2 Theory
Since we are only considering atoms it is convenient to work in spherical coordinates. The

general form of the atomic orbitals is,

r, ,( ) = R r( )cl
mPl

m cos( )eim (10.1)

with

cl
m
=

2l +1

4

l m( )!

l + m( )!
(10.2)

where l and m are the angular momentum quantum numbers, R r( )  is the radial part of the

orbital and Pl
m cos( )  is the associated Legendre polynomial of l and m . We now want to

express the VK-functional in spherical coordinates, starting from

Exc r,( ) = xc
ALDA r,( )

1

0 r( )
j xc,ij r,( )

j

. (10.3)

We first concentrate on the second part of the VK-functional. It is convenient to write the stress

tensor ij  in the following way,

ij = aeij + b ij ekk
k

(10.4)

with a = 2  and b = 2 3 , where we defined  and  in Eqs. (4.56) and (4.57). We

defined

eij =
1

2 iu j + jui( ) (10.5)

where u r,( )  is the velocity field. In spherical coordinates Eq. (10.4) is still valid but the

tensor eij  has a different form (see for example Ref. [55]),

err =
ur
r

(10.6)



ANALYSIS OF THE VK-FUNCTIONAL: THE ATOMIC CASE 137

e =
1

r

u
+
ur
r

(10.7)

e =
1

r sin

u
+
ur
r
+
cot

r
u (10.8)

er =
1

2

1

r

ur
+

u

r

1

r
u (10.9)

e =
1

2

1

r

u
+

1

r sin

u cot

r
u (10.10)

er =
1

2

1

r sin

ur
+

u

r

1

r
u . (10.11)

We can now write the second term of Eq. (10.3) (which we from now on will call the

viscoelastic part) in spherical coordinates as

0Exc,r
viscoel.

=
1

r2 r
r2 rr( ) +

1

r sin r sin( ) + r 1

r
+( ) (10.12)

0Exc,
viscoel.

=
1

r2 r
r2 r( ) +

1

r sin
sin( ) + +

1

r r cot( ) (10.13)

0Exc,
viscoel.

=
1

r2 r
r2 r( ) +

1

r sin
sin( ) + +

1

r r + cot( ) . (10.14)

Let us look at a transition from orbital 1 to orbital 2. The components of the transition current

density are then given by

jr r, ,( ) =
i

2 2
1

r 1
2

r
(10.15)

j r, ,( ) =
i

2

1

r 2
1

1
2 (10.16)
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j r, ,( ) =
i

2

1

r sin 2
1

1
2 . (10.17)

We can now easily find the components of the velocity field using j = u 0 . Substituting Eq.

(10.1) for the orbitals we obtain

ur r, ,( ) = fr r( )cl1
m1cl2

m2Pl1
m1 cos( )Pl2

m2 cos( )ei m1 m2( ) (10.18)

u r, ,( ) = f r( )cl1
m1cl2

m2

Pl2
m2 cos( )

Pl1
m1 cos( )

Pl1
m1 cos( )

Pl2
m2 cos( )

ei m1 m2( )
(10.19)

u r, ,( ) = f r( )cl1
m1cl2

m2
Pl1
m1 cos( )Pl2

m2 cos( )

sin
ei m1 m2( ) (10.20)

where we defined the radial function

fr r( ) =
i

2 0 r( )
R2 r( )

R1 r( )
r

R1 r( )
R2 r( )
r

(10.21)

f r( ) =
i

2r 0 r( )
R1 r( )R2 r( ) (10.22)

f r( ) =
m1 + m2

2r 0 r( )
R1 r( )R2 r( ) = i m1 + m2( ) f r( ) . (10.23)

Substituting everything in Eq. (10.4) we find for the elements of the stress tensor,

rr = arrPl1
m1Pl2

m2ei m1 m2( ) (10.24)

= a(1) Pl2
m2

Pl1
m1

Pl1
m1

Pl2
m2

ei m1 m2( )

+a(2)Pl1
m1Pl2

m2ei m1 m2( )

(10.25)

= a(1) Pl2
m2

2Pl1
m1

2 Pl1
m1

2Pl2
m2

2 ei m1 m2( )

+a(2)Pl1
m1Pl2

m2ei m1 m2( )

(10.26)
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r = ar
(1) Pl1

m1Pl2
m2( )ei m1 m2( )

+ar
(2) Pl2

m2
Pl1
m1

Pl1
m1

Pl2
m2

ei m1 m2( )

(10.27)

r = ar
1

sin
Pl1
m1Pl2

m2ei m1 m2( ) (10.28)

= a
1

sin
m1Pl2

m2
Pl1
m1

d
+ m2Pl1

m1
Pl2
m2

m1 + m2( )cot Pl1
m1Pl2

m2 )ei m1 m2( )

. (10.29)

The radial parts of the stress tensor are given by,

arr = a + b( )
fr
r
+
b

r
2 fr + l2 l2 +1( ) l1 l1 +1( ){ } f( ) (10.30)

a(1) =
af

r
(10.31)

a(2) =
afr
r

+ b
fr
r
+
b

r
2 fr + l2 l2 +1( ) l1 l1 +1( ){ } f( ) (10.32)

a(1) =
af

r
= a(1) (10.33)

a(2) =
a

r
fr + l2 l2 +1( ) l1 l1 +1( ){ } f( ) + b

fr
r

+
b

r
2 fr + l2 l2 +1( ) l1 l1 +1( ){ } f( )

(10.34)

ar
(1)

=
afr
2r

(10.35)

ar
(2)

=
a

2

f

r

f

r
(10.36)
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ar =
a

2
i m1 m2( )

fr
r
+

f

r

f

r
(10.37)

a =
iaf

r
. (10.38)

The components of the viscoelastic part of the VK-functional are then given as

0 Exc,r
viscoel.

=
arr
r

+
1

r
2arr a(2) a(2) l1 l1 +1( ) + l2 l2 +1( ){ }ar

(1)

+ l2 l2 +1( ) l1 l1 +1( ){ }ar
(2) )Pl1

m1Pl2
m2ei m1 m2( )

+
2ar

(1)

r

Pl1
m1

d

Pl2
m2

d
+
m1m2

sin2
Pl1
m1Pl2

m2 ei m1 m2( )

(10.39)

0 Exc,
viscoel

=
ar
(1)

r
+
1

r
3ar

(1)
+ a(2) + l2 l2 +1( ) l1 l1 +1( ){ }a(1)

Pl1
m1Pl2

m2( )ei m1 m2( )

+
ar
(2)

r
+
1

r
3ar

(1)
+ a(1) Pl2

m2
Pl1
m1

Pl1
m1

Pl2
m2

ei m1 m2( )

+
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r

m1 m2

sin2
m1Pl1

m1
Pl2
m2

+ m2Pl2
m2

Pl1
m1

ei m1 m2( )

(10.40)

0 Exc,
viscoel.

=
ar
r

+
1

r
3ar + i m1 m2( )a(2) + m1 + m2( )a

Pl1
m1Pl2

m2

sin
ei m1 m2( )

+
a

r sin
m1 + m2( )

Pl1
m1 Pl2

m2

+ m1Pl1
m1

2Pl2
m2

2 cot
Pl2
m2

+m2Pl2
m2

2Pl1
m1

2 cot
Pl1
m1

ei m1 m2( )

. (10.41)

We also want to compare the contribution of this viscoelastic part relative to the ALDA part.

Therefore we need to write the ALDA contribution to the VK-functional in spherical coordinates

too. The ground state LDA functional is given by
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xc
LDA r( ) =

Exc
LDA

= xc + r( ) xc . (10.42)

As we mentioned in Section 1.4 the exchange-correlation energy xc  can be split in an exchange

and a correlation part. The exchange part is given by the Dirac exchange-energy functional [33],

x ( ) =
3

4
3

1 3

r( )
1 3

. (10.43)

The correlation part is more complicated and since it is much smaller than the exchange part and

we neglect this part in the following analysis. We can now write the ground state exchange only

LDA functional as

x
LDA r( ) =

3
1 3

r( )
1 3

. (10.44)

The ALDA exchange potential change belonging to a transition from orbital 1 to orbital 2 is then

given by

x
ALDA r, t( ) = t t( ) r r( ) x

LDA r, t( )
r , t( )

r,t( )= 0 r( )

r , t( )dr dt

=
1

3

3
1 3

0 r( )
2 3 r, t( )

=
1

3

3
1 3

0 r( )
2 3

2 1

. (10.45)

In spherical coordinates we obtain for the gradient of the ALDA,

r x
ALDA r, t( ) =

2

9

3
1 3

0 r( )
5 3
R1 r( )R2 r( )

1

3

3
1 3

0 r( )
2 3

r
R1 r( )R2 r( )( )

cl1
m1cl2

m2Pl1
m1 cos( )Pl2

m2 cos( )ei m1 m2( )

(10.46)

x
ALDA r, t( ) =

1

3

1

r

3
1 3

0 r( )
2 3
R1 r( )R2 r( )

cl1
m1cl2

m2 Pl1
m1 cos( )Pl2

m2 cos( )( )ei m1 m2( )

(10.47)
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x
ALDA r, t( ) =

1

3

i m1 m2( )
r sin

3
1 3

0 r( )
2 3
R1 r( )R2 r( )

cl1
m1cl2

m2Pl1
m1 cos( )Pl2

m2 cos( )ei m1 m2( )

(10.48)

where r , ,( ) = r , 1 r( ) , 1 r sin( )( ) . We now have all the components of the

total VK-functional for a specific transition between two orbitals.

In Chapter 3 we showed that it is not the plain functional that we are interested in but the

matrix elements of its inner product with the current density, this is how the VK-functional

appears in the -matrix. So we really want to study

2 j Exc( ) 1dr =

jr Exc,r
viscoel.

+ j Exc,
viscoel.

+ j Exc,
viscoel.( ) r2 sin drd d

+ jr r x
ALDA

+ j x
ALDA

+ j x
ALDA( ) r2 sin drd d

= I ALDA (r)dr + I viscoel.(r)dr = I(r)dr

(10.49)

where we defined the integrand I r( )  and its separate VK and ALDA parts. This integrand we

can easily plot in a graph and compare for different transitions. There is an arbitrariness with

which we can choose this integrand. Ullrich and Burke, for example, make a different choice in

Eq. 25 in Ref. [27]. But with this different choice we still draw the same conclusions from our

graphs as they did.

10.3 Computational details
To generate the atomic orbitals we used a modified OPM (optimized potential model)

program based on the work in Ref. [17]. The resulting OPM orbitals can then be used to

calculate the components of the VK-functional (Ref. [204]) and the integrand of Eq. (10.49).

The reason we use this program to calculate the integrand is that this program works with a

radial grid, it is basis set independent, and since it uses a 1 r  potential the virtual orbitals are

bound.

We did calculations on the excitation energies with our modified version of ADF [25,99-103].

We used the standard ADF ET-pVQZ basis, which is an even-tempered Slater type basis set of

quadruple-zeta quality.  In these excitation energy calculations the ground state has been

calculated with the LDA functional in the VWN parameterization [34]. The response

calculations themselves were done with the standard adiabatic local density approximation

(ALDA) and the VK-functional. For the latter we use the parameterizations of the viscoelastic
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coefficient based on results of Conti et al. [65] for the transverse response of the homogeneous

electron gas [77], we denote this by NCT. As we explained in Section 5.5 we can also use

different values for the transverse response kernel as obtained by Qian and Vignale [66], which

we denote by QV. More information on these parameterizations can be found in Chapter 5. We

denote these calculations simply as ALDA and VK (NCT or QV).

10.4 Results and discussion
In Table 10-1 we show our results for some different kinds of transitions in different atoms,

we repeat the results for Beryllium that we already showed in Section 8.4. We also show the

corresponding results from Ullrich and Burke [27], which they obtained using the frequency

dependent VK-functional in the parameterization of Qian and Vignale [66]. From the table it is

clear that the effect of the VK-functional is much larger for the s p transitions than for the s s

transitions and p p transitions. The ALDA results for the s p transitions are the ones that are

closest to the experimental values. We also see that the VK effect becomes smaller for the higher

s p transitions. We will see whether we can find out more about the VK-functional by looking

at these particular transitions.

For an s s transition Exc
viscoel.  is purely radial. We plot this function for the 2s 3s transition

in the B+ atom in Figure 10-1, where we used the NCT parameterization. We did not plot the

Table 10-1. This table shows the lowest singlet excitation energies of transitions for several closed shell
atoms. All values are in eV

Transition Exp.a ALDA results by
C.A. Ullrichb

VK results by
C.A. Ullrichb

ALDA VK
NCT

VK
QV

Be 2s  2p 5.28 5.07 6.23 4.83 6.03 6.14
Be 2s  3s 6.78 5.62 5.66 6.53 6.55 6.58
B+ 2s  2p 9.10 8.56 11.70 8.47 14.60 14.77
B+ 2s  3s 16.81 15.49 15.66 15.56 15.55 15.57
B+ 2s  3p 17.85 16.23 16.56 16.15 17.53 17.78
Mg 3s  3p 4.35 4.57 4.85 4.50 7.17 7.08
Mg 3s  4s 5.39 4.77 4.82 7.23 7.23 7.25
Mg 2p  3p 45.49 46.50 46.43
Al+ 3s  3p 7.42 7.74 8.07 7.48 11.41c 11.37c

Al+ 3s  4s 11.82 11.40 11.55 12.08 12.08 12.10
Al+ 3s  4p 13.26 12.47 12.67 12.66 16.21c 15.82c

Al+ 2p  3p 69.00 71.10 70.92
a Ref. [205].
b Ref. [27].
c The 3s  3p and 3s  4p transitions are strongly mixed in these cases.
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ALDA part in this graph since it is completely dominant for this transition. We see that as a

result of the fact that we take many derivatives of the orbitals, this function is rather wildly

behaved, even for this rather simple transition. The sharp drop at  r 3  is a result of the fact that

we choose the transverse xc-kernel fxcT  constant for rs > 5 .

In Figure 10-2 we show the integrand I r( )  and its ALDA and viscoelastic parts for the

2s 3s, 2s 2p, and 2s 3p transitions in the B+ atom and as an example of a p p transition we

also show the 2p 3p transition in the Mg atom. As a reference we also give the radial

distribution functions of the orbitals involved in Figure 10-1. We used the NCT for the xc-kernel

fxcT . We see for the 2s 3s transition in B+ that the ALDA is completely dominant, as is

Figure 10-1. The viscoelastic part of the Exc field for a 2s 3s transition in B+ (top left). The relation

between r and rs for Mg and B+ (top right). The radial distribution function ( 4 r 2 i

2 ) of some orbitals of

Mg and B+ (bottom).
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expected from the excitation energies we found in Table 10-1. The viscoelastic part is largest for

the low-density region. For the 2s 2p and 2s 3p  transitions in B+ both the ALDA and

viscoelastic parts are large in the high-density region (where rs  is small, see Figure 10-1 for the

relation between r and rs ). For the 2s 2p transition the effect of the viscoelastic part on the

ALDA is very large, explaining why the VK excitation energy for this transition changes so

much when going from the ALDA to VK. For the 2s 3p transition the picture is similar for the

high-density region, but at lower densities the ALDA starts to dominate. Therefore the ALDA

contribution to the total integral is considerable and the effect of VK is smaller than for the

2s 3p transition. This is indeed what we find for the excitation energies. Finally we look at the

2p 3p ( m = 0 ) transition in the Mg atom. We see that in this case the viscoelastic effect is

considerable, but the ALDA is still dominating. The viscoelastic contribution is still quite large

for the lower density region. These findings again correspond to our results for the excitation

energies, where there effect of VK is larger for the p p transitions than for the s s transitions,

but smaller than for the s p transitions. We see that the largest viscoelastic contribution in the

cases where the excitation energies are strongly overestimated is in the high-density (low rs )

region. The only part of the VK-functional that is not well known is the transverse xc-kernel,

fxcT . The fxcT  is in particular not well known in the high-density region up to rs 1.0 . We see

from Figure 10-2 above that this is the region were VK gives the largest contribution for the

s p transitions.
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We would like to test the influence of this region. In order to do this we will put fxcT  and its

derivatives to zero up to a particular value of rs  after we performed the cubic spine interpolation

(see section 5.5). Note that this is not the same as first putting fxcT  to zero and taking the

derivatives afterwards. This would introduce extra surface terms that we neglect with our

approach. Using this method, choosing the NCT as our basic fxcT , we find that for Be and B+ the

threshold value needs to be larger than rs = 1.0  in order to obtain values that are of the order of

the experimental values (about rs = 1.8  for Be and rs = 1.3  for B+), but for Mg and Al+ taking

fxcT  zero up to rs = 1.0  already gives a large modification of the VK values for the s p

Figure 10-2. The integrand I r( )  (“Total”) and its separate ALDA and viscoelastic (“VK”) parts for the

2s 3s, 2s 2p, and 2s 3p transitions in the B+ atom and the 2p 3p transition in the Mg atom.
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transitions. This observation can be understood since the VK-functional is very dependent on the

shape of the orbitals that are involved in the transition (for example through the current matrix

elements). The orbitals for the lighter atoms are more diffuse, so the outer region becomes more

important. To see the effect of the high-density region we will do calculations putting fxcT  to

zero up to rs = 1.0  and rs = 1.3 .  

In Table 10-2 we show the values we obtain if we put fxcT  to zero up to rs = 1.0  and rs = 1.3

(denoted NCT rs > 1.0  and NCT rs > 1.3 ). As mentioned above the values for the s p

transitions in Be and B+ are still overestimated with NCT rs > 1.0 , but the B+ value is improved

with NCT rs > 1.3 . The results for Mg and Al+ are much improved in both cases. For the p p

Table 10-2. This table shows the lowest singlet excitation energies of transitions for several atoms and
molecules. All values are in eV

Transition Exp. ALDA VK NCT VK NCT

rs > 1.0
VK NCT

rs > 1.3
Be 2s  2p 5.28a 4.83 6.03 6.32 6.08
Be 2s  3s 6.78a 6.53 6.55 6.55 6.55
B+ 2s  2p 9.10a 8.47 14.60 14.89 10.00
B+ 2s  3s 16.81a 15.56 15.55 15.55 15.55
B+ 2s  3p 17.85a 16.15 17.53 18.32 16.22
Mg 3s  3p 4.35a 4.50 7.17 4.72 4.70
Mg 3s  4s 5.39a 7.23 7.23 7.25 7.25
Mg 2p  3p 45.49 46.50 45.44 45.44
Al+ 3s  3p 7.42a 7.48 11.41b 7.84 7.77
Al+ 3s  4s 11.82a 12.08 12.08 12.09 12.09
Al+ 3s  4p 13.26a 12.66 16.21b 12.64 12.62
Al+ 2p  3p 69.00 71.10 68.99 68.99

C2H4 Ethene * 11B1u 7.66c 7.55 8.05 7.82 7.68
C8H7N Indole * 21A 4.37d 4.34 4.66 4.59 4.46

* 31A 4.77d 4.59 4.74 4.64 4.62
C10H12 Decapentaene * 11Bu 4.02e 3.26 4.33 3.90 3.52
CH2O Formaldehyde n * 11A2 3.79f;4.07g 3.68 8.34 2.24 3.53
C4H4N2 Pyridazine n * 11B1 3.30h 2.95 7.03 0.25 2.69
C5 n * 11

u 2.78i 2.50 6.74 3.20 1.14
a Ref. [205].
b The 3s 3p and 3s 4p transitions are strongly mixed in this cases.
c Ref. [149].
d Ref. [158].
e Gas phase measurements from Ref. [166].
f Electron impact spectroscopy values from Ref. [175].
g Ref. [176].
h Ref. [173].
i Gas phase measurements from Ref. [180].
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transitions the results are close to the ALDA values in both cases. Since the effect of the VK-

functional is already small for the s s transitions, they do not change a lot when putting fxcT  to

zero in the high-density region. We see that the low-density region is especially important for

the s p transitions.

It is interesting to see what the effect of this approach is on some molecular systems. We also

show these in Table 10-2. For ethane we see that the results with NCT rs > 1.0  and rs > 1.3  are

closer to experiment than with the full fxcT . For indole this is also the case, but if we look more

closely the results with the modified fxcT  are actually worse than the full fxcT . As we mentioned

in Chapter 8, the ALDA predicts the wrong ordering of the transitions. It assigns the 2 1A  state

to the La transition and the 3 1A  state to the Lb transition. The VK-functional with the full fxcT
corrects for this. But when we use the modified fxcT  we see that we obtain the same character

for the transitions as with the ALDA, thus also predicting the wrong ordering of the states. So

for this system the high-density region is very important to take into account. For trans-

1,3,5,7,9-decapentaene we see that the results with the modified fxcT  are slightly worse than

with the full fxcT , but the VK effect is still rather large. For the n * transitions we see a large

reduction of the excitation energy when using the modified fxcT  in all cases. For formaldehyde

and pyridazine the reduction is too large with NCT rs > 1.0 , leading to a strong underestimation

Figure 10-3. ALDA and VK (NCT, NCT rs > 1.0 ,

and NCT rs > 1.3 ) static axial polarizability of
polyacetylene compared with MP2 [13] results.

Figure 10-4. ALDA and VK (NCT, NCT rs > 1.0 ,

and NCT rs > 1.3 ) static axial polarizability of
hydrogen chains compared with coupled Hartree-
Fock (HF) and coupled-cluster (CCSD(T)) results
[88].
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of the experimental results. With NCT rs > 1.3  we obtain results for formaldehyde and

pyridazine that are close to the ALDA and experimental values, but in this case the excitation

energy of C5 is strongly underestimated. It is clear that the high-density region is very important

for the n * transitions.

To see if we still retain some of the long-range properties of VK with our modified fxcT  we

again look at the polarizability of polyacetylene. We give our results in Figure 10-3. We see that

the polarizability is not by far as good as the NCT but the VK effect is still considerable,

indicating that some long-range properties are retained. A chain system for which we saw that

the VK-functional fails is the model hydrogen chain. To see if this problem should also be

attributed to the high-density region we also used our modified fxcT  to calculate the axial

polarizability of this system. We show our results in Figure 10-4. We see that the polarizability

changes considerably when using the modified fxcT . With NCT rs > 1.3  the results are getting

much closer to the literature values. So a large part of this problem also can be contributed to the

high-density region. This result is surprising since one would expect that if we neglect a part of

the VK-functional, the polarizability would come closer to the ALDA values. The fact that this

is not the case indicates that there is a canceling of terms when including the full fxcT .

We also looked at the excitation energies of polyacetylene and the model hydrogen chain with

NCT rs > 1.3 . We show these in Figure 10-5 and Figure 10-6. We see that as expected from the

polarizability results, the excitation energies of polyacetylene are closer to the ALDA compared

with our results in Figure 9-1 and the excitation energies of the model hydrogen chain are higher

compared with our results in Figure 9-10. The fact that transitions with small oscillator strength

do not shift upwards when using VK does not change when using NCT rs > 1.3 . We see from

the oscillator strengths that the states that shift upwards “push through” these non-shifting states

like we found in Chapter 9. This effect is now less pronounced for polyacetylene but much more

pronounced for the model hydrogen chain.



TIME-DEPENDENT CURRENT-DFT FOR MOLECULES150

10.5 Conclusions
In this chapter we have rewritten the VK-functional in spherical coordinates in order to study

the VK-functional in more detail for transitions in atoms. The excitation energies for the s p

transitions in atoms are strongly overestimated by the VK-functional. The excitation energies for

s s transitions are close to the ALDA and experimental values. By plotting the radial integrand

of the stress tensor part of the VK-functional we saw that the largest contribution of this part to

the s p excitation energies is in the high-density (low rs ) region. This is also one of the

conclusions that Ullrich and Burke made on the basis of their analysis [27].

We found that changing the xc-kernel fxcT  somewhat in this region by setting this kernel and

its derivatives to zero, can lead to large effects for the polarizability and excitation energies. The

excitation energies of the s p transitions, for which we found that the full VK-functional

strongly overestimates, are greatly reduced when changing fxcT  whereas the s s transitions

remain close to the ALDA and experimental results. Similarly we find that the excitation

Figure 10-5. ALDA and VK NCT rs > 1.3
excitation energies and oscillator strengths of
polyacetylene compared with CCSD-EOM [192]
results.

Figure 10-6. ALDA and VK NCT rs > 1.3
excitation energies and oscillator strengths of the
model hydrogen chain.
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energies of n * transitions in some selected molecules are strongly reduced, while the effect of

changing fxcT  on the * transitions is much smaller. These findings show that there may be a

link between the problems of VK in atoms and molecules.

We also looked at the effect of modifying the VK-functional on the response properties of

oligomers of polyacetylene and the model hydrogen chain. We saw that the polarizability of

polyacetylene comes closer to the ALDA with our modified fxcT  but the effect of VK is still

large, indicating we retain some long-range properties when using the modified fxcT . We also

see that the polarizability of the model hydrogen chain is reduced, and is closer to the available

literature results. These findings are also reflected in the excitation energies of these systems.

The modified fxcT  does not have an effect on the states with small oscillator strengths, therefore

oscillator strength is still transferred to higher excitations like we found when using the full fxcT .

In summary we found that the VK-functional with the currently available transverse xc-

kernels works well for the polarizability of conjugated molecular chains and * transitions in

smaller systems. The excitation energies of * transitions in conjugated molecular chains are

also improved, apart from the fact that some higher lying states do not shift leading to a transfer

of oscillator strength to higher transitions. We also saw failures, especially the large

overestimation of the excitation energy of n * transitions in molecules and s p transitions in

atoms. Another failure is that the polarizability and excitation energies of the model hydrogen

chain are barely altered when using the VK-functional.

In some of the previous chapters we saw that changing fxcT  in the low-density region by

using QV instead of NCT does not solve any of the problems described above. In this chapter we

found that changing the fxcT  in the high-density region (where it is not well known), on the

other hand, can have a large effect on the failures described above, while having a smaller effect

on the * transitions. This indicates that these problems are not necessarily due to the VK-

functional itself, but are for a great part due to the approximations for fxcT . These observations

also lead to the question whether there exists a “universal fxcT ” that works well for all molecular

systems. Since the VK-functional is derived for the electron gas, this is not necessarily the case.

In any case there is room for tweaking the fxcT  such that the results are improved. Assuming

that the VK-functional can be universally applied to a wide range of systems (ranging from the

electron gas to atoms and molecules), it would be important to know the fxcL  and fxcT  more

accurately.

At the end of this thesis we must admit that we did not identify all the “magic herbs” that

make the VK-functional work so well for some systems. We did learn more about the conditions
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under which the functional works or fails and especially found that there is room for

improvement in the exchange-correlation kernel.



 Appendix A

Functional derivatives

In this appendix we give the definition of a functional derivative. More information on

functional calculus and functional derivatives can be found in many mathematical textbooks.

Some examples of the use of the functionals within DFT can for example be found in Refs. [29]

and [28].

First we state what a functional is. A function is a prescription to add to each variable x a

number f x( ) ; a functional is a prescription to add to each a function f x( )  a number F f[ ] .

The functional derivative is a derivative of a functional: i.e., it carries information on how a

functional changes, when the function changes by a small amount.

The functional derivative F f  is defined by,

lim
0

F f + h[ ] F f[ ]
=

F

f x( )
h x( )dx , (A.1)

where h x( )  is an arbitrary function. The functional derivative has properties similar to the

ordinary derivative,

f x( )
C1F1 + C2F2( ) = C1

F1
f x( )

+ C2

F2
f x( )

(A.2)

f x( )
F1F2( ) =

F1
f x( )

F2 + F1
F2
f x( )

. (A.3)

There exists a useful relation for functionals of the form,

 
F [ ] = f x, , (1) , (2) ,…, (n)( )dx (A.4)

where (n) x( ) = dn x( ) dxn  and  vanishes at the boundary of the integration domain. For

this case [28],

 

F

x( )
=

f d

dx

f
(1) +

d 2

dx2
f
(2) + 1( )

n dn

dxn
f
(n) (A.5)
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where the f (n)  are partial derivatives ( f ( p)  is taken holding (m )  constant where

m p ). An important consequence of this equation is that for local functionals, f = f x,( ) , it

reduces to F x( ) = f .



 Appendix B

Proofs

B.1 Hohenberg-Kohn
To prove the first Hohenberg-Kohn theorem [1] we need to show that there is a one-to-one

mapping between the external potential r( )  and the density r( ) . The map V̂  is

easy to prove. An external potential r( )  leads to a ground state wave function  by solving

the Schrödinger equation (Eq. (1.1)), and for each ground state wave function we can calculate

the density through Eq. (1.9). To prove the Hohenberg-Kohn theorem we need to show that this

map is invertible ( V̂ ). This proof goes in two steps. The first step of the proof is to

show that if two external potentials V̂1  and V̂2  differ by more than a constant they will not lead

to the same wave function . For a nondegenerate ground state

T̂ + V̂1 + Ŵ( ) 1 = E0
1( )

1 , (B.1)

T̂ + V̂2 + Ŵ( ) 2 = E0
2( )

2 . (B.2)

If we assume that 1 = 2 =  and we subtract the two above equations, we obtain

V̂1 V̂2( ) = E0
1( ) E0

2( )( ) (B.3)

which leads to V̂1 = V̂2 + C  and contradicts our assumption. In the second part of the proof we

need to show that these different wave functions cannot lead to same density r( ) . Assume that

the two different wave functions 1  and 2  do lead to the same density. The variational

procedure then tells us that,

E0
1( )
< 2 Ĥ1 2 = 2 Ĥ 2 2 + 2 Ĥ1 Ĥ 2 2

                           = E0
2( )
+ r( ) 1 r( ) 2 r( ) dr

(B.4)

and similarly

E0
2( )
< 1 Ĥ 2 1 = E0

1( ) r( ) 1 r( ) 2 r( ) dr . (B.5)
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Adding the two inequalities gives: E0
1( )
+ E0

2( )
< E0

2( )
+ E0

1( ) , which is a contradiction proving the

one-to-one mapping V̂ .

B.2 Runge-Gross
We consider densities r, t( )  that evolve from a fixed initial state 0 . The initial time t0

is assumed to be finite and the potentials r, t( )  are assumed to have a Taylor expansion around

t0 . This condition of Taylor expandability excludes potentials that are switched-on adiabatically

from t0 = . The Hamiltonian of Eq. (2.1) is of the form,

Ĥ t( ) = T̂ + V̂ t( ) + Ŵ , (B.6)

where T̂  and Ŵ  are defined in Eqs. (1.3) and (1.5). The time-dependent external potential is of

the form,

V̂ t( ) = ri , t( )
i=1

N

. (B.7)

We now want to proof the theorem that two densities r, t( )  and r, t( )  evolving from a

common initial state 0  under influence of two potentials r, t( )  and r, t( )  always differ

provided that the potentials differ by more than a purely time-dependent function,

r, t( ) r, t( ) + c t( ) . (B.8)

As mentioned above we assume the Taylor expandability of r, t( )  leading to,

r, t( ) =
1

k! k r( ) t t0( )
k

k=0

(B.9)

and a similar expression for r, t( ) . We can now restate the condition of Eq. (B.8) in the

following way: There is a k 0  such that,

k r( ) k r( ) =
k

t k
r, t( ) r, t( )( )

t=t0

const. (B.10)

As a first step we can prove from this inequality that the current densities,

j r, t( ) = t( ) ĵp r( ) t( ) (B.11)

j r, t( ) = t( ) ĵp r( ) t( ) , (B.12)
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differ for different potentials r, t( )  and r, t( ) . The (paramagnetic) current density operator

is given by,

ĵp r( ) =
1

2i ri
r ri( ) + r ri( ) ri( )

i=1

N

. (B.13)

The quantum mechanical equation of motion for the expectation value of an operator Â t( )  is

given by,

t
t( ) Â t( ) t( ) = t( )

Â

t
i Â t( ), Ĥ t( ) t( ) . (B.14)

For the current densities we then obtain,

t
j r, t( ) =

t
t( ) ĵp r( ) t( ) = i t( ) ĵp r( ), Ĥ t( ) t( ) (B.15)

t
j r, t( ) =

t
t( ) ĵp r( ) t( ) = i t( ) ĵp r( ), Ĥ t( ) t( ) . (B.16)

Because the wave functions evolve from the same initial state t0( ) = t0( ) = 0  we have

t
j r, t( ) j r, t( )( )

t=t0

= i 0 ĵp r( ), Ĥ t0( ) Ĥ t0( ) 0

= 0 r( ) r, t0( ) r, t0( )( )
, (B.17)

with initial density 0 r( ) = r, t0( ) . If the condition of Eq. (B.10) is satisfied for k = 0  then

the currents will become different infinitesimally later than t0 . If Eq. (B.10) holds for some

smallest finite k > 0  we can use the equation of motion k +1  times to obtain [41],

k+1

t k+1
j r, t( ) j r, t( )( )

t=t0

= 0 r( ) wk r( ) 0 (B.18)

with

wk r( ) =
k

t k
r, t( ) r, t( )( )

t=t0

. (B.19)

From this we can conclude that j r, t( ) j r, t( ) . We also want to prove that the densities are

different for different potentials. For this we can use the continuity equation,
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t
r, t( ) r, t( )( ) = j r, t( ) j r, t( )( ) . (B.20)

If we calculate the k +1( )
th

 time derivative of this equation at t = t0  and insert the result of Eq.

(B.18) we obtain,

k+2

t k+2
r, t( ) r, t( )( )

t=t0

= 0 r( ) wk r( )( ) . (B.21)

To prove that r, t( )  and r, t( )  become different infinitesimally later than t0  we need to

show that the right hand side of Eq. (B.21) cannot vanish identically. This proof is done by

reductio ad absurdum: Assume that 0 r( ) wk r( )( ) 0  and evaluate the integral

 

0 r( ) wk r( )
2
dr = wk r( ) 0 r( ) wk r( )( )dr

+ 0 r( )wk r( ) wk r( )( ) dS
, (B.22)

where Gauss theorem is used. The surface integral vanishes for physically realistic potentials

because for such potentials the wk r( )  fall off at least as 1 r  and the density decays

exponentially. Together with our assumption that the first integral on the right hand side is zero

this means that the integral on the left hand side must vanish, so

0 r( ) wk r( )
2

0 , (B.23)

and 0 r( ) > 0  everywhere, which means that wk r( )
2
= 0  in contradiction with

wk r( ) const.  This completes the proof.



 Appendix C

The -matrix

In this appendix we give a little more detail on how we arrive at the form of the -matrix. The

equations we start from are equations (3.20) and (3.24),

r,( ) = j r, r ,( ) As, r ,( )dr{

+ r, r ,( ) s, r ,( )dr }
(C.1)

j r,( ) = jj r, r ,( ) jj r, r , 0( )( ) As, r ,( )dr{

+ j r, r ,( ) s, r ,( )dr }
(C.2)

The difference between the response functions in the first term of Eq. (C.2) we can rewrite,

using the explicit form of the response functions Eq. (3.27), as,

jj r, r ,( ) jj r, r , 0( )

= i r( ) ĵ a r( ) a r( ) ĵ i r( )

i a( ) +i,a

i r( ) ĵ a r( ) a r( ) ĵ i r( )

i a( )

+ i r( ) ĵ† a r( ) a r( ) ĵ† i r( )

i a( )
i r( ) ĵ† a r( ) a r( ) ĵ† i r( )

i a( )

=
i a( )

i r( ) ĵ a r( ) a r( ) ĵ i r( )

i a( ) +i,a

+
i a( )

a r( ) ĵ i r( ) i r( ) ĵ a r( )

i a( )

(C.3)

where we used that i ĵ
†

a = a ĵ i . Using this result and substituting the other response operators

in Eqs. (C.1) and (C.2) we obtain,
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r,( ) = i a

1

i a( ) +ia

a ĵ i As, ( )dr + a s, ( ) i dr

+ a i

1

i a( )

i ĵ a As, ( )dr + i s, ( ) a dr }

(C.4)

and

j r,( ) = i ĵ a

1

i a( ) +i,a

i a( ) a ĵ i As, ( )dr + a s, ( ) i dr

+ a ĵ i

1

i a( )

i a( ) i ĵ a As, ( )dr + i s, ( ) a dr

. (C.5)

In our implementation we combine all terms such that,

r,( ) = i a

1

i a( ) +
+

1

i a( )ia

i a( ) a ĵ i As, ( )dr + a s, ( ) i dr

(C.6)

j r,( ) = i ĵ a

1

i a( ) +
1

i a( )i,a

i a( ) a ĵ i As, ( )dr + a s, ( ) i dr

=
i a( ) i ĵ a

1

i a( ) +
+

1

i a( )i,a

i a( ) a ĵ i As, ( )dr + a s, ( ) i dr

. (C.7)
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From these equations our choice to introduce the extra factors i a( )  in our definitions

for j  and the -matrix becomes clear. It can be easily verified that Eq. (C.6) is identical to Eqs.

(C.4) and (3.48), and that Eq. (C.7) is identical to Eqs. (C.5) and (3.49).





 Appendix D

Singlet/Triplet equations

We start from Eq. (3.62),

A B

B A

X

Y
=

1 0

0 1

X

Y
.  (D.1)

If we assume a closed-shell system for which 
i
=

i
 for all i, we can split this matrix equation

in a singlet and triplet part by the unitary transformation,

XS

XT
=
1

2

1 1

1 1

X

X
(D.2)

YS

YT
=
1

2

1 1

1 1

Y

Y
. (D.3)

We can also write,

X

X
=
1

2

1 1

1 1

XS

XT
(D.4)

Y

Y
=
1

2

1 1

1 1

YS

YT
. (D.5)

Since we assume all orbitals are real and that the calculation is spin restricted, we can rewrite

Eq. (D.1) explicitly as,

A A

A A

B B

B B

B B

B B

A A

A A

X

X

Y

Y

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

X

X

Y

Y

(D.6)
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Transforming this equation gives,

1

2

1 1

1 1

0 0

0 0

0 0

0 0

1 1

1 1

A A

A A

B B

B B

B B

B B

A A

A A

1 1

1 1

0 0

0 0

0 0

0 0

1 1

1 1

XS

XT

YS

YT

=
1

2

1 1

1 1

0 0

0 0

0 0

0 0

1 1

1 1

1 0

0 1

0 0

0 0

0 0

0 0

1 0

0 1

1 1

1 1

0 0

0 0

0 0

0 0

1 1

1 1

XS

XT

YS

YT

. (D.7)

This equation is blocked out and can be spit in an A and a B part. For the A part we obtain,

   

1 1

1 1

A A

A A

1 1

1 1

XS

XT

=
2 ab ij a i( ) + Kia, jb + Kia, jb( ) 0

0 2 ab ij a i( ) + Kia, jb Kia, jb( )
XS

XT

(D.8)

and for the B part,

1 1

1 1

B B

B B

1 1

1 1

YS

YT
=

=
2 Kia,bj + Kia,bj( ) 0

0 2 Kia,bj Kia,bj( )
YS

YT

. (D.9)

We used that K = K  and K = K . If we insert these results in Eq. (D.7) we obtain a

matrix equation that can be split in a singlet and triplet part,

ab ij a i( ) + Kia, jb + Kia, jb Kia,bj + Kia,bj

Kia,bj + Kia,bj ab ij a i( ) + Kia, jb + Kia, jb

XS

YS

=
1 0

0 1

XS

YS

(D.10)
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ab ij a i( ) + Kia, jb Kia, jb Kia,bj Kia,bj

Kia,bj Kia,bj ab ij a i( ) + Kia, jb Kia, jb

XT

YT

=
1 0

0 1

XT

YT

. (D.11)

We rewrite this in a more compact notation as,

CS DS

DS CS

XS

YS
=

1 0

0 1

XS

YS
(D.12)

CT DT

DT CT

XT

YT
=

1 0

0 1

XT

YT
. (D.13)

Since these equations are of the same form, we concentrate on the singlet equation. The set of

equations we need to solve is,

CSXS
+ DSYS

= XS

DSXS
+CSYS

= YS
. (D.14)

If we add and subtract the above equations we obtain

CS
+ DS( ) XS

+ YS( ) = XS YS( )

CS DS( ) XS YS( ) = XS
+ YS( )

. (D.15)

We can now combine this set op equations into one new equation,

CS
+ DS( ) XS

+ YS( ) = 2 CS DS( )
1
XS

+ YS( ) (D.16)

Since Cia, jb
S /T Dia, jb

S /T( ) = ab ij a i( )
 
is diagonal we can rewrite this as,

CS DS( )
1 2
CS

+ DS( ) CS DS( )
1 2
XS

+ YS( ) =
2 XS

+ YS( ) (D.17)

where XS
+ YS( ) = CS DS( )

1 2
XS

+ YS( ) . This is a Hermitian eigenvalue equation of the

form

Fn = n
2Fn (D.18)





 Appendix E

Structure of the response function

We want to prove that if S2 0 = Sz 0 = 0  then =  and = . We only

show that this is true for the case of the density-density response functions. A similar proof

exists for the other response functions. The density-density response function is given by

r, t, r , t( ) = i t t( ) 0
ˆ r, t( ), ˆ r , t( ) 0 (E.1)

Consider the following spin operators,

ŝz r( ) = r ri( ) sz,i
i=1

N

(E.2)

ŝ
+
r( ) = r ri( ) s+,i

i=1

N

(E.3)

ŝ r( ) = r ri( ) s ,i
i=1

N

(E.4)

where sz,i  is the operator for the z-component of electron i and the operators s
±,i = sx,i ± sy,i  are

the spin raising and lowering operators of electron i. The spin density and total density operators

are given by

ˆ r( ) = r ri( )
i

i=1

N

(E.5)

ˆ r( ) = ˆ r( ) + ˆ r( ) = r ri( )
i=1

N

. (E.6)

From this it follows that

ŝz r( ) =
1

2
ˆ r( ) ˆ r( )( ) . (E.7)
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Now we can express ˆ r( )  and ˆ r( )  as linear combinations of the density operator ˆ r( )  and

the spin density operator ŝz r( ) :

ˆ r( ) =
1

2
ˆ r( ) + ŝz r( ) (E.8)

ˆ r( ) =
1

2
ˆ r( ) ŝz r( ) . (E.9)

An irreducible tensor operator of rank k is a collection of operators T̂q
k  with 

 
q = k, k 1,…, k

for which,

Sz , T̂q
k

= qT̂q
k (E.10)

S
±
, T̂q

k
= k k +1( ) q q ±1( )T̂q±1

k . (E.11)

In these equations we used that the total spin operators are given by

Sz = sz,i
i=1

N

(E.12)

S
±
= s

±,i
i=1

N

. (E.13)

Using the above definitions and the commutation relations of the spin operators we can see that

ˆ r( )  is an irreducible tensor operator of rank zero and that ŝz r( )  is an irreducible tensor

operator of rank one. We can then use the Wigner-Eckart theorem that states that for an

irreducible tensor operator T̂q
k ,

S MS T̂q
k SMS = c S( ) S MS kq,SMS( ) (E.14)

where c depends on S  and the form of the tensor operator and the last term on the right is a

Clebsch-Gordan coefficient. From the properties of the Clebsch-Gordan coefficient it

immediately follows that the matrix elements of an irreducible tensor operator are zero unless

MS = MS + q  and S S k S + S . We can now see that

SMS
ˆ r( ) 00 = c S( ) SMS 00, 00( ) (E.15)

is zero unless S = MS = 0  and
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SMS ŝz r( ) 00 = c S( ) SMS 10, 00( ) (E.16)

is zero unless S = 1  and MS = 0 . We can rewrite Eqs. (E.8) and (E.9) as

SMS
ˆ r( ) 00 =

1

2
SMS

ˆ r( ) 00 + SMS ŝz r( ) 00 (E.17)

SMS
ˆ r( ) 00 =

1

2
SMS

ˆ r( ) 00 SMS ŝz r( ) 00 (E.18)

and therefore

SMS
ˆ r( ) 00 = SMS

ˆ r( ) 00    if S = 0 (E.19)

SMS
ˆ r( ) 00 = SMS

ˆ r( ) 00  if S = 1 . (E.20)

Let us now look at the Lehmann representation of the spin-density response function

1, 2( ) = i t1 t2( ) e
i Ej E0( ) t1 t2( ) 00 ˆ r1( ) j j ˆ r2( ) 00 1 2( )

j

(E.21)

where j  are the eigenstates of the unperturbed Hamiltonian with energy Ei. If we consider

states j  with S = 0  or S = 1  we find immediately from relations (E.19) and (E.20) that

1, 2( ) = 1, 2( ) (E.22)

1, 2( ) = 1, 2( ) (E.23)

This completes the proof.





List of acronyms

ADF Amsterdam Density Functional theory program package

ALDA adiabatic local density approximation [functional]

AO atomic orbital

BLA bond length alternation

BP Becke-Perdew [functional]

CASPTn nth-order complete active space perturbation theory

CASSCF complete active space self-consistent field [model]

CCn coupled-cluster [rank] n [hybrid model]

CCSD coupled-cluster singles-doubles-and-triples [model]

CCSD(T) CCSD with approximate triples correction

CEDA common energy denominator approximation

CI configuration-interaction [model]

CIS CI singles [method]

CPHF coupled-perturbed Hartree-Fock [model]

DFT density-functional theory

DIIS direct inversion in the iterative subspace [method]

DZP double-zeta with one polarization function [basis]

EOM-CCSDT-3 equation-of-motion coupled-cluster singles-doubles-and-triples [model]

where an iterative method is used for the triple excitations

ET even-tempered [basis]

ET-pVQZ ET of quadruple-zeta quality

ET-QZ3P-1Diffuse ET quadruple-zeta with three polarization functions and one set of diffuse

STOs

GGA generalized gradient approximation

HF Hartree-Fock [model]

HOMO highest occupied molecular orbital

HPT harmonic potential theorem

KLI Krieger-Li-Iafrate [functional]

KS Kohn-Sham
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LB94 Van Leeuwen-Baerends [functional]

LCAO linear combination of atomic orbitals

LDA local density approximation

LUMO lowest unoccupied molecular orbital

MPn nth-order Møller-Plesset [perturbation theory]

MRMP multireference Møller-Plesset [perturbation theory]

MRMP2 nth-order MRMP

MRSDCI multireference singles-and-doubles CI [model]

NCT Nifosì-Conti-Tosi [parameterization]

OEP optimized effective potential [model]

PA polyacetylene

PAC polyacene

PBT polybutatriene

PDA polydiacetylene

PDI point dipole interaction [model]

PE polyethylene

PM3 parametric model number three

PMI polymethineimine

PPV poly(para-phenylene vinylene)

PSi polysilane

PSi2 polysilene

PT polythiophene

PY polyyne

QV Qian-Vignale [parameterization]

RCIS restricted CIS

SAOP statistical averaging of (model) orbital potentials

SCF self-consistent field [model]

SMA Small-matrix approximation

SOPPA Second-order polarization propagator approximation

SOS sum-over-states

STO Slater-type orbital

TDCDFT time-dependent current-density-functional theory

TDDFT time-dependent density-functional theory
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TDHF time-dependent Hartree-Fock

TZ2P triple-zeta plus two polarization functions [basis]

TZP triple-zeta plus polarization function [basis]

TZP+ TZP with additional first-order field-induced polarization functions

VK Vignale-Kohn [functional]

VWN Vosko-Wilk- Nusair [parameterization]

xc exchange-correlation





Samenvatting

In de kwantumchemie bestuderen we eigenschappen van atomen, moleculen en vaste stoffen

door het oplossen van de zogenaamde Schrödinger-vergelijking. De oplossing van deze

vergelijking, de golffunctie, geeft toegang tot alle eigenschappen van een systeem. In de praktijk

kan deze vergelijking echter alleen exact worden opgelost voor zeer eenvoudige systemen. In de

meeste gevallen zal de oplossing van deze vergelijking dus moeten worden benaderd. Veel

kwantumchemische methodes proberen een benadering voor de golffunctie te vinden door te

kijken naar de beweging en interactie van alle verschillende deeltjes gelijktijdig. Voor grotere

moleculen (met veel deeltjes) betekent dit echter dat het aantal benodigde berekeningen zo groot

wordt dat een goede benadering onbereikbaar is.

Hohenberg en Kohn ontdekten in de jaren zestig dat voor de beschrijving van veel van de

eigenschappen van moleculaire systemen, kennis van de elektronendichtheid van de

grondtoestand voldoende is. Het voordeel van deze methode is dat de dichtheid slechts afhangt

van drie ruimtecoördinaten en niet van de ruimtecoördinaten van elk deeltje afzonderlijk. Kohn

en Sham lieten kort na deze ontdekking zien dat de dichtheid van een systeem van deeltjes die

interactie hebben verkregen kan worden door te kijken naar een denkbeeldig systeem van

deeltjes die onderling geen interactie hebben, maar bewegen in een effectieve potentiaal: de

Kohn-Sham potentiaal. Deze effectieve potentiaal bevat naast de bijdrage van de externe

potentiaal en de klassieke Coulomb potentiaal ook een deel dat de veeldeeltjeseffecten van het

echte systeem beschrijft. Deze bijdrage, de zogenaamde exchange-correlatie potentiaal, wordt

eenduidig vastgelegd door een universele functionaal van de dichtheid. Voor deze

dichtheidsfunctionaal zijn tot op heden alleen benaderingen bekend. Binnen deze

dichtheidsfunctionaaltheorie (DFT) is het van belang om een zo goed mogelijke functionaal te

vinden.

In dit proefschrift kijken we naar hoe moleculen worden beïnvloed door de aanwezigheid van

een elektrisch veld. Om deze responseigenschappen te beschrijven moeten we de

tijdsafhankelijke Schrödinger-vergelijking oplossen. Runge en Gross hebben bewezen dat de

grondtoestand-DFT kan worden uitgebreid naar het tijdsdomein. Ook binnen de

tijdsafhankelijke dichtheidsfunctionaaltheorie (TDDFT) is het nodig om een exchange-correlatie

functionaal te vinden. De huidige functionalen (de adiabatische lokale dichtheid benadering
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(ALDA) en meer geavanceerde gradiënt methoden (GGA)) blijken niet goed in staat om de

polariseerbaarheid van lange moleculaire ketens te beschrijven. Deze functionalen overschatten

de polariseerbaarheid van deze systemen zeer sterk. Het probleem in deze systemen is dat door

de aanwezigheid van het veld lading zal verschuiven naar de eindpunten van de ketens. Dit is

een globaal effect dat niet kan worden beschreven met een lokale functionaal van de dichtheid.

Naast ruimtelijk lokaal, zijn de ALDA en GGA’s ook lokaal in de tijd. Dit betekend dat de

exchange-correlatie potentiaal op een bepaald tijdstip alleen afhangt van de dichtheid op dat

tijdstip, en niet van de dichtheid op andere tijdstippen. Deze potentialen hebben dus geen

geheugen.

Vignale en Kohn (VK) hebben een functionaal ontwikkeld op basis van de stroomdichtheid.

Zij ontwikkelden deze functionaal oorspronkelijk nadat zij hadden aangetoond dat als

geheugeneffecten worden meegenomen, er geen lokale dichtheid benadering voor de exchange-

correlatie potentiaal bestaat. Zij toonden aan dat een benaderde functionaal die ruimtelijk niet-

lokaal is ook niet-lokaal moet zijn in de tijd om aan belangrijke behoudswetten te voldoen.

Echter zij bewezen dat er wel een ruimtelijk lokale functionaal met geheugen op basis van de

stroomdichtheid bestaat. De lokale stroomdichtheid geeft namelijk informatie over globale

dichtheidsveranderingen doordat dichtheidsveranderingen op de randen van het systeem

gerelateerd zijn aan stromen binnen het systeem. Om deze functionaal toe te kunnen passen zal

gebruik gemaakt worden van de tijdsafhankelijke stroomdichtheidsfunctionaal theorie

(TDCDFT). In dit proefschrift beschrijven wij de statische lineaire respons (frequentie is nul) in

systemen die relatief klein zijn. Men kan zich afvragen of de VK-functionaal in dat geval wel

een effect heeft. Het blijkt uit ons onderzoek dat voor het geval van lange moleculaire ketens de

VK-functionaal juist een groot effect heeft. De VK resultaten voor de statische

polariseerbaarheid liggen voor het geval van oligomeren van polyacetyleen en andere polymeren

erg dicht bij waarden verkregen met andere theoretische methodes.

In de inleidende hoofdstukken van dit proefschrift worden eerst de grondtoestand en

tijdsafhankelijke DFT beschreven. Vervolgens wordt beschreven hoe de lineaire

responseigenschappen kunnen worden uitgerekend met TDCDFT. Het blijkt dat het stelsel van

vergelijkingen dat we verkrijgen voor het uitrekenen van de polariseerbaarheid en het excitatie

spectrum sterk overeenkomt met de vergelijkingen die verkregen worden in het geval van de

gewone TDDFT. Dit maakt de implementatie van deze vergelijkingen in het “Amsterdam

Density Functional” (ADF) programma een stuk eenvoudiger. De lineaire respons met TDDFT

is namelijk al geïmplementeerd door Stan van Gisbergen (proefschrift 1998, VU Amsterdam). In
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dit proefschrift wordt daarom alleen beschreven hoe wij deze implementatie hebben aangepast

voor TDCDFT en hoe de VK-functionaal is geïmplementeerd.

Het hoofdonderwerp van ons onderzoek is het bestuderen van het effect van de VK-

functionaal op de lineaire responseigenschappen van moleculen. Er is daarom ook een hoofdstuk

gewijd aan de achtergrond van deze functionaal. We geven in dat hoofdstuk ook een kort

overzicht van de hydrodynamica en elasticiteitstheorie. Vignale, Ullrich en Conti hebben

namelijk aangetoond dat het mogelijk is om de VK functionaal te schrijven in de vorm van een

hydrodynamische vergelijking. Dit is ook de vorm die wij als uitgangspunt nemen. Na een

beschrijving van de historische motivatie van Vignale en Kohn voor de afleiding van de

functionaal geven we een kort overzicht van deze afleiding. We geven ook de functionaal in de

spinafhankelijke vorm. Zoals hierboven opgemerkt kijken we naar de statische lineaire respons,

we laten daarom zien wat de gevolgen van het nemen van de statische limiet zijn voor de

functionaal.. Ook zeggen we iets over de geldigheid van de functionaal in het geval van eindige

inhomogene systemen zoals atomen en moleculen.

De eerste responseigenschap die we hebben onderzocht is de axiale statische

polariseerbaarheid van, voornamelijk -geconjugeerde, moleculaire ketens. Zoals eerder

opgemerkt wordt de polariseerbaarheid voor deze systemen sterk overschat met de ALDA. De

VK-functionaal blijkt niet alleen een grote correctie te geven voor polyacetyleen, maar ook voor

veel andere -geconjugeerde ketens waaronder de buisvormige fullerenen. Een ander systeem

dat veel aandacht krijgt in de literatuur is het waterstofketen-model. Dit is een keten van naast

elkaar liggende waterstofmoleculen. Ook voor deze keten overschat de ALDA de

polariseerbaarheid sterk. Op basis van wat we gevonden hebben voor de -geconjugeerde ketens

zouden we verwachten dat ook in dit geval de VK-functionaal een grote correctie zou geven. Dit

blijkt echter niet het geval te zijn, er is slechts sprake van een klein verschil tussen de ALDA en

VK resultaten.

Behalve polariseerbaarheden kunnen we ook elektronische excitatiespectra uitrekenen. We

hebben de singlet excitatieënergieën uitgerekend voor een referentie set van moleculen. De
* excitatieënergieën verkregen met de VK-functionaal zijn in goede overeenstemming met

experimentele en andere theoretische resultaten en in het algemeen geeft de VK-functionaal een

verbetering ten opzichte van de ALDA. De n * overgangen daarentegen worden sterk

overschat door de VK-functionaal. In de set van moleculen zitten ook systemen waarvan we

andere typen overgangen hebben bestudeerd. Voor deze systemen krijgen we geen duidelijk

beeld van het gedrag van de VK-functionaal.
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We hebben ook de * overgangen onderzocht in een aantal -geconjugeerde oligomeren

en de laagste singlet excitatie in de waterstofketen. Op basis van onze resultaten voor de

polariseerbaarheid verwachten we een groot effect van de VK-functionaal voor de -

geconjugeerde ketens. We hebben bestudeerd hoe het excitatie spectrum zich gedraagt als de

ketenlengte toeneemt. We zien dat de excitatieënergie van overgangen die oscillatorsterkte

hebben opschuiven naar hogere energie. We zien ook dat het HOMO-LUMO karakter en de

oscillatorsterkte van deze overgangen overgebracht worden naar andere excitaties die hoger in

energie liggen. De excitaties berekend met de VK-functionaal die de grootste bijdrage hebben

aan de oscillatorsterkte, hebben in de meeste gevallen een excitatieënergie die dichter bij de

referentiewaarde ligt dan het ALDA resultaat. Voor de waterstofketen vinden we slechts een

kleine correctie net als voor de polariseerbaarheid. Ook hebben we de laagste triplet excitatie in

polyacetyleen onderzocht. Ook in dit geval zien we een groot effect van de VK-functionaal. In

dit geval is het effect echter niet gewenst, aangezien de literatuurwaarden dicht bij de ALDA

waarden liggen.

In het laatste deel van dit proefschrift hebben we geprobeerd om meer inzicht te krijgen in de

VK functionaal en hebben daarvoor onderzoek gedaan naar de VK-functionaal voor het geval

van atomen. Voor dit geval kan de VK-functionaal omgeschreven worden naar een stelsel van

bolcoördinaten, wat de analyse van de functionaal versimpelt. Dit geeft ons onder andere de

mogelijkheid om de bijdrage van de VK-functionaal grafisch weer te geven. Als we dit doen

voor de 2s 3s overgang in het B+ atoom zien we dat het exchange-correlatie veld sterk

oscilleert in de ruimte. Voor de excitatieënergieën van verschillende atomen vinden we dat in het

geval van s p overgangen de energie sterk overschat wordt door de VK-functionaal. Deze

observatie is ook gedaan in een onafhankelijke studie door Ullrich en Burke. Een kleine

verandering van de transversale exchange-correlatie kernel (die een belangrijk onderdeel vormt

van de VK-functionaal) in het hoge dichtheid gebied geeft een grote vermindering van deze

overschatting. Zowel met de oorspronkelijke VK-functionaal als met deze gemodificeerde

kernel blijven de s s overgangen in overeenstemming met het experiment. Als we de

gemodificeerde kernel gebruiken voor moleculen zien we dat de excitatieënergieën van de n *

overgangen sterk gereduceerd worden, maar de energieën van de * overgangen blijven in

overeenstemming met literatuurwaarden. Voor de polyacetyleen keten vinden we met de

gemodificeerde kernel nog steeds een redelijk grote correctie van de axiale statische

polariseerbaarheid ten opzichte van de ALDA. Een verrassend resultaat is dat de gemodificeerde

kernel ook leidt tot een grote correctie van de axiale statische polariseerbaarheid van de
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waterstofketens, waardoor de resultaten dichter bij de literatuurwaarden komen te liggen. De

hoop dat een verbeterde parametrisatie van de transversale kernel of andere aanpassingen van de

VK-functionaal een oplossing zou kunnen bieden voor de huidige, in dit proefschrift

beschreven, tekortkomingen lijkt derhalve gerechtvaardigd.
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