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Preface

This thesis collects the results of the research I carried out as PhD student at the
department of theoretical chemistry of the Vrije Universiteit Amsterdam. Most of the
results presented in this book have been already published.
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Chapter

1
Introduction

The ultimate understanding of natural phenomena requires the study of processes at
molecular and atomic scale. Density functional theory (DFT) [1] is a valuable tool to
study the physics and the chemistry at this scale. The applications of this theory, that
is exact, are based on the approximation for the electron-electron interaction energy.
This approximation, that is the objective of this thesis, determines the accuracy of
the results and therefore the possibility of making predictions.

In Sec. 1.1 it is shown how DFT transforms the original problem of solving the
Schrödinger equation: starting from this equation for a many-electron wave function
the Kohn-Sham [2] set of equations for a non-interacting system of electrons are de-
rived and the approximations for the exchange and correlation (xc) energy functional
and for the xc potential are introduced. Section 1.2 presents the main topics and the
structure of this thesis.

1.1 From the Schrödinger equation to the Kohn-
Sham set of equations

The result of an experimental measurement of a given physical quantity A of a quan-
tum system in the stationary state Ψ can be predicted taking the expectation value
of the associated (Hermitian) operator Â

A[Ψ] = 〈Ψ|Â|Ψ〉. (1.1)

The time independent Schrödinger equation determines the stationary states Ψ and
the corresponding energies E of N -particle systems (neglecting relativistic effects)

H(r1, . . . , rN )Ψ(r1σ1, . . . , rNσ1) = EΨ(r1σ1, . . . , rNσ1). (1.2)
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H is the Hamiltonian of the system

H(r1, . . . , rN ) =
N∑
i

−∇
2

2
+ v(ri) +

1
2

∑
j 6=i

w(ri, rj) (1.3)

where v(ri) is the external potential and w(ri, rj) the internal particle interactions.
The wave function Ψ is in fact a complicated function involving all the particles’
space and spin coordinates ri, σi. Therefore the solution of the Schrödinger equation
Eq. (1.2) cannot be found analytically except for very simple systems: the hydro-
gen atom and the harmonic oscillator. The application of approximate numerical
techniques to solve Eq. (1.2) is in general not successful, if not combined with the
physical/chemical knowledge of the system that allows a simplification of the original
problem making assumptions and approximations.

For (most) atoms and molecules the first simplification comes by decoupling the
electronic and nuclear degrees of freedom and reducing the problem to find the elec-
tronic wave function at fixed nuclear positions. The variational principle helps further
to find an approximated ground state wave function: the exact electronic wave func-
tion minimizes in fact the energy E of the system.

In quantum chemistry the wave function (or ab initio) methods take advantage of
this principle, starting from an Ansatz for the wave functions depending on a certain
number of parameters. The minimization of the energy determines the parameters
and thus the form of the wave functions. The simplest reasonable Ansatz for the
N -electron wave function Ψ is the Hartree-Fock approximation considering the Slater
determinant of N spin orbitals. In the Hartree-Fock wave function two electrons with
the same spin are correlated: due to the property of the determinant, in fact, the
probability that two electrons with the same spin occupy the same position in space
is zero; while two electrons of unlike spin are not correlated. The description of (at
least a part of) the remaining correlation due to the Coulomb interaction between
electrons (both with parallel and opposite spin) requires a much more complicated
Ansatz for the wave function and much more computational effort. This effort grows
in particular with the number of degrees of freedom of the system.

Luckily, it is possible to describe a many-electron system uniquely through the
density of Ψ

ρ(r1) = N
∑
σ1

∫
|Ψ(r1σ1, r2σ2, . . . , rNσN )|2dr2 . . . drNdσ2 . . . dσN . (1.4)

This possibility is attractive: the electronic density depends only on three space
coordinates, whatever the size of the system.

The Hohenberg-Kohn theorem [1] states that the ground state expectation value
A of an operator Â is a functional of the ground state density

A[ρ] = 〈Ψ[ρ]|Â|Ψ[ρ]〉. (1.5)

More precisely, for a many-electron system (ground state) with an interparticle inter-
action w(ri, rj) there exists a one-to-one mapping (up to a trivial constant) between
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the density ρ and the external potential v. The density determines then uniquely the
external potential and thus the Hamiltonian Eq. (1.3) that in its turn determines the
(ground) wave function Ψ Eq. (1.2).

In particular the ground state energy E0 of a system can be determined by its
ground state density ρ0. The total energy Ev[ρ] is a functional of the density

Ev[ρ] = 〈Ψ[ρ]|Ĥ|Ψ[ρ]〉 =
∫
v(r)ρ(r)dr + FHK[ρ] (1.6)

where FHK is a universal functional, not depending on the external potential v

FHK[ρ] = 〈Ψ[ρ]|T̂ + Ŵ |Ψ[ρ]〉. (1.7)

The variational principle can be also extended for the density: the exact ground state
density ρ0 minimizes the energy functional Ev. These are in principle all elements
for a density functional method. In principle, given an Ansatz for the density that
is flexible enough, minimizing the energy functional Ev[ρ], one would find a very
accurate approximation for the ground state density ρ0 and the ground state energy
E0. In practice, the functional FHK (1.7) cannot be calculated: the problem is then
shifted from approximating the wave function to finding an approximation for the
functional FHK. A practical scheme to approximate FHK has been proposed by Kohn
and Sham (KS)[2]. A non-interacting system is considered: Ŵ [ρ] = 0 in Eq. (1.7)
and FHK reduces to the KS kinetic energy

Ts = 〈Ψs|T̂ |Ψs〉. (1.8)

Ψs = |ψ1 · · ·ψN | is the Slater determinant (N -electron system) of the ψi one-electron
wave functions. For this system Eq. (1.6) can be rewritten as

Evs [ρ] =
∫
vs(r)ρ(r)dr + Ts[ρ] (1.9)

and we assume the existence of an external potential vs that can reproduce the density
of the corresponding interacting system in Eq. (1.4):

ρ(r) = ρs(r)

ρs(r) =
N∑
i

‖ψi(r)‖2. (1.10)

If vs exists the one-to-one v ↔ ρ mapping ensures its uniqueness.
The exchange and correlation (xc) energy is defined

Exc[ρ] = FHK[ρ]− Ts −
∫
ρ(r1)ρ(r2)
|r1 − r2|

dr1dr2 (1.11)
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where the latter is the classical Hartree electron-electron interaction energy, and the
xc potential is obtained taking the functional derivative of the xc energy with respect
to the density

vxc(r) =
δExc[ρ]
δρ(r)

. (1.12)

The form of vs can be found by comparing the Euler-Lagrange equations for the two
systems (whose solution should provide the same ground state density)

δ

δρ

{
Evs [ρ]− µs

∫
ρ

}
= 0

δ

δρ

{
Ev[ρ]− µ

∫
ρ

}
= 0

and fixing asymptotic to zero so that µ = µs. The external potential of the non-
interacting Kohn-Sham system vs contains then the effect of the interaction between
electrons

vs(r1) = v(r1) +
∫

ρ(r2)
|r1 − r2|

dr2 + vxc(r1). (1.13)

Instead of FHK[ρ] one needs to approximate thus only a smaller part of it: Exc[ρ].
Furthermore the computational scheme is quite simple requiring the self-consistent
solution of the KS set of N one particle equations(

−∇
2
r

2
+ vs(r)

)
ψi(r) = εiψi(r) (1.14)

The eigenvalues and eigenvectors of this set of equations are respectively the one
electron KS orbital functions {ψi} and the KS orbital energies {εi}. The density is
calculated from the occupied KS orbital functions through Eq. (1.10).

1.2 This thesis

The fact that the xc energy Exc[ρ] is a minor part of the total electronic energy does
not imply that the effect of the xc approximation is not important. An immediate
example in chemistry is the theoretical prediction of reaction barriers requiring the
reliable estimate of energy differences of the order of 1-10 kcal/mol. Another example
comes from the calculation of molecular response properties using time dependent
density functional perturbation theory demanding the KS orbital functions {ψi} and
their energies {εi}; the shape of the approximated xc potential is therefore crucial for
the quality of the results.

This thesis tackles the central problem in KS density functional theory of finding
an approximation for the xc energy and potential that should be reliable and accurate
enough to describe the physical and chemical properties of an electronic system. The
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existing approximations are in general based on the uniform electron gas model (local
density approximations) [3] and on the slowly varying electron gas expansion (gen-
eralized gradient approximations) [4, 5, 6, 7]. These approximations are successful,
despite their simplicity, for some properties and systems, while in other cases they
are clearly inadequate. This thesis analyses some of the problematic cases for the ex-
isting KS DFT approximated methods and investigates alternatives to the standard
approximations. In particular, besides approximations depending on the density and
its gradient, it considers functionals explicitly dependent on KS orbitals.

The book is divided in two parts. The first regards the approximation of the xc
energy functional and is related to the problem of calculating the energy barriers and
dissociation energies of molecules. The second is dedicated to the xc potential and
concerns molecular response properties.

In part one, the first chapter introduces the concept of exchange and correlation
hole, discusses some well-known pathological cases for standard approximations and
gives a brief overview of improved approximations both gradient and orbital depen-
dent. Finally it describes the optimized effective potential method providing the xc
potential from orbital-dependent energy functionals. The following chapters present
prototypes of problematic cases that are studied in more detail: the dissociation en-
ergy of molecules with a three-electron two-center bond, the transition states of SN2
and hydrogen abstraction reactions, the dissociation curve of the H2 molecule.

The first chapter of part two describes, after building some rudiments of time de-
pendent density functional perturbation theory, the features of the xc potential that
are crucial for the quality of the results in molecular response property calculations.
Examples of approximations where these features are modeled properly, are given in
the following two chapters and their performance is tested quite successfully for excita-
tion spectra, (hyper)polarizability and related properties of light prototype molecules.
The last chapter deals with the problem of the description of the variation of the xc
potential in a perturbed system, that is another necessary ingredient to calculate re-
sponse properties. In particular, it treats the critical case of the (hyper)polarizability
of hydrogen chains.
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Chapter

2
The exchange and correlation energy functional

The generalized gradient approximations (GGAs) for the xc energy functional are
widely used in density functional calculation of dissociation energies and reaction
barriers. In spite of their success, their performance is not always satisfactory. For
example in the case of the bimolecular nucleophilic substitution (SN2) reactions and
hydrogen abstraction reactions for which the standard GGAs underestimate the re-
action barriers.

It is an actual problem in the development of approximations for the xc energy
to model functionals that can work also for these systems. The improved functionals
in particular should grasp the orbital nature of chemical bonds. Functionals that
explicitly depend on KS orbitals can thus provide a solution. Alternatively one can
try to improve GGAs still remaining within the gradient corrected functionals. The
next chapters explore both these alternatives.

In this chapter, after introducing the exchange and correlation hole function, the
problematic types of bond for the standard GGA functionals are discussed in Sec. 2.2
while in Sec. 2.3 are presented some of the orbital-dependent functionals proposed in
the literature.

2.1 The exchange and correlation hole function

This section introduces the xc hole function that is employed in the analysis of the
approximated energy functionals in the following sections and chapters.

The part of the xc energy coming from the electron repulsion,

Wxc = W − 1
2

∫
ρ(r1)ρ(r2)

r12
dr1dr2. (2.1)

the difference between the total interaction energy and the classical Coulomb energy,
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can be written

Wxc =
1
2

∑
σ1σ2

∫
ρσ1(r1)

ρxc
σ1σ2

(r1, r2)
|r1 − r2|

dr1dr2 (2.2)

as the interaction of an electron in r1 (taken as reference) with its own xc hole function.
The xc hole function

Pσ1σ2(r2|r1) =
Γσ1σ2(r1, r2)
ρσ1(r1)

= ρσ2(r2) + ρxc
σ1σ2

(r1, r2) (2.3)

describes the effects of the exchange and correlation on the probability Pσ1σ2(r2|r1)
of finding an electron in r2 with spin σ2 when the reference electron is in r1 with spin
σ1. This probability in its turn is defined by the ratio of the diagonal two electron
density matrix

Γσ1σ2(r1, r2) = N(N − 1)
∫
|Ψ(r1σ1, r2σ2, x3, . . . , xN )|2dx3 . . . dxN . (2.4)

with the spin density ρσ2(r2). The xc hole contains one electron∫
ρxc

σ1σ2
(r1, r2)dr2 = −δσ1σ2 (2.5)

and reduces the probability of finding an electron near the reference electron in r1.
The part due to the effects of the Fermi statistics, the exchange or Fermi hole, and

the part due to the Coulomb repulsion, the correlation or Coulomb hole, are (often)
treated separately. The exchange part of the xc hole function can be written explicitly
as a function of the KS spin-orbitals ψiσ

ρx
σ1σ2

(r1, r2) =−
|
∑N

i ψiσ1(r1)ψ∗iσ1
(r2)|2

ρσ1(r1)
δσ1σ2

=−
∣∣∣ N∑

i

ψiσ1(r1)√
ρσ1(r1)

ψiσ1(r2)
∣∣∣2δσ1σ2 .

(2.6)

In the lower expression the exchange hole is rewritten as the square of the linear
combination of the occupied orbitals with coefficients depending on the value of the
orbital in the reference position r1. As long as the reference electron stays in the
region where one orbital is localized and “dominate” the density, the hole does not
change markedly remaining almost equal to the square of that orbital, while, if the
reference electron crosses the overlap region between orbitals, the exchange hole varies
very rapidly. From the definition (2.6) is clear that the exchange hole is negative for
all r1, r2 and it can be easily verified that it integrates to −1.

The correlation hole instead integrates to zero. In fact the correlation hole reduces
the probability of finding electrons close to the reference electron and increases the
probability of finding an electron far from it. In general in molecules one distinguishes
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a dynamical atomic-like contribution to the correlation, from the core regions, and
nondynamical left-right contribution due to the instantaneous localization of electrons
on different fragments. The effect of the latter contribution is clear in molecular
dissociation processes. For example, in the dissociation of an homo-atomic molecule,
the exchange reduces the probability P (r1, r2) equally around both fragments and
alone it cannot yield the correct dissociation limit. The correct dissociation limit can
be obtained considering the nondynamical correlation contribution that reduces the
probability P (r1, r2) on the site where the reference electron is located and increases
it on the other site. The resulting total xc hole is then localized on the site where the
reference electron is located.

Finally, it is important to notice that in the expression of Wxc is needed the knowl-
edge of only the spherical averaged part of the xc hole function ρxc. This simplifies
the developing of approximations of the xc energy functional: the approximated xc
hole has to grasp only the features of the spherical averaged part of ρxc.

2.2 Generalized gradient approximations

The GGAs modify the local density approximation [3] (LDA) adding the dependence
on the gradient of the density that measures how fast the density itself changes. This
approximation may be put in the general form

EGGA
xc =

∫
ρ4/3(r)Fxc(rs(r), s(r))dr. (2.7)

The enhancement factor over the local exchange Fxc is a function of the reduced
density gradient

s(r) =
1

2(3π2)1/3

∇ρ(r)
ρ4/3(r)

(2.8)

and of the local Wigner-Seitz radius

rs(r) =
(4π

3
ρ(r)

)−1/3

.

The form of the factor Fxc depends on the specific approximation, it is usually mod-
eled for slowly varying density systems, considering key properties of the exact xc
functional. It can eventually contain empirical parameters optimized by fitting a set
of chemical data.

Looking at the form of factor Fxc(s, rs = 0) the exchange part of the GGAs can be
“classified” into two groups that will be addressed in this book as “standard” [4, 5, 6, 7]
and “modified” GGAs [8, 9, 10]. While “standard” GGAs exchange reduce to the LDA
one

ELDA
x =

3
4

( 3
π

)1/3
∫
ρ4/3(r)dr (2.9)

the “modified” GGAs reduce to the Xα exchange with α that scaled the LDA exchange
by a factor ∼ 1.05. In fact in the construction of the former functionals F 0

xc (Fxc at
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s = 0) is fixed by the uniform gas limit, in the construction of the latter, F 0
xc is

considered as a parameter and optimized.
A second difference is the dominant s4 dependence of the “modified” GGAs in the

region of 0 ≤ s ≤ 1 instead of the dominant quadratic behavior s2 of the “standard”
GGAs.

Therefore in the bonding region of molecules, characterized just by value of s
between 0 and 1, the “modified” exchange functionals are less sensitive to density
variations than the “standard” ones and they are more closer to the Xα exchange
functional. In the next chapter, from the analysis of s2σ in the bonding region of
prototype molecular bonds, it is shown how the different behavior in this region of
the “modified” GGAs improves the performance of these functionals for problematic
types of bond.

2.2.1 Problematic cases for the standard GGAs: the n/m rule

This section is dedicated to the discussion of the molecular bonds which are problem-
atic for the application of DFT at the standard GGA level.

The standard GGA functionals substantially overestimate the stability of the
bifragmental radical cations A+

2 with a two-center one-electron and two-center three-
electron bond A–A [11, 12, 13], they also overestimate the stability of the transition
states of radical abstraction reactions and SN2 reactions and as a consequence they
tend to underestimate the reaction barriers [14, 15, 16, 17, 18]. Furthermore they fail
to properly describe the dissociation of an electron pair bond, yielding large errors at
long bond distances.

To understand why the GGAs do not provide satisfactory results for these systems
one has to analyze why do they work. Both LDA and GGA xc holes are substantially
localized around the reference electron. As a consequence the GGA can provide
satisfactory results only for systems with a substantially localized xc hole.

This is the case for atoms where both the exchange and the correlation holes are
localized. The GGAs improve greatly on LDA reducing the error by an order of mag-
nitude. This is also the case of systems with covalent bond. As discussed in Sec. 2.1
the xc hole is substantially localized around the site where the reference electron is lo-
cated. As a matter of fact the GGA functionals are not a good approximation for the
molecular exchange and correlation considered separately. The (negative) exchange
contribution is not negative enough because the GGA exchange hole is localized. On
the other hand the localized GGA correlation hole causes the overestimation of the
correlation contribution. These two errors cancel each other and in general the GGAs
predict correctly the xc energy for covalent bond systems. As explained in Ref. [19]
on the ground of accurate KS calculations on Li2, N2 and F2 molecules, the localized
GGA exchange hole takes into account effectively the exchange and nondynamical cor-
relation contributions, while the GGA correlation covers only dynamical correlation
effects.

This mechanism clearly does not work in the case of the H+
2 molecule (two-center

one-electron bond). In fact this one-electron molecule has no Coulomb correlation and



2.2 Generalized gradient approximations 13

the exchange is just the self-interaction. The latter cancels exactly with the Hartree
energy. The GGAs cannot reproduce the exchange hole delocalized on the two centers
and because of the artificial localization they overestimate badly the stability of the
molecule with respect to the H atom and H+ cation. Because of the incomplete
cancellation of the self-interaction contributions of the exchange and the Hartree part
the error of the exchange part of the GGA is addressed as “self-interaction error”.

In the case of He+
2 and the other bifragmental cation dimers with two-center three-

electron bond, the exchange hole is delocalized on the atomic centers as in the case
of covalent bond, but, as discussed in [20], the “unfavorable electron count” hampers
the nondynamical correlation contribution. The GGA hole is more localized than the
true xc hole. In particular the error of the GGA correlation functionals cancels only
partially the error of the GGA exchange and the spurious nondynamical correlation
produced by the latter yields the overestimation of the stability of these systems. This
is shown in Chapt. 3 for the molecule of He+

2 on the basis of accurate KS results.
The underestimation of the reaction barrier for the SN2 reaction due to the over-

stabilization of the transition state has the same source. These problematic cases can
be recognized on the basis of the ratio n/m between the number n of the electrons
participating to the bond and the number m of centers on which the bond is delo-
calized [20]. If the ratio n/m is an integer as in the case of covalent bond molecules
(n = 2, m = 2) the GGAs give reasonable results. If n/m is a fractional number,
as for the H+

2 molecule (n = 1, m = 2), the two-center three-electron bond (n = 3,
m = 2) and the transition state of the symmetrical SN2 reaction (n = 4, m = 3)
the GGAs might overestimate the stability of the systems because of the “spurious”
nondynamical correlation produced by the GGA exchange functionals.

In the case of the overestimation of the stability of the transition state of the radical
abstraction reactions the error of the GGA is not due to the exchange part. In fact
following the n/m rule this system with n = 3 electron and m = 3 centers involved
in the bond does not belong to “problematic cases”. It has been recognized [21] from
accurate KS calculations on the prototype H· · ·H· · ·H system that in this case the
approximated exchange covers correctly the exchange and nondynamical correlation
contributions and the overestimation is produced by the approximated correlation.
The origin of this overestimation has been attributed to the dependence of the GGA
correlation on the spin polarized density

ζ(r) =
ρ↑(r)− ρ↓(r)
ρ↑(r) + ρ↓(r)

.

Finally, in its spin restricted version, the GGA fails to describe the dissociation
of the electron-pair. As discussed above the GGAs describe qualitatively and quan-
titatively the electron-pair bond at equilibrium distance: the GGA exchange hole
is localized and simulates the combined effects of the exchange and nondynamical
correlation. In the infinite separation limit, the true xc hole is of course completely
localized on the site where the reference electron is located and contains one electron.
The GGA exchange hole is well localized, but it is not “deep” enough. This problem
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is explained in more detail on the basis of quantitative and qualitative arguments in
Chapt. 5.

2.3 Orbital-dependent functionals

A promising way to improve on GGAs is to use explicitly orbital-dependent function-
als.

In the meta-GGAs the orbitals are introduced through the KS kinetic energy
spin-density τσ

τσ(r) =
1
2

Nσ∑
i=1

|∇ψiσ(r)|2 (2.10)

This variable gives a measure of the “localization” of the electron [22, 23, 24] and it
can be used to determine whether or not the localized model of the xc hole is a good
approximation for the true xc hole function. Several meta-GGAs are tested in the
following chapters for the problematic cases discussed above and their performances
analyzed looking at the behavior of τ along the different types of bond. The meta-
GGAs are rather simple functionals depending only on the density and the KS orbitals
at the position r1 and in a infinitesimal interval around it.

The functionals that follow instead are “nonlocal” depending on the orbitals (or
orbital densities) not only at the position r1, but also at every finite distance |r1−r2|.
In Ref. [25] the orbital densities

ρiσ = |ψiσ(r)|2

are used to correct the self-interaction error in existing GGAs

ESIC-GGA
xc [ρ↑, ρ↓] = EGGA

xc [ρ↑, ρ↓]−

{
1
2

Nσ∑
iσ

∫ ∫
ρiσ(r)ρiσ(r2)
|r1 − r2|

dr1dr2 +EGGA
xc [ρiσ, 0]

}
The self-interaction-corrected (SIC) GGAs have been applied quite successfully in
Ref. [26] to calculate reaction barriers.

The exact orbital expression for the exchange energy can be employed instead of
the GGA exchange functionals

Ex = −1
2

Nσ∑
ijσ

∫ ∫
ψiσ(r1)ψ∗iσ(r2)ψjσ(r2)ψ∗jσ(r)

|r1 − r2|
dr1dr2. (2.11)

Nevertheless the correlation cannot be described anymore with GGA functionals that,
as discussed in Ref. [19] and mentioned above, cover only the dynamical part of the
correlation. A functional has to be found to cover the remaining nondynamical part.

A solution is to mix the exact exchange with a GGA exchange [27, 28] that takes
into account also the nondynamical correlation

Eexact-GGA
xc = Ex + ax(EGGA

x − Ex) + EGGA
c
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The nondynamical effects are then given by the difference in energy of the GGA and
exact exchange energy weighted with a mixing factor ax. The mixing factor ax is not
“universal”: the effects of nondynamical correlation depend on the type of bond and
vary strongly with the bond distance. In Ref. [29] a variable mixing factor ax has
been proposed

ax = (1− τW /τ)

involving the KS kinetic energy density τ and the von Weiszäcker kinetic energy
density τW = |∇ρ|2/8ρ. This functional corrects the self-interaction error for the
H+

2 molecule yielding the correct dissociation limit, in fact for a one-electron system
τ = τW and (providing that the approximation for the correlation part gives also
no contribution for a one-electron system) Eexact-GGA

xc = Ex. Further this hybrid
functional has been employed successfully to calculate the bifragmental cation dimers
with two-center three-electron bond and the prototype hydrogen exchange between
the hydrogen molecule and hydrogen atom. Note however that this nondynamical
correlation functional is still not “universal”, it worsens the results for the atomization
energy of the small G2 set and fails to describe the dissociation of the H2 molecule
at large distances.

In Ref. [30] an orbital-dependent functional has been proposed that, including both
occupied and virtual orbitals, describes properly the building-up of nondynamical
correlation for the dissociating molecular hydrogen and gives the correct result in the
infinite separation limit. Chapter 5 discusses the implementation of this functional
in a self-consistent scheme and the results obtained for the dissociation curve of the
hydrogen molecule.

2.3.1 Optimized effective potential

A problem to be solved when employing orbital-dependent functionals is the derivation
of the corresponding potential. The xc potential in fact is the functional derivative of
the xc energy with respect to the density.

Orbital functions are implicitly functional of the density and the xc potential can
be found by solving the integral equation

vxc(r1) =
N∑
i

∫
δExc[{ψj}]
δψi(r2)

Gi(r2, r3)ψi(r3)χ−1
s (r3, r1)dr2dr3 + c.c. (2.12)

where Gi is the Green function of the KS system

Gi(r2, r3) =
∑
j 6=i

ψj(r3)ψ∗j (r2)
εj − εi

, (2.13)

and χ−1
s the inverse of the KS response function

χs(r1, r2) =
δρ(r1)
δvs(r2)

= −
N∑
i

ψ∗i (r1)Gi(r1, r2)ψi(r2) + c.c. (2.14)
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defined by ∫
χs(r1, r3)χ−1

s (r3, r2)dr3 = δ(r1 − r2).

The inverse function χ−1
s of the KS density response is defined up to a constant that

can be determined fixing the gauge for the KS potential vs.
To find the xc potential it is then required to solve the non-trivial problem of

inverting the KS density response function (2.14). In the case of spherical atomic
systems the inversion can be performed numerically on a grid (Optimized Potential
Method [31]). For molecular systems this problem has been solved either using an
auxiliary basis set to expand the equation for the potential (plane wave, Gaussian
type of orbital) [32, 33, 34, 35] or introducing the exchange charge density defined
as the charge distribution whose electrostatic potential is the exchange potential [36].
Further, in Ref. [37] the xc potential is found through an iterative scheme avoiding
the direct solution of the integral equation (2.12) and thus the inversion of the KS
response.

Alternatively one can approximate the inverse function χ−1
s of the KS density

response. In Ref. [38] the following approximation for the Green function (2.13) has
been proposed

GKLI
i (r1, r2) =

1
∆ε

(
δ(r1 − r2)− ψi(r1)ψ∗i (r2)

)
. (2.15)

Substituting this approximated Green function in Eq. (2.14) one obtains an approxi-
mated expression for the KS density response function:

χKLI
s (r1, r2) = − 1

∆ε

( N∑
i

∑
j

ψ∗i (r1)ψj(r)ψ∗j (r2)ψi(r2)−
N∑
i

|ψi(r1)|2|ψi(r2)|2 + c.c.
)

(2.16)
that can be “analytically” inverted as shown in Ref. [39]. Nevertheless it should
be noticed that in the sum of the approximated expression (2.16) only the diagonal
occupied orbital products are excluded while in the exact expression

χs(r1, r2) = −
N∑
i

∑
a>N

ψ∗i (r1)ψa(r)ψ∗a(r2)ψi(r2)
εa − εi

+ c.c. (2.17)

all occupied-occupied products are excluded as an effect of the cancellation due to
the energy denominator εj − εi = −(εi − εj). To avoid this drawback the following
approximation as been proposed [40] for the KS Green function (2.13)

GCEDA
i (r1, r2) =

1
∆ε

( ∑
j 6=i

∆ε
ψj(r1)ψ∗j (r2)

εj − εi
+

∑
a>N

ψa(r1)ψ∗a(r2)
)

=
1

∆ε

(
δ(r1 − r2) +

∑
j 6=i

∆ε
ψj(r1)ψ∗j (r2)

εj − εi
−

N∑
j

ψj(r1)ψ∗j (r2)
) (2.18)
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where the common energy denominator approximation has been made only for the un-
occupied KS orbitals. This leads to the common energy denominator approximation
(CEDA) for the KS response function (2.17):

χCEDA
s (r1, r2) = − 1

∆ε

( N∑
i

∑
a>N

ψ∗i (r1)ψa(r1)ψ∗a(r2)ψi(r2) + c.c.
)
. (2.19)

In this case, in fact, all the occupied-occupied orbital products are correctly excluded
from the summation. Also, the approximated expression (2.19) has an analytical
expression for the inverse [40].

The CEDA for the KS response function has been applied in Chapts. 5 and 9 to
derive the potential corresponding respectively to the orbital-dependent functional
proposed in [30] and the exact exchange functional (2.11). In those chapters (2.12) is
solved with the approximation (2.18) for the Green function leading to an analytical
expression for the xc potential.
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Chapter

3
GGAs and meta-GGAs for the two-center

three-electron bond

The radical cations He+
2 , (H2O)+2 , (NH3)+2 with two-center three-electron A–A bonds

are investigated at the configuration interaction, accurate Kohn-Sham, generalized
gradient approximation, and meta-GGA levels. Assessment of seven different GGA
and six meta-GGA methods shows, that the A+

2 systems remain a difficult case for
DFT. All methods that have been tested, consistently overestimate the stability of A+

2 ,
the corresponding De errors decrease for more diffuse valence densities in the series
He+

2 >(H2O)+2 >(NH3)+2 . By comparison to the energy terms of the accurate Kohn-
Sham solutions, the approximate exchange functionals are found to be responsible for
the errors of GGA-type methods, which characteristically overestimate exchange in
A+

2 . These so-called exchange functionals implicitly use localized holes. Such localized
holes do occur if there is left-right correlation, i.e. the exchange functionals then also
describe nondynamical correlation. However, in the hemibonded A+

2 systems the
typical molecular (left-right, nondynamical) correlation of the two-electron pair bond
is absent. The nondynamical correlation built into the exchange functionals is then
spurious and yields too low energies.

3.1 Introduction

The most comprehensive way to analyze the performance of the LDA, GGAs and
meta-GGAs of DFT[41] in molecular calculations is to compare the approximate ex-
change and correlation energies and energy densities with those calculated for the
essentially accurate KS solution. The latter can be obtained from an accurate ab ini-
tio electron density ρ(r). Benchmark KS solutions have been obtained previously for
a number of atoms [42, 43, 44, 45], molecules [46, 47, 48, 49, 50, 51], prototype hydro-
gen abstraction and hydrogen exchange reactions [21] and the bimolecular nucleophilic
substitution (SN2) reaction [20]. The comparison with the accurate KS quantities is
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of special importance in problematic cases, where standard DFT GGAs [4, 5, 6, 7]
produce relatively large errors. Such cases [11, 12, 13, 14, 15, 16, 17, 18, 21, 52, 53,
54, 55, 56, 57] and the qualitative rule put forward in Ref. [20] to predict success or
failure of GGAs have been discussed in Chapt. 2.

This chapter in particular investigates the prototype difficult case of bifragmental
radical cations A+

2 with a two-center three-electron bond A–A, the stability of which
is substantially overestimated by GGAs. This has been established in [11, 12, 13] by
comparison of the GGA results with those of the ab initio Møller-Plesset perturbation
(MP2 and MP4) and coupled-cluster CCSD(T) methods. Still, to our knowledge, no
accurate KS solution has been reported for A+

2 . Furthermore, it is also desirable to
assess the performance for A+

2 of the recently developed meta-GGAs [58, 59, 60, 61]
in which, in addition to the density gradient ∇ρ, the KS kinetic energy density τ(r)
and/or the density Laplacian ∇2ρ(r) have been employed.

In this chapter the Kohn-Sham solutions are constructed for the hemibonded sys-
tems He+

2 , (H2O)+2 and (NH3)+2 from ab initio densities obtained with configuration
interaction (CI) calculations. In Sec. 3.2 the results of CI calculations are discussed.
The correlation contribution to the A–A hemibond is analyzed. It is stressed that the
typical left-right (nondynamical, molecular) correlation of a bonding electron pair is
absent in the hemibonded systems. This shows up in the structure of the CI wave-
functions. High quality of the CI solution has been achieved for the lightest system,
He+

2 , while for the heavier (H2O)+2 and (NH3)+2 a size-consistency correction is re-
quired. In Sec. 3.3 the KS solutions are constructed from the correlated CI densities
and the components of the total energy EKS of the KS determinant are compared
with those of the total energy EHF of the Hartree-Fock (HF) determinant. The EKS

and EHF values appear to be close to each other for A+
2 , as well as the exchange

energies EKS
x , EHF

x and the correlation energies with respect to HF, EHF
c = E −EHF

and with respect to the KS determinantal energy, EKS
c = E − EKS.

In Sec. 3.4 a comparative assessment of seven different GGA and six meta-GGA
methods is made. GGA-type methods overestimate the stability of A+

2 . On average,
GGAs and meta-GGAs show a similar quality of the results and even the best methods
yield relatively large errors (in the range 25–40%) of the dissociation energy in the
difficult case of A+

2 . Comparison to the accurate KS quantities shows that this is
due to overestimation of the molecular exchange energy by the approximate exchange
energy functionals. Following the analysis given in Refs. [19, 20, 21], this is interpreted
as inclusion of left-right correlation by the approximate exchange functionals, which
is spurious in these systems. In Sec. 3.5 the conclusions are drawn.

3.2 CI calculations of A+
2

The ab initio ground state calculations of the radical cations A+
2 (A=He, H2O, NH3)

and the corresponding fragments A and A+ have been performed with the CI method
with inclusion of all single and double excitations (CISD) of the reference Hartree-Fock
(HF) configuration ΨHF by means of the ATMOL package [62]. The effect of size-
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extensivity on the CI energy has been estimated with the correction of Ref. [63]. The
restricted HF and the subsequent CI calculations have been performed in the large
correlation-consistent polarized valence quintuple zeta (cc-pV5Z) basis for He [64] and
in the smaller core-valence (cc-pCVTZ) basis sets for N and O [65], while for H the
triple zeta (TZ) basis [66] augmented with polarization functions has been used. The
experimental equilibrium bond distance R(He–He)=1.081 Å [67] has been taken for
He+

2 , and the hemibonded structures of (H2O)+2 and (NH3)+2 with the direct bonds
O–O and N–N (with R(O–O)=2.023 Å and R(N–N)=2.151 Å) have been taken from
Ref. [68], where they were optimized at the MP2 level.

The two-center three-electron bond (A–A)+ is at the HF level represented by
double occupancy of the ψ+ = (a + b)/

√
2 + 2S orbital between the A lone-pair

orbitals (1s for He, 2pπ for H2O and sp3 for NH3), and single occupancy of the
antibonding combination ψ− = (a − b)/

√
2− 2S. There is a remarkable difference

between the simple MO wavefunction for an electron pair bond Ψpairbond =
∣∣ψ2

+

∣∣ and
the hemibond wavefunction Ψhemibond =

∣∣ψ2
+ψ−α

∣∣ as far as the electron correlation
is concerned. The electron pair bond, in particular at long distance, suffers from the
well-known unwarranted inclusion of ionic configurations,

Ψpairbond = (1/2){|a2|+ |b2|+ |ab̄| − |āb|} = (1/
√

2){Ψionic + ΨHL}.

In particular at long distances the 50% inclusion of ionic configurations deteriorates
the quality of the wavefunction since the covalent Heitler-London wavefunction then
becomes the exact solution. Combining with the doubly excited configuration

Ψexc =
∣∣ψ2
−

∣∣ = (1/
√

2)
∣∣Ψionic −ΨHL

∣∣
is able to remove the ionic contributions. In terms of exchange-correlation holes: if
we consider a reference electron close to nucleus b, say, the HF wavefunction has equal
probability for the second electron to be at either nucleus, i.e. the hole is delocalized
over both nuclei (Ref. [13]) (it represents only exchange, which is just self-interaction
correction in this case). On the other hand, the full exchange-correlation hole of
ΨHL is localized at the site where the reference electron is located [69]. GGA ex-
change approximations work implicitly with localized holes and therefore incorporate
the left-right correlation in a KS calculation on an electron pair bond, actually to a
surprisingly quantitative accuracy [19, 20, 48]. The HF wavefunction of the hemi-
bonded systems does not suffer from the left-right correlation error. When expanding
Ψhemibond =

∣∣ψ2
+ψ−α

∣∣ for He+
2 at long bond distance one obtains

Ψhemibond = (1/
√

2)
{∣∣aαb2∣∣− ∣∣a2bα

∣∣} .
At long distance the exact wavefunction approaches

Ψhemibond = (1/
√

2)N̂ÂΨ(He+
a )Ψ(Heb)− N̂ÂΨ(Hea) ·Ψ(He+

b ),

where N̂Â are the normalization and antisymmetrization operators respectively. In
fact, completely different from H2, the He+

2 system at equilibrium distance can be



22 GGAs and meta-GGAs for the two-center three-electron bond

single excitations double excitations
Molecule HF coeff exc. type coeff. exc. type
He+

2 0.991 0.058 1σg→3σg 0.034 1σ2
g→1σu2σu

(H2O)+2 0.953 0.036 4ag → 9ag 0.034 3ag4ag→4bu7bu
(NH3)+2 0.949 0.054 3a1g→7a1g 0.037 1eu3a1g → 3a2u2eg

Table 3.1: CI coefficients of the HF configuration and the leading coefficients among the singly and
doubly excited configurations in the CISD wavefunctions of A+

2 .ψ+ is 1σg , 4ag , 3a1g in He+2 , (H2O)+2
and (NH3)+2 respectively, ψ− 1σu, 4bu, 3a2u.

considered to be aproaching the long distance limit. For H2 at the bonding distance
of Re=0.7 Å the 〈a|b〉 overlap is 0.8, whereas for He+

2 at the Re of 1.1 Å the overlap
is only 0.23 [68] (the He 1s is much more contracted), which is only reached in H2 at
a distance of 1.95 Å. So the MO wavefunction for He+

2 does not exhibit a left-right
correlation error, but it does have two obvious errors. First, lack of intra-atomic
correlation on the non-ionized He atom, i.e. the configurations a2 and b2 should
be correlated He wavefunctions. Second, the symmetrical effective field in the one-
electron equations has a charge +1/2 at each He fragment, which is different from
the charges 0 and +1 in the correlated wavefunction. This a rather large difference,
in particular in view of the low nuclear charge charge Z = 2, so in a term like

∣∣aαb2∣∣
the a orbital is too diffuse, and the b orbital is too contracted. We thus expect the
CI calculations to correct first of all for the He atom dynamical correlation, which
is known to have in He little effect on the one-electron energy terms, but also for
the wrong orbital expansion and contraction, which will also affect the one-electron
energies. Similar considerations hold for the other hemibonded systems.

We have carried out CISD calculations for all systems. These are capable of fully
correlating the lone pairs in the A–A+ systems, but except for He+

2 there will be
size-inconsistency effects in these CISD wavefunctions we will have to correct for.
The CISD wavefunctions ΨCI show the same pattern of configuration interaction for
all three systems and Table 3.1 presents the CI coefficient of the HF configuration
ΨHF

[
ψ2

+ψ
1
−

]
and the largest contributions among all singly and doubly excited con-

figurations. The HF configuration completely dominates ΨCI, indicating there is no
strong nondynamical correlation, the next largest (though much smaller) contribution
comes from the configuration with a single excitation from ψ+ which, by virtue of
Brillouin’s theorem, does not interact directly with ΨHF. These single excitations
cannot be ψ+ → ψ− for symmetry reasons, they are all excitations out of ψ+ to
higher-lying orbitals of the same symmetry whose primary function is to correct the
one-electron density. Among doubly excited configurations the largest contribution
comes from the configuration, which includes single excitation ψ+ → ψ−, while an-
other electron is excited to some unoccupied orbital of the proper symmetry from ψ+

(in the case of He+
2 ) or from another doubly occupied orbital. The corresponding CI

coefficients are small and the values around 0.035 are remarkably similar for all three
systems (see Table 3.1). This can be contrasted with the simple pattern of nondy-
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method He+ He He+
2 De

HF −1.9999 −2.8616 −4.9228 38.47
CI −2.9032 −4.9934 56.66
CI(corrected) −2.9032 −4.9939 56.98
MP4a 55.3
CCSD(T)a 56.0
expb/exactc −2.0000 −2.9037 56.9

aRef. [12]
bRef. [67]
cRef. [70]

Table 3.2: Total energies of He+2 , He, and He+(Hartrees) and dissociation energies of He+2 (kcal/mol)
calculated with ab initio methods.

method (H2O)+ H2O (H2O)+2 De

HF −75.6499 −76.0540 −151.7248 13.13
CI −75.9141 −76.3598 −152.3003 16.57
CI(corrected) −75.9245 −76.3742 −152.3570 36.58
MP4a 43.1
CCSD(T)b 39.2

aRef. [12]
bRef. [13]

Table 3.3: Total energies of (H2O)+2 , H2O, and H2O+ (Hartrees) and dissociation energies of (H2O)+2
(kcal/mol) calculated with ab initio methods.

namical left-right correlation in an ordinary covalent bond with a strong interaction
between ΨHF and the doubly excited configuration with two electrons excited from
ψ+ to ψ−. Evidently, this latter pattern cannot be realized in our A+

2 case, since ψ−
is (singly) occupied in ΨHF(A+

2 ), and it is not required since the left-right correlation
error that such excitations correct for, is absent. The energetics of the bonding and
the CI effects can be seen from Tables 3.2, 3.3, 3.4, which present the total energies
E of the systems A+

2 , A, A+ and the dissociation energies De of A+
2 calculated with

the HF and CI methods (in the last case the energies obtained with and without size-
consistency correction [63] are presented). The De values are compared with those
calculated with the MP4 [12], CCSD(T) [12, 13] and with the experimental data [67].
Note that, due to the larger basis set used, the HF total energies in Tables 3.2, 3.3
and 3.4 are consistently lower than the corresponding energies reported in Ref. [68],
while our CI total energies are lower than the best MP2 energies obtained in Ref. [68].

We would like to stress, in particular, the high quality of the CISD calculation
for the lightest He+

2 system (see Table 3.2). The CISD De=56.66 kcal/mol of He+
2 is

closer to the experimental value Dexp
e =56.9 kcal/mol (corrected for the zero-point vi-
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method (NH3)+ NH3 (NH3)+2 De

HF −55.8952 −56.2152 −112.1370 16.69
CI −56.1370 −56.4952 −112.6560 14.93
CI(corrected) −56.1476 −56.5103 −112.7116 33.70
MP4a 37.9

aRef. [12]

Table 3.4: Total energies of (NH3)+2 , NH3, and (NH3)+ (Hartrees) and dissociation energies of

(NH3)+2 (kcal/mol) calculated with ab initio methods.

brational energy [12]) than the MP4 De=55.3 kcal/mol and even than the CCSD(T)
De=56.0 kcal/mol of Ref. [12], as a consequence of our larger basis set. The size-
consistency correction for He+

2 is small since, as pointed out above, there is only one
electron pair that has to be correlated and we do not need quadruple excitations
to correlate two electron-pairs simultaneously. Still, the size-consistency correction
works in the right direction and the resulting corrected value De=56.98 kcal/mol
nearly coincides with Dexp

e . We note that correlation effects add 18.2 kcal/mol (18.5
after size-consistency correction) to the calculated De, which is 38.5 kcal/mol at HF
level. For the simple He+

2 system the origin of the correlation contribution to De

is easy to trace. Since He+ is a one-electron system, the only correlation contribu-
tion for the individual fragments He and He+ comes from dynamical correlation of
the 1s electron-pair of the He atom. The CISD correlation energy for the He atom
EHF

c (He) = ECI(He) − EHF(He) = −0.0416 Hartree (see Table 3.2) is very close to
the conventional empirical correlation energy EHF(emp)

c (He) = −0.0420 Hartree [70].
The total correlation energy of He+

2 (−0.071 H) contains apart from this expected
−0.042 Hartree dynamical correlation of a single He, see above, an additional −0.029
Hartree = −18.2 kcal/mol. This is much smaller than the ca. 58 kcal/mol correla-
tion correction to the H2 bond energy at R=1.95 Å (corresponding to 〈a|b〉 = 0.23)
in agreement with the lack of nondynamical correlation in the He+

2 bond. The 18.2
kcal/mol correlation contribution is to be attributed to both dynamical correlation
corrections to the electron-electron repulsion energy and to orbital and density shape
corrections affecting one-electron energy terms (kinetic energy, electron-nuclear en-
ergy), see below. As was shown above, the CISD wavefunctions of the heavier systems
(H2O)+2 and (NH3)+2 exhibit the same configuration interaction pattern as the one
for He+

2 . However, CISD substantially underestimates the stability of (H2O)+2 and
(NH3)+2 as compared to CCSD(T) of Ref. [13] and MP4 of Ref. [12] (see Tables 3.3
and 3.4). This is clearly the effect of size inconsistency of the restricted CI [71] for
these systems with many electron pairs. The relatively large size-consistency correc-
tions for (H2O)+2 and (NH3)+2 , compared to that for He+

2 , bring the CISD dissociation
energies of (H2O)+2 and (NH3)+2 much closer to those of CCSD(T) and MP4 (see Ta-
bles 3.3 and 3.4). In fact, the corrected CISD De=36.6 kcal/mol for (H2O)+2 is slightly
closer to the CCSD(T) De=39.2 kcal/mol [13] (which, we believe, is the most accurate
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He+
2 (H2O)+2 (NH3)+2

T s 4.926 151.663 112.179
∆T s,HF 0.021 0.214 0.247
T s

c 0.060 0.461 0.330
THF

c 0.082 0.674 0.577
V s −13.901 −439.421 −349.923
∆V s,HF −0.021 −0.402 −0.397
W s

H 3.657 111.115 94.835
∆W s,HF

H −0.001 0.107 0.164
W s

c −0.132 −1.045 −0.858
WHF

c −0.131 −0.970 −0.868
Ex −1.561 −17.460 −15.020
∆Es,HF

x 0.002 0.016 0.005
Ec −0.072 −0.584 −0.527
EHF

c −0.0706 −0.575 −0.519
∆Es,HF

c −0.002 0.065 −0.019

Table 3.5: Comparison of the KS and HF energy components (Hartrees) for A+
2

calculated value) than the MP4 De=43.1 kcal/mol [12]. Thus, we expect that also
for (NH3)+2 the true dissociation energy is in between the corrected CISD De=33.7
kcal/mol and the MP4 De=37.9 kcal/mol. For good correlated densities we should
do MRCI calculations to get close to the present size-consistency corrected energies.

3.3 Comparison of the KS and HF one-electron so-
lutions for A+

2

The correlated electron densities ρCI(r) of the CISD wavefunctions of He+
2 , (H2O)+2

and (NH3)+2 have been used to generate the Kohn-Sham orbitals ψs
i (r) and potential

vs(r) for these systems. The KS solution has been obtained with the iterative proce-
dure of Ref. [72], which is based on the theory of linear response of the KS orbitals
to a potential change ∆vs. The accuracy of this solution can be characterized by the
absolute integral error

∆ρ =
∫
|ρs(r)− ρCI(r)|dr

of the density ρs(r) obtained from the generated KS orbitals ψs
i (r). A rather accurate

KS solution has been constructed for He+
2 with ∆ρ of only 0.0003 E, while the KS

solutions for (H2O)+2 and (NH3)+2 have larger errors of 0.007 and 0.0045 E. For
the energy terms displayed in Tables 3.5–3.7 the difference between ρs and ρCI is
insignificant.

Using ρs(r) and {ψs
i (r)}, the KS energy functionals have been calculated and, in
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order to assess the effect of electron correlation on the KS solution, they are compared
in Table 3.5 with the HF ones. The total energies EKS and EHF of the KS and
HF determinants are expressed in the same way through the corresponding densities
ρs/HF(r), spin-densities ρs/HF

σ (r) and orbitals {ψs/HF
σ (r)}

EKS/HF = Ts/HF + V s/HF +W
s/HF
H + Es/HF

x (3.1)

In (3.1) Ts/HF is the kinetic energy

Ts/HF =
∑

σ

Nσ∑
i=1

∫
drψs/HF∗

iσ (r)
(
−1

2
∇2

)
ψ

s/HF
iσ (r)

V s/HF is the electron-nuclear attraction energy

V s/HF = −
∑

j

∫
dr
Zjρ

s/HF(r)
|r−Rj |

W
s/HF
H is the Hartree energy of the electron-electron electrostatic repulsion

W
s/HF
H =

1
2

∫
dr1dr2

ρs/HF(r1)ρs/HF(r2)
|r1 − r2|

and W s/HF
x is the exchange energy

W s/HF
x =

1
2

∑
σ

∫
dr1dr2

ρ
s/HF
σ (r1)ρ

s/HF
xσ (r2|r1)

|r1 − r2|
(3.2)

expressed via the exchange (Fermi) hole function ρs/HF
xσ (r2|r1), the latter being deter-

mined from ρ
s/HF
σ (r) and {ψs/HF

σ (r)}

ρs/HF
xσ (r2|r1) =− 1

ρ
s/HF
σ (r1)

×
Nσ∑
i=1

Nσ∑
j=1

ψ
s/HF∗
iσ (r1)ψ

s/HF
jσ (r1)ψ

s/HF∗
jσ (r2)ψ

s/HF
iσ (r2).

(3.3)

The correlation correction Wc to the electron-electron interaction energy is defined as
the difference between the exact W , as approximated here by the CI calculation, and
the Hartree and exchange contributions,

W s/HF
c = W −W

s/HF
H −W s/HF

x

Just as the exchange energy can be obtained by integrating the density with the
exchange hole potential, the correlation correction Wc can be obtained by integrating
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the density against the Coulomb hole potential [73]. Note that the total correlation
energy in the KS case has only components T s

c and V s
c since the KS density is equal

to the CI one, whereas the HF correlation energy also contains electron-nuclear and
electron-electron Hartree energy corrections:

Es
c = T s

c +W s
c (3.4)

EHF
c = THF

c + V HF
c +WHF

H,c +WHF
c .

Both KS and HF solutions for the open-shell systems A+
2 are of the restricted type,

in the sense that the orbitals ψs/HF
σ (r) are the same for different spins σ. Table 3.5

presents the KS quantities Ts, V s, W s
H , Es

x, as well as the differences ∆Ts,HF, ∆V s,HF,
∆W s,HF

H , ∆Es/HF
x between the KS and HF energies. We refer to Refs. [48, 73, 74] for

explanation and other applications of this type of energy decomposition.
One can conclude from the He+

2 column of Table 3.5, by comparing to similar
results for He atom (see Refs. [46, 69]) that the correlation effects in He+

2 have atomic
and molecular contributions of the same order of magnitude. For instance, the correla-
tion correction to the electron-electron repulsion energy has a negligible contribution
from the effect of the density change ρHF → ρs on the Hartree term, WH , and is
almost completely a Coulomb hole contribution WHF

c of −0.131 H. In the He atom
this is −0.077 H, so the dynamical correlation between the three electrons of He2

+

is indeed larger, but not nearly in the proportion of three pairwise interactions in
He+

2 to one pair interaction in He. This confirms our expectation on the basis of the
wavefunctions, see Sec. 3.2. There are more significant changes in the one-electron
energies of He+

2 than of He atom, for instance THF
c is +0.082 H, compared to +0.04 H

in He. This indicates a net contraction effect of the correlation on the density, which
is in agreement with the negative V HF

c of −0.021 H, compared to only −0.004 H in
He. These results confirm the expectation that He+

2 has in addition to the dynamical
correlation of the He electron pair relatively small additional dynamical correlation
effects with the third electron, and somewhat larger one-electron energy effects due to
the different charges of the symmetrical density distribution in the HF wavefunction
and the unsymmetrical charges in the VB structures. The typical large nondynamical
correlation effects of the electron pair bond (cf. H2 at R=1.95 Å) are absent. We note
that, as always [48, 74] the “errors” of the KS determinant and the HF determinant
with respect to the correlated wavefunction are not so different and to the extent
they are, as showing up in ∆T s,HF = 0.021 H and ∆V s,HF = −0.021 H, they largely
cancel. As a result, the correlation energies Ec and EHF

c are very close.
In the case of (H2O)+2 and (NH3)+2 correlation appears to produce an appreciable con-
traction of the correlated density around the nuclei compared to the HF one. These
numbers are however dominated by the correlation effects in the two fragments, where
the correlation in the A–H bonds will already produce this effect, and it is much harder
to draw conclusions about the correlation effects in the three-electron bond. Note (cf.
Table 3.4) that the correlation energies in NH+

3 and NH3 are −0.252 Hartree and
−0.295 Hartree respectively, summing up to −0.547 Hartree. The correlation en-
ergy of (NH3)+2 is with −0.575 H only little larger. Because of the contraction (in
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monomers as well as dimers), the differences of the electron-nuclear attraction ener-
gies ∆V s,HF are negative, while those of the kinetic ∆T s,HF and Hartree ∆W s,HF

H

energies are positive. Again, as in the case of He+
2 , compensation of differences of

opposite sign occurs, and moreover ∆Es,HF
x are small, so that the total energies EKS

and EHF of the KS and HF determinants are close to each other. As a matter of fact
the KS and conventional (with the HF reference) correlation energies Es/HF

c

Es/HF
c = ECI − EKS/HF

are very close and their difference ∆Es/HF
c = Es

c − EHF
c = EHF − EKS, is very small

(certainly percentage wise). Note, that the HF determinant is, by definition, the one
with the lowest possible energy, so that ∆Es/HF

c should be negative. This is true
for He+

2 and (NH3)+2 , while for (H2O)+2 a positive ∆Es/HF
c value has been obtained,

which indicates that the KS solution in this case has not been obtained to sufficient
accuracy to obtain a meaningful ∆Es/HF

c .
Just as the HF orbitals discussed in Sec. 3.2, the KS orbitals of the two-center

three-electron bond are well represented with the doubly occupied bonding orbital

ψ+ = (a+ b) /
√

(2 + 2S)

and the singly occupied antibonding orbital

ψ− = (a− b) /
√

(2− 2S).

Inserting these orbitals in (3.3) and neglecting the two-center overlap a(r)b(r), one
can obtain an estimate of the exchange hole functions ρs

xα(r2|r1) for the major-spin
α and ρs

xβ(r2|r1) for the minor-spin β of He+
2

ρs
xα(r2|r1) = − 1

ρα(r1)
× [ψ+α(r1)2ψ+α(r2)2

+ ψ−α(r1)2ψ−α(r2)2 + 2ψ+α(r1)ψ−α(r1)ψ+α(r2)ψ−α(r2)]

≈ −a
2(r1)a2(r2) + b2(r1)b2(r2)

a2(r1) + b2(r1)

ρs
xβ(r2|r1) = −ψ+β(r1)2 ≈ −1

2
[a2(r1) + b2(r1)]

It follows from (3.4), that for an α spin electron the exchange hole is localized
around the reference electron (r1α). Indeed, if the reference electron is on the atom
HeA with the orbital a(r), r1 ∈ ΩA , the exchange hole (3.4) in the distribution of α
spin electrons is, essentially, −a2(r2), while if r1 ∈ ΩB , it is −b2(r2). Such a localized
hole is what the GGA functionals implicitly employ. They are therefore expected to
perform well for α spin.

In contrast, for the single β electron the exchange hole is just the delocalized self-
interaction hole −ψ2

+(r2). The exchange GGA functionals make a large error here,
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since they employ a localized hole and are therefore much too stabilizing, cf. the case
of H+

2 . Since He+
2 is rather far to the elongated bond side when comparing to H+

2 ,
the error will be as large as it is in H+

2 at long bond length [11].
Turning now to the correlation holes, we note that when an α reference electron

is close to atom HeA say, the other α electron will be at HeB , but the β electron will
be equally likely at HeA and HeB . So there is no left-right correlation hole in the β
electron density around an α reference electron. Similarly, there will be no left-right
corrrelation hole in the α electron density around the β electron. There will of course
be some dynamical correlation between the α and β electrons. The lack of left-right
Coulomb correlation in He+

2 is actually a crucial difference between He+
2 and H2. In

H2 at long bond distance the α electron is in a when the β electron is in b. Therefore,
the localized exchange hole of GGA’s in the α spin electron distribution, which is in
fact erroneous, may be said to mimick Coulomb correlation between α and β electrons
and the GGAs are actually performing reasonably in H2. In He+

2 , however, as in H+
2 ,

this left-right correlation between the α and β electrons is absent and the localized
hole around the β electron of the GGA exchange functionals is mimicking a spurious
left-right correlation between electrons of different spin.

Considering the GGA correlation functionals, we note that they usually reproduce
well the dynamical correlation in atomic systems. Thus, they are expected to perform
reasonably also for He+

2 , with its dynamical correlation effects as discussed in Sec. 3.2.
In the next section we investigate whether these considerations provide a basis for
understanding the performance of GGAs and meta-GGAs.

3.4 Assessment of GGAs and meta-GGAs

In this section the CI results of Sec. 3.2 and the KS solution of Sec. 3.3 are employed
to analyze the performance of DFT generalized gradient approximations (GGAs) and
meta-GGAs for A+

2 . GGA models the exchange-correlation (xc) energy functional
Exc[ρ]

EGGA
xc [ρ] =

∫
eGGA
xc (ρ (r) ,∇ρ (r)) dr

with the xc energy density EGGA
xc (ρ(r),∇ ρ(r)), which is an explicit function of the

density ρ(r) and its gradient ∇ ρ(r), while meta-GGAs employ also the kinetic energy
density τ(r)

τσ (r) =
1
2

Nσ∑
i=1

|∇ψiσ (r)|2

and/or the Laplacian ∇2ρ(r)

Emeta-GGA
xc [ρ] =

∫
emeta-GGA
xc

(
ρ (r) ,∇ρ (r) , τ (r) ,∇2ρ (r)

)
dr

Table 3.6 compares the CI total and dissociation energies for He+
2 with those cal-
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method He+ He He+
2 De errora

CI −1.9999b −2.9032 −4.9934 56.66 −0.30
BP −1.9921 −2.9068 −5.0307 82.66 26.36
BLYP −1.9999 −2.9069 −5.0322 78.63 22.33
PW −1.9960 −2.9002 −5.0203 77.87 21.57

aError of De (kcal/mol) compared to the experimental value of 56.9 kcal/mol [67]
bThe HF energy

Table 3.6: Comparison of the total energies of He+2 , He, and He+ (Hartrees) and dissociation energies

of He+2 (kcal/mol) calculated with the CI and self-consistent GGA methods.

KS BP BLYP PW
Dx

e −55.47 −25.32(30.15) −25.32(30.15) −24.79(30.68)
Dc

e 19.11 13.55(−5.56) 12.65(−6.46) 8.25(−10.86)
Dxc

e −36.36 −11.77(24.69) −12.67(23.79) −16.54(19.82)

Table 3.7: Comparison of the KS and GGA exchange and correlation contributions to the dissociation
energy of He+2 (kcal/mol). The GGA contributions are calculated non-self-consistently, (i.e. not
with ρGGA but with the KS density ρs = ρCI) in EGGA

xc [ρ]. The differences with respect to KS are
indicated between parentheses.

culated self-consistently with three standard GGA functionals, namely, with the xc
functional of Perdew and Wang (PW91) [5, 75, 76], the combination BP of the ex-
change functional of Becke (B88) [4] and the correlation functional of Perdew (P86) [6]
and the combination BLYP of the same exchange functional B88 with the correlation
functional of Lee, Yang, and Parr (LYP) [7]. The self-consistent GGA calculations
have been performed in the same basis as was used in the CI calculations by means of
a Gaussian orbital density functional code [21, 46, 77] based on the ATMOL package.
The GGAs of Table 3.6 reproduce rather accurately the total energies of the atomic
systems He and He+, but they consistently overestimate the energy of He+

2 . This
leads to the overestimation of the dissociation energy of He+

2 to He and He+. The
corresponding errors are, with ca. 25 kcal/mol (ca. 40%), large. In order to trace
their origin, one can compare the GGA and the accurate KS quantities. The accurate
KS quantities are given in the second column of Table 3.7. The exchange energies that
enter Dx

e are calculated from the HF expression (Eqs. (3.2), (3.3)) but using the KS
orbitals. The KS corrrelation contributions use the difference between the exact (CI)
total energy and the energy of the KS determinant, EKS, as the correlation energies
for the various systems. So if we add to Dxc

e the rest of the energy terms (Ts[ρs],
V s[ρs], W s

H [ρs]), we obtain the CI De. In the other columns the GGA numbers are
given. These are all calculated with the same KS density ρs substituted in the various
EGGA

xc [ρ] rather than with the different self-consistent GGA densities ρGGA. However,
the densities ρs and ρGGA do not differ much and the EGGA

xc [ρs] are rather close to
the EGGA

xc [ρGGA]. When one compares the self-consistent GGA values for the other
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energy terms (Ts[ρs], V s[ρs], W s
H [ρs]) with the KS values, the terms may individually

differ between KS and GGA, but their sum is always close. Therefore, the errors in
the GGA exchange-correlation terms Dxc

e in Table 3.7 are actually close to the total
errors in the GGA dissociation energies in Table 3.6. So we may use the errors in
Table 3.7 to analyze the cause of the GGA errors.

The KS exchange contribution Dx
e is quite negative (−55.5 kcal/mol) because the

exchange energy of the fragments is more stabilizing than of the He+
2 molecule. This

is the case because for both He and He+ the exchange energy is just self-interaction
correction for localized 1s electrons, three in total, while for He+

2 we have seen that
this the case for the two α spin electrons but the exchange hole for the β electron
(also just self-interaction correction) is delocalized and therefore the exchange energy
much less stabilizing. The GGA exchange functionals do not faithfully describe this
delocalized hole for the β electron, they have implicitly a too localized hole around
the β electron and a too stabilizing exchange energy in He+

2 . This implies that they
will increase the dissociation energy relative to the KS exchange energy. The error is
large, ca. 30 kcal/mol.

The KS correlation contribution Dc
e increases the dissociation energy, i.e. the cor-

relation energy is more stabilizing for He+
2 than for He and He+. The GGA correlation

functionals do exhibit this effect, but they tend to underestimate correlation in He+
2 .

A possible explanation is that, though reproducing properly the short-range dynam-
ical correlation of the electron pair of He, the GGA correlation functionals cannot
fully grasp the relatively long-range dynamical correlation of this electron pair with
the unpaired electron. The result is that the GGA correlation functionals decrease
the dissociation energy relative to the KS correlation energy, i.e. they make errors of
opposite sign compared to the GGA exchange functionals, but the errors are much
smaller, see Table 3.7.
In conclusion then the GGA errors in Table 3.6 are caused by the large errors in the
GGA exchange energies, which are actually somewhat compensated (but not com-
pletely) by smaller errors of opposite sign for the GGA correlation errors. The large
exchange error arises from the unduly localized GGA exchange hole for the β electron.

The functionals BP, BLYP and PW considered in Tables 3.6,3.7 were developed in
the period 1986–1992 and they have become standard DFT tools. In order to test more
recent GGAs as well as meta-GGAs, some post-local-density-approximation (LDA) of
He+

2 , (H2O)+2 , and (NH3)+2 have been performed with the Amsterdam Density Func-
tional (ADF2000) package [78]. Besides BP, BLYP and PW, the GGAs tested are
the xc functional of Perdew, Burke, and Ernzerhof (PBE) [79] as well as its revised
version (revPBE) [80], the xc functional of Filatov and Thiel (FT97) [81], the xc func-
tionals of Hamprecht, Cohen, Tozer, and Handy (HCTH/93 and HCTH/402) [9, 82]
parametrized for test sets of 93 and 402 molecules, respectively, and the combination
(BOP) of the exchange functional B88 [4] with the one-parameter progressive (OP)
approximation of Tsuneda, Suzumura, and Hirao [83] to the correlation functional
of Colle and Salvetti [84]. Meta-GGAs are the combinations (BLAP3 and Bmτ1)
of the exchange functional B88 with the correlation functional of Proynov, Sirois,
and Salahub (LAP3) [58] and with the recent extension of LAP3 by Proynov, Cher-
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Molecule LDA BP BLYP BOP FT97
He+

2 86.0(29.1) 83.5(26.6) 82.9(26.0) 83.9(27.0) 82.2(25.3)
(H2O)+2 66.7(27.5) 55.9(16.7) 55.8(16.6) 54.0(14.8) 54.0(14.8)
(NH3)+2 56.2(22.4) 46.0(12.2) 45.7(11.9) 44.4(10.6) 45.6(11.8)

PW PBE revPBE HCTH/93 HCTH/402
He+

2 78.5(21.6) 77.6(20.7) 77.4(20.5) 79.1(22.2) 78.5(21.6)
(H2O)+2 57.7(18.5) 59.8(20.6) 56.8(17.6) 52.4(13.2) 54.0(14.8)
(NH3)+2 47.8(14.0) 49.7(15.9) 46.9(13.1) 43.0(9.2) 44.2(10.4)

Table 3.8: Dissociation energies (kcal/mol) obtained with the GGA (post-LDA calculations, the
errors with respect to the reference data are given in parentheses).

Molecule FT98 BLAP3 Bmτ1 PKZB PKZB-
KCIS

VS98

He+
2 + 85.2(28.3) 78.6(21.7) 78.3(21.4) 78.0(21.1) 78.3(21.4) 75.8(18.9)

(H2O)+2 55.2(16.0) 53.0(13.8) 52.6(13.4) 51.1(11.9) 52.5(13.3) 53.0(13.8)
(NH3)+2 45.0(11.2) 43.6(9.8) 43.3(9.5) 41.4(7.6) 42.7(8.9) 43.8(10.0)

Table 3.9: Dissociation energies (kcal/mol) obtained with the meta-GGA (post-LDA calculations,
the errors with respect to the reference data are given in parentheses).

mette, and Salahub (mτ1) [85], the xc functional of Filatov and Thiel (FT98) [61], the
xc functional of Van Voorhis and Scuseria (VS98) [59], the xc functional of Perdew,
Kurth, Zupan, and Blaha (PKZB) [60], and the combination (PKZB-KCIS) of the ex-
change functional PKZB [60] with the correlation functional of Krieger, Chen, Iafrate,
and Savin (KCIS) [86]. All calculations have been performed in basis sets of Slater-
type orbitals (STOs) (6s3p2d for H and He and 8s6p3d2f for O and N) with the
geometry optimized at the LDA level. Tables 3.8 and 3.9 present the dissociation
energies of He+

2 , (H2O)+2 , and (NH3)+2 calculated with GGAs and meta-GGAs as
well as the corresponding errors with respect to the experimental De=56.9 kcal/mol
for He+

2 [67], CCSD(T) De=39.2 kcal/mol for (H2O)+2 [13] and the corrected CISD
De=33.8 kcal/mol for (NH3)+2 . All GGAs and meta-GGAs consistently overestimate
the stability of A+

2 resulting in significant errors, so that the analysis given above is
also valid in this case. The standard LDA yields the largest errors and the gradient
as well as higher-order corrections incorporated in GGAs and meta-GGAs produce,
as a rule, a definite improvement.

Meta-GGAs (with the exception of FT98) appear to produce slightly better disso-
ciation energies (see Table 3.9) compared to GGAs (see Table 3.8), still both groups
of methods show a similar quality of the results. For He+

2 revPBE yields the least
error ∆De=20.5 kcal/mol among GGAs, while VS98 does this among meta-GGAs
with ∆De=18.9 kcal/mol. For (H2O)+2 and (NH3)+2 HCTH/93 is the best among
GGAs with errors of 13.2 and 9.2 kcal/mol, respectively, while PKZB yields the least
meta-GGA errors of 11.9 and 7.6 kcal/mol. Note, that in all cases the errors decrease
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for a system with a more diffuse valence density in the series He+
2 >(H2O)2+>(NH3)+2 .

A possible interpretation of this trend is that GGA/meta-GGA xc functionals depend
solely on the local density ρ(r) and the related semi-local quantities ∇ρ(r), ∇2ρ(r),
and τ(r), so that for more diffuse densities the effective size of the corresponding lo-
calized xc hole becomes relatively larger and closer to that of the delocalized KS hole,
which results in smaller GGA/meta-GGA errors. To conclude, Tables 3.8 and 3.9
show that, in spite of a definite improvement, neither recent GGAs, nor meta-GGAs
have achieved a definite breakthrough in accuracy in this difficult case and the corre-
sponding errors are still relatively large compared to the desired chemical accuracy.

3.5 Conclusions

In this chapter the difficult case, for DFT methods, of the radical cations He+
2 ,

(H2O)+2 , (NH3)+2 with two-center three-electron A–A bonds has been investigated
at the CI, accurate KS, GGA, and meta-GGA levels. The correlation of the three
electrons of the A–A bond has been analyzed. It is predominantly dynamical corre-
lation of two electrons in a He closed shell plus some dynamical electron correlation
of these electrons with the third electron on He+, plus correlation corrections to the
one-electron energy terms. This correlation shows up in a characteristic CI pattern.
The CISD calculation of He+

2 yields a calculated value of the dissociation energy De

which is very close to experiment. CISD calculations of (H2O)+2 and (NH3)+2 suffer
from the size-inconsistency effect, the size-extensivity correction repairs this effect for
the calculated energies, so that the corrected CISD De value for (H2O)+2 becomes
close to the benchmark CCSD(T) value of Ref. [13].

The Kohn-Sham solutions of He+
2 , (H2O)+2 , (NH3)+2 have been constructed from

the CI densities and the components of the total energies EKS and EHF of the KS
and HF determinants are compared. In all cases the EKS and EHF values are close to
each other, and so are the corresponding exchange energies EKS

x , EHF
x and correlation

energies EHF
c and EKS

c .
Assessment of seven different GGA and six meta-GGA methods has shown that,

in spite of the recent intensive methodical development, the radical cations A+
2 remain

a difficult case for DFT. All methods tha thave been tested, consistently overestimate
the stability of A+

2 , the corresponding De errors decrease for more diffuse valence
densities in the series He+

2 >(H2O)+2 >(NH3)+2 . On average, meta-GGAs appear to
perform slightly better than GGAs and both groups of methods provide a definite
improvement over LDA. Still, even the best performers, like PKZB or HCTH/93,
produce large errors comparable to those of the other functionals.

Comparison of the BP, BLYP, and PW exchange-correlation energies with the
corresponding KS benchmark quantities for He+

2 has indicated that the approximate
exchange functionals are responsible for the errors of GGA-type methods. They
characteristically overestimate exchange in A+

2 , so that the combined xc contribution
to De is overestimated by about 25 kcal/mol. The cause for this overestimation of
the exchange has been traced to the automatic inclusion of left-right correlation by
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the functionals, by virtue of their localized holes, while in the present systems this
left-right correlation is absent. So there is a typical difference between a two-center
two-electron bond, with left-right correlation present and therefore correctly included
by the exchange functional, and a two-center three-electron bond where left-right
correlation is absent so inclusion by the GGA functionals becomes spurious. We note
that for the two-center (m = 2) three-electron (n = 3) A–A bond we have a fractional
ratio n/m = 3/2. This supports the qualitative rule of Ref. [20] which predicts a
possible failure of GGAs for a chemical bond with fractional ratio n/m.



Chapter

4
Improved Description of Reaction Barriers with

GGAs and meta-GGAs

The performance of 17 xc functionals of the GGA type and of the meta-GGA type
is assessed for 15 hydrogen abstraction reactions and 3 symmetrical SN2 reactions.
Topological features of the electron density as well as features of the functionals
which determine their performance, are analyzed. Systems that are problematic for
standard GGAs characteristically have enhanced values of the dimensionless gradient
argument sσ with local maxima in the bonding region. Due to this local enhancement
of s2σ, spurious correlation is built into standard GGAs for the transition state of the
SN2 reaction, which leads to the reduced calculated reaction barriers. Barriers are
improved with the recent GGA xc functionals which have a modified dependence on
s2σ for the exchange component, such as the optimal exchange functional (OPTX) of
Ref. [8]. Standard GGAs also underestimate the barriers for the hydrogen abstraction
reactions. In this case the barriers are improved by correlation functionals, such
as the Laplacian-dependent (LAP3) functional of Ref. [58], which have a modified
dependence on the Coulomb correlation of the opposite- and like-spin electrons. The
best overall performance is established for the combination OLAP3 of OPTX and
LAP3.

4.1 Introduction

The development of novel xc functionals of DFT is to be accompanied with an assess-
ment of their performance for the cases which are problematic for DFT functionals.
Such cases [11, 12, 13, 14, 15, 16, 17, 18, 21, 52, 53, 54, 55, 56, 57, 87] have been
discussed in Chapt. 2 together with the qualitative rule put forward in Ref. [20] to
predict the success or the failure of standard GGA [4, 5, 6, 7]. Problematic molecular
systems and transition states (TSs) of chemical reactions with a particular chemical
bond have been identified in [20] by a non-integer ratio n/m of the number n of
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electrons involved in the bond to the number m of relevant fragment orbitals.
The prototype cases discussed in the literature are radical abstraction reaction

X + R–Y → X–R + Y (4.1)

and the SN2 reaction
X− + ZY → XZ + Y−. (4.2)

Standard GGA methods tend to underestimate barriers of both reactions (4.1)
and (4.2) due to the overestimated stability of their TSs (Refs. [14, 15, 16, 17, 18]
and Tables 4.1- 4.8 below). However, as also explained in Chapt. 2, according to
the rule of Ref. [20] the cases of (4.1) and (4.2) belong to different types. In the
radical abstraction reaction (4.1) a three-center (m=3) three-electron (n=3) bond is
formed in its open-shell TS, so that with the integer ratio n/m=1 the TS belongs to
“normal” systems. Improved description of such systems does not require alteration
of the dominant GGA exchange energy functional EGGA

x [ρ], instead, the modification
of the relatively small GGA correlation energy functional EGGA

c [ρ], more precisely,
the dependence of EGGA

c on the local spin polarization ζ(r) [21]. On the other hand,
in the closed-shell TS of the SN2 reaction (4.2) a three-center (m=3) four-electron
(n=4) bond is formed. With the non-integer ratio n/m=4/3 this TS belongs to
truly “problematic” systems, the proper description of which requires improvement
of EGGA

x . Then the question is, could this improvement be achieved by a natural
modification and extension of the standard GGA methods without resorting to rather
different approaches like hybrid [27, 28] or self-interaction-corrected (SIC) [25, 26]
methods.

In this chapter, the performance of 17 exchange-correlation functionals is assessed
for 15 reactions of hydrogen abstraction and 3 symmetrical SN2 reactions. One group
of functionals considered are the standard GGAs and their recent modifications, in
which the LDA or Xα approximations are corrected with functions containing the
dimensionless argument sσ of the spin-density gradient ∇ρσ

sσ(r) =
1

2(6π2)1/3

∇ρσ(r)

ρ
4/3
σ (r)

(4.3)

Another group of functionals are the meta-GGAs, which depend also on the KS kinetic
energy spin-density τσ

τσ =
1
2

Nσ∑
i

|∇ψiσ(r)|2 (4.4)

and/or on the Laplacian of the spin-density ∇2ρσ.
In Sec. 4.2 of this chapter the behavior of the basic GGA argument s2σ(z) along the

bond axis z is analyzed for N2, a prototype molecule with covalent bonds, He+
2 , a pro-

totype “problematic” molecule with the two-center three-electron bond (n/m=3/2),
the TS H· · ·Cl· · ·H of the hydrogen abstraction reaction, and the TS [F· · ·CH3· · ·F]−

of the SN2 reaction. A topological pattern of the density in “problematic” cases is
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established with a local maximum/maxima of s2σ in the bonding region. This allows
us to rationalize the failure in the “problematic” cases of the standard GGAs, for
which terms with s2σ dominate the gradient correction for the exchange functional. It
also provides an explanation of the improved performance for the SN2 reactions (de-
scribed in Sec. 4.4) of modified GGA exchange functionals, for which the terms with
the fourth power s4σ of the argument sσ actually dominate the gradient correction.
In Sec. 4.3 the behavior along the bond axis of the meta-GGA correction factor fσ,
which is a function of τσ, is analyzed for the above-mentioned prototype systems. This
analysis rationalizes the improved performance of meta-GGAs for the SN2 reactions.
In Sec. 4.4 the results of calculations of the symmetrical SN2 reactions are presented.
In agreement with the analysis of Ref. [20], alteration of the exchange functionals
produces the most substantial improvement of the calculated central and overall re-
action barriers. In Sec. 4.5 the results of the GGA and meta-GGA calculations of
the hydrogen abstraction reactions are presented. In this case, modified correlation
energy functionals produce substantial improvement of the calculated forward and
reverse reaction barriers. An original combination OLAP3 of the modified GGA ex-
change OPTX functional [8] and the correlation τσ dependent functional LAP3 [58]
shows the best overall performance for both hydrogen abstraction and symmetrical
SN2 reactions. In Sec. 4.6 the conclusions are drawn.

4.2 Behavior of s2
σ and its relation to the orbital

nature of the chemical bond

In order to understand the above-mentioned uneven performance of the GGA ex-
change functionals for various types of systems, we analyze the behavior of their basic
argument s2σ for prototype systems. This approach is justified, since standard GGA
exchange functionals can be considered as extensions of the gradient expansion ap-
proximation (GEA) [88], with the latter being the LDA exchange functional corrected
just with −βs2σ (β is a positive coefficient). In this chapter standard GGA exchange
functionals are represented by either the one of Becke (B88) [4], or of Perdew and
Wang (PW91) [5, 75, 76], or Perdew, Burke, and Ernzerhof (PBE) [79].

A typical behavior of s2σ for a strong covalent bond is presented in Fig. 4.1, where
it is plotted along the bond axis z of the N2 molecule. Distinguished features of the
plot are the divergence of s2σ(z) at the asymptotics |z| → ∞, and in the bulk region
local maxima in the atomic regions and nearly complete vanishing of s2σ(z) in the
bonding region. Due to these features of s2σ, as was discussed in Ref. [89], GGAs
correct the overbinding produced with LDA for covalent bonds. As was argued in
Refs. [20, 21], the GGA exchange functionals with their localized model exchange
holes represent effectively not only exchange, but also nondynamical (left-right in the
case of N2) Coulomb correlation.

A typical behavior of s2α (α is the major spin) for a “problematic” molecule is
presented in Fig. 4.2, where it is plotted for He+

2 . In this case, unlike for N2, s2α(z)
is clearly non-zero in the bonding region and, before going to the required zero value
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Figure 4.1: s2 (4.3) is plotted along the bond axis of the N2 molecule

at the bond midpoint, s2α increases with the increasing distance from the nearest
He nucleus, so that it displays two symmetrical local maxima of the height ∼0.9 at
z≈±0.25 a.u. In order to understand this topological feature of the density, we recall
that the two-center three-electron bond [HeA-HeB ]+ is represented, essentially, by
double occupancy of the ψg = (a+b)/

√
(2 + 2S) bonding KS molecular orbital (MO)

between 1s atomic orbitals (AOs) a and b on HeA and HeB , and single occupancy
of the antibonding combination ψu = (a − b)/

√
(2− 2S) (S is the overlap integral

between a and b). In this case, a straightforward calculation of the corresponding
s2α(z) for a point z on the axis between HeA and HeB shows, that it is proportional
to the following combination of the orbital densities ψ2

gα and ψ2
uα

s2α(z) ' 1

[ψ4/3
gα ]

x(z)
[x(z) + 1]8/3

(4.5)

where x = ψ2
uα/ψ

2
gα is the ratio of these densities. The non-monotonic part of (4.5) is

its second, x-dependent fraction, which attains its maximum at x=3/5. Note, that x
decreases steadily from its infinite (due to the more diffuse nature of ψuα) value at the
asymptotics z →∞ to x = 0 at the bond midpoint, where ψuα has the node, so that
x = 3/5 is well in the bonding region. Then, the first fraction of (4.5), which increases



4.2 Behavior of s2σ and its relation to the orbital . . . 39

6

5

4

3

2

1

0

s α
2

-3 -2 -1 0 1 2 3

z(a.u.) HeHe

Figure 4.2: s2α (4.3) is plotted along the bond axis of the He+2 cation dimer.

when going from the nuclei to the bond midpoint, should shift the local maxima of
s2α(z) further towards the bond midpoint. Thus, the expression (4.5) explains the
appearance of the local maxima of s2α(z) in the bonding region of He+

2 as the result
of occupation of the antibonding orbital ψuα.

To see, whether this topological feature appears also for the considered “problem-
atic” case of TS of SN2 reaction, we plot s2σ(z) for the TS [F· · ·CH3· · ·F]− in Fig. 4.3.
Indeed, besides pronounced atomic shell structure for the two terminal F atoms and
one central C atom, Fig. 4.3 displays also distinct local maxima of the height ∼0.5
at z ≈ ± 2.1 a.u. in the regions between the F nuclei and the nodes of s2σ. These
maxima correlate with the orbital structure of the three-center four-electron bond.
In this case the relation between the s2σ local maxima in the bonding region and the
orbital structure is more involved than for He+

2 [20].
In Fig. 4.4 s2α(z) is plotted for a prototype hydrogen exchange TS [H· · ·Cl· · ·H]

which, according to the rule of Ref. [20], is another example of “normal” systems
besides the N2 molecule considered in Fig. 4.1. Again in agreement with this rule, the
behavior of s2α in the regions of the H· · ·Cl bonds beyond the Cl atomic shell structure
is closer to the vanishing pattern of s2σ in the N2 bonding region (see Fig. 4.1) than
the behavior of s2σ in the corresponding regions of He+

2 (Fig. 4.2) and [F· · ·CH3· · ·F]−
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Figure 4.3: s2 (4.3) is plotted along the bond axis of the TS of the SN2 reaction [F· · ·CH3· · ·F]−.

(Fig. 4.3). Indeed, as one can see from Fig. 4.4, s2α in the H· · ·Cl bonding regions is
rather flat, it does not display pronounced maxima, and its values in these regions are
much smaller compared to those in the bonding regions of the “problematic” systems
considered above.

A characteristic topological feature of the density of “problematic” systems, which
emerges from this comparative analysis, is the enhanced values of s2σ with local max-
ima in the bonding regions. The origin of this enhancement for the He+

2 molecule is
the occupation of valence orbitals with an antibonding character. In reality, as was
argued in Refs. [20, 87], occupation of antibonding orbitals hampers nondynamical
correlation. In fact, the accompanying s2σ enhancement builds in spurious correlation
through the increased contributions of GGA gradient corrections from the bonding
regions. This causes the above-mentioned overestimation by standard GGAs of the
stability of “problematic” systems. More enhanced values and higher maxima of s2σ
in the bonding region of He+

2 compared to those for [F· · ·CH3· · ·F]− (compare Figs.
4.2 and 4.3) correlate with larger GGA errors for the former system [12, 87].

The analysis performed in this section helps to understand the possibility of the
improvement for “problematic” cases offered by the recent modified GGA exchange
functionals (see also Chapter 6), namely, the functional of the optimal exchange
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Figure 4.4: s2α (4.3) is plotted along the bond axis of the prototype hydrogen abstraction TS
[H· · ·Cl· · ·H].

method (OPTX) of Cohen and Handy [8], and that of the method of Hamprecht,
Cohen, Tozer, and Handy (HCTH) [9]. Unlike standard GGAs, both OPTX and
HCTH have as their zero-gradient limit the Xα exchange functional, in which the
parameter α by ca. 1.05 enhanced compared to its standard LDA value. Another
difference is that both functionals have effectively the fourth power s4σ as the leading
power of their gradient corrections in the bulk region. Since the values of sσ in the
bonding regions are less than 1 for all prototype systems considered, while in other
regions their can be rather high (see Figs. 4.1–4.4), the contributions from the gradi-
ent corrections are reduced in OPTX and HCTH, which might substantially correct
the overstability of standard GGAs for “problematic” systems.

In Secs. 4.4 and 4.5 the performance of GGAs will be assessed for the SN2 and hy-
drogen abstraction reactions. In this assessment, the above-mentioned exchange func-
tional B88 is taken in standard combinations BLYP and BP with the GGA correlation
energy functionals of Lee, Yang, and Parr (LYP) [7], and Perdew (P86) [6]. Also, the
combination OLYP of the exchange functional OPTX and the correlation functional
LYP is considered. GGA exchange functionals PW91, PBE, and HCTH mentioned in
this section are taken with “their own” correlation functionals, so that their abbrevia-
tions in the subsequent tables are extended to the corresponding exchange-correlation
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(xc) combinations.
An alternative way of improvement is offered by meta-GGAs with their dependence

on τσ of (4.4). This will be analyzed in the next section.

4.3 Behavior of τσ and the performance of meta-
GGAs

The KS kinetic energy density τσ is usually employed in meta-GGAs as the denomi-
nator of the ratio tσ

tσ(r) =
τLSDA
σ (r)
τσ(r)

(4.6)

where τLSDA
σ

τLSDA
σ (r) =

3
10

(6π2)2/3ρ5/3
σ (r)

is the local spin-density approximation (LSDA) for the kinetic energy density. The
basic point of our further analysis is that the meta-GGA argument tσ is, actually,
closely related to the GGA argument sσ. Indeed, the KS τσ of (4.4) can be expressed
as the sum

τσ(r) = τW
σ (r) + τP

σ (r)

of the von Weiszäcker τW
σ

τW
σ (r) =

1
8
|∇ρσ(r)|2

ρσ(r)
(4.7)

and Pauli τP
σ (r)

τP
σ (r) =

ρσ(r)
2

Nσ∑
i

∣∣∣∣∣∇ ψiσ(r)

ρ
1/2
σ (r)

∣∣∣∣∣
2

(4.8)

terms. In the region of localization of a certain occupied KS orbital ψiσ, where it
dominates ρσ, the Pauli term (4.8) vanishes and τσ turns to (4.7)

τW
σ (r) ≈ 1

8
|∇ρσ(r)|2

ρσ(r)
(4.9)

With (4.9), the meta-GGA argument tσ becomes just proportional to the inverse of
s2σ

tσ(r) ≈

[
3
10
ρ5/3

σ (r)

][
1
8
|∇ρσ(r)|2

ρσ(r)

]−1

=
3

5s2σ(r)
(4.10)

When other orbitals ψj 6=iσ(r) have appreciable local contributions to ρσ(r), the argu-
ment tσ of (4.6) could be substantially smaller than its estimate 3/5s−2

σ from (4.10).
Still, the expression (4.10) provides a rough idea of the relation between tσ and s2σ
and of how tσ could be employed in meta-GGAs.
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Figure 4.5: a. f (4.12) is plotted along the bond axis of the N2 molecule. b. fα (4.12) is plotted
along the bond axis of the prototype hydrogen abstraction TS [H· · ·Cl· · ·H].

The use of tσ in meta-GGAs can be illustrated with the tσ-dependent function
fσ(tσ), which is employed in the meta-GGA exchange functional of Becke (B00) [22]
as a correction factor

EB00
xσ =

∫
{1 + afσ[tσ(r)]}eBR89

xσ (r)dr (4.11)

In (4.11) eBR89
xσ is the energy density of the exchange functional of Becke and Rous-

sel (BR89) obtained from a model localized Fermi hole [90] and a is an empirical
parameter, which in B00 is a=0.14. The correction factor fσ is defined as follows

fσ = wσ − 2w3
σ + w5

σ (4.12)

where the auxiliary argument wσ is the following function of tσ

wσ(r) =
tσ(r)− 1
tσ(r) + 1

(4.13)

By the construction (4.11), positive values of fσ(r) make the energy EB00
xσ lower, while

negative fσ(r) makes EB00
xσ higher.

In Figs. 4.5,4.6 the correction factor fσ is plotted for the prototype systems con-
sidered in the previous section. By its design, the function fσ(z) oscillates in the
molecular regions, while it vanishes at the long-range asymptotics. Such an oscilla-
tory behavior is required in order to maintain the overall energy balance achieved with
the uncorrected functional BR89. However, the oscillation patterns are different for
“normal” systems N2 and [H· · ·Cl· · ·H], on the one hand, and for “problematic” sys-
tems He+

2 and [F· · ·CH3· · ·F]−, on the other hand. Indeed, while fσ(z) is, generally,
positive in the bonding regions of “normal” systems (see Fig. 4.5 a,b), it is negative
in the bonding regions of “problematic” systems (see Fig. 4.6 a,b). With this, the
correction factor fσ should reduce the energy contributions from the bonding regions,
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Figure 4.6: a. f (4.12) is plotted along the bond axis of the He+2 cation dimer. b. fα (4.12) is
plotted along the bond axis of the TS of the SN2 reaction [F· · ·CH3· · ·F]−.

which are overestimated for “problematic” systems by the uncorrected functionals. As
follows from the construction (4.11)–(4.13), the approximate relation (4.10) between
tσ and sσ, and from the analysis of sσ presented in the previous section, the above-
mentioned characteristic pattern of fσ with negative values in the bonding regions
can be traced to the orbital structure of the bond in the “problematic” cases.

In the next sections the performance of meta-GGAs will be assessed for the SN2
and hydrogen abstraction reactions. In this assessment, the above-mentioned ex-
change functionals B00 and BR89 are taken in combinations B00c and BR89c with the
correlation functional of Becke (Bc88) [91, 92]. Among other meta-GGAs considered
are the xc functionals of Van Voorhis and Scuseria (VS98) [59], and of Perdew, Kurt,
Zupan, and Blaha (PKZB) [60], the exchange part of PKZB is also combined with the
meta-GGA correlation functional of Krieger, Chen, Iafrate, and Savin (KCIS) [86].
Other meta-GGA correlation functionals considered are the LAP3 of Proynov, Sirois,
and Salahub [58], and its modified version τ1 of Proynov, Chermette, and Salahub [85].
They are taken in combinations Bmτ1, BLAP3 with the exchange functional B88,
and LAP3 is also combined in this chapter with the above-mentioned GGA exchange
functional OPTX to form the xc combination OLAP3.

4.4 Assessment of GGAs and meta-GGAs for SN2
reactions

The prototype SN2 reaction considered in this chapter is the following symmetrical
substitution of the halide anion X−

X− + CH3X → XCH3+ X− (4.14)

where X=F, Cl, Br. The reaction goes through the formation of unsymmetrical ion-
dipole intermediate complex (IC) X−· · ·CH3X and symmetrical TS [X· · ·CH3· · ·X]−,
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Figure 4.7: Schematic representation of the intermediates IC and TS, the barriers and Ecmpx for the
SN2 reaction (4.14)

the special case of which with X=F was considered in the previous sections. These
intermediates determine the key parameters of the reaction (4.14), the complexation
energy Ecmpx, which is the energy difference between IC and free reagents, the central
barrier Ecentr, which is the energy difference between TS and IC, and the overall
barrier Eovr, the energy difference between TS and free reagents. The intermediates
IC and TS, the barriers and Ecmpx are schematically shown in Fig. 4.7.

All GGA and meta-GGA calculations have been performed with the Amsterdam
Density Functional (ADF) program [93, 94, 95]. Geometries for reagents, IC and TS
were taken from [96]. All self-consistent calculations have been performed with the
BLYP xc potential, so that for other functionals the energies Ecmpx, Ecentr, and Eovr

have been calculated in the post-BLYP manner. The reference data for these energies
are the results of the ab initio coupled-cluster CCSD(T) calculations for X=F [97],
and the experimental data for X=Cl, Br [98, 99, 100, 101, 102]. The calculations have
been carried out in the triple-zeta basis plus two correlation functions TZ2P of Slater-
type orbitals (STOs). For X=F and for X=Cl respectively the quadruple-zeta (for
valence orbitals) and double zeta (for core orbitals) even-tempered basis augmented
with 5 polarization functions (ETQZ+5P) and the similar basis ETQZ3P has been
used for the halide.

Absolute values of the calculated energies Ecmpx, Ecentr, and Eovr for X=F, Cl,
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functional ∆Ecmpx ∆Eovr ∆Ecentr

LDA 2.65 9.72 7.34
BLYP 1.10 6.74 7.52
BP 1.28 6.24 7.12
PW91 0.80 7.54 7.01
PBE 0.90 6.86 6.84
revPBE 1.54 4.56 5.99
OLYP 2.93 1.81 3.97
HCTH/93 3.00 1.94 3.92
HCTH/402 1.51 1.94 3.25
KCIS 1.69 2.37 4.29
PKZB 1.83 2.34 4.44
VS98 3.85 6.57 2.98
Bmτ 1 1.70 3.99 4.76
BLAP3 1.74 3.67 4.62
OLAP3 3.09 2.74 1.06
B00c 1.38 2.72 4.15
BR89c 1.21 5.71 6.48

Table 4.3: Mean absolute error for the SN2 reactions (X = F, Cl, Br).

and Br are compared with the reference data in Table 4.1, in Table 4.2 the corre-
sponding errors of LDA, GGAs and meta-GGAs are shown, while Table 4.3 presents
the mean average error for the 3 reactions considered. One can see from these Tables
the important difference between LDA and standard GGAs, on the one hand, and
modified GGAs and meta-GGAs, on the other hand. LDA reproduces satisfactorily
the reference complexation energies Ecmpx, more precisely, it slightly overestimates
the relative stability of the IC with the average error ∆ELDA

cmpx = −2.65 kcal/mol
(see Table 4.3). However, the above-mentioned typical LDA tendency to overbind is
much more pronounced for TS. According to the reference data, the TS is slightly
more stable than reagents for X=F and it is slightly less stable for X=Cl, Br (see
Table 4.1). Unlike this, LDA greatly overestimates the stability of TS, which leads to
the large negative values of −8 to −10 kcal/mol of ELDA

ovr and small positive values of
3.5–6.5 kcal/mol for the central barrier ELDA

centr.
Standard GGAs reduce further the already not very significant LDA error for the

complexation energy. Actually, PW91 and PBE yield the best Ecmpx values among all
functionals with an absolute average errors of only 0.8 and 0.9 kcal/mol, respectively.
However, standard GGAs fail to reduce significantly the large LDA errors for the
barriers. Indeed, the LDA average error of 9.72 kcal/mol for the overall barriers is
reduced to 6.2–9.7 kcal/mol with BLYP, BP, PW91, and PBE, and only revPBE
reduces it to somewhat smaller 4.56 kcal/mol. Moreover, standard GGAs fail to
reduce appreciably the LDA average error of 7.34 kcal/mol for the central barriers,
in particular, the BLYP error of 7.52 kcal/mol is even slightly larger than the LDA
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one (see Table 4.3).
An improved description of the barriers is achieved with the modified GGAs and

meta-GGAs (see Tables 4.1–4.3). Since the functional B00 has been analyzed in the
previous section as an example of the meta-GGA correction (in this particular case
the functional BR89 is corrected), it is instructive to compare the performance of the
corresponding combinations B00c and BR89c. Due to the destabilizing effect of the
correction factor fσ of (4.11), (4.12) on the TS, B00c yields improved higher central
and overall barriers in all cases considered (see Tables 4.1, 4.2). As a result, the av-
erage BR89c barrier errors ∆EBR89c

ovr =5.71 kcal/mol and ∆EBR89c
ovr =6.48 kcal/mol are

reduced in B00c to ∆EB00c
ovr =2.72 kcal/mol and ∆EB00c

centr=4.15 kcal/mol, respectively.
Combinations with the modified GGA exchange functional OPTX show the best

performance. Indeed, the best overall barriers are produced with OLYP with the av-
erage error of only 1.81 kcal/mol (see Table 4.3). It is clear, that this improvement is
solely due to OPTX, since the combination BLYP with the same standard correlation
functional LYP produces much larger average error ∆EBLYP

centr =6.74 kcal/mol. Note
that another modified GGA functional HCTH taken in combinations HCTH/93 and
HCTH/402 produces nearly as good overall barriers as OLYP with the average error
of 1.94 kcal/mol.

In turn, the combination OLAP3 yields the best central barriers, which are the key
parameters for the kinetics of the SN2 reaction. The corresponding average OLAP3
error of only 1.06 kcal/mol is definitely lower than the errors of other functionals
(see Table 4.3). This improvement is due to both OPTX and the meta-GGA cor-
relation functional LAP3. Indeed, change of the exchange functional from BLYP to
OLYP reduce the average error for central barriers by 3.55 kcal/mol (from 7.52 to
3.97 kcal/mol). The subsequent change of the correlation functional from OLYP to
OLAP3 reduce the error further by 2.91 kcal/mol. For the overall barriers the OLAP3
error of 2.74 kcal/mol is somewhat larger than the above-mentioned smallest error
of 1.81 kcal/mol of OLYP. However, OLAP3 is the only method in which, in agree-
ment with the experiment, the overall barriers are present for X=Cl and Br, while in
other methods they are absent, so that in the latter cases TSs are made artificially
more stable than reagents (see Table 4.1). Somewhat larger OLAP3 errors for the
overall barrier and the complexation energy in the case X=F is due to the apparent
overestimation of the electron correlation in the F− anion by LAP3.

Considering the successful performance of OLAP3 for the reaction barriers, it is
interesting to note that neither OPTX, nor LAP3 were parameterized specially for
“problematic” systems. Indeed, the simple form of the OPTX functional

EOPTX
xσ = −

∫
[1.05151cx + 1.43169u2

σ]ρ4/3
σ (r)dr (4.15)

uσ(r) =
γx2

σ(r)
1 + γx2

σ(r)
(4.16)

where xσ = 2(6π2)1/3sσ, cx = (3/4)(6/π)1/3 is the Dirac coefficient, and γ=0.006,
has been chosen in Ref. [8] to reproduce the Hartree-Fock atomic exchange energies.
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In turn, the LAP3 functional contains the logarithmic and polynomial dependence on
the argument (t′σ)1/2ρ1/3, where t′σ = τLSDA

σ /τ ′σ and τ ′σ is the alternative to (4.6), the
Laplacian-dependent form of the kinetic energy density

τ ′σ(r) = −1
2

Nσ∑
i

ψ∗iσ(r)∇2ψiσ(r). (4.17)

The dependence on (t′σ)1/2ρ1/3 has been parameterized in Ref. [58] to reproduce the
energies of (dynamical) Coulomb correlation in atoms and molecules with “normal”
covalent bonds. In this sense, the successful performance of OLAP3 for the SN2
reactions seems to be accidental. However, with the analysis of the previous sections
in mind, one can understand that the true reason for the success of OLAP3 is the
effective s4σ dependence of OPTX and the proper dependence of LAP3 on τ ′σ. This
factor leads to the corrected lower stability of TSs and, as a result, to the improved
description of the reaction barriers with OLAP3.

To conclude, the results of this section confirm the above-mentioned rule of Ref. [20]
according to which SN2 reactions with the three-center four-electron bonds in their
TSs were attributed to truly “problematic” cases for standard GGAs. In agreement
with the conclusions of Ref. [20], better description of SN2 reactions requires improve-
ment of the GGA exchange functionals.

4.5 Assessment of GGAs and meta-GGAs for hy-
drogen abstraction reactions

The prototype hydrogen abstraction reactions considered in this chapter are listed
in Table 4.4. The reference data for the energies of reactions E, and the barriers of
the forward Efor and reverse Erev reactions of the first 14 reactions in Table 4.4 has
been taken from the database of reactions in [103]. The geometries of the reagents
and products are obtained at the quadratic single and double configuration interaction
(QCISD) level of ab initio theory [103]. The barrier of the last reaction (also calculated
with QCISD) has been taken from Ref. [104]. All GGA and meta-GGA calculations
have been performed with the ADF program [93, 94, 95]. The energies E, Efor, and
Erev have been calculated in the post-LDA manner in the TZ2P basis of STOs.

A pure assessment of GGAs and meta-GGAs for the three-center three-electron
bond can be provided with the simplest symmetrical hydrogen abstraction reaction

H + H2 → H2 + H, (4.18)

the symmetrical TS H· · ·H· · ·H of which consists just of this bond. Table 4.5 presents
the calculated values of the barrier height Ebarr (the reference value is 9.6 kcal/mol)
for the reaction (4.18) together with the corresponding errors ∆Ebarr. At first glance,
the pattern of the performance of various functionals is similar to that established
for the SN2 reactions in the previous section. Again, LDA overbinds the TS with the
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Reaction Efor Erev E
HCl+H→ Cl+H2 5.6 8.7 −3.1
OH+H2→ H+H2O 5.7 22.0 −16.3
CH3+ H2→ H+CH4 12.1 15.0 −2.9
OH+CH4→ CH3+H2O 6.7 20.2 −13.5
H+H2→ H2+H 9.6 9.6 0.0
OH+NH3H2→ O+NH2 3.2 13.2 −10.0
HCl+CH3→ Cl+CH4 1.8 7.8 −6.0
F+H2 → H+HF 1.8 33.2 −31.4
OH+CH3 → O+CH4 7.8 13.7 −5.9
H+PH3→ PH2+ H2 3.2 25.5 −22.3
H+ClH′ → HCl+H′ 18.0 18.0 0.0
OH+H → H2+O 10.1 13.1 −3.0
H+H2S → H2+HS 3.6 17.4 −13.8
O+HCl → OH+Cl 9.8 9.9 −0.1
H2O+OH → OH+H2O 10.1 10.1 0.0

Table 4.4: Reference data for the prototype hydrogen abstraction reactions.

large error ∆Ebarr=−12.49 kcal/mol, i.e. the TS is by 2.89 kcal/mol more stable than
the reactants. Standard GGAs reduce substantially this error, though the remaining
GGA errors are close to their typical errors for the SN2 reactions (compare Tables 4.3
and 4.5). Modified GGAs and meta-GGAs reduce further the barrier error.

However, there is a qualitative difference between these two types of reactions in
the importance of the exchange-correlation functionals for the observed improvement
of the calculated barriers. While for the SN2 reactions the major improvement comes
from modification of the exchange functionals, this is not the case for the reaction
(4.18). For example, as was mentioned in the previous section, modification of the
exchange functional BR89 to the functional B00 with the tσ-dependent correction
factor fσ of (4.12) reduces significantly the errors of the combination B00c for the
SN2 reaction barriers compared to those of BR89c (see Table 4.3). Contrary to this,
in the case of (4.18) the same correction leads, actually, to a larger error of B00c for
Ebarr compared to BR89c (see Table 4.5). Note, as another example, that a change of
the exchange functional from BLYP to OLYP reduces ∆Ebarr by only 0.5 kcal/mol.
This correlates with the established in Secs. 4.2, 4.3 “normal” behavior of the GGA
argument s2σ and of the meta-GGA factor fσ for the TS of the hydrogen abstraction
reaction.

Unlike for the SN2 reactions, the major improvement for the reaction (4.18) comes
from modification of the correlation functional. Indeed, independently of whether B88
or OPTX is employed in the xc combination, a change of the correlation functional
from LYP to LAP3 reduces ∆Ebarr by 4.1 kcal/mol for BLAP3 or OLAP3 compared
to the corresponding combination BLYP or OLYP. This reduction produces the small-
est error among all functionals ∆Ebarr=−1.94 kcal/mol for OLAP3 (see Table 4.5). A
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XC functional Ebarr ∆Ebarr

LDA −2.89 −12.49
PW91 3.33 −6.27
BLYP 3.06 −6.54
BP 0.85 −8.75
PBE 3.71 −5.89
revPBE 4.90 −4.70
OLYP 3.56 −6.04
HCTH/93 7.10 −2.50
HCTH/402 7.36 −2.24
KCIS 5.09 −4.51
PKZB 5.46 −4.28
VS98 5.56 −4.04
Bmτ 1 7.47 −2.13
BLAP3 7.16 −2.44
OLAP3 7.66 −1.94
B00c 4.42 −5.18
BR89c 6.22 −3.38

Table 4.5: Calculated values Ebarr and errors ∆Ebarr with respect to reference data, (see Table 4.4)
of the barrier height for the reaction (4.18).

slightly larger error (in absolute value) of −2.13 kcal/mol is produced with the com-
bination Bmτ1 with the correlation functional τ1 which, as was mentioned above, is a
modified version of LAP3. In Tables 4.6, 4.7 the calculated reaction energy E and the
barriers Efor and Erev are presented with the corresponding errors for two unsymmet-
rical hydrogen abstraction reactions, and Table 4.8 presents the average errors of the
functionals for all 15 reactions. In general case, because of the more complex nature of
the reactants, the pattern of improvement due to the exchange-correlation function-
als is more complicated than for the reaction (4.18), though the general trend is the
same. Standard GGAs reduce the large LDA average absolute error for barriers from
ca. 18.5 kcal/mol to 8.5–10.5 kcal/mol, with revPBE producing somewhat smaller
errors of 6.75 and 7.46 kcal/mol for Efor and Erev, respectively (see Table 4.8). They
also reduce the substantial LDA reaction energy error of 6.33 kcal/mol, in particular,
the corresponding revPBE error is only 1.16 kcal/mol.

Further significant improvement of the calculated barriers is achieved with the
use of the correlation functionals LAP3 and τ1. Indeed, a change of the exchange
functional from B88 to OPTX reduces ∆Eav

for by 2.1 kcal/mol from 8.5 kcal/mol for
BLYP to 6.4 kcal/mol for OLYP which is, actually, close to the above-mentioned
value of 6.75 kcal/mol for revPBE. In turn, a subsequent change of the correlation
functional from LYP to LAP3 produces further error reduction by 3.73 kcal/mol and
the resultant smallest error among all functionals ∆Eav

for=2.67 kcal/mol of OLAP3
(see Table 4.8). The combination OLAP3 also produces the best reverse barriers
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XC functional Efor ∆Efor Erev ∆Erev E ∆E
LDA −3.08 −8.68 −10.70 −19.40 7.61 10.71
PW91 0.01 −5.59 −1.55 −10.25 1.56 4.66
BLYP −2.29 −7.89 2.68 −6.02 −4.97 −1.87
BP −2.82 −8.42 0.20 −8.50 −3.01 0.09
PBE 0.73 −4.87 −1.15 −9.85 1.88 4.98
revPBE 1.09 −4.51 2.53 −6.17 −1.44 1.66
OLYP −0.11 −5.71 3.96 −4.74 −4.07 −0.97
HCTH/93 1.80 −3.80 5.14 −3.56 −3.34 −0.24
HCTH/402 2.29 −3.31 3.84 −4.86 −1.54 1.56
KCIS 2.51 −3.09 2.88 −5.82 −0.37 2.73
PKZB 0.01 −5.59 5.75 −2.95 −5.74 −2.64
VS98 4.18 −1.42 3.14 −5.56 1.03 4.13
Bmτ 1 1.94 −3.66 7.11 −1.59 −5.17 −2.07
BLAP3 1.92 −3.68 6.60 −2.10 −4.68 −1.58
OLAP3 4.10 −1.50 7.88 −0.82 −3.79 −0.69
B00c 0.79 −4.81 4.20 −4.50 −3.41 −0.31
BR89c 0.75 −4.85 3.11 −5.59 −2.35 0.75

Table 4.6: Calculated values Efor , Erev , E and errors ∆Efor, ∆Erev, ∆E with respect to reference
data, (see Table 4.4) of the barrier height for the reaction HCl+H→Cl+H2.

with the average error ∆Eav
rev=3.48 kcal/mol. The second best barriers are produced

with Bmτ1 with the average errors ∆Eav
for=4.18 kcal/mol and ∆Eav

rev=4.64 kcal/mol.
Note, that OLAP3 yields also reasonable reaction energies with an average error of
1.6 kcal/mol.

Thus, just as in the case of the SN2 reactions considered in the previous section, the
original combination OLAP3 shows the best overall performance also for the hydrogen
abstraction reactions. However, unlike for the SN2 reactions, the major improvement
in the latter case is achieved with a change of the correlation functionals. This is in
agreement with the analysis of Ref. [21], according to which the improvement in this
particular “normal” case could be gained with the modification of the local density
polarization dependence of standard GGA correlation functionals. Apparently, such a
modification has been effectively undertaken in Ref. [58], where the correlation energy
functional LAP3 was constructed with the explicit account of the Coulomb correlation
of the opposite- and like-spin electrons.

4.6 Conclusions

The goal of this chapter has been three-fold. First, to assess the quality of GGA
and meta-GGA exchange-correlation functionals for the prototype SN2 and hydrogen
abstraction reactions. Second, to establish the specific topological features of the elec-
tron density of “problematic” (for standard GGAs) systems and to relate them to the
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XC functional Efor ∆Efor Erev ∆Erev E ∆E
LDA −9.41 −17.21 −9.63 −23.33 0.23 6.13
PW91 −0.83 −8.63 −0.18 −13.88 −0.65 5.25
BLYP 1.77 −6.03 2.23 −11.47 −0.45 5.45
BP 0.56 −7.24 1.29 −12.41 −0.73 5.17
PBE −0.65 −8.45 0.23 −13.47 −0.87 5.03
revPBE 2.39 −5.41 4.11 −9.59 −1.73 4.17
OLYP 3.04 −4.76 6.61 −7.09 −3.58 2.32
HCTH/93 2.74 −5.06 7.11 −6.59 −4.38 1.52
HCTH/402 1.80 −6.00 6.21 −7.49 −4.41 1.49
KCIS 3.32 −4.48 7.07 −6.63 −3.75 2.15
PKZB 4.40 −3.40 8.80 −4.90 −4.40 1.50
VS98 3.14 −4.66 7.94 −5.76 −4.80 1.10
Bmτ 1 5.53 −2.27 6.44 −7.26 −0.90 5.00
BLAP3 5.18 −2.62 6.05 −7.65 −0.87 5.03
OLAP3 6.45 −1.35 10.44 −3.26 −3.99 1.91
B00 3.31 −4.49 7.52 −6.18 −4.21 1.69
BR89c 1.81 −5.99 5.95 −7.75 −4.14 1.76

Table 4.7: Calculated values Efor, Erev, E, and errors ∆Efor, ∆Erev, ∆E with respect to reference
data (see Table 4.4), of the barrier height for the reaction OH + CH3 → O + CH4.

orbital structure of the chemical bonds involved. Third, to try new xc combinations
like OLAP3 for the reactions.

A characteristic topological feature of the density of “problematic” systems has
been established, which is the enhanced values of the basic gradient argument s2σ
with local maxima in the bonding region. With the direct evaluation of s2σ for the
simple [He-He]+ bond, the origin of this topological feature has been traced to the
occupation of valence orbitals with an antibonding character. Due to this local en-
hancement of s2σ, spurious correlation is built in with standard GGAs, which leads to
their overestimation of the stability of “problematic” systems.

The performance of 17 GGA and meta-GGA functionals has been assessed for
the prototype “problematic” cases, the symmetrical SN2 reactions. Standard GGAs
reduce substantially the reaction barriers calculated by LDA, and further reduction
is gained with the “modified” GGAs and meta-GGAs. The best overall performance
has been observed for the combination OLAP3. The basis of this success is the mod-
ified dependence of the exchange OPTX functional, with respect to “standard” GGA
exchange functionals, with the effective leading s4σ term of its gradient correction. An-
other factor appears to be the proper dependence of the correlation LAP3 functional
on the meta-GGA argument.

The performance of GGA and meta-GGA functionals has also been assessed for 15
hydrogen abstraction reactions. Here, again, standard GGAs reduce substantially the
reaction barriers calculated by LDA. However, further reduction is obtained, mainly,
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XC functional ∆Efor ∆Erev ∆E
LDA 18.62 18.49 6.33
PW91 9.90 10.52 2.66
BLYP 8.50 8.68 1.85
BP 9.91 10.27 1.57
PBE 9.53 10.20 2.72
RevPBE 6.75 7.46 1.16
OLYP 6.40 6.54 1.35
HCTH/93 5.09 5.09 1.09
HCTH/402 5.65 5.64 1.09
KCIS 5.44 6.61 1.34
PKZB 4.45 6.21 3.38
VS98 4.60 5.16 1.63
Bmτ 1 4.18 4.64 1.87
BLAP3 4.50 4.77 1.74
OLAP3 2.67 3.48 1.60
B00c 5.26 5.83 1.24
BR89c 6.58 6.61 0.85

Table 4.8: Mean absolute error for the prototype hydrogen abstraction reactions.

due to the modified correlation functionals. Again, the best overall performance has
been observed for OLAP3. For the considered systems with the non-zero spin-density
polarization the basis of the success of OLAP3 appears to be the modified structure of
the correlation LAP3 functional with the explicit account of the Coulomb correlation
of the opposite- and like-spin electrons.

The analysis of the behavior of s2σ and the meta-GGA correction factor fσ con-
firms the qualitative rule of Ref. [20]. Indeed, for the “normal” system H+ClH with
the three-center three-electron (n/m=1) bond s2σ and fσ behave like for the molecule
N2. On the other hand, for the “problematic” system [F· · ·CH3· · ·F]+ with the three-
center four-electron (n/m=4/3) bond s2σ and fσ behave like for the prototype “prob-
lematic” system He+

2 with the two-center three-electron (n/m=3/2) bond. The results
of the GGA and meta-GGA calculations also confirm the conclusions of Ref. [20] in
the sense, that for the “problematic” case of the SN2 reactions the improvement of
the results has been achieved with the modified exchange energy functionals, while for
the “normal” case of the hydrogen abstraction reactions the improvement has been
achieved with the modified correlation energy functionals.

Based on the assessment performed in this chapter, we can recommend the orig-
inal combination OLAP3 for calculations of chemical reactions. For the considered
prototype reactions OLAP3 produces the best overall reaction barriers, and it also
reproduces well the energies of the hydrogen abstraction reactions. On the other
hand, OLAP3 is certainly not the best functional for thermochemical calculations.
Our calculations for the standard thermochemical G2 set of molecules show that the
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quality of OLAP3 for these calculations is superior to that of BP, but it is somewhat
inferior to that of BLYP, and it is definitely worse than the quality of the meta-GGA
functional VS98. With this, OLAP3 can only be considered as yet another approach
to the universally good xc functional. Then, the challenge is to develop a functional
which would combine the quality of OLAP3 for chemical reactions and that of VS98
for thermochemistry.



Chapter

5
Approximate functionals of occupied and virtual

Kohn-Sham orbitals

The standard LDA and GGA fail to properly describe the dissociation of an electron
pair bond, yielding large errors (in the order of 50 kcal/mol) at long bond distances.
To remedy this failure, a self-consistent KS method is proposed with the xc energy
and potential depending on both occupied and virtual KS orbitals. The xc energy
functional of Buijse and Baerends [30, 105] is employed which, based on an Ansatz
for the xc hole amplitude, is able to reproduce the important dynamical and nondy-
namical effects of Coulomb correlation through the efficient use of virtual orbitals.
Self-consistent calculations require the corresponding xc potential to be obtained, to
which end the optimized effective potential (OEP) method is used within the common
energy denominator approximation (CEDA) for the static orbital Green’s function,
The problem of the asymptotic divergence of the xc potential of the OEP when a
finite number of virtual orbitals is used, is addressed. The self-consistent calculations
reproduce very well the entire H2 potential curve, describing correctly the gradual
build-up of strong left-right correlation in stretched H2.

5.1 Introduction

The development of the Kohn-Sham density functional theory can be viewed as going
upstairs the “Jacob’s ladder” [106] of xc functionals. From LDA [3] to the direct
gradient expansion approximation (GEA) [107, 108] and GGAs [4, 5, 6, 7]. Then,
up to the functionals depending on the occupied KS orbitals, such as meta-GGA
xc-energy functionals [55, 58, 59, 60] and occupied-orbital-dependent exchange [38,
40, 109, 110] and xc [87, 111] potentials. Recently, DFT has arrived at the level of
xc functionals depending on both occupied and virtual KS orbitals [30, 112]. Far
from being “art for art’s sake”, this new development is aimed at yet unsolved DFT
problems. In particular, in Fig. 5.1 it is demonstrated that the widely employed LDA
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Figure 5.1: Total energy of H2 as a function of internuclear distance for the Hartree-Fock approx-
imation (HF), the local-density approximation (LDA), the Becke88-Perdew86 generalized gradient
approximation (BP), a full CI calculation, and the exchange-correlation functional of Refs. [30, 105].

and GGA approximations (taking Becke88-Perdew86 as an example) fail rather badly
in the description of the full potential energy curve for dissociating H2. The LDA
curve exhibits the well-known underestimation of the bond energy close to equilibrium
geometry, but it is making a much larger error (ca. 70 kcal/mol!) at large distances,
although not as large as the restricted Hartree-Fock method, (the DFT calculations
are also spin and symmetry restricted, since the true Kohn-Sham solutions of this
closed shell system are of that nature, and in fact exist at all bond distances [113]).
The BP GGA gives the well-known nice correction around the equilibrium geometry.
However, while it reduces the error at the dissociation limit compared to LDA, it still
yields a very large error in that case (ca. 45 kcal/mol). The error of the current
DFT approximations in the case of electron pair bond dissociation has received less
attention than the well-known failure for odd electron systems like H+

2 [11, 12, 13],
but is hardly less dramatic.

It can easily be seen in Figs. 5.2 and 5.3 (to be discussed more extensively in
Sec. 5.5) that the GGA error arises since the GGA correlation energy is far too small
(not negative enough), an error which is only partly, but by no means sufficiently,
compensated by a more negative GGA exchange energy than the exact exchange
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Figure 5.2: Correlation energy of H2 as a function of internuclear distance. See caption of Fig. 5.1.

energy EKS
x . The well-known “compensation of errors” between exchange and corre-

lation, or rather “the exclusion of nondynamical correlation in the GGA correlation
but inclusion into GGA exchange” [48] breaks down for the extreme nondynamical
correlation in the dissociating electron pair bond. It is to be noted that hybrid func-
tionals would not provide a remedy; they would deteriorate the dissociation curve
by shifting it towards Hartree-Fock. As was stressed in Ref. [30], orbital-dependent
functionals with inclusion of virtual orbitals seems to be a natural way to describe
properly within DFT dissociation of molecular electron pair bonds. It would seem,
at first glance, that functional dependence on virtual orbitals does not present any
principal problem. Both occupied and virtual KS orbitals are density functionals
ψj(r; [ρ]), j ≤ N/2; ψa(r; [ρ]) a < N/2 (we consider a closed-shell N electron system),
so that the xc energy Exc[ρ] can be, in principle, considered within the KS energy
expression as an orbital-dependent functional

E [ρ] = Ts ({ψj [ρ]}) + Ene [ρ] + EH [ρ] + Exc [{ψj [ρ]} , {ψa [ρ]}] (5.1)

Other functionals in (5.1) are the KS kinetic energy Ts, an explicit functional of the
occupied orbitals {ψj}, the electron-nuclear attraction energy Ene and the Hartree
energy of the electrostatic electron repulsion EH , which are both explicit density
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Figure 5.3: Exchange energy of H2 as a function of internuclear distance. See caption of Fig. 5.1.

functionals of the electron density ρ

ρ (r1) =
∑

i

ni |ψi (r1)|2; ni = 2, i ≤ N/2; ni = 0, i > N/2 (5.2)

Within the self-consistent KS theory, the orbitals are determined from the KS one-
electron equations {

−1
2
∇2 + vs (r1)

}
ψi (r1) = εiψi (r1) (5.3)

vs (r1) = vne (r1) + vH (r1) + vxc (r1) (5.4)

where the index i refers to both occupied and virtual orbitals. The local xc potential
vxc in (5.4) can be obtained according to the optimized potential method (OPM) [31]
via the chain differentiation rule

vxc (r1) =
∑

i

∫
δExc [{ψj} , {ψa}]

δψi (r2)
δψi (r2)
δvs (r3)

δvs (r3)
δρ (r1)

dr2dr3 + c.c. (5.5)
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from the orbital derivatives of the functional Exc[{ψj}, {ψa}]1. Since the exact func-
tional form of Exc is not known, restricted approximate functionals with a finite
number M of orbitals are to be taken, so that (5.5) turns to a finite sum

vxc (r1) =
M∑
i

∫
δExc [{ψj} , {ψa}]

δψi (r2)
δψi (r2)
δvs (r3)

δvs (r3)
δρ (r1)

dr2dr3 + c.c. (5.6)

In Ref. [112] a perturbation theoretic approach, yielding the Kohn-Sham analogue of
the second order Møller-Plesset (MP2) energy correction has been used. In Ref. [30]
a simple Ansatz for Exc[{ψj}, {ψa}] [77, 105] that can describe strong correlation
effects, has been applied to the dissociating H2 molecule. However, as was recognized
in [30, 112], the OPM potential vxc of (5.6) may diverge in the asymptotic region
(at long distance) when virtual Kohn-Sham orbitals are included in the xc energy
(i.e. M > N/2 in Eq. (5.6)), although the Coulombic asymptotics vxc (r1) → −1/ |r1|
was established for the exact xc potential [114]. In this chapter an approximate
self-consistent KS scheme based on an orbital-dependent xc functional [77, 105] is
presented. In Sec. 5.2 this functional Exc[{ψj}, {ψa}] is characterized. The required
“weights” with which the occupied and virtual orbitals enter, which in the original
density-matrix functional formulation were obtained as the square roots of natural
orbital occupation numbers, are here written as the square roots of “fictitious oc-
cupations” ñi that are estimated with a Fermi-type distribution as functions of the
orbital energies εj . In Sec. 5.3 the problem of divergence of the OEP potential (5.6)
alluded to above, is considered. It is a consequence of the necessary restriction, in
practice, that the number M of the KS orbitals in the functional Exc[{ψj}, {ψa}]
be finite. In that case the requirement of correct asymptotics of the xc potential
should be imposed as a constraint in the optimization of the potential. An appropri-
ate modification of the OEP equations is introduced to achieve correct asymptotics
of the constructed vxc. In Sec. 5.4 the OEP equations for the local potential vxc are
approximately but accurately and efficiently solved with the recent common energy
denominator approximation (CEDA) to the static orbital Green’s function [40, 110].
In Sec. 5.5 an application is made to the prototype electron pair bond, the ground-
state potential energy curve of the H2 molecule. Contrary to the standard LDA and
GGA methods, the present method is able to reproduce the whole potential curve
of H2, including the dissociation region. A comparative analysis of individual energy
components is made to interpret the obtained results. In Sec. 5.6 implications of the
present work for DFT are discussed and the conclusions are drawn.

We note that very recently the problem of dissociation of an electron pair bond,
exemplified by the H2 case, has been approached by many-body perturbation the-
ory based methods, where use of the random phase approximation is an essential
ingredient [115, 116, 117]. Encouraging results are obtained for the strong nondy-
namical correlation at long distance, but improvement is still required for the energy
at geometries around equilibrium bond length (i.e. atomization energies).

1Sometimes the denotation OPM is used for the exact exchange-only functional, and optimized
effective potential (OEP) method for more general orbital-dependent xc functionals.
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5.2 A (virtual) orbital-dependent xc energy func-
tional

The orbital-dependent functional we will use is obtained with a simple Ansatz [77,
105] for the density of the xc hole ρ̄hole

xc which through its potential v̄hole
xc determines

the xc energy

Exc [{ψj} , {ψa}] =
1
2

∫
ρ (r1) v̄hole

xc (r1) dr1 =
1
2

∫
dr1ρ (r1)

∫
dr2

ρ̄hole
xc (r2|r1)

r12

where the density ρ is the exact density, which can be obtained from the occupied
(ni = 2) KS orbitals

ρ (r1) =
N/2∑

i

ni |ψi (r1)|2.

The over bar in ρ̄hole
xc and v̄hole

xc indicates that we are dealing with the coupling-
constant integrated xc hole and potential, i.e. the kinetic correlation energy T − Ts

is incorporated. In the case of the xc contribution of the electron-electron interaction
energy,

Wxc = (1/2)
∫
ρ (r1) vhole

xc (r1) dr1 = (1/2)
∫
dr1ρ (r1)

∫
dr2ρ

hole
xc (r2|r1) /r12

(ρhole
xc not coupling constant integrated), it has been shown that a very good approx-

imation for the xc hole can be obtained from the Ansatz that it is the square of an
amplitude ϕhole

xc (r2|r1),
−|ϕhole

xc (r2|r1)|2 = ρhole
xc .

When the amplitude is expanded in the natural orbitals, the coefficients can be shown,
from symmetry properties of the two-electron density matrix, to depend on the square
roots of the NO occupation numbers [77, 105]. The expansion of the hole amplitude
into natural orbitals implies that one is approximating the two-electron density ma-
trix in terms of tensor products of the one-electron density matrix. It has been shown
by Csanyi and Arias [118] that there is only a limited number of possibilities for such
approximate forms, because of the symmetry requirements. A further restriction to
one term in the tensor expansion of the two-matrix, leads to an approximation which
is equivalent to our approximation of the hole as minus the square of an amplitude.
These authors indeed also obtain the

√
n dependence of the coefficients upon expan-

sion in the natural orbitals (cf. Ref. [119] for an earlier argument leading to the same√
n dependence). Following Refs. [30, 105], we propose a similar expression for the

amplitude of the coupling constant integrated xc hole, the KS orbitals being used
instead of the NOs,

ϕ̄hole
xc (r2|r1) =

M∑
i

√
ñi

ρ (r1)
ψ∗i (r1)ψi (r2) , (5.7)
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ρ̄hole
xc (r2|r1) = −

M∑
ij

√
ñiñj

ρ (r1)
ψ∗i (r1)ψi (r2)ψj (r1)ψ∗j (r2) (5.8)

which yields the orbital-dependent potential of the xc hole vhole
xc

v̄hole
xc (r1) = −

M∑
ij

√
ñiñj

ρ (r1)
ψ∗i (r1)ψj (r1)

∫
ψi (r2)ψ∗j (r2)

r12
dr2 (5.9)

and the xc energy functional Exc

Exc [{ψj} , {ψa}] = −1
2

M∑
ij

√
ñiñj

∫
dr1dr2

ψ∗i (r1)ψi (r2)ψj (r1)ψ∗j (r2)
r12

(5.10)

Here the ñi no longer refer to NO occupation numbers, but they are the parameters
that govern the involvement of the occupied and virtual KS orbitals in the functional.
They have to absorb the change from “pure” xc hole to coupling constant integrated
hole, and ultimately the success or failure of this functional will depend on our ability
to construct a suitable algorithm for the determination of the ñi. It should be em-
phasized that the ñi are not the true occupation numbers of the Kohn-Sham orbitals.
We continue to use the standard Kohn-Sham prescription of N/2 occupied orbitals,
i.e. in a closed shell system we have Kohn-Sham occupation numbers ni of either 2.0
or 0.0.

Having been derived in Refs. [77, 105] as a generalization of the exchange (Fermi)
hole amplitude [120, 121], the Ansatz (5.8) describes correlation remarkably well for
cases of dynamical correlation, such as the He atom (becoming exact in the high-Z
two-electron ions with configuration (1s)2) and also for cases of near degeneracy or
nondynamical correlation, such as dissociating H2. In the latter case the Fermi hole
ρhole

x is just minus the density of the σg MO,

ρhole
x (r2|r1) = −|σg(r2)|2 ≈

1
2
[|a(r2)|2 + |b(r2)|2]

(a and b are the atomic orbitals, AOs), so that it does not depend on r1 and is
delocalized over both H atoms. Such delocalization produces the well-known failure
of the Hartree-Fock (HF) method for dissociating H2 (see also Sec. 5.5). Contrary to
this, the hole (5.8), which in this case can be fairly represented as

ρhole
xc (r2|r1) ≈−

1
ρ(r1)

{|σg(r1)|2|σg(r2)|2

+[σ∗g(r1)σu(r1)σg(r2)σ∗u(r2) + c.c.] + |σu(r1)|2|σu(r2)|2}
(5.11)

is correctly localized around the reference electron at r1, i.e. when r1 is in the
neighborhood of atom HA, ρhole

xc (r2|r1 ∈ ΩA) ≈ − |a (r2)|2(2). This correct form
2In this particular case the coupling constant integration has no effect and ρhole

xc and ρ̄hole
xc are

identical, see [30] and [74].
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of ρhole
xc is the result of the inclusion of the lowest unoccupied MO (LUMO) σu

in (5.7),(5.8),(5.11), in particular, through the cross-products σ∗gσu in (5.8),(5.11).
Within the KS scheme (5.1)–(5.4), we consider the fictitious occupations ñi as den-
sity functionals and we approximate their functional dependence with the Fermi-type
distribution,

ñi =
2

1 + exp [f (εi − εF )]
(5.12)

where εi are the KS orbital energies in (1.3) and the actual form of the model function
f(εi − εF ) will be considered in Sec. 5.5.

5.3 OEP derivation of the xc potential, with a con-
straint to ensure proper asymptotic decay.

The chain differentiation rule (5.6) for vxc takes into account that all KS orbitals are
solutions in the same local KS potential vs, which is in one-to-one correspondence
with the density ρ. It can be easily transformed into the optimized effective potential
(OEP) equations, which have originally been formulated explicitly as a variational
problem for the energy minimization under variation of the local potential [31]. The
second derivative in the r.h.s. of (5.6) is expressed through the static orbital Green’s
function Gi

δψi (r2)
δvs (r3)

= −Gi (r2, r3)ψi (r3) , (5.13)

Gi (r1, r2) =
∑
j 6=i

ψj (r1)ψ∗j (r2)
εj − εi

(5.14)

and the third derivative is the inverse

δvs (r3)
δρ (r1)

= χ−1
s (r3, r1) (5.15)

of the static KS linear response function χs

χs (r1, r3) =
δρ (r1)
δvs (r3)

= −
N/2∑

i

niψ
∗
i (r1)Gi (r1, r3)ψi (r3) + c.c., ni = 2.

Inserting (5.13) and (5.15) in (5.6), multiplying both its sides by χs(r1, r3), integrating
over r1 and relabeling the indices, we obtain the OEP equation

N/2∑
i

niψ
∗
i (r1)

∫
vxc (r2)Gi (r1, r2)ψi (r2) dr2 + c.c.

=
M∑
i

ψ∗i (r1)
∫
vi
xc (r2)Gi (r1, r2)ψi (r2) dr2 + c.c.

(5.16)



5.3 OEP derivation of the xc potential, . . . 65

where the nonlocal potentials vk
xc are defined as

vk
xc (r2) =

[
1

ψk (r2)
δExc [{φi}]
δψ∗k (r2)

]
According to the analysis of Refs. [112, 122], it appears that the l.h.s. and r.h.s.
of (5.16) have (as functions of r1) different asymptotics at |r1| → ∞. Indeed, since
the Green’s function Gi has the asymptotics [112, 122, 123] Gi(r1, r2) → ψi(r1) at
|r1| � |r2| the l.h.s. sum over occupied orbitals decays as the density |ψN/2(r)|2 of the
highest occupied molecular orbital (HOMO) ψN/2. On the other hand, the extended
(but still finite) r.h.s. sum decays as the density |ψa(r)|2 of the most diffuse virtual
orbital ψa included in the summation, i.e. it decays more slowly than the l.h.s. This
produces the divergence of the solution of the OEP equations, the potential vxc in the
l.h.s. of (5.16) [112, 122]. It is to be noted [123] that this divergence is not a necessary
consequence of the use of virtual orbitals. If the complete (infinite) set is used, the
asymptotic behavior is not necessarily governed by the most diffuse function of the
set (which would not be defined anyway in the complete set of KS orbitals which
comprises unbound states). The divergence can be considered as the result of the
restriction to a finite summation over virtual orbitals in (5.6) and in the r.h.s. of
(5.16). From a theoretical point of view it is, of course, desirable to operate with a
more physically reasonable, non-divergent approximation to vxc. In practice, as was
recognized in Refs. [30, 112], this divergence prevents approximate solution of the
OEP equations (5.16) with virtual KS orbitals with the method of Krieger-Li-Iafrate
(KLI) [38] or with the common energy denominator approximation (CEDA) [40, 110].
Bearing this in mind, we propose a modification of the OEP equations (5.5), (5.16),
so as to impose correct asymptotic behavior of the xc potential. It has been made
clear in Ref. [112] that in the KLI approximation the origin of the divergence can be
identified as arising from terms in the potential of the form ψi(r1)ψj (r1)/ρ(r1). When
ψi(r1) and/or ψj (r1) are virtual orbitals, the numerator may decay more slowly than
the denominator, which asymptotically decays as the highest occupied Kohn-Sham
orbital. In the CEDA the same type of terms lead to divergence. As a pragmatic
solution we change the asymptotic behavior of the denominator from ρ(r) to

ρ̃(r) =
∑M

i
ñiψi(r) ∗ ψi(r),

i.e. we interpret the fictitious occupation numbers ñi in the xc functional as effective
occupation numbers in an effective density ρ̃(r), which is only used in the denomina-
tor of expressions we derive according to the KLI or CEDA approximations for the
potential (see below). It is to be expected that ρ̃(r) is actually a close approximation
to ρ(r), except for the crucial difference in how these two densities tend asymptoti-
cally to zero. That this is the case can be easily verified in the case of dissociating
H2, which wil be discussed in Sec. 5.5.
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5.4 Explicit expression for vxc using the CEDA to
the OEP method

We now proceed to the derivation of vxc corresponding to the (virtual) orbital-
dependent xc functional of Sec. 5.2 by the common energy denominator approximation
(CEDA) [40, 110]. The CEDA approximation uses for the static orbital Green’s
function Gi,

GCEDA
i (r1, r2) ≈

δ(r1 − r2)
∆ε

− 1
∆ε

M∑
j

ψj(r1)ψ∗j (r2) +
M∑
j 6=i

ψj(r1)ψ∗j (r2)
εj − εi

=
δ(r1 − r2)

∆ε
− 1

∆ε

M∑
j

dijψj(r1)ψ∗j (r2)

(5.17)

where dij = [εj − εi − ∆ε(1 − δij)]/(εj − εi), i.e. dij=1 when i = j, and dij =
1−∆ε/(εj − εi) when i 6= j. This Green’s function includes all occupied KS orbitals
ψi , i ≤ N/2, and some unoccupied ones ψa , N/2 < a ≤M , in finite summations. The
third term in the first line of Eq. (5.17) is the rigorous expression for Gi truncated to
M orbitals, while the first and the second terms with a common energy denominator
∆ε produce an estimate of the remaining terms.

To get the explicit expression for the potential vxc in terms of the occupied and
virtual orbitals, we insert the CEDA Green’s function (5.17) in the OEP equations
(5.16), thus obtaining the equation for the vxc potential

1
∆ε

N/2∑
i

niv
CEDA
xc (r1) |ψi (r1)|2 −

1
∆ε

M∑
i

vi
xc (r1) |ψi (r1)|2

− 1
∆ε

N/2∑
i

M∑
j

dijniv
CEDA
xc,ji ψ∗i (r1)ψj (r1)

+
1

∆ε

M∑
i

M∑
j

dijv
i
xc,jiψ

∗
i (r1)ψj (r1) + c.c. = 0

(5.18)

where vixc is the orbital derivative of the xc energy functional (5.10)

vi
xc (r1) =

1
ψi (r1)

δExc

δψ∗i (r1)
= −

M∑
j

√
ñiñj

ψj (r1)
ψi (r1)

∫
ψi (r2)ψ∗j (r2)

r12
dr2

and vCEDA
xc,ji , vi

xc,ji are the matrix elements of the potentials vCEDA
xc and vixc for the

orbitals ψ∗j and ψi :

vCEDA
xc,ji =

∫
ψ∗j (r2) vCEDA

xc (r2)ψi (r2) dr2,
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vi
xc,ji =

∫
ψ∗j (r2) vi

xc (r2)ψi (r2) dr2.

From Eq. (5.18) it follows that

vCEDA
xc (r1) =v̄hole

xc (r1) +
N/2∑

i

M∑
j

dijniRe
[
vCEDA
xc,ji ψ∗i (r1)ψj (r1)

] 1
ρ (r1)

−
M∑
i

M∑
j

dijRe
[
vi
xc,jiψ

∗
i (r1)ψj (r1)

] 1
ρ (r1)

(5.19)

where v̄hole
xc (r1) is the xc-hole potential (5.9)

v̄hole
xc (r1) =

M∑
i

|ψi (r1)|2 Re
[
vi
xc (r1)

]
ρ (r1)

. (5.20)

Note that divergence of the potentials (5.19) and (5.20) is avoided by replacing the
asymptotic behavior of ρ(r) in terms with diffuse orbital products in the numerator
with that of ρ̃(r), which is, as discussed earlier, the way in which we introduce the
constraint that the potential should not diverge. This comment is also applicable to
subsequent equations and will not be repeated.

In the following we will, for simplicity of notation, specialize to real orbitals,
which is the case at hand. Equation (5.19) can be solved in the same way as the
corresponding equations for the potential of Krieger-Li-Iafrate (KLI) [38] or the
occupied-orbital-dependent CEDA potential [39, 40, 110]

vCEDA
xc (r1) =v̄hole

xc (r1) +
N/2∑

i

M∑
j

dijniv
CEDA
xc,ij

ψi (r1)ψj (r1)
ρ (r1)

−
N/2∑

i

M∑
j

dijv
i
xc,ij

ψi (r1)ψj (r1)
ρ (r1)

(5.21)

Multiplying both sides of (5.21) by ψk (r1)ψl(r1) (k ≤ N/2, l ≤ M) and integrating
over r1, one obtains the equations for the matrix elements vCEDA

xc,ij

N/2∑
i

M∑
j

(
δkiδlj −Mkl,ij

)
vCEDA
xc,ij = v̄hole

xc,kl −
M∑
i

M∑
j

Nkl,ijv
i
xc,ij , (5.22)

where Mkl,ij and Nkl,ij are the weighted overlap integrals between the orbital prod-
ucts ψkψl and ψiψj

Mkl,ij = nidij

∫
ψk (r1)ψl (r1)ψi (r1)ψj (r1)

ρ (r1)
dr1, Nkl,ij = Mkl,ij/ni
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and v̄hole
xc,kl is the matrix element of the xc-hole potential (5.20)

v̄hole
xc,kl =

M∑
i

∫
ψk (r1)ψl (r1)ψ2

i (r1) vi
xc (r1)

ρ (r1)
dr1.

The equations (5.22) for the constants vCEDA
xc,ij are, like the KLI equations are for

the KLI constants, a dependent set of linear equations. In fact it is easily verified that
the N/2 rows with k = l are linearly dependent (multiplying these rows with nk and
summing them leads to a row of zeros, and the right hand side becomes zero as well).
We therefore can only solve for M ·N/2 − 1 unknowns, and have chosen vCEDA

xc, N/2 N/2

as the undetermined constant that can be chosen freely. It has been conveniently put
to zero. So Eq. (5.22) is solved by inversion of the square subblock (I−M)′ of the
matrix (I−M), where 1 ≤ i, k ≤ N/2 and 1 ≤ j, l ≤ M , but with i = j = N/2 and
k = l = N/2 excluded (rows are indexed with kl and columns with ij). Defining the
M ·N/2− 1 by M ·N/2− 1 matrix ξ and the M ·N/2− 1 by M ·N/2 matrix η

ξmn,kl =
[
(I−M)′

]−1

mn,kl

with rows ξN/2 N/2 , mn and columns ξmn,N/2 N/2 nonexistent;

ηmn,ij =
N/2∑

k

′
M∑
l

′ξmn,klNkl,ij ,

where the primes on the summations mean omission of the k = l = N/2 term, we
obtain upon multiplying Eq. (5.22) with ξmn,kl and summing over kl

vCEDA
xc,mn =

N/2∑
k

′
M∑
l

′ξmn,klv̄
hole
xc,kl −

M∑
i

M∑
j

ηmn,ijv
i
xc,ij . (5.23)

Finally, inserting Eq. (5.23) in Eq. (5.21), we obtain for vCEDA
xc the following expression

vCEDA
xc (r1) = v̄hole

xc (r1) + vCEDA
resp (r1) (5.24)

where vCEDA
resp is the response potential

vCEDA
resp (r1) =

M∑
i,j

wij

ψi (r1)ψj (r1)
ρ̃ (r1)

(5.25)

where for θ(k) = 1 for k ≥ 0 and θ(k) = 0 for k < 0

wij = θ

(
N

2
− i

)
dijniv

CEDA
xc,ij − dij v

i
xc,ijv

CEDA
xc,N/2 N/2 = 0). (5.26)
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With our choice of vCEDA
xc,N/2 N/2 = 0, the potential does not asymptotically go to zero

but to a constant. However, we have found that the inversion of (I−M)′ may be-
come numerically less stable when a vCEDA

xc,ia related to a diffuse orbital ψa with low
effective occupation ña is chosen as free constant. The constant asymptotic behavior
has no consequences, if desired a shift can be applied to the total potential to make
it asymptotically tend to zero. Equations (5.20), (5.24)–(5.26) define the Kohn-Sham
xc potential vCEDA

xc corresponding within the modified OPM-CEDA to the orbital-
dependent xc energy functional (5.10). vCEDA

xc is subdivided naturally into an attrac-
tive xc-hole potential v̄hole

xc (r1) and a repulsive response potential vCEDA
resp (r1). The

former potential represents the main exchange-correlation effect, namely, interaction
of the reference electron with the xc hole in the distribution of other electrons. In
particular, due to the inclusion of virtual KS orbitals, the present v̄hole

xc (r1) represents
the important effects of Coulomb correlation discussed in Sec. 5.2. By construction,
the present v̄hole

xc (r1) has Coulombic long-range asymptotics v̄hole
xc (r1) → 1/|r1| at

|r1| → ∞. In turn, the response potential vCEDA
resp of Eq. (5.25) has the characteristic

orbital step structure with the step heights wij of (5.26) corresponding to the individ-
ual orbital products ψiψj in (5.25). The orbital structure follows from the fact that
in the region, where a particular orbital density ψ2

i brings a dominant contribution
to the effective density ρ̃, the potential vCEDA

resp is close to the corresponding weight
wii. The form of the present response part of the xc potential, vCEDA

resp of Eq.(5.25), is
similar to that of the KLI [38] or CEDA [40, 110] exchange-only response potentials
and correlation manifests itself in the presence of “steps” with products ψ2

a and ψaψj

of virtual orbitals ψa .

5.5 Calculation of the H2 potential curve

Based on the theory presented in the previous sections, we propose a self-consistent
KS scheme with our occupied and virtual orbital-dependent xc energy functional. In
this scheme the total energy is,

E = Ts [{ni} , {ψi}] + Ene [ρ (r)] + EH [ρ] + Exc [{ñi} , {ψi}] (5.27)

where Exc is defined with (5.10). The orbitals ψi in (5.27) are obtained from the KS
one-electron equations,{

−1
2
∇2 + vne (r1) + vH (r1) + vCEDA

xc (r1)
}
ψi (r1) = εiψi (r1) (5.28)

where vCEDA
xc is defined with with (5.20),(5.24)–(5.26). The functionals Ts, Ene , EH in

(5.27) and the potential vH in (5.28) are calculated with the conventional KS density
(5.2), i.e. with the occupations ni of the orbitals ψi , while the expressions for Exc

and vCEDA
xc contain the fictitious occupations ñi. The latter are calculated within the

self-consistent procedure as explicit functions (5.12) of the orbital energies. In this
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chapter we use the Fermi type distribution

ñi =
2

1 + exp
[
(εi − εF )

/√
a

(
ε(N/2+1) − εN/2

)
+ b

(
ε(N/2+1) − εN/2

)2
] . (5.29)

with the parameters a and b, which appears to be flexible enough for our purpose. In
(5.29) εN /2 and ε(N/2 +1) are the HOMO and LUMO energies. The parameter εF is
determined to satisfy the normalization condition

∑M
i ñi = N , which yields a value

close to (εLUMO + εHOMO)/2 for εF . Alternatively one can fix εF at the average
of HOMO and LUMO energies and scale the ñi so that

∑M
i ñi = N is satisfied.

These procedures both work wel. We apply the self-consistent method of Eqs. (5.27)–
(5.29) to the calculation of the potential curve of the H2 molecule. The nine lowest
virtual orbitals have been included in the summations in the xc energy (5.10) and
the xc potential vCEDA

xc . Figure 5.1 compares the total energy curve obtained with
the xc energy functional (5.10) (denoted BB) with those calculated with the Hartree-
Fock (HF) and full configuration interaction (FCI) methods as well as with the local
density approximation (LDA) and with a generalized gradient approximation (GGA)
consisting of a combination (BP) of Becke’s exchange (B88) [4] and Perdew’s (P86)
correlation [6] functionals. The correlation-consistent triple-zeta basis cc-pVTZ [65]
of Gaussian type orbitals (GTO) has been used. All calculations have been performed
within the spin-restricted approach by means of a Gaussian orbital density functional
code [46, 77] based on the ATMOL package [62]. Figure 5.1 clearly displays the failures
of HF, LDA, and GGA-BP for the H2 potential curve. The most dramatic is the well-
known HF failure due to the neglect of the Coulomb correlation in the HF method.
The HF curve goes higher than other curves at nearly all the H–H distances and at
R(H–H)=10 Bohr the error of the HF total energy, EHF − EFCI=148 kcal/mol, and
the error of the dissociation energy (estimated at R(H–H)=10 Bohr and comparing
to E(Re )), DHF

e −DFCI
e =123 kcal/mol. The displayed failure of LDA and standard

GGA is, perhaps, less well known than their poor performance for the dissociating
cation H+

2 [11, 12, 13], the total energy of which the GGAs greatly underestimate (ca.
60 kcal/mol too negative). In contrast, spin-restricted LDA and GGA-BP greatly
overestimate the energy of the dissociating H2 (see Fig. 5.1), although not as much as
HF. In particular, near the equilibrium distance R(H–H)=1.401 Bohr the LDA curve is
close to the HF one, while at large R(H–H) it goes in between the HF and FCI curves.
At R(H–H)=10 Bohr the LDA total energy error ELDA−EFCI=69 kcal/mol, and the
LDA dissociation energy error DLDA

e −DFCI
e =46 kcal/mol. The gradient correction

lowers the GGA-BP energy compared to the LDA one and the BP curve goes below
and almost in parallel to the LDA curve. Near the equilibrium the BP curve is close
to FCI one, however, BP still considerably overestimates the energy at long distance.
The BP total energy error at R(H–H)=10 Bohr is EBP−EFCI=44 kcal/mol, and the
BP dissociation energy error DBP

e − DFCI
e =47 kcal/mol is even slightly larger than

the LDA one.
The errors in the DFT dissociation energies seem to contradict the notion that
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Figure 5.4: Total exchange-correlation energy of H2 as a function of internuclear distance. See
caption of Fig. 5.1.

the LDA and GGA approximations by the very fact that they work with model holes
that are local, do not exhibit the typical Hartree-Fock error due to the completely
delocalized exchange hole. Apparently the local nature of the holes of the LDA and
GGA approximations is not sufficient to ensure proper behavior at long distance, a
point to which we will return below. In contrast to the LDA and GGA curves, the
potential curve of the self-consistent BB method (5.27)–(5.29) excellently reproduces
the FCI curve, both curves practically coincide at all H–H distances (see Fig. 5.1).
The best agreement is achieved for the parameters a=0.008 and b=0.045 in the dis-
tribution (5.29) with a total energy average error (for various H–H distances) of only
−0.07 kcal/mol, an average absolute error of 0.72 kcal/mol, and a maximal error of
−2.4 kcal/mol at R(H–H)=3 Bohr. The important feature of the functional (5.10) is
its correct behavior for dissociating H2 (see Sec. 5.2). Due to this, the dissociation
energy error is only −0.20 kcal/mol. The above-mentioned energy differences of LDA,
GGA and BB, which share the same functionals Ts, Ene and EH , originate from the
different xc functionals of these methods. Figure 5.4 compares their Exc(R) curves
with the benchmark curve EKS

xc (R) for the accurate KS solution obtained from the
FCI density ρFCI with the iterative scheme of van Leeuwen and Baerends [89]. One
can see from Fig. 5.4, that the LDA and GGA-BP xc energies as functions of the
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Figure 5.5: HF kinetic energy and KS kinetic energy of H2 as a function of internuclear distance.
See caption of Fig. 5.1.

internuclear distance have a qualitatively different behavior compared to the accu-
rate EKS

xc . Both LDA and BP xc energies increase monotonically with R(H–H), with
the latter being consistently lower than the former. In its turn, EKS

xc [R(H–H)] passes
through a maximum at R(H–H)=3 Bohr and at larger R(H–H) it decreases mono-
tonically. For the distances R(H–H)≤3 Bohr the GGA energy EBP

xc is close to EKS
xc ,

however both LDA and BP greatly overestimate the xc energy of dissociating H2 (i.e.
do not have it negative enough). The corresponding errors at R(H–H)=10 Bohr of
98 and 66 kcal/mol are, in fact, larger than the above-mentioned LDA/GGA total
energy errors. Thus, the latter errors originate from the errors of the LDA/GGA xc
functionals, which are partly compensated with the errors of opposite sign in other
energy components. Contrary to LDA/GGA, the BB xc functional (5.10) reproduces
qualitatively the benchmark dependence EKS

xc (R) (see Fig. 5.4). EBB
xc is close to EKS

xc

for R(H–H)≤3 Bohr and it again coincides with EKS
xc at large R(H–H). Note, however,

that the maximum of the BB curve is somewhat displaced from that of EKS
xc (R) and

EBB
xc differs appreciably from EKS

xc in the region 3.5≤R(H–H)≤8 Bohr. This indicates
that the very good BB total energies in this region (see Fig. 5.1) are the result of
compensation of errors of opposite signs in various energy components. This com-
pensation can be clearly seen when one compares Fig. 5.4 with Fig. 5.5, the latter
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figure presents the dependence of the LDA, BP, BB, KS kinetic energies Ts and the
HF kinetic energy THF on R(H–H). While the EBB

xc energy is higher than EKS
xc in the

region 3.5 ≤ R(H–H) ≤ 8 Bohr (see Fig. 5.4), the BB kinetic energy TBB
s is lower than

TKS
s in the same region (see Fig. 5.5). Note, that in the case of H2 only the lowest

MO σg contributes to Ts and THF, so that the comparison of the kinetic energies
reveals the relative size of the σg MO in various methods: the more diffuse σg is in a
particular method, the lower is Ts. Thus, Fig. 5.5 indicates the well-known feature of
HF, a too diffuse character of the HF σg MO for dissociating H2. Indeed, for larger
R(H–H) the HF kinetic curve goes much lower than other curves. Judging from this
criterion, LDA yields a more contracted (towards the nuclei) σg than HF, GGA-BP
further increases this contraction and in BB the size of σg gradually changes with
R(H–H) from that of BP to that of σg of the accurate KS solution. Further analysis
shows, that the above-mentioned underestimation of the xc energy of dissociating H2

(in the sense of being not negative enough) by LDA/GGA is due to the inability of
these methods to grasp nondynamical left-right electron correlation in the stretched
H2 molecule. Figure 5.2 displays the totally different dependence on R(H–H) of the
LDA/GGA correlation energy functionals and the benchmark correlation energy EKS

c

corresponding to the accurate KS solution. The S -shaped EKS
c (R) curve represents a

rather sharp transition from dynamical-like correlation in the region R(H–H)=1.4–2.5
Bohr to strong nondynamical correlation for R(H–H) < 7 Bohr. Indeed, near equi-
librium EKS

c is close to the typical energy −0.045 Hartree of dynamical correlation of
an electron pair in atomic systems. On the other hand, due to the strong left-right
correlation at larger R(H–H), EKS

c exceeds −0.25 Hartree at R(H–H)=10 Bohr, i.e. it
experiences 4.5-fold increase in its absolute value. In its turn, the LDA/GGA corre-
lation energy remains nearly constant for all R(H–H), with ELDA

c being about twice
as low as the GGA EP

c (see Fig. 5.2). This happens, because the LDA functional rep-
resents Coulomb correlation in a model system, the homogeneous electron gas [3], for
which the correlation energy per particle εc(ρ) at typical atomic electron densities ρ is
about twice that of dynamical electron correlation in atoms. The gradient correction
of GGA-P86 removes this discrepancy and near the equilibrium EP

c is close to EKS
c .

Still, both LDA and P86 share the basic shallow logarithmic dependence of εc [ρ(r1)]
on the local density ρ(r1), to which a dependence on the local density gradient ∇ρ(r1)
is added in P86. With this local ρ(r1) dependence, LDA and GGA have no way to de-
scribe, from the H atom densities with which a zero correlation energy corresponds in
the isolated atoms, the above-mentioned build-up of the strong left-right nondynami-
cal correlation, which is a characteristic feature of dissociating H2. Indeed, according
to the interpretation of the GGA performance given in Refs. [19, 20, 48], in typical
cases of covalent bonds nondynamical correlation should be effectively taken into ac-
count not by the GGA correlation functionals, but by the GGA exchange functionals.
This proved to be almost quantitatively the case for the molecules N2, Li2 and F2,
at their equilibrium geometries, as discussed in Ref. [48]. We therefore expect GGA
exchange energies that are more negative than the HF or KS exchange energy by
the nondynamical correlation energy. Figure 5.3 compares, along the H2 dissociation
coordinate, the B88 exchange energy with the HF one as well as with the energy EKS

x
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corresponding to the accurate KS solution. Let us first comment on the difference
between HF and KS exchange energies. We note that around Re the HF and KS ex-
change energies are very similar. For long H–H distances, however, the KS exchange
energy becomes clearly lower than the HF exchange energy. Usually the KS and HF
exchange energies are quite close [48], being little affected by the small differences
between HF and KS orbitals. In the present case, however, the HF density and the
HF σg orbital are significantly too diffuse [73], and the KS exchange energy, which is
based on the more contracted true density (the exchange hole is −(1/2)ρ) becomes
clearly more negative. Let us next compare the DFT exchange energies (LDA and
GGA-BP) to the “true” exchange energy EKS

x . At long distance the LDA and in
particular the GGA exchange energy indeed become significantly more negative than
EKS

x , in agreement with the notion that it incorporates nondynamical correlation, i.e.
has effectively a more localized hole than the true, delocalized, exchange hole. How-
ever, the GGA exchange energy at 10 Bohr is only ca. 80 kcal/mol more negative than
EKS

x , but from Fig. 5.2 it is clear that it should have been some 146 kcal/mol more
negative in order to cover the very large error in the GGA correlation energy with
respect to the full correlation energy. As a consequence, the total GGA exchange-
correlation energy of Fig. 5.4 is not nearly negative enough. So the observation that
the GGA exchange energy incorporates the nondynamical correlation energy almost
quantitatively at equilibrium geometry[48], does not extend to the more extreme case
of nondynamical correlation in the dissociating electron pair bond.

It appears that the general notion that LDA and GGA are superior for dissociating
H2, and for weak electron-pair bonds in general, due to the inherent locality of the
“exchange” hole which mimics the full, local, exchange-correlation hole, is not wrong
(the dissociation curves in Fig. 5.1 are indeed much better for LDA and GGA than for
HF), but is not quantitatively reliable. This can be easily understood from the fact
that the DFT exchange holes are not deep and localized enough. Let us consider the
full exchange-correlation hole ρhole

xc (r2|r1), which is a function of position coordinate
r2 and surrounds a reference position r1 that is in the neighborhood of one H nucleus.
It has a depth ρhole

xc (r1|r1)= −ρ(r1) at r1 and in fact its shape is −ρ(r2) at the H atom
where the reference position r1 is located (and zero at the other H atom), cf [30, 73].
The exchange-correlation hole integrates to −1 electron, and so does the exchange
hole. The exchange hole, however, has a depth of only −(1/2)ρ(r1) since it is only in
the electronic density of either spin α or spin β electrons. We can roughly estimate
the effect of the difference in depth between the complete exchange-correlation hole
and the exchange-only hole. When one uses the simple Slater model that the hole
has uniform depth (either −ρ(r1) for ρhole

xc (r2|r1) or −(1/2)ρ(r1) for ρhole
x (r2|r1)) and

radius R such that it integrates to −1 electron, then one obtains for the xc energy

Emodel
xc = −1

2

∫
dr1ρ (r1)

∫
dr2

ρhole
xc (r2|r1)

r12
≈ −4π

2

∫
dr1ρ

2 (r1)

R∫
0

r12dr12.
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the simple estimate

Emodel
xc ≈ −

(
9π
16

)1/3 ∫
ρ4/3 (r1) dr1.

The radius R = {3/[4πρ(r1)]}1/3 is here taken from the unit sum rule. This is 1.27
times as large in absolute magnitude as the exchange energy obtained with a uniform
hole of depth −(1/2)ρ(r1),

Emodel
x ≈ −

(
9π
32

)1/3 ∫
ρ4/3 (r1) dr1

This is roughly comparable to the ratio of EKS
xc (see Fig. 5.4) and EBP

x (see Fig. 5.3)
EKS

xc /EBP
x =1.21 at R(H–H)=10 Bohr. This supports the view that the breakdown of

the DFT exchange hole models for the description of the nondynamical correlation
in this case is a simple consequence of their shallowness. The large difference with
a hole that is not only “localized” (on one H-atom site) but also of sufficient depth
can be compensated neither with the B88 exchange gradient correction, nor with the
addition of relatively small LDA/GGA correlation energies (see Fig. 5.2), so that a
dramatic underestimation results of the xc (see Fig. 5.4) and total (see Fig. 5.1) energy
of dissociating H2 with LDA and GGA-BP. It is to be noted that hybrid functionals,
which introduce a more delocalized hole than LDA or GGA, would do worse than
the pure density functionals at long distance. Note that, based on the concept of
the xc hole, the functional of Eq. (5.10) treats exchange and correlation in a unified
way, so that the EBB

xc curve (Fig. 5.4) cannot be separated in exchange (Fig. 5.3) and
correlation (Fig. 5.2) curves, as can be done for LDA and GGA approximations. Still,
comparison of the total BB and FCI energies (see Fig. 5.1) and the xc BB and KS
energies (see Fig. 5.4) shows, that due to the proper modelling of the xc hole with
inclusion of virtual orbitals, the BB functional reproduces successfully the build-up
of strong nondynamical left-right correlation in dissociating H2.

5.6 Conclusions

In this chapter the functional dependence on virtual Kohn-Sham orbitals has been
incorporated into the self-consistent KS method. To accomplish this, several method-
ological questions had to be addressed and solved. Foremost among them is the
choice of an exchange-correlation energy functional, which would efficiently utilize
both occupied and virtual orbitals. In this chapter the functional proposed by Bui-
jse and Baerends [77, 105] has been employed. With its simple orbital dependence
(5.10) derived from an Ansatz for the xc-hole amplitude, EBB

xc is able to reproduce
the important dynamical and nondynamical effects of Coulomb correlation through
the efficient use of virtual orbitals.

The next question to be addressed is the construction of the Kohn-Sham potential,
which now also depends on both occupied and virtual orbitals. The problem here is
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the asymptotical divergence of the xc potential, since it depends on a finite number
of the KS orbitals. The problem is evident from the construction of the potential
by functional differentiation, or equivalently by the OEP scheme. In order to build
in the desirable constraint of correct (finite) asymptotic behavior, a modification of
the OEP equations has been proposed, which leads to a finite xc potential. With
a generalization of the common energy denominator approximation (CEDA) for the
static orbital Green’s function, the explicit expression in terms of occupied and virtual
orbitals has been derived for the xc potential vCEDA-BB

xc corresponding to the EBB
xc

functional.
The present method requires an algorithm for the involvement (“weight”) of the

virtual KS orbitals in the xc functional. In this chapter this has been realized by
using the analogy with the development of an one-electron density matrix dependent
xc part of the two-electron density matrix, which leads to

√
ni dependence (where

ni are the natural orbital occupation numbers) in the coefficients for the expansion
of the xc hole in terms of natural orbitals [77, 105, 118, 119, 124]. We have used
weights in the form of

√
ñi, where ñi are fictitious “occupation numbers” which were

approximated with a Fermi-type distribution dependence on the orbital energies.
The resulting self-consistent method has been applied to calculation of the H2

potential curve and a detailed comparison has been made with HF, FCI, LDA, GGA-
BP methods as well as with the energy components corresponding to the accurate KS
solution for H2. The failure of spin-restricted LDA and GGA-BP has been stressed:
LDA/GGA greatly underestimate the bond energy and the xc energy of dissociating
H2, due to their inability to grasp the strong left-right electron correlation at large
H–H distances.

In its turn, the present method reproduces very well the entire H2 potential curve
and it reproduces qualitatively (but not quantitatively) the dependence of the xc
energy on the H–H distance. With the proper inclusion of virtual KS orbitals in
its orbital structure the functional (5.10) correctly describes the transition from a
dynamical-like correlation near the equilibrium to the strong left-right correlation in
stretched H2. Of particular importance is the correct asymptotic behavior of the
functional at large R(H–H). In this region the localized xc hole that is implicit in this
functional [30] correctly describes the combined effect of exchange and left-right cor-
relation, so that the total energy and its components coincide with the corresponding
FCI and accurate KS quantities.

These results demonstrate, in principle, the ability of a functional like EBB
xc with

virtual orbital dependence to describe properly dissociation of molecular electron pair
bonds. This is especially encouraging, since the observed failure of LDA and BP-GGA
demonstrates the virtual impossibility of functionals that use only local information
(local density and derivatives of the density) to represent the gradual build-up of the
strong nondynamical correlation which accompanies bond dissociation. Such nonlocal
information is built into the EBB

xc functional through its orbital dependence, which
makes it a full fledged (not only perturbatively defined) exchange plus correlation
functional.

Nevertheless, important problems remain to be solved. Further development of
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functionals along these lines will depend on finding a successful scheme to determine
the effective weights of the occupied and virtual orbitals, or equivalently the fictitious
“occupations” ñi. The present Fermi-type distribution (5.12),(5.29) can be considered
as only a provisional answer. In the second place the problem of the asymptotic
divergence of the Kohn-Sham potential arising from the use of a finite set of virtual
orbitals has only been addressed in an ad hoc manner in this chapter.
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Chapter

6
The exchange and correlation potential

The xc potentials obtained by differentiation of the LDA/GGA energy functionals
are not a good approximation for the KS xc potential. In this chapter the main
shortcomings of the LDA/GGAs for the xc potential are analyzed and discussed in
relation to the accuracy of the results for molecular response properties, in particular
for excitation energies and polarizabilities. The calculations of linear (and non-linear)
properties in time dependent density functional response theory (TDDFRT) require
in fact two approximations: the approximation for the ground state static xc potential
and the approximation of the xc kernels, describing the change of the xc potential in
response to an external perturbation. Section 6.1 shows how the two approximations
enter in the calculation of excitation energies and polarizability. The relative weights
of these two approximations are evaluated in Sec. 6.2. The relevant features of the xc
KS potential are analyzed in Sec. 6.3. On the basis of this analysis the shortcomings of
the LDA/GGA potentials are discussed in Sec. 6.4.1: they are both too repulsive in the
bulk region and decay too rapidly in the asymptotic region. These distortions of the
approximated potentials can be recognized in the distortions of the excitation spectra
calculated at this level of approximation. Section 6.4.2 presents two alternatives
to correct these shortcomings: either model potentials depending on KS orbitals or
“asymptotically corrected” LDA/GGA xc potentials.

6.1 The calculation of linear response properties

In Sec. 1.1 the advantages of the density functional approach have been illustrated for
the stationary state. The basic theorem that states the one-to-one mapping between
the density and the external potential can be extended for time dependent densities
ρ(t) and time dependent external potentials v(t) [125] and therefore the KS-DFT
formalism can be extended to time dependent systems [126, 127, 128, 129].

The calculation of polarizabilities and excitation energies requires only the linear
response of the density that can be obtained by a perturbative solution of the time-
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dependent KS equations. The linear response δρ of the density of a quantum system
to an external perturbation δvext

δρσ1(r1, t) =
∫
dr2

t∫
−∞

dt′χ(r1, r2; t− t′)δvext(r2, t
′) (6.1)

is described by the linear density response function χ(r1, r2; t− t′) of the system that
contains information on the ground state wave functions Ψ0 and energy E0, on all
the excitation energies ωα = Eα − E0 and excited wave functions Ψα of the system.

For the noninteracting KS system the linear density response function takes the
simple form (in the frequency, Fourier transform)

χs(r1, r2;ω) = lim
η→0+

∑
k,j

(fk − fj)
ψj(r1)ψ∗k(r1)ψ∗j (r2)ψk(r2)

ω − (εj − εk) + iη
(6.2)

depending only on the solutions of ground state KS set of equations {εi, ψi}.
The change in the density of the KS noninteracting system causes a change in

the Coulomb and xc part of the KS potential, depending on the density, that in turn
causes a change in the density itself. The changes in the density δρ and in the KS
potential δvs have therefore to be solved self-consistently

δρ(r1, t) =
∫
dr2

t∫
−∞

dt′χs(r1, r2; t− t′)δvs(r2, t
′) (6.3)

δvs(r1, t) = δvext(r1, t) +
∫
dr2

δρ(r2, t)
|r1 − r2|

+
∫
dr2

t∫
−∞

dt′fxc(r1, r2; t− t′)δρ(r2, t
′). (6.4)

Equations (6.3) and (6.4) can be condensed (after a Fourier transform) into the ex-
pression for the frequency dependent density change:

δρ(r1, ω) =
∫
dr2χs(r1, r2;ω)δvext(r2, ω)+∫

dr2χs(r1, r2;ω)
∫
dr3

( 1
|r2 − r3|

+ fxc(r2, r3;ω)
)
δρ(r3, ω).

(6.5)

The change in the xc potential in Eq. (6.3) is described by the xc kernel fxc(r1, r2; t−t′)

fxc(r1, r2; t− t′) =
δvxc(r1, t)
δρ(r2, t′)

. (6.6)
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This object is quite complicated being not local both in space and in time (frequency
dependent). It relates the linear response density functions χs(r1, r2; t−t′) in Eq. (6.2)
and χ(r1, r2; t− t′) of respectively the KS and the interacting systems:

fxc(r1, r2; t− t′) = χ−1
s (r1, r2; t− t′)− χ−1(r1, r2; t− t′)− δ(t− t′)

|r1 − r2|
.

For the calculation of the polarizabilities and excitation energies (6.5) can be conve-
niently rewritten as a set of equations for the first order density matrix δP σ1

ia in the KS
eigenfunction basis. For a real perturbation, the real part of the first-order density
matrix Re δP is given by solving [130]

[∆− 2K](Re δP ) = δvext, (6.7)

where ∆ is a diagonal matrix containing only the eigenvalues of the ground state KS
equations

∆iaσ1,jbσ2 = δσ1σ2δijδab

[
(εa − εi)−

ω2

(εa − εi)

]
, (6.8)

while K contains the changes in the Coulomb (KCoul) and xc part (Kxc) of the
potential and is responsible for the coupling between different transitions of the non-
interacting system

Kiaσ1,jbσ2 = KCoul
iaσ1,jbσ2

+Kxc
iaσ1,jbσ2

=

=
∫
dr1

∫
dr2ψiσ1(r1)ψaσ1(r1)

1
|r1 − r2|

ψjσ2(r2)ψbσ2(r2)

+
∫
dr1

∫
dr2ψiσ1(r1)ψaσ1(r1)fσ1σ2

xc (r, r2, ω)ψjσ2(r2)ψbσ2(r2). (6.9)

The (Fourier transform of the) real part of the first-order density matrix Re δP multi-
plied by the dipole moment in the x direction xσ1

ia = 〈ψi,σ1 |x̂|ψa,σ1〉 gives the frequency
dependent polarizability αx,z in response to an external perturbation Fz = Ez ẑ

αx,z(ω) = −2
∑

i,a,σ1

xσ1
ia

(Re δP σ1
ia )(ω)

Ez(ω)
. (6.10)

The excitation energies ω and oscillator strengths f are the poles and the residues
of the frequency dependent polarizability and are determined by the (pseudo) eigen-
values and eigenvectors of [128]

Ω~Fα = ω2
α
~Fα (6.11)

where the Ω-matrix is

Ωiaσ1,jbσ2 = δσ1σ2δijδab(εa − εi)2 + 2
√

(εa − εi)Kiaσ1,jbσ2

√
(εb − εj). (6.12)
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In the spin-restricted case, the Ω-matrix is split in a singlet part ΩS (spin unchanged
processes) and triplet part ΩT (spin-flip processes):

ΩS
ia,jb = δijδab(εa − εi)2 + 2

√
(εa − εi)×

2
[
KCoul

ia,jb +
1
4
(Kxc,↑↑

ia,jb +Kxc,↓↓
ia,jb +Kxc,↑↓

ia,jb +Kxc,↓↑
ia,jb )

]
2
√

(εb − εj)

ΩT
ia,jb = δijδab(εa − εi)2 + 2

√
(εa − εi)×

2
[1
4
(Kxc,↑↑

ia,jb +Kxc,↓↓
ia,jb −Kxc,↑↓

ia,jb −Kxc,↓↑
ia,jb )

]
2
√

(εb − εj). (6.13)

The oscillator strengths f can be calculated from the eigenvectors ~Fα [128]

fα =
2
3

(
|~x†S−1/2 ~Fα|2 + |~y†S−1/2 ~Fα|2 + |~z†S−1/2 ~Fα|2

)
, (6.14)

where xσ1
ia are the components of ~x, while

Siaσ1,jbσ2 =
δσ1,σ2δi,jδa,b

εbσ2 − εjσ2

.

In summary the polarizability, the excitation energies and oscillator strengths are
determined by Eqs. (6.10–6.14). The basic ingredients are on one hand the transition
energies and oscillator strengths of the noninteracting KS system

ωs
q = εa − εi

fs
q =

2
3
ωs

q |〈ψa|µ̂|ψi〉|2

that are obtained by the KS ground state calculation (q ≡ ia, superscript s indicates
just that these are relative to the KS system). These quantities are determined by the
KS potential and therefore by the choice of the approximation for the xc potential.

On the other hand in the TDDFRT calculation the coupling matrix K (6.9) relates
the excitation energies ωs

q and oscillator strengths fs
q of the KS system to the corre-

sponding quantities ωα, fα of the interacting system. The coupling matrix involves the
approximation for the xc kernel (6.6). In the next section these two approximations
are weighed against each other.

6.2 Dr. Potential and Mr. Kernel

The relative weights of the approximation for the potential and for the kernel have
been studied [131, 132, 133, 134, 135, 136, 137] by calculating the response properties
of atoms and small molecules with accurate xc potentials constructed from ab initio
densities. From these studies emerge that in general the KS transitions are already
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quite a good approximation for the excitation energies, especially for highlying exci-
tations. The approximation of the ground state xc potential has therefore, at least for
these systems, the largest effect on the calculated spectra and polarizabilities. The
standard LDA and GGA xc potentials do not provide a good approximation for KS
transitions and as consequence they do not yield good results for excitations and the
other related response properties (see also Sec. 6.4.1). On the contrary, the approxi-
mation of the xc kernel plays for these small, compact system a secondary role and
in general already the simple adiabatic local density approximation (ALDA)

fALDA
xc (r1, t) =

δvLDA
xc (r1, t)
δρ(r2, t′)

∣∣∣
ρ0

, (6.15)

that neglects the nonlocality both in space and in time (the frequency dependence),
provides together with an accurate approximation for the potential good results.

This trend has been analyzed and rationalized in several studies. In Ref. [138]
the Görling-Levy perturbation theory [139] has been applied to excitation states and
as a result the difference of KS eigenvalues has been found to be an approximation
to the excitation energy of the zeroth order in the electron-electron interaction. In
Ref. [137, 140] the matrix Ω in the eigenvalue equations (6.11) has been expanded [141]

Ω = ΩSMA
q +

∑
r 6=q

4ωqωr|Kqr|2

ΩSMA
q − ΩSMA

r

+ · · · (6.16)

where the diagonal terms in Eq. (6.12) are collected in

ΩSMA
q = Ωs

q + 2ωs
qKqq

(small matrix approximation, SMA). At the “zero order” the excitation energies are
again approximated by the KS transition frequencies. The “first order correction” is
a shift from Ωs

q due to the diagonal elements of the coupling matrix, while the next
term of the expansion involves the second order in the off-diagonal elements Kqr and
thus the coupling between different KS transitions. The oscillator strength is then
expanded as

f =
2
3

{
ωs

q(µ
s
q)

2 +
∑
r 6=q

4Kqrω
s
qω

s
rµ

s
qµ

s
r

ΩSMA
q − ΩSMA

r

+ · · ·
}
.

The first term is the KS oscillator strength and there are no corrections coming from
the diagonal elements of the coupling matrix, in fact if the off-diagonal elements in
Eq. (6.11) are neglected the eigenvectors, that enter the expression for the oscillator
strengths (6.14), remain unit vectors. The first order correction involves the off-
diagonal elements of the coupling matrix and mixes various KS oscillator strengths.
The idea behind this expansion is just that the off-diagonal elements decay rapidly
with the distance from the diagonal [137]. In particular one has to compare the off-
diagonal elements of the coupling matrix Kqr with the separation between q and r
transition frequencies. If they are small on this scale then the oscillator strengths are
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well approximated by the KS value, and the excitation energies are well represented
by the transition frequency from the small matrix approximation.

In Ref. [142] the relative importance of the xc potential and kernel has been studied
looking at the single pole approximation1 for the singlet and triplet excitations (6.13).
In this approximation the average ω̄ of ωS and ωT is

ω̄ =
(ωS + ωT )

2
= ωs

q +KCoul
qq +Kx↑↑

qq +Kc↑↑
qq

and depends on the KS transition frequency corrected by the Coulomb and the parallel
xc parts of the coupling matrix. This correction is expected to be in general small:
in fact the Coulomb and the exchange part of the matrix partially cancel (exact
cancellation in the two electrons case), and the effects of parallel correlation are in
most of cases weak because electrons with the same spin are already taken apart by
the exchange. The singlet-triplet splitting on the other hand

(ωS − ωT ) = 2(KCoul
qq +Kc↑↓

qq )

is determined uniquely by the coupling matrix, in particular by the Coulomb and the
antiparallel correlation parts, in general larger than the correction to ωs

q discussed
above. This ensures in most of the cases that the shift ω̄ − ωs

q away from the KS
transition frequency is smaller than the singlet-triplet splitting ωS − ωT .

Nevertheless there are cases for which the kernel has to “correct” substantially
the KS transition frequencies. The most illustrative example is the dissociating H2

molecule for which the separation ωs
q between the highest occupied and the low-

est unoccupied KS orbitals approaches zero for large separation. The lowest triplet
excitation approaches zero as well for large separation, while the singlet excitation
approaches the atomic energy difference between 1s and 2s or 2pσ [143]. The ALDA
kernel (6.15) fails to reproduce the differential curves for the lowest singlet [143, 144]
(and triplet [145, 146]) excitations for dissociating H2: in particular it cannot bring
the ωs

q , going to zero, to the singlet excitation energy that remains finite. The locality
in space in this case is a severe restriction, both the exchange and the antiparallel
correlation part of the kernel are as a matter of fact strongly nonlocal.

The ALDA kernel is clearly inadequate also for conjugated molecular chains for
which it leads up to a huge overestimation of the polarizability [147, 148]. In this
case the response of the exchange-correlation should contain an “ultra-nonlocal” term
counteracting the external field and thus reducing the polarizability [148, 149]. Fur-
ther in solid state physics better approximations are needed to reproduce properly
the optical absorption spectra of solids [150, 151, 152]. In this case it has been
shown [153, 154, 155] that, at least the qualitative features of the spectra, can be
recovered with a long-range Coulombic tail which is absent in the ALDA kernel.

1This approximation can be derived from the small matrix approximation above with the addi-
tional requirement that Kqq � ωq [137].
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Attempts to go beyond the ALDA for the xc kernel have been made in both direc-
tions of including the frequency dependence or the spatial nonlocality. Nevertheless
it is not possible to retain the local approximation for a frequency dependent ker-
nel [156] without violating fundamental physical theorems [157, 158]. The way to
construct a kernel that is still “local”2, but frequency dependent, is to consider not
only the density, but also the density current as fundamental quantity in the the-
ory (current-density functional theory) [158, 159]. Recently the frequency dependent
kernel proposed in Ref. [158] has been applied quite successfully (in the zero fre-
quency limit) to current-density functional calculations of response properties of the
(hyper)polarizability of conjugated molecular chains [160, 161] and to the absorption
spectra of infinite systems [162].

The nonlocality can be introduced through the orbital dependence as in the ex-
change kernel proposed in [163] derived by differentiation of the Slater hole poten-
tial [164]

fx(r1, r2) = −
|
∑

k ψk(r1)ψ∗k(r2)|2

ρ(r1)|r1 − r2|ρ(r2)
. (6.17)

This exchange functional has been combined [142] with the ALDA for the antiparallel
correlation part of the kernel and this “hybrid” kernel has been applied to the helium
and the beryllium excitation energy spectra. The exchange part, that in the two-
electrons case cancels exactly the Coulomb part, provides a good estimate of the
singlet-triplet average frequency, while the ALDA is accurate enough to provide good
singlet-triplet splittings.

In Ref. [40] a kernel is derived from the CEDA (common energy denominator
approximation, see later) exchange potential. In addition to the kernel in Eq. (6.17)
coming from the Slater hole, it has also a part corresponding to the response of the
exchange potential (see next section) that is considered essential to estimate correctly
the polarizability of molecular chains [148, 149].

Recently a number of kernels have been proposed to improve the optical absorption
spectra of solids; apart the current-density functional calculations already cited [162],
in Ref. [155, 165, 166] the exchange part of the kernel has been calculated exactly,
in Ref. [153, 167] an xc kernel has been derived starting from the Bethe-Salpeter
equation and in Ref. [154] an effective kernel has been developed. These kernels, all
including the correct long-range behavior, reproduce quite successfully the features of
the optical absorption spectra of solids.

To summarize, the differences between KS orbital energies represent approximately
the one electron excitations of the interacting system, and in many cases, this approx-
imation is already quite good, i.e. the shift of the excitation energies from difference
between KS orbital energies is quite small. For these systems in particular the ap-
proximation for the xc potential is very important in order to reproduce correctly the
spacing of occupied and unoccupied KS orbitals, while for the kernel the simple ALDA

2In the sense that it depends only on quantities calculated at r and in a infinitesimal interval
around it
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is accurate enough. The next sections analyze the properties of the xc potential and
its approximations.

6.3 Holes, steps and peaks: the morphology of vxc

6.3.1 A physically meaningful decomposition of vxc

In this section the potential is decomposed in physically meaningful parts with the
aim to analyze its properties [73, 168].

The xc potential is obtained by differentiation with respect to the density of the
xc energy functional Exc, the sum of a kinetic part Tc = (T −Ts) and interaction part
Wxc = (W −WH):

vxc(r1) =
δExc

δρ(r1)
=

δTc

δρ(r1)
+

δWxc

δρ(r1)
.

From Eq. (2.2), Wxc can be rewritten

Wxc =
1
2

∑
σ1

∫
ρσ1(r1)vxc,hole(r1)dr1 (6.18)

in term of the local potential vxc,hole

vxc,hole(r1) =
∑
σ2

∫
ρxc

σ1σ2
(r1, r2)

|r1 − r2|
dr2 (6.19)

of the exchange and correlation hole function ρxc
σ1σ2

(r1, r2). The kinetic part

Tc =
∫
dr1ρ(r1)vc,kin(r1) (6.20)

can be also rewritten in term of the local potential vc,kin [46]

vc,kin(r1) =
1
2

∫
|∇1Φ|2ds1dx2 . . . dxN − 1

2

N∑
i=1

∣∣∣∣∇ ψi(r1)√
ρ(r1)

∣∣∣∣2, (6.21)

where Φ is conditional amplitude probability [169] (xi = ri, si, si spin variable)

Φ(s1,x2 . . .xN |r1) =
Ψ(x1 · · ·xN )√

ρ(r1)/N
(6.22)

The differentiation with respect to the density of Wxc (6.18) and Tc (6.20) leads to
the expression

vxc(r1) = vxc,hole(r1) + vc,kin(r1) + vxc,resp(r1) (6.23)
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where the potential is decomposed into a xc hole part vxc,hole (6.19), a kinetic part
vc,kin (6.21) and a response part vxc,resp that collects the response from the hole and
the kinetic part:

vxc,resp(r1) =
∫∫

dr2dr3
ρ(r2)ρ(r3)
|r2 − r3|

δg(r2, r3)
δρ(r1)

+
∫
dr2ρ(r2)

δvc,kin(r2)
δρ(r1)

. (6.24)

g(r1, r2) = Γ(r1, r2)/ρ(r1)ρ(r2) is the pair correlation function. An alternative ex-
pression for the response potential (6.24) has been derived in Ref. [46]:

vxc,resp(r1) = vN−1(r1)− vN−1
s (r1). (6.25)

The response part is given by the difference between the potentials vN−1 and vN−1
s

that are defined through the (N − 1) Hamiltonians HN−1 and HN−1
s and the condi-

tional amplitude probabilities (6.22) Φ and Φs of the interacting and KS systems:

vN−1
(s) (r1) =

∫
dx2 . . . dxNΦ∗(s)(x2 . . .xN |r1)HN−1

(s) Φ(s)(x2 . . .xN |r1)− EN−1
(s,)0

In particular vN−1 and vN−1
s are defined, respectively for the interacting and the

noninteracting KS system, as the difference between the expectation value of the
(N − 1) Hamiltonian with respect the conditional amplitudes and the ground state
energy of the (N − 1) system EN−1

0 (EN−1
s,0 ).

Both vN−1 and vN−1
s are positively defined because of the variational principle

for the energy and tend to zero at infinity because

Φ(s,x2 . . .xN |r)
r→∞→ ΨN−1

0 (x2 . . .xN ).

The one electron nature of HN−1
s and the one determinantal nature of Φs allow to

rewrite vN−1
s in terms of KS orbitals and orbital energies:

vN−1
s (r1) = εN −

N∑
i=1

εi
|ψi(r1)|2

ρ(r1)
. (6.26)

For vN−1 an analogous expression can be found [46]

vN−1(r1) =
∑
i=1

EN−1
i

|gi(r1)|2

ρ(r1)
− EN−1

0 (6.27)

in terms of the eigenvalues of the HN−1 Hamiltonian, EN−1
i , and of the Dyson or-

bitals, or quasiparticle amplitudes, gi(r1). The latter are defined from the expansion
of the ground state N -electron wave function ΨN

0 in the eigenfunctions ΨN−1
i of the

HN−1 Hamiltonian:

ΨN
0 (r1 . . . rN ) =

1√
N

∑
i

gi(r1)ΨN−1
i (r2 . . . rN ).
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6.3.2 Properties of the xc hole and response part

This discussion will concentrate on the asymptotic properties of the potential deter-
mined by the exchange hole part, and on the structure of the response part: in the
next section different approximations for the xc potential are analyzed on the basis
of these two features that strongly influence the quality of the solutions of the KS
equation. The properties of the kinetic part vc,kin of the xc potential instead are not
relevant for the response calculations. vc,kin produces noticeably effect in dissociating
molecules, in particular for the H2 molecule vc,kin = vkin, being vs,kin = 0, contributes
at the bond midpoint with a peculiar peak structure[170].

The xc hole potential vxc,hole (6.19) describes the screening effect on the classical
Coulomb potential due to xc hole ρxc(r1, r2) surrounding the reference electron in r1.

The exchange hole (2.6), as also discussed in Chapt. 2 integrates to −1 electron, it
follows that the exchange hole potentials vx,hole behaves for finite systems like −1/r
at the asymptotics. The other parts of the potential decays more rapidly[114] and
the asymptotic behavior of the xc potential is determined by the asymptotic decay of
the vx,hole.

The response potential vxc,resp (6.24) describes the “response” of the xc hole func-
tion (6.19) and the kinetic potentials (6.21) to a density variation.

The form of vxc,resp can be studied from Eqs. (6.25), (6.26) and (6.27):

vxc,resp(r1) =
∑
i=1

(EN−1
i − EN−1

0 )
|gi(r1)|2

ρ(r1)
−

N∑
i=1

(εN − εi)
|ψi(r1)|2

ρ(r1)
. (6.28)

The two parts of Eq. (6.28), have an analogous structure: in the region where only
one Dyson or KS orbital (or more orbitals of the same form) mainly contributes to
the density, for example within an atomic shell, they both give almost a constant
contribution, respectively (EN−1

i −EN−1
0 ) and (εN − εi); where two or more orbitals

strongly overlap, e.g. inter-shell regions, the potentials in Eqs. (6.26) and (6.27) vary
rapidly. As a result they both have a stepped structure, descending in atoms (both
potentials are positively defined) from the core region to the valence region where the
steps become smaller. In the region where the density is dominated by the Dyson
orbital corresponding to the first ionization energy I0 = EN−1

0 − EN
0 , in the case of

vN−1, or by the KS highest occupied orbital, in case of vN−1
s , the potentials decay

rapidly to zero.
The resulting potential shows also in general a stepped repulsive structure, with

higher steps in the core region becoming smaller in the valence region. The KS
highest occupied orbital have the same asymptotic behavior of the Dyson orbital
corresponding to the first ionization energy I0: in fact at the asymptotic the KS
highest occupied orbital determines the density, that is the same in the interacting
and noninteracting system. Therefore response potential goes to zero and moreover
the relation εN = −I0 should be satisfied.

The response part has a crucial role, even if it does not enter explicitly into the
expression for the xc energy. The accurate modeling of this structure is important in
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the construction of approximations for the ground state potential in order to obtain
reliable estimate of the first vertical ionization potential from the highest occupied
molecular orbital and of the energy differences of KS orbitals. Moreover, it has been
shown that the step structure of the response part is “needed” to describe the disso-
ciation of heteronuclear molecules AB into the neutral atoms A and B [73, 74], and
to calculate the polarizability of extended systems [148, 149] (see also Chapt. 9).

6.4 Approximations for the vxc

6.4.1 LDA and GGAs

The LDA and GGAs for the xc potential are derived by differentiation with respect
to the density of the corresponding xc energy functional. The success of the ap-
proximation for the energy does not imply that the derived xc potential would be
a good approximation for calculating molecular response properties. The energy is
in fact mainly determined by the quality of the approximation for the hole in the
regions where the density is not negligible. The behavior of the xc hole potential
at the asymptotic is, in general, not energetically important because in this region
the density is very small. On the other hand calculation of the excitation energies
and oscillator strengths, for example, requires a good approximation for KS orbital
energies and eigenfunctions of unoccupied highlying orbitals localized mainly in the
region of the potential tail. The following discussion concentrates on the asymptotic
behavior and response part of the LDA and GGA xc potentials.

The LDA exchange hole potential is, following the definition in Eq. (6.19),

vLDA
x,hole(r1) = −3

2

(
3
π

)1/3

ρ1/3(r1).

At the asymptotic the density behaves like exp (−2
√
−2µr) (µ is the chemical poten-

tial), it follows that the LDA potential also decay exponentially, too rapidly compared
with the correct Coulombic decay.

Going to the gradient corrected exchange functionals described by the general
form

Ex[ρ] =
∫
ρ4/3f(x(r1))dr (6.29)

one can choose f(x), function of the dimensionless argument x = |∇ρ|ρ−4/3, in order
to fix the correct asymptotic behavior for the exchange hole potential:

f(x) ∼ −1
6

x

log x
, r →∞, x→∞.

Nevertheless the total exchange potential obtained by differentiation of a exchange
functional of this form behaves like 1/r2 [89, 171]. Then is not possible to derive
a potential with the correct asymptotic behavior from energy expression of the form
Eq. (6.29).
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Both LDA and GGAs are too repulsive in the asymptotic region and as a con-
sequence highlying energy orbitals, localized in this region, are too destabilized and
mostly unbound.

Regarding the response part of the LDA exchange energy

vLDA
x,resp =

1
2

(
3
π

)1/3

ρ1/3(r1),

notice that in the region of the highest occupied molecular orbital it gives an important
contribution to the total potential, reducing the attractive hole by one third, while,
as discussed in the previous section, it should almost vanish so that in this region
vx ∼ vx,hole.

This fact has heavy consequences for the KS orbital energies obtained with the
LDA xc potential: the HOMO energy εN and in general all outer valence orbital
energies are overestimated (not negative enough) by approximately one third. This
implies in particular that the relation εN = −I0 required by the rigorous exact theory
(for a xc potential going to zero at infinity) does not hold3. The gradient corrections
cannot solve this deficiency and the response of the GGA xc potentials are affected
by the same plague.

As a consequence LDA and GGA potentials are too repulsive also in the region
of the valence orbitals and being not deep enough, do not support enough virtual
levels. In particular the Rydberg levels with energies close to the energy zero have a
much too small gap with respect to the HOMO, while the distortion is usually less
severe for lowlying virtuals, which are located in roughly the same region of space
as the HOMO. So LDA and GGA underestimate vertical excitation energies, given
at the zero order by the difference of KS orbital energies, for the higher-lying excita-
tions, i.e. to one-electron levels which approach the energy zero. The wrong spectral
structure influences also the polarizability and hyperpolarizability: for molecules that
have relatively large HOMO-LUMO gaps and thus low polarizabilities arising from
highlying excitations LDA and GGA usually overestimate (hyper)polarizabilities and
their frequency dependence.

For the excitation energies the effect of the error on the HOMO energy (almost one
third of its value) is more severe than the destabilization of the higher-lying energy
levels coming from the wrong asymptotic behavior. On the other hand the wrong
asymptotic behavior affects the form of the virtual orbital functions and thus the zero
order for the oscillator strengths.

In conclusion two basic shortcomings have been individuated in the shape of the
approximated xc potentials derived from LDA and GGA xc functionals: in the “outer”

3It was an old notion of the Xα theory [172], that reasonable εN values can be obtained with
the Xα potential with α=1.0, which is 1.5 times as attractive as the LDA exchange potential vLDA

x ,
the dominant part of vLDA

xc : vx α(α=1.0) = 1.5vLDA
x . The potential 1.5vLDA

x is in fact the electron
gas approximation to the exchange hole potential vx,hole. In the variation procedure to obtain one-

electron equations a factor 2/3 is introduced to give vx α(α=0.667) =vLDA
x as exchange potential in

the one-electron equations.
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region they do not have the correct Coulombic behavior and decaying too rapidly, in
the “inner” region they are too repulsive. These shortcomings dramatically affects
the results for the highlying excitation energies.

6.4.2 Model xc potentials

The latter arguments demonstrate the substantial inadequacy of the xc potentials
derived from LDA and GGA energy functionals. The alternative is to model directly
an approximated xc potential “that more closely resembles the exact KS potential”, in
particular to incorporate the structure of the response part and the correct asymptotic
behavior. Modeling the xc potential has the additional advantage that the potential
is uniquely determined by the exact density. It is then possible to compare the model
potentials with the potential constructed from accurate densities [89]. The main
drawback is that the corresponding energy functional is missing: in a way model
potentials are specialized for molecular response properties.

In principle, an improved model can be developed either by correction of the
standard LDA or GGA potentials, or one can consider an entirely different model of
the response potential and, in general, of vxc. The latter option has been followed
in the construction of the nonlocal correction to the LDA potential proposed by van
Leeuwen and Baerends (LB) in Ref. [89]:

vLB
xc = −βρ1/3

σ

x2
σ

1 + 3βxσ sinh−1 xσ

(6.30)

that reproduces the correct long-range asymptotics of the potential. The parameter β
has been parameterized to reproduce the difference between the LDA and the accurate
xc potential of beryllium atom. In this way vLB

xc not only adds to the LDA the good
asymptotic behavior, but it also deepens it, correcting in this way the spacing between
the HOMO and the highlying orbitals.

The potential proposed in Ref. [173] by Gritsenko, van Leeuwen, van Lenthe and
Baerends (GLLB) is modeled as the sum of a xc hole part, approximated by the xc
hole potential of Becke and Perdew [4, 5, 75, 76] and an orbital-dependent response
part, having the same form of the weighted sum of orbital densities of the response
part in Ref. [38], but with the weights wi that have a simple dependence on the square
root of the difference of orbital energies:

wi = K
√
εi − εN .

K=0.38 is a parameter derived for the homogeneous electron gas. The GLLB response
potential reproduces then the stepped structure of the exact response potential and
vanishes in the region where ρ ∼ |ψN |2.

The two model potentials LB (6.30), and GLLB, one having a good asymptotic
behavior, the other reproducing the atomic shell structure have been combined in
Ref. [111, 174, 175] in a potential that has the form of a statistical average of (model)
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potentials (SAOP)

vSAOP
xc =

N∑
i

vxc,mod
i

|ψ(r1)|2

ρ(r1)
.

The model potentials vxc,mod
i are obtained from an exponential interpolation of the

LB and GLLB potentials, so that the resulting potential vSAOP
xc is therefore close to

vGLLB
xc in the inner region and close to vLB

xc in the outer region.
The asymptotic corrected LDA and GGA potentials, proposed in Refs. [176, 177]

and in the Chapt. 7, correct instead the existing LDA and GGA xc potential. The
trick used in these approaches is to shift the original GGA and LDA in order to satisfy
the exact relation εN = −I0 (NB: potential to zero) and to connect it to a potential
having the correct asymptotic. The differences between the various schemes concern
mainly how and where the connection between the GGA/LDA and the asymptotic
corrected potential is made and are illustrated in Chapt. 7. Notice that the even
if these potentials have been dubbed “asymptotic corrected potential” the major
correction comes in fact from the shift that adjusts the spacing between the valence
occupied orbitals and the highlying unoccupied orbitals.

Finally the exchange potential of Krieger Li and Iafrate [38] and the one obtained
with the CEDA4, are also “good” model potentials in the sense that they both possess
the stepped response structure and the correct asymptotic behavior. Nevertheless
the highest occupied molecular orbital obtained with only exchange potential is too
stabilized and as a consequence the orbital energy differences are uniformly shifted to
larger values.

4The same potential has been obtained with a different approach in Ref. [109].



Chapter

7
A density functional scheme to correct GGA

potentials

Shape corrections to the standard approximate KS xc potentials are considered with
the aim to improve the excitation energies (especially for higher excitations) calculated
with TDDFRT. A scheme of gradient-regulated connection (GRAC) of inner to outer
parts of a model potential is developed. Asymptotic corrections based either on
the potential of Fermi and Amaldi (FA) or van Leeuwen and Baerends (LB) are
seamlessly connected to the (shifted) xc potential of Becke and Perdew (BP) with the
GRAC procedure, and are employed to calculate the vertical excitation energies of the
prototype molecules N2, CO, CH2O, C2H4, C5NH5, C6H6, Li2, Na2, K2. The results
are compared with those of the alternative interpolation scheme of Tozer and Handy
as well as with the results of the potential obtained with the SAOP (Chapt. 6. Various
asymptotically corrected potentials produce high quality excitation energies, which in
quite a few cases approach the benchmark accuracy of 0.1 eV for the electronic spectra.
Based on these results, the potential BP-GRAC-LB is proposed for molecular response
calculations, which is a smooth potential and a genuine “local” density functional with
an analytical representation.

7.1 Introduction

In spite of the success of TDDFRT, the problem remains to provide a uniform high
quality for both lowest and higher-lying excitations with model potentials vxc. Here,
the traditional LDA and GGAs for vxc have met with limited success. Even though
LDA produces reasonable lowest excitation energies [178, 179], it consistently under-
estimates the zero-order excitation energy ∆εia for higher excitations. The LDA xc
potential vLDA

xc in fact is not attractive enough in the molecular bulk region where
the occupied and lowest unoccupied orbitals are localized, so that the corresponding
orbital energies are too high (not negative enough). In particular, the LDA energy
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εLDA
N of the highest occupied molecular orbital (HOMO) is much higher (less nega-

tive) than the value εN = −Ip (Ip is the ionization potential) required by the rigorous
KS theory.

Thus, accurate modeling of vxc becomes an actual problem of TDDFRT. As it has
been also noted in Chapt. 6 not only a correction is required in the far asymptotic
region, to the effect that the exponential decay of the LDA potential in the outer
density tail has to be replaced by a−1/r behavior, but a more general shape correction
is needed to adjust in particular the spacing between the occupied orbitals and the
highlying virtuals. In the “asymptotic corrected” potentials of Refs. [177] and [176]
this adjustment occur simply shifting the unmodified LDA or GGA potential in the
bulk by an amount of (εLDA/GGA

N + Ip). The Coulombic asymptotic is provided by
“replacing” in the outer region the LDA/GGA with a potential with the correct decay.

In this chapter the connection schemes of Refs. [177] and [176] are improved by
introducing a density gradient-regulated connection method between bulk and asymp-
totic potentials, which is presented in Sec. 7.2. This scheme allows to construct smooth
asymptotically corrected potentials, which are genuine density functionals with an
analytical representation. In Sec. 7.3 GRAC together with the GGA bulk potential
of Becke [4] and Perdew [6], and with the Fermi and Amaldi or van Leeuwen and
Baerends asymptotic potentials [89] is applied to the TDDFRT calculations of the
vertical excitation energies of the prototype molecules N2, CO, CH2O, C2H4, C5NH5,
C6H6, Li2, Na2, K2. The results are compared with those obtained with the linear
interpolation function of Ref. [176] as well as with SAOP. In Sec. 7.4 the conclusions
are drawn.

7.2 Connection between bulk and asymptotic po-
tentials

In general, an asymptotically corrected xc potential vb -AC
xc can be written in the

following form

vb -AC
xc (r) = [1− f(r)] vb

xc(r) + f(r)va
xc(r) (7.1)

where vb
xc is a potential in the bulk region, which is to be corrected, va

xc is an asymp-
totic correction in the region of atomic and molecular density tails, and f is an
interpolation or switching function, which is close to 1 in the asymptotic region and
vanishes in the bulk region. It is desirable that, with a proper choice of f(r), the
corrected potential vb -AC

xc be a smooth potential and also a genuine density func-
tional, which has an analytical representation and which possesses usual scaling and
invariance properties.

In Ref. [177] the LDA potential vLDA
xc has been shifted in the bulk region down-

ward by (Ip+εLDA
N ), where Ip and εLDA

N have been pre-calculated with additional
self-consistent field (∆SCF) calculations of the neutral molecule and its cation. In
the asymptotic region (ca. 4–5 a.u. from the nearest nucleus) vLDA

xc has been replaced
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with the LB potential vLB
xc with the correct Coulombic behavior and zero asymptotics

vxc(∞)=0. The total asymptotically corrected potential vLDA-AC
xc is defined simply as

the maximum of those two potentials vLDA-AC
xc (r) = max[vLDA

xc (r)− Ip + εN , v
LB
xc (r)].

The disadvantage of this simple correction is that, by construction, the potential
vxc

LDA-AC possesses a discontinuity in its derivative.
In Ref. [176] the unmodified GGA HCTH potential vHCTH

xc has been used in the
bulk region, while the asymptotics has been provided with the Fermi-Amaldi po-
tential vFA(r) = −vH(r)/N , which is shifted upwards by (Ip+εN ). Thus, the re-
sulting asymptotically corrected potential vHCTH-AC

xc asymptotically goes to a pos-
itive constant, vHCTH-AC

xc (∞)=(Ip+εN ). The potential vHCTH
xc is retained in the

spherical regions around the nuclei {A} and the asymptotic correction [vFA(r) =
−vH(r)/N + (Ip + εN )] is switched on by linear interpolation in the intermediate
region. The corresponding interpolation function contains explicit electron-nuclear
distances rA (see below for the corresponding formula), so that vHCTH-AC

xc is defined
on a grid. Both the downward shift of the bulk potential in Ref. [177] and the upward
shift of the asymptotic potential in Ref. [176] are equivalent in the sense, that they
have the same effect on the orbital energy difference ∆εia, while the absolute shift
of the total xc potential is immaterial, since the latter is defined up to an arbitrary
constant (see the next section for further discussion). The corrections of Refs. [177]
and [176] have produced considerable improvement of the calculated molecular re-
sponse properties. Still, further improvement of model xc potentials is desirable.

Here we propose to use a gradient-regulated asymptotic correction (GRAC), i.e.
we employ the standard dimensionless density-gradient argument x

x(r) =
|∇ρ(r)|
ρ4/3(r)

(7.2)

as a switching parameter of the interpolation function f [x(r)]. The argument x ap-
pears to be a natural parameter for this purpose, since in the region of the density
tails it diverges, x(r) ∼ ρ−1/3(r), while it remains finite in the bulk region. One can
see this from Figure 7.1, where x(r) is plotted for the atoms H, C, N, O. For heavier
atoms C, N, O, oscillations of x(r) in the bulk region with maxima of about 10 reflect
the atomic shell structure. Starting from r=1 a.u., x(r) diverges monotonically.

Having this behavior of x(r) in mind, we choose the following form for the inter-
polation function f [x(r)] in Eq. (7.1)

f [x(r)] =
1

1 + e−α[x(r)−β]
(7.3)

which turns to 1 at the asymptotics x(r) → ∞ and, depending on the empirical
parameters α and β, can be made vanishing in the bulk region. The parameter
β indicates where to switch (f(x)=1/2 for x=β), while α determines how fast the
switching is (with the condition that their product αβ should be large enough, so
that exp(αβ) � 1). The value β=40 has been chosen from atomic calculations, which
is well above maximum x values in the bulk atomic regions (see Figure 7.1). With
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Figure 7.1: Form of the density-gradient function x(r) for the H, C, N, O atoms (the straight line
indicates the value of β parameter).

this value a switch to the asymptotic potential va
xc occurs as close to the nucleus as

possible, yet without perturbing the energies εi of the occupied KS orbitals, i.e. the
values εi obtained with vb -AC

xc are virtually the same as those obtained with the bulk
potential vb

xc. For the parameter α the value α=0.5 has been chosen which, together
with β=40, guarantees that f [x(r)] vanishes in the bulk region. The use of the
dimensionless argument x has the advantage, that the dimensionless function f [x(r)]
does not change scaling properties of the potentials va

xc and vb
xc within Eq. (7.1). The

advantage of the proposed GRAC procedure is that switching to an asymptotically
correct potential va

xc occurs naturally, when the argument x of Eq. (7.2) indicates the
asymptotic region of the density tails.

The basic option in this chapter is the GGA BP potential vBP
xc (ρ(r), ∇ρ(r); r) as

the bulk potential and the LB potential vLB
xc (ρ(r),x(r); r) as the asymptotic potential

vBP-GRAC
xc (ρ(r),∇ρ (r) ; r) = (1− f [x(r)]) vBP

xc (ρ(r),∇ρ(r); r)
+f [x(r)]

[
vLB
xc (ρ(r),∇ρ(r); r) + (Ip + εN )

] (7.4)

All components of the asymptotically corrected potential vBP-GRAC
xc of Eq. (7.4) are
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explicit functions of the density ρ and its gradient∇ρ (including the second derivatives
of ρ with respect to r in vBP

xc ), so that vBP-GRAC
xc is a genuine density functional, which

has an analytical representation and it is a smooth potential. In Eq. (7.4) the constant
shift (Ip+εN ) is added to the asymptotic part, as in Ref. [176], so that Eq. (7.4) has
the asymptotics

vBP-GRAC
xc (r) → −1

r
+ (Ip + εN )

where εN is the HOMO energy of the potential Eq. (7.4) and the Coulombic part
−1/r is provided by the LB potential vLB

xc . With the choice for positive asymptotics,
vBP-GRAC
xc has virtually the same εN as the bulk BP potential vBP

xc , and the GGA
(as well as LDA) εN value is substantially smaller (in absolute magnitude) than Ip.
However, vBP-GRAC

xc (r) is, of course, equivalent to the potential vBP-GRAC
xc (r)−(Ip+εN )

(here the shift is applied to the total potential), since vxc is defined only up to an
arbitrary constant. This latter potential has zero asymptotics and its HOMO energy is
just −Ip, as required by the rigorous KS theory for potentials with zero asymptotics.
As an alternative to Eq. (7.4) one can apply a shift to the bulk potential, using
vb
xc=v

BP
xc +∆ where ∆ is determined during the SCF cycles. Starting with ∆=(−Ip +

ε
LDA/GGA
N ) the downward shift of the bulk LDA/GGA potential yields an ε

(1)
N value

of the corrected potential, which will be close to −Ip. The shift can be updated
on subsequent cycles, with increment (−Ip+εN

(n)) to be applied on cycle (n + 1),
to fix the HOMO one-electron energy at −Ip. To determine the shift in either the
asymptotic or in the bulk potential, the ionization energy Ip should be obtained with
additional calculations of a neutral system and its cation with the standard DFT
methods. Bearing in mind that calculation of Ip is a separate step, we use here the
experimental Ip values as an input.

The explicit use of the ionization energy might create a problem in the case of a
weakly bound molecular complex with fragments of different electronegativity. It is
clear in this case that, in order to reproduce excitations which are localized within a
certain fragment, one should use the ionization energy of this fragment. A possible
remedy for this problem could be partitioning of the molecular volume into fragment
regions, so that in each region the expression Eq. (7.4) will be calculated with the
Ip and εN values of the corresponding fragment. However, we advocate the use of
methods like the present one that work with the Ip and εN values to systems that
are sufficiently strongly connected that these are genuinely global quantities of the
system.

Besides vLB
xc , we also use the Fermi-Amaldi (FA) potential vFA

vFA (r1) = −vH (r1)
N

= − 1
N

∫
ρ (r2)
|r1 − r2|

dr2 (7.5)

as the asymptotic potential in Eq. (7.4). From a theoretical point of view, the dis-
advantage of vFA is that, as follows from Eq. (7.5), it is effectively produced with an
“exchange-correlation” hole function −ρ(r2)/N , which is delocalized over the entire
system, while the real xc hole is more or less localized around the reference elec-
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tron at r1. Because of this, application of vFA for large molecules should produce
underestimation of the exchange-correlation effects in the nearer asymptotic region.

The present chapter also compares the performance of the GRAC interpolation
function with the linear interpolation approach of Ref. [176] (which has been char-
acterized before) for the same potentials va

xc and vb
xc. In the latter approach the

asymptotically corrected potential vb−AC
xc lacks an uniform analytical representation

and it is defined on the grid in the following way: when the distance rA from a nu-
cleus {A} is less than RA

1 , then vb -AC
xc = vb

xc; when RA
1 < rA < RB

2 for M nuclei (and
rB < RB

2 for the others nuclei {B}), then vb -AC
xc = vb

xc + µ(va
xc − vb

xc) with

µ =
M∑

A=1

rA −RA
2

RA
1 −RA

2

(7.6)

when the distances from all atoms are larger than R2, then vb -AC
xc − va

xc. The radii
R1and R2 are determined as follows: R1 = γRSB and R2 = δRSB where RSB is the
Slater-Bragg radius of the atom and γ = 3.5 and δ = 4.7 are the empirical parameters.

Note that, unlike the standard GGA potentials, virtually all the asymptotically
corrected potentials (as well as the SAOP potential) are not functional derivatives
of known xc energy functionals. The results of molecular response calculations with
asymptotically and otherwise corrected potentials, including those to be presented
in the next section, demonstrate that for high quality response properties it is of
primary importance that the shape of the potential be accurate, rather than that the
condition be met of being a functional derivative of a given density functional for the
exchange-correlation energy.

7.3 Calculations of excitation energies

Calculations of excitation energies are performed using the RESPONSE [180] module
of the Amsterdam Density Functional program (ADF)[78, 93, 181, 182, 183]. In
order to get results close to the basis set limit increasing numbers of diffuse functions
are added to the standard ADF basis V1. We have monitored systematically the
improvement of results with increasing numbers of diffuse basis functions and we have
selected very large basis sets near to the basis set limit. For all the prototype molecules
and pyridine we have added for C, O, and N atoms two 3p, two 3d, two 4s and two
4f diffuse function and for the H atom one 2p function. In case of benzene for the C
atom an even tempered basis set is used (7s6p2d1f , with the orbital exponent Z=αβi,
i=1,...,n, β=1.7 and α is for the most diffuse 1s, 2p, 3d respectively 0.7045, 0.3459
and 1.2182). Linear combinations of atomic orbitals have been removed from the
basis sets where linear dependency due to adding a large number of diffuse functions
was detected. We estimate the error on calculated energies due to the finite basis
sets to be always smaller than 0.1 eV and in average of the order of a few hundredths

1Valence triple zeta plus two polarization functions
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Excited state
and transition

SAOP BP BP
acFA

BP
gracFA

BP
gracLB

Expa

3Π, σ→π* (V) 6.28 6.18 6.19 6.20 6.19 6.32
3Σ+, π→π* (V) 8.64 8.44 8.44 8.46 8.45 8.51
1Π, σ→π* (V) 8.56 8.36 8.42 8.46 8.45 8.51
3∆, π→π* (V) 9.37 9.18 9.20 9.22 9.21 9.36
3Σ−, π→π* (V) 10.03 9.86 9.88 9.91 9.90 9.88
1Σ−, π→π* (V) 10.03 9.86 9.88 9.91 9.90 9.88
1∆ , π→π* (V) 10.46 10.00 10.34 10.37 10.35 10.23
3Σ+, σ→3s 10.32 8.98 10.14 10.29 10.39 10.40
1Σ+, σ→3s 10.69 9.10 10.51 10.63 10.79 10.78
3Σ+, σ→3pσ 11.26 9.48 11.14 11.40 11.40 11.30
1Σ+, σ→3pσ 11.41 9.49 11.30 11.53 11.59 11.40
1Π, σ→ 3pπ 11.58 9.49 11.28 11.40 11.64 11.53
3Π, σ→3pπ 11.51 9.51 11.23 11.36 11.54 11.55
1Σ+, σ→3dσ 12.59 9.93 12.30 12.44 12.67 12.40
MAE 0.09 1.01 0.14 0.10 0.09
VSMAE 0.11 0.12 0.08 0.08 0.08
RSMAE 0.07 1.91 0.21 0.12 0.10
Ip 13.62 9.15 14.01 14.01 14.01

aRef. [111]

Table 7.1: Vertical excitation energies (eV) of CO. MAE is the mean absolute error, VSMAE is
the MAE for the V (valence) excitations and RSMAE is the MAE for the Rydberg excitations.
Ionization potential Ip corresponds to −εN for SAOP and BP and to the input experimental value
for GRAC/AC.

of an eV. Experimental geometries are used for all molecules (see Ref. [111] for the
prototype molecules, Ref. [184] for benzene and Ref. [185] for pyridine).

Tables 7.1–7.6 compare the vertical excitation energies ωi calculated with the
standard exchange-correlation BP potential, BP with various asymptotic corrections,
and with the SAOP potential for small prototype molecules N2, CO, CH2O, C2H4

and larger aromatic systems C5NH5, C6H6.
The ωi values have been obtained from the solution of the eigenvalue problem

(6.11). The ALDA xc kernel (6.15) has been used in all cases and, as follows from the
discussion in Chapt. 6, asymptotic corrections to BP alter only the KS orbital energy
differences, and to some extent, the form of the unoccupied KS orbitals.

The asymptotically corrected potentials to be compared are BP-GRAC-LB of
(7.4), BP-GRAC-FA with the gradient-dependent switching function in (7.3) and the
FA asymptotic potential in (7.5) as well as the analogous potential BP-AC-FA with
the linear interpolation function (7.6).

The TDDFRT excitation energies are compared with reference data. For N2,
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Excited state
and transition

SAOP BP BP
acFA

BP
gracFA

BP
gracLB

Expa

3Σ+
u , πu→πg (V) 7.89 7.91 7.92 7.93 7.92 7.75

3Πg, σg→πg (V) 7.81 7.73 7.75 7.75 7.75 8.04
3∆u, πu→πg (V) 8.82 8.84 8.86 8.86 8.86 8.88
1Πg, σg→πg (V) 9.31 9.21 9.25 9.27 9.26 9.31
3Σ−u , πu→πg (V) 9.66 9.68 9.70 9.72 9.71 9.67
1Σ−u , πu→πg (V) 9.66 9.68 9.70 9.72 9.71 9.92
1∆u, πu→πg (V) 10.21 10.22 10.25 10.27 10.26 10.27
3Πu, σu→πg (V) 10.88 10.69 10.72 10.73 10.73 11.19
3Σ+

g , σg→3sσg 11.85 10.06 11.63 11.87 11.92 12.00
1Σ+

g , σg→3sσg 12.26 10.19 12.01 12.22 12.32 12.20
1Πu, σg→3pπu 12.97 10.76 12.67 12.87 13.02 12.90
1Σ+

u , σg→3pσu 12.88 10.46 12.70 13.00 13.07 12.98
1Πu, πu→3sσg 13.23 11.43 13.09 12.87 13.36 13.24
1Πu, σu→πg 13.59 11.59 13.42 13.32 13.49 13.63
1Σ+

u , . . . 14.03 11.61 14.01 14.19 14.17 14.25
MAE 0.11 1.10 0.20 0.15 0.13
VSMAE 0.11 0.13 0.12 0.11 0.11
RSMAE 0.12 1.92 0.27 0.18 0.15
Ip 15.19 10.36 15.59 15.59 15.59

aRef. [111]

Table 7.2: Vertical excitation energies (eV) of N2. See caption of Table 7.1.

CO, CH2O, C2H4 the same experimental data are used as in Ref. [111], while for
C5NH5 and C6H6 the energies are taken from experiment and from calculations in
Refs. [186, 187] with the ab initio complete active space multi-configurational self-
consistent-field method with addition of second-order perturbation theory corrections
(CASPT2). Tables 7.1–7.6 also present the mean absolute error (MAE) with respect
to the reference values for all excitations and separately the mean absolute errors for
the excitations to valence states (VSMAE) and to Rydberg-like states (RSMAE). In
Tables 7.5 and 7.6 we mark with (d) states having contributions from double and
higher excitations of more than 8% in the configuration interaction wave functions
as reported in Ref. [188] and that are insufficiently described within the adiabatic
approximation. In this case also the mean absolute error excluding states marked
with a (d) is reported in parentheses beside the MAE value.

The results obtained with the uncorrected BP potential are typical for the standard
LDA and GGA methods. BP yields a good estimate of the ωi excitation energies
lower than the ionization energy estimated by BP HOMO −εN . This is reflected
in low VSMAE values of BP, 0.1–0.3 eV for all molecules. For Rydberg excitation
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Excited state
and transition

SAOP BP BP
acFA

BP
gracFA

BP
gracLB

Expa

3A2, n→π* (V) 3.64 3.31 3.31 3.32 3.31 3.50
1A2, n→π* (V) 4.24 3.91 3.92 3.93 3.92 4.10
3A1, π→π* (V) 6.33 6.24 6.25 6.26 6.25 6.00
3B2, n→3s 6.92 5.87 6.70 6.83 6.62 7.09
1B2, n→3s 7.14 5.92 6.87 7.00 6.81 7.13
3B2, n→3pa1 8.08 6.49 7.66 7.76 7.72 7.92
1B2, n→3pa1 8.21 6.50 7.79 7.90 7.84 7.98
3A1, n→3pb2 8.15 6.51 7.86 7.95 7.80 8.11
1A1, n→3pb2 8.26 6.50 7.96 8.05 7.94 8.14
1B1, σ→π* (V) 9.01 8.91 8.92 8.93 8.92 9.00
MAE 0.14 0.93 0.22 0.16 0.23
VSMAE 0.16 0.18 0.18 0.17 0.18
RSMAE 0.12 1.43 0.26 0.15 0.27
Ip 11.02 6.35 10.88 10.88 10.88

aRef. [111]

Table 7.3: Vertical excitation energies (eV) of CH2O. See caption of Table 7.1.

energies BP fails to reproduce both their absolute values and their relative order. BP
consistently and substantially underestimates higher excitations, which leads to large
RSMAE values of order of 1 eV for CH2O, C2H4, C5NH5 and of 2 eV for CO and N2.
Note the lower (though still appreciable) RSMAE of 0.59 eV for the benzene. As a
result, the total MAEs of BP are also large.

Corrections to BP considerably improve its performance. By construction, these
corrections have relatively little effect on the lower excitations. Due to this, VSMAE
values of all corrected potentials are close to the corresponding BP values. Still, in all
those cases where corrections alter VSMAE, they always produce an improvement,
which is most appreciable for ethylene (see Table 7.4). But, the most important,
corrections dramatically improve the calculated higher excitations. In particular, for
ethylene, and benzene RSMAE values of all corrected potentials appear to become
even smaller, than the corresponding VSMAE values. As a result, in all cases the
total MAE of the corrected potentials is much smaller than that of the standard
BP, and in quite a few cases MAE approaches the benchmark accuracy of 0.1 eV
for the electronic spectra. One can further analyze the performance of various types
of asymptotic correction by comparing the results of the corresponding corrected
potentials. In particular, the comparison of the results of BP-GRAC-FA and BP-AC-
FA allows to assess the performance of the proposed GRAC function (7.3), since these
two potentials differ only in the interpolation functions. On average, BP-GRAC-FA
yields somewhat better higher excitations compared to BP-AC-FA. In particular, for
N2, CO and CH2O BP-GRAC-FA produces higher energy values and, as a result,
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Excited state
and orbital

SAOP BP BP
acFA

BP
gracFA

BP
gracLB

Expa

3B1u, π* (V) 4.64 4.68 4.69 4.69 4.68 4.36
3B3u, 3s 7.18 6.51 7.10 7.13 7.01 6.98
1B3u, 3s 7.29 6.53 7.19 7.22 7.12 7.15
1B1u, π* (V) 7.62 7.43 7.62 7.65 7.60 7.66
3B1g, 3py 7.91 7.09 7.81 7.84 7.72 7.79
3B2g, 3pz 7.81 6.93 7.77 7.84 7.61 7.79
1B1g, 3py 8.00 7.10 7.88 7.91 7.84 7.83
1B2g, 3pz 7.94 6.95 7.85 7.92 7.70 8.00
3Ag, 3px 8.70 7.36 8.22 8.26 8.42 8.15
1Ag, 3px 8.91 7.36 8.36 8.40 8.61 8.29
3B3u, 3dz2 8.96 7.61 8.70 8.73 8.76 8.57
1B3u, 3dz2 9.03 7.64 8.74 8.77 8.79 8.62
MAE 0.25 0.72 0.10 0.11 0.16
VSMAE 0.16 0.28 0.19 0.17 0.19
RSMAE 0.28 0.81 0.08 0.10 0.16
Ip 10.92 6.81 10.52 10.52 10.52

aRef. [111]

Table 7.4: Vertical excitation energies (eV, from π-orbital) of C2H4. See caption of Table 7.1.

its RSMAEs are 0.08–0.12 eV lower than those of BP-AC-FA. We attribute this
difference to the fact, that the Fermi-distribution-type GRAC function in Eq. (7.3)
switches faster than the linear interpolation function in Eq. (7.6) to the asymptotic
potential, thus effectively producing a less attractive potential in the transition region.
It seems also, that the GRAC switching is more flexible, since it occurs naturally
when the gradient parameter x(r) indicates the density tail region. Thus, for N2,
for example, the switching (in the direction along the N–N axis) occurs at a distance
of less than 4 a.u. from the N atom, whereas for the N atom it occurs at 4.3 a.u.
Unlike this, the switching of Ref. [176] in BP-AC-FA is rigidly fixed with the atomic
parameters, and it begins at 4.3 a.u. in both cases. Since, as was mentioned before,
asymptotic potentials have little influence on the lower excitations, VSMAEs and
MAEs of the potentials BP-GRAC-FA and BP-AC-FA are closer to each other than
RSMAE, so that the interpolation functions in Eq. (7.3) and in Eq. (7.6) exhibit
equally good overall performance. This means, that in practical calculations one can
use the explicit function of the density gradient in Eq. (7.3).

To assess the effect of the LB asymptotic correction to BP, one can compare the
performance of BP-GRAC-LB with BP-GRAC-FA. Besides the common bulk BP
part, these two potentials also have the same switching GRAC function, so that the
differences in the results will indicate the difference between the asymptotic LB and
FA potentials. On average, both potentials produce results of similar good quality
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Excited state
and transition

SAOP BP BP
acFA

BP
gracFA

BP
gracLB

Exp/
CASPT2a

B2, π→π* (V) 5.36 5.38 5.35 5.40 5.38 4.99 (d)
A1, π→π* (V) 6.23 6.24 6.25 6.26 6.23 6.38
A1, π→π* (V) 7.21 7.19 7.22 7.24 7.12 7.22
B2, π→π* (V) 7.17 7.09 7.14 7.16 7.08 7.22
B1, n→π* (V) 4.55 4.39 4.39 4.39 4.38 4.59 (d)
A2, n→π* (V) 4.72 4.49 4.50 4.50 4.49 5.43 (d)
A1, π(a1)→3s 6.38 5.46 6.18 6.28 5.80 6.28
A2, π(a2)→3s 6.86 6.53 6.89 6.98 6.51 6.75*
B2, π(a1)→3px 7.05 5.86 6.83 6.92 6.40 7.21*
B1, π(a2)→3px 7.57 6.59 7.52 7.57 7.13 7.25*
B1, n→3s 7.53 6.8 8.33 7.61 7.14 7.39*
A1, π(a1)→3py 7.30 5.95 7.01 7.09 6.61 7.35*
A2, π(a2)→3py 7.79 7.09 7.74 7.82 7.34 7.52*
A2, π(a2)→3dz2 8.22 7.09 8.08 8.13 7.90 7.98*
B2, π(a2)→3pz 8.36 6.68 7.55 8.00 7.87 7.41*
A2, n→3px 8.36 8.15 8.40 7.90 8.03*
B1, π(a1)→3pz 7.82 5.98 7.18 7.23 7.09 7.45*
B1, π(a2)→3dxy 8.24 7.09 8.19 8.28 7.75 8.03*
MAE 0.25 0.67 0.27 0.27 0.34

(0.23) (0.70) (0.23) (0.23) (0.30)
VSMAE (V) 0.22 0.31 0.28 0.29 0.32
RSMAE 0.27 0.86 0.27 0.27 0.34
Ip 10.24 5.95 9.34 9.34 9.34

aRefs. [186, 187], CASPT2 data marked with an asterisk.

Table 7.5: Singlet vertical excitation (eV) of C5NH5. Excited states marked with (d) had more than
8% double excitation character, see text. MAE values between parentheses are obtained excluding
these states. See also caption of Table 7.1.

with a slightly better performance of FA for formaldehyde and of LB for benzene.
One can also assess the performance of the bulk BP potential from the comparison

of the results of BP-AC-FA with those obtained in Ref. [176] with the asymptotically
corrected potential HCTH-AC-FA, where HCTH is the GGA potential, the functional
derivative of the HCTH energy functional of Ref. [9]. Thus, the present BP-AC-FA
and HCTH-AC-FA of Ref. [176] differ only in the bulk part. Both BP-AC-FA and
HCTH-AC-FA produce virtually identical MAEs for formaldehyde and ethylene, but
for benzene the MAE of 0.14 eV of HCTH-AC-FA is somewhat lower than the 0.21 eV
of BP-AC-FA, while for CO and N2 MAEs of 0.14 and 0.20 eV, respectively, of BP-
AC-FA are lower than the corresponding values 0.32 and 0.34 eV of HCTH-AC-FA.
From this we can conclude, that BP can be recommended for molecular response
calculations.
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From Tables 7.1–7.6 one can see also a good performance of the SAOP potential.
The quality of its results is similar to that of the asymptotically corrected potentials
and SAOP produces the least MAEs for N2, CO, CH2O, C5NH5. Unlike the schemes
of asymptotic correction, SAOP employs neither standard GGA bulk potentials, nor
the precalculated ionization energies Ip. Instead, the potential vSAOP

xc with the zero
asymptotics vSAOP

xc (∞)=0, is constructed with statistical averaging of model orbital
potentials [111, 174, 175]. This potential yields HOMO energies εSAOP

N , which are
much closer to the experimental energies −Ip than the εGGA

N values of standard GGAs
(see Tables 7.1–7.6). The largest deviation between εSAOP

N and−Ip occurs for benzene,
with the former quantity being appreciably larger (in absolute magnitude) than the
latter (see Table 7.6). As a result, SAOP consistently overestimates the energies of
the higher excitations, which are not far from Ip, and produces in this particular case
the largest MAE, VSMAE and RMAE.

Table 7.7 compares the lowest dipole excitation energies calculated for the alkali
dimers Li2, Na2, K2 with experimental reference data (Ref. [189] for excitation ener-
gies and Ref. [190] for average static polarizability of Li2 and Na2, for K2 ab initio
value [191]). The results show the same general trend as for the molecules discussed
above. BP reproduces well the lowest excitations to 1Σ+

u and 1Πu states with a
somewhat larger error for the 1Σ+

u state of Na2. On the other hand, BP consistently
underestimates higher 21Σ+

u and 21Πu excitations. Again, the asymptotic corrections
to BP improve the calculated higher excitations, bringing MAE for the dimers close
to the benchmark accuracy of 0.1 eV (see Table 7.7). Note the high quality of the
excitation energies obtained with SAOP, which is, on average, even slightly better
than those of the asymptotically corrected potentials. Note also a slight improvement
of the dipole polarizabilities αd calculated by the potentials BP-GRAC-FA and BP-
GRAC-LB with the GRAC interpolation function, while BP-AC-FA with the linear
interpolation function of Eq. (7.6) produces virtually the same αd values as BP.

To sum up, the asymptotic corrections to the BP potential provide high overall
quality of the calculated excitation energies and a substantial improvement upon the
standard BP potential. The corrections dramatically improve the calculated Rydberg-
like excitations, while keeping and, sometimes, improving valence excitations. All
asymptotic corrections considered display a similar quality of the results, in particular,
the present GRAC interpolation function (7.3) performs well with both the FA and
LB as the asymptotic potentials.

7.4 Conclusions

In this chapter corrections to the standard DFT exchange-correlation potentials have
been considered with the aim to improve the excitation energies (especially for higher
excitations) calculated within TDDFRT. A scheme of gradient-regulated connection
between inner and outer parts (GRAC) has been developed. According to this scheme,
the interpolation between the bulk and asymptotic potentials is carried out with an
interpolation function, which depends on the dimensionless gradient parameter x(r)
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of Eq. (7.2). Together with a standard GGA potential (as the bulk potential) and
with the shifted LB potential (as the asymptotic potential) this interpolation function
would constitute a smooth potential vGGA-GRAC

xc (r) with an analytical representation.
vGGA-GRAC
xc (r) would be an explicit “local” density functional in the sense, that it

depends on quantities, such as the electron density ρ(r) and its gradient ∇ρ, which
are evaluated at the point r.

The corrections to the GGA BP xc potential produced with the GRAC interpola-
tion function, the linear interpolation function of Ref. [176], and with the LB and FA
asymptotic potentials have been employed to calculate the vertical excitation energies
of the prototype molecules N2, CO, CH2O, C2H4, C5NH5, C6H6 as well as the lowest
excitation energies of the alkali dimers Li2, Na2, K2.

The various asymptotic corrections provide a similar high quality of the calculated
excitation energies and a substantial improvement upon the standard BP potential.
In quite a few cases the corresponding mean absolute errors of the asymptotically
corrected potentials approach the benchmark accuracy of 0.1 eV for the electronic
spectra. In particular, the shape corrections substantially improve the calculated
Rydberg-like excitations, while retaining and, in some cases, improving the quality of
the calculated valence excitations. These results allow us to propose for molecular re-
sponse calculations the combination BP-GRAC-LB, a smooth potential and a genuine
local density functional. Its use does not entail any additional computational effort
once a GGA “bulk” potential is evaluated. Our results also confirm the conclusion,
that for a variety of small and medium-size molecules high quality TDDFRT results
can be achieved with the efficient combination of a properly constructed xc potential
with the simple ALDA approximation (6.15) for the xc kernel. We stress that asymp-
totic correction of KS potential is not enough. For instance, the recently developed
molecular exact exchange potentials [32, 36] are asymptotically correct but still are
not competitive for excitation energy calculations due to general shape deficiencies
(lack of the correlation potential contribution).

As discussed also in Sec. 6.4.2 the schemes of correction of the standard LDA/GGA
potentials considered in this chapter and in Refs. [176, 177], and the scheme of statis-
tical averaging of (model) orbital potentials (SAOP) offer two alternative ways of im-
proving approximate Kohn-Sham xc potentials. SAOP represents orbital-dependent
functionals, it depends on the densities of individual KS orbitals, and the SAOP ap-
proach employs essentially differences in spatial localization of these orbitals. As has
been shown in Sec. 7.3, SAOP produces high quality results, though from the point
of view of implementation and computation orbital-dependent functionals are more
demanding than standard “local” DFT functionals. In this sense, the present scheme
of asymptotic correction of LDA/GGA potentials offers an alternative. It uses stan-
dard DFT potentials and schemes, such as BP-GRAC-LB, and produces local density
functionals. BP-GRAC-LB shares with the asymptotically corrected potentials of
Refs. [176, 177] the disadvantage that it requires as input the ionization energy of the
system, which first has to be evaluated in a separate calculation.
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Excited state
and transition

SAOP BP BP
acFA

BP
gracFA

BP
gracLB

Exp/
CASPT2a

1B2u, π→π* (V) 5.29 5.29 5.32 5.33 5.31 4.90 (d)
1B1u (V) 6.06 6.05 6.09 6.09 6.06 6.20
1E1u (V) 6.94 6.55 6.89 6.92 6.86 6.94
1E2g (V) 8.30 8.31 8.40 8.40 8.38 7.90*(d)
1E1g, π→3s 6.55 5.96 6.50 6.55 6.22 6.33
1A2u, π→3px/y 7.34 6.31 7.12 7.26 6.86 6.93
1E2u 7.33 6.32 7.11 7.25 6.85 6.95
1A1u 7.34 6.35 7.13 7.28 6.85 6.99*
1E1u, π→3pπ 8.10 6.93 7.29 7.29 7.28 7.41
1B1g, π→3dx2−y2/xy 7.98 6.79 7.70 8.05 7.61 7.46
1B2g 8.03 6.80 7.72 8.09 7.64 7.46
1E1g 8.01 6.80 7.70 8.08 7.63 7.54
1A1g, π→3dzx/zy 9.01 7.12 7.95 7.95 8.17 7.74
1E2g 8.91 7.10 7.91 7.91 8.04 7.81
1A2g 8.94 7.14 7.95 7.95 8.10 7.81
1E1g, π→3dz2 7.97 7.05 7.59 7.78 7.49 7.57*
3B2u, π→π* (V) 5.02 5.02 5.06 5.06 5.04 5.60
3B1u (V) 4.42 4.43 4.47 4.47 4.46 3.94
3E1u (V) 4.77 4.77 4.81 4.81 4.80 4.76
3E2g (V) 7.44 7.45 7.51 7.51 7.49 7.12*
3E1g, π→3s 6.51 5.95 6.45 6.53 6.19 6.34*
3A2u, π→3px/y 7.28 6.30 7.10 7.24 6.83 6.80*
3E2u 7.31 6.32 7.12 7.26 6.85 6.90*
3A1u 7.34 6.33 7.13 7.28 6.88 7.00*
3E1u, π→3pπ 8.02 6.59 7.22 7.21 7.16 6.98*
3B1g, π→3dx2−y2/xy 7.98 6.80 7.71 8.06 7.62 7.53*
3B2g 7.93 6.80 7.70 8.05 7.60 7.53*
3E1g 7.95 6.80 7.70 8.05 7.61 7.57*
3E2g, π→3dzx/zy 8.29 7.12 7.93 7.93 8.06 7.55*
3A1g 8.85 7.12 7.91 7.91 8.01 7.62*
3A2g 8.94 7.14 7.95 7.95 8.10 7.70*
3E1g, π→3dz2 7.87 7.03 7.54 7.69 7.41 7.56*
MAE 0.53 0.53 0.21 0.32 0.21

(0.54) (0.54) (0.20) (0.31) (0.19)
VSMAE 0.29 0.34 0.32 0.32 0.33
RSMAE 0.61 0.59 0.18 0.32 0.17
Ip 10.32 6.26 9.25 9.25 9.25

aRefs. [186, 187], CASPT2 data marked with an asterisk.

Table 7.6: Vertical excitation energies (eV) of C6H6. See caption of Tables 7.1 and 7.5
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Expa SAOP BP BP
acFA

BP
gracFA

BP
gracLB

Li2
1Σ+

u (LL) 1.74 1.98 1.99 1.99 1.98 1.96
1Πu (LL) 2.53 2.46 2.62 2.59 2.55 2.55
1Σ+

u 3.78 3.71 3.06 3.63 3.62 3.33
αav 221b 223.90 196.90 200.00 204.40 205.06

Na2
1Σ+

u (LL) 1.82 1.96 2.06 2.06 2.04 2.02
1Πu (LL) 2.52 2.51 2.63 2.64 2.59 2.59
1Σ+

u 3.64 3.64 3.23 3.49 3.52 3.60
αav 270b 233.50 238.00 238.00 243.00 246.00

K2
1Σ+

u (LL) 1.45 1.57 1.54 1.54 1.53 1.50
1Πu (LL) 1.91 2.02 2.00 1.99 1.94 1.92
1Σ+

u 2.85 2.62 2.57 2.69 2.69 2.62
1Πu 2.85 2.82 2.70 2.85 2.82 2.78
αav 462.6c 436.10 451.30 451.35 463.32 474.42
MAE 0.10 0.24 0.13 0.11 0.14
MAE (LL) 0.12 0.22 0.21 0.17 0.14
MAE(HL) 0.08 0.39 0.12 0.12 0.20

aRef. [189]
bRef. [190]
cab initio[191]

Table 7.7: Lowest dipole-allowed excitation energies and average static polarizabilities αav for alkali
dimers. MAE is the mean absolute error of the all excitation energies in this table, MAE(LL) is the
mean absolute error for the all lowlying (LL) excitation energies and MAE(HL) for the highlying.
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Chapter

8
Shape corrections to the GGA potentials for

molecular response calculations

The performance is assessed of two shape-corrected Kohn-Sham potentials, the SAOP
and the gradient-regulated asymptotic connection procedure applied to the Becke-
Perdew potential (BP-GRAC), versus LDA and GGA potentials, in molecular re-
sponse calculations of the static average polarizability α, the Cauchy coefficient S−4,
and the static average hyperpolarizability β. The nature of the distortions of the
LDA/GGA potentials is highlighted and it is shown that they introduce many spu-
rious excited states at too low energy which may mix with valence excited states,
resulting in wrong excited state compositions. They also lead to wrong oscillator
strengths and thus to a wrong spectral structure of properties like the polarizabil-
ity. LDA, Becke-Lee-Yang-Parr (BLYP), and Becke-Perdew (BP) characteristically
underestimate contributions to α and S−4 from bound Rydberg-like states and over-
estimate those from the continuum. Cancellation of the errors in these contributions
occasionally produces fortuitously good results. The distortions of the LDA, BLYP,
and BP spectra are related to the deficiencies of the LDA/GGA potentials in both
the bulk and outer molecular regions. In contrast, both SAOP and BP-GRAC poten-
tials produce high quality polarizabilities for 21 molecules and also reliable Cauchy
moments and hyperpolarizabilities for the selected molecules. The analysis for the N2

molecule shows, that both SAOP and BP-GRAC yield reliable energies ωi and oscil-
lator strengths fi of individual excitations, so that they reproduce well the spectral
structure of α and S−4.

8.1 Introduction

The importance of shape corrections to the LDA/GGA Kohn-Sham potentials, con-
sisting of asymptotic correction to yield −1/r behavior [89], as well as correction in the
bulk molecular region, to put e.g. the HOMO level at the first IP, for the calculation
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Figure 8.1: The SAOP and BP-GRAC xc potentials are plotted along the main axis for the N2

molecule. LDA and BP xc potentials are also plotted for comparison.

of response properties, discussed in Chapt. 6, has been demonstrated with various
novel model xc potentials for quadrupole polarizabilities in Ref. [192], and for a range
of response properties including excitation energies in Refs. [111, 132, 176, 178, 193]
and in Chapter 7.

A common feature of the model potentials is their effectively more attractive char-
acter (with respect to the long-range asymptotics vxc(∞)) in the bulk and outer va-
lence regions compared to the standard potentials of the LDA and GGAs. This feature
is illustrated with Fig. 8.1 where the xc potentials constructed by SAOP [111, 174, 175]
and by gradient-regulated asymptotic connection procedure (see Chapt. 7) applied to
the GGA BP xc potential [4, 6] (BP-GRAC) are plotted along the main axis of the
molecule N2. They are compared with the LDA potential and with the uncorrected
BP potential. Both SAOP and BP-GRAC potentials are shifted downward in the bulk
valence region by (roughly) a constant compared to the LDA and BP ones. Note,
that in the BP-GRAC case this shift is explicitly introduced in the GRAC proce-
dure. In the outer region both SAOP and BP-GRAC potentials have the Coulombic
asymptotics −1/r, while the LDA potential decays exponentially and the BP potential
decays as −c/r2.

These features of the model potentials bring a substantial improvement compared
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to the standard approximations of the energy gaps ∆εia = εa−εi between the occupied
valence ψi and the unoccupied ψa KS orbitals. The correct Coulombic asymptotics of
the improved potentials leads to a relative stabilization of bound Rydberg-like states
compared to the LDA/GGA potentials. This stabilization is however smaller than the
downshift of the occupied orbitals due to the downshift of the SAOP and BP-GRAC
potentials in the molecular region. Therefore, for higher-lying bound unoccupied
Rydberg-like orbitals a the energy differences ∆εia are substantially increased. This
is important for the excitation spectra calculated with TDDFT, since ∆εia serve in
this theory as the zero order estimates of excitation energies. In addition, the cor-
rect Coulombic asymptotics of the improved potentials leads to an improved spatial
extent of bound Rydberg-like states, which will affect the transition dipole matrix el-
ements. We stress that the new potentials, as well as the older LB94 [89], are not only
asymptotically corrected, but the shape correction in the molecular region is at least
as important. If the unoccupied orbital a is a lowlying one which has its amplitude
mostly in the same region as the HOMO, it will be downshifted by about the same
amount, so we do not expect a large change in the excitation energies to such an or-
bital. These effects of the new potentials appear to be essential (see results in Sec. 8.3
and the analysis in Sec. 8.4) for the correct description of both the excitation energies
and of other characteristics of the excitations such as their composition in terms of
contributing orbital excitations and their relative contributions to the calculated po-
larizabilities. In this chapter the performance of the SAOP and BP-GRAC potentials
is assessed in TDDFT calculations of the static average polarizability α of 21 light
molecules and also in calculations of the related properties such as the anisotropy of
α, the Cauchy coefficient S−4 and the hyperpolarizability β. In Sec. 8.1 the main
features in the shape of these potentials versus the traditional LDA/GGAs are dis-
cussed. In Sec. 8.2 the methodical and computational details are given. In Sec. 8.3
the results of the SAOP and BP-GRAC molecular response calculations are compared
with those of LDA and GGAs (BP and Becke-Lee-Yang-Parr, BLYP [4, 7] approx-
imations) as well as with the experimental data. SAOP, BP-GRAC and BP yield
polarizabilities of a similar good quality and they substantially improve upon LDA
and BLYP. Furthermore, SAOP and BP-GRAC perform definitely better than either
BP or LDA and BLYP in calculation of the S−4 Cauchy coefficients and, especially,
in calculation of the hyperpolarizabilities. In Sec. 8.4 the analysis of contributions
from individual excitations to α and S−4 is performed for the case of the N2 molecule,
for which the corresponding experimental data are available. While SAOP and BP-
GRAC reproduce very well the spectral structure of α and S−4, LDA, BLYP, and BP
considerably distort it, so that a good quality of the total BP α values appears to
be the result of an error cancellation. The distortions of the LDA/GGA spectra are
related to the deficient form of the corresponding potentials in both bulk and outer
regions. Finally, conclusions are drawn in Sec. 8.5.
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Atom 1s 2p 3d 4f
H(7s5p4d) 0.057513 0.156109 0.239461
C(9s7p5d4f) 0.078929 0.108203 0.202024 0.395110
N(9s7p5d4f) 0.092674 0.124531 0.202024 0.395110
O(9s7p5d4f) 0.106588 0.140372 0.183658 0.359191
F(11s7p5d4f) 0.042280 0.157918 0.183658 0.359191
Si(11s9p7d4f) 0.067811 0.070834 0.123252 0.227488
P(11s9p7d4f) 0.071779 0.075893 0.133816 0.239461
S(11s9p7d4f) 0.076097 0.082302 0.147902 0.251434
Cl(11s9p7d4f) 0.080357 0.087446 0.140859 0.239461

Table 8.1: Even-tempered basis set for the H,C, O, F, Si, P, S, Cl atoms (in parentheses the number
n of 1s, 2p, 3d and 4f) with the orbital exponent Z = abi, i = 1, ..., n, b = 1.7. The value of for the
most diffuse 1s, 2p, 3d and 4f for each atom is indicated.

8.2 Computational details

The RESPONSE module of the Amsterdam Density Functional program (ADF2000
modified/development version) [93, 181, 182, 183] has been used to perform TDDFT
calculations of molecular response properties [180] with the SAOP, BP-GRAC1, LDA,
and GGA potentials and with the ALDA xc kernel. We used the even tempered (ET)
basis sets [194, 195] of Slater-type orbitals (STOs) consisting of the 1s, 2p, 3d,...
functions with the orbital exponents Z = abi, i = 1, .., n, b = 1.7. Table 8.1 presents
the number n of 1s, 2p, 3d and 4f functions for each atom and the a values for the
most diffuse functions. These ET basis sets were selected monitoring the quality of
results with the number of diffuse functions added to standard ET basis sets. To
avoid numerical problems, linear combinations of atomic orbitals have been removed
from the basis sets, for which the linear dependence due to the addition of a large
number of diffuse functions was detected. The results obtained with the present basis
appear to be close to the basis set limit.
The calculated average static polarizability and hyperpolarizability are given by (the
indices ab... label the Cartesian axes x, y, z):

α =
1
3

∑
a

αaa (8.1)

β =
1
5

∑
b

(βabb + βbab + βbba) (8.2)

(in Eq. 8.2 a is the dipolar axis), while the anisotropy of the polarizability ∆α is

|∆α|2 =
1
2

∑
a<b

(αaa − αbb)
2 (8.3)

1The ionization potentials Ip required in the calculation of this potential are taken from experi-
ment and presented in Table 8.2.
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The components of the dipole polarizability αab and hyperpolarizability βabc tensors
can be defined through an expansion of the dipole moment µa into different orders of
the external fields Eb

µa = µa (E = 0) +
∑

b

αabE
b +

1
2!

∑
bc

βabcE
bEc +

1
3!

∑
bcd

γabcdE
bEcEd + ...

The S−4 Cauchy coefficient relates to the frequency dispersion in the average dipole
polarizability α(ω)

αd (ω) = αd (0) + S−4ω
2 + S−6ω

4 + ...

The Cauchy coefficients S−2k are calculated from all oscillator strengths fi, weighted
by an even power of the excitation energies ωi

S−2k =
∑

i

ω−2k
i fi. (8.4)

The S−2 coefficient is equal to the average static polarizability while the S0 coefficient
should be equal to the number of electrons in the basis set limit.

8.3 Results of molecular response calculations

A key feature of the SAOP potential (see Chapter 6), its more attractive character
compared to the LDA and GGA potentials, is illustrated with Table 8.2 where the
corresponding energies εN of the highest occupied molecular orbital (HOMO) are
compared with the first VIP Ip. Note, that the rigorous KS theory requires εN = −Ip
for potentials with the zero asymptotics vxc(∞) = 0. The LDA and GGA −εN

values are substantially smaller than Ip, with the BLYP energies being, as a rule,
the smallest ones. The BP error in the fourth column of Table 8.2 is, actually, the
downward shift −(Ip + εN ) in the bulk region (with respect to vBP

xc ) of the GRAC
potential vBP-GRAC

xc (r) − (Ip + εN ) presented in Fig. 8.1. Its average value for the
considered molecules amounts to −4.3 eV. Due to the more attractive character of
the SAOP potential, its −εN values are much larger than LDA and GGA ones and
they are rather close to Ip. The corresponding SAOP average error is only 0.39 eV.
Note, that the same average error of 0.4 eV has been reported in Ref. [196] where
the SAOP energies −εi have been used to estimate not only the first, but also other
valence ionization potentials Ii for 64 molecules.

Table 8.3 compares the average static polarizabilities of 21 small molecules at the
experimental geometry [67, 197] calculated with SAOP, BP-GRAC and the standard
LDA and GGA (BP, BLYP) potentials with the experimental α values (Expt.) [198,
199, 200, 201, 202, 203, 204]. The molecules in Table 8.3 are placed in the order of
increasing polarizability. LDA systematically overestimates α, it has the same average
of the relative (α − αexp) and absolute |α − αexp| errors, which amount to 5%. The
performance of GGA appears to depend substantially on the type of the functional.
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SAOP err. BP err. BLYP err. LDA err. Expt.
CS2 10.72 0.65 6.86 −3.21 6.58 −3.49 6.89 −3.18 10.07
H2S 10.25 −0.21 6.37 −4.09 6.12 −4.34 6.36 −4.10 10.46
C2H4 10.94 0.43 6.78 −3.73 6.53 −3.908 6.9 −3.61 10.51
PH3 10.53 −0.06 6.78 −3.09 6.56 −3.31 6.73 −3.14 10.59
NH3 10.70 −0.10 6.26 −4.54 6.08 −4.72 6.25 −4.55 10.80
OCS 11.76 0.58 7.54 −3.64 7.28 −3.9 7.60 −3.58 11.18
Cl2 11.65 0.17 7.37 −4.11 7.15 −4.33 7.40 −4.08 11.48
C2H6 12.52 0.52 8.22 −3.78 8.06 −3.94 8.11 −3.89 12.00
SiH4 12.49 0.19 8.63 −3.67 8.44 −3.86 8.53 −3.77 12.3
SO2 12.85 0.50 8.14 −4.21 7.97 −4.38 8.23 −4.12 12.35
H2O 12.36 −0.26 7.35 −5.27 7.21 −5.41 7.40 −5.22 12.62
HCl 12.42 −0.32 8.11 −4.63 7.89 −4.85 8.13 −4.61 12.74
N2O 13.48 0.59 8.49 −4.40 8.29 −4.6 8.62 −4.27 12.89
CH4 13.90 0.30 9.55 −4.05 9.37 −4.23 9.46 −4.14 13.60
CO2 14.36 0.58 9.14 −4.64 8.95 −4.83 9.28 −4.50 13.78
CO 13.74 −0.27 9.14 −4.87 9.00 −5.01 9.11 −4.90 14.01
H2 14.80 −0.63 10.50 −4.93 10.39 −5.04 10.26 −5.17 15.43
N2 15.28 −0.3 10.39 −5.19 10.26 −5.32 10.41 −5.17 15.58
SF6 16.22 0.52 10.07 −5.63 9.93 −5.77 10.23 −5.47 15.70
F2 15.69 −0.01 9.52 −6.18 9.44 −6.26 9.62 −6.08 15.70
HF 15.60 −0.43 9.74 −6.29 9.62 −6.41 9.81 −6.22 16.03
av 0.12 −4.52 −4.70 −4.50
abs 0.36 4.52 4.70 4.50

Table 8.2: First ionisation potential: for BP-GRAC the experimental value (Expt.) given as input,
for SAOP and BP respectively −εSAOP

N and −εBP
N ; err. is the difference between SAOP/BP and

experimental (GRAC) values.
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SAOP BP-GRAC BP BLYP LDA Expt.
H2 5.63 5.34 5.55 5.78 5.91 5.43
HF 5.40 5.71 6.10 6.47 6.23 5.60
F2 8.08 8.47 8.75 9.13 8.87 8.38
H2O 9.45 9.80 10.33 10.95 10.60 9.64
N2 11.82 11.78 12.06 12.55 12.28 11.74
CO 13.01 13.07 13.38 13.95 13.71 13.08
NH3 14.21 14.53 15.11 15.94 15.57 14.56
CH4 17.32 17.03 17.07 17.67 17.71 17.27
HCl 17.99 17.62 18.11 19.13 18.63 17.39
CO2 16.79 17.39 17.48 18.17 17.74 17.51
N2O 19.07 19.60 19.70 20.45 19.96 19.70
H2S 25.72 25.10 25.65 27.03 26.50 24.71
SO2 24.98 25.69 25.82 26.89 26.20 25.61
C2H4 28.09 28.14 28.14 29.31 28.88 27.70
C2H6 29.87 29.54 29.45 30.42 30.46 29.61
SF6 29.00 31.06 31.38 32.27 31.96 30.04
Cl2 31.56 31.15 31.35 32.74 32.00 30.35
PH3 31.62 30.75 31.05 32.36 32.27 30.93
SiH4 32.71 32.02 32.00 32.86 33.69 31.90
OCS 34.18 34.49 34.37 35.83 34.92 33.72
CS2 56.50 55.98 55.39 57.75 56.28 55.28
av% 0.07 0.69 2.40 6.86 5.16
abs% 2.48 1.20 2.59 6.86 5.16

Table 8.3: Static isotropic polarizabilities α (in a.u.)

BLYP produces the worst α values with the larger average error of 7%. On the other
hand, BP substantially improves upon LDA, with the average absolute error being
reduced to 2.6%. Both BP-GRAC and SAOP definitely improve further upon BP for
molecules with smaller polarizabilities at the top of Table 8.3 (the only exception is the
SAOP α value for H2, which is slightly worse than the BP one). For molecules with
larger polarizabilities the trend is not so uniform. The BP-GRAC average absolute
error is further reduced to 1.2%, while the SAOP produces almost the same error
(2.5%) as BP. Compared to other potentials, SAOP has the much smaller average α
error of only 0.07%. This means that, while LDA and GGAs tend to overestimate,
SAOP lacks this systematic overestimation and its values are distributed around the
experimental ones.
Table 8.4 presents the anisotropies (8.3) of the static polarizabilities of 11 molecules.

One can see from Table 8.4 that LDA, BLYP and BP yield similar anisotropies.
BP-GRAC improves upon BP, especially for the molecules H2O and H2S with small
anisotropies, while the results of SAOP for this quantity are somewhat worse than
the BP-GRAC ones.
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SAOP BP-GRAC BP BLYP LDA Expt.
H2O 0.84 0.43 0.07 0.18 0.04 0.67
H2S 0.13 0.42 1.08 1.70 1.17 0.67
HF 1.20 1.09 0.96 0.92 0.93 1.33
HCl 1.80 1.48 1.21 1.01 1.18 1.51
NH3 1.10 1.94 2.67 3.15 2.83 1.94
CO 3.32 3.40 3.42 3.45 3.29 3.57
N2 4.78 4.69 4.74 4.78 4.67 4.59
C2H4 12.40 11.78 11.61 11.60 11.88 11.40
SO2 11.95 12.61 12.57 12.81 12.55 13.00
CO2 12.63 13.20 13.24 13.39 13.35 13.83
Cl2 16.77 16.41 16.35 16.49 16.44 17.53
av%: −9.55 −9.67 −4.78 6.47 −3.70
abs%: 19.92 −10.67 23.63 34.01 26.65

Table 8.4: Anisotropy of static polarizability ∆α (in a.u.)

Table 8.5 presents the S−4 Cauchy coefficients for 13 molecules. As in the case of
polarizabilities, LDA systematically overestimates the S−4 coefficient with an average
relative |S−4| error of 21% and BLYP increases further this error. On the other hand,
BP improves upon LDA and the BP error is reduced to 14%. Both BP-GRAC and
SAOP definitely improve further upon BP, in particular, the BP-GRAC S−4 values
are better than the BP ones in all cases except CO2. This brings both SAOP and
BP-GRAC |S−4| errors down to 7.3% and 3.9%, respectively (see Table 8.8). SAOP
produces also a very small average S−4 error of only −0.05%.
Table 8.6 compares the average static hyperpolarizabilities β (8.2) of the molecules

NH3, CO, H2O, and HF calculated with SAOP, BP-GRAC, LDA, and GGA with the
ab initio ones obtained in Refs. [205] with the coupled cluster CCSD and CCSD(T)
methods. Again, LDA produced overestimated values with the average |β| error [with
respect to CCSD(T)] of 35% and BLYP increases further the error to 41%. In this
case, however, BP does not improve substantially upon LDA, the BP values appear to
be rather close to the LDA ones with the average error of 26%. Both SAOP and BP-
GRAC improve substantially upon BP, with the average |β| error being reduced to 3%
and 5%, respectively. Thus, application of the SAOP and BP-GRAC potentials bring
the DFT hyperpolarizabilities rather close to those obtained with the most advanced
ab initio coupled cluster methods. It should be cautioned, however, that at this point
the comparison is not definitive, errors in either the CCSD(T) values (due to basis
set deficiencies, for instance) or in the SAOP or BP-GRAC values may be as large as
their difference.

To sum up, SAOP, BP-GRAC, and BP produce polarizabilities α of the same
good quality and they substantially improve upon LDA and BLYP. However, SAOP
and BP-GRAC perform definitely better than BP in calculation of the S−4 Cauchy
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SAOP BP-GRAC BP BLYP LDA Expt.
HF 11.74 13.01 17.08 20.32 17.88 14.40
F2 16.29 17.59 20.01 22.48 20.39 17.161
N2 30.48 30.20 32.99 36.92 34.50 30.11
H2O 33.00 36.05 45.66 55.03 48.82 35.42
CO 48.71 48.84 53.30 59.38 57.47 48.26
CO2 44.67 48.94 50.22 55.96 51.96 50.99
CH4 63.61 62.69 63.93 71.22 69.48 62.41
HCl 74.22 71.50 80.93 96.11 87.02 67.12
NH3 67.70 74.23 91.03 109.79 97.83 71.44
Cl2 133.84 133.39 138.65 159.51 145.84 125.8
H2S 150.31 145.00 161.94 193.58 176.04 138.3
SiH4 189.42 183.71 185.3 202.1 206.78 178.4
PH3 211.59 201.68 212.53 243.30 232.06 189.8
av% −0.05 1.78 13.55 30.93 21.21
abs%: 7.34 3.88 13.79 30.93 21.21

Table 8.5: S−4 Cauchy moments (a.u.)

SAOP BP-GRAC BP BLYP LDA CCSD CCSD(T)
NH3 −33.9 −37.87 −48.4 −56.00 −51.4 −30.0 −34.3
CO 22.18 21.90 28.83 31.8 30.5 23.00 23.5
H2O −17.3 −18.2 −22.2 −25.0 −24.6 −16.2 −18.0
HF −7.2 −7.2 −8.5 −9.3 −9.0 −6.8 −7.3
abs% 3.01 4.92 25.9 41.2 34.9

Table 8.6: Hyperpolarizability β

coefficients and, especially, in calculation of the hyperpolarizabilities β. These trends
will be rationalized in the next section with the spectral analysis of the response
properties of the N2 molecule.

8.4 Spectral analysis of the response properties of
the N2 molecule

A physically sound TDDFT approach should reproduce not only total response quan-
tities, such as and S−4, but also their spectral structure, i.e. the oscillator strengths
fi and energies ωi of individual excitations, which determine α and S−4 through the
sum rules (i.e. particular cases of Eq. (8.4))

α =
∑

i

fi

ω2
i

(8.5)
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Figure 8.2: The experimentally observed[206] excited state levels are given to the left (for N2).
The levels correspond to the Franck-Condon maximum in the absorption. The calculated levels
according to the various model Kohn-Sham potentials are given in the other columns. The valence
excited states are indicated with drawn lines, and the Rydberg states with broken lines. The many
spurious Rydberg states occurring for the LDA and the BP potentials are indicated with dotted
lines.

S−4 =
∑

i

fi

ω4
i

(8.6)

N =
∑

i

fi (8.7)

Fig. 8.2 compares the molecular state diagram produced from the experimental data
for the 5 lowest (below 15 eV) dipole allowed excitations of the N2 molecule [206, 207]
with the diagrams obtained with the SAOP, BP-GRAC, BP, and LDA potentials.
The corresponding excitation energies ωi are presented in Table 8.7. There are also

presented (in parentheses, below the experimental ωi values) as representative accu-
rate ab initio values the excitation energies obtained recently with the size-consistent
self-consistent configuration interaction operator (SC)2CI applied to the complete ac-
tive space single and double CI (CAS-SDCI). We note that the experimental spectra
exhibit strongly overlapping progressions of vibronic states, which sometimes are per-
turbed due to interaction. Since we calculate vertical transitions we cite in the table



8.4 Spectral analysis of the response properties of N2 121

SAOP BP-GRAC BP BLYP LDA Expt.

3σg → 3σu 98% 98% 100% 100% 100% c′1Σ+
u

ω 12.93 13.01 10.35 10.20 10.46 12.9 (12.83)
f 0.219 0.216 0.003 0.004 0.003 0.279

f/ω2 0.97 0.95 0.02 0.03 0.02 1.24
f/ω4 4.31 4.14 0.13 0.22 0.13 5.76

3σg → 2πu 99% 99% 100% 100% 100% b1Πu

ω 12.95 13.07 10.36 10.24 10.51 12.8 (12.86)
f 0.122 0.100 0.004 0.006 0.005 0.243

f/ω2 0.54 0.44 0.03 0.02 0.04 1.10
f/ω4 2.36 1.86 0.19 0.17 0.24 4.97

1πu → 4σg 96% 59% 99% 100% 100% c1Πu

ω 13.19 13.35 11.49 11.22 11.75 13.2 (13.45)
f 0.189 0.374 0.013 0.033 0.019 0.145

f/ω2 0.80 1.54 0.09 0.20 0.15 0.63
f/ω4 3.42 6.44 0.48 1.16 0.84 2.47

2σu → 1πg 91% 55% 85% 75%(12%) 78%(10%) o1Πu

ω 13.58 13.49 13.36 13.21(13.11) 12.99(13.11) 13.6 (13.52)
f 0.166 0.02 0.292 0.094(0.19) 0.094(0.20) 0.080

f/ω2 0.67 0.08 1.21 0.40(0.82) 0.41(0.86) 0.32
f/ω4 1.70 0.34 5.02 1.70(3.54) 1.84(3.70) 1.28

1πu → 1πg 59% 58% 26% 26% 22% b1Σ+
u

ω 14.08 14.15 14.27 14.00 14.27 14.2 (14.33)
f 0.432 0.431 0.245 0.239 0.212 0.278

f/ω2 1.61 1.59 0.90 0.90 0.77 1.03
f/ω4 6.02 5.98 3.25 3.4 2.81 3.81P

f 1.13 1.14 0.557 0.376(0.566) 0.333(0.533) 1.025P
f/ω2 4.60 4.61 2.25 1.55(2.37) 1.39(2.25) 4.30P
f/ω4 18.82 18.68 9.07 5.65(9.19) 5.86(9.50) 18.13

Table 8.7: The oscillator strengths f , the corresponding excitation energy and the assigned orbital
transition ψi → ψa for the 5 lowest experimental (Expt.) excitations of N2 are compared with the f
and ω obtained with SAOP, BP-GRAC and LDA/GGA calculations for these excitations (see Sec. 8.4
for discussion of assignment). Below the experimental excitation energies a representative value from
recent very accurate ab initio calculations is given, see text. Also the contributions

P
f/ω2,

P
f/ω4

to the polarizability and to the Cauchy coefficient are reported for each excited state as well as their
sum over these states.
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the experimental transition energies to the vibrational states with maximum intensity.
These do not always stand out unambiguously, and in view of the vibrational level
splittings ranging from 0.1 to 0.25 eV we should take the “experimental” benchmark
levels to have an uncertainty of ca. 0.1 eV.

There are two 1Σ+
u states and three 1Πu states. The assignment of the two 1Σ+

u

states to 3σg → 3σu and 1πu → 1πg orbital transitions agrees with what has been
inferred from experiment and the SAOP/BP-GRAC energies of these excitations agree
perfectly with the corresponding experimental and ab initio values. The excitation
to the b1Σ+

u state has valence character (π → π∗), while the c1Σ+
u ( 3σg → 3σu) state

is usually referred to as the lowest Rydberg state in N2 (we indicate valence excited
states in Fig. 8.2 with drawn lines, the Rydberg states with broken lines). This
indicates that the 3σu is not simply the expected antibonding combination of 2pσ
AO’s on the N atoms (in which case we would be dealing with a valence excitation).
Indeed, because of the short N–N distance the 2pσ − 2pσ is extremely antibonding
and very highlying, and we find the 3σu to be a very diffuse strongly hybridized (so as
to reduce antibonding character) combination of notably atomic 4s and 4p character.
This confirms the experimental assignment of Rydberg character.
For the three 1Πu states we obtain almost perfect agreement with experiment for
both the SAOP and BP-GRAC potentials when we assign the three calculated 1Πu

states with 3σg → 2πu, 1πu → 4σg and 2σu → 1πg character to the b1Πu, c1Πu,
and o1Πu states respectively. The SAOP/BP-GRAC ωi values are very close to the
ab initio ones for the same type of excitation. This assignment would imply that
the highest state of 1Πu symmetry, o1Πu, has valence character (2σu → 1πg), while
the other ones have Rydberg character. However, in the experimental work [207] the
2σu → 1πg valence character has been ascribed to the lowest state of 1Πu symmetry,
the b1Πu. This latter assignment would lead to a discrepancy between experiment and
theory in the sense, that SAOP and BP-GRAC as well as the cited (SC)2CAS-SDCI
method and other ab initio methods [208, 209] all overestimate the energy of the
valence 2σu → 1πg vertical excitation by 0.7–0.8 eV. Furthermore, we have calculated
the potential curve for this excited state with SAOP and found that it corresponds
better to the curve fitted from the experimental data for the o1Πu state in the sense
that it gives similar high vibration frequency and it does not exhibit the considerable
softening of the curve that is typical for the lowest excited state, b1Πu. It is clear
from our potential energy curves that our lowest excitation energies at the various
bond distances would indeed correspond to a rather soft vibration, as found in the
experiment for b1Πu. These lowest excitations change character from 3σg → 2πu to
1πu → 4σg, i.e. the calculated lowest 1Πu state (b1Πu) exhibits an avoided crossing
with the c1Πu. It is clear that further detailed calculations of the potential curves
of all involved 1Πu states with the proper non-Born-Oppenheimer treatment of their
vibronic interaction are required to fully resolve the issue of experimental assignment
versus theoretical calculations.

Comparing now to the BP and LDA calculations, we note that these produce
similar to each other and qualitatively incorrect excitation spectra. First of all, the
considered three Rydberg-like states (broken lines in Fig. 8.2) are shifted downward by
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2.2–2.8 eV in the BP and LDA diagrams compared to the experiment. Furthermore,
as many as 25 other Rydberg and mixed states (dotted lines in Fig. 8.2) are placed
by BP and LDA below 15 eV. The excitations with valence character (2σu → 1πg

and 1πu → 1πg), however, are not shifted much in the LDA/GGA calculations and
remain in good agreement with the experimental, SAOP and BP-GRAC o1Πu and
b1Σ+

u states.
The incorrect LDA/GGA spectra are, clearly, artefacts of the deficient LDA/GGA

potentials, specifically, of their upward shift in the bulk region displayed in Fig. 8.1.
This shift does not influence valence excitations, since the participating occupied and
unoccupied valence orbitals, which are localized in the bulk region, both experience
approximately the same upward shift. However, in the outer region the difference
between the LDA/GGA and SAOP/BP-GRAC potentials is reduced, since all po-
tentials approach (though in a different way) the zero asymptotics. Because of this,
the LDA/GGA upward shift for Rydberg orbitals in the outer region is substantially
smaller, than that for valence orbitals in the bulk region. This causes an artificial
stabilization of the Rydberg orbitals with respect to the valence ones, which produces
the underestimated LDA/GGA energies ωi of the Rydberg excitations (see Table 8.7)
and, as a result, the incorrect LDA/GGA spectra with many Rydberg-like states
below 15 eV presented in Fig. 8.2.

Besides the excitation energy ωi, Table 8.7 presents also the oscillator strength fi

and the percentage of the main orbital transition ψi → ψa for each considered excited
state, obtained with the SAOP, BP-GRAC, BP, BLYP and LDA potentials. In the
case of the SAOP and BP-GRAC calculations, as well as for the experimental data,
we are simply dealing with the five lowest excited states, but for the LDA and GGA
potentials we have to identify the appropriate excited states among the many spurious
Rydberg states. In almost all cases (with a caveat for b1Σ+

u , see below) it was possible
for each of the potentials to unambiguously identify the excited state with the main
contribution from a given orbital transition. In the table are also presented individual
and overall contributions from the lowest excitations to and S−4.

We consider, first, the valence excitations 2σu → 1πg and 1πu → 1πg which are
associated according to our assignment with the two highest states, b1Σ+

u and o1Πu.
The excitation energies of SAOP are in excellent agreement with experiment, as are
the oscillator strengths fi. We note that the oscillator strengths are very difficult to
calculate to high accuracy, being very sensitive to small changes in orbital composition
of transitions, basis set etc. Agreement within a factor of two with experiment can be
considered very satisfactory. The energies of BP-GRAC are also very good, but the
2σu → 1πg excitation being a bit low and the next lower 1πu → 4σg excitation being
a bit high leads to strong mixing between these orbital excitations (almost fifty-fifty).
As a result the oscillator strength of the BP-GRAC 2σu → 1πg (o1Πu) is rather low
and that of 1πu → 4σg (c1Πu) rather high. The contributions from the 2σu → 1πg

and 1πu → 4σg transitions to the fi partially cancel each other for the former state
and they add up for the latter state.
Turning to the LDA/GGA calculations, we have already noted that LDA, BP, and
BLYP energies ωi are not very different from the SAOP and BP-GRAC ones and ac-



124 Shape corrections to the GGA potentials . . .

cordingly also reproduce the experimental excitation energies reasonably well. It ap-
pears, however, that LDA/GGAs distort seriously the orbital structure of the TDDFT
solution for these excitations. Indeed, although the contribution of the valence orbital
transition 1πu → 1πg to the excitation associated with the b1Σ+

u state is the largest
of all contributing orbital transitions, it is only 25% according to LDA, BLYP, and
BP. Many smaller contributions come from numerous Rydberg-like orbital transitions
ψi → ψa which, in turn, bring their dominant contributions to the corresponding
Rydberg-like states with have energies close to that of the b1Σ+

u state (see Fig. 8.2).
As for the o1Πu state, although LDA and BLYP still have the orbital transition
2σu → 1πg as dominant contribution, they produce also an appreciable contribution
of 2σu → 1πg to another excitation with the energy 13.1 eV, which is very close to
the 12.99 eV they obtain for the o1Πu state. The ωi and fi values for this additional
excitation are given in parentheses in the corresponding columns of Table 8.7. This
situation, where a strong mixture of the valence and Rydberg orbital transitions oc-
curs because of the presence of a multitude of Rydberg excitations with energies close
to the valence excitations, as presented in Fig. 8.2, occurs for both the 1πu → 1πg and
the 2σu → 1πg excitations and creates a serious problem for the proper interpretation
of the LDA/GGA TDDFT spectrum. The latter is, clearly, an artefact of the rela-
tive stabilization of the Rydberg-like orbitals in the deficient LDA/GGA potentials
discussed above.

Note, that the SAOP TDDFT solution for the valence excitations does not present
such an interpretation problem. Indeed, with SAOP the excitation associated with
the o1Πu state is produced predominantly (91%) with the assigned orbital transition
2σu → 1πg (see Table 8.7). In the other valence excitation associated with the b1Σ+

u

state the assigned orbital transition 1πu → 1πg is mixed with Rydberg transitions
according to both SAOP and BP-GRAC, but these Rydberg orbital transitions are
the predominant contributions to Rydberg-like states, which are lying much higher
than the b1Σ+

u state, so that this does not present a problem for the assignment of
the SAOP and BP-GRAC spectra.

We proceed our spectral analysis with the discussion of the lowest Rydberg-like
excitations in Table 8.7. In this case for all potentials the assigned orbital transi-
tions bring dominant contributions to the corresponding excitations, with the above-
mentioned exception of the contribution of the 1πu → 4σg excitation to the c1Πu state
for BP-GRAC, where it gets mixed with the valence 2σu → 1πg. However, there is a
remarkable difference between the oscillator strengths fi calculated for these Rydberg
excitations with the SAOP and BP-GRAC potentials, on the one side, and with the
LDA, BLYP, and BP potentials, on the other side. LDA/GGAs produce very low
fi, which are much smaller than the experimental values for all three Rydberg-like
excitations of Table 8.7. SAOP and BP-GRAC produce much larger fi, in partic-
ular, for the lowest 3σg → 3σu excitation the SAOP/BP-GRAC fi are 50–70 times
as large and for the next 3σg → 2πu excitation they are 20–30 times as large as the
LDA/GGA fi. On the other hand, these SAOP/BP-GRAC fi are rather close to the
experimental values.

The reason for these very different fi values appears to be the different size of
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the relevant Rydberg-like molecular orbitals (MOs) calculated with the SAOP/BP-
GRAC and with the LDA/GGA potentials. The analysis of these MOs in terms of the
atomic orbitals (AOs) of the N atoms reveals that, while the 3σu, 2πu, and 4σg MOs
calculated with LDA/GGA consist, predominantly, of the 3s, 3p AOs, the same MOs
calculated with SAOP/BP-GRAC consist, mainly, of the substantially more diffuse
4s, 4p and higher-lying AOs. The resultant more diffuse SAOP/BP-GRAC 3σu, 2πu,
and 4σg MOs yield larger orbital transition moments rµ

ia = 〈ψi| rµ |ψa〉 (rµ is x,y or
z) than those calculated with LDA/GGAs. This difference is further amplified for the
oscillator strengths fi, which include the squares of rµ

ia.
The physical reason for the different size of the Rydberg-like orbitals obtained

with the SAOP/BP-GRAC and LDA/GGA potentials is, again, the deficient form of
the latter potentials, this time in the outer region. Indeed, as can be clearly seen from
Fig. 8.1, the LDA/GGA potentials with their fast decay differ appreciably from zero
in a much more restricted area than the SAOP and BP-GRAC potentials with their
correct Coulombic asymptotics. Because of this, the former potentials confine bound
Rydberg MOs in the restricted area, making them more localized, while the latter
potentials support more diffuse Rydberg MOs. These more diffuse MOs produce much
larger SAOP/BP-GRAC oscillator strengths fi, as was explained above.

The above-mentioned low fi for the three Rydberg-like excitations make partial
LDA/GGA sums

∑
i fi over our five states in Table 8.7 much smaller compared to the

experimental ones. The sums calculated with LDA and BLYP are especially low, but
if we add (in parentheses in the corresponding columns of Table 8.7) the additional
excitation with an appreciable contribution from the 2σu → 1πg orbital transition
(see the discussion above), the LDA and BLYP sums become close to the BP one.
The factors, by which the fi (which are in the numerators of Eqs. (8.5) and (8.6))
are too low, are more significant than the too large factors 1/ω2

i and 1/ω4
i due to

the smaller energies ωi in the denominators, thus producing low LDA/GGA partial α
and S−4 values, which are 2 to 3 times smaller than the corresponding experimental
values. In contrast, the SAOP and BP-GRAC overall pictures for the lowest dipole
allowed excitations agree very well with the experiment. SAOP and BP-GRAC yield
practically the same partial f sums, which are close to the experimental estimate and,
as was discussed above, they reproduce the experimental excitation energies ωi. As
a result, the SAOP and BP-GRAC partial and S−4 values appear to be close to each
other and to the experimental values (see Table 8.7).

Interesting enough, the above-mentioned LDA/GGA underestimation of the con-
tributions from the lowest excitations is more than compensated with overestimated
contributions from higher excitations, the summation over which (to obtain α and
S−4) is supposed to represent integration (in a Stieltjes sense) over the underlying
ionization continuum. Table 8.8 presents the fi and ωi values calculated for excita-
tions with energies ωi, which are higher than the N2 ionization energy Ip = 15.6 eV
and lower than the threshold of 22 eV, and which have oscillator strengths fi higher
than 0.1. Just as in Table 8.7, the LDA/GGA energies ωi of Table 8.8 are consis-
tently lower than the SAOP and BP-GRAC ones. However, unlike in Table 8.7, the
LDA/GGA oscillator strengths fi for the excitations in Table 8.8 appear to be system-
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SAOP BP-GRAC BP BLYP LDA
1πu → 2δg 96% 94% 94% 87% 87%
ω 17.06 17.16 14.59 14.20 14.73
f 0.113 0.140 0.16 0.20 0.154
f/ω2 0.28 0.35 0.56 0.76 0.52
f/ω4 0.72 0.88 1.94 2.76 1.80
3σg → 8σu 100% 100% 99% 99% 99%
ω 17.64 17.58 15.20 14.85 15.19
f 0.142 0.132 0.167 0.148 0.160
f/ω2 0.34 0.32 0.54 0.50 0.51
f/ω4 0.81 0.75 1.72 1.66 1.65
1πu → 11σg 96% 97% 99% 99% 99%
ω 20.36 20.44 18.69 18.33 18.78
f 0.100 0.109 0.174 0.160 0.160
f/ω2 0.18 0.19 0.36 0.36 0.34
f/ω4 0.32 0.34 0.78 0.80 0.70
1πu → 4σg 91% 80% 94% 95% 94%
ω 21.54 21.65 20.55 20.13 20.55
f 0.704 0.600 0.84 0.82 0.80
f/ω2 1.12 0.94 1.48 1.50 1.42
f/ω4 1.80 1.50 2.60 2.76 2.48∑
f 1.059 0.981 1.341 1.328 1.274∑
f/ω2 1.92 1.90 2.94 3.12 2.79∑
f/ω4 3.65 3.47 7.04 7.98 6.63

Table 8.8: Oscillator strength f and excitation energy ω calculated for the excitations which have
energies higher than the N2 ionization potential and lower than 22 eV and oscillator strengths larger
than 0.1. The contributions

P
f/ω2,

P
f/ω4 the polarizability and to the Cauchy coefficient are

reported, as well as their sums over these states.

atically larger than the SAOP/BP-GRAC ones. This latter trend can be understood
qualitatively from the sum rule, which requires the sum over fi to be the constant
N , the total number of electrons. Then, underestimation of the partial sum

∑
i fi

over the lowest excitations in Table 8.7 must be compensated with a corresponding
overestimation for higher excitations, which can be seen from Table 8.8. In this latter
case, the LDA/GGA underestimation of ωi and overestimation of fi work in the same
direction, so that the LDA/GGA partial and S−4 values for the “continuum” states
are substantially larger than the SAOP/BP-GRAC ones (see Table 8.8).

Thus, BP as well as LDA and BLYP substantially underestimate contributions
to and S−4 from the Rydberg-state excitations and they overestimate those from the
“continuum” states. Contrary to this, SAOP and BP-GRAC yield a more balanced
“excitation structure” of and S−4, which is remarkably similar for both methods and
which agrees well with the experimental data for the lowest excitations. Due to the
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partial compensation of the above-mentioned LDA/GGA errors of opposite signs, the
total LDA/GGA polarizabilities for N2 are in better agreement with experiment than
the corresponding partial sums over the lowest excitations (compare Table 8.3 and
Table 8.7). An especially lucky error compensation occurs for BP with =12.06 a.u.,
which is not much larger than the experimental value α=11.74 a.u., though the SAOP
α=11.82 a.u. and BP-GRAC α=11.78 a.u. still have smaller errors. Then, bearing
in mind that BP underestimates the higher excitation energies ωi and that the S−4

sum has the additional ω2
i factor in the denominator compared to the α sum, one

can expect a larger BP overestimation for the S−4 Cauchy coefficient. Indeed, as
follows from Table 8.5, the BP value S−4=32.99 a.u. is appreciably larger than the
experimental S−4=30.11 a.u., while the SAOP S−4=30.48 a.u. and the BP-GRAC
S−4=30.20 a.u. are close to the experiment.

The spectral analysis of the polarizability α and the S−4 Cauchy coefficient of N2

performed in this section shows that LDA and GGAs all produce a distorted picture of
the contributions to and S−4 from individual excitations. In contrast, SAOP and BP-
GRAC both yield a qualitatively correct structure of and S−4. General conclusions
from this analysis will be drawn in the next section.

8.5 Conclusions

It has often been observed that in particular excitations to Rydberg states are affected
by the shape corrections to the LDA and GGA xc potentials, while valence excitations
are believed to be represented reasonably well by LDA and GGA calculations. In
this chapter the performance of the approximate SAOP [111] and BP-GRAC [87] xc
potentials has been assessed in molecular TDDFT calculations of the static average
polarizability α, and its frequency dispersion in the form of the S−4 Cauchy coefficient,
and the static average hyperpolarizability β. The results have been compared with
those obtained with the standard LDA and some GGA (BP and BLYP) potentials,
and the performance of these potentials has been more closely examined by explicitly
considering the spectral structure of α and S−4.

Due to their correct form, the SAOP and BP-GRAC potentials reproduce well
the characteristics of the molecular excitation spectra, such as individual excitation
energies ωi and oscillator strengths fi. In contrast, standard LDA and GGA poten-
tials produce a distorted spectral structure of and S−4. They tend to underestimate
the energies ωi and they also appear to underestimate the oscillator strengths fi of
excitations to bound Rydberg-like states and overestimate those for excitations to the
“continuum” states. As a result, LDA and GGAs tend to underestimate contributions
to and S−4 from Rydberg-like states and to overestimate those from the continuum,
so that these errors of opposite signs partially compensate each other.

These distortions of the LDA/GGA spectra have been related to the deficient form
of the corresponding potentials in both bulk and outer regions. In particular, artificial
stabilization (low energies ωi) of the Rydberg-like states is due to the upward shift of
the LDA/GGA potentials in the bulk region. In turn, artificial localization of bound
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Rydberg-like states, which results in low oscillator strengths fi, is due to the fast
decay of the LDA/GGA potentials in the outer region, which makes the LDA/GGA
potential well considerably more narrow than the asymptotically corrected SAOP
and BP-GRAC potentials, see Fig. 8.1. The distortions create a serious problem
for the assignment of the LDA/GGA TDDFT spectra. The SAOP and BP-GRAC
potentials, which are free from the above-mentioned deficiencies, produce a balanced
spectral structure of the molecular response quantities.

Both SAOP and BP-GRAC yield high quality molecular polarizabilities α, Cauchy
coefficients S−4, and hyperpolarizabilities β for the considered molecules. The SAOP
and BP-GRAC average errors for these properties are only a few percent and they
improve substantially upon LDA and BLYP. Due to somewhat reduced errors from
individual excitations and their lucky cancellation, BP also reproduces well the po-
larizabilities. However, the distorted BP spectral structure of the response properties
manifests itself in a worsening quality of the BP Cauchy coefficients and hyperpolar-
izabilities.

Further refinement of the SAOP and BP-GRAC potentials can further enhance the
quality of the TDDFT results. Within SAOP, for example, one can apply statistical
averaging separately to the xc-hole and “response” [73] parts of a model xc potential.
Within the GRAC procedure, one can use, instead of the BP potential, the derivative
of an exchange-correlation energy functional with parameters which would be directly
fitted to reproduce molecular response properties calculated with the resultant GRAC
potential. Further improvement of the TDDFT results might also require (especially
for larger, more polarizable molecules) refinement of the xc kernel beyond the ALDA
fxc employed in this chapter.



Chapter

9
(Hyper)polarizabilities of molecular chains

An approximate Kohn-Sham (KS) exchange potential vCEDA
xσ is developed, based on

the common energy denominator approximation (CEDA) for the static orbital Green’s
function, which preserves the essential structure of the density response function.
vCEDA

xσ is an explicit functional of the occupied KS orbitals, which has the Slater vSσ

and response vCEDA
respσ potentials as its components. The latter exhibits the charac-

teristic step structure with “diagonal” contributions from the orbital densities ψ2
iσ,

as well as “off-diagonal” ones from the occupied-occupied orbital products ψiσψ
∗
j 6=iσ.

Comparison of the results of atomic and molecular ground-state CEDA calculations
with those of the Krieger-Li-Iafrate (KLI), exact exchange (EXX), and Hartree-Fock
(HF) methods show, that both KLI and CEDA potentials can be considered as very
good analytical “closure approximations” to the exact KS exchange potential. The
total CEDA and KLI energies nearly coincide with the EXX ones and the correspond-
ing orbital energies εiσ are rather close to each other for the light atoms and small
molecules considered. The CEDA, KLI, EXX −εiσ values provide the qualitatively
correct order of ionizations and they give an estimate of VIPs comparable to that of
the HF Koopmans’ theorem. However, the additional off-diagonal orbital structure
of vCEDA

xσ appears to be essential for the calculated response properties of molecu-
lar chains. KLI already considerably improves the calculated (hyper)polarizabilities
of the prototype hydrogen chains Hn over local density approximation (LDA) and
standard generalized gradient approximations (GGAs), while the CEDA results are
definitely an improvement over the KLI ones. The reasons of this success are the
specific orbital structures of the CEDA and KLI response potentials, which produce
in an external field an ultra-nonlocal field-counteracting exchange potential.

9.1 Introduction

The success of the KS DFT in calculations of molecular response properties is due
to the efficient inclusion of the electron Coulomb correlation into the KS potentials
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and kernels as well as due to favorable features of the KS orbital spectrum. Unlike
the canonical Hartree-Fock (HF) unoccupied orbitals of an N electron system, which
resemble one-electron states of the anionic (N+1) system, the KS unoccupied orbitals
represent approximately one-electron excitations of the N electron system. Because of
this, the quality of the results obtained within time dependent DFT with xc potentials
vxc of LDA and GGAs as well as with the xc kernel fxc of ALDA is often superior to
that of HF and it is competing with the quality of the results of the correlated ab initio
methods [36, 129, 130, 180, 210, 211, 212, 213]. Asymptotic corrections to the GGA
potentials improve further the results for compact molecules [87, 89, 176, 177, 192]
and a balanced description of the atomic shell structure and asymptotic behavior of
vxc within SAOP [111, 174, 175] produces a good quality of the calculated response
properties for a variety of molecules from diatomic and small organic molecules [111]
(see also previous chapters) to metal clusters [214] to complexes of the transition
metals [215, 216, 217].

Notwithstanding this success, there were also identified some notoriously diffi-
cult problem cases for DFT methods. Among these are the response properties of
molecular chains. As was found in Refs. [147, 148] LDA and GGAs dramatically
overestimate the linear and nonlinear polarizabilities of finite polyacetylene chains of
varying length and of the hydrogen chains Hn. It was recognized that, in order to
adequately describe these properties, DFT potentials should possess a characteristic
orbital structure [40, 148, 149], which produces an ultra-nonlocal term counteracting
an external field. LDA and GGA potentials, which depend explicitly on the electron
density ρ and its derivatives, lack this structure. On the other hand, the exchange-
only approximation of Krieger, Li, and Iafrate (KLI) [38] with its orbital-dependent
potential vx improves considerably upon LDA and GGAs. Still, the KLI polarizabili-
ties α and second hyperpolarizabilities γ for Hn are definitely inferior to the HF ones
[148] (see also 9.5). This clearly requires further improvement at the exchange-only
level of the orbital structure of the potential vx beyond KLI.

In this chapter an approximate exchange potential vCEDA
xσ is presented, which is

explicitly expressed in terms of the occupied KS orbitals ψiσ. It is developed with the
common energy denominator approximation (CEDA) for the static orbital Green’s
function Giσ, which preserves the essential structure of the response theory. CEDA
is characterized in Sec. 9.2 and it is compared with the Sharp-Horton approximation
for Giσ [218]. In Sec. 9.3 the derivation of the potential vCEDA

xσ is given, which pos-
sesses an additional “off-diagonal” orbital structure compared to the KLI potential
vKLI

xσ . In Sec. 9.4 atomic and molecular ground-state total and orbital energies are
calculated with CEDA, KLI, HF as well as with the exact exchange (EXX) method
[32]. The orbital energies of the above-mentioned exchange-only methods are com-
pared with those of the rather accurate KS solutions obtained from the correlated ab
initio electron densities ρ [89] and with the experimental vertical ionization poten-
tials (VIPs). In 9.5 the comparison is made of the static polarizabilities and second
hyperpolarizabilities of the prototype hydrogen linear chains H6, H12, and H18 cal-
culated within the finite-field approach with CEDA, KLI, HF, LDA, GGAs as well
as with the Møller-Plesset (MP2 and MP4) perturbation theory and coupled cluster
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(CCSDT) method. While LDA and GGA greatly overestimate (hyper)polarizabilities
of the lengthier chains, KLI performs much better and, in turn, CEDA improves con-
siderably upon KLI, thus bringing DFT (hyper)polarizabilities rather close to the ab
initio ones. The reason of this relative success of CEDA is established: it is the more
adequate representation with CEDA of the orbital structure responsible for the field-
counteracting exchange effect. In Sec. 9.6 the implication of the present results for
the KS theory, its development and its applications are discussed and the conclusions
are drawn.

9.2 The common energy denominator approxima-
tion for Giσ

The KS exchange potential vxσ (σ is the electron spin index) can be obtained from
the equations of the optimized potential method (OPM) [31]

∑
i

niσ

∫
dr2

[
vxσ (r2)− vi

xσ (r2)
]
Giσ (r2, r1)ψ∗iσ (r2)ψiσ (r1) + c.c. = 0 (9.1)

with the static orbital Green’s function Giσ

Giσ (r1, r2) =
∑
j 6=i

ψjσ (r1)ψ∗jσ (r2)
εjσ − εiσ

(9.2)

and the Hartree-Fock orbital potentials vi
xσ calculated with the OPM orbitals,

vi
xσ (r1) = − 1

ψ∗iσ (r1)

∑
j=1

njσψ
∗
jσ (r1)

∫
ψ∗iσ (r2)ψjσ (r2)

|r1 − r2|
dr2.

To obtain an explicit expression for vxσ in terms of the occupied orbitals, one has to
insert in (9.1) some “closure approximation” to the Green’s function Giσ. It is, of
course, desirable that an approximate Giσ would reproduce the basic properties of
the exact function (9.2), in particular, the structure of the corresponding static KS
linear response function χsσ

χsσ (r2, r3) = −
Nσ∑
i=1

niσψ
∗
iσ (r2)Giσ (r2, r3)ψiσ (r3) + c.c.

= −
Nσ∑
i=1

niσψ
∗
iσ (r2)ψiσ (r3)

∑
j 6=i

ψjσ (r2)ψ∗jσ (r3)
εjσ − εiσ

+ c.c.

= −
Nσ∑
i=1

niσψ
∗
iσ (r2)ψiσ (r3)

∑
c>Nσ

ψcσ (r2)ψ∗cσ (r3)
εcσ − εiσ

+ c.c.

(9.3)
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Note the well-known fact [32], that in the double sum of Eq. (9.3) the contributions
from the pairs of the occupied orbitals ψiσ and ψjσ cancel each other, since they con-
tain the orbital energy differences ∆εijσ = εjσ − εiσ and ∆εjiσ = εiσ − εjσ = −∆εijσ

of opposite signs. Thus, the occupied-occupied orbital mixing does not contribute to
the response function χsσ, which contains only contributions corresponding to excita-
tions from an occupied orbital ψjσ to an unoccupied one ψcσ. Strictly speaking, the
above-mentioned cancellation is possible, if niσ of all occupied orbitals are equal to
each other, for instance, niσ = 1 as for a pure KS state. This cancellation will be the
physical basis for our further derivation, so that throughout this chapter we assume
that for all occupied orbitals niσ = njσ.

In KLI the simple Sharp-Horton (SH) approximation [38, 218] has been employed,
according to which various differences ∆εijσ = εjσ − εiσ in (9.2) are represented by
a single constant εjσ − εiσ ≈ ∆ε̃σ. With this approximation, summation over the
complete spectrum produces a delta-function and the functions Giσ and χsσ assume
the form

GSH
iσ (r1, r2) =

1
∆ε̃σ

{δ (r1 − r2)− ψiσ (r1)ψ∗iσ (r2)} (9.4)

χSH
sσ (r1, r2) = − 2

∆ε̃σ

{
δ (r1 − r2) ρσ (r1)−

Nσ∑
i=1

niσ

∣∣∣ψiσ (r1)
2
∣∣∣ ∣∣∣ψiσ (r2)

2
∣∣∣} (9.5)

The approximation (9.4) appears to be a crude one and it violates the physical spirit
of the Unsöld approximation [219] of the conventional state based many-electron per-
turbation theory [220, 221, 222], which also employs the common energy denominator.
Indeed, within the Unsöld approximation, the energy differences ∆Ei = Ei − E0 be-
tween the many-electron ground state Ψ0 and excited states Ψi are represented by
a single constant ∆E, which is justified in this case, since all ∆Ei are positive and
∆Ei for the most important lowest excited states Ψi are expected to be not far from
each other. In contrast, the orbital based SH approximation (9.4) levels large energy
differences ∆εicσ for the occupied-unoccupied orbital pairs and relatively small dif-
ferences ∆εijσ for the occupied-occupied pairs. In the latter case it even neglects the
change of the sign when going from ∆εijσ to ∆εjiσ. Because of this, in the SH density
response function (9.5) only the self-interaction is excluded and it effectively contains
contributions from mixing of different occupied orbitals, unlike the exact KS function
(9.3).

Recently, a more physically motivated common energy denominator approxima-
tion (CEDA) for Giσ has been proposed [40], which restores the essence of the Unsöld
approximation in the present orbital based perturbation approach. Within this ap-
proximation, only the energy differences ∆εicσ for the occupied-unoccupied orbital
pairs are approximated with the mean energy ∆ε̃σ

∆εicσ = εcσ − εiσ ≈ ∆ε̃σ, i ≤ Nσ, c > Nσ
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while the true differences ∆εijσ for the occupied-occupied pairs are retained. This
gives for GCEDA

iσ

GCEDA
iσ (r1, r2) =

Nσ∑
j 6=i

1
∆εijσ

ψjσ (r1)ψ∗jσ (r2) +
1

∆ε̃σ

∑
c>Nσ

ψcσ (r1)ψ∗cσ (r2) (9.6)

Adding and subtracting to the r.h.s. of (9.6) contributions of the occupied orbitals
with the common denominator ∆ε̃σ, we obtain the expressions for GCEDA

iσ

GCEDA
iσ (r1, r2) =

δ (r1 − r2)
∆ε̃σ

− 1
∆ε̃σ

Nσ∑
j

ψjσ (r1)ψ∗jσ (r2)

+
Nσ∑
j 6=i

1
∆εijσ

ψjσ (r1)ψ∗jσ (r2)

(9.7)

and for the corresponding density response function

χCEDA
sσ (r1, r2) = − 1

∆ε̃σ
δ (r1 − r2) ρσ (r1)

+
1

∆ε̃σ

Nσ∑
i

niσψ
∗
iσ (r1)ψiσ (r2)

Nσ∑
j

ψjσ (r1)ψ∗jσ (r2)

−
Nσ∑
i

niσψ
∗
iσ (r1)ψiσ (r2)

Nσ∑
j 6=i

1
∆εijσ

ψjσ (r1)ψ∗jσ (r2) + c.c.

= − 1
∆ε̃σ

Nσ∑
i

niσψ
∗
iσ (r1)ψiσ (r2)

∑
c>Nσ

ψcσ (r1)ψ∗cσ (r2) + c.c.

(9.8)

One can see from (9.8) that, just as for the exact function (9.3), the terms with
the occupied-occupied mixing are properly excluded from the approximate χCEDA

sσ

of Eq. (9.8). In particular, the second sum in the r.h.s. of (9.8) disappears due to
the mutual cancellation of its terms (under the assumption, that niσ = njσ) and the
first sum cancels the corresponding contribution to the delta-function. As a result,
only the terms with the occupied-unoccupied mixing are properly retained within the
common energy denominator approximation. In this sense, the CEDA (9.7) preserves
the proper orbital structure of the density response function. In the next section this
approximation will be used to obtain the approximate exchange potential vCEDA

xσ .

9.3 Approximate exchange potential vCEDA
xσ

To obtain the explicit expression for the exchange potential in terms of the occupied
KS orbitals, we insert the CEDA Green’s function (9.7) in the OPM equation (9.1),
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thus obtaining the equation for the potential vCEDA
xσ

1
∆ε̃σ

{
∑

i

niσ

[
vCEDA

xσ (r1)− vi
xσ (r1)

]
|ψiσ (r1)|2

−
∑

i,j≤Nσ

niσ

[
1− ∆ε̃σ (1− δij)

∆εijσ

] [
v̄CEDA

xσ,ij − v̄i
xσ,ij

]
ψiσ (r1)ψ∗jσ (r1) + c.c.} = 0

(9.9)

where v̄CEDA
xσ,ij and v̄i

xσ,ij are the matrix elements of the potentials vCEDA
xσ and vi

xσ for
the orbitals ψiσ and ψjσ

v̄CEDA
xσ,ij =

∫
ψ∗iσ (r2)ψjσ (r2) vCEDA

xσ (r2) dr2,

v̄i
xσ,ij =

∫
ψ∗iσ (r2)ψjσ (r2) vi

xσ (r2) dr2.

To make (9.9) more compact, we have combined two sums in (9.7). From (9.9) follows

vCEDA
xσ (r1) = vSσ (r1)

+
1
2

∑
i,j≤Nσ

{
niσ

[
1− ∆ε̃σ (1− δij)

∆εijσ

] [
v̄CEDA

xσ,ij − v̄i
xσ,ij

] ψiσ (r1)ψ∗jσ (r1)
ρσ (r1)

+ c.c.
}
,

(9.10)

where vSσ is the Slater potential [164]

vSσ (r1) =

∑
i

niσ |ψiσ (r1)|2 vi
xσ (r1)

ρσ (r1)
.

Due to the symmetry of the quantities and summations in (9.10), the term containing
the orbital energy difference ∆εijσ cancels with the corresponding term in the complex
conjugate part with ∆εjiσ = −∆εijσ under our assumption njσ = niσ. This gives the
equation

vCEDA
xσ (r1) = vSσ (r1) +

∑
i,j≤Nσ

[
v̄CEDA

xσ,ij − v̄i
xσ,ij

] niσψiσ (r1)ψ∗jσ (r1)
ρσ (r1)

. (9.11)

Equation (9.11) can be solved in the same way as the corresponding equation for the
KLI potential [38] after exclusion of the contribution of the density |ψNσ(r1)|2 of the
highest occupied molecular orbital (HOMO) ψNσ from the sum in (9.11)

vCEDA
xσ (r1) = vSσ (r1) +

∑′

i,j≤Nσ

[
v̄CEDA

xσ,ij − v̄i
xσ,ij

] niσψiσ (r1)ψ∗jσ (r1)
ρσ (r1)

(9.12)
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The primed sum in (9.12) indicates this exclusion, which fixes the zero long-range
asymptotics of the potential vCEDA

xσ . Multiplying both sides of (9.11) by ψ∗kσψlσ

(again, ψ∗kσψlσ 6= |ψNσ|2), integrating over r1, and subtracting v̄k
xσ,kl, one obtains the

equations for the matrix elements v̄CEDA
xσ,ij∑′

i,j≤Nσ

(
δikδjl −Mσ

klij

) [
v̄CEDA

xσ,ij − v̄i
xσ,ij

]
=v̄Sσ,kl − v̄k

xσ,kl (9.13)

where Mσ
klij is the weighted overlap between the orbital products ψ∗kσψlσ and ψ∗iσψjσ

Mσ
klij = ni

∫
ψ∗kσ (r1)ψlσ (r1)ψiσ (r1)ψ∗jσ (r1)

ρσ (r1)
dr1.

Eqs.(9.13) are formally solved by inversion of the matrix (I−M)

v̄CEDA
xσ,ij − v̄i

xσ,ij =
Nσ∑
kl

ξσ
ij,kl

[
v̄Sσ,kl − v̄k

xσ,kl

]
(9.14)

where
ξσ
ij,kl = (I −Mσ)−1

ij,kl , ξ
σ
ij,NσNσ = ξσ

NσNσ,kl = 0

Finally, inserting (9.14) in (9.12), we obtain for vCEDA
xσ the following expression

vCEDA
xσ (r1) = vSσ (r1) + vCEDA

respσ (r1) (9.15)

where vCEDA
respσ is the response potential [73]

vCEDA
respσ (r1) =

Nσ−1∑
i

wσ
ii

|ψiσ (r1)|2

ρσ (r1)
+

Nσ∑
i,j 6=i

wσ
ij

ψiσ (r1)ψ∗jσ (r1)
ρσ (r1)

(9.16)

wσ
ij =

Nσ∑
kl

niσξ
σ
klij

{
v̄Sσ,kl − v̄k

xσ,kl

}
, wσ

NσNσ = 0 (9.17)

With (9.15) vCEDA
xσ is subdivided naturally into two physically meaningful compo-

nents, an attractive long-range Slater potential vSσ
and a repulsive short-range re-

sponse potential vCEDA
respσ . The former is the potential of the Fermi (exchange) hole

density distribution ρxσ(r2|r1)

vS (r1) =
∫
ρxσ (r2|r1)
|r1 − r2|

dr2

ρxσ (r2|r1) = −
Nσ∑
ij

niσnjσ

ψiσ (r1)ψ∗jσ (r1)ψ∗iσ (r2)ψjσ (r2)
ρσ (r1)
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System HFa EXXb KLI CEDA
Be −14.57301 0.00058 0.00060 0.00060
Ne −128.5467 0.0017 0.0022 0.0022
Ar −526.8173 0.0051 0.0048 0.0052
N2 −108.9913 0.0052 0.0078 0.0077
CO −112.7893 0.0051 0.0076 0.0076
H2O −76.05710 0.00230 0.00392 0.00364

aThis work
bRef. [32]

Table 9.1: The atomic and molecular HF total energies and the differences between the EXX, KLI,
CEDA and HF total energies (in Hartrees).

and it has Coulombic long-range asymptotics vSσ (r1) → −1/ |r1| at |r1| → ∞. The
second component of (9.15), the potential vCEDA

respσ of (9.16), (9.17) has the character-
istic orbital step structure with the step heights wσ

ij corresponding to the individual
products ψiσψ

∗
jσ of the occupied orbitals. It follows from (9.16) that in the region,

where a particular orbital density |ψiσ|2 brings a dominant contribution to the total
density ρσ, the potential vCEDA

respσ is close to the corresponding weight wσ
ii, thus produc-

ing the step structure of vCEDA
respσ . As a consequence of the fixing of the asymptotics

(9.12), the HOMO density |ψNσ|2 is removed from the numerator of (9.16). Since
|ψNσ|2 is present in the total density ρσ in the denominator and it dominates the
density at |r1| → ∞, vCEDA

respσ is a short-range potential, which decays asymptotically
faster than the Coulombic asymptotics. The first sum in (9.16) with the “diagonal
steps” has the same form as the response potential vKLI

respσ of the KLI method [38].
However, due to the complete exclusion of the occupied-occupied orbital mixing from
(9.8) in our CEDA, vCEDA

respσ contains also “off-diagonal steps” in the second sum in
(9.16). Thus, vCEDA

respσ provides a more detailed orbital structure compared to the KLI
potential vKLI

respσ. The importance of the additional CEDA orbital structure for the
calculated molecular response properties will be shown in Sec. 9.5.

9.4 Atomic and molecular ground-state calculations
with vCEDA

xσ

In this section the results of the ground-state atomic and molecular calculations with
the potential vCEDA

xσ will be presented and discussed. Table 9.1 presents the total HF
energies and their differences with the CEDA and KLI energies for the closed-shell
atoms Be, Ne, Ar and molecules N2, CO, H2O. All energies have been calculated
with the same one-determinantal expression, in which the HF, KLI orbitals and the
CEDA ones obtained with vCEDA

xσ of (9.15) were plugged in. All calculations have been
performed by means of a Gaussian orbital density functional code [46, 77] based on
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the ATMOL package [62]. For the atoms and for CO the 5-zeta cc-pCV5z (cc-pV5z
for Be), for N2 the quadruple-zeta cc-pCVQz, and for H2O the triple-zeta cc-pCVTz
correlation-consistent basis sets of Gaussian-type orbitals [65] have been used for all
methods. Both CEDA and KLI can be considered as “closure approximations” to the
exact exchange (EXX) KS approach [32, 36], thus the EXX vs. HF energy differences
taken from Ref. [32] are also presented in Table 9.1.

It appears that the CEDA and KLI energies shown in Table 9.1 practically co-
incide and they are very close to the EXX ones. All three approaches reproduce
excellently the HF energies, which is not entirely surprising, because of the minimum
property of the one-determinantal energy. Since the HF method yields the absolute
minimum in this case, CEDA, KLI and EXX produce slightly higher energies. Still,
the corresponding energy differences do not exceed few milliHartrees (see Table 9.1).
Also, the EXX total energy should be lower than the KLI and CEDA energies, since
they are the lowest one-determinantal energies attainable under the constraint of a
local potential. This is actually the case, if only very little, except for Ar, where the
EXX solution may not have been numerically sufficiently precise. Therefore, judging
from the total energy criterion, EXX, KLI, CEDA and HF orbitals appear to be close
to each other.

Table 9.2 compares the HF, EXX, KLI, and CEDA energies of the frontier occupied
orbitals of the molecules N2, CO, and H2O. There are also presented the orbital
energies of the rather accurate KS exchange-correlation potentials vxc obtained from
the ab initio correlated densities by the iterative local updating scheme of van Leeuwen
and Baerends (LB) [89] as well as the experimental vertical ionization potentials
(VIPs) Ii [223, 224, 225]. One can see from Table 9.2, that the HOMO energies of
EXX, KLI, and CEDA are close to the HF ones (close to HF εNσ−1 in the case of
N2, see below). This behavior is enforced by the fixing of the long-range asymptotics
of the EXX, KLI, and CEDA potentials. In particular, in the latter case the zero
asymptotics condition wσ

NσNσ = 0 in (9.17) enforces equality of the HOMO matrix
elements for the CEDA and HF potentials

nNσ

(
v̄CEDA

xσ,NσNσ − v̄Nσ
xσ,NσNσ

)
= wσ

NσNσ = 0 (9.18)

which, in turn, leads to the equality of the corresponding orbital energies if calculated
with the same KS orbitals ψs

iσ

εCEDA
Nσ = εHF

Nσ [{ψs
iσ}] ≈ εHF

Nσ

[{
ψHF

iσ

}]
(9.19)

The equality analogous to (9.18) is also valid for the KLI [38] and in EXX the condition
v̄EXX

xσ,NσNσ = v̄Nσ
xσ,NσNσ is imposed on the EXX potential [32]. As was reported in

Ref. [226], without such an explicit imposition EXX faces numerical problems in
providing the reliable εNσ values. Since the EXX, KLI, CEDA and HF orbitals are
close to each other, the equality (9.19) explains the close correspondence of εNσ and
εHF

Nσ{ψHF
i } in Table 9.2. Note the curious detail that, in spite of (9.19), for certain

systems the HOMOs of the HF and the exchange-only KS methods could be orbitals
of different type, and this happens in the case of N2. In this case Koopmans’ theorem
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System Method −εNσ
−εNσ−1 −εNσ−2

N2 3σg 1πu 2σu

KLI 17.12 18.51 20.27
CEDA 17.05 18.46 20.14
EXXa 17.16 18.12 20.23
HF 16.69 (1πu) 17.24 (3σg) 21.18
KS 15.57 16.68 18.77
Exp(VIP)b 15.58 16.93 18.75

CO 5σ 1π 4σ
KLI 15.04 18.33 20.68
CEDA 14.97 18.31 20.58
EXXa 15.03 17.99 20.57
HF 15.10 17.43 21.90
KS 14.01 16.77 19.33
Exp(VIP)c 14.01 16.91 19.72

H2O 1b1 3a1 1b2

KLI 13.62 15.75 19.31
CEDA 13.69 15.78 19.54
EXXa 13.71 15.74 19.28
HF 13.73 15.75 19.26
KS 12.63 14.78 18.46
Exp(VIP)d 12.62 14.74 18.55

aRef. [32]
bRef. [223]
cRef. [224]
dRef. [225]

Table 9.2: Comparison of the KLI, CEDA, EXX, HF, KS energies (in eV) of frontier occupied orbitals
and the experimental vertical ionization potentials (VIPs). For N2 εN σ and εNσ−1 refer to 3σg and
1πu resp. in all cases except for HF where the order of these orbitals is reversed.
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fails to predict the experimentally observed ordering of the electronic states making
1πu the HOMO in HF. EXX, KLI and CEDA improve upon HF: the (exchange-only)
KS HOMOs have the proper 3σg type and an energy which, by virtue of (9.19), is
close to the HF 3σg (which is in the column εNσ−1).

We also address the question of how closely the experimental VIPs can be es-
timated with −εiσ values of one-electron theories, which is the issue of Koopmans’
theorem [227]. One can see from Table 9.2, that the HF Koopmans’ theorem over-
estimates consistently VIPs (−εHF

iσ are higher than Ii), which can be attributed to
the neglect of electron relaxation in cationic states. The only exception is the above-
mentioned ionization from the 1πu MO of N2 where the wrong ordering produces
underestimation of the second VIP (column εNσ−1) with the corresponding HF en-
ergy (column εNσ).

It is interesting to note, that −εiσ values of the exchange-only KS methods provide
an estimate of VIPs comparable in quality to that of the HF Koopmans’ theorem.
The EXX, KLI and CEDA orbital energies −εiσ, being rather close to each other, are
also consistently higher than VIPs (see Table 9.2). For N2 and CO the second VIP is
better estimated with the HF Koopmans’ theorem, while the EXX, KLI and CEDA
−εiσ values yield a better estimate of the third VIP. For H2O the orbital energies of all
exchange-only methods appear to be close to each other, equally overestimating VIPs.
Remarkably, −εiσ values of the accurate KS xc potential vxc produce a very good
estimate of VIPs with an average deviation which approaches 0.1 eV. This striking
result can be explained with the analysis of the exact linear relations between the KS
orbital energies and VIPs [196].

The results of this section show, that for the considered free atoms and molecules
both CEDA and KLI provide very good and still relatively simple “closure approxima-
tions” to the exact exchange-only KS potential. In this case the additional off-diagonal
structure of vCEDA

respσ of Eq. (9.16) appears to be not essential, which is manifested with
the close correspondence of the CEDA and KLI total and orbital energies. In partic-
ular, for the cross-product ψiσψ

∗
jσ of the orbitals ψiσ and ψjσ of different symmetry

the corresponding off-diagonal step weights wσ
ij in (9.16),(9.17) vanish because of

the symmetry of the ground-state potential vCEDA
respσ . However, the incorporation of

the occupied-occupied orbital mixing in vCEDA
respσ could be essential for the molecular

response properties, such as polarizabilities and hyperpolarizabilities. This will be
demonstrated in the next section.

9.5 Calculations of (hyper)polarizabilities of the hy-
drogen chains Hn

A failure of standard LDA and GGA methods in application to the response properties
of molecular chains can be illustrated for the prototype case of linear hydrogen chains
Hn. They serve as a simple prototype of molecular chains with a “half-filled band”
and they were extensively studied with the HF as well as with the correlated Møller-
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α H6 H12 H18

LDA 72.7 210.6 367.3
BLYP 68.98 194.80 334.85
BP 69.18 196.68 339.10
PW 68.96 195.84 337.47
KLI 60.50 157.15 260.66
CEDA 59.28 149.35 244.24
HF 56.38 137.64 222.31
MP2a 54.16 134.00 217.42
MP4a 51.59 126.90 205.39
CCSDTa 50.54 123.63 199.65

aRef. [228]

Table 9.3: Comparison of the LDA, GGA, KLI, CEDA, HF, MP2, MP4, and CCSDT static longi-
tudinal polarizabilities α (in a.u.) of linear hydrogen chains Hn

Plesset (MP2 and MP4) and coupled cluster (CCSDT) approaches [228, 229]. With
the H–H distances of 2 Bohr between the closest H atoms and of 3 Bohr between
the neighboring H2 units adopted in Refs. [228, 229], Hn represents weakly bounded
systems with Peierls’ distortion.

Table 9.3 compares the static longitudinal polarizabilities α of the hydrogen chains
H6, H12, and H18 calculated within the finite-field approach with vCEDA

xσ of Eq. (9.15)
with those obtained with the LDA, GGA, and HF methods. The GGA functionals
considered are the exchange-correlation functional of Perdew and Wang (PW91) [5,
75, 76], the combination BP of the exchange functional of Becke [4] and the correlation
functional of Perdew (P86) [6], and the combination of the same exchange functional
of Becke with the correlation functional of Lee, Yang, and Parr [7]. The 6-311++G∗∗

basis of the Gaussian-type have been used for the H atoms. Comparison is also made
with α values obtained in Ref. [228] with the MP2, MP4, and CCSDT methods in
the 6-311G(∗)∗ basis.

As was already established for small molecules [205] and for the considered hy-
drogen chains in Refs. [147, 148, 228], the HF method yields rather satisfactory α
values compared to the correlated MP2, MP4, and CCSDT methods. The calculated
polarizability decreases consistently with a more complete inclusion of the electron
Coulomb correlation in the series HF>MP2>MP4>CCSDT, so that the CCSDT α
values are lower by 10% than the HF ones in all three cases. On the other hand, LDA
greatly overestimates α, the LDA error increases with the length of the chain. While
for H6 the LDA α value is 1.4 times higher than that of CCSDT, for H18 this ratio
grows to 1.8. GGAs improve only slightly upon LDA: α values of different GGAs are
very close to each other, and for H18 GGAs lower the LDA α only by 8%.

The orbital-dependent KLI and CEDA potentials improve dramatically upon
LDA/GGAs (see Table 9.3). Still the KLI α deviates appreciably from the HF one
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γ H6 H12 H18

LDA 102.9 1271 4172
BLYP 95.2 1079 3286
BP 93.7 1097 3397
PW 93.9 1097 3376
KLI 36.9 277.2 778.1
CEDA 34.7 209.2 468.4
HF 29.8 146.9 301.3
MP2a 31.2 182.3 390.8
MP4a 31.3 178.8 381.7

aRef. [228]

Table 9.4: Comparison of the LDA, GGA, KLI, CEDA, HF, MP2, and MP4 static longitudinal
second hyperpolarizabilities γ (in a.u.*10−3) of linear hydrogen chains Hn

and the corresponding error increases with the chain length. While for H6 KLI over-
estimates α by 7% compared to HF, for H6 the KLI vs. HF overestimation amounts
to 17%. In turn, CEDA improves upon KLI, the corresponding improvement becomes
more pronounced for the longer chain. The CEDA α is 5% higher than the HF one
for H6 and it is 10% higher for H18. Thus, CEDA removes 43% of the KLI vs. HF
error for the longest chain considered. The CEDA error with respect to HF becomes
close to the HF error with respect to MP4.

The trends observed for α become much more pronounced for the calculated static
longitudinal second hyperpolarizabilities γ presented in Table 9.4. While the LDA γ
is 3.2 times larger than the MP4 one (the highest correlated ab initio level reported
in Ref. [229]) and 3.5 times larger than the HF one for H6, the corresponding er-
rors for H18 grow to 11 and 14 times, respectively, for H18. The GGA errors with
γGGA/γMP4 ≈ 9 and γGGA/γHF ≈ 11 for H18 are still extremely large. The KLI
performs much better with γKLI/γHF = 1.24 for H6, while for H18 the KLI error is
still considerable, γKLI/γHF = 2.58. In turn, CEDA improves considerably upon KLI
with γCEDA/γHF = 1.16 for H6 and γCEDA/γHF = 1.55 for H18. Thus, CEDA with
its additional off-diagonal structure brings the calculated DFT α and γ values rather
close to the ab initio ones.

The LDA/GGA α and γ errors for molecular chains are much larger than the
corresponding errors for “standard molecules”, for which LDA/GGAs also tend to
overestimate (hyper)polarizabilities. In the latter case this is attributed to the fact,
that (judging from the LDA/GGA orbital energies) the LDA/GGA xc potentials are
not attractive enough. Apparently, for molecular chains another electronic factor plays
a major role. This factor, as was established in Refs. [148, 149], is a characteristic
ultra-nonlocal term induced in the KS exchange and exchange-correlation potentials
by an applied uniform electric field, which spans the entire system and counteracts the
field. LDA and standard GGAs all fail to produce the counteracting potential, while
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Figure 9.1: The CEDA (drawn line) and the KLI (broken line) total exchange potential (bottom)
and the response (top) and Slater (middle) components are plotted along the main axis for the chain
H18 in an electric field of 0.004 a.u. (the external field-induced potential is displayed with a dotted
line in the panel of the response components).

it is generated in the orbital-dependent KLI and CEDA potentials, more precisely,
in their response parts. This field-counteracting behavior of the KLI and CEDA
potentials is illustrated with Figure 9.1, which display vCEDA

xσ and vKLI
xσ together with

their Slater and response components calculated for the chain H18 in an electric
field of 0.004 a.u. (the dotted line in Figure 9.1 indicates the external field-induced
potential). The KLI and CEDA Slater potentials in Figure 9.1 coincide with each
other and they remain the same at both up-field and down-field ends of the hydrogen
chain, so that they exhibit only periodical variations which characterize individual
H2 units. Unlike to this, the KLI and CEDA response potentials vCEDA

respσ and vKLI
respσ

counteract the external field-induced potential, i.e. they become more positive at
the down-field end of H18. This determines the overall field-counteracting effect of
vCEDA

xσ and vKLI
xσ . From the upper part of Figure 9.1, one can clearly see that CEDA

develops a larger field-counteracting response potential than KLI.

This can be understood qualitatively from the expression for a linear response
δvCEDA

respσ of the potential (9.16) due to an applied external field δvext inducing a change
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in the density δρσ

δvCEDA
respσ (r1) =

∫
δvCEDA

respσ (r1)
δρσ (r2)

δρσ (r2) dr2

=
Nσ−1∑

i

|ψiσ (r1)|2

ρσ (r1)

∫
δwσ

ii

δρσ (r2)
δρσ (r2) dr2

+
Nσ−1∑

i

wσ
ii

∫
δ

δρσ (r2)

[
|ψiσ (r1)|2

ρσ (r1)

]
δρσ (r2) dr2

+
Nσ∑

i,j 6=i

wσ
ij

∫
δ

δρσ (r2)

[
ψiσ (r1)ψ∗jσ (r1)

ρσ (r1)

]
δρσ (r2) dr2

+
Nσ∑

i,j 6=i

ψiσ (r1)ψ∗jσ (r1)
ρσ (r1)

∫
δwσ

ij

δρσ (r2)
δρσ (r2) dr2

(9.20)

An analogous change of the KLI potential δvKLI
respσ can be expressed formally with the

first two sums of (9.20), while the third and the fourth sums represent the change
of the “off-diagonal steps” specific for vCEDA

respσ . Let us consider now the case of a
symmetric molecular chain Xn, which (just as the hydrogen chains Hn) has a mid-
molecule center of inversion or a mirror plane (or both) as the symmetry element,
to which an antisymmetric external field δvext(r1) = −Ez is applied (z is the main
symmetry axis of the chain, with z = 0 being the molecular midpoint). Then, the
field-counteracting exchange effect should manifest itself in the appearance of the
term δv

(fc)
respσ in (9.20), which counters δvext(r1), i.e. it should be an antisymmetric

function of z.
It is clear, that the first sum of (9.20) does not contribute to δv

(fc)
respσ, since all

its orbital-density terms |ψiσ(r1)|2 /ρσ(r1) are symmetric functions of z. As was
shown in Refs. [40, 149], a common contribution for both KLI and CEDA to δv(fc)

respσ

comes from the second sum of (9.20). In the third sum, as was already mentioned
in the previous section, the off-diagonal weights wσ

ij for the orbitals ψiσ and ψjσ of
different symmetry are zero due to the symmetry, but the corresponding derivatives
δwσ

ij/δρσ(r2) in the fourth sum of (9.20) will be, in general, non-zero functions of
r2. Thus, this latter sum is expected to be responsible for the observed additional
build-up of the field-counteracting CEDA potential as compared to KLI. Its spatial
form as an antisymmetric function of r1 is determined with the occupied-occupied
products ψiσ(r1)ψ∗jσ(r1) of orbitals of the appropriate symmetry.

The established field-counteracting terms of the CEDA and KLI exchange po-
tentials effectively compensate an external field-induced potential. The LDA and
standard GGA potentials all lack the above-mentioned orbital structure and, in the
absence of the compensation effect, they produce the observed dramatic overestima-
tion of (hyper)polarizabilities of molecular chains. Contrary to this, both CEDA and
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KLI benefit from the field-counteracting compensation effect, which greatly reduces
the calculated (hyper)polarizability. Due to the additional off-diagonal orbital struc-
ture and the additional build-up of the field-counteracting potential, CEDA improves
considerably upon KLI.

9.6 Conclusions

In this chapter an approximate KS exchange potential vCEDA
xσ is developed, based on

the common energy denominator approximation (CEDA) for the static orbital Green’s
function, which preserves the essential orbital structure of the density response func-
tion. vCEDA

xσ is an explicit functional of the occupied KS orbitals, which has the Slater
vSσ and response vCEDA

respσ potentials as its components. The latter potential exhibits
the characteristic step structure produced by the orbital densities |ψiσ|2, similar to
that of the KLI potential. In addition, due to the complete exclusion of the occupied-
occupied orbital mixing from the CEDA density response function, vCEDA

respσ contains
also “off-diagonal steps” produced by the orbital cross-products ψiσψ

∗
j( 6=i)σ.

Comparison of the results of atomic and molecular ground-state CEDA, KLI, EXX,
and HF calculations show, that both KLI and CEDA potentials can be considered as
very good analytical “closure approximations” to the exact KS exchange potential.
The total CEDA and KLI energies nearly coincide with the EXX ones and the corre-
sponding orbital energies are rather close to each other for the light atoms and small
molecules considered. The CEDA, KLI, EXX −εiσ values provide the qualitatively
correct order of ionizations and they give an estimate of VIPs comparable to that of
the HF Koopmans’ theorem.

The additional off-diagonal orbital structure of the CEDA potential appears to be
essential for the calculated response properties of molecular chains. CEDA and KLI
greatly improve the calculated (hyper)polarizabilities of the hydrogen chains Hn upon
LDA and standard GGAs, with the CEDA results being definitely better than the
KLI ones. The reason of this success are the specific orbital structures of the CEDA
and KLI response potentials, which produce in an external field an ultra-nonlocal
field-counteracting exchange potential.

With this, CEDA holds promise for the calculation of molecular response proper-
ties. Furthermore, the present CEDA can serve as a basis for simpler approximations
which, nevertheless, would retain its orbital structure. An important further devel-
opment would also be an extension of the present exchange-only CEDA to a full
exchange-correlation theory. Since CEDA appears to recover to high accuracy the
counteracting field in the KS potential in as much as it originates in the exchange
part of the potential, the remaining deficiency for the calculated hyperpolarizability
is probably due to the neglect of the counteracting field effect embodied in the KS
correlation potential. One consistent way to include correlation effects is the exten-
sion of CEDA (which in this chapter operates with nσ occupied KS orbitals) to the
general case Mσ ≥ nσ with both occupied and unoccupied KS orbitals (Chapt. 5).
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The Kohn-Sham (KS) approach to density functional theory (DFT) is a very efficient
tool in theoretical chemistry, but its success in making predictions and interpreting
chemical data relies on the approximation for the exchange and correlation functional.
The latter has to account for the correlation effects due to the interactions between
electrons that are neglected in the “noninteracting particles” picture.

The standard generalized gradient approximations (GGAs) are quite successful,
often providing, in spite of their simplicity, a remarkable accuracy. Nevertheless,
beside the many successful calculations, there are still cases reported in the literature
which are clearly problematic for DFT at this level of approximation.

In this thesis a number of these “problematic” cases have been considered, the
reasons for the failure of the GGAs have been analyzed and possible improvements
have been tested. Two alternatives have been explored, either to remain within the
GGAs or to develop functionals explicitly dependent on the KS orbitals.

The first part of this thesis has been dedicated to the problem of the approximation
of the exchange and correlation energy functional in relation to chemical reactions and
molecular dissociation processes.

The problematic case of the prototype system with two-center three-electron bond
He+

2 , for which the GGAs overestimate the dissociation energy by 25–30 kcal/mol, has
been analyzed in Chapt. 3 comparing the approximate with the accurate KS results.
It emerges that the major restriction of GGA energy functionals is the localized nature
of their exchange and correlation hole. This restriction turns out to be an advantage
in the case of covalent bond systems that are efficiently described by GGAs: the ap-
proximated exchange takes into account both exchange and nondynamical correlation
effects while the approximated correlation covers the dynamical part of correlation.
For He+

2 instead, the occupation of the valence orbital with antibonding character
hampers the nondynamical correlation effects and the GGA exchange produces spu-
rious nondynamical correlation. This result can be generalized for all systems with
weak nondynamical correlation, such systems can be recognized by the non-integer
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ratio between the number of electrons involved in a bond and the number of centers
on which the bond is delocalized. In fact as has been established in Chapt. 4, the
main argument of gradient corrections to the local density approximation functional,
the dimensionless gradient argument s2σ, presents in the bonding region of these sys-
tems local maxima that can be traced back to the orbital structure of the bond (for
comparison s2σ is practically zero in the bonding region of strong covalent systems
like N2). To this local enhancement of s2σ has been attributed the built-in of spu-
rious correlation and therefore the overestimation of the stability of these molecular
systems.

The performance of several meta-GGAs and “modified” GGAs has been then as-
sessed (Chaps. 4 and 3) for those systems that are, following our analysis, problematic
for standard GGAs. In particular the dissociation of He+

2 , (HF)+2 , (H2O)+2 , (NH3)+2
and the central barrier of the symmetrical SN2 reactions have been considered. The
differences between these functionals and the standard GGAs have been also discussed
in those chapters.

The “modified” GGA exchange functionals differ from the “standard” GGAs be-
cause they do not satisfy the uniform gas limit and instead they reduce in the zero
gradient limit to the Xα exchange with α that enhances the LDA exchange by a factor
∼1.05. Moreover for values of the gradient argument sσ between 0 and 1, typical for
the bonding region of molecules, they have a s4σ main gradient correction versus s2σ of
the “standard” functionals. For this reason they are less sensitive to the local maxima
of s2σ in the bonding region of problematic systems.

The meta-GGAs depend, as well as on the spin densities and their gradients, on
the kinetic energy density of KS orbitals. The latter can help to detect where the
localized description of the exchange and correlation hole might fail. In particular, as
pointed out in Chapt. 4, the ratio of the LDA and KS kinetic energy density, employed
in several meta-GGAs, has a dominant 1/s2σ behavior and can therefore reduce the
overestimation coming from local maxima of s2σ in the bonding regions of problematic
systems.

As a matter of fact both the meta-GGAs and the GGAs improve the results
for the central barrier of symmetrical SN2 reactions and for the dissociation energy
of bifragmental radical cations with two-center three-electron bond. For the SN2
reactions in particular the combination of the optimal exchange (OPTX) functional1

and the LAP3 correlation functional2 provides rather good results: the calculated
central barriers differ on average only by 1 kcal/mol from reference data, while the
difference for the standard GGA is on average 7 kcal/mol. On the other hand, for
the dissociation energy of the two-center three-electron bond the meta-GGAs and the
modified GGAs lower the error by 5–10%, but the difference with respect to reference
data remains rather large.

Furthermore in Chapt. 4 GGAs and meta-GGAs with improved correlation func-
tionals with the parallel and opposite spin correlation modeled separately have been

1N.C. Handy and A.J. Cohen, Mol. Phys. 99 (2001) 403
2E.I. Proynov, S. Sirois, and D.R. Salahub, Intern. J. Quantum Chem. 64 (1997) 427
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shown to provide rather good results for reaction barrier of hydrogen abstraction and
hydrogen exchange reactions. Again the combination of OPTX and LAP3 provides
the best results with a mean absolute error of about 3 kcal/mol on the energy barriers.

The GGA, in its spin restricted form, fails also to describe the extreme nondynam-
ical correlation in the dissociating electron pair bond. In this case the approximated
exchange hole (that should cover also nondynamical correlation effects) is too shallow
to describe the strong left-right correlation as has been discussed in Chapt. 5.

In the same chapter the entire potential curve of H2 has been very well reproduced
by self-consistent KS DFT calculations using the exchange-correlation functional pro-
posed by Buijse and Baerends3. The latter describes correctly the dissociation limit
of the H2 molecule employing both the bonding highest occupied and the antibonding
lowest unoccupied molecular orbitals. For finite bond distances the effective weights,
or “fictitious occupation numbers”, of occupied and virtual orbitals (virtual orbitals
other than the lowest unoccupied molecular orbital have been included in order to
simulate dynamical correlation effects) have been calculated with a two parameters
Fermi-type distribution depending on the KS orbital energies. The two parameters
however have been fitted to reproduce the H2 potential curve and therefore are far
from being “universal”; in the future a better guess for the “fictitious occupation
numbers” has to be found that takes into account not only the relative energies, but
also the spatial localization of the molecular orbitals.

The bottleneck in the construction of a “universal” functional is thus the modeling
of the nondynamical correlation effects. In fact while the exchange can be calculated
from the exact orbital expression and the dynamical part is efficiently and rather
accurately approximated by the GGA or meta-GGA correlation functionals, there is
still no functional that is able to describe both the strong left-right correlation of
dissociating electron pair bonds and the absence of/weak nondynamical correlation
in systems like He+

2 . Future works should therefore study how to model such effects
possibly using, as suggested by the results of this work, the information from both
occupied and virtual orbitals.

The second part of this thesis has been dedicated to the xc potential. The xc
potentials derived from GGA energy functionals suffer, as discussed in Chapts. 7 and
8, of two main shortcomings. First in the bulk region they are systematically too
repulsive and the energies of the valence orbitals, in particular of the highest occu-
pied molecular orbital that for a potential with a zero asymptotic should be equal to
minus the first vertical ionization potential, are underestimated (in absolute value).
The generalized gradient approximations in fact underestimate the first ionization po-
tential by 3–6 eV. This error influences the energy differences, in particular between
valence and highlying orbital energies close to zero energy. As a consequence, excita-
tion energies, given at the zero order by orbital energies differences, to Rydberg states
are also underestimated by 2–5 eV. Second the GGAs do not have the correct asymp-
totic behavior, but decay too rapidly being too repulsive also in the outer region.

3Molec. Phys. 100 (2002) 401; Phys. Rev. Lett. 87 (2001) 133004
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This affects mainly the oscillator strengths of Rydberg states that are systematically
underestimated. The distortions of excitation spectra calculated with GGAs have
been shown in Chapt. 8 for the dipole allowed excitations of the N2 molecule. The
Rydberg states are artificially stabilized with respect to the valence states and the
calculated excitation spectra show, under 15 eV, 25 “spurious” Rydberg states. The
excitation energy of the valence states are in general in quite good agreement with
the experiment, but their orbital composition can be wrong due to the mixing with
the “spurious” transition to the Rydberg states. Moreover the oscillator strengths of
the Rydberg states are underestimated by 1 or 2 orders of magnitude. This exam-
ple makes clear that DFT at this level of approximation is not an adequate tool for
reproducing and interpreting molecular excitation spectra.

In this thesis a scheme has been proposed to correct both shortcomings of the
approximated potentials. The original GGA potential is shifted in the bulk in order
to satisfy the equality between minus the highest occupied molecular orbital and the
first vertical ionization potential, in the outer region a potential is employed that
provides the correct Coulomb decay. The connection between the shifted GGA po-
tential in the bulk and the potential with the correct asymptotic decay is regulated
by the gradient of the density. This consistent DFT scheme has been applied to the
combination of Becke (B) exchange and Perdew (P) correlation potentials, corrected
with the potential of van Leeuwen and Baerends4, to calculate the excitation spectra
of small and organic molecules. Like other asymptotic corrected potential proposed
in the literature5, the gradient regulated asymptotic corrected (GRAC) BP poten-
tial improves substantially the results for Rydberg excitations energies and oscillator
strengths and on the whole it reproduces quantitatively and qualitatively the exper-
imental molecular excitation spectra. The quality of the results for these molecules
is comparable to the quality one can obtain with the exchange-correlation potential
constructed as statistical average of orbital model potentials6 (SAOP).

Both the GRAC-BP and SAOP potentials have been tested for the static average
polarizability and related quantities for 21 small molecules demonstrating that the
improvement in the description of the spectra leads to an improvement of the static
average polarizability and a substantial improvement of the second Cauchy coefficient
(related to the frequency dispersion of the polarizability) and of the static average
hyperpolarizability.

These approximations for the exchange-correlation potential can then be recom-
mended for calculating excitation energies and response properties of small and or-
ganic molecules. The main disadvantage of the GRAC scheme is that the first vertical
ionization potential has to be given as a input in order to shift the potential in the
bulk, while the SAOP, due to its orbital structure provides by itself a good estimate
of the first vertical ionization potential (mean absolute error ∼ 0.4 eV). Further tests
are needed to assess the performance of these potentials, for example for response
properties of transition metals and transition metal complexes.

4Phys. Rev. A, 49 (1994) 2421
5J. Chem. Phys. 108 (1998) 4439; J. Chem. Phys. 109 (1998) 10180
6J. Chem. Phys. 112 (2000) 1344
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The problem of the response of the exchange-correlation potential to an external
field for molecular chains has been finally considered. The exact exchange-correlation
potential has a linear term counteracting the external field. The generalized gradient
approximation exchange-correlation potentials miss this term and as a consequence
they overestimate badly the polarizability of extended systems such as molecular
chains. For the prototype hydrogen chain H18 for example, as has been shown in
Chapt. 9, the hyperpolarizability calculated with the GGA is one order of magnitude
larger than with accurate ab initio methods. A term counteracting the external
field, instead, is present in the approximated exchange potential proposed by Krieger,
Li and Iafrate7 (KLI). In particular the counteracting term comes from the orbital
structure of its response part. This potential improves the results for the polarizability
and hyperpolarizability of the H2n molecular chains, but still the hyperpolarizability
of H18 is overestimated by a factor 3 with respect to Hartree-Fock calculations. In
this thesis the calculations of the polarizability and hyperpolarizability of the H2n

molecular chains have been repeated with the orbital-dependent exchange potential
constructed with the common energy denominator approximation (CEDA) for the
Green function of the KS system. This potential shares with the KLI potential the
exchange hole (or Slater) potential, but the response part has an additional orbital
structure containing not only orbital densities, but also off-diagonal orbital products.
This additional structure contributes to the counteracting term removing 43% of the
error of the KLI potential (versus Hartree-Fock).

To conclude, the cases studied in this thesis suggest that though it is possible to
construct improved functionals within the GGA, a real qualitative and quantitative
breakthrough is possible only considering explicitly the dependence on KS orbitals.

7Phys. Rev. A 45 (1992) 101
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Samenvatting

Dichtheidsfunctionaaltheorie met verbeterde
gradiënt- en orbitaal-afhankelijke functionalen

Het Kohn-Sham (KS) formalisme van de dichtheidsfunctionaaltheorie is een zeer ef-
ficiënt werktuig in de theoretische chemie, maar zijn succes in het voorspellen en
interpreteren van resultaten uit chemische experimenten hangt af van de benadering
van de exchange-correlatie (xc) functionaal. Deze functionaal zou de correlatie ef-
fecten (ten gevolge van interactie tussen elektronen) moeten reproduceren, welke in
het onafhankelijke deeltjes model verwaarloosd worden.

De standaard gegeneraliseerde gradiënt benaderingen (GGA) zijn vrij succesvol
en vaak geven ze nauwkeurige resultaten ondanks hun eenvoud. Toch zijn er, naast
vele succesvolle berekeningen, gevallen bekend die duidelijk problematisch zijn voor
DFT op het benaderingsniveau van GGA’s.

In dit proefschrift zijn een aantal van deze probleemgevallen beschouwd, de oorza-
ken voor de mislukkingen zijn onderzocht en mogelijke verbeteringen zijn voorgesteld
en getest. Twee opties zijn onderzocht, namelijk het aanbrengen van verbeteringen op
het niveau van GGA’s en het ontwikkelen van functionalen die expliciet afhankelijk
zijn van KS orbitalen.

Het eerste deel van dit proefschrift is gewijd aan het probleem van de benadering
van de xc energiefunctionaal voor chemische reacties en moleculaire dissociaties.

Het probleemgeval van het prototype systeem met twee-centra drie-elektronen
binding He+

2 , waarvoor de GGA aanpak de dissociatie-energie overschat met 25–30
kcal/mol, is geanalyseerd in Hoofdstuk 3 met een vergelijking tussen de benaderde en
zeer nauwkeurige KS resultaten.

Het blijkt dat de grootste beperking van de GGA energiefunctionalen het lokale
karakter van het xc “hole” is. Deze beperking blijkt een voordeel te zijn in het
geval van moleculen met een covalente binding die efficiënt beschreven wordt door de
GGA’s: de benaderde exchange omvat zowel de exchange als de niet-dynamische corre-
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latie, terwijl de benaderde correlatie de dynamische correlatie weergeeft. Daarentegen
geldt voor He+

2 dat de bezetting van de valentie-orbitaal met anti-bindend karakter
de niet-dynamische effecten tegenwerkt, waardoor de GGA valse niet-dynamische cor-
relatie produceert. Dit resultaat kan worden gegeneraliseerd voor alle systemen met
zwakke niet-dynamische correlatie. Deze systemen kunnen herkend worden aan de
niet-gehele verhouding tussen het aantal elektronen die bij de binding betrokken zijn
en het aantal centra waarover de binding is gedelokaliseerd. Zoals bewezen is in Hoofd-
stuk 4, heeft de belangrijkste variabele van de gradiënt correcties op de functionaal
van de lokale dichtheid benadering (local density approximation, LDA), de dimen-
sieloze variabele s2σ, lokale maxima in het gebied van de binding van deze moleculen.
Deze lokale maxima kunnen worden herleid tot de orbitaalstructuur van de binding
(ter vergelijking, s2σ is bijna nul in het gebied van de binding van het sterk covalent
gebonden molecuul N2). De valse niet-dynamische correlatie en de hiermee samen-
hangende overschatting van de stabiliteit van deze systemen is toegeschreven aan de
lokale maxima van s2σ.

De prestaties van verschillende meta-GGA’s en gemodificeerde GGA’s zijn getest
(Hoofdstukken 3 en 4) voor de moleculen die volgens onze analyse problematisch zijn
voor standaard GGA’s. Met name de dissociatie van He+

2 , (HF)+2 , (H2O)+2 , (NH3)+2
en de centrale overgangsbarrière van de bimoleculaire nucleofiele substitutie reacties
(SN2) zijn beschouwd. De verschillen tussen deze functionalen en de standaard GGA’s
zijn ook behandeld in deze hoofdstukken.

De gemodificeerde GGA exchange functionalen verschillen van de standaard GGA,
omdat ze niet voldoen aan de uniforme gas limiet. In de limiet dat de gradiënt naar nul
gaat, worden ze gelijk aan Xα exchange met α zó dat het de LDA met een factor 1.05
verhoogt. Verder is voor waarden van sσ tussen 0 en 1, typisch voor het gebied van
de binding in moleculen, de belangrijkste gradiënt correctie van de gemodificeerde
GGA’s s4σ in plaats van de s2σ van de “standaard” functionalen. Hierdoor zijn ze
minder gevoelig voor de lokale maxima van s2σ in het gebied van de binding in de
problematische systemen.

De meta-GGA’s zijn, behalve afhankelijk van de spindichtheid en de gradiënten
hiervan, ook afhankelijk van de kinetische energiedichtheid van de KS orbitalen. De
kinetische energiedichtheid helpt om de gevallen op te sporen waarin de gelokaliseerde
beschrijving van het exchange-correlatie “hole” fout kan zijn. In het bijzonder, zoals
opgemerkt in Hoofdstuk 4, heeft de verhouding tussen de LDA en KS kinetische
energiedichtheid, die gebruikt wordt in verschillende meta-GGA’s, een dominant 1/s2σ
gedrag. Daarom vermindert deze variabele de overschatting die veroorzaakt wordt
door de lokale maxima van s2σ in het gebied van de binding in de problematische
systemen.

Feitelijk verbeteren zowel meta-GGA’s als GGA’s de resultaten voor de centrale
overgangsbarrière van SN2 reacties en voor de dissociatie energie van moleculen met
een twee-centra drie-elektronen binding. Met name de combinatie van de “optimal
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exchange” (OPTX) functionaal1 en de LAP3 correlatie functionaal2 geeft vrij goede
resultaten voor de SN2 reacties. De berekende overgangsbarrière wijkt gemiddeld
slechts 1 kcal/mol van de referentie data af, terwijl dit verschil voor de GGA gemiddeld
7 kcal/mol is. Aan de andere kant, voor de dissociatie energie van moleculen met
een twee-centra drie-elektronen binding verlagen de meta-GGA’s en gemodificeerde
GGA’s de fout met 5–10%, maar het verschil ten opzichte van de referentie data blijft
groot.

Bovendien is gebleken in Hoofdstuk 4 dat GGA’s en meta-GGA’s met verbeterde
correlatie functionalen die parallele en tegengestelde spin correlatie afzonderlijk be-
handelen, goede resultaten leveren voor de overgangsbarrière van waterstof abstractie
en waterstof uitwisselingreacties. Nogmaals geeft de combinatie van LAP3 en OPTX
het beste resultaat met een gemiddelde absolute fout van ongeveer 3 kcal/mol op de
overgangsbarrière.

De GGA, in de “spin restricted” variant, kan niet goed de extreme niet-dynamische
correlatie in de dissocierende elektronen-paar binding beschrijven. In dit geval is
het benaderde exchange “hole” (dat ook de niet-dynamische correlatie-effecten zou
moeten omvatten) te ondiep om de sterke links-rechts correlatie te beschrijven zoals
besproken is in Hoofdstuk 5.

In hetzelfde hoofdstuk is de potentiaalcurve erg goed weergegeven door zelfcon-
sistente KS DFT berekeningen die gebruik maken van de Buijse-Baerends3 xc func-
tionaal. Deze functionaal beschrijft goed de dissociatielimiet van het H2 molecuul
gebruikmakend van zowel de hoogste bezette bindende als de laagste onbezette anti-
bindende moleculaire orbitalen. De effectieve gewichten, of “fictieve bezettingsge-
tallen”, van de bezette en onbezette orbitalen (onbezette orbitalen anders dan de
laagste onbezette orbitaal zijn inbegrepen om dynamische correlatie-effecten te si-
muleren) zijn berekend voor eindige afstanden met een twee-parameters Fermi-type
verdeling afhankelijk van de KS orbitaalenergie. De twee parameters zijn desondanks
aangepast om de H2 potentiaal curve te reproduceren en zijn daarom niet universeel.
In de toekomst zal men een betere schatting voor de fictieve bezetting moeten vinden
die niet alleen rekening houdt met de relatieve energieën, maar ook met de ruimtelijke
lokalisering van moleculaire orbitalen.

Het knelpunt in de opbouw van een “universele” functionaal is dus het modeleren
van de niet-dynamische correlatie-effecten. Hoewel de exchange berekend kan worden
uit de exacte orbitaal uitdrukking en het dynamische deel efficiënt en nauwkeurig
benaderd wordt door de GGA of meta-GGA correlatiefunctionalen, is er nog steeds
geen functionaal die in staat is om zowel de sterke links-rechts correlatie van de
dissociërende elektronen-paar binding, als het gebrek aan (of zwakke) niet-dynamische
correlatie zoals in systemen als He+

2 te beschrijven. In toekomstig werk zou men dus
moeten onderzoeken hoe deze effecten te modeleren, mogelijk met gebruik van de
informatie uit èn de bezette èn de virtuele orbitalen, zoals gesuggereerd wordt door
de resultaten van dit proefschrift.

1N.C. Handy and A.J. Cohen, Mol. Phys. 99 (2001) 403
2E.I. Proynov, S. Sirois, and D.R. Salahub, Intern. J. Quantum Chem. 64 (1997) 427
3Molec. Phys. 100 (2002) 401; Phys. Rev. Lett. 87 (2001) 133004
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Het tweede deel van dit proefschrift is besteed aan de xc potentiaal. De xc poten-
tialen, die afgeleid zijn van de GGA energiefunctionalen zoals behandeld in Hoofd-
stukken 7 en 8, lijden aan twee belangrijke tekortkomingen. Ten eerste zijn ze in
het bulk gebied systematisch te repulsief en de energieën van valentie-orbitalen wor-
den onderschat, met name van de hoogste bezette orbitaal die, voor een potentiaal
die asymptotisch naar nul gaat, minus de eerste verticale ionisatie-energie zou moeten
zijn. De GGA’s onderschatten inderdaad de eerste verticale ionisatiepotentiaal met 3–
6 eV. Deze fout bëınvloedt de energie verschillen, in het bijzonder die tussen valentie-
en hoogliggende orbitalen met energieën dichtbij nul. Dientengevolge worden excita-
tie energieën, die in de nulde orde gegeven worden door de energieverschillen, naar
Rydberg toestanden ook onderschat met 2–5 eV. Ten tweede hebben de GGA’s een
verkeerd asymptotisch gedrag: ze vallen te snel af en ze zijn, ook in het buitengebied,
te repulsief. Dit heeft grote invloed op oscillatorsterktes van Rydberg toestanden, die
hierdoor systematisch onderschat worden. De vervormingen van de excitatiespectra
die berekend zijn met GGA’s zijn beschouwd in Hoofdstuk 8 voor de dipool toege-
stane excitatie van het N2 molecuul. De Rydberg toestanden worden kunstmatig te
stabiel ten opzichte van de valentietoestanden en de berekende excitatiespectra ver-
tonen onder de 15 eV 25 valse Rydberg toestanden. De excitatie-energieën van de
valentietoestanden komen in het algemeen vrij goed overeen met het experiment, hoe-
wel de orbitaalsamenstelling verkeerd kan zijn door het mengen met de overgangen
naar de valse Rydberg toestanden. Bovendien worden de oscillatorsterktes onderschat
met een factor tien tot honderd. Dit voorbeeld maakt duidelijk dat DFT op dit be-
naderingsniveau niet een geschikt werktuig is om excitatiespectra te reproduceren en
interpreteren.

In dit proefschrift is een schema voorgesteld om beide tekortkomingen van de be-
naderde potentialen te corrigeren. De originele GGA potentiaal wordt verschoven
in de bulk om te voldoen aan de gelijkheid tussen de eerste verticale ionisatiepoten-
tiaal en minus de hoogste bezette moleculaire orbitaal, terwijl in het buitengebied
een potentiaal wordt gebruikt die het correcte Coulombische verval geeft. De ver-
binding tussen de verschoven GGA potentiaal in de bulk en de potentiaal met het
correcte asymptotisch gedrag wordt geregeld door de gradiënt van de dichtheid. Dit
consequente DFT schema is toegepast op de combinatie van Becke (B) exchange- en
Perdew (P) correlatiepotentialen, gecorrigeerd met de potentiaal van Van Leeuwen
en Baerends4, om de excitatiespectra van kleine organische moleculen te berekenen.
Net zoals asymptotisch gecorrigeerde potentialen uit de literatuur5, verbetert de gra-
diënt gereguleerde asymptotisch gecorrigeerde (GRAC) BP potentiaal substantiëel de
resultaten voor Rydberg excitatie-energieën en oscillatorsterktes. Alles bij elkaar re-
produceert deze potentiaal kwantitatief en kwalitatief de experimentele moleculaire
excitatiespectra. De kwaliteit van de resultaten is vergelijkbaar met de kwaliteit die
men kan bereiken met de xc potentiaal die opgebouwd is als statistisch gemiddelde
van orbitaal-modelpotentialen6 (SAOP).

4Phys. Rev. A, 49 (1994) 2421
5J. Chem. Phys. 108 (1998) 4439; J. Chem. Phys. 109 (1998) 10180
6J. Chem. Phys. 112 (2000) 1344
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De GRAC-BP en SAOP potentialen zijn beide gebruikt om de statische gemid-
delde polariseerbaarheid en gerelateerde grootheden voor 21 kleine moleculen uit te
rekenen. De resultaten tonen aan dat een verbetering in de beschrijving van de excita-
tiespectra leidt tot een verbetering van de statische gemiddelde polariseerbaarheid en
een aanzienlijke verbetering van de tweede Cauchy coëfficiënt, die gerelateerd is aan de
frequentie-afhankelijkheid van de polariseerbaarheid, en van de statische gemiddelde
hyperpolariseerbaarheid.

Deze benaderingen van de xc potentiaal worden aanbevolen om excitatiespectra en
responseigenschappen te berekenen van kleine en organische moleculen. Het grootste
nadeel van het GRAC schema is dat de verticale ionisatiepotentiaal als input gege-
ven moet worden voor de verschuiving in het bulk gebied, terwijl SAOP, vanwege zijn
orbitaalstructuur, op zichzelf al een goede schatting geeft van de verticale ionisatiepo-
tentiaal (gemiddelde absolute fout ∼ 0.4 eV). Verdere tests zijn nodig om de werking
van deze potentialen te onderzoeken, bijvoorbeeld op het gebied van responseigen-
schappen van overgangsmetalen en overgangsmetaalcomplexen.

Ten slotte is het probleem van de respons van de xc potentiaal op een extern
veld voor moleculaire ketens beschouwd. De exacte xc potentiaal heeft een lineaire
term die het externe veld tegenwerkt. De GGA xc potentialen missen deze term en
overschatten daarom aanzienlijk de polariseerbaarheid van uitgebreide systemen zoals
moleculaire ketens. Zoals aangetoond in Hoofdstuk 9 voor bijvoorbeeld de prototy-
pe waterstofketen H18, is de hyperpolariseerbaarheid die berekend is met de GGA,
een factor tien groter dan die berekend met nauwkeurige ab initio methodes. Een
term die het externe veld tegenwerkt is daarentegen wel aanwezig in de benaderde
exchange potentiaal die voorgesteld is door Krieger, Li en Iafrate7 (KLI). Met name
de term die het elektrische veld tegenwerkt, komt uit het respons deel van zijn orbi-
taalstructuur. Deze potentiaal verbetert de resultaten voor de polariseerbaarheid en
de hyperpolariseerbaarheid van de H2n moleculaire ketens, maar de hyperpolariseer-
baarheid wordt nog overschat met een factor drie ten opzichte van Hartree-Fock (HF)
berekeningen. In dit proefschrift zijn de berekeningen voor de polariseerbaarheid en
de hyperpolariseerbaarheid van de H2n moleculaire ketens herhaald met de orbitaal-
afhankelijke exchangepotentiaal die afgeleid is van de “common energy denominator
approximation” (CEDA) voor de Green functie van het KS systeem. Deze potentiaal
heeft hetzelfde exchange “hole” als de KLI potentiaal, maar het respons deel heeft
een extra orbitaalstructuur die niet alleen orbitaaldichtheden bevat, maar ook niet-
diagonale orbitaalproducten. Deze extra structuur draagt bij aan de tegenwerkende
term en verlaagt de fout van de KLI potentiaal (ten opzichte van HF) met 43%.

Tot besluit, de gevallen die onderzocht zijn in dit proefschrift wijzen erop dat
hoewel het mogelijk is om verbeterde GGA functionalen te ontwikkelen, een echte
kwalitatieve en kwantitatieve doorbraak alleen mogelijk is, wanneer de orbitaalafhan-
kelijkheid van de potentiaal nadrukkelijk wordt meegenomen.

7Phys. Rev. A 45 (1992) 101
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