Table of Contents

Required citations ... 1
Table of Contents .. 2
General References ... 4

 ADF ... 4
 BAND ... 4
 GUI ... 5
 COSMO-RS ... 5
 DFTB ... 5
 ReaxFF ... 5
 MOPAC .. 6
 QUILD ... 6
 FlexMD .. 6
 UFF ... 6
Feature References ADF .. 7
 Coordinates, basis sets, fragments ... 7
 Basis Sets .. 7
 Nuclear model .. 7
 Geometry optimizations, transition states, and reaction paths ... 7
 Transition State search ... 7
 IRC .. 7
 Nudged Elastic Band ... 7
Model Hamiltonians ... 8
 Density Functional ... 8
 Range Separated Functionals .. 8
 OEP ... 8
 Relativistic Effects .. 8
 ZORA ... 8
 Pauli ... 8
 Solvents and other environments .. 9
 COSMO: Conductor like Screening Model ... 9
 QM/MM: Quantum mechanical and Molecular Mechanics model 9
 FDE: Frozen Density Embedding .. 9
 DIM/QM: Discrete Interaction Model/Quantum Mechanics ... 9
 SCRF: Self-Consistent Reaction Field .. 10
 3D-RISM: Three-Dimensional Reference Interaction Site Model 10
 MM Dispersion: Molecular Mechanics dispersion-corrected functionals 10
Molecular properties with ADF .. 11
 Frequencies, IR Intensities, Raman, VCD ... 11
 Numerical Differentiation of Gradients ... 11
 Analytical Second Derivatives ... 11
 Mobile Block Hessian (MBH) .. 11
 (Resonance) Raman Scattering .. 11
 VROA: (Resonance) vibrational Raman optical activity .. 12
 Vibrational Circular Dichroism (VCD) .. 12
 Franck-Condon factors ... 12
 Time-Dependent DFT ... 12
 Excitation Energies and Oscillator Strengths .. 12
 Excited state gradients ... 13
 Polarizabilities ... 13
 Hyperpolarizabilities .. 13
 Dispersion Coefficients ... 14
 Circular Dichroism (CD) ... 14
 Optical Rotation (OR), Optical Rotation Dispersion (ORD) .. 14
 Magnetizability .. 14
<table>
<thead>
<tr>
<th>Magnetic Circular Dichroism (MCD)</th>
<th>...</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verdet constant and Faraday term</td>
<td>...</td>
<td>15</td>
</tr>
<tr>
<td>NMR ...</td>
<td>...</td>
<td>15</td>
</tr>
<tr>
<td>NMR Chemical Shifts</td>
<td>...</td>
<td>15</td>
</tr>
<tr>
<td>NMR spin-spin coupling</td>
<td>...</td>
<td>16</td>
</tr>
<tr>
<td>ESR/EPR ..</td>
<td>G-tensor: Zeeman interaction ..</td>
<td>17</td>
</tr>
<tr>
<td>..</td>
<td>A-tensor: Nuclear magnetic dipole hyperfine interaction</td>
<td>17</td>
</tr>
<tr>
<td>..</td>
<td>Electric Field Gradient, NQCC ..</td>
<td>17</td>
</tr>
<tr>
<td>..</td>
<td>Transport properties: Non-self-consistent Green's function</td>
<td>18</td>
</tr>
<tr>
<td>Analysis</td>
<td>...</td>
<td>18</td>
</tr>
<tr>
<td>..</td>
<td>Bond Energy Analysis ...</td>
<td>18</td>
</tr>
<tr>
<td>..</td>
<td>ETS-NOCV ..</td>
<td>18</td>
</tr>
<tr>
<td>..</td>
<td>QTAIM, Bader analysis ...</td>
<td>18</td>
</tr>
<tr>
<td>Feature References BAND</td>
<td>Geometry optimization ...</td>
<td>19</td>
</tr>
<tr>
<td>..</td>
<td>...</td>
<td>19</td>
</tr>
<tr>
<td>..</td>
<td>TDDFT ..</td>
<td>19</td>
</tr>
<tr>
<td>..</td>
<td>Relativistic TDDFT ..</td>
<td>20</td>
</tr>
<tr>
<td>..</td>
<td>Vignale Kohn ..</td>
<td>20</td>
</tr>
<tr>
<td>..</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>NMR ...</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>ESR ...</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>Feature and Force Field References ReaxFF</td>
<td>Force-bias Monte Carlo (fbMC)</td>
<td>21</td>
</tr>
<tr>
<td>..</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>ReaxFF Force Field References</td>
<td>...</td>
<td>21</td>
</tr>
<tr>
<td>DFTB Parameter References</td>
<td>...</td>
<td>23</td>
</tr>
<tr>
<td>External programs and Libraries used by the ADF package</td>
<td>Tcl/Tk</td>
<td>27</td>
</tr>
<tr>
<td>..</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Tcllib, including tklib (the Tcl standard library)</td>
<td>VTK</td>
<td>28</td>
</tr>
<tr>
<td>..</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>BLAS ..</td>
<td>LAPACK ...</td>
<td>30</td>
</tr>
<tr>
<td>..</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>ScaLAPACK</td>
<td>Python 2.6 ..</td>
<td>31</td>
</tr>
<tr>
<td>..</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Numpy ..</td>
<td>Open MPI ..</td>
<td>33</td>
</tr>
<tr>
<td>..</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Platform MPI 7</td>
<td>OpenBabel ...</td>
<td>35</td>
</tr>
<tr>
<td>..</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>ASE ..</td>
<td>PLUMED ...</td>
<td>36</td>
</tr>
<tr>
<td>..</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Packmol ..</td>
<td>Symmol ...</td>
<td>37</td>
</tr>
<tr>
<td>..</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>MEAD ...</td>
<td>Swish-e ...</td>
<td>38</td>
</tr>
<tr>
<td>..</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>FFTW ...</td>
<td>XCFun ...</td>
<td>38</td>
</tr>
<tr>
<td>..</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>XQuartz</td>
<td>...</td>
<td>39</td>
</tr>
</tbody>
</table>
General References

When you publish results in the scientific literature that were obtained with programs of the ADF package, you are required to include references to the program package with the appropriate release number, and a few key publications.

In addition to these general references, references to special features are mandatory, in case you have used them. See the section Feature References ADF and Feature References BAND.

For ReaxFF calculations, include the relevant Force Field Reference in addition to the general ReaxFF references.

ADF

For calculations with the molecular ADF program, version 2013:

Optionally, you may add the following list of authors and contributors:

Note: if you have used a modified (by yourself, for instance) version of the code, you should mention in the citation that a modified version has been used.

BAND

For calculations with the periodic structures BAND program, version 2013:

Optionally, you may add the following list of authors and contributors:

P.H.T. Philipsen, G. te Velde, E.J. Baerends, J.A. Berger, P.L. de Boeij, M. Franchini, J.A. Groeneveld,

Note: if you have used a modified (by yourself, for instance) version of the code, you should mention in the citation that a modified version has been used.

GUI

The integrated GUI has been developed by SCM (with O. Visser as primary developer), with some contributions from outside SCM (especially P. Leyronnas, W.-J. van Zeist, and M. Luppi).

If you used the GUI you may optionally include the reference:

COSMO-RS

For calculations with the COSMO-RS program, version 2013:

Optionally, you may add the following list of authors and contributors:
J.N. Louwen, C.C. Pye, E. van Lenthe, E.S. McGarrity

DFTB

For calculations with the Density Functional Tight Binding (DFTB) program:

Optionally, you may add the following list of authors and contributors:
Stefano Borini, Pier Philipsen, Alexei Yakovlev, Drew McCormack, Serguei Patchkovskii, Thomas Heine

If you use one of the included parameter sets you must also add the proper reference for it.

ReaxFF

The ReaxFF software that SCM makes available is based on the ReaxFF program developed by Adri van Duin.

For calculations with ReaxFF:

Optionally, you may add the following list of authors and contributors:
A.C.T. van Duin, W.A. Goddard, A.L. Yakovlev

The ReaxFF GUI (ReaxFFinput and ADFmovie) has been developed within SCM (with O. Visser as primary developer).

The ReaxFF program has been parallelized, optimized, and extended by SCM (with A.L. Yakovlev as primary developer).

If you use one of the included force fields you must also add the proper reference for it.

If you use special features, you must also add the proper references for them.

Many examples of ReaxFF applications can be found on Prof. van Duin's publication list.

MOPAC

For calculations with MOPAC:

1. MOPAC2009, J. J. P. Stewart, Stewart Computational Chemistry; Colorado Springs, CO, USA

QUILD

For calculations with the Quild program

FlexMD

For calculations with FlexMD:

UFF

For calculations with the UFF4MOF parameters:

Feature References ADF

When you have used special features, you should include one (or more, as the case may be) lead reference(s) to the implementation. Additional references to related publications are suggested.

Coordinates, basis sets, fragments

Basis Sets

Nuclear model

spherical Gaussian nuclear charge distribution model

Geometry optimizations, transition states, and reaction paths

Transition State search

IRC

Nudged Elastic Band

Model Hamiltonians

Density Functional

Range Separated Functionals

OEP

Relativistic Effects

ZORA

Lead references

Suggested related references

Pauli

Lead references

Solvents and other environments

COSMO: Conductor like Screening Model

QM/MM: Quantum mechanical and Molecular Mechanics model

Lead

Suggested

For AddRemove model

FDE: Frozen Density Embedding

DIM/QM: Discrete Interaction Model/Quantum Mechanics

DRF: Discrete Solvent Reaction Field model

SCRF: Self-Consistent Reaction Field

VSCRF (vertical excitation self-consistent reaction field)

3D-RISM: Three-Dimensional Reference Interaction Site Model

Lead

Suggested

MM Dispersion: Molecular Mechanics dispersion-corrected functionals

old implementation

contact: J.M. Ducere, L. Cavallo, University of Salerno, Italy
Molecular properties with ADF

Frequencies, IR Intensities, Raman, VCD

Numerical Differentiation of Gradients

Analytical Second Derivatives

Mobile Block Hessian (MBH)

Lead

Suggested

(Resonance) Raman Scattering

Raman scattering

Resonance Raman: excited-state finite lifetime

Resonance Raman: excited-state gradient

VROA: (Resonance) vibrational Raman optical activity

Vibrational Circular Dichroism (VCD)

Franck-Condon factors

Time-Dependent DFT

For all Time-Dependent DFT features (Excitation Energies, (Hyper) Polarizabilities, Dispersion Coefficients, Raman Scattering, include:

Excitation Energies and Oscillator Strengths

Lead reference

Suggested (when ZORA relativistic results are used)

Open Shell ground state

Spin-flip transitions

Core excitations

Excitations including spin-orbit coupling

Perturbative approach to include spin-orbit coupling

Excited state gradients

Polarizabilities

Lead

Polarizabilities including spin-orbit coupling

Suggested

Hyperpolarizabilities

Lead

Suggested:

Dispersion Coefficients

Lead

Suggested

Circular Dichroism (CD)

Lead

Optical Rotation (OR), Optical Rotation Dispersion (ORD)

Lead

Magnetizability

Lead

Magnetic Circular Dichroism (MCD)

Verdet constant and Faraday term

NMR

NMR Chemical Shifts

Lead reference

NMR chemical shifts with hybrid functionals

NMR chemical shifts with NBO analysis

Paramagnetic NMR chemical shifts

Suggested

NMR spin-spin coupling

Lead

NMR spin-spin couplings with PBE0

NMR spin-spin couplings with NBO analysis

Suggested

R.M. Dickson and T. Ziegler, *NMR Spin-Spin Coupling Constants from Density Functional Theory with Slater-Type Basis Functions*, Journal of Physical Chemistry 100, 5286 (1996)

Suggested book reference

ESR/EPR

G-tensor: Zeeman interaction

Lead reference (self-consistent spin-orbit coupling)

Lead reference (perturbative inclusion spin-orbit coupling)

Lead references (perturbative inclusion spin-orbit coupling with EPR/NMR program)

A-tensor: Nuclear magnetic dipole hyperfine interaction

Lead reference

Lead reference (perturbative inclusion spin-orbit coupling)

Electric Field Gradient, NQCC

Lead reference (in ESR called Q-tensor: Nuclear electric quadrupole hyperfine interaction)

EFG with NBO analysis

Transport properties: Non-self-consistent Green's function

Chapter 2 and appendix C of

Wide-band limit

Analysis

Bond Energy Analysis

T. Ziegler and A. Rauk, *A theoretical study of the ethylene-metal bond in complexes between Cu\(^+\), Ag\(^+\), Au\(^+\), Pt\(^0\) or Pt\(^2+\) and ethylene, based on the Hartree-Fock-Slater transition-state method*, *Inorganic Chemistry* **18**, 1558 (1979)

ETS-NOCV

QTAIM, Bader analysis

Grid-based algorithm

Feature References BAND

Lead

See key references above, for all work with BAND

Suggested

Geometry optimization

Lead

TDDFT

Lead

Main applications

P. Romaniello, P.L. de Boeij, F. Carbone, and D. van der Marel, *Optical properties of bcc transition metals in the range 0.40 eV*, Physical Review B 73, 075115 (2006)

Suggested book references

Relativistic TDDFT

Vignale Kohn

Lead

Applications

NMR

Lead

ESR

A-tensor: Nuclear magnetic dipole hyperfine interaction

G-tensor: Zeeman interaction

Feature and Force Field References ReaxFF

When you have used force fields or special features, you should include the reference(s) to the implementation.

Force-bias Monte Carlo (fbMC)

ReaxFF Force Field References

When you publish results in the scientific literature that were obtained with one of the included force fields for ReaxFF, including the proper reference for the force field used is mandatory.

AB (Ammonia Borane):

AuO:

CHO (Hydrocarbon oxidation):

HCONSb:

Cu-water:

FeOCH:

HE (RDX/High Energy):

NaH:

NiCH:

SiOH:

VOCH:

ZnOH:

CHONSSi-lg:

DFTB Parameter References

When you publish results in the scientific literature that were obtained with one of the included parameter sets for DFTB, including the proper reference for the used DFT parameters is mandatory.

mio-0-1 from DFTB.org

For systems containing O, N, C, H:

For systems also containing S:

mio-1-1 from DFTB.org

For systems containing O, N, C, H:

For systems also containing S:

For systems also containing P:

chalc-0-1 from DFTB.org

Include the DFTB.org/mio-0-1 references and add for As-S-H containing systems the chalc_0_1 reference:

matsci-0-3 from DFTB.org (same origin as Dresden parameters)

The complete set:

For systems containing Al, O, and H:

For systems containing Al, Si, O, and H:

For systems containing Al, O, P, C, and H:

23
For systems containing Ti, O, P, C, and H:

For systems containing Ti, N, O, P, C, and H:

For systems containing Cu-Si, Cu-O, Cu-H, Cu-Na, Na-H, Na-Si, Na-O:

miomod-hh-0-1 from DFTB.org
Modification of the DFTB.org/mio parameters for H-H potentials. Use appropriate mio references.

miomod-hn-0-1 from DFTB.org
Modification of the DFTB.org/mio parameters for N-H potentials. Use appropriate mio references and add for N-H:

pbc-0-3 from DFTB.org
For systems containing Si:

For systems containing Si and C:

For systems containing Si and O:

For systems containing F (and Si, O, N, C, H):
C. Koehler, Th. Frauenheim, Molecular dynamics simulations of CFx (x = 2, 3) molecules at Si3N4 and SiO2 surfaces, Surf. Sci. 600, 453-460 (2003)

For systems containing F (and Si, O, N, C, H):

tiorg-0-1 from DFTB.org
In addition to the mio set, cite:

tiorg-0-1 from DFTB.org
In addition to the mio set, cite:
znorg-0-1 from DFTB.org

In addition to the mio set, cite:

3ob-1-1 from DFTB.org

For systems containing O, N, C, H:

3ob-freq-1-1 from DFTB.org

Modified 3ob-parameters for vibrational frequencies:

3ob-hhmod-1-1 from DFTB.org

Modified H-H for 3ob (for H2):

3ob-nhmod-1-1 from DFTB.org

Modified N-H for 3ob (improves sp3-N proton affinities):

Dresden (same origin as matsci-0-3 parameters in DFTB.org)

ThirdOrder

External programs and Libraries used by the ADF package

The next programs and/or libraries are used in the ADF package. On some platforms optimized libraries have been used and/or vendor specific MPI implementations.

Tcl/Tk

Description:

the scripting language used internally within the ADF package

Site:

http://www.tcl.tk/

License:

BSD-style open source license

This software is copyrighted by the Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation, ActiveState Corporation and other parties. The following terms apply to all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its documentation for any purpose, provided that existing copyright notices are retained in all copies and that this notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not follow the licensing terms described here, provided that the new terms are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the Government shall have only "Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the
software shall be classified as "Commercial Computer Software" and the
Government shall have only "Restricted Rights" as defined in Clause
252.227-7013 (b) (3) of DFARs. Notwithstanding the foregoing, the
authors grant the U.S. Government and others acting in its behalf
permission to use and distribute the software in accordance with the
terms specified in this license.

Tcllib, including tklib (the Tcl standard library)

Description:

standard library belonging to Tcl/Tk

Site:

http://www.tcl.tk/software/tcllib/

License:

BSD

On the TclTk wiki the following is mentioned about the license:

In response to popular demand, the Tcl core group is introducing tcllib,
a Tcl standard library. This meta-package will contain many modules,
each of which is itself a standalone Tcl package. The intention is to
provide commonly used functions and libraries, bundled together under a
single license (BSD), and with no binary dependencies.

The following text is included with both the tcllib and tklib distributions in license.terms:

This software is copyrighted by Ajuba Solutions and other parties.
The following terms apply to all files associated with the software unless
explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute,
and license this software and its documentation for any purpose, provided
that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors
and need not follow the licensing terms described here, provided that
the new terms are clearly indicated on the first page of each file where
they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
 ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY
 DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE
IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the Government shall have only "Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as "Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in its behalf permission to use and distribute the software in accordance with the terms specified in this license.

VTK

Description:

the visualization toolkit used by the GUI

Site:

http://www.vtk.org/

License:

BSD license

VTK is an open-source toolkit licensed under the BSD license.

Copyright (c) 1993-2008 Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
• Neither name of Ken Martin, Will Schroeder, or Bill Lorensen nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS` AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
BLAS

Description:
Linear Algebra library

Site:
http://www.netlib.org/blas/

License:
unknown

The following information is from the BLAS FAQ on the mentioned site:

2) Are there legal restrictions on the use of BLAS reference implementation software?

The reference BLAS is a freely-available software package. It is available from netlib via anonymous ftp and the World Wide Web. Thus, it can be included in commercial software packages (and has been). We only ask that proper credit be given to the authors.

Like all software, it is copyrighted. It is not trademarked, but we do ask the following:

If you modify the source for these routines we ask that you change the name of the routine and comment the changes made to the original.

We will gladly answer any questions regarding the software. If a modification is done, however, it is the responsibility of the person who modified the routine to provide support.

LAPACK

Description:
Linear Algebra library

Site:
http://www.netlib.org/lapack/

License:
modified BSD

Copyright (c) 1992-2010 The University of Tennessee and The University of Tennessee Research Foundation. All rights reserved.

Copyright (c) 2000-2010 The University of California Berkeley. All rights reserved.

Copyright (c) 2006-2010 The University of Colorado Denver. All rights reserved.

$COPYRIGHT$

Additional copyrights may follow
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

The copyright holders provide no reassurances that the source code provided does not infringe any patent, copyright, or any other intellectual property rights of third parties. The copyright holders disclaim any liability to any recipient for claims brought against recipient by any third party for infringement of that parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ScaLAPACK

Description:
implementation of a subset of LAPACK routines for parallel computers

Site:
http://www.netlib.org/scalapack/

License:
modified BSD

Copyright (c) 1992-2009 The University of Tennessee. All rights reserved.

Additional copyrights may follow
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Python 2.6

Description:
scripting language

Site:
http://www.python.org/

License:
open source, GPL compatible

Click to read the license conditions printed by Python 2.6 by using the license() function.

Numpy

Description:
Library for scientific computing with Python

Site:
http://numpy.scipy.org/

License:

BSD License

Numpy license
Copyright © 2005-2010, NumPy Developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of the NumPy Developers nor the names of any contributors may be used to
endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Open MPI

Description:

Open source MPI-2 implementation

Site:

http://www.open-mpi.org/

License:

New BSD License

Following is the text of the New BSD license, taken from http://www.open-mpi.org/community/
license.php:

Most files in this release are marked with the copyrights of the
organizations who have edited them. The copyrights below are in no
particular order and generally reflect members of the Open MPI core
team who have contributed code to this release. The copyrights for
code used under license from other parties are included in the
 corresponding files.

Copyright (c) 2004-2010 The Trustees of Indiana University and Indiana
University Research and Technology
Corporation. All rights reserved.
provided does not infringe any patent, copyright, or any other intellectual property rights of third parties. The copyright holders disclaim any liability to any recipient for claims brought against recipient by any third party for infringement of that parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Platform MPI 7

Description:

High performance MPI implementation (formerly HP-MPI)

Site:

http://www.platform.com/Products/platform-mpi

License:

Commercial

OpenBabel

Description:

The Open Source Chemistry Toolbox

OpenBabel is used as an external command to convert input formats.

Site:

http://openbabel.org/

License:

GNU General Public License GPL2

Click to read the COPYING file as included with OpenBabel (the GPL2 license).

ASE

Description:
Atomistic Simulation Environment

ASE is used to perform MD simulations within FlexMD.

Site:

https://wiki.fysik.dtu.dk/ase/overview.html

Reference:

If you find ASE useful in your research please cite:

S. R. Bahn and K. W. Jacobsen
An object-oriented scripting interface to a legacy electronic structure code

License:

GNU Lesser General Public License version 2.1

LICENSE included in the distribution:

ASE is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2.1 of the License, or
(at your option) any later version.

ASE is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with ASE. If not, see http://www.gnu.org/licenses/.

PLUMED

Description:

PLUMED is an open source plugin for free energy calculations in molecular systems.

Site:

http://www.plumed-code.org

Reference:

You may wish to cite the following reference if you have utilized PLUMED in your work:

Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F.
Pietrucci, R.A. Broglia and M. Parrinello
PLUMED: a portable plugin for free-energy calculations with molecular dynamics, Comp. Phys.

License:

GNU Lesser General Public License version 3
LICENSE included in the distribution:

PLUMED is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
PLUMED is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more detail.

You should have received a copy of the GNU Lesser General Public License along with PLUMED. If not, see http://www.gnu.org/licenses/.

Packmol

Description:

Packing Optimization for Molecular Dynamics Simulations

Packmol (version of november 2009) is used to generate MD starting geometries. No changes have been made to the source code, and the version of the source code that we have used is included in $ADFHOME/Install/packmol.tar (november 2009).

Packmol is executed as an (external) stand-alone command via the GUI.

Site:

http://www.ime.unicamp.br/~martinez/packmol/

License:

GPL 3

Click to read the COPYING file as included with Packmol (the GPL3 license).

Following is the AUTHORS file as included with Packmol:

===

L. Martinez, R. Andrade, E. G. Birgin, J. M. Martinez,
Packmol: A package for building initial configurations for molecular dynamics simulations.

J. M. Martinez and L. Martinez,
Packing optimization for automated
generation of complex system’s initial configurations for molecular dynamics and docking.

Home-Page: http://www.ime.unicamp.br/~martinez/packmol

Symmol

Description:
Program to find symmetry of a molecule

Reference:

MEAD

Description:

Macroscopic Electrostatics with Atomic Detail

Site:

http://www.stjuderesearch.org/bashford-mead

Swish-e

Description:

Open source text-indexing tool

Starting with the 2011 release, Swish-e will be included and is used as an external program to search the documentation.

Site:

http://swish-e.org/

License:

a modified version of GNU GPL2

Click to read the full license (taken from http://swish-e.org/license.html).

FFTW

Description:

Library to compute the discrete Fourier transform

Site:

http://www.fftw.org/

License:

commercial

XCFun

Description:
XCFun is a library of approximate exchange-correlation functionals

Site:

http://admol.org/xcfun

License:

A modified LGPL license that allows SCM to link statically with XCFun

The XCFun library is licensed under the LGPL license. This means that you may modify and distribute the library freely as long as you also release any changes made by you under the LGPL license. If you are just making modifications without distributing the modified library you are not obliged to release your changes. However, we do of course welcome all contributions as long as they are well tested and thought out

Reference:

XQuartz

Description:

A version of the X.Org X Window System that runs on OS X

The Mac OS X version (64 bit) uses XQuartz to run on Mountain Lion. The ADF2013.01.app application is a modified XQuartz.app, retaining the original copyright messages. The change is that after starting the Xserver the ADF-GUI application is automatically started.

Site:

http://xquartz.macosforge.org

License:

An XQuartz installation consists of many individual pieces of software which have various licenses. The X.Org software components’ licenses are discussed on the X.Org Foundation Licenses page. The quartz-wm window manager included with the XQuartz distribution uses the Apple Public Source License Version 2.