
ADF Manual
ADF Program System

Release 2014

Scientific Computing & Modelling NV
Vrije Universiteit, Theoretical Chemistry
De Boelelaan 1083; 1081 HV Amsterdam; The Netherlands
WWW: www.scm.com
E-mail: support@scm.com

Copyright © 1993-2014: SCM / Vrije Universiteit, Theoretical Chemistry, Amsterdam, The Netherlands
All rights reserved

1

http://www.scm.com/
mailto:support@scm.com

Table of Contents
ADF Manual... 1
Table of Contents ... 2
Preface .. 9

Release 2014.. 9
1 GENERAL... 11

1.1 Introduction.. 11
Characterization of ADF ... 11
Fragments .. 12

1.2 Feature List .. 13
1.3 Technical remarks, Terminology ... 15

Density functional theory .. 15
The Kohn-Sham MO model.. 16
Basis functions and orbitals.. 16
Fit functions .. 19
Three-step build-up of the bonding .. 20
Transition State procedure ... 21

1.4 Running the program.. 22
Execution of ADF ... 22
Files .. 23

1.5 ADF-GUI.. 24
2 INPUT.. 25

2.1 Minimal input ... 25
2.2 Structure of the input .. 25

Keywords.. 26
Interpretation of Input ... 27
Link-in Input files .. 30
Title, comment, layout of input ... 30

2.3 Coordinates, basis sets, fragments... 31
Atomic coordinates ... 31

Mixed Cartesian and Z-matrix coordinates.. 33
Orientation of Local Atomic Coordinates ... 34
ASCII Output Files with Atomic Coordinates ... 34

Basis sets and atomic fragments ... 35
Database of STO basis sets.. 35

How TO make EVEN-tempered basis/fit sets? .. 37
Available standard basis sets .. 40
Automatic mode .. 42
Create mode.. 44
Ghost Atoms & Non-standard Chemical Elements ... 46
Nuclear Model ... 48

What basis set should I use in ADF? ... 48
ZORA or nonrelativistic calculation? ... 48
Large or small molecule? .. 49
Frozen core or all-electron? .. 50
Diffuse functions needed?... 50
Normal or even-tempered basis? .. 51
What accuracy do the basis sets give? ... 51

Molecular fragments ... 53
Fragment mode ... 53
Fragment files.. 56

2.4 Model Hamiltonians... 57
Electronic Configuration ... 57

Charge and Spin ... 58
Orbital occupations: electronic configuration, excited states... 59

2

Aufbau, smearing, freezing .. 60
Explicit occupation numbers... 61
CHARGE vs. OCCUPATIONS ... 63
Create mode... 63

Multiplet States .. 63
Multiplet energies ... 64

Frozen core approximation.. 75
Spin-polarized start-up potential.. 76

Spin-flip method for broken symmetries ... 76
Modify the starting potential ... 76

Unrestricted fragments .. 78
Remove Fragment Orbitals .. 79

Density Functional .. 80
Exchange Correlation Potentials ... 80
Defaults, special cases, simple input .. 86

PBE functionals .. 86
SSB-D functional .. 86
Meta-GGA potentials .. 87
Model potentials ... 87
Hartree-Fock and (meta-)hybrid potentials... 88
Range-separated functionals ... 90
Simple XC potential input ... 91

Post-SCF energy functionals... 93
GGA energy functionals ... 93
Meta-GGA and hybrid energy functionals .. 94

Self-Interaction Correction... 96
General remarks.. 99
Dispersion corrected functionals ... 100

DFT-D3 functionals... 100
DFT-D functionals... 100
MM dispersion (old implementation) .. 101
dDsC: density dependent dispersion correction ... 102
DFT-ulg... 103
DFT-MBD functionals ... 103

Relativistic effects... 103
Pauli... 104
ZORA... 104
Spin-Orbit coupling.. 105
Relativistic core potentials ... 105

Dirac program: Relativistic Potentials... 105
Solvents and other environments ... 107

COSMO: Conductor like Screening Model .. 107
QM/MM: Quantum mechanical and Molecular Mechanics model 114
Quild: Quantum-regions Interconnected by Local Descriptions .. 115
DIM/QM: Discrete Interaction Model/Quantum Mechanics ... 115
FDE: Frozen Density Embedding .. 125
SCRF: Self-Consistent Reaction Field .. 134
VSCRF: Vertical Excitation Self-Consistent Reaction Field .. 139
3D-RISM: 3D Reference Interaction Site Model ... 143

Electric Field: Homogeneous, Point Charges, Polarizability .. 148
2.5 Structure and Reactivity ... 149

Run Types .. 149
Runtype control and strategy parameters ... 151

Geometry Optimization... 151
Transition State .. 156

Transition State Reaction Coordinate (TSRC) .. 158
Linear Transit ... 159

3

Linear Transit (new branch) .. 159
Linear Transit (old branch) .. 160
Symmetry in a Linear Transit .. 161

Intrinsic Reaction Coordinate ... 161
IRC start direction.. 163
Forward / Backward IRC paths ... 163

Climbing-Image Nudged Elastic Band.. 164
Recommendations concerning the NEB method. ... 165

Special Features .. 166
Initial Hessian .. 166
Constrained optimizations, LT (new branch) ... 166
Constrained optimizations, IRC, NEB, LT (old branch) ... 168
Restrained optimizations ... 172
Symmetry versus constraints .. 173

Frequencies.. 174
Analytical Frequencies .. 174
Numerical Frequencies ... 176
Mobile Block Hessian (MBH)... 178
Thermodynamics... 179

Gibbs free energy change for a gas phase reaction .. 180
Accuracy.. 181
Isotope Shifts of Vibrational Frequencies .. 181
Scanning a Range of Frequencies .. 182
Moments of inertia ... 182

Excited state (geometry) optimizations .. 182
2.6 Spectroscopic properties ... 182

IR spectra, (resonance) Raman, VROA, VCD ... 183
IR spectra .. 183
Raman scattering .. 183
Raman Intensities for Selected Frequencies... 184
Resonance Raman: excited-state finite lifetime .. 185
Resonance Raman: excited-state gradient ... 186
VROA: (Resonance) vibrational Raman optical activity .. 189
Vibrational Circular Dichroism (VCD) spectra. .. 190
Vibrationally resolved electronic spectra ... 191

Time-dependent DFT ... 191
General remarks on the Response and Excitation functionality .. 191
Analysis options for TDDFT (excitation energies and polarizabilities) 194
Time-dependent Current DFT ... 194

Excitation energies: UV/Vis spectra, X-ray absorption, CD, MCD ... 195
Excitation energies, UV/Vis spectra .. 195

Tamm-Dancoff approximation .. 197
Full XC kernel ... 197
Excitations as orbital energy differences .. 198
Accuracy and other technical parameters .. 199

Excitation energies for open-shell systems ... 199
Spin-flip excitation energies .. 200
Select excitation energies, Core Excitation energies, X-ray absorption 200

State selective optimization excitation energies ... 201
Modify range of excitation energies.. 202

Excitation energies and Spin-Orbit coupling ... 204
Perturbative inclusion of spin-orbit coupling ... 204
Self-consistent spin-orbit coupling.. 205
Highly approximate spin-orbit coupled excitation energies open shell molecule 206

CD spectra... 206
MCD .. 207
Applications of the Excitation feature in ADF .. 211

4

Excited state (geometry) optimizations .. 211
Vibrationally resolved electronic spectra .. 213

FCF program: Franck-Condon Factors ... 214
Example absorption and fluorescence .. 217
Example phosphorescence ... 218

(Hyper-)Polarizabilities, ORD, magnetizabilities, Verdet constants.. 219
Polarizabilities.. 219

Accuracy and convergence, RESPONSE key ... 220
Hyperpolarizabilities .. 221
Van der Waals dispersion coefficients .. 221

DISPER program: Dispersion Coefficients ... 222
Optical rotation dispersion (ORD) ... 223
AORESPONSE: Lifetime effects, polarizabilities, ORD, magnetizabilities, Verdet

constants .. 224
AORESPONSE key.. 224
Technical parameters and expert options .. 225
Applications of AORESPONSE.. 226

NMR ... 226
NMR Chemical Shifts .. 227

Important notes .. 227
Input options... 228

Paramagnetic NMR Chemical Shifts ... 233
NMR spin-spin coupling constants .. 234

Introduction... 234
Input file for CPL: TAPE21 ... 236
Running CPL .. 237
Practical Aspects .. 241
References ... 243

ESR/EPR.. 243
ESR/EPR g-tensor and A-tensor ... 244
ESR/EPR Q-tensor.. 246
ESR/EPR Zero-field splitting (D-tensor) .. 246

Nuclear Quadrupole Interaction (EFG)... 246
Mössbauer spectroscopy ... 247

2.7 Transport properties ... 248
Charge transfer integrals (transport properties) ... 248

Charge transfer integrals with the TRANSFERINTEGRALS key 248
Charge transfer integrals with FDE ... 249

GREEN: Non-self-consistent Green's function calculation... 251
Introduction.. 252
Wide-band-limit.. 253
Input options.. 254
Output.. 256

2.8 Analysis.. 256
Molecules built from fragments .. 256
Bond energy analysis ... 257

Bond energy details... 258
Total energy evaluation ... 258

Symmetry ... 259
Localized Molecular Orbitals .. 260
Advanced charge density and bond order analysis.. 261

Charges, Populations, Bond orders .. 262
ETS-NOCV: Natural Orbitals for Chemical Valence.. 263
Adfnbo, gennbo: NBO analysis ... 264

NBO analysis of EFG, NMR chemical shifts, NMR spin-spin coupling 265
QTAIM: Atoms in Molecules .. 269
Printed Output ... 269

5

Print / NoPrint ... 270
Debug... 272
Eprint .. 273
Eprint subkeys vs. Print switches ... 274
Other Eprint subkeys.. 281
Reduction of output .. 283

2.9 Accuracy and Efficiency... 284
Precision and Self-Consistency.. 284

Numerical Integration .. 285
Becke grid for numerical integration ... 285
Voronoi grid .. 286
Atomic radial grid.. 289

SCF ... 289
Main options ... 290
Energy-DIIS.. 292
ADIIS .. 292
LISTi ... 293
Augmented Roothaan-Hall (ARH) .. 293
Scalable SCF.. 296

Density fitting ... 296
Dependency (basis set, fit set) .. 298

Basis Set Superposition Error (BSSE) ... 299
Control of Program Flow .. 299

Limited execution .. 299
Direct SCF: I/O vs. recalculation of data ... 300
Skipping... 301
Ignore checks .. 301
Parallel Communication Timings... 302

Technical Settings .. 302
GPU Acceleration .. 302
Memory usage... 304
Vector length ... 304
Tails and old gradients .. 305
Linearscaling ... 305
All Points.. 307
Full Fock.. 307
Electrostatic interactions from Fit density .. 307
Save info ... 308

2.10 Restarts .. 308
Restart files... 308
The restart key.. 310
Structure of the restart file .. 311

2.11 Examples.. 316
3 Recommendations, problems, Questions .. 317

3.1 Recommendations .. 317
Precision... 317
Electronic Configuration ... 318

Spin-unrestricted versus spin-restricted, Spin states .. 318
Geometry Optimization... 319

Bond angles of zero or 180 degrees ... 319
Sloppy modes.. 319
Step convergence ... 319

What basis set should I use in ADF? ... 319
Frequencies.. 320
Relativistic methods ... 320

3.2 Trouble Shooting... 320
License file corrupt ... 320

6

Recover from Crash ... 321
Memory Management .. 321
SCF .. 322
Geometry Optimization... 324

New Branch... 325
Old Branch... 326
Very short bonds ... 326

Frequencies.. 327
Imaginary Frequencies .. 327
Geometry-displacement numbers in the logfile are not contiguous 328

Input ignored .. 328
SFO Populations .. 329
Error Aborts .. 329
Warnings .. 329

3.3 Questions... 329
4 RESULTS.. 330

4.1 Results on standard output.. 330
Job Characteristics ... 330
Nuclear and Electronic Configuration ... 333

Structure and Reactivity .. 333
Spectroscopic Properties ... 334
Analysis .. 334

Mulliken populations.. 334
Hirshfeld charges, Voronoi deformation density.. 334
Multipole derived charges ... 335
Charge model 5 ... 336
Bond order analysis... 336
Dipole moment, Quadrupole moment, Electrostatic potential ... 337
MO analysis... 337
Bond energy analysis .. 338

4.2 Log file, TAPE21, TAPE13 .. 338
4.3 ADF-GUI.. 339
4.4 Densf: Volume Maps ... 339

Input... 340
Result: TAPE41... 348

4.5 Dos: Density of States .. 352
Introduction.. 352
Mulliken population analysis.. 353
Density of states analyses based on Mulliken population analysis 354
Generalizations of OPDOS, GPDOS, PDOS .. 355
Input... 355

4.6 Other plotting programs ... 357
Cntrs: Contour Plots ... 357

5 APPENDICES ... 360
5.1 Database .. 360

Data File for Create .. 360
Example: Calcium... 363

5.2 Elements of the Periodic Table .. 364
5.3 Symmetry ... 367

Schönfliess symbols and symmetry labels ... 368
Molecular orientation requirements .. 369

5.4 Binary result Files, KF utilities ... 369
TAPE21 .. 369

Contents of TAPE21 ... 370
Using Data from TAPE21 ... 405

Representation of functions and frozen cores .. 406
Evaluation of the charge density and molecular orbitals .. 406

7

TAPE13 .. 407
KF browser ... 408
KF command line utilities ... 408

5.5 Scripting with ADF .. 411
ADFprep: generate (multiple) ADF jobs ... 411
ADFreport: generate report .. 414

6 References ... 421
Keywords .. 445
Index .. 447

8

Preface
ADF (Amsterdam Density Functional) is a Fortran program for calculations on atoms and molecules (in gas
phase or solution). It can be used for the study of such diverse fields as molecular spectroscopy, organic
and inorganic chemistry, crystallography and pharmacochemistry. A separate program BAND is available for
the study of periodic systems: crystals, surfaces, and polymers. The COSMO-RS program is used for
calculating thermodynamic properties of (mixed) fluids.

The underlying theory is the Kohn-Sham approach to Density-Functional Theory (DFT). This implies a one-
electron picture of the many-electron systems but yields in principle the exact electron density (and related
properties) and the total energy.

If ADF is a new program for you we recommend that you carefully read Chapter 1, section 1.3 'Technical
remarks, Terminology', which presents a discussion of a few ADF-typical aspects and terminology. This will
help you to understand and appreciate the output of an ADF calculation.

ADF has been developed since the early 1970s (at that time called HFS, later AMOL, see also Refs.
[308-310]), mainly by the two theoretical chemistry groups of, respectively, the Vrije Universiteit in
Amsterdam (http://www.chem.vu.nl/en/research/division-theoretical-chemistry/index.asp) and the University
of Calgary, Canada (http://www.cobalt.chem.ucalgary.ca/group/master.html). Other researchers have also
contributed. As a major research tool of these academic development groups, ADF is in continuous
development and retains a firm basis in the academic world.

Maintenance and distribution of the commercial (export) version of the program is done by Scientific
Computing & Modelling NV (SCM) (http://www.scm.com), a company based in Amsterdam, formally split off
from the theoretical chemistry group in Amsterdam but practically still very much a part of it. Documentation
such as User manuals, Installation instructions, Examples, Theoretical documents can be found at the SCM
web site.

Publications based on research with ADF should include appropriate references to the program. We
recommend that references are made both to the program itself and to publications related to its
development and structure. See the References document, available at the SCM web site.

Release 2014

In comparison to ADF 2013, the ADF 2014 release offers the following new functionality:

Functionality

• DFT-MBD dispersion corrected XC functional
• intensity selected excitation energies
• NMR spin-spin couplings with subsystem DFT
• distance difference restraints in optimizations

Analysis

• Charge model 5

Accuracy

• improved density fitting with radial spline functions and Zlm' can be used for most properties
• stricter settings for distance cut-offs in calculating Hartree-Fock exchange integrals
• NMR chemical shifts: spin-orbit gauge correction term

Speed

9

http://www.chem.vu.nl/en/research/division-theoretical-chemistry/index.asp
http://www.cobalt.chem.ucalgary.ca/group/master.html
http://www.scm.com/Doc/Doc2014/Background/References/page1.html

• scalable SCF
• COSMO runs in parallel

Default settings changed

• default density fitting scheme changed to ZlmFit instead of STO fit
• NMR chemical shifts uses unscaled ZORA instead of scaled ZORA

Apart from this new functionality and performance improvements, certain bugs have been fixed.

A more extended list of 'what is new or different' can be found in the Release Notes document.

10

http://www.scm.com/Doc/Doc2014/Background/Updates/page1.html

1 GENERAL

1.1 Introduction

The installation of the Amsterdam Density Functional program package (ADF) on your computer is
explained in the Installation manual. This User's Guide describes how to use the program, how input is
structured, what files are produced, and so on. Some special applications of ADF are described in the
Examples document.

Where references are made to the operating system (OS) and to the file system on your computer the
terminology of UNIX type OSs is used and a hierarchical structure of directories is assumed.

The ADF package is in continuous development to extend its functionality and applicability, to increase its
efficiency and user-friendliness, and of course to correct errors. We appreciate comments and suggestions
for improvement of the software and the documentation.

Characterization of ADF

Functionality

• Single Point calculation
• Geometry Optimization
• Transition States
• Frequencies and thermodynamic properties
• Tracing a Reaction Path
• Computation of any electronic configuration
• Excitation energies, oscillator strengths, transition dipole moments, (hyper)polarizabilities, Van der

Waals dispersion coefficients, CD spectra, ORD, using Time-Dependent Density Functional
Theory (TDDFT)

• ESR (EPR) g-tensors, A-tensors, NQCCs
• NMR chemical shifts and spin-spin coupling constants
• Various other molecular properties
• Treatment of large systems and environment by the QM/MM (Quantum Mechanics / Molecular

Mechanics) hybrid approach.

Applicability

All elements of the periodic table can be used (Z = 1-118). For each of the elements, the database contains
basis sets of different sizes, ranging from minimal to high quality. Special basis sets are provided for
relativistic calculations within the ZORA approach and for response calculations that require additional
diffuse basis functions.

Model Hamiltonian

• A choice of Density Functionals, both for the Local Density Approximation (LDA), for the
Generalized Gradient Approximation (GGA), for hybrid functionals (not for all properties available),
and for meta-GGA functionals (not for all properties available) are available.

• Spin: restricted or unrestricted
• Relativistic effects: scalar approximation and spin-orbit (double-group symmetry), using the (now

recommended) ZORA or the (previously used) Pauli formalism
• Environment: Solvent Effects, Homogeneous Electric Field, Point Charges (Madelung Fields), QM/

MM method

11

Analysis

• Decomposition of the bond energy in 'chemical' components (steric interaction, Pauli repulsion,
orbital interactions...)

• Representation of data (Molecular Orbital coefficients, Mulliken Populations) in terms of the
constituent chemical fragments in the molecule, along with the conventional representation in
elementary basis functions

• Atomic charge determination by Hirshfeld analysis and by Voronoi analysis, multipole derived
charges, along with the classical Mulliken populations, and Mayer bond orders

Technical

• The implementation is based upon a highly optimized numerical integration scheme for the
evaluation of matrix elements of the Fock operator, property integrals involving the charge density,
etc. The code has been vectorized and parallelized.

• Basis functions are Slater-Type Orbitals (STOs). A database is available with several basis sets
for each atom in the periodic table of elements.

• The Coulomb potential is evaluated via an accurate fitting of the charge density.
• A frozen core facility is provided for an efficient treatment of the inner atomic shells.
• Extensive use is made of point group symmetry. Most of the commonly encountered symmetry

groups are available.
• Linear scaling techniques are used to speed up calculations on large molecules

Fragments

ADF has a fragment oriented approach: the poly-atomic system to be computed is conceptually built up from
fragments, the molecular one-electron orbitals are calculated as linear combinations of fragment orbitals,
and final analyzes of e.g. the bonding energy are in terms of fragment properties. The fragments may be
single atoms or larger moieties.

When you compute a system in terms of its constituent fragments, these fragments must have been
computed before and their properties must be passed on to the current calculation. This is done by attaching
fragment files, which contain the necessary information. A fragment file is simply the standard result file of
an ADF calculation on that fragment.

When using Basic Atoms as fragments, you do not need to create the fragment files yourself. Instead, you
may use the Basis key, and ADF will create the required fragment files automatically. We therefore
recommend this feature for starting ADF users.

Basic atoms

Obviously there must be a set of fundamental fragments that are not defined in terms of smaller fragments.
Therefore ADF has two modes of execution: the normal mode, using fragments, and the create mode, in
which a fundamental fragment is generated. Such a fundamental fragment must be a single atom,
spherically symmetric and spin-restricted (i.e. spin-α and spin-β orbitals are spatially identical, they are
equally occupied, and fractional occupations are applied, if necessary, to distribute the electrons equally
over symmetry-degenerate states). Such a fundamental fragment is denoted a basic atom. The basic atoms
are the smallest building blocks from which any 'real' calculations are started.

One should realize that the basic atoms are artificial objects that are convenient in the computational
approach but that do not necessarily represent real atoms very well (in fact, usually not at all). The bonding
energy of a molecule with respect to basic atoms, for instance, should be corrected for this discrepancy in
order to get a decent comparison against experimental data. See ref. [1] for a discussion and for examples
of applicable values.

12

A basic atom is computed in the conventional way. The one-electron orbitals are determined as linear
combinations of basis functions; the frozen core approximation may be applied for the inner atomic states; a
particular type of density functional can be chosen, et cetera. You may have, for instance, different basic
Copper atoms by using different basis sets, by choosing different levels of frozen core approximations, or by
applying different density functionals.

Slater-type basis sets

ADF uses Slater-Type Orbitals (STO's) as basis functions. Slaters can display the correct nuclear cusp and
asymptotic decay.

f(r) = Ylmrne-ζr

The center of the function is at a nucleus, the Ylm are spherical harmonics, and the exponential factor ζ
(zeta) determines the long-range decay of the function.

ADF has a database, which is included in the distribution, with thoroughly tested basis set files, ranging in
quality from single-zeta to quadruple-zeta basis sets with various diffuse and polarization functions. All-
electron and frozen-core basis sets are available for all elements, including lanthanides and actinides. The
frozen-core approximation can be used to considerably reduce the computation time for systems with heavy
nuclei, in a controlled manner.

Automatic mode

If you are using 'Basic Atom' fragments only, you do not need to prepare the corresponding fragment files
yourself. Instead, add the BASIS block key to the ADF input, and ADF will generate all the required fragment
files for you. This makes your job scripts and ADF inputs simpler, it ensures that consistent options for the
create runs and molecular runs are used, and you will be sure that the fragment files used have been
created by the same release of ADF.

1.2 Feature List

Model Hamiltonians

• XC energy functionals and potentials
◦ LDA, GGA, meta-GGA, model potentials
◦ (meta-)hybrid, range-separated
◦ dispersion corrected

• Relativistic effects (ZORA and spin-orbit coupling)
• Solvents and other environments

◦ COSMO, QM/MM, pdb2adf, DIM/QM, SCRF, FDE, 3D-RISM, QUILD
• Homogeneous electric field and point charges

Structure and Reactivity

• Geometry Optimizations
• Linear Transit, Transition States, CI-NEB, TSRC
• Intrinsic Reaction Coordinate
• Excited state optimizations with TDDFT gradients

Optimizations can be done in Cartesian, internal, and delocalized coordinates.
Various restraints and constraints (1,2) can be imposed.

13

http://www.scm.com/Doc/Doc2014/QMMM/page1.html
http://www.scm.com/Doc/Doc2014/QMMM/metatagPDB2ADF.html
http://www.scm.com/Doc/Doc2014/Quild/page1.html

Hessians are available analytically for most GGAs, and numerically otherwise. Preoptimization is possible
with DFTB.

Spectroscopic properties

• Vibrational Spectroscopy
◦ IR frequencies and intensities
◦ Mobile Block Hessian (MBH), Vibrational Circular Dichroism (VCD)
◦ Raman intensities
◦ Resonance Raman from frequency-dependent polarizabilities or excited state gradients
◦ vibrational Raman optical activity (VROA)
◦ Franck-Condon Factors

• Excitation energies: UV/Vis spectra, X-ray absorption, CD, MCD
◦ UV/Vis spectra, oscillator strengths, open shell excitations,

core excitations, spin-orbit coupled excitations
◦ vibrationally resolved electronic spectra
◦ excited state optimizations
◦ CD spectra, MCD

• (Hyper-)Polarizabilities, dispersion coefficients, ORD, magnetizabilities, Verdet constants
◦ frequency-dependent (hyper)polarizabilities, lifetime effects
◦ van der Waals dispersion coefficients
◦ optical rotatory dispersion (ORD)
◦ magnetizability
◦ Verdet constants, Faraday terms

• NMR
◦ chemical shifts
◦ spin-spint couplings

• ESR (EPR)
◦ g-tensors (g-factor)
◦ A-tensor (hyperfine interaction)
◦ zero-field splitting (ZFS, D-tensor)

• Nuclear quadrupole interaction (EFG), ESR Q-tensor
• Mössbauer, NRVS

Charge transport properties

• charge transfer integrals
• Non-self-consistent Green's function calculation

Analysis

• Fragments
• Bond energy decomposition, ETS-NOCV
• Advanced charge density and MO analysis

◦ Mulliken, Multipole-derived charges
◦ Hirshfeld charges, Voronoi deformation density, CM5 charges
◦ bond orders: Mayer, Nalewajski-Mrozek
◦ Bader (QT-AIM)
◦ NB0 6.0
◦ (partial) DOS

• Molecular symmetry,Schönfliess symbols and symmetry labels

Accuracy and Efficiency

14

http://www.scm.com/Doc/Doc2014/DFTB/page1

• Slater-type basis sets
◦ Z = 1 to 118, all electron, frozen-core, nonrelativistic and relativistic
◦ SZ, DZ, DZP, TZP, TZ2P, QZ4P, even-tempered, diffuse

• Integration scheme
• Parallelization
• Linear scaling / distance cut-offs
• Density fit and frozen core approximation
• SCF convergence: simple damping, DIIS, EDIIS, ADIIS, LISTi, ARH

1.3 Technical remarks, Terminology

A few words about ADF as regards its technical setup and the names and abbreviations used in this manual.
References to these will be made in the discussion of output and print switches.

Density functional theory

The underlying theory of the ADF package is the Kohn-Sham approach to the Density-Functional Theory
(DFT). Kohn-Sham DFT is an important first-principles computational method to predict chemical properties
accurately and to analyze and interpret these in convenient and simple chemical terms.

The reasons for its popularity and success are easy to understand. In the first place, the DFT approach is in
principle exact. In particular, the Kohn-Sham method implies a one-electron picture of the many-electron
systems but yields in principle the exact electron density (and related properties) and the total energy. The
exact exchange-correlation (XC) functional is unknown, but the currently available XC functionals provide in
most cases already a 'chemical' accuracy of a few kcal/mol for binding energies. Moreover, the quest for
more accurate ones based on a more detailed understanding of their essential properties is continuing.

In the past two decades, computational chemistry has evolved from a curiosity of theoreticians into a
mainstream tool used by all types of chemists, physicists and engineers who have an interest in research
and development. In that time Density Functional Theory has become the dominant method for modeling
chemistry at the molecular level.

In the second place, it preserves at all levels of approximation the appealing one-electron molecular orbital
(MO) view on chemical reactions and properties. The computed orbitals are suitable for the typical MO-
theoretical analyses and interpretations. The KS method effectively incorporates all correlation effects.

In the third place, it is a relatively efficient computational method, and its fundamental scaling properties do
not deteriorate when methodological precision is increased, in particular, when a more accurate XC
functional is applied. Recent research paves the way to implementations that scale only linearly with the
system size. This brings within reach the treatment by fundamental quantum chemical methods of systems
with hundreds, maybe even thousands of atoms.

DFT gives superior accuracy to Hartree-Fock theory and semi-empirical approaches, and it is well suited for
molecules containing metal atoms. In contrast to conventional ab initio methods (MP2, CI, CC), it enables
accurate treatment of systems with several hundreds of atoms (or several thousands with QM/MM).

Text is mostly taken from: Chemistry with ADF, G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca
Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler J. Comp. Chem. 22 (2001) 931.

15

http://www.scm.com/Doc/publist.html

The Kohn-Sham MO model

The basic postulate in Kohn-Sham DFT is that we can apply a one-electron formulation to the system of N
interacting electrons by introducing a suitable local potential VXC(r), in addition to any external potentials
Vext(r) and the Coulomb potential of the electron cloud VC(r), and solving:

[T + Vext(r) + VC(r) + VXC(r)] φi (r) = εi φi (r)

Here T is the kinetic energy operator. The potential VXC is the functional derivative with respect to the
density ρ of EXC[ρ], the exchange-correlation energy functional. The one-electron molecular orbitals (MOs)
φi with corresponding orbital energies εi define the exact electronic charge density and give, in principle,
access to all properties because these are expressible as functional of the density, in particular the energy.
Moreover, they provide an intuitively appealing view of the system as being built from independent-electron
orbitals with all ensuing interpretations. The exact form of the exact energy density EXC(r), representing and
incorporating all exchange and correlation (XC) effects is unknown. From general principles one can
formulate conditions on what EXC(r) should look like, and several, more and more advanced expressions
have been advocated for it in the literature. Their application to real systems has been impressively
successful, and it seems likely that a further increase of accuracy is a matter of time.

Basis functions and orbitals

Let us make a clear distinction between (basis) functions and orbitals, even where these phrases are
sometimes mixed up in the traditional terminology. Orbitals are always specific combinations of the basis
functions. Orbitals are related to the computed eigenfunctions of some Fock operator or Hamiltonian
occurring in the run or in a related preceding calculation. Functions are merely the elementary mathematical
entities in which the orbitals are expressed. A Slater Type Orbital (STO), for instance is a function, not an
orbital.

The physical meaning of one-electron orbitals in DFT has often been questioned. We believe that they are
useful quantities for interpretation, just like the HF orbitals. For a recent discussion see [2].

See also
ADF-GUI tutorial: basis set effects
ADF-GUI reference: basis sets

Cartesian function sets, spurious components

ADF employs Slater-type exponential basis functions centered on the atoms. Such a function consists of an
exponential part exp(-ar) and a polynomial pre-factor rkrxkxykyzkz. A function set is characterized by its
radial behavior (the exponential part and the power of r, kr) and by its angular momentum quantum number
l. The functions in such a set consist of all possible combinations xkxykyzkz, such that kx+ky+kz=l. These are
denoted the Cartesian spherical harmonics.

The Cartesian function sets are very suitable for computational manipulations, but they have a drawback. By
inspection it is easily verified that a d-set consists of 6 Cartesian functions, while there can of course be only
5 true d-type functions among them: one (linear combination) of them is in fact an s-type function
(x2+y2+z2). Similarly, there are 10 f-type Cartesian functions, 3 of which are in fact p-functions. And so on. In
ADF all such lower-l (combinations of) functions are projected out of the basis and not employed. As a
consequence the basis set size in the sense of the number of degrees of freedom and hence the number of
possible eigenfunctions of the Fock operator is smaller than the number of expansion coefficients that refer
to the primitive (Cartesian) basis functions.

16

http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagBASISSET_NH3.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_reference/metatagATOMS.html

The abbreviation BAS is used for references to the elementary Cartesian basis functions.

Frozen core: Core Orbitals and Core Functions

To speed up the computation the innermost atomic shells are kept frozen. The frozen Core Orbitals (CO),
which are solutions of a large-basis all-electron calculation on the isolated atom, are expressed in an
auxiliary set of (Slater-type) basis functions cor-bas, distinct from the valence set. The core basis set and the
expansion coefficients that give the COs expressed in them are stored in the database data files.

Orthogonality of the valence Molecular Orbitals (MO) to the COs is achieved with the help of so-called Core
Functions (CF). These functions are included in the valence set but they are not additional degrees of
freedom. Each of the normal valence functions is combined with a linear combination of all CFs in the
molecule in such a way that the transformed function (cbas) is orthogonal to all frozen COs in the molecule.
There are exactly as many CFs as COs so the orthogonality condition for all valence basis functions
amounts to the solution of a linear system where the number of conditions equals the number of parameters.

This aspect once more increases the discrepancy between the number of expansion coefficients of an MO
and the number of MOs: the expansion coefficients in the most elementary bas representation run over all
bas functions, including the CFs among them. At some places there may, alternatively, be expansions in the
core-orthogonalized BAS functions, CBAS, where the CFs do not count anymore: they are included implicitly
in the cbas functions.

Symmetry

The Overlap and Fock matrices become block-diagonal by using symmetry-adapted combination of the
(C)BAS functions, such that each such function transforms under the symmetry operators as one of the
subspecies of the irreducible representations (irrep) of the symmetry group. Symmetry adapted functions are
denoted (C)SBAS.

For a given irrep and subspecies not all elementary basis functions can participate in the symmetry adapted
combinations. For instance, for an atom in a reflection plane a basis function that is antisymmetric with
respect to the reflection cannot be part of any symmetric combination of functions. In particular for higher
symmetries the number of BAS functions that are relevant for a subspecies may be considerably smaller
than the total number of BAS functions. This is used to cut down expansion lengths, both as used internally
in the computation and construction of the Fock matrix, and in printed output. The printed expansion
coefficients (in the bas representation) refer only to the participating BAS functions. A defining list of them is
printed at an early stage of the run for each of the subspecies.

Orthonormal basis

It is often computationally convenient to use an orthonormal basis. This is constructed from the CSBAS
basis by a Lowdin orthogonalization procedure. The resulting symmetry-adapted orthonormal basis is
denoted low.

The MOs are computed by diagonalization of the Fock matrix in the LOW representation. The resulting
eigenvectors are easily transformed back to any other representation whenever suitable, such as for
instance to the primitive cartesian bas representation (including the CFs).

Fragments

Except in Create mode, where a basic atom is constructed, the system is built up from fragments and the
corresponding fragment files are attached to the run. The program reads from the files the fragment MOs
and these are used as (compound) basis functions for the molecular calculation. The fragment MOs are
called Fragment Orbitals (FO).

17

FOs belong of course to one of the symmetry representations of the fragment, but not necessarily to a
symmetry representation of the new molecule. The FOs are therefore combined into symmetry-adapted
combinations, SFOs, to serve as a symmetry-adapted basis in the molecule. These combinations may
involve one or more FOs from the same fragment and/or from different fragments. In the latter case the
fragments must be symmetry related by one of the operators of the molecule. Symmetry related fragments
must of course be identical, apart from their spatial location: they must be of the same fragment type.

FOs are naturally orthogonal to the Core Orbitals of their own fragment, but not necessarily to COs of other
fragments. By a suitable combination of the SFOs with all CFs in the molecule we obtain the core-
orthogonalized symmetry-adapted CSFOs.

The CSFOs can be transformed to an orthonormal basis by a Lowdin transformation. The resulting basis is
called low, as above.

Summary of functions and orbitals

In Create mode the (conceptual) approach is:

BAS → (core-orthogonalization) → CBAS → (symmetry) → CSBAS → (orthonormality) → LOW → (Fock
diagonalization) → MO

In Fragment mode:

FO (=MO from fragment file) → (symmetry) → SFO → (core-orth.) → CSFO → (orthonormality) → LOW →
(Fock diagonalization) → MO

Acronyms:

BAS

Elementary cartesian basis functions, consisting of a radial part (exponential factor and power of r) and
an angular part (cartesian spherical harmonic). The complete BAS set contains spurious lower-l
combinations; these combinations are projected out and not used in the calculation. The BAS set
contains also Core Functions.

SBAS

Symmetry-adapted combination of BAS functions.

CF

Core Function, part of the bas set. The CFs do not represent degrees of freedom in the basis set but
serve only to ensure orthogonalization of the valence space to all frozen Core Orbitals.

CBAS

Core-orthogonalized elementary basis functions: the true valence (not-CF) BAS functions transformed
by adding a suitable combination of the CFs. The total number of CBAS + the total number of of CFs
equals the total number of BAS.

CSBAS

Symmetry-adapted combination of cbas functions.

CO

Frozen Core Orbitals, expressed as linear combinations of an auxiliary corbas basis set. The corbas set
plays no role in the further discussion. The corbas functions are not the CFs.

18

The number of COs equals the number of CFs.

LOW

Lowdin orthonormalized symmetry-adapted core-orthogonalized basis. In Create mode they are derived
directly from the BAS functions, in Fragment mode from the Fragment Orbitals, which are themselves of
course expressible in the BAS set.

FO

Fragment Orbital: the MO of a fragment calculation, now used as a basis function in the molecule of
which the fragment is part.

SFO

Symmetry adapted combination of FOs.

CSFO

Core-orthogonalized SFO.

Fit functions

Using Slater-type basis functions yields awkward multi-center integrals in the evaluation of the Coulomb
potential. We therefore first need to find an approximate density-representation for which the Coulomb
integral can be evaluated efficiently. This procedure is commonly referred to as density fitting. The default
density fitting procedure in ADF is described in Ref. [379].

An alternative density fitting approach (STOFIT) employs an auxiliary set of fit functions, see also Ref. [308].
Like the basis functions, the fit functions are Slater-type exponential functions centered on the atoms. The
true density, a sum of products of basis functions, is then replaced (approximated) by a linear combination
(not products!) of the fit functions. The combination coefficients are called the fit coefficients.

ρ (r) = ∑i ci fi(r) (1.2.1)

The Poisson equation for the fit functions is easily solved, yielding the (approximate) Coulomb potential as
an expansion in fit potential functions fic(r)

fic(r) = ∫ fi(r') /|r-r'| dr (1.2.2)

VCoulomb (ρ (r)) ≈ ∑i ci fic(r) (1.2.3)

In the SCF procedure the fit coefficients are computed by a least-squares minimization of

∫ (ρexact(r) - ρfit(r))2 dr = min (1.2.4)

with the constraint that ρfit contain the correct number of electrons. ρexact is defined as the sum of occupied
orbitals (squared and multiplied by the appropriate occupation number). The accuracy of the fit
approximation is important and the fit set plays a role similar to the basis set: too few functions (or badly
chosen function characteristics) yield inferior results and there is also such a thing as the fit set limit. The fit
functions on an atom are consequently an integral part of the definition of the basic atom and they are
included in the Create data files. Fortunately, the size of the fit set does not determine the computational
effort in such a drastic way as the size of the basis set does. We have chosen therefore to use always fair
(though not extreme) fit sets, with the purpose that the effect of fit-incompleteness should in all cases be

19

small enough to be ignored compared with basis set effects, numerical integration errors and Density
Functional deficiencies. This does of course depend somewhat on the computed molecule and the studied
properties, so a general guarantee cannot be given and, as with basis set effects, one should always have
an open eye for possible problems and check the pertaining information in the output file.

One of the most important properties of a molecule is its energy, or its bonding energy with respect to the
constituent fragments. The fit incompleteness introduces two types of errors. The first is that, since the
Coulomb potential is only approximated, the SCF solution itself, i.e. the set of self-consistent Molecular
Orbitals and their energy eigenvalues may be slightly wrong, yielding an error in the charge density and
hence in the energy. Since the energy is to first order stable with respect to changes in the mo coefficients
this error in the energy can be assumed very small. The second type of error derives from the computation
of the energy from the (self-consistent) charge density, via the Coulomb potential. Let

ρ ≡ ρexact(r) = ρfit(r) + δ(r) (1.2.5)

and

Vfit(r) = ∫ ρfit(r') /|r-r'| dr (1.2.6)

For the Coulomb energy of the charge density we have

2ECoul(r) = ∫∫ ρ(r) ρ(r') /|r-r'| drdr' = ∫ ρ(r) Vfit(r) dr + ∫∫ ρ(r) δ(r') /|r-r'| drdr' =

∫ Vfit(r) [ρ(r)+δ(r)] dr + ∫∫ δ(r) δ(r') /|r-r'| drdr' (1.2.7)

from which we see that the fit error is corrected to first order (by adding the fit deficiency δ(r) to the exact
charge density when integrating against the fit potential) and that only a second order term remains that
cannot be evaluated, the last term in the right-hand-side of (1.2.7).

A fair impression of the fit quality and the importance of the second order error term is obtained by checking

a) the size of the first order correction term ∫ Vfit(r) δ(r) dr and b) the norm of the deficiency function, ∫ δ2(r)
dr. Both are printed in standard output, at the end of the output of the SCF procedure computational report.
They are usually very small, which gives some confidence that the second order fit error can be ignored.

Three-step build-up of the bonding

The approach of ADF is based on fragments. This applies not only in the analysis at the end of the
computation but also in the set-up of the program. The computation of the molecule from its constituent
fragments takes place in three steps, and these are reflected in the analysis of bond energy components.

First, the (free, unrelaxed) fragments are placed at their positions in the molecule. This implies an
electrostatic interaction: for each fragment the Coulomb interaction of its undisturbed charge density with the
fields of the other fragments.

Next, the Pauli exclusion principle is applied. Even without considering self-consistency the one-electron
orbitals of the combined fragments cannot represent a correct one-determinant wave function because the
orbitals of different fragments are not orthogonal to one another. The program performs an
orthonormalization of the occupied Fragment Orbitals to obtain an antisymmetrized product. This implies a
change in the total molecular charge density from the sum-of-fragments to what is called the sum-
of-orthogonalized-fragments. The corresponding (repulsive) energy term is evaluated separately and is
called Exchange repulsion, or alternatively Pauli repulsion. The phrase orthogonal(ized) fragments, if you
find it elsewhere in this manual or in the source code of ADF, refers to this aspect. The sum of Pauli
repulsion and electrostatic interaction is called the steric interaction.

20

The third phase is the relaxation to self-consistency, with of course the ensuing contributions to the bond
energy.

Transition State procedure

This phrase stands for an analysis method described in ref. [3] and has no relation to transition states in
chemical reactions. An extensive discussion of bond energy analysis by ADF is given in [4, 5]

The energy associated with a change in charge density, say the relaxation to self-consistency from the sum-
of-orthogonal-fragments, can be computed by subtracting final and initial energies, each obtained from the
corresponding charge density. For purposes of analysis the change in energy de can be reformulated as

dE = ∫ dr { [ρfinal(r)-ρinitial(r)] ×

ρfinal

∫ dρ

ρinitial

F[ρ(r)] } (1.2.8)

F(ρ) is the Fock operator belonging to the charge density ρ

By writing the density difference ρfinal - ρinitial a summation over contributions from the different irreducible
representations Γ of the molecular symmetry group, an expression is obtained that lends itself for a
decomposition of the bond energy into terms from the different symmetry representations:

dE =∑

Γ

∫ dr { ΔρΓ(r) ×

ρfinal

∫ dρ

ρinitial

F[ρ(r)] } (1.2.9)

The integral of the Fock operator over the charge density is now approximated by a weighted summation (in
fact, a Simpson integration):

ρfinal

∫ dρ F[ρ] ≈

ρinitial

1/6 F(ρinitial) + 2/3 F(ρaverage) + 1/6 F(ρfinal) (1.2.10)

ρaverage = 1/2 ρinitial + 1/2 ρfinal (1.2.11)

The term with the Fock operator due to the average charge density has given rise to the phrase transition
state. To avoid confusion we will often refer to it as to the transition field.

The approximate integral (1.2.10) involves two errors. The first, rather obvious, is the approximation of the
exact integral in (1.2.9) by the weighted sum in (1.2.10). Except in pathological cases this approximation is
highly accurate.

The second error comes from the fact that the Coulomb and XC potentials in the Fock operator are
computed from the fit density. This is only an approximation to the true density, while in the original bond-
energy expression (energy due to the final density minus energy due to the initial density) no potentials
occur and the exact charge density can be used. As mentioned before, these fit-related errors are usually
small. For the XC potential the true density can be used if one includes the keyword EXACTDENSITY.

All such errors in the total bonding energy are easily corrected by comparing the summation over the Γs with
the correct value for the total bonding interaction term. The difference is simply added to the total bond

21

energy, so no true error remains. We only have a (correction) term that can't be split in contributions from
the distinct symmetry representations. In the printed bond energy analysis such small corrections are
'distributed' over the other terms by scaling the other terms such that their sum is the correct total value.

1.4 Running the program

Execution of ADF

When ADF has been installed you can run it by supplying appropriate input and starting the 'adf' script,
located in $ADFBIN. This script sets up some environment variables, and parses the input to see if anything
special needs to be done. For example, if the BASIS key is used the adf script will also execute commands
to make the appropriate fragment files. You can use this run script both for the serial and parallel versions of
the program. For other programs in the package, there are similar run scripts ('band', 'dirac', and so on).

Running the program using the run script involves the following steps:

• Construct an ASCII input file, say in.
• Run the program by typing (under UNIX):

$ADFBIN/adf {-n nproc} <in >out
The part between curly brackets is optional, so the shortest application has the format
$ADFBIN/adf <in >out
Note that the run files in the $ADFHOME/examples directory are UNIX scripts which are executes
with:
run >out

• Move / copy relevant result files (in particular TAPE21) to the directory where you want to save
them, and give them appropriate names.

• Inspect the standard output file out to verify that all has gone well.

During the run you may inspect the logfile, to see how far the program has proceeded, or whether you
should interrupt the calculation.

In the above scheme adf is the name of the run script that invokes the adf.exe program executable. During
the installation the script has been put in the same directory where the program executables are generated:
$ADFBIN. You may have moved it to another place, or renamed it. We recommend that you adjust your
$PATH variable so that you can omit $ADFBIN from the execution command.

To run another program from the ADF suite, just use the appropriate program run script.

The input for the program is read from standard input, and output is written to standard output, redirected in
the example above to in and out, respectively.

The part between square brackets is optional and is only meaningful for a parallel program version. The -n
flag specifies the number of parallel processes (nproc) to use. If omitted the default applies, which is the
value of the environment variable $NSCM, if such variable exist, otherwise it is defined by installation
parameters (in the $ADFHOME/settings file, see the Installation Manuals).

The program run scripts have, in fact, more flags and arguments, for special usage. You can get a survey by
typing

$ADFBIN/adf -h

Parallel execution

If a parallel version of ADF has been installed you should be aware of a few special aspects of running ADF
in parallel. Partially this depends on the platform and on the installation settings.

22

http://www.scm.com/Doc/Doc2014/Install/Welcome.html

First of all, you may specify (by command-line options in the run-script and/or by defining suitable
environment variables) explicitly how many parallel processes are to be used. Secondly, you should realize
that most of the files that you would have in a single-node run are in a parallel run distributed over the
parallel processes. Some parts of the file may be identical across the processes while other parts are not
and would only after a recombination yield the data of the corresponding single-node file. The normal result
files, (standard output, the logfile and the binary result file TAPE21) are complete at the master process.

How to set up a parallel calculation can be found in the Installation Manual.

Files

The ADF program may generate several output / result files, along with the standard output file. The most
important one is TAPE21 (.t21 file), the general result file. TAPE21 contains relevant information about the
outcome of the calculation. You may want to store this file somewhere under an appropriate name, for future
usage. The meaning of any other files that are produced are explained later in this User's Guide.

Any files produced by the program are generated in the local (working) directory where the calculation runs.
If you want to keep them, make sure to move them after the calculation has finished to wherever you want to
store them.

Files attached to the job, such as fragment files, are by default also assumed to exist in the local directory.
You must take care to move or copy required files to that directory before starting the calculation, or to
provide via input adequate information to the program where to find the files. In many cases you can specify
a complete path to the file.

Most files that are generated by the program, in particular the standard result file that can be used as a
fragment file in other calculations, are binary files. A binary file should usually not be moved from one
machine to another, i.e. it may not be readable by another machine than the one that generated the file,
unless the two machines are of the same type. The ADF package provides utilities to convert the ADF binary
result files from binary to ASCII, and vice versa, so that you don't have to regenerate your fragment libraries
when going to another machine. See Appendix 5.5

TAPE21 and logfile

Two of the files that are produced by ADF deserve special attention. The first is the general result file
TAPE21 (.t21 files). It is a binary file that contains a lot of information about the calculation, such as the one-
electron orbitals expressed in the basis functions. It can be used as a fragment file for subsequent
calculations (although only TAPE21 files from spin-restricted calculations can be used as fragment files).
Like all files produced by the program, it is generated in the directory where the job runs. Having done a
calculation, you will usually store TAPE21 somewhere under a suitable name so that you can later reuse it,
as a fragment file, for a restart, to feed it to an analysis program, and so on.

The second is an ASCII log file, called logfile. It accumulates messages from ADF into a (brief) summary of
the run. You can inspect it during the calculation to check how far the calculation has proceeded, whether
there are important warnings and so on. At the end of the run this file is copied to the tail of the normal
standard output file.

Standard output

ADF is a program that lends itself particularly well for chemical analysis. This is a direct result of the
fragment-based approach, where properties of the molecule are related to the properties of the constituent
fragments, which is precisely how the chemist thinks. Molecular Orbitals are (optionally) analyzed
extensively as how they are composed from occupied and virtual fragment orbitals. This inherently implies a
large amount of output. Even computations on small molecules may produce startlingly many pages of
output. This is not necessarily so because you can regulate the production of output in detail. Obviously,

23

some kind of default production of output had to be implemented. The field of ADF users is so wide and
diverse that it is hard to satisfy everybody as regards this default level of output. Depending on your
purposes the automatic settings, which determine how much output is generated without instructions to the
contrary, may yield boringly many numbers that you just skip through in search for the one value you're
interested in, or it may be widely insufficient. Therefore, take notice of the possibilities to regulate output.

Above all, however get familiar with the analysis tools that ADF provides to see in what ways these may help
to interpret your results. In a later chapter a global description of output is given as it is normally produced.
The chapter below gives an introduction in some of the essential features of ADF, which may be sufficiently
different from what you are used to in other Quantum Chemistry codes to deserve your attention.

File names during parallel runs

The adf proces of a kid normally runs in a separate directory.

Standard output is a special: the parent writes its normal ('print') output to standard output while the kids
each write to a file KidOutput.

1.5 ADF-GUI

The graphical user interface ADF-GUI enables all users to set up complicated calculations with a few mouse
clicks, and provides graphical representations of calculated data fields, see the ADF-GUI overview tutorials,
and advanced ADF-GUI tutorials.

24

http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagADF.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagADFadvanced.html

2 INPUT

2.1 Minimal input

We will start now with a discussion of the input file for ADF. First a minimal input is discussed, next an
extensive list of all input options is described.

Most keys in the input file for ADF are optional. Default values apply for omitted keys. Assuming that the
defaults are sensible, short input files can often be used. We will examine first the minimal input that is
required to run ADF. Having read that part, you can start to do calculations.

The following input will run a geometry optimization on water, using a (almost) minimal input:

ATOMS
O 0 0 0
H 1 1 0
H -1 1 0

End

Basis
End

Geometry
End

This is the input for the ADF program. You need to store it in a file, and pass it as standard input to ADF.

For example, assume you have stored the above input in a file in. Also assume that the $ADFBIN directory
is in your $PATH. Then you run ADF using the following command:

adf <in >out

ADF will run, and the resulting output will be stored in the file out. If you examine the contents of this file, you
will find that ADF has actually run three times: two create runs, and one geometry optimization. The
fragment files produced by the create runs are saved in t21.H and t21.O, for hydrogen and oxygen
respectively.

2.2 Structure of the input

Much of the general remarks about input for ADF apply also to related property and analysis programs,
which are also described in this document.

Delimiters

An input record may contain several items. The general rule is that each sequence of characters that does
not contain a delimiter is an entity. Delimiters in this context are: 1) the blank or space character ' ', 2) the
comma ',' and 3) the equal sign '='.

It is assumed throughout that only characters of the Fortran character set are used.

DO NOT USE TABS IN THE INPUT FILE! The program may not see them as delimiters and the effects are
hard to predict!

25

Uppercase and lowercase

Virtually all input items are case-insensitive, but take notice of the obvious exceptions: names of files and
directories are case-sensitive.

Keywords

Input for ADF is structured by keywords, in short: keys. A key is a string of characters that does not contain
a delimiter (blank, comma or equal sign). Keys are not case sensitive. Input is read until either the end-of-file
condition (eof) becomes true, or until a record end input is encountered, whichever comes first. (end
input is not a key.)

Key-controlled input occurs with two formats. In the first you have only one record, which contains both the
key and - depending on the case - associated data: the key argument:

KEY argument

The whole part of the line that follows after the key is the argument. It may consist of more than one item.

The alternative format is a sequence of records, collectively denoted as a key block. The first record of the
block gives the key (which may have an argument). The block is closed by a record containing (only) the
word end. The other records in the block constitute the data block, and provide information related to the
key.

KEY {argument}
data record
data record
...(etc.)...
...

end

In this manual, when items are optional, such as the argument in the scheme above, they are typed
enclosed in curly brackets {}. The { and } characters themselves are not part of the item. Different allowed /
eligible values are separated by a bar (|). The keywords are usually typed in small capitals, subkeys in italic
small capitals.

Structures like 'key=value' should be read as: type 'key=' as such, followed by a suitable value.

Block type keys may have subkeys in their data block. The subkeys may themselves also be block type
keys. The data blocks of block type subkeys, however, do not end with end, but with subend:

KEY {argument}
data
data
subkey {argument}

subkey data
subkey data
...

subend
data
data
...

end

26

Layout features such as an open line, indentation, or the number of spaces between items are not
significant.

The format to be used for a key is not optional: each admissible key corresponds to one specific format. As
a general rule, the block keys control lists of data, such as atomic position coordinates.

A few special keys can have either format. For such keys the format actually in effect depends on the
presence of the argument: the block type applies in absence of the argument. The block type applies also
when an argument is present that ends with a continuation symbol. The continuation symbol is the
ampersand (&) or, alternatively, two contiguous plus-characters preceded by at least one blank (++):

KEY {argument} &
data
data

end

The various types of keys are referred to respectively as simple keys, block keys, and general keys.

A considerable number of keys can be used to specify the geometry, the model Hamiltonian, cf. the Density
Functional, the precision of the calculation, and so on. The order in which keys occur in the input file is
immaterial, except that a few special keys determine how input data is interpreted, such as the unit-of-length
for atomic coordinates. These interpretation keys must be used before the pertaining data in input occur.
This will be mentioned explicitly again where they are discussed.

The items that can be addressed with keys and the keys themselves are listed in the Index.

Irrelevant keys, misspelling of keys

Specification of a key that is not relevant in the calculation will go unnoticed. Similarly, if you misspell a key
such that it is not recognized, the incorrectly labeled input data will be ignored and the program will proceed
as if the intended key had not occurred. This results in the application of pre-defined default values or in an
error abort, depending on the case. Therefore, whenever the output suggest that part of your input has been
ignored, check the spelling.

In this context we stress again: be alert on TAB characters: don't use them at all.

ADF may recognize a key if it is spelled incompletely, that is, if only some initial substring is given, and also
if redundant characters are typed after the end of the key. The reason is that often only a small initial part of
the true keyname is checked against the input items. Don't rely on this, however: it is not formally supported
and it may get disabled in a next release without further notice.

We advise therefore to stick to the correct key names. In particular, you must avoid to use different
abbreviated or elongated forms when a key occurs more than once in input: ADF will likely assume that you
want to indicate distinct keys and it will associate only one of them with the key you had in mind.

Interpretation of Input

ADF has two special keys that regulate the specification and interpretation of numerical data in input. These
keys, and related aspects, are convenient for the formatting of input.

The position of the interpretation keys in the input file is significant! Therefore, to avoid problems and
misunderstandings: before supplying any numerical data, specify first (if at all) the keys units and define (see
below).

Units of length and angle

27

Geometric lengths and angles are in units defined by:

UNITS
length Angstrom / Bohr
angle Degree / Radian
end

Angstrom and Bohr, respectively Degree and Radian, are recognized strings. Each of the subkeys is
optional, as is the key UNITS itself. Defaults: Angstrom for lengths, and Degree for angles.

The position of the key UNITS in input is significant as regards the evaluation of expressions (see the
paragraph on constants and functions below). In other respects its position plays no role. To avoid mistakes
one should place units as early as possible in input (if at all).

Expressions

ADF supports the use of arithmetic expressions, functions, and constants to represent numerical data. This
can be convenient for the input of, for instance, atomic positions when these would most easily be
represented in terms of 1/3, sin(360/5), et cetera. Using expressions and functions is easier, avoids the
tedious typing of long decimal expansions and solves the question of precision (how many digits should be
supplied?).

The standard arithmetic operands in Fortran (+ - * / **) can be applied in expressions, together with
parentheses where suitable.

Blanks are allowed and ignored, but they are interpreted as separators, i.e. as denoting the end of an
expression, whenever the part until the blank can be evaluated as a correct expression. For instance 3* 4
will be interpreted as 12, but 3 *4 will be interpreted as 3, followed by a character *, followed in turn by the
number 4.

All numbers and results are interpreted and handled as being of type real, but whenever the result is a whole
number (allowing for very small round-off) it will be recognized and accepted as an integer when such data
is required.

Constants and functions

The user may define constants and functions in the input file, and apply them subsequently in expressions.
The input file is read sequentially and constants and functions must be defined before they can be used.

The argument list of a function must be enclosed in parentheses and the arguments, if more than one,
separated by commas.

The following functions are predefined in ADF and can be used directly in input:

sin, cos, tan, asin, acos, atan, exp, log, sqrt, nint. Each of them has one argument. log is the natural
logarithm (base e).

No constants are predefined.

The angular argument to the trigonometric functions cos, sin, tan is in the unit for angles as defined by units,
provided the unit has been set before it is applied. For the result of the inverse trigonometric functions the
same holds.

Constants and functions can be defined with the block key DEFINE:

DEFINE
angle=54

28

ab = sin(angle/3)
s13 = 14*sqrt(2)
func(x,y,z) = x*ab+y**2-y*z

end

The constants angle, ab, and s13 are defined together with a function func, using the predefined functions
sin and sqrt. These can then be applied to assign values elsewhere in input.

In the example above, the constant angle is used in the definition of ab, and ab is used in turn to define func;
these constructions are allowed because angle is defined before ab, and ab is defined before func.

The replacement of constants, functions, and other expressions by their numerical values may considerably
increase the length of the input record, in particular when real values are being generated (by the parser) in
the standard format E22.14. Take care that the resulting record does not exceed 80 characters. The
program will abort or may run into an error if this is violated.

The input-reading routine applies the constants and functions wherever it is allowed to do so. To prevent any
unwanted replacements in the input file you should avoid very short identifiers for constants and functions.

Warning example:

DEFINE
A=3.18
C=4.12

end
...
atoms
C 0.00 1.05 -3.22

...

The program will apply the definition of the variable C and read:

DEFINE
A=3.18
C=4.12

end
...
atoms
4.12 0.00 1.05 -3.22

...

Avoid single-character identifiers!

Strings

Quotes can be used to designate strings, i.e. (parts of) records which are not to be parsed for expressions,
but which should be taken as they are. The quotes themselves are ignored, i.e. removed by the parser. Two
consecutive quotes inside a string are interpreted to denote the (single) quote character as a part of the
string.

Where does parsing apply?

Replacing pre-defined variables and expressions by their value is applied only to keys that carry numerical
data. For example: atoms, define, units. However, it is not applied to keys that carry electronic occupation
numbers.

29

Note that when parsing applies to a given key the whole record of the key (key + argument) and its data
block are parsed. The parsing then applies to all items, even those that in themselves have no numerical
meaning (for instance, the atom type names in the atoms data block are scanned and must of course then
not be 'defined' as identifiers with a numerical value.

Constants vs. geometric parameters

Note carefully the difference between constants defined with define and identifiers that are used for atomic
coordinates in the data blocks of atoms and geovar. Constants defined under define are merely symbols for,
and exactly equivalent to, certain numerical values, whereas the coordinate identifiers carry implications
such as the distinction between frozen and optimization coordinates. Constants affect only the input after
their definition and the location of their definition in the input file is significant. Geometric identifiers only
relate to the data blocks of atoms and geovar respectively and the relative order in which the keys atoms
and geovar occur is irrelevant.

Link-in Input files

Part of the input file can be put into a separate ASCII file, which can be addressed from the (standard) input
stream:

INLINE inlinefile

inlinefile must be the name of the auxiliary ASCII file (including its path, absolute or relative to the run-
directory). When inline is encountered in the input file, ADF opens the specified file and continues reading
from that file as if it were in-line expanded into the input file. When the end-of-file is encountered reading
resumes from the original file.

The contents of the inlinefile must not end with end input, unless you wish to terminate all input reading at
that point.

InLine may occur any number of times in the input file. Use of inline may also be nested (up to 10 levels):
the key INLINE may be used in the inlinefile in the same fashion as in the standard input file.

The inline feature makes it easy to pack your preferred settings that are not matched by the program's
defaults in one file and use them in every run with a minimum of input-typing effort. Obvious applications are
output control (print) settings and precision parameters.

Note: you can not use inline to store parallel settings, not even by using inline on the first line of your input
and placing the parallel keyword on the first line of the inlinefile: before opening the inlinefile and expanding
it into the inputfile, the program has already detected that the first line of input does not specify the parallel
settings.

Title, comment, layout of input

TITLE Title

Title may be any string. The program combines it (that is, the first approximately 50 characters) with date
and time of the job to construct the job identification. The job identification is used to stamp an identification
on result files, which will be read and printed if such a file is used again, for instance as a fragment file.

The job identification will also be echoed in the output header to identify the current run. By default the date
and time are combined with a dummy string. In Create mode the title is first read from the data file that
supplies the basis functions etc and can then be overwritten via input.

30

Note that, contrary to some other programs, ADF does not take the first input record as a title. Typing your
title as the first record, without starting the record with the keyword title, may produce very strange results:
ADF will try to interpret the first word on that line as a keyword, possibly abbreviated!

You can put more remarks in the input file to be echoed in the standard output file; these will not become
part of the job identification:

COMMENT
text
...

end

The text records are copied to the output header, directly after the job identification. Expressions are not
parsed and constants or functions are not replaced: it is a straightforward copy.

The key COMMENT may occur any number of times; all text blocks are printed in the output header with a
blank line between any two text blocks.

Layout of input

Empty records and leading blanks in records are allowed and ignored, and can be used to enhance clarity
and readability of the input file for human readers.

An exclamation mark (!) is interpreted by the input reading routine as denoting the end-of-line. Instead of the
exclamation mark you may also use a double colon (::). The part of the line after the exclamation mark
(double colon) - including the ! or :: itself - is ignored. In this way one can include comments and clarifying
remarks, which will not be echoed in the output header (compare the key COMMENT).

2.3 Coordinates, basis sets, fragments

See also
ADF-GUI tutorial: building molecules, basis set effects, fragments
GUI manual: basis sets, ghost atoms, nuclear model

Atomic coordinates

The input of (initial) atomic positions as Cartesian coordinates has been mentioned already in the minimal-
input example in Chapter 2.1. Alternatively they may be given in z-matrix form.

ATOMS {Cartesian / Zmatrix / MOPAC}
{N} Atom Coords {F=Fragment}
...

End

Cartesian or Zmatrix or MOPAC

Specifies the type of coordinates. Default (no specification) is Cartesian. Instead of Zmatrix you may
also type internal.
MOPAC is a special variety: the subsequent records in the data block are MOPAC style Z-matrix input
for the atomic system, see example below.

N

This is an optional integer by which you may number the atoms. The numbers should be 1,2,3, et cetera
if any reference is made to them in other parts of input. The reason for this restriction is that ADF

31

http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagMOLBUILDING.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagBASISSET_NH3.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagFRAGMENT.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_reference/metatagATOMS.html

numbers the atoms internally according to their occurrence in the input file and it applies this internal
numbering when any subsequent references are interpreted.

Atom

The name of an atom type. It must begin with the standard one- or two-character symbol for the
chemical element: H, He, Li, and so on. Optionally it may be appended by .text, where text is any string
(not containing delimiters). Examples: H, Mn.3, Cu.dz-new.

Dummy atoms may be useful in the construction of a Z-matrix, for instance to obtain a set of internal
coordinates that reflect the symmetry of the molecule better. They may also be useful in a Z-matrix to
avoid an ill-defined dihedral angle, which occurs when three (almost) co-linear atoms span either of the
two planes that define the angle. In geometry optimizations this must absolutely be avoided if such
internal coordinates are used as optimization parameters.
Dummy atoms are input with the chemical symbol xx. XX-type atoms can be inserted in the list of atoms
like any other atom types. The name (xx) can have a suffix of the form .text. No fragment files must be
supplied for dummies. There are no symmetry constraints on the positions of the dummies. The
dummies serve only to set up the Z-matrix in a proper way.

Coords

This specifies he coordinates of the atom. If Cartesian coordinates are used the x, y, z values must be
given. For Z-matrix coordinates you put first the three connection numbers, then the values of the bond
length, bond angle and dihedral angle. Example:

Ge 2 1 5 2.1 95.3 24.8

defines that a Germanium atom is located with a distance 2.1 Angstrom from the second atom in the
input list, that the angle (Ge-atom2-atom1) is 95.3 degrees and that the dihedral angle between the
planes (Ge-atom2-atom1) and (atom2-atom1-atom5) is 24.8 degrees.

To avoid any confusion as regards the direction (sign) of the dihedral angle, here is the definition used
in ADF: Let the connection numbers for an atom P refer to the atoms Q, R and S, in that order. Choose
a local coordinate frame such that Q is at the origin, R on the positive z-axis and S in the xz-plane with
a positive x-value. The three Z-matrix coordinates bond length, bond angle and dihedral angle of P are
then precisely its spherical coordinates r, q, and -f: the distance to the origin, the angle that PQ makes
with the positive z-axis (0.π) and the negative of the angle that the projection of PQ on the xy-plane
makes with the positive x-axis (0..2π, or -π..+π).

The connection numbers and internal coordinate values of the first atom in a Z-matrix have no meaning.
Similarly, the second atom requires only a bond-length specification and the third atom only a bond
length and a bond angle. However, for each atom three connection numbers are read from input and
interpreted, and you must therefore supply zeros for them if they don't refer to any atoms. The
corresponding meaningless Z-matrix coordinate values can be omitted. More in general: missing
coordinate values are set to zero (also for Cartesian coordinates input). Z-matrix values that are
meaningless because they correspond to zero connection numbers are ignored, whatever their value is
in the input file.

In a Z-matrix definition the three reference atoms, with respectively 3, 2, and 1 connection numbers
equal to zero, do not have to be the first three in the input list. The program will scan the list for any
atom that has 3 connection numbers zero, then for one that has only a bond length specification, etc. If
the Z-matrix is not properly defined, for instance if more than one atom occurs with all three connection
numbers equal to zero, or when not every atom is somehow connected to all others, the program will
abort.

F=Fragment

32

Specifies that the atom belongs to a particular fragment. The fragment name must be of the form
fragtype/n, where fragtype is the name of one of the types of fragments in the molecule. The integer n,
after the slash, counts the individual fragments of that type. The numbering suffix /n is not required if
there is only one fragment of that type.

When f=fragment is omitted altogether, the fragment type is taken to be the atom type that was
specified earlier on the same line. (The numbering /n is then added automatically by the program, by
counting the number of times that this single-atom fragment type occurs in the list of atoms).

Mopac

The MOPAC style input requires that the records in the data block have the following format:

atomtype distance idist angle iangle dihedral idehedral

The three internal coordinate values (distance, angle, dihedral) are each followed directly by the
connection number.

Atom type is not identical to chemical element: an atom type is defined by all characteristics of the basic
atom to which it in fact refers: the nuclear charge, the basis functions, the frozen core, the density functional
and any other features that were applied in generating that basic atom.

As mentioned before, the point group symmetry specified in input with a Schönfliess type symbol puts
restrictions on the orientation of the atomic system. Unless the input-specified symmetry equals the true
symmetry of the nuclear frame (in which case ADF will adjust the orientation of the molecule, if necessary),
the user must take care of this by supplying the Cartesian coordinates (in the appropriate orientation). If a
subgroup of the true nuclear symmetry is used and Z-matrix format is used for the coordinates, the program
will place the atoms in the standard Z-matrix frame: first atom at the origin, second on the positive x-axis,
third in the xy-plane with positive y-value.

Dummy atoms may be placed asymmetrically. If the atomic coordinates are input as Cartesians, any dummy
atoms are irrelevant. Their coordinates will be printed but otherwise they are ignored.

Input items are generally case insensitive. Exceptions are the names of files and directories. Since (to be
discussed below) the name of the fragment type as it is defined under atoms (explicitly with the f=option, or
implicitly as the name of the atom type) might also directly indicate the fragment file, the specification of
fragment types is in principle case-sensitive. Errors may occur if you are sloppy in this respect.

However, you must not give different fragment types names that differ only by case: at various places in the
program fragment type names are compared in a case-insensitive way.

Mixed Cartesian and Z-matrix coordinates

The key ATOMS can also be used to supply coordinates in a format that gives the values for the cartesian
coordinates and the connection matrix, which defines a Z-matrix.

ATOMS ZCart
{N} Atom Coords {F=Fragment}
...

End

ZCart

Signals this particular format for the coordinates

Coords

33

As for Z-matrix input: three integers and three real values. The integers are the connection numbers
that define the Z-matrix structure, but the reals are the Cartesian coordinates.

With ZCart input, the z-matrix is internally generated from the Cartesian coordinates and the connection
numbers.

This feature is convenient when for instance Cartesian coordinates are easily available but you want to run a
Geometry Optimization in internal coordinates, for which a Z-matrix structure is required.

The zcart option comes in handy also to satisfy symmetry-related orientation requirements when you
basically wish to use Z-matrix coordinates.

With zcart input the program defines the type of coordinates in the input file as Cartesian. This is significant
in Geometry Optimizations, where the optimization variables are by default taken as the input coordinate
type.

Orientation of Local Atomic Coordinates

As discussed before the atomic positions are input with the key ATOMS. One option has thus far not been
mentioned: the possiblity to redefine the local coordinate frame of an atom.

ATOMS {type of coordinates}
{n} atomname coordinates {F=fragment} {Z=xx yy zz} {X=xx yy zz}
...

end

Except for the z= option all aspects have been examined already before.

z=xx yy zz

defines a reorientation of the local atomic z-axis; it is interpreted as a direction vector with components
(xx,yy,zz) pointing away from the atom. In the local, reoriented frame the local atomic x-axis will be
rotated to the plane defined by the directions of the molecular z-axis and the local atomic z-axis.
This feature can be used only for single-atom fragments (otherwise it is ignored). Its purpose is to give
more flexibility in the analysis of the final molecular orbitals in terms of the atomic orbitals. In such a
case it may be very helpful to redefine the orientation of say the p-orbitals of an atom. For instance, you
may orient all p-orbitals towards the origin by specifying for each atom z= -x -y -z (with x,y,z the
coordinates of that atom).
By default the local and molecular z-axes are identical.

x=xx yy zz

defines a reorientation of the local atomic x-axis; it is interpreted as a direction vector with components
(xx,yy,zz) pointing away from the atom. Together with the z vector this defines the xz plane. The y axis
is then given by the vector product z * x.
This is used for analysis (see orientation of the z-axis).

ASCII Output Files with Atomic Coordinates

You may want to have a special result file that contains the atomic coordinates corresponding to all the
geometries processed in the calculation, for instance to feed it to a 'movie' generator to display the
development of an optimization run. This is regulated with the key FILE:

FILE filetype filename { filetype2 filename2 }

filetype

34

Specifies the format of the output. Currently supported are three varieties: MOPAC, mol and xyz

filename

The file to which the output is written; the file should not yet exist. The name may include a full or
relative path with respect to the directory where the calculation runs.

The same input record may contain any number of pairs-of-arguments, for instance to specify that both a
mol-type and a xyz-type result file are to be generated. The key may also occur more than once in the input
stream, in which case the argument lists are effectively all concatenated (by the program).

Basis sets and atomic fragments

Database of STO basis sets

The ADF package is equipped with a database to help you generate basic atoms. Each data file in the
database contains a standard basis set (and related information) for the creation of one basic atom. The
data files are relatively small ASCII files. You can easily inspect them. In Appendix 5.1 a definition is given of
such a file. This enables you to create variations and construct your own adapted basis sets.

The basis functions used in ADF are commonly known as Slater Type Orbitals (STOs). A basis set can
roughly be characterized by its size (single-, double-, triple-zeta; with or without polarization) and by the level
of frozen core approximation. Initially, the only basis sets provided with ADF were those in the directories I,
II, III, IV, V, which now have the more intuitive names SZ, DZ, DZP, TZP, and TZ2P, respectively. The
increasing numbers point to an increase in size and quality. It is not possible to give a formally correct short
general classification for each basis set directory. However, generally speaking we can say that SZ is a
single-zeta basis set, DZ is a double zeta basis set, DZP is a double zeta polarized basis, TZP is a core
double zeta, valence triple zeta, polarized basis set, and finally TZ2P is a core double zeta, valence triple
zeta, doubly polarized basis. This explains the more intuitive names that are given for the basis sets. The
names have also been changed since some of the basis sets have been modified substantially.

For small negatively charged atoms or molecules, like F− or OH−, use basis sets with extra diffuse functions,
like they are available in the AUG or ET/QZ3P-nDIFFUSE directories, see description below. For example,
the standard basis sets, or even the large ZORA/QZ4P basis set will often not be large enough for the
accurate calculation of such anions.

In addition to the standard basis sets, the database contains directories with special basis sets:

TZ2P+For transition metals Sc-Zn and lanthanides (ZORA) only: as TZ2P, but with extra d-STO (3d
metals), and extra f-STO (lanthanides, ZORA)

ZORA contains basis sets that should be used (exclusively) for relativistic calculations with the ZORA
approach. Using 'normal' basis sets in a ZORA calculation may give highly inaccurate results, in
particular for heavy elements. The same is classification is used for the directories ZORA/SZ-TZ2P as
in the non-relativistic directories. The ZORA basis sets were added later because of the special
requirements on basis sets for ZORA relativistic calculations, especially in the core region. The ZORA/
QZ4P basis set can be loosely described as core triple zeta, valence quadruple zeta, with four sets of
polarization functions.

ET contains several even tempered basis sets which enables one to go to the basis set limit, such as
ET/ET-pVQZ, ET/ET-QZ3P, ET/ET-QZ3P-1DIFFUSE, ET/ET-QZ3P-2DIFFUSE, ET/ET-
QZ3P-3DIFFUSE. The accuracy of the smallest basis set in this directory can loosely be described as
quadruple zeta in the valence with three polarization functions added. This directory also contains basis
sets with extra diffuse functions. In Response calculations one should use such large basis sets. Very

35

diffuse functions are absolutely necessary to get good results for excitation energies corresponding to
high lying orbitals.

AUG contains several augmented standard basis sets which enables one to get reasonable results for
excitation energies with relatively small basis sets, such as AUG/ASZ, AUG/ADZ, AUG/ADZP, AUG/
ATZP, AUG/ATZ2P.

OLD contains basis sets that were contained in the 2.3 release, but that we feel should not be used
anymore unless with great care, primarily because the involved frozen cores are too large to justify the
frozen core approximation. In some cases we found uncomfortably large errors in equilibrium
geometries resulting from such too-large cores.

Furthermore, you will find in the database:

Special/AE contains non-relativistic basis sets for all-electron calculations. However, these files cannot
be used as such, because they don't contain any fit sets. Using basis sets without fit sets is pointless
and is in fact not possible at all. (The usage and relevance of fit functions is explained later). Therefore,
they serve as starting point for the development of (new) basis sets. For some of the all-electron sets
appropriate fit sets have already been generated. The corresponding data base files can be found in the
appropriate subdirectories SZ, DZ, DZP, et cetera.

Special/Vdiff contains non-relativistic basis sets that include very diffuse functions. These were
recommended to be used for Response calculations. Very diffuse functions are absolutely necessary to
get good results for excitation energies corresponding to high lying orbitals. Recommendation: use the
even tempered basis sets in the ET directory, since these basis sets are better.

Special/MDC contains non-relativistic basis sets with optimized fit functions especially useful for
accurate Multipole Derived Charges. These are available only for a limited number of basis sets.

Cerius contains data files that are used in the Cerius2-ADF graphical user interface.

Dirac contains the input files for the DIRAC auxiliary program (see the RELATIVISTIC keyword).

Band contains input files for the BAND program (see the BAND User's Guide)

ForceFields contains force field files to be used in the QM/MM functionality. Their structure and
contents are described in the QM/MM manual. See also the pdb2adf utility (ADF QM/MM
documentation), which transforms a PDB file into an ADF input file, for use with QM/MM.

The files in SZ/) (and ZORA/SZ/) have minimal basis sets: single-zeta without polarization. The exponents of
the functions correspond to the standard STO-3g basis sets used in programs that employ Gaussian type
basis functions. The frozen core approximation is applied, however, for the inner atomic shells. Type-SZ
database files are provided only for the lighter elements, up to Kr.

The files in DZ can be characterized as double-zeta basis sets without polarization functions. A triple-zeta
set is used for the 3d shells of the first row transition metals, the 4f shells of the Lanthanides, and the 5f
shells of the Actinides. In all these cases a double-zeta set provides a rather poor expansion basis for the
true (numerically computed) atomic orbital.

The basis sets in DZP are derived from DZ, extended with a polarization function. This type of basis sets is
thus far provided only for the elements up to Ar, and for the 4p series Ga through Kr.

TZP contains triple-zeta basis sets. A polarization function is added for H through Ar and for Ga through Kr
(from DZP).

TZ2P finally gives extended basis sets: triple-zeta with two polarization functions, for H through Ar and Ga
through Kr (from DZP). Note that the TZ2P database files are provided only for the lighter elements, up to
Kr. The ZORA/TZ2P database files are provided for all elements. Typically for all elements one polarization

36

http://www.scm.com/Doc/Doc2014/BAND/BandUsersGuide/page1.html
http://www.scm.com/Doc/Doc2014/QMMM/page1.html
http://www.scm.com/Doc/Doc2014/QMMM/metatagPDB2ADF.html

function is added compared to the corresponding TZP basis set. Note, however, that TZ2P will not always
give you extra basis functions for most lanthanide and actinide frozen core basis sets.

Multiple occurrences of one chemical element in the same basis set subdirectory correspond to different
levels of the frozen core approximation. Manganese for instance may have a basis set for an atom with a
frozen 2p shell and another one with a frozen 3p shell. The file names are self-explanatory: Mn.2p stands for
a data file for Manganese with frozen core shells up to the 2p level. An all-electron basis set would
correspond to a file that has no frozen-core suffix in its name.

Another type of multiple occurrence of one element in one database directory may be found when basis sets
have been developed for different electronic configurations: the Slater-type basis sets are fitted then to
numerical orbitals from runs with different occupation numbers. Currently this applies only for Ni (in
database directories DZ, TZP and TZ2P), where basis sets are supplied for the d8s2 and the d9s1
configurations respectively. Since in earlier releases only the d8s2 variety was available, the names of the
database files are Ni.2p (for d8s2) and Ni_d9.2p, and likewise Ni.3p and Ni_d9.3p.

As mentioned above, some all-electron basis sets are present in the basis set directories SZ through TZ2P,
but not for all elements of the periodic table. The heavier elements, from Rb on, the non-relativistic all
electron basis sets are missing. In the ZORA basis sets directory you will find all-electron basis sets for all
elements (Z = 1-118), which also could be used in non-relativistic calculations. Note, however, that these
basis sets were optimized for ZORA calculations, which means that non-relativistic calculations will not
always give you the expected accuracy. Warning: the frozen core basis sets in the ZORA directory should
never be used in non-relativistic calculations. Non-relativistically optimized basis sets for the heavier
elements are provided in a separate directory AE, which contains basis sets of single-, double- and triple-
zeta quality indicated respectively by suffixes 'sz', 'dz', and 'tz'. The files in Special/AE/ are not complete
database files, because they don't contain fit sets (the usage and relevance of fit functions is explained
later).

The development of fit sets and their testing is not a triviality. It is absolutely a bad idea to take a fit set from
another database file, corresponding to some frozen core level, and use that in an all-electron basis set: this
will give significant errors and make results worthless. In the ZORA directory one can find all-electron basis
sets with good fits sets for the heavier elements.

References on basis sets

Older references for STO basis sets are Refs. [336-338]. More recent:
[320] E. van Lenthe and E.J. Baerends, Optimized Slater-type basis sets for the elements 1-118. Journal of
Computational Chemistry 24, 1142 (2003)
[321] D.P. Chong, E. van Lenthe, S.J.A. van Gisbergen and E.J. Baerends, Even-tempered Slater-Type
orbitals revisited: From Hydrogen to Krypton. Journal of Computational Chemistry 25, 1030 (2004)
[322] D.P. Chong, Augmenting basis set for time-dependent density functional theory calculation of
excitation energies: Slater-type orbitals for hydrogen to krypton. Molecular Physics 103, 749 (2005)

See also the paper by Raffennetti on design and optimization of even-tempered STO basis sets [317]. The
paper by Del Chong describes completeness profiles as a visual tool in estimating the completeness of a
basis set [318]. Finally, Zeiss and coworkers [319] describe field-induced polarization functions for STOs.
These are useful for defining basis sets with diffuse functions for (hyper)polarizability and other property
calculations.

The procedure for the usage and optimization of fit functions is described by Baerends et al. [308].

How TO make EVEN-tempered basis/fit sets?

The programs questbas, rafbas, etprog, etwrite, described below, have not yet been made generally
available.

37

http://dx.doi.org/10.1002/jcc.10255
http://dx.doi.org/10.1002/jcc.10255
http://dx.doi.org/10.1002/jcc.20030
http://dx.doi.org/10.1080/00268970412331333618

The standard basis sets that are provided are sufficiently flexible to accommodate the needs of almost every
type of calculation of almost every user. Therefore, the first question should be: do I really need to make my
own basis set? Almost always, the answer should be 'no', because of the availability of the directories
(ZORA/) SZ-QZ4P (old names I-V) and basis set directories containing diffuse ET basis and fit sets. If
however, you decide that these basis sets might be insufficiently reliable for your purpose, you can use the
utilities described below.

At the moment, there are several restrictions to these utilities. (We currently do not yet make these utilities
generally available as they have not been very extensively tested yet. People who think they may need
these utilities should contact SCM). First, only starting points (basis sets for the occupied shells) are
available for elements up to Kr. Also, we currently have some reservations about the ET basis sets from K-
Kr, because of the relatively large basis set superposition errors that occur. Nevertheless, for accurate all-
electron nonrelativistic basis sets up to Kr, the utilities may still prove a very useful tool. The tools have not
yet been tested to work properly for the generation of basis sets suitable for ZORA calculations.

ET stands for even-tempered. This may apply to the basis and to the fit. In our ET basis sets, only 1s, 2p,
3d, and 4f functions occur. In the fit sets, 5g functions occur in addition to this. [Currently all ADF basis sets
are restricted to f functions and fit sets are restricted to g functions as the highest l-value]. The exponents in
ET basis sets are given by the simple formula:

ζ = α*βI where I=1,... N

Here ζ is the exponent of the STO, b (which should be larger than 1) defines how far apart two consecutive
exponents are, and a determines what the most diffuse exponent is. In principle, each l-value has its own set
of α, β, N.

What is the basic idea behind the basis set utilities?

The basis set utilities generate ADF atomicdata files for ET basis and fit sets, using some simple input from
the user. With the first utility, the user selects the ET basis set for the occupied shells that should form the
starting point. These were developed and tested on atomic total and orbital energies by Prof. Del Chong
during a sabbatical spent in Amsterdam. These basis sets are intended to be at least of the quality of basis
V, but usually better. However, also some smaller ET basis sets were made for more economical
calculations. After selecting the basis set for the occupied shell, the user has to specify whether additional
polarization, diffuse, or contracted basis functions should be added (also tight functions for ZORA
calculations can be added, but this has not been properly tested). To answer these questions requires of
course some expertise in basis sets. It is therefore recommended for users with some experience in this
area. However, suitable, safe defaults are defined and suggested in the scripts. The user also defines the
quality of the fit set which is desired. Only the highest quality fit set has been thoroughly tested. The other
options are not supported at the moment. We will now describe the input and output of the various utilities in
some detail.

The utility questbas

This utility is available in $ADFBIN/questbas.exe. Running this executable results in the following questions:

Please provide the atomic number of the element

For Carbon, we type 6

As a next question a long list of default basis sets is presented. These correspond to predefined choices for
the number of diffuse, tight, and polarization functions, and are used to automatically generate all kinds of
ET basis sets. If any of these standard basis sets are chosen, the answers to all questions are filled in
automatically.

Choose 0 for the general basis set procedure

SUGGESTED CHOICE: 0

38

Here, we follow the suggested choice which allows us to explain all options, and type 0.

Now the script tells us we have the choice between 4 different basis sets for the occupied shells. The basis
sets which have been most thoroughly investigated at present are the ET basis sets in which the factor beta
(β) [defining the spacing between two subsequent STOs] is fixed at the value 1.7 for all l-values in the basis.
These basis sets form the starting point for the directories VI and VII. For carbon, the output tells us that we
would start from a 5s4p basis with this choice. In another ET basis set, with a different design philosophy, β
is variable (typically 1.55 for s, 1.7 for p, 2.0 for d), but α is fixed. These basis sets occur in a large (valence
quadruple zeta, core double zeta) and medium (augmented double zeta) variety. In the case of carbon, they
are of the size 6s4p and 4s3p. These variable β basis sets have been less intensively tested in molecular
calculations than the fixed β variety. For that reason a final verdict has to be postponed as to which type is
preferable. The fixed β seems the safest choice at present, because it has been used more in molecular
calculations. The large variable β basis leads to names like VIB and VIIB. We type here 1 for the fixed β
variety. As output we now get information on our intermediate basis set

As a starting point you have selected an even-tempered basis with following values for n, alpha, beta:

S: 6 0.6592211993160408 1.700000047683716

P: 4 0.5316027776326796 1.700000047683716

The script follows with the following question:

You can specify here how many additional fus you want for each l-value. Suggested: 0 0 0 0

This option allows the user to add functions to the final basis by keeping the endpoints, most diffuse and
tightest functions, fixed and reducing the β value. This option is not often useful and we ignore it by typing 0
0 0 0

The next question concerns the ZORA option. As this has not yet been thoroughly tested we choose 0 for a
nonrelativistic basis set.

The next question is if we want to add functions. This is definitely needed, because the basis without
polarization functions is quite poor, so we type 1.

Then we are asked how many polarization functions should be added. As a default is suggested 0 2 1,
meaning 2d and 1f polarization functions. This means that we get more polarization functions than in basis V
if we use the default. The geometric mean of the exponent of the polarization functions is stored inside the
program in a data statement. This gives the 'best' exponent for a single polarization function. If more than
polarization function is used, this will be the middle of these polarization functions. The beta value for the
polarization function is taken identical to the beta value of the highest occupied l-value.

After typing the suggested default of 0 2 1, we are asked if we want to add diffuse functions. Whether such
functions are needed in your application is discussed elsewhere in this document. Let us add one diffuse p
function by typing 0 1 0 0

We are then asked about additional tight functions to improving the description of the core region. In this
example, we do not add such functions by typing 0 0 0 0

Then we are asked what size of fit set we require. We type 3 to get the largest fit set, the only thoroughly
tested option.

Finally we are asked if we want to let the program add diffuse function to make the basis set suitable for
(hyper)polarizability calculations. We follow the suggested choice by typing 0 0. Otherwise, the utility would
add diffuse functions until the most diffuse function is more diffuse than a stored default diffuse value
(provided by Prof. Del Chong, based on field-induced polarization functions).

The output of the questbas utility is given in the (local) file raf_in. This file gives the input for the rafbas utility
described next.

39

The utility rafbas

The utility $ADFBIN/rafbas.exe reads its input from the local file 'raf_in' and writes its output to the local file
'et_in'. No further user input is required. This utility basically transforms the answers of the user to the
questions posed in 'questbas' into a set of N, α, β values for both the basis and the fit.

The rafbas and the other utilities were originally also intended for generating so-called cusp-satisfying basis
sets, which consist of (for the s functions) 1 1s functions to which ET 3s functions are added. However,
some tests indicated that the core description of these basis sets, which was supposed to be very good, did
not improve upon those of the normal ET basis sets and therefore the cusp-satisfying basis sets were
abandoned.

The rafbas utility contains information about the beta values for the fit. For the default 'VERYLARGEFIT'
option, the beta values were chosen such that the overlap between two successive fit functions does not
exceed 0.95 for s and 0.90 for higher l it functions. Earlier experience with generating fit sets led to the
conclusion that even larger fit sets have a large risk of becoming linearly dependent which causes numerical
problems. The rafbas utility also adds the polarization function exponents. It contains a list of 'best'
exponents for many elements. It further more handles the options to extend the basis by decreasing beta
and to add first- and second-order FIPs (field-induced polarization functions) for the generation of basis sets
for (hyper)polarizability calculations.

The utility etprog

Similarly to the 'rafbas' utility, 'etprog' reads from the local file 'et_in' and writes to the local file 'et_tmp'. It
also prints some output which gives information on what the meaning is of the numbers in the file 'et_in'. The
result in 'et_tmp' is almost of the form (N-values basis, α-values basis, β-values basis, N-values fit, α-values
fit, β-values fit).

The main task of etprog is to generate a fit set corresponding to the basis set information generated by
rafbas. To this purpose, it first generates the most diffuse and most contracted products of basis functions.
This defines the range which should at least be well described by the fit set. However, the range is extended
somewhat more to further increase the quality of the fit. Experience shows that, at least for light elements,
this indeed leads to very small fit errors in molecular calculations, at the expense of a large fit. The beta
values for the fit are read from the input file and originate from a data statement in the rafbas program.

The utility etwrite

No calculations are needed in the utility 'etwrite', it merely writes out the final information in a usable form to
several files. This utility reads from the local file 'et_tmp' and writes to the file 'C' because this was the
element we selected. This file 'C' is an atomicdata file as required for an ADF create run and can be used
without further change. This file also contains information about the final basis and fit set, which can be used
to uniquely specify this basis and fit in a publication. The output further consists of local files like
'SSTO.BAS.INP' which is intended as input for Chong's completeness profile utility $ADFBIN/ssto.exe. The
result of that program is a datafile which can them be visualized with the gnuplot viewing program using the
other output file 'gnu.in.basis' as an example. For the interpretation of the completeness profiles, we refer to
Prof. Chong's publications on this subject.

An example of how all these scripts and programs can be combined is to be found in $ADFHOME/
examples/ basis_fit_utils/e_make_bas_Kr/run, which should be more or less self-explanatory using the
information given here. The directory $ADFHOME/examples/basis_fit_utils also contains other scripts which
can be of use in the generation and testing of basis and fit sets.

Available standard basis sets

Click on the element to see the available standard basis sets for a given element that are distributed with the
ADF package. Note that a click will be towards the Products page on the www.scm.com website.

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1
H

2
He

2 3
Li

4
Be

5
B

6
C

7
N

8
O

9
F

10
Ne

3 11
Na

12
Mg

13
Al

14
Si

15
P

16
S

17
Cl

18
Ar

4 19
K

20
Ca

21
Sc

22
Ti

23
V

24
Cr

25
Mn

26
Fe

27
Co

28
Ni

29
Cu

30
Zn

31
Ga

32
Ge

33
As

34
Se

35
Br

36
Kr

5 37
Rb

38
Sr

39
Y

40
Zr

41
Nb

42
Mo

43
Tc

44
Ru

45
Rh

46
Pd

47
Ag

48
Cd

49
In

50
Sn

51
Sb

52
Te

53
I

54
Xe

6 55
Cs

56
Ba

La-
Yb

71
Lu

72
Hf

73
Ta

74
W

75
Re

76
Os

77
Ir

78
Pt

79
Au

80
Hg

81
Tl

82
Pb

83
Bi

84
Po

85
At

86
Rn

7 87
Fr

88
Ra

Ac-
No

103
Lr

104
Rf

105
Db

106
Sg

107
Bh

108
Hs

109
Mt

110
Ds

111
Rg

112
Cn

113
Uut

114
Fl

115
Uup

116
Lv

117
Uus

118
Uuo

Lanthanide
elements

57
La

58
Ce

59
Pr

60
Nd

61
Pm

62
Sm

63
Eu

64
Gd

65
Tb

66
Dy

67
Ho

68
Er

69
Tm

70
Yb

Actinide
elements

89
Ac

90
Th

91
Pa

92
U

93
Np

94
Pu

95
Am

96
Cm

97
Bk

98
Cf

99
Es

100
Fm

101
Md

102
No

Basis sets directories

Basis sets can be found in the directory $ADFHOME/atomicdata, for non-relativistic calculations in the
subdirectories SZ, DZ, DZP, TZP, TZ2P, TZ2P+, for ZORA calculations in ZORA/SZ, ZORA/DZ, ZORA/
DZP, ZORA/TZP, ZORA/TZ2P, ZORA/TZ2P+, ZORA/QZ4P, the augmented basis sets can be found in
AUG/ASZ, AUG/ADZ, AUG/ADZP, AUG/ATZP, AUG/ATZ2P, and the even tempered basis sets in ET/ET-
pVQZ, ET/ET-QZ3P, ET/ET-QZ3P-1DIFFUSE, ET/ET-QZ3P-2DIFFUSE, ET/ET-QZ3P-3DIFFUSE. All
electron basis sets can be used in non-relativistic and ZORA calculations.

Basis sets acronyms

• SZ: single zeta
• DZ: double zeta
• DZP: double zeta + 1 polarization function
• TZP: valence triple zeta + 1 polarization function
• TZ2P: valence triple zeta + 2 polarization function
• TZ2P+: = TZ2P + extra d (3d metals) or extra f (lanthanides)
• pVQZ, QZ3P: valence quadruple zeta + 3 polarization function, even tempered
• QZ3P-nD: = QZ3P + n diffuse sets of s, p, d, and f functions, even tempered
• QZ4P: valence quadruple zeta + 4 polarization function, relativistically optimized
• ASZ, ADZ, ADZP, ATZP, ATZ2P: augmented for use in TDDFT

For small negatively charged atoms or molecules, like F− or OH−, use basis sets with extra diffuse functions,
like the augmented or QZ3P-nD

All electron or frozen core

• element name (without suffix): all electron
• .1s frozen: 1s
• .2p frozen: 1s 2s 2p
• .3p frozen: 1s 2s 2p 3s 3p
• .3d frozen: 1s 2s 2p 3s 3p 3d
• .4p frozen: 1s 2s 2p 3s 3p 3d 4s 4p

41

http://www.scm.com/Products/atomicdata/H
http://www.scm.com/Products/atomicdata/H
http://www.scm.com/Products/atomicdata/He
http://www.scm.com/Products/atomicdata/He
http://www.scm.com/Products/atomicdata/Li
http://www.scm.com/Products/atomicdata/Li
http://www.scm.com/Products/atomicdata/Be
http://www.scm.com/Products/atomicdata/Be
http://www.scm.com/Products/atomicdata/B
http://www.scm.com/Products/atomicdata/B
http://www.scm.com/Products/atomicdata/C
http://www.scm.com/Products/atomicdata/C
http://www.scm.com/Products/atomicdata/N
http://www.scm.com/Products/atomicdata/N
http://www.scm.com/Products/atomicdata/O
http://www.scm.com/Products/atomicdata/O
http://www.scm.com/Products/atomicdata/F
http://www.scm.com/Products/atomicdata/F
http://www.scm.com/Products/atomicdata/Ne
http://www.scm.com/Products/atomicdata/Ne
http://www.scm.com/Products/atomicdata/Na
http://www.scm.com/Products/atomicdata/Na
http://www.scm.com/Products/atomicdata/Mg
http://www.scm.com/Products/atomicdata/Mg
http://www.scm.com/Products/atomicdata/Al
http://www.scm.com/Products/atomicdata/Al
http://www.scm.com/Products/atomicdata/Si
http://www.scm.com/Products/atomicdata/Si
http://www.scm.com/Products/atomicdata/P
http://www.scm.com/Products/atomicdata/P
http://www.scm.com/Products/atomicdata/S
http://www.scm.com/Products/atomicdata/S
http://www.scm.com/Products/atomicdata/Cl
http://www.scm.com/Products/atomicdata/Cl
http://www.scm.com/Products/atomicdata/Ar
http://www.scm.com/Products/atomicdata/Ar
http://www.scm.com/Products/atomicdata/K
http://www.scm.com/Products/atomicdata/K
http://www.scm.com/Products/atomicdata/Ca
http://www.scm.com/Products/atomicdata/Ca
http://www.scm.com/Products/atomicdata/Sc
http://www.scm.com/Products/atomicdata/Sc
http://www.scm.com/Products/atomicdata/Ti
http://www.scm.com/Products/atomicdata/Ti
http://www.scm.com/Products/atomicdata/V
http://www.scm.com/Products/atomicdata/V
http://www.scm.com/Products/atomicdata/Cr
http://www.scm.com/Products/atomicdata/Cr
http://www.scm.com/Products/atomicdata/Mn
http://www.scm.com/Products/atomicdata/Mn
http://www.scm.com/Products/atomicdata/Fe
http://www.scm.com/Products/atomicdata/Fe
http://www.scm.com/Products/atomicdata/Co
http://www.scm.com/Products/atomicdata/Co
http://www.scm.com/Products/atomicdata/Ni
http://www.scm.com/Products/atomicdata/Ni
http://www.scm.com/Products/atomicdata/Cu
http://www.scm.com/Products/atomicdata/Cu
http://www.scm.com/Products/atomicdata/Zn
http://www.scm.com/Products/atomicdata/Zn
http://www.scm.com/Products/atomicdata/Ga
http://www.scm.com/Products/atomicdata/Ga
http://www.scm.com/Products/atomicdata/Ge
http://www.scm.com/Products/atomicdata/Ge
http://www.scm.com/Products/atomicdata/As
http://www.scm.com/Products/atomicdata/As
http://www.scm.com/Products/atomicdata/Se
http://www.scm.com/Products/atomicdata/Se
http://www.scm.com/Products/atomicdata/Br
http://www.scm.com/Products/atomicdata/Br
http://www.scm.com/Products/atomicdata/Kr
http://www.scm.com/Products/atomicdata/Kr
http://www.scm.com/Products/atomicdata/Rb
http://www.scm.com/Products/atomicdata/Rb
http://www.scm.com/Products/atomicdata/Sr
http://www.scm.com/Products/atomicdata/Sr
http://www.scm.com/Products/atomicdata/Y
http://www.scm.com/Products/atomicdata/Y
http://www.scm.com/Products/atomicdata/Zr
http://www.scm.com/Products/atomicdata/Zr
http://www.scm.com/Products/atomicdata/Nb
http://www.scm.com/Products/atomicdata/Nb
http://www.scm.com/Products/atomicdata/Mo
http://www.scm.com/Products/atomicdata/Mo
http://www.scm.com/Products/atomicdata/Tc
http://www.scm.com/Products/atomicdata/Tc
http://www.scm.com/Products/atomicdata/Ru
http://www.scm.com/Products/atomicdata/Ru
http://www.scm.com/Products/atomicdata/Rh
http://www.scm.com/Products/atomicdata/Rh
http://www.scm.com/Products/atomicdata/Pd
http://www.scm.com/Products/atomicdata/Pd
http://www.scm.com/Products/atomicdata/Ag
http://www.scm.com/Products/atomicdata/Ag
http://www.scm.com/Products/atomicdata/Cd
http://www.scm.com/Products/atomicdata/Cd
http://www.scm.com/Products/atomicdata/In
http://www.scm.com/Products/atomicdata/In
http://www.scm.com/Products/atomicdata/Sn
http://www.scm.com/Products/atomicdata/Sn
http://www.scm.com/Products/atomicdata/Sb
http://www.scm.com/Products/atomicdata/Sb
http://www.scm.com/Products/atomicdata/Te
http://www.scm.com/Products/atomicdata/Te
http://www.scm.com/Products/atomicdata/I
http://www.scm.com/Products/atomicdata/I
http://www.scm.com/Products/atomicdata/Xe
http://www.scm.com/Products/atomicdata/Xe
http://www.scm.com/Products/atomicdata/Cs
http://www.scm.com/Products/atomicdata/Cs
http://www.scm.com/Products/atomicdata/Ba
http://www.scm.com/Products/atomicdata/Ba
http://www.scm.com/Products/atomicdata/Lu
http://www.scm.com/Products/atomicdata/Lu
http://www.scm.com/Products/atomicdata/Hf
http://www.scm.com/Products/atomicdata/Hf
http://www.scm.com/Products/atomicdata/Ta
http://www.scm.com/Products/atomicdata/Ta
http://www.scm.com/Products/atomicdata/W
http://www.scm.com/Products/atomicdata/W
http://www.scm.com/Products/atomicdata/Re
http://www.scm.com/Products/atomicdata/Re
http://www.scm.com/Products/atomicdata/Os
http://www.scm.com/Products/atomicdata/Os
http://www.scm.com/Products/atomicdata/Ir
http://www.scm.com/Products/atomicdata/Ir
http://www.scm.com/Products/atomicdata/Pt
http://www.scm.com/Products/atomicdata/Pt
http://www.scm.com/Products/atomicdata/Au
http://www.scm.com/Products/atomicdata/Au
http://www.scm.com/Products/atomicdata/Hg
http://www.scm.com/Products/atomicdata/Hg
http://www.scm.com/Products/atomicdata/Tl
http://www.scm.com/Products/atomicdata/Tl
http://www.scm.com/Products/atomicdata/Pb
http://www.scm.com/Products/atomicdata/Pb
http://www.scm.com/Products/atomicdata/Bi
http://www.scm.com/Products/atomicdata/Bi
http://www.scm.com/Products/atomicdata/Po
http://www.scm.com/Products/atomicdata/Po
http://www.scm.com/Products/atomicdata/At
http://www.scm.com/Products/atomicdata/At
http://www.scm.com/Products/atomicdata/Rn
http://www.scm.com/Products/atomicdata/Rn
http://www.scm.com/Products/atomicdata/Fr
http://www.scm.com/Products/atomicdata/Fr
http://www.scm.com/Products/atomicdata/Ra
http://www.scm.com/Products/atomicdata/Ra
http://www.scm.com/Products/atomicdata/Lr
http://www.scm.com/Products/atomicdata/Lr
http://www.scm.com/Products/atomicdata/Rf
http://www.scm.com/Products/atomicdata/Rf
http://www.scm.com/Products/atomicdata/Db
http://www.scm.com/Products/atomicdata/Db
http://www.scm.com/Products/atomicdata/Sg
http://www.scm.com/Products/atomicdata/Sg
http://www.scm.com/Products/atomicdata/Bh
http://www.scm.com/Products/atomicdata/Bh
http://www.scm.com/Products/atomicdata/Hs
http://www.scm.com/Products/atomicdata/Hs
http://www.scm.com/Products/atomicdata/Mt
http://www.scm.com/Products/atomicdata/Mt
http://www.scm.com/Products/atomicdata/Ds
http://www.scm.com/Products/atomicdata/Ds
http://www.scm.com/Products/atomicdata/Rg
http://www.scm.com/Products/atomicdata/Rg
http://www.scm.com/Products/atomicdata/Cn
http://www.scm.com/Products/atomicdata/Cn
http://www.scm.com/Products/atomicdata/Uut
http://www.scm.com/Products/atomicdata/Uut
http://www.scm.com/Products/atomicdata/Fl
http://www.scm.com/Products/atomicdata/Fl
http://www.scm.com/Products/atomicdata/Uup
http://www.scm.com/Products/atomicdata/Uup
http://www.scm.com/Products/atomicdata/Lv
http://www.scm.com/Products/atomicdata/Lv
http://www.scm.com/Products/atomicdata/Uus
http://www.scm.com/Products/atomicdata/Uus
http://www.scm.com/Products/atomicdata/Uuo
http://www.scm.com/Products/atomicdata/Uuo
http://www.scm.com/Products/atomicdata/La
http://www.scm.com/Products/atomicdata/La
http://www.scm.com/Products/atomicdata/Ce
http://www.scm.com/Products/atomicdata/Ce
http://www.scm.com/Products/atomicdata/Pr
http://www.scm.com/Products/atomicdata/Pr
http://www.scm.com/Products/atomicdata/Nd
http://www.scm.com/Products/atomicdata/Nd
http://www.scm.com/Products/atomicdata/Pm
http://www.scm.com/Products/atomicdata/Pm
http://www.scm.com/Products/atomicdata/Sm
http://www.scm.com/Products/atomicdata/Sm
http://www.scm.com/Products/atomicdata/Eu
http://www.scm.com/Products/atomicdata/Eu
http://www.scm.com/Products/atomicdata/Gd
http://www.scm.com/Products/atomicdata/Gd
http://www.scm.com/Products/atomicdata/Tb
http://www.scm.com/Products/atomicdata/Tb
http://www.scm.com/Products/atomicdata/Dy
http://www.scm.com/Products/atomicdata/Dy
http://www.scm.com/Products/atomicdata/Ho
http://www.scm.com/Products/atomicdata/Ho
http://www.scm.com/Products/atomicdata/Er
http://www.scm.com/Products/atomicdata/Er
http://www.scm.com/Products/atomicdata/Tm
http://www.scm.com/Products/atomicdata/Tm
http://www.scm.com/Products/atomicdata/Yb
http://www.scm.com/Products/atomicdata/Yb
http://www.scm.com/Products/atomicdata/Ac
http://www.scm.com/Products/atomicdata/Ac
http://www.scm.com/Products/atomicdata/Th
http://www.scm.com/Products/atomicdata/Th
http://www.scm.com/Products/atomicdata/Pa
http://www.scm.com/Products/atomicdata/Pa
http://www.scm.com/Products/atomicdata/U
http://www.scm.com/Products/atomicdata/U
http://www.scm.com/Products/atomicdata/Np
http://www.scm.com/Products/atomicdata/Np
http://www.scm.com/Products/atomicdata/Pu
http://www.scm.com/Products/atomicdata/Pu
http://www.scm.com/Products/atomicdata/Am
http://www.scm.com/Products/atomicdata/Am
http://www.scm.com/Products/atomicdata/Cm
http://www.scm.com/Products/atomicdata/Cm
http://www.scm.com/Products/atomicdata/Bk
http://www.scm.com/Products/atomicdata/Bk
http://www.scm.com/Products/atomicdata/Cf
http://www.scm.com/Products/atomicdata/Cf
http://www.scm.com/Products/atomicdata/Es
http://www.scm.com/Products/atomicdata/Es
http://www.scm.com/Products/atomicdata/Fm
http://www.scm.com/Products/atomicdata/Fm
http://www.scm.com/Products/atomicdata/Md
http://www.scm.com/Products/atomicdata/Md
http://www.scm.com/Products/atomicdata/No
http://www.scm.com/Products/atomicdata/No

• .4d frozen: 1s 2s 2p 3s 3p 3d 4s 4p 4d
• .4f frozen: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
• .5p frozen: 1s 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p (La-Lu)
• .5p frozen: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p (other)
• .5d frozen: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d
• .6p frozen: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 6s 6p (Ac-Lr)
• .5f frozen: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p

Automatic mode

The following input will run a geometry optimization on water, using a (almost) minimal input:

ATOMS
O 0 0 0
H 1 1 0
H -1 1 0

End

Basis
End

Geometry
End

The ATOMS block key specifies the starting geometry.

The GEOMETRY key instructs ADF to perform a geometry optimization.

The BASIS block key instructs ADF to run the appropriate create runs automatically, using default values for
the basis sets to use. For the XC potentials invoked with the MODEL subkey (cf. XC input block) the XC
potential in the Create run will be a GGA potential rather than such a model potential, as these potentials
cannot currently be applied in Create runs.

The Automatic mode will be used when the Basis key is present in the input:

BASIS
Type bastyp
Core coretyp
Path apath
Atom atompath
...
FitType fittyp
CreateOutput FileName

End

All subkeys are optional. For most calculations you need only to set the Type and Core subkeys.

Type bastyp

bastyp is the type of basis set to use, and must correspond with the name of the directory as used
within $ADFRESOURCES (=$ADFHOME/atomicdata), or within $ADFRESOURCES/ZORA for ZORA
calculations.
Valid standard basis set types are: SZ, DZ, DZP, TZP, TZ2P, and QZ4P. More valid basis set types can
be found in the $ADFRESOURCES directory, such as the TZ2P+ basis set, the augmented basis sets
AUG/ASZ, AUG/ADZ, AUG/ADZP, AUG/ATZP, AUG/ATZ2P, and the even tempered basis sets ET/ET-
pVQZ, ET/ET-QZ3P, ET/ET-QZ3P-1DIFFUSE, ET/ET-QZ3P-2DIFFUSE, ET/ET-QZ3P-3DIFFUSE.
ZORA will be included only for the standard basis set types: SZ, DZ, DZP, TZP, TZ2P, and QZ4P, and if

42

the calculation is a ZORA calculation. In case one of the standard basis set types is used, but no basis
set of the specified type is available, ADF will try to use a larger basis set.
Default: DZ.

Core coretyp

coretyp is the type of frozen core to use. Allowed values: None, Small, Medium, Large.
If no basis set with core is available, an all electron basis set will be used.
If there is only one basis set with core, Small, Medium and Large are identical.
If there are two basis sets with core, Medium and Large are identical.
Default: Large.

Path apath

apath is an alternative directory with basis sets to use. ADF looks for appropriate basis sets only within
this directory.
Default: $ADFRESOURCES

Atom atompath

In this subkey 'Atom' should be replaced by the name of the atomic fragment for which you want to
specify the basis, for example 'O'.

Use this key to specifically select a basis set for this atom:

- an absolute path to a basis file (for example $ADFRESOURCES/DZ/O.1s)
- a relative path to a basis file (for example DZ/O.1s)
- a filename within the Type directory (for example O.1s)

An absolute path will always be used as specified.
A relative path is relative to the value of the PATH (or PATH/ZORA) subkey.
A filename is always relative to PATH/Type or PATH/ZORA/TYPE directory.

The relative path or filename will automatically switch to a ZORA basis set only in case of the standard
basis set types: SZ, DZ, DZP, TZP, TZ2P, and QZ4P, and if the calculation is a ZORA calculation.
You can have one Atom subkey for each basic atom type in your input.

Since you pick explicitly the file to use, you are responsible for choosing a reasonable basis set.

FitType fittyp

fittyp is the type of auxiliary fit set to use, and must correspond with the name of the directory as
used within $ADFRESOURCES, or within $ADFRESOURCES/ZORA for ZORA calculations.
Note that this is an expert option. For all atoms the fit set will be changed if this key is used. The fit set
for a given atom is then taken from the all-electron basis set file for the same element as is the atom.
Typical usage: one might want a larger fit set than is present on the basis file, and then fittyp could be:
ZORA/QZ4P. More valid fit set types can be found in the $ADFRESOURCES directory. If the requested
directory or fit set is not available, then this option might fail without warning.
Default: the auxiliary fit set that is available in the requested basis file.

CreateOutput FileName

Use the CreateOutput option to change where the output from ADF create runs and the Dirac program
goes. If it is not present, it will go to standard output. The special value 'NONE' for FileName makes it
disappear, and any other value will be used as a file name in which to save the output.

Do not include the Fragments or Corepotentials keys when using the Basis key!

43

When the Basis key is present, ADF will first create fragment files for all the basic atom fragments found in
the ATOMS key block. Normally this means that for each atom type in your molecule a fragment file will be
created.

You may have different fragments with the same atom: add a dot and a name (without spaces) after the
name of the element, as described in the ATOMS key. For example: H.1 and H.2. In this example two
fragment files will be created: one for the H.1 fragment and one for the H.2 fragment. Using the ATOM
subkey you may assign different basis sets to these fragments. Another consequence is that the H.1 and
H.2 atoms will never be symmetry equivalent to each other.

Starting from ADF2006.01 the BASIS key recognizes elements denoted with Gh.atom in the ATOMS key as
being ghost atoms. If one does not specifically select a basis set for this ghost atom, the all electron basis
set for the atom is selected in the creation of the ghost atom using the type of basis set chosen with the
BASIS key. The atom name must begin with the standard one- or two-character symbol for the chemical
element: Gh.H, Gh.He, Gh.Li, and so on. Optionally it may be appended by .text, where text is any string
(not containing delimiters). Examples: Gh.H, Gh.Mn.3, Gh.Cu.dz-new.

The basis set to use follows from the subkeys (or the default values), the XC potential follows from the XC
block if it is present in the input.

In case of a relativistic calculation, the DIRAC program will also be run automatically, and the create runs
will include the correct relativistic key and corresponding basis sets. For ZORA calculations, ADF first tries to
locate a special ZORA basis set. If this does not succeed it will use a normal basis set if the required basis
set does not use a frozen core.

The resulting fragment files will be named t21.atom, with 'atom' replaced by the names of the basic atoms
present. In case of a relativistic calculation, the corepotentials will be stored on t12.rel.

Create mode

In Create mode the input file can be extremely simple. First, the geometry is trivial: one atom at the origin.
Indeed, no coordinates etc. are read from input; any such items are ignored.

Second, the problem is computationally so simple that default settings for precision aspects, such as
convergence criteria and levels of numerical integration accuracy, are internally defined to be much more
stringent than in normal calculations. These aspects don't have to be looked after.

In Create mode you need only a one-line input file of the following form:

CREATE Atomtype Datafile

Create

is the keyword. The remainder of the record (atomtype datafile) is the argument.

Atomtype

is a name for the basic atom that you want to create. The program reads and interprets this name.
Therefore, the name must begin with the standard chemical symbol (H, He, Li, ...) of the element to be
created. Optionally the name may have an suffix of the form .text. The suffix begins with a period (.); the
part after the period (text) is at your discretion as long as it does not contain a delimiter. A few
examples:

appropriate names inappropriate names for an atom type
K Si-with-core : no period after the chemical symbol
Li.newbasis $HOME/atomicdata/C.dzp : not beginning with the chemical symbol
P.1992/Feb./30 Ga.nocore,smallbasis : contains a comma (a delimiter)

44

Sodium.2s : Sodium is not the symbol for this element (Na)
Examples of appropriate (left) and inappropriate (right) atom type names used with the keyword
create.

Datafile

specifies the data file that contains the basis set and related items. It may contain a full path if the file
does not reside in the working directory of the job.
The datafile part is optional. If you omit it, ADF assumes that the file name is identical to the atom
type name, i.e.
Create Atomtype
is equivalent to and interpreted as
Create Atomtype Atomtype
In view of the restrictions that apply to the atom type name, the option to use the short form can only be
used if the file name has the appropriate format.
To make the input file easier to understand for a human reader you may, for Datafile, also type
file=Datafile, where file= must be typed as such, and datafile is the name of the file.

So you could have a very simple calculation as follows (the 'creation' of a Carbon atom);

$ADFBIN/adf << eor
Create C.dzp

eor

The presence of the keyword create sets the computational mode of ADF to: create a basic atom. The
argument (C.dzp) is then analyzed and found to have as initial part C, telling ADF that we'll be creating a
Carbon atom. Since the file-specification part is missing, the data file with the basis set etc. must be the
(local) file with the name C.dzp.

More often you will directly address a file (with the basis set) that is not local, but located in the database of
your ADF package. The script could then be:

$ADFBIN/adf << eor
Create C $ADFHOME/atomicdata/DZ/C.1s

eor

Here you address the file 'C.1s' in the database subdirectory DZ/ (this contains basis sets of double-zeta
quality).

A considerable number of data files are included in the ADF database. To apply such a file for the creation
of a basic atom:

Make a copy of the data file in the directory where you want to run the program. Since the standard data file
names satisfy the requirements for atom type names you can now use the simplest option to use the
create key:
Construct a one line input file in (create name-of-data-file-copy)
Run ADF by typing
adf <in >out
When the calculation has finished, give the result file TAPE21 a suitable name and move it to a directory
where you build your database of fragment libraries.
Examine logfile and out to check that everything has gone well.

You may want to define alternative basic atoms, different from those in the standard ADF database, for
instance to try out a different basis set developed by yourself. By inspection of one of the standard data files
you can see what the contents of such a file should be. A complete description is given in Appendix 5.1.

You can also create basic atoms corresponding to so-called Alternative Elements, with for instance a non-
integer nuclear charge or a different mass. See the next section.

45

Ghost Atoms & Non-standard Chemical Elements

The atom type names used under atoms (and in the create record) must begin with the standard chemical
element symbol (H, He, Li...). The program uses this to deduce the nuclear charge and other elemental
properties.

For the standard elements one can redefine the atomic mass (for instance to define a suitable isotope).

A more extensive feature is available to define an artificial chemical element with user-specified properties.
Such new elements are denoted Alternative Elements; and may for instance have a non-integer nuclear
charge. The chemical symbol of an Alternative Elements is Gh (for ghost) or J: either one is ok.

You can create J-type or Gh-type basic atoms and use them subsequently as fragments in a molecule.

Automatic mode

Starting from ADF2009.01 it is easy to make different isotopes or elements if one uses the ATOMPROPS
key in combination with the BASIS key. Typical use would be for the nuclear mass.

ATOMPROPS
Atom.name {m=mass} {q=Q}
...

End

mass

The atomic mass, in atomic mass units, which will then override the default value for the indicated
chemical element. Can be used, for example, for the calculation of isotopes. If not supplied for a J-
element it will be set to the atomic mass of the standard chemical element with nuclear charge A, where
A equals Q rounded to the nearest integer, but not smaller than 1 and not larger than 118.

Q

The nuclear charge. The q= option must be used for a J-element.
It must not be used for standard chemical elements.

name

In Atom.name the first letter after the dot should be a capital.

Example with three different isotopes of hydrogen:

Atoms
N 0.000000 0.000000 0.010272
H -0.471582 -0.816803 0.407861
H.D 0.943163 0.000000 0.407861
H.T -0.471582 0.816803 0.407861

End
AtomProps
H.D m=2.014101778
H.T m=3.01604927

End
Basis
Type TZP

End

Starting from ADF2006.01 the BASIS key recognizes elements denoted with Gh.atom in the ATOMS key as
being ghost atoms. Thus for ghost atoms one does not need the ATOMPROPS keyword. When you use

46

ghost atoms within your ADF calculation ADF will read the basis file that you provide as usual. However,
starting from ADF2009.01 the core section will be skipped automatically. That is, even if the basis file
specifies a frozen core ADF will treat it as if no frozen core is present. Thus, one no longer needs to edit the
basis files, or to switch to all-electron basis files to use ghost atoms. The atom name must begin with the
standard one- or two-character symbol for the chemical element: Gh.H, Gh.He, Gh.Li, and so on. Optionally
it may be appended by .text, where text is any string (not containing delimiters). Examples: Gh.H, Gh.Mn.3p,
Gh.Cu.dz-new.

Create mode

For the standard elements one can redefine the atomic mass (for instance to define a suitable isotope).

CREATE H {m=value} datafile

value

The atomic mass, which will then override the default value for the indicated chemical element.

The nuclear charge of an Alternative Element is not pre-defined, and must therefore be specified in the
Create run. The atomic mass is optionally supplied.

CREATE J.NewElement q=Q {m=mass} datafile

J.NewElement

The atom type name, beginning with the alternative chemical element symbol J. It has an (optional)
suffix of the form .text, completely similar to the construction of atom type names from standard
chemical element symbols.

Q

The nuclear charge. The q= option must be used for a J-element.
It must not be used for standard chemical elements.

mass

The atomic mass, in atomic mass units. If not supplied it will be set to the atomic mass of the standard
chemical element with nuclear charge A, where A equals Q rounded to the nearest integer, but not
smaller than 1 and not larger than 118.

datafile

The Create data file.

If you want to use the Alternative Element feature you'll have to construct your own Create data file, suited to
the Alternative Element you have in mind. Appendix 5.1 describes the format of such a file.

Use as fragment

J-type basic atoms can be used like any other basic atoms to build up larger fragments and molecules. In
fact, J (or Gh) can be considered just one more chemical symbol along with the 118 traditional ones. The
element J has no pre-defined properties. Therefore you have to specify them where appropriate (c.f. the
nuclear charge and atomic mass).

You may have different J-elements in a molecule, with different nuclear charges for instance. Yet, they must
be denoted with the same chemical symbol J; the difference can only be made clear by the .text suffix in the
atom type name.

It does no harm of course to make this suffix a concise but clear description of the main characteristics.

47

Nuclear Model

By default in ADF a point charge model is used for the nuclear charge distribution. In ADF2009.01 a
spherical Gaussian nuclear charge distribution model has been implemented in ADF, see Ref. [270].
Nuclear finite size effects can have large effects on hyperfine interactions (ESR A-tensor, NMR spin-spin
coupling) if heavy atoms like, for example, Mercury (Hg), are involved. In Ref. [270] it was written that the
isotropic J-couplings (parameters in NMR spin-spin coupling) are typically reduced in magnitude by about 10
to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so
for couplings between two heavy atoms. This Ref. [270] gives more details on the parameters used in the
Gaussian nuclear charge distribution model. Note that one needs basis sets with very tight functions to see
any effect of using a finite size of the nucleus instead of a point nucleus. Such basis sets can be found for
some elements in $ADFRESOURCES/ZORA/jcpl, which are basis sets especially designed for NMR spin-
spin coupling calculations.

A Gaussian nuclear charge distribution will be used if one uses the NUCLEARMODEL key with:

NUCLEARMODEL gaussian

NUCLEARMODEL nuclearmodel

The argument nuclearmodel of the key NUCLEARMODEL can be 'pointcharge' (default) or 'gaussian'. It
should be included in the Create run of an atomic calculation and in the molecular calculation. If the
BASIS key is used it will be automatically added in the Create run of the atoms. If this key is absent a
point charge nuclear model is used.

In the ADF output parameters will be shown for the Gaussian nuclear charge distribution if one includes in
the input for ADF:

PRINT Nuclei

starting from ADF2013 ADF also uses a finite distribution of the nuclear magnetic dipole moment for the
calculation of the A-tensor.

What basis set should I use in ADF?

This question is hard to answer in general, but a few general suggestions can be made. This will be split
here into several subsections.

ZORA or nonrelativistic calculation?

The first question to ask is: am I going to do a ZORA calculation to include scalar relativistic effects? This is
recommendable for systems containing heavy nuclei, but there is no objection to doing a ZORA calculation
for a system with light atoms only, as the required CPU time does not increase very much if ZORA is used.

If you are doing a ZORA calculation, you will need the ZORA basis sets which can be found in $ADFHOME/
atomicdata/ZORA. You may also use the all electron basis sets from the ET or AUG directory, but be aware
that these were optimized to non-relativistic calculations. Currently the ZORA basis sets cover the entire
periodic table and besides all electron basis sets offer a choice of frozen cores. At present the ZORA
directory does not contain basis sets with very diffuse functions, which may be required in calculations for
hyperpolarizabilities or high-lying excitation energies, but for the lighter elements (H-Kr) you can certainly
use the all-electron basis sets from the ET or AUG directory. Warning: in a ZORA calculation use only the
frozen core basis sets coming from the $ADFHOME/atomicdata/ZORA directory, or use all electron basis
sets.

48

If you do not use ZORA, your basis sets should come from the directories SZ, DZ, DZP, TZP, TZ2P, or one
of the ET or AUG basis sets. For many of the heavy elements only ZORA basis sets are available, but for
such elements it would be inadvisable to do nonrelativistic calculations anyway. For light elements the
ZORA and normal basis sets should be identical except for the description of the frozen core. Usually the
ZORA basis sets contain much steeper basis and fit functions to accurately describe the core region.

Large or small molecule?

For standard calculations (energies, geometries, etc.) we recommend the following hierarchy of basis sets:
SZ < DZ < DZP < TZP < TZ2P < TZ2P+ < ET/ET-pVQZ < ZORA/QZ4P
where the largest and most accurate basis is on the right. Not all basis sets are available for all elements.
For small negatively charged atoms or molecules, like F− or OH−, basis sets with extra diffuse functions are
needed, like they are available in the AUG or ET/QZ3P-nDIFFUSE directories. For example, the standard
basis sets, or even the large ZORA/QZ4P basis set will often not be large enough for the accurate
calculation of such anions.

In general it is advisable to use the best basis set that you can afford to use in terms of CPU time and
memory. If you want to optimize the geometry or calculate the atomization energy of a diatomic molecule
there is little reason not to use the very large ZORA/QZ4P basis, or (for light elements) a similarly large ET
basis (we recommend the ET-pVQZ basis). If you are studying a molecule with 100 atoms or more, the use
of such large basis sets does not only become prohibitive because of the required CPU time and memory,
but it also is much less needed than for smaller systems. In medium-sized or large molecules even the
moderately large basis sets will prove to be quite adequate because of the effect of basis set sharing. Each
atom profits from the basis functions on its many neighbors. Additionally, if a large basis contains diffuse
functions, linear dependency problems may occur. See also the input key DEPENDENCY. In many cases
basis DZ or DZP will give acceptable accuracy for calculations on large systems. If you are inexperienced it
may be prudent to test a few different basis sets to get a feel for the size of basis set effects. To get a rough
idea for the size of various basis sets, we mention here the number of functions for all-electron basis sets
from the directories ZORA/SZ up to ZORA/QZ4P. For carbon, the number of functions is 5 (basis ZORA/
SZ), 10 (DZ), 15 (DZP), 19 (TZP), 26 (TZ2P), 43 (QZ4P). The same numbers for hydrogen are: 1 (SZ), 2
(DZ), 5 (DZP), 6 (TZP), 11(TZ2P, 21(QZ4P). These numbers arise because ADF uses 'pure' d and f
functions. In other words, 5 instead of 6 d functions are used and 7 instead of 10 f functions. Note that
especially the jump from TZ2P to QZ4P is quite steep.

In an overgeneralizing fashion we can state that the single zeta basis SZ is hardly ever sufficient to get more
than a qualitative picture and should be used only when larger basis sets are not affordable. The double
zeta basis DZ performs already much better and may give quite reasonable results, for example in geometry
optimizations on large molecules. However, in more subtle situations, for example if hydrogen bonds are
important, it is advisable to use at least one set of polarization functions. This is the double zeta polarized
DZP basis set. Basis set TZP extends the valence space (but not the core space which remains double
zeta) to triple zeta. In basis TZ2P an additional polarization function is added. For example, hydrogen gets a
d polarization function in addition to its p polarization function and carbon gets an f polarization function on
top of a d polarization function. Several tests have shown that often the second polarization function is of
more use when it has an l value one higher than the first polarization function. This is reflected in the choice
just described. If another polarization function is needed it is usually best to add another one of the lowest l-
value (2p+1d for hydrogen, 2d+1f for carbon). This choice has been made in the ET basis ET-QZ3P. There,
sometimes even three d polarization functions were added, for example 3 p functions for Be, and 3 d
functions for S. The reason for this is that S can occur in hypervalent species such as SF6, which put special
demands on the basis set. In the case of Be, the unoccupied p level is so close in energy to the occupied
ones that it is sometimes called a valence level. Symantics aside, it is clear that a proper description of the p
level of Be is very important and it is therefore not strange to add a third p function. In general, the
unoccupied levels for the atoms on the left side of the periodic table are close to the occupied ones. This
makes it necessary to add a few extra functions for the lowest unoccupied levels in order to get a description
which corresponds to the general level of accuracy one expects from the hierarchical basis set names SZ-
TZ2P. The basis set quality for a particular subdirectory is now rather uniform throughout the periodic

49

system. At the same time we have attempted to increase the number of functions in a systematic fashion so
that each element is described by at least as many functions of a particular l value as its predecessor.

The ZORA/QZ4P basis sets might be roughly described as core triple zeta, valence quadruple zeta, with 4
polarization functions (2 d and 2 f functions for C, 2 p and 2 d for H). The fit sets corresponding to these
basis sets are also much larger than the fit sets found in basis sets SZ-TZ2P. If one has doubts about the
adequacy of a fit set for a certain element, this can be tested by replacing its fit set by the large one from the
QZ4P directory, see the subkey FitType of the key BASIS. In the ZORA/QZ4P basis sets, the choice for the
exponents of the polarization functions was done in a systematic, but somewhat hand-waving manner. For
this reason the exponents were always rounded to half integers. Also the geometric mean of the exponents
usually does not coincide with the choices made in directories SZ-TZ2P and the ET basis sets. However, the
fact that two polarization functions (with reasonable exponents) are present instead of a single one is far
more important. A reasonable intermediate basis set, in size between TZ2P and QZ4P might be envisaged
in which a single polarization function is added, as described above. This is roughly the choice for the
polarization functions made in the ET directory ET-QZ3P.

Frozen core or all-electron?

In general we recommend the use of frozen core basis sets if available. Especially for the heavier atoms the
number of functions is much smaller than for their all-electron counterparts. Our tests indicate that the error
made by invoking the frozen core approximation is usually clearly smaller than the difference with respect to
slightly higher quality basis sets. For the ZORA/QZ4P basis sets, only all-electron basis sets are available as
these are intended for near basis set limit calculations only in which the CPU time is not a major concern.

Geometry optimizations involving atoms with a too large frozen core may give rise to numerical problems. In
such cases it is recommendable to use a smaller frozen core. In previous occurrences we have removed
such atomicdata files from the database.

For accurate results on properties like nuclear magnetic dipole hyperfine interactions (ESR), nuclear
quadrupole coupling constants, and chemical shifts (NMR), all electron basis sets are needed on the
interesting atoms. For such properties tight functions might be necessary for high accuracy, especially in a
ZORA calculation.

Diffuse functions needed?

For small negatively charged atoms or molecules, like F− or OH−, basis sets with extra diffuse functions are
needed, like they are available in the AUG or ET/QZ3P-nDIFFUSE directories. For example, the standard
basis sets, or even the large ZORA/QZ4P basis set will often not be large enough for the accurate
calculation of such anions.

For accurate results on properties like polarizabilities, hyperpolarizabilities, and high-lying excitation
energies, also diffuse functions are needed. This is especially true for calculations on small molecules. In
larger molecules the nature of the relevant virtuals is much more 'molecular', much less Rydberg-like, so that
the normal basis sets may be sufficient. Basically all properties calculated through the RESPONSE keyword
may require diffuse functions. If you use the EXCITATIONS keyword, the necessity of diffuse functions
depends on the type of excitation you are interested in. The lowest excitations do not require diffuse
functions, but Rydberg excitations do.

In case of diffuse basis functions the risk of linear dependency in the basis increases. This can be checked,
and corrected for with the DEPENDENCY keyword. It is recommended to use this keyword for all
calculations involving diffuse functions. A good default setting is

DEPENDENCY bas=1d-4

50

However, it may be advisable to experiment a bit with the parameter, especially if many linear dependent
combinations of AOs are removed. Using too many diffuse functions on a large molecule will lead to
insurmountable numerical problems. In such a case it is not only useless, but even harmful, to add many
diffuse functions.

In the previous release only some basis sets were provided which contained diffuse functions. These were
gathered in the directory Vdiff. Now several ET basis sets have been developed for the elements up to Ar
containing some or many diffuse functions. We recommend to use these instead of the Vdiff directory. Most
of these basis sets are quite large and not very suitable for large molecules.

In ADF2005.01 augmented basis sets were added in the AUG directory, especially devised for use in in
TDDFT calculations, such that one can do a reasonable accurate calculation of excitation energies, with a
relatively small basis set, see D.P. Chong [322].

Normal or even-tempered basis?

For normal calculations (these form the vast majority) we recommend the use of the optimized basis sets in
the directories SZ-TZ2P and, for ZORA calculations, ZORA/SZ-QZ4P. These should be sufficient in
accuracy for even very demanding users and are available for the entire periodic system (in the case of the
ZORA basis sets). They are also available with a frozen core variety, which saves much CPU time.

The ET basis sets on the other hand are available only in all-electron form at the moment. Furthermore,
most are pretty large (larger, but also better than TZ2P). Additionally, relatively large basis set superposition
errors were detected for molecules containing atoms in the row K-Kr. For this reason we only recommend
ET basis sets for the elements H-Ar at the moment. There they have yielded quite nice, near basis set limit,
results for the G2 test set. For these light elements the ET basis sets can be comparable in quality to the
ZORA/QZ4P basis, even though it is smaller. The ET basis sets are considered to be especially useful when
diffuse functions are required. In that case it is very easy to adapt the original ET basis and fit set. The
utilities provided for this in ADF will be described below in an Appendix. The ET basis set utilities will also
prove useful for users who want to experiment with making their own basis sets, or who have very special
demands on the basis and fit. The provided utilities automate much of the work needed to make new
atomicdata files.

What accuracy do the basis sets give?

Tests on many diatomics were performed to test the various basis sets. We now document the results of
some of these tests, in order to give a feeling for the quality that can be obtained from the various basis sets.
See also van Lenthe and Baerends [320].

Summary of test results

Tests for nonrelativistic calculations on 36 diatomics containing oxygen, namely the oxides of the first 36
elements (H-Kr). All-electron basis sets were used. The ZORA/QZ4P basis set was used to define the basis
set limit result. The numbers in the table refer to bonding energies in eV. Differences were taken between
the QZ4P results and the results in smaller basis sets. By construction, the errors in the QZ4P column are
zero.

QZ4P DZ DZP TZP TZ2P

Average error 0.0 1.33 0.39 0.18 0.06

Average absolute error 0.0 1.33 0.39 0.18 0.06

Maximum error 0.0 2.84 1.07 0.41 0.13

Worst case all SO BeO FO O2

51

A few comments are in order to explain this table.

The oxides were used as a small test set because their equilibrium bond lengths are known in many cases.
Also, they have a large influence on the electronic structure of the molecule, so that they also test the
adequacy of the polarization functions.

The errors in the small basis sets are systematic, because the isolated atoms are described reasonably well,
but the molecular energy is not deep enough. For this reason the average errors and average absolute
errors are (nearly) always equal.

Test calculations on 100 diatomics containing oxygen, using all-electron ZORA basis sets. Many basis sets
for (very) heavy elements are included here, which could not be included in the table above. The numbers
have the same interpretation as above and are again in eV.

QZ4P DZ DZ TZP TZP TZ2P TZ2P

ae fc ae fc ae fc ae

Average error 0.00 0.95 1.07 0.20 0.20 0.05 0.05

Average absolute error 0.00 0.98 1.07 0.20 0.21 0.05 0.05

Maximum error 0.00 2.86 2.83 0.74 0.74 0.19 0.17

Worst case all SO SO UuoO UuoO ThO UuoO

Again we place a few comments on these frozen core and all-electron results.

The trends are very similar to those in the previous table for the lighter elements.

The frozen core results are very satisfactory, as they are very close to the results with the corresponding all-
electron basis sets. The error introduced by the frozen core approximation is typically much smaller than the
one introduced by basis set incompleteness.

The average errors are quite comparable to those from the previous table. The heavier elements do not
seem to be much more difficult than the lighter ones.

For heavy elements no reliable ET basis set is yet available for comparison.

More results, all-electron, nonrelativistic on roughly 140 different diatomics at experimental or 'reasonable'
equilibrium geometries.

QZ4P DZ TZP

Average error 0.00 0.89 0.11

Average absolute error 0.00 0.89 0.11

Maximum error 0.00 2.84 0.32

Worst case all SO O2

Only the nonrelativistic basis sets DZ and TZP are fairly complete for heavier elements.

Also for these general diatomics (not just oxides) the average and maximum errors have decreased
substantially, especially for basis TZP.

Same table, but now for frozen core basis sets. In all these tests the smallest frozen core files were
employed (i.e. the largest basis).

QZ4P DZ TZP

Average error 0.00 0.73 0.13

52

Average absolute error 0.00 0.75 0.16

Maximum error 0.00 2.87 1.80

Worst case all SO ThO

The frozen core approximation has little influence on the accuracy for the new basis DZ, but a somewhat
larger effect on the new basis TZP. This is especially due to certain worst cases, such as ThO.

ZORA, all electron, over 240 diatomics

QZ4P DZ TZP TZ2P

Average error 0.00 0.70 0.11 0.02

Average absolute error 0.00 0.70 0.11 0.03

Maximum error 0.00 2.83 0.44 -0.16

Worst case all SO I2 Cr2

The average error goes down very nicely from 0.70 to 0.11 to 0.03 eV when going from DZ to TZP to TZ2P.
The average error in basis TZ2P is clearly below 1kcal/mol (the famous chemical accuracy). Errors due to
deficiencies in current xc functionals are still much larger than this. As a consequence, the ZORA/TZ2P
basis will be more than adequate for all standard calculations.

It is to be expected that these conclusions will not dramatically change if larger test molecules are used.
Also for geometry optimizations the improved basis sets SZ-TZ2P and ZORA/SZ-TZ2P should be more than
sufficient for all standard cases. The ZORA/QZ4P can be considered a very safe (though expensive) option
for basis set limit calculations.

Molecular fragments

Fragment mode

In Fragment mode more input is required than in Create mode: you have to specify at least: (1) the atomic
positions and (2) how the total system is built up from fragments. We recommended to specify also (3) the
point group symmetry.

Example of an input file for the C2H4 molecule:

ATOMS
C 0 0 .6685
C 0 0 -.6685
H .927 0 -1.203
H -.927 0 -1.203
H .927 0 1.203
H -.927 0 1.203

end

fragments
C TAPE21c.dzp
H TAPE21h.dzp

end

53

symmetry D(2h)
end input

Three keys are used: atoms, fragments and symmetry. The first two are block keys.

atoms

defines the atomic positions: each record in the data block contains the chemical symbol of an atom
followed by its Cartesian coordinates in Angstroms.
Z-matrix type input of atomic positions is also possible. This will be explained in a later section.

fragments

lists the fragment files each record contains a fragment type followed by the corresponding fragment
file. In the example the files are local files. Files in other directories are addressed by giving the
complete file path.
Note: if a parallel calculation is performed, be sure that each 'kid' finds the specified fragment files. This
will usually require that the files are not local to the job, but first be moved to some shared volume, and
that the references to the fragment files in the input contain the full path. An alternative is to ensure that
the (local) files in the parent directory are copied first to the 'kid' directories before the parallel
calculation starts.

symmetry

specifies the point group symmetry by a Schönfliess type symbol. Appendix 5.3 contains a complete list
of all Schönfliess symbols that are recognized by ADF. If no symmetry is specified ADF will take the
true symmetry of the nuclear frame as the user-specified symmetry. If (electric) fields are used, see
later, the computed symmetry will take this into account. Note that the computed symmetry may not
occur in the list of allowed symmetries (see Appendix 5.3), in which case you have to explicitly specify
the (lower) point group symmetry you wish to apply.

The atomic coordinates must conform to the point group symmetry; the program will check this and abort if
the atomic system does not have the specified symmetry. It is allowed, however, to specify a lower
symmetry than what is actually present in the set of atomic positions. The specified symmetry determines
how results are analyzed and how irreducible representations and subspecies are labeled. It also
determines various algorithmic aspects: the program runs more efficiently with the highest possible
symmetry.

The spatial orientation of the molecular coordinate system is not arbitrary. ADF requires for each pointgroup
symmetry a specific standard orientation. In axial groups for instance, the main rotation axis must be the z-
axis. This implies a restriction on how you can define the atomic coordinates under atoms. The orientation
requirements for all point groups are listed in Appendix 5.3. If the specified symmetry equals the true
symmetry of the nuclear frame ADF will adjust the input orientation of the molecule to the requirements (if
necessary). If you have specified a subgroup of the true nuclear symmetry, no such orientation adjustment is
carried out and the user has to make sure that his input data yield the correct orientation, lest an error will
occur.

Restrictions apply to the symmetry (as specified) of the molecule, related to the symmetries of the fragments
as they were stipulated in the preceding fragment calculations. All symmetry operators of the molecule that
internally rotate or reflect a fragment but leave it at the same position in the molecule, must also be
operators of the symmetry group in which the fragment has been computed. Furthermore, two fragments
must not be symmetry-equivalent in the molecule only by an improper rotation. The implied internal
reflection of the fragment must be one of the symmetry operators in the point group symmetry that is used in
the fragment calculation and the molecular symmetry group must also contain a proper rotation that maps
the two fragments onto each other.

54

The example of the C2H4 molecule implicitly assumes that all fragments are single atom fragments. When
the fragments are larger the data records in the atoms key have to be extended: you must specify which
atoms belong together in one fragment.

SYMMETRY T(D)
Atoms
Ni 0 0 0
C -1.06 -1.06 1.06 f=CO/1
C -1.06 1.06 -1.06 f=CO/2
C -1.06 1.06 -1.06 f=CO/3
C 1.06 -1.06 -1.06 f=CO/4
O 1.71 1.71 1.71 f=CO/1
O -1.71 -1.71 1.71 f=CO/2
O -1.71 1.71 -1.71 f=CO/3
O 1.71 -1.71 -1.71 f=CO/4

End
Fragments
CO TAPE21co.yesterday
Ni t21ni.dzp

End
End Input

Another sample input file; using a single atom Ni fragment and four molecular CO fragments. The keys
symmetry and fragments operate as before. Again we have two types of fragments (here: Ni and CO); for
each of them, the fragment file is specified.

Under the key ATOMS the chemical symbols and the nuclear coordinates are listed. Added is the f=...-part; f
stands here for fragment and tells the program that the carbon and oxygen atoms belong to CO fragments.
The last part /n enumerates the individual CO fragments: here you define which C and O belong together in
one CO fragment.

The record for Ni contains no f= part, implying the default for this atom: it is a fragment on its own. In the
C2H4 example before the default applied to all atoms.

Note that one should use the f= part for symmetry equivalent fragments. In the next example, ADF assumes
the fragments CO1, CO2, CO3, and CO4, to be of different fragment types, even though they are coming
from the same TAPE21. Therefore ADF will assume symmetry NOSYM in the next calculation, and will not
run in T(D) symmetry.

Atoms
Ni 0 0 0
C -1.06 -1.06 1.06 f=CO1
C -1.06 1.06 -1.06 f=CO2
C -1.06 1.06 -1.06 f=CO3
C 1.06 -1.06 -1.06 f=CO4
O 1.71 1.71 1.71 f=CO1
O -1.71 -1.71 1.71 f=CO2
O -1.71 1.71 -1.71 f=CO3
O 1.71 -1.71 -1.71 f=CO4

End
Fragments
CO1 TAPE21co.yesterday
CO2 TAPE21co.yesterday
CO3 TAPE21co.yesterday
CO4 TAPE21co.yesterday
Ni t21ni.dzp

End
End Input

55

There are more possibilities with the keys atoms and fragments. This is worked out later. The purpose of this
section was to provide a quick and easy start.

Fragment files

The TAPE21 result files from the ADF computations on the fragments that constitute a molecule completely
characterize these fragments. The fragment TAPE21 files must be attached as fragment files. This is
achieved with the key FRAGMENTS. See also the next section for the relation between Atom type,
Fragment type and Fragment file names.

FRAGMENTS {Directory}
FragType FragFile
FragType FragFile
...

end

FragType

One of the fragment types defined under atoms, either explicitly (f=fragtype/n) or implicitly (fragment
type=atom type, if the f= option is not used).

FragFile

The fragment file: the standard TAPE21 result file from the computation of that fragment. The file name
must contain the complete path relative to Directory (the argument of the key). By default, when no
Directory is specified, this is the local directory where the job runs. You may therefore omit the directory
and give simple (local) file names if all the files are present in the working directory of the job.

Obviously, FragFile is case sensitive. However, FragType is also treated as case sensitive; see also the
ATOMS key discussion (f= option). The reason is that there are shortcuts possible to the effect that the
FragType name (in the atoms block) is immediately interpreted as the name of the fragment file.

The key FRAGMENTS may be used any number of times in the input file. This is convenient if you employ a
sizeable number of fragment files, with subsets located in different directories. You can then use the key
separately for each directory, to avoid typing long path names for all the files. Fragtypes that occur in the
fragments block(s), but that are not referred by atoms are ignored. No fragment files must be specified for
dummy atoms (xx).

It is allowed to use one and the same fragment file for different fragment types. Example:

ATOMS
C.1 x1 y1 z1
C.2 x2 y2 z2
...

end
fragments
C.1 TAPE21.c
C.2 TAPE21.c
...

end

Two different atom types (and fragment types) C.1 and C.2 are defined. The properties of the two fragment
types are now identical since they are characterized by the same fragment file, but from the program's point
of view they are different and can therefore not be symmetry equivalent.

The reason you may want to specify different atom types will usually be related to analysis, in particular
symmetry aspects. If you know in advance that the two atom types are not symmetry equivalent, or more

56

generally, that they play a rather different role in the molecule, it can enhance clarity of printed output to
assign different atom type names to them. However, see the notes below.

A fragment file must not be the result file of a spin-unrestricted calculation. When you try to use such a
fragment file, the program will detect it and abort with an error message. If you want to analyze a molecule in
terms of unrestricted fragments, you should use restricted fragment files and apply the key
FRAGOCCUPATIONS.

Suppose that you have done a calculation on a molecule mol, in which you have defined two different atom
types for atoms of the same chemical element. Suppose furthermore, that you want to use that molecule
now as a fragment in a new calculation.

You list under atoms all atoms of the molecule and you specify which atoms belong to the various
fragments, among which the molecular fragment mol. The program will then have a problem deciding which
atoms in your system are associated with the different atom types in the fragment. Normally, ADF analyzes
this by comparing the chemical elements. That is not sufficient here because one chemical element
corresponds with more than one type of atom in the mol fragment type. In such a case it is imperative to use
the same atom type names in your new calculation as you used in the generation of the fragment. These
names are stored in the fragment file, and they are printed in the output file of the calculation of mol.

The names of three items may be related to each other, depending on how you specify input: the atom type,
the fragment type, and the fragment file.

The atom type is defined in the data block to atoms.

The fragment type is defined also in the data block to atoms: with the f= option. For records in the data block
that don't have the f= option, the fragment type name is by definition identical to the atom type name.

The fragment file is defined in the data block to fragments, each record consisting of a fragment type name,
followed by the fragment file. If a fragment type is not listed in the data block to fragments, so that no
fragment file name is specified, the fragment file is by definition identical to the fragment type name.

2.4 Model Hamiltonians

See also
ADF-GUI tutorial: multi-level calculations, spin-orbit coupling
GUI manual: model Hamiltonians
QM/MM manual
Examples: special XC functionals, relativistic effects, solvents, other environments

Electronic Configuration

The next few keys can be used to specify the electronic configuration. If you don't specify any such keys,
certain defaults will apply. In principle, the program will (by default) attempt to find the lowest-energy spin-
restricted (one-determinant) state. If SCF convergence is problematic the program may wind up at an
excited state, by which (in this context) we mean a one-determinant state with a higher energy than some
other one-determinant state with the same net spin polarization. In worse cases the program may fail to
converge to any state at all. It is good practice to always verify which configuration you actually have
computed.

When you specify a particular configuration and/or net charge and/or net spin-polarization of the system, the
program will try to compute accordingly, even if the data have no physical or chemical meaning. The
program has no knowledge about the existence of materials and will simply try to carry out what you tell it to
do.

57

http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagMULTILEVEL.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagSPINORBIT_TLH.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_reference/metatagMODEL.html
http://www.scm.com/Doc/Doc2014/QMMM/page1.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagXC.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagRelativistic.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagEnvironments.html

Charge and Spin

Spin: restricted vs. unrestricted

UNRESTRICTED

Specifies that spin-α and spin-β MOs may be spatially different and may have different occupation numbers.
The default (absence of the key) is spin-restricted. The key has no argument. In the case of Spin-Orbit
coupling it means that Kramer's symmetry does not have to be satisfied, in which case the key
UNRESTRICTED should be used in combination with the key NONCOLLINEAR or COLLINEAR.

The unrestricted mode roughly doubles the computational effort. The actual numbers of spin-α and spin-β
electrons respectively are controlled by the keys charge and occupations.Not e carefully, that using only the
keyword unrestricted, without either Charge or Occupations (or both) would not result in any spin
polarization. This implies that you would effectively perform a spin-restricted calculation, but with increased
computational effort. Therefore, the program will check that in an unrestricted calculation at least one of the
keys Charge and Occupations is applied.

The unrestricted feature is equivalent with, in ab-initio terminology, (Spin-)Unrestricted-Hartree-Fock (UHF);
the N-particle wave function is a single determinant and not necessarily an eigenfunction of the spin
operator S2.

A restricted calculation implies that the (spatial) orbitals and the occupation numbers are identical for spin-α
and spin-β.

The Fock operator, both in an unrestricted and in a restricted run, commutes with the spin operator Sz, but
not (unless accidentally) with S2. The obtained one-determinant wave function may for instance be a mixture
of a singlet and a triplet state.

In an unrestricted calculation the expectation value of S2 is now computed in ADF (note 29 in [98]). The
implementation of an evaluation of S2 is not quite trivial. DFT is essentially a one-particle formalism, so the
S-operator for the n-particle system has to be written out in single-particle operators [99]. The equations
used in ADF to calculate the expectation value of S2 can be found in Szabo and Ostlund [100]. Note that the
so called exact value (Sexact)2, which is printed in the ADF output, is defined as (Sexact)2 = (|Na- Nb|/2)(|Na-
Nb|/2+1), where Na and Nb are the number of spin-α and spin-β electrons, respectively. The expectation

value of S2 is not calculated in a Spin-Orbit coupled calculation.

Molecules that have been calculated using the unrestricted formalism cannot be employed as fragments.
ADF will abort when you attach the TAPE21 result file from an unrestricted calculation as a fragment file.

A fair approximation to a computation with unrestricted fragments can be achieved with the key
FRAGOCCUPATIONS. See also the Examples.

Unrestricted and Spin-Orbit Coupling

In the case of Spin-Orbit coupling there are two ways to do spin-polarized calculations, either using the
collinear approximation or the noncollinear approximation [101, 102]. Using the unrestricted feature in order
to assign different numbers of electrons to a and b spin, respectively, cannot be applied as such, if one
includes Spin-Orbit coupling, since the electrons are not directly associated with spin-α and spin-β. For the
collinear and noncollinear approximation one should use symmetry NOSYM, and each level can allocate 1
electron. Note that with the key CHARGE one should only specify one value, namely the total charge. One
should not specify the spin-polarization.

COLLINEAR

58

This key is only relevant in the case of Spin-Orbit coupling. The key has no argument. See also the key
NONCOLLINEAR.

In the collinear approximation in each point in space the spin-polarization has the same direction (default is
in the direction of the z-axis). Kramer's symmetry does not have to be satisfied. Symmetry used in the
calculation should be NOSYM. The default direction of the spin-polarization can be overruled using the key
SOUX (this key has no argument) for spin-polarization only in the direction of the x-axis, and the key SOUY
(this key has no argument) for spin-polarization only in the direction of the y-axis. Both keys SOUX and
SOUY are only relevant in the case of Spin-Orbit coupling in combination with the key COLLINEAR.

NONCOLLINEAR

This key is only relevant in the case of Spin-Orbit coupling. The key has no argument. See also the key
COLLINEAR.

In the noncollinear approximation in each point in space the spin-polarization can have a different direction.
Kramer's symmetry does not have to be satisfied. Symmetry used in the calculation should be NOSYM.

Net Charge and Spin polarization

The net charge of the molecule and the net spin polarization can be controlled with the key CHARGE.

CHARGE {NetQ {ab}}

NetQ

The net total charge of the molecule

ab

The net total spin polarization: the number of spin-α electrons in excess of spin-β electrons.
Specification is only meaningful in a spin-unrestricted calculation. However, specification is not
meaningful in an unrestricted Spin-Orbit coupled calculation using the (non-)collinear approximation.

If the key is used, the first value in the argument is assigned to netQ, the net total charge, and the second to
ab. If the key is not used at all, default values apply. The default for the net total charge is the sum of
fragment charges: not necessarily neutral!! The fragment charges are the net total charges that were used in
the fragment runs; this information is stored in the fragment files.

The default spin polarization is zero.

An unrestricted calculation with ab=0 (for instance by not specifying the spin polarization at all) is, in the
case one does spin break the spin symmetry, in fact a restricted run: it should give exactly the same as the
restricted calculation, but it will use more CPU time. If one does break the spin symmetry, for example with
the key MODIFYSTARTPOTENTIAL or the SPINFLIP option in the key RESTART, the solution may also be
a broken spin symmetry solution. For example one may want to start a calculation in broken symmetry with
spin-α density on one fragment and spin-β density on another, e.g. in a spin-unrestricted calculation of H2 at
large separation.

Orbital occupations: electronic configuration, excited states

With the key OCCUPATIONS you can specify in detail the assignment of electrons to MOs

OCCUPATIONS Options
{irrep orbitalnumbers
irrep orbitalnumbers

59

...
End }

Occupations

is a general key: it has an argument or a data block. If you want to use both, the continuation code (&)
must be appended at the end of the argument.

Aufbau, smearing, freezing

OCCUPATIONS Options

Options

May contain Keeporbitals, Smearq, Freeze, or Steep:

Keeporbitals=NKeep

Until SCF cycle Nkeep electrons are assigned to MOs according to the Aufbau principle, using at
each cycle the then current orbital energies of the MOs. Thereafter the KeepOrbitals feature is
applied. As soon as this is activated the program will on successive SCF cycles assign electrons to
the MOs that maximally resemble - in spatial form - those that were occupied in a 'reference cycle
number'. The default for Nkeep is 20, except:
a) When orbital occupations for MOs are specified explicitly in the data block of the occupations
key, these apply throughout.
b) In a Create run fixed occupations are derived from a database in the program.
c) When electron smearing is explicitly turned on by the user (see the Smearq option below) Nkeep
is by default 1,000,000 so the program will 'never' compare the spatial forms of MOs to determine
the occupation numbers.
The 'reference cycle number' is by default the previous cycle, which will suppress jumps in the
spatial occupations during the SCF development while at the other hand allowing the system to let
the more-or-less-frozen configuration relax to self-consistency.

Freeze

Occurrence of this word in the option list specifies that the 'reference cycle number' will be the cycle
number on which the KeepOrbitals feature is activated: during all subsequent SCF cycles the
program will assign electrons to MOs that resemble the MOs of that specific SCF cycle. This may
be used when the MOs of that cycle are already reasonably close to the final ones, and it will
suppress unwanted step-by-step charge-transfers from occupied to empty orbitals that are very
close in energy. By default this option is not active.

Smearq=Smear1[,Smear2,Smear3,...,Smear10]

SmearN is half the energy width (in hartrees) over which electrons are smeared out over orbitals
that lie around the fermi level and that are close in energy. Smearing is a trick that may help when
the SCF has problems converging. One should be well aware that the physical meaning of a result
obtained with smeared occupations is unclear (to express it mildly). It may be useful to get over a
hurdle in a geometry optimization.
By default the initial smear parameter is zero (i.e.: smearing is not applied). It is turned on
automatically by the program when SCF convergence is found to be problematic, but only in an
optimization-type application (simple optimization, linear transit, transition state) when the geometry
is not yet converged.
You can rigorously prohibit any smearing by specifying it explicitly with value zero. More generally:
specifying the smear parameter makes the program to apply it always, but always with the input-
specified value.

60

When a comma-delimited list of values is specified, after SCF has converged, the next value from
the list is picked and the SCF is continued. This way one can specify a list of gradually decreasing
values to get sort of annealing effect. NOTE: No spaces are allowed when specifying a list of
values for Smearq.

Steep=Lambda[,Nmax]

The occupation number for each orbitals are updated according to steepest-descent method (Ref:
F. W. Averill and G. S. Painter, Phys. Rev. B 46, 2498 (1992)). During an SCF cycle, the
occupation number for each new orbital is initially determined by decomposing the old charge
density with new orbitals. Then, the occupation numbers are modified so that the total energy of the
system will decrease.
The Lambda parameter gives the coefficient for the charge transfer in 1/au unit. The second
parameter, Nmax, is an additional limit for the amount of the charge transfer. Nmax would be useful
for early steps of cycle when the Lambda parameter gives too large charge transfer. Too small
Nmax results in irregular behavior in SCF convergence. In the case of difficult SCF convergence,
you should make mixing and Lambda smaller. From our experience, Nmax=0.1 or 0.2 is usually
OK.
This method should be used with turning off DIIS method (DIIS N=0), and the choice of the mixing
parameter in SCF cycle is also important. This option is especially useful for systems with many
quasi-degenerate orbitals around Fermi level. For instance, cluster models of surface systems
usually suffer from dangling bonds and should be converged with this method. Note though that
slow convergence is an intrinsic feature of this method so one should specify a large limit for the
number of SCF cycles, say 500 or even 1000, depending on the cluster size.

Notes about the occupations options:

• When occupation numbers are explicitly defined via the block form of the OCCUPATIONS
keyword (see next section), the Smearq option cannot be used.

• The aufbau principle does not determine or adjust the distribution of electrons over spin-α versus
spin-β in an unrestricted calculation. This aspect is controlled by the key CHARGE and by any
explicit occupations in the data block of occupations.

• When occupation numbers are not specified and no Smearing is specified either, the program will
turn on smearing automatically when the SCF has serious convergence problems, in an attempt to
overcome those problems, but only in a geometry optimization (including transition state, linear
transit, etc.). If such happens the program restores the original situation (no smearing) at the start
of each new SCF. In automatic smearing the smear parameter is initiated at 0.01 hartree and may
be varied (by the program) between 0.001 and 0.1 hartree. The automatic use of smearing by the
program can be prohibited by explicitly setting the smear option with value zero (Smearq=0).

• Smearing cannot be used in combination with the keeporbitals option. This option therefore also
turns of automatic smearing in troublesome SCF 's during an optimization.

Explicit occupation numbers

OCCUPATIONS
irrep orbitalnumbers
irrep orbitalnumbers
...

End

irrep

The name of one of the irreducible representations (not a subspecies) of the point group of the system.
See the Appendix 5.3 for the irrep names as they are used in ADF.

orbitalnumbers

61

A series of one or more numbers: the occupation numbers for one-electron valence orbitals in that irrep.
The orbitals are ordered according to their energy eigenvalue; higher states than those listed get an
occupation number zero.

For degenerate representations such as the 2-dimensional E-representations or the 3-dimensional T-
representations, you must give the total occupation, i.e. the sum over the partner representations; ADF
assigns each partner an occupation equal to the appropriate fraction of what appears here.

In an unrestricted calculation, two sequences of numbers must be specified for each irrep; the
sequences are separated by a double slash (//). The first set of numbers is assigned to the spin-α
orbitals, the second set to the spin-β orbitals. Example unrestricted calculation in symmetry NOSYM
with two unpaired electrons:

OCCUPATIONS
A 28 // 26

End
CHARGE 0 2
SYMMETRY NOSYM

Note that this is not meaningful in an unrestricted Spin-Orbit coupled calculation using the (non-
)collinear approximation, where one should use one sequence of occupation numbers for each irrep.

Notes about the occupations data block:

• When specifying electron configurations, all valence electrons in the calculation must be explicitly
assigned to MOs and the block form of the OCCUPATIONS keyword must be used. In this context
the concept valence electrons and hence valence orbitals is not necessarily identical to what you
may normally assume to be the valence space of an atom or molecule. The meaning of valence is
here strictly defined as whatever electrons are outside the frozen core. It depends therefore on the
level of frozen core approximation applied in the calculation. This traces back to the Create runs in
which the basic atoms were generated that are now used to build the molecule.

• When for some irrep there is a rather long list of occupation numbers, corresponding to
consecutive fully occupied states, you can combine these numbers and enter their sum instead:
ADF knows the maximum occupation for an irrep, and when you put a larger number the program
will split it up. For instance, if you give for the p-representation (in a single atom calculation):
P 17 3
ADF will interpret this as
P 6 6 5 3
i.e. the occupation number 17 is interpreted as denoting two fully occupied p-shells and the
remaining five electrons in the next higher shell. This example also illustrates how to specify an
excited state: here we have defined a hole in the third p-shell.

• Fractional occupation numbers in input are allowed. For a discussion of the interpretation of
fractional occupation numbers see [103]. The program even allows you (technically) to use a non-
integer total number of electrons, whatever the physical meaning of such a calculation is.

• The data block of occupations is not parsed (see the section Interpretation of Input). The program
does not replace expressions by their value and it does not recognize constants or functions
defined with the define key.

• In a numerical frequencies run (without the Symm argument) the symmetry used internally in the
program is NOSYM, irrespective of any Schönfliess symbol in the input file. As a consequence the
program will recognize only the A representation (the only irrep in nosym), but not the
representations belonging to the input point group symmetry. (The symmetry in the equilibrium
geometry, defined by the input Schönfliess symbol, is used to enhance efficiency and stability in
the construction of the matrix of Force constants).

62

CHARGE vs. OCCUPATIONS

The contents of the data block of occupations, if used, defines the total number of valence electrons and
hence the net total charge. In an unrestricted run it also defines the net spin polarization. If the key CHARGE
is also used, the program will check that both specifications are consistent.

We strongly recommend to employ this and always specify the net total charge and spin polarization with
charge whenever explicit occupation numbers are supplied with occupations, to that the program will check
that your occupation numbers result in the total charge and spin polarization that you have in mind.

Create mode

In Create mode occupation numbers are predefined (see Appendix 5.2 Elements of the Periodic Table), and
these are applied unless you specify occupations in input yourself. Conceivably this may result in a non-
aufbau configuration. In Create mode the program always operates as if occupations were set in input.

Multiplet States

Calculations with ADF yield results for one-determinant electronic states, which are not always the 'true'
states of the molecule. The evaluation of the correct multiplet energies is not trivial in this approach, see
further below the section on multiplet energies. The point is to evaluate a specific multiplet state as a linear
combination of selected one-determinant functions, each computed in the field of the so-called Average-of-
Configuration (AOC). Typically, in an open shell system, the AOC is the spin-restricted system in which all
orbitals in the open shell are degenerate and equally occupied. The AOC serves then as a fragment for the
subsequent calculations, in which the different open shell orbitals are occupied differently by specifying the
appropriate occupation numbers as explained below.

Important: in these follow-up calculations it is imperative that the results are obtained in the AOC field: no
SCF convergence must be carried out, because we only want to assign the electrons differently, while
keeping exactly the AOC orbitals. To achieve this, the follow-up calculations must use the keyword SCF,
and the subkey iterations must be set to 0.

Since ADF requires that the point-group symmetry matches not only to the nuclear frame but also to the
electronic charge density and MO occupations, these calculations must run in a lower pointgroup symmetry.
Often you will also want to run the modified calculations spin-unrestricted. For an example, see the set of
sample runs that come with the package and the discussion in the Examples document.

The calculation of the one-determinant states based on the AOC reference state is controlled with the key
SLATERDETERMINANTS: . It is a general key; it can be used as a simple key and requires an argument
then. It can also be used as a block key. For this particular key it is not correct to specify an argument and a
data block.

SLATERDETERMINANTS file

When used as a simple key, the argument must be a file (including the path). The file must be an ASCII file
containing data in the same format as you would supply in the data block when using the key as block type
key, see below. All information on the file until the eof must be suitable for the data block, but no record 'end'
on the file must be specified: only the contents of the data block.

The block format:

SLATERDETERMINANTS file
title1
irrep occups

63

irrep occups
....
subend
title2
irrep occups
.....
subend
title3
....
subend
....

end

Each 'title' functions as a subkey, but is otherwise an arbitrary string to label the resulting one-determinant
calculation. Each such subkey block contains the occupation numbers for a single one-determinant
calculation. It is necessary that the calculation uses the reference AOC run as its only fragment file. The
occupations in the subkey blocks must be re-arrangements of the AOC open-shell electrons. In the
Slaterdeterminants calculation you must explicitly specify the pointgroup symmetry in which you want to run;
this must be a lower symmetry than the AOC one, otherwise you couldn't rearrange the open shell electrons.
See the sections below on multiplet energies. An sample run is included in Examples document.

Each 'irrep occups' record specifies the occupations for the indicated irrep in the usual way (see for instance
the occupations key). The irrep labels must correspond to the (lower) point group symmetry used in the
slaterdeterminants calculation. Note that in an unrestricted calculations, occupations numbers must be given
for both spins, using the double slash (//) to separate the occupations for spin-α and spin-β.

In this setup, the program will for each of the subkey blocks under the slaterdeterminants key execute an
SCF calculation with only one cycle, i.e. no convergence, where the start-up field is the fragment field, i.e.
the AOC field. So all one-determinant states in this calculation are evaluated in the AOC field. The resulting
energies for the distinctly computed one-determinant states can then be combined to the desired multiplet
values, corresponding to how the multiplet states are combinations of the one-determinant states.

Multiplet energies

The energies of atomic and molecular multiplet states that correspond to a given electron configuration can
be calculated approximately with the method suggested in ref. [323]. There it is indicated that it would not be
justified to take an arbitrary configuration-state function (CSF), defined in general as a linear combination of
determinants that has specific spin and space symmetry properties, and use the corresponding alpha and
beta spin densities in a DFT energy expression. The same holds true for the densities corresponding to the
average-of-configuration (see section 'DFT energy of a one-determinantal wavefunction', the 'procedure'
notes).

Therefore, we restrict ourselves to just computing the DFT energies of single-determinant wavefunctions.
Usually (but not always) this is sufficient information to obtain the multiplet energies. The procedure, which is
explained in [323], requires knowledge of the CSFs belonging to a given configuration. This means that a
multiplet state with specific L, ML and S, MS values has to be written as a linear combination of the
determinant wavefunctions that belong to the given configuration. With the auxiliary program ASF (Adf
Single-determinants Fribourg, developed by Claude Daul in Fribourg, Switzerland) all the CSFs can be
obtained, printed as linear combinations of the determinants [324]. The inverse transformation yields the
determinants written as linear combinations of the CSFs.

It is often advantageous to search for CSFs that consist of one determinant only, since the energy of this
determinant should correspond directly to the multiplet energy. Sometimes there is redundancy in the
information and there may even be some inconsistency: two determinants may exist that both are CSFs
belonging to the same multiplet state but yield somewhat different energies. We will illustrate this for the
Carbon atom example treated below.

64

The discrepancies are a measure of 'error bars' associated with the theoretical multiplet energies. As a
matter of fact, there are certain symmetry relations between the energies of the determinants of a
configuration, calculated as the expectation value of the determinant for the full many-electron Hamiltonian.
An example is the equal energy for the determinants of a p1 configuration, whether the electron is placed in
the p0 (=pz) orbital or in the p+1 (=(px+ipy)/√2) orbital. This equality is not obtained with present-day density
functionals, leaving an ambiguity ('error bar') in the determination of the energy. A more complete treatment
of the symmetry relations between determinant energies is given in [324].

The auxiliary program ASF, that for finite point groups finds the CSFs as linear combinations of
determinants, performs also a symmetry analysis of all the two-electron integrals for a configuration,
reducing them to a minimum number of non-redundant ones. ASF expresses the energies of the multiplets
in the non-redundant two-electron integrals. However (WARNING!), there have occasionally been found
inconsistent results. A comparison to the results obtained by the procedure outlined in [323] may show
significant differences and the latter seem more accurate and consistent.

DFT energy of a one-determinantal wavefunction

The determinant corresponds to a well defined ρα and ρβ. Suppose we are dealing with a d2 configuration
and we wish to know the energy of

D1 = |d2α(1) d1α(2)|

where dm has the Y2m angular part. This determinant is a CSF of the 3F multiplet:

D1 = |3F;ML=3;MS=1>

We can easily transform to the real spherical harmonics that are used in ADF:

Zlmc = 1/√2 (Yl-m + Yl-m*) = 1/√2 [Yl-m + (-1)mYlm]

Zlms = i/√2 (Yl-m + Yl-m*) = i/√2 [Yl-m + (-1)mYlm]

with back transformations:

Ylm = 1/√2 (-1)m [Zlmc + i Zlms]

Yl-m = 1/√2 [Zlmc - i Zlms]

Here the superscripts c and s stand for the cosine, respectively sine type of combinations of exp(-imφ) and
exp(imφ). This yields explicitly:

dz2 = d0

dxz = 1/√2 (d-1 - d1)

dyz = i/√2 (d-1 + d1)

dx2-y2 = 1/√2 (d-2 + d2)

dxy = i/√2 (d-2 - d2)

65

d0 = dz2

d1 = -1/√2 (dxz + i dyz)

d-1 = 1/√2 (dxz - i dyz)

d2 = 1/√2 (dx2-y2 + i dxy)

d-2 = 1/√2 (dx2-y2 - i dxy)

For D1 we obtain:

ρα = |d2|2 + |d1|2 = 1/2 |dx2-y2|2 + 1/2 |dxy|2 + 1/2 |dxz|2 + 1/2 |dyz|2

ρβ = 0

The fractional occupations have to be used in order to generate the densities ρα and ρβ and the
corresponding density matrices Pα and Pβ. The density matrices can be used to calculate the energy of D1

(and 3F) with respect to the energy of the 'master fragment', which should be the restricted atom with d2

occupation. Other determinants of this configuration can be treated similarly to obtain more multiplet
energies of the d2 configuration.

Below is an example of how you can obtain determinant energies 'by hand', i.e. by carrying out a specific
sequence of ADF calculations. ADF supports an automatic procedure to do this, using the input key
SLATERDETERMINANTS, see the ADF User's Guide, the Examples document, and below.

Procedure

1 Determine a set of orbitals belonging to the given configuration. These orbitals are generated in what we
call the average-of-configuration (AOC) calculation. This is a spin-restricted SCF calculation where the
electrons of the configuration are distributed equally over the subspecies of the open shell irreps in order to
retain the A1 symmetry of the total density in the symmetry group of the molecule. For instance, in case of
an atomic d2 configuration, the AOC calculation can be done in symmetry atom with occupation 2 in the d
irrep. In case of an t2g5 eg1 configuration of an octahedral complex, the AOC calculation requires an
occupation of 5 electrons in the t2g, and 1 electron in the eg.
The result file TAPE21 of the AOC calculation has to be saved, to be used as a fragment file in the
subsequent calculations.

2 The AOC is used as a fragment in all subsequent calculations that are performed to obtain single
determinant energies. This means that those single determinant energies are always with respect to the
AOC energy. This is a case where there is only one "fragment", which is actually the complete system, but in
a different electronic configuration and in possibly a different symmetry group.

Suppose that a single determinant corresponds to spin-up and spin-down densities ρα and ρβ, i.e. to specific
spin-unrestricted occupations of the AOC orbitals. These densities ρα and ρβ correspond to a symmetry
group that will in general be a subgroup of the symmetry group of the molecule. For instance, the occupation
(p+1α)1 in the case of an atomic p1 configuration corresponds to

ρα = 1/2 px2 + 1/2 py2

with D∞h symmetry.

66

To obtain the energy of the determinant wavefunction we must now perform one cycle (iterations= 0 in the
block key SCF) of a spin-unrestricted calculation, with AOC as (the only) fragment with alpha and beta
occupation numbers (using the input key occupations) such that ρα and ρβ result. Note that the appropriate
(lower) symmetry pointgroup must be specified in the input file.

Occasionally, the single determinant corresponds to a closed shell configuration in the appropriate lower
symmetry, for instance determinant D10 = |0+ 0-| of the p2 configuration of Carbon, with density r=pz2. In that
case the one-cycle calculation can of course be spin-restricted.

N.B.1. One cycle will regenerate the SCF orbitals of AOC, if the same field is used as the converged AOC
field. This will actually be the case because the starting potential is taken from the fragment TAPE21 file.
The key modifystartpotential must not be used (the density should be distributed equally over the spins).

N.B.2. After diagonalization in the one-cycle run, the AOC orbitals have been obtained again and are
occupied as specified. The ('bonding') energy is calculated from the resulting charge density.

Remarks:

• If one does not perform just one cycle, but instead converges the unrestricted calculation,
the energy will be lowered by 'polarization' of the orbitals.
It is theoretically not so clear what the status of such converged energies is.
Usually the energy lowering is in the order of 0.1 eV, but it may be quite a bit larger.

• It is not necessary to use AOC as fragment in the single-determinant runs.
It is also perfectly allowed to run all calculations (ground state, AOC, determinants)
from one set of fragments, for instance the standard atomic fragments.
Since we must arrange that the one-cycle determinant calculations use the AOC field,
so as to reproduce the AOC orbitals, we must then supply the result file TAPE21 of the AOC
run as a restart file, using the key restart; see the adf User's Guide.
Of course, in such an approach the computed energies are with respect to another reference,
for instance the restricted atoms.

Results for first period atoms

In one of the next sections tables are given for the energy lowering in going from the converged spherically
symmetric spin-restricted atom (the 'master' fragment) to specific one-determinant wavefunctions with the
orbital occupations as specified. Note that the px and py populations are always equal; only their sum is
given. In many cases the determinant corresponds to a specific state, which is then given in the last column.
For each atom, the first calculation is for the spherically symmetric spin-unrestricted atom. These tables are
now obsolete, all information needed to obtain the atomic reference energies, i.e. the groundstate multiplet
energy with respect to the AOC, can be found in ref. [325].

Examples worked out for all first period atoms:

H: Configuration (1s)1.
Only one determinant: |1sα(1)|

He: Configuration (1s)2.
Closed shell.

Li: Configuration (2s)1.
Only one determinant: |2sα(1)|

Be: Configuration (2s)2.
Closed shell.

67

B: Configuration (2p)1.
Ground multiplet 2P.
D1 = |p1α(1)| = |2P;ML=1;MS=1/2>

ρα = |p1|2 = (-px/√2 - ipy/√2)* (-px/√2 - ipy/√2)

= 1/2(px - ipy)(px + ipy) = 1/2(px2 + py2)
The occupation numbers for D1 are

pxα = pyα = 1/2; pzα = 0; pxβ = pyβ = pzβ = 0

Another determinant belonging to 2P is
D2 = |..p0α(1)|

with occupations pzα = 1 and all other p-occupations zero. This determinant is 0.04 eV lower in energy than
D1 for LDA, but 0.15 eV for BP.

C: Configuration p2.
Multiplet states are 3P, 1S and 1D.
We use this atom as an example of the general procedure. First write down all determinants belonging to p2

and group them according to MS and ML

(1+ ≡ p1α, ...)

Determinant MS ML

D1 = |1+ 1-| 0 2

D2 = |1+ 0+| 1 1

D3 = |1+ 0-| 0 1

D4 = |1+ -1+| 1 0

D5 = |1+ -1-| 0 0

D6 = |1- 0+| 0 1

D7 = |1- 0-| -1 1

D8 = |1- -1+| 0 0

D9 = |1- -1-| -1 0

D10 = |0+ 0-| 0 0

D11 = |0+ -1+| 1 -1

D12 = |0+ -1-| 0 -1

D13 = |0- -1+| 0 -1

D14 = |0- -1-| -1 -1

D15 = |-1+ -1-| 0 -2

68

The presence of a determinant with ML = 2, MS = 0 and no ML = 2, MS > 0 determinant indicates the

presence of a 1D multiplet, and E(1D) = E(D1).

There is also a 3P, the determinant with MS = 1, ML = 1. We should have E(3P) = E(D2) = E(D4). The two
determinants D3 and D6 in the MS = 0, ML = 1 box will mix, and the solutions of the 2 by 2 secular problem

will be E(1D) and E(3P). Since the sum of the eigenvalues is equal to the sum of the initial diagonal
elements, we have E(1D) + E(3P) = E(D3) + E(D6).
We should also have E(D3) + E(D6) = E(D1) + E(D2). Such a relation provides a test on the consistency of
the results.
Finally we have the MS = 0, ML = 0 block. The sum of the energies of D5, D8 and D10 should be the sum of

the energies of 1S, 3P and 1D. Since E(3P) and E(1D) are already known, E(1S) can be calculated.
In the appendix we first locate for C the spherical unrestricted atom. Next we have E(D4), yielding E(3P) =

-1.345 eV (LDA + Becke). Next E(D2) = E(3P) = -1.189 (always LDA + Becke). The difference is substantial:
~ 0.15
Next we have E(D3) = - 0.812. Since E(D6) = E(D3), because ρα(D6) = ρβ(D3) and ρβ(D6) = ρα(D3), we

should have 2E(D3) = -1.624 = E(1D) + E(3P). Therefore E(1D) = -1.624 - (-1.345) = - 0.279 or E(1D) = -
1.624 - (-1.189) = - 0.435.
These numbers can be checked against E(D1) which also should be E(1D):
E(D1) =+ 0.044. The discrepancy is large!

Finally, 1S can be obtained:
E(D10) = + 0.319
(D8) = E(D1) = + 0.044
E(D5) = E(D1) = + 0.044

So 0.407 = E(1S) + E(3P) +E(1D).
Different results for E(1S) are obtained depending on the E(3P) and E(1D) we choose:
e.g. E(1S) = 0.407 -(-1.345) - (- 0.279) = 2.031
or E(1S) = 0.407 - (-1.189) - (0.044) = 1.552.
Comparing to experiment we might calculate the excitation energies w.r.t. E(3P):

calculated experimental HF
3P → 1D: 1.066 to 1.389 1.26 1.55
3P → 1S: 2.741 to 3.376 2.684 3.78

69

N: Configuration p3.
Ground multiplet 4S, corresponds to the spherical unrestricted atom, energy -2.943 eV. Other multiplets: 2P,
2D. According to the printed output for configuration p3 we have
|2D;ML=2;MS=1/2> = |p1α p1β p0α| = D2

ρα = 1/2 px2 + 1/2 py2 + pz2

ρβ = 1/2 px2 + 1/2 py2

E(D2) = - 0.745 according to the table in the Appendix (LDA + Becke)

The energy of D1, with ρα = px2 + py2, ρβ = pz2, is E(|1A 2B 3A|) = -1.9702.

The energy of D3, with ρα = 1/2 px2 + 1/2 py2 + pz2, ρβ = pz2 corresponding to |1A 2A 2B| or |2A 2B 3A|, is
E(D3) = - 0.158.

Finally, D4 has ρα = px2 + py2, ρβ = 1/2 px2 + 1/2 py2, corresponding to |1A 1B 3A| and |1A 3A 3B|, and
E(D4) = - 0.109.

The ML=1, MS=1/2 determinants are |1A 1B 3A| and |1A 2A 2B|. Therefore E(2D) + E(2P) = E(D4) + E(D3),

so E(2P) = - 0.109 - 0.158 - (- 0.745) = + 0.478.
We can use D1 in the ML=0, MS=1/2 block, from which we find E(4S) + E(2D) + E(2P) = 2E(D2) =+ E(D1).

Hence E(2P) = -1.490 - 1.9702 - (- 0.745) - (- 2.943) = + 0.2278.

O: Configuration p4.
Multiplet states 3P, 1S, 1D.
D1, with ρα = px2 + py2 + pz2, ρβ = pz2 corresponds to |1A 2A 2B 3A| , the ML=1, MS=1 determinant of 3P:

E(3P) = -1.836
D2 with ρα = px2 + py2 + pz2, ρβ = 1/2 px2 + 1/2 py2, corresponds to |1A 1B 2A 3A|, the determinant of 3P:

E(3P) = -1.568
D3, with ρα = 1/2 px2 + 1/2 py2 + pz2, ρβ = px2 + py2, corresponds to |1A 1B 2A 3B|, and ML=1, MS=0

belonging to 3P as well as 1D.

F: Configuration p5.
Ground multiplet 2P.
As in B, we have two determinants with different energies belonging to this state:
D1 = |...(p0α)1 (p0β)0| → E(D1) = - 0.715.

D2 = |(p-1)2 (p0)2 (p1α)1 (p1β)0| → E(D2) = - 0.467.

Ne: Configuration p6.
Closed shell.

Ground and Excited State Multiplets

The computation of multiplets can be carried out with adf, using the input key SLATERDETERMINANTS.

The method described in [323] for the calculation of the energies of proper spin and spatial symmetry
adapted Configuration State Functions is based on the calculation of the energies of single determinantal
wavefunctions. The densities corresponding to those Slater determinants are inserted in the approximation
used for the exchange-correlation energy.

The procedure as detailed above is somewhat involved. Moreover, one would like to have an easy
procedure to calculate many determinants. This is particularly desirable if one wishes to calculate the
energies of all Slater determinants of a given configuration, for instance if one wishes to calculate certain
averages in view of the inconsistencies of the method.

70

We have implemented a semi-automatic procedure, using the key SLATERDETERMINANTS.

The general idea of this method is to first perform a restricted calculation in the symmetry that is appropriate
for the molecule. This is called the average-of-configuration (AOC) calculation. This AOC calculation
generates the orbitals which will be used in all the Slater determinants.

The AOC is the fragment that must be used in all subsequent calculations. The subsequent calculations are
characterized by having the AOC as the (only) fragment, and by specifying the keyword
SLATERDETERMINANTS. This key is a general key: it may be used as a simple key (it must then have an
argument) or as a block type key (no argument, but a data block). If an argument is given this must be a file
name. The named file should contain the occupations for the determinants (see below). If no file name is
specified the key should be a block key and the occupations should be specified in the data block.

The required information, on file or in the data block, is the specification of the determinant or determinants
that are to be calculated in the form of orbital occupation numbers for the AOC orbitals, using the irrep labels
of the point group of the AOC calculation, see below for format. All specified determinants will be calculated,
and the obtained energy will always be the energy difference with respect to the AOC. Default occupations
for all subspecies of the AOC fragment are the occupations of the AOC itself. Therefore, only the open
(modified) subspecies have to be specified.

One has to be careful with respect to the point group symmetry to use in the SLATERDETERMINANTS
calculation. The density belonging to a specific determinant is usually lower than the AOC symmetry (which
is the full symmetry group of the system). In that case this lower point group symmetry has to be specified in
the SLATERDETERMINANTS calculation. Everything will always work fine if one just does not use any
symmetry at all (nosym). However, if for reasons of computational efficiency one does want to use a
subgroup of the system that corresponds to the determinant density or densities, this is perfectly possible.
However, all the densities of the determinants specified must then have this (or a higher) symmetry. The
program does not check on this, it is the user's responsibility to make sure that this condition is satisfied for
all the determinants. The only check that is performed is that occupations of equivalent representations
(subspecies of one irrep) in the lower point group of the SLATERDETERMINANTS run, that result from the
specified occupations of the subspecies of the AOC symmetry, are equal.

Format of the input.

Important: in the SlaterDeterminants calculations it is imperative that the results are obtained in the AOC
field: no SCF convergence must be carried out, because we only want to assign the electrons differently,
while keeping the AOC orbitals exactly as they are. To achieve this, the calculations should use the keyword
SCF, and the subkey iterations has to be set to 0 in the SCF data block.

Since adf requires that the point-group symmetry conforms not only to the nuclear frame but also to the
electronic charge density and mo occupations, these calculations must run in a lower pointgroup symmetry.
Often you will also want to run the modified calculations spin-unrestricted.

For an example, see the set of sample runs that come with the package and the comments in the Examples
document.

The calculation of the one-determinant states based on the AOC reference state is controlled with the key
SLATERDETERMINANTS. It is a general key; it can be used as a simple key and requires an argument then.
It can also be used as a block key. For this particular key it is not correct to specify an argument and a data
block.

SLATERDETERMINANTS file

When used as a simple key, the argument must be a file (including the path). The file must be an ascii file
containing data in the same format as you would supply in the data block when using the key as block type
key, see below. All information on the file until the eof must be suitable for the data block, but no record 'end'
on the file must be specified: only the contents of the data block.

71

The block format:

SLATERDETERMINANTS
TITLE1

irrep occups
irrep occups
....

SUBEND
TITLE2

irrep occups
....

SUBEND
TITLE3

irrep occups
....

SUBEND
....

END

Each 'title' functions as a subkey, but is otherwise an arbitrary string to label the resulting one-determinant
calculation. Each such subkey block contains the occupation numbers for a single one-determinant
calculation. It is necessary that the calculation uses the reference AOC run as its only fragment file. The
occupations in the subkey blocks must be re-arrangements of the AOC open-shell electrons. In the
SLATERDETERMINANTS calculation you must explicitly specify the pointgroup symmetry in which you want

to run. The ρα and ρβ densities of all determinants to be calculated must have this point group symmetry, or
a higher symmetry.

Each 'irrep occups' record specifies the occupations for the indicated irrep in the usual way (see for instance
the occupations key). The irrep labels must correspond to the AOC point group symmetry used in the AOC
calculation, not the point group symmetry used in the SLATERDETERMINANTS calculation!. Note that in an
unrestricted calculations, occupations numbers must be given for both spins, using the double slash (//) to
separate the occupations for spin-alpha and spin-beta.

In this setup, the program will for each of the subkey blocks under the SLATERDETERMINANTS key execute
an SCF calculation with only one cycle, i.e. no convergence, where the start-up field is the fragment field, i.e.
the AOC field. So all one-determinant states in this calculation are evaluated in the AOC field. The resulting
energies for the distinctly computed one-determinant states can then be combined to the desired multiplet
values.

Example: Carbon p2

SlaterDeterminants
C(p2) ALFA: s=1, px=py=2/3, pz=2/3; BETA: s=1, p=0 ! title

S 1 // 1 ! irrep name and occupations
P:x 0.666666666666666666 // 0 ! another irrep, et cetera
P:y 0.666666666666666666 // 0
P:z 0.666666666666666666 // 0
D:z2 0 // 0
D:x2-y2 0 // 0
D:xy 0 // 0
D:xz 0 // 0
D:yz 0 // 0

SUBEND
C(p2) ALFA: S=1, px=py=1, pz=0; BETA: s=1 !next (Sl.Determinant) title

S 1 // 1
P:x 1 // 0
P:y 1 // 0

72

P:z 0 // 0
D:z2 0 // 0
D:x2-y2 0 // 0
D:xy 0 // 0
D:xz 0 // 0
D:yz 0 // 0

SUBEND
C(p2) ALFA: s=1, px=py=0.5, pz=1; BETA: s=1

S 1 // 1
P:x 0.5 // 0
P:y 0.5 // 0
P:z 1 // 0
D:z2 0 // 0
D:x2-y2 0 // 0
D:xy 0 // 0
D:xz 0 // 0
D:yz 0 // 0

SUBEND
C(p2) ALFA: s=1, px=py=0.5, pz=0; BETA: s=1, px=py=0, pz=1

S 1 // 1
P:x 0.5 // 0
P:y 0.5 // 0
P:z 0 // 1
D:z2 0 // 0
D:x2-y2 0 // 0
D:xy 0 // 0
D:xz 0 // 0
D:yz 0 // 0

SUBEND
C(p2) ALFA: s=1, px=py=0.5, pz=0; BETA: s=1, px=py=0.5, pz=0

S 1 // 1
P:x 0.5 // 0.5
P:y 0.5 // 0.5
P:z 0 // 0
D:z2 0 // 0
D:x2-y2 0 // 0
D:xy 0 // 0
D:xz 0 // 0
D:yz 0 // 0

SUBEND
C(p2) ALFA: s= 1, px=py=0, pz=1; BETA: s=1, px=py=0, pz=1

S 1 // 1
P:x 0 // 0
P:y 0 // 0
P:z 1 // 1
D:z2 0 // 0
D:x2-y2 0 // 0
D:xy 0 // 0
D:xz 0 // 0
D:yz 0 // 0

SUBEND

In the example the AOC calculation is the Carbon atom in spherical symmetry (symmetry name atom).

Several spin states can be generated from this AOC set of orbitals, but they all have a lower symmetry than
the AOC. In the example the point group D∞h (DLIN) could be used in the SLATERDETERMINANTS

73

calculation. In D∞h the p orbitals split into two sets, px and py occur in πx and πy respectively, so their
occupations must be identical, and pz is a Σu orbital.

In the data block of the SLATERDETERMINANTS key (or in the file) we now specify the occupations for the
subspecies of the atom irreps of a specific Slater determinant and the program will sort out the
corresponding occupations in the d(lin) symmetry.

In all cases the orbitals used for the energy calculation(s) will be the self-consistent AOC orbitals.

In the given example, the first set of occupations does not correspond to a Slater determinant, but is the
spin-polarized spherical case with the p electrons evenly distributed over all components.

LDA results, with and without GGA (Becke-Perdew)

Energy changes (eV) for atoms going from restricted to (one-cycle) unrestricted. Results between
parentheses are for converged unrestricted calculations)

All calculations have been performed in D∞h symmetry, since px and py always had equal occupations and
therefore could occur as πu-x and πu-y partners of the Πu irrep.

El. Occupations LDA LDA+Becke BP
alpha-spin beta-spin
s px+py pz s px+py pz

H 1 0 0 0 0 0 -0.868 (-0.898) -0.758 (-0.837) -0.889 (-0.948)
Li 1 0 0 0 0 0 -0.231 (-0.235) -0.195 (-0.207) -0.249 (-0.256)
Be 1 0 0 1 0 0 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
B 1 2/3 1/3 1 0 0 -0.247 (-0.255) -0.231 (-0.242) -0.276 (-0.281)

1 0 1 1 0 0 -0.295 (-0.321) -0.436 (-0.474) -0.448 (-0.485)
1 1 0 1 0 0 -0.266 (-0.279) -0.296 (-0.316) -0.333 (-0.348)

C 1 4/3 2/3 1 0 0 -1.163 (-1.203) -1.109 (-1.158) -1.252 (-1.285)
1 2 0 1 0 0 -1.152 (-1.211) -1.271 (-1.345) -1.372 (-1.436)
1 1 1 1 0 0 -1.152 (-1.197) -1.134 (-1.189) -1.267 (-1.307)
1 1 0 1 0 1 -0.462 (-0.506) -0.726 (-0.812) -0.778 (-0.868)
1 1 0 1 1 0 0.159 (0.150) 0.039 (0.044) 0.087 (0.086)
1 0 1 1 0 1 0.730 (0.668) 0.322 (0.319) 0.480 (0.450)

N 1 2 1 1 0 0 -2.936 (-3.032) -2.827 (-2.943) -3.101 (-3.190)
1 2 0 1 0 1 -1.362 (-1.454) -1.811 (-1.972) -1.943 (-2.108)
1 1 1 1 1 0 -0.581 (-0.618) -0.688 (-0.745) -0.746 (-0.801)
1 1 1 1 0 1 0.178 (0.088) -0.104 (-0.158) -0.069 (-0.140)
1 2 0 1 1 0 0.197 (0.135) -0.077 (-0.109) -0.011 (-0.053)

O 1 2 1 1 2/3 1/3 -1.400 (-1.477) -1.361 (-1.447) -1.480 (-1.552)
1 2 1 1 0 1 -1.442 (-1.583) -1.698 (-1.836) -1.816 (-1.957)
1 2 1 1 1 0 -1.422 (-1.515) -1.470 (-1.568) -1.590 (-1.678)
1 1 1 1 2 0 -0.564 (-0.623) -0.866 (-0.960) -0.913 (-1.013)
1 1 1 1 1 1 0.358 (0.321) 0.255 (0.237) 0.292 (0.266)
1 2 0 1 2 0 1.323 (1.220) 0.825 (0.789) 0.992 (0.932)

F 1 2 1 1 4/3 2/3 -0.374 (-0.398) -0.366 (-0.391) -0.394 (-0.416)
1 2 1 1 2 0 -0.323 (-0.409) -0.605 (-0.686) -0.627 (-0.715)
1 2 1 1 1 1 -0.349 (-0.389) -0.401 (-0.441) -0.427 (-0.467)

74

Frozen core approximation

Frozen core vs. pseudopotentials

Pseudopotentials are not supported. The frozen core approximation is automatic in a normal (Fragment
mode) calculation and is defined by the basic atomic fragments. The data file used in the Create run
specifies the frozen core for the atom, which is then used in all molecules that incorporate that atomic
fragment.

Core Potentials

In the standard approach the Coulomb potential and the charge density due to the atomic frozen core are
computed from the frozen one-electron orbitals. ADF stores the computed core density and core potential for
each atom type in the molecule on a file TAPE12. Alternatively, you may attach a file with (core) potentials
and densities. The file must have the same structure as the standard TAPE12. It should contain one or more
sections, each with the core information for one type of atom. With the key COREPOTENTIALS you specify
the core file and (optionally) which sections pertain to the distinct atom types in the molecule. It is a general
key that can be used as a simple key or as a block key.

Simple key:

COREPOTENTIALS corefile

Block key:

COREPOTENTIALS corefile &
atomtype index
atomtype index
...

end

corefile

The file with core potentials and charge densities. The name may contain a path.

atomtype

One of the atom type names as defined by atoms.

index

Points to the core section on the attached file that applies to the atom type. Different atom types may
use the same section. A non-positive index tells the program that the atoms of that type don't have a
frozen core. If the information on the corresponding fragment file (or data file in Create mode) indicates
the contrary the program will abort with an error message.

If the key is used as a simple key (specifying only the core file) the sections on the file are associated with
the atom types in order: the first section is used for the first atom type, et cetera. This is overruled by
applying the block form. However, since the key must have the core file as argument, the block form
requires that you apply the continuation symbol: an ampersand (&), separated from the core file name by at
least one blank.

If you omit an atom type from the data block it gets a zero index (no core).

The attached file may contain more sections than used in the calculation, and the indices specified in the
data block don't have to be in ascending order, consecutive, or cover a specific interval.

75

When a file with non-standard (e.g. relativistic) cores is attached and used in the calculation of an atom or
molecule, and the result is used as fragment in a subsequent calculation, you should attach and use the
same core potentials again. Otherwise, the program will internally compute the standard core potentials and
hence implicitly employ another fragment than you may think, i.e. a fragment with other properties. ADF will
not check anything in this respect and corepotentials should therefore be handled with great care.

The primary application of the corepotentials option is to include (scalar) relativistic corrections in the (frozen
core part of the) Fock operator. The relativistic core potentials can be computed with the auxiliary program
dirac (see the RELATIVISTIC keyword).

Spin-polarized start-up potential

The Coulomb and XC (exchange + correlation) potentials are computed from the fit approximation of the
charge density (see Chapter 1.2).

The fit coefficients of this approximation for the first SCF cycle, needed to compute the first Fock matrix, are
read from the fragment files: the start-up density is chosen as a sum-of-fragment-densities (fit
approximations) and this combined density defines the initial potential.

In the SCF restart run the fit coefficients may be read from the attached TAPE21 file, see the key RESTART.

Spin-flip method for broken symmetries

Starting from ADF2009.01 it is possible to exchange alpha and beta electrons for selected atoms when
performing a restart from a previous spin-unrestricted calculation.

In many cases, one wishes to perform a calculation of a low-spin complex where spin-density is positive on
some atoms and negative on the others. It is usually very difficult to achieve SCF convergence if one starts
from scratch. Sometimes, the MODIFYSTARTPOTENTIAL feature (see next section) helps with this
problem but sometimes it does not. A more robust way is to first perform a high-spin calculation and then
modify the resulting t21 file by "flipping" the spin on some atoms. This file then can be used to restart a
subsequent low-spin calculation.

Such a "flipping" can now be performed during restart by specifying a SPINFLIP keyword in the RESTART
input block as shown below:

RESTART high-spin.t21 &
! SpinFlip keyword is followed by atom numbers for
! which the flipping will be performed

SPINFLIP 1
END

An example demonstrating the feature may be found in the Examples document.

Modify the starting potential

In some applications you may want to modify the initial fit coefficients (from the restart file or the fragment
files), see also the previous section. This is achieved with the key MODIFYSTARTPOTENTIAL. It allows you
to scale them in some way so as to represent user-chosen amounts of spin-α and spin-β fit density on some
or all of the fragments. This will adjust the spin-α and spin-β initial potentials.

This option applies only to unrestricted calculations of course. It may be used to help the program find a
particular state. This might, for instance, be hard to find otherwise due to the a-b symmetry in the start-up

76

situation. It may also be useful to speed up the SCF convergence in case you know what the final
distribution of spin-α and spin-β density over the molecule will approximately be.

MODIFYSTARTPOTENTIAL {specification}
{ frag alfa // beta
frag alfa // beta
...

end }

ModifyStartPotential

A general key: it has an argument or a data block.

specification

Must be two numbers, ASPIN and BSPIN, if provided at all. They specify the (relative) amounts of spin-
α and spin-β fit density to define the spin-dependent potential at the first SCF cycle. The coefficients
retrieved from the fragment files (or from the restart file in case of a SCF restart) are scaled accordingly.
This will not affect the total amount of fit density: the absolute values of ASPIN and BSPIN play no role,
only their ratio.
In case of a restart run the restart file must have been generated in a restricted calculation, while the
continuation run must be an unrestricted one.

If no argument is given a data block must be supplied with records frag alfa // beta.
This is very much similar to the main option with ASPIN and BSPIN: you specify ASPIN and BSPIN now
separately for each fragment. This involves somewhat more input but increases the possibilities to tune the
initial potential. Again this can be applied only in an unrestricted calculation. It cannot be used in a restart:
the affected fit coefficients are those from the fragment files, while in an SCF restart run these are ignored
and replaced by the coefficients on the TAPE21 restart file.
Each line specifies a frag with its corresponding ASPIN and BSPIN fit partitioning. If frag is the name of a
fragment type, the specified ASPIN-BSPIN is applied to all individual fragments of that type. Alternatively an
individual fragment can be specified, using the format fragtype/n, where n is an index between one and the
total number of fragments of that type. In such a case the ASPIN-BSPIN data applies only to that particular
fragment while different values may be supplied for the other fragments of the same type.
It is allowed to specify for certain fragment types individual fragments and for other fragment types only the
type. Duplicate specifications are not allowed; an individual fragment must not be specified if its fragment
type is also specified as a whole.
If the data block form is used, only the fit coefficients of the referenced fragments are affected. For the not-
referenced fragments the fit densities are used as they are defined on the corresponding fragment files.

The SCF convergence of a spin-unrestricted calculation usually improves when you start with potentials that
correspond to the correct ratio of spin-α and spin-β electrons. By default ASPIN=BSPIN=0.5, as implied by
the spin-restricted start density of the fragments or restricted molecule.

The total amount of fit density used on the first iteration is defined by the sum-of-fragment densities (or the
density on the restart file). This may be different from the total nr. of electrons in the actual calculation. On
the second SCF cycle the fit density will internally be normalized so as to represent the correct number of
electrons.

The block-form of the key makes the start up of broken symmetry calculations easy. For example one may
want to start a calculation in broken symmetry with spin-α density on one fragment and spin-β density on
another, e.g. in a spin-unrestricted calculation of H2 at large separation. It is particularly useful for larger
systems, e.g. for magnetic coupling between spin-polarized magnetic centers, as in Fe-S complexes [111]:
start with oppositely polarized Fe centers, but with, for instance, the remaining bridge and terminal ligands
unpolarized. See also the N2+ sample run in the examples.

77

Unrestricted fragments

The fragments from which the molecule is built must be spin-restricted, that is: the fragment files must be
result files of spin-restricted calculations. For purposes of analysis, however, it may be desirable in some
applications to build your molecule from unrestricted fragments. This can be simulated as follows.

You tell ADF that you want to treat the fragments as if they were unrestricted; this causes the program to
duplicate the one-electron orbitals of the fragment: one set for spin-α and one set for spin-β. You can then
specify occupation numbers for these spin-unrestricted fragments, and occupy spin-α orbitals differently
from spin-β orbitals.

Of course, the unrestricted fragments that you use in this way, are not self-consistent: different numbers of
spin-α and spin-β electrons usually result in different spatial orbitals and different energy eigenvalues for
spin-α and spin-β when you go to self-consistency, while here you have spatially identical fragment orbitals.
Nevertheless it is often a fair approximation which gives you a considerable extension of analysis
possibilities.

In ADF2012 for hybrids, metaGGA's, and metahybrids the calculation of the Pauli repulsion term is
implemented if one is simulating an unrestricted fragment with the key FRAGOCCUPATIONS.

FRAGOCCUPATIONS
fragtype

irrep spin-a // spin-b
irrep spin-a // spin-b
...

subend
fragtype

irrep spin-a // spin-b
...

subend
...

end

fragtype

One of the fragment types and functions as a (block type) subkey. The data block for the subkey ends
with the standard end code for block type subkeys (subend).

irrep

One of the irreducible representations (irreps) for the point group symmetry that was used in the
computation of that fragment.

spin-a // spin-b

Two sequences of occupation numbers, which will be applied to the spin-α and spin-β versions of the
Fragment Orbitals. The sequences must be separated by a double slash (//). See for comparison the
specification of occupation numbers for the overall system (key CHARGE).

The sum of spin-α and spin-β occupations must, for each fragment orbital in each irrep separately, be equal
to the total (restricted) occupation of that orbital as it is stored on the fragment file. In other words: you can
only change the distribution over spin-α and spin-β electrons within one orbital.

(Without this restriction the spatial distribution of the total (sum over spins) fragment charge density would
be changed, leading to an incorrect bonding energy analysis after the calculation).

The data block of FRAGOCCUPATIONS is not parsed for expressions and constants or functions defined
under define. Any such items will not be recognized and not be replaced by their values.

78

Be aware that in more-dimensional irreps (e, t) the number of electrons in a fully occupied orbital is input as
the dimension of the irrep times the one-electron orbital occupation. Compare the key OCCUPATIONS.

For irreps that are not mentioned in this input block, and hence for all irreps of fragment(type)s that are not
mentioned at all, the spin-α and spin-β occupations will be set equal, which is of course what they in fact are
on the (restricted) fragment file.

For an example of applying this option see [112].

Remove Fragment Orbitals

By default all fragment orbitals (the MOs of the fragment computation), which are stored on the fragment file,
are used as basis functions for the overall molecule, see Chapter 1.2. You can remove one or more of these
fragment orbitals from the basis set of the molecule. This may be useful for special analyzes, for instance to
study the effect of deleting all virtual MOs of a particular fragment (CSOV analysis, Constrained Space
Orbital Variation). It may also enhance the efficiency since you effectively reduce the size of the basis set,
but you should be aware of the potential effects on the results.

REMOVEFRAGORBITALS
fragtype

subspecies nremove
subspecies nremove
...

subend
fragtype

subspecies nremove
...

subend
....
(etc.)
....

end

fragtype

One of the fragment types in the system. Any subset of the available fragment types can be used here
as subkey. The subkeys are block type keys; their data blocks end subend.

subspecies

One of the subspecies of the irreducible representations of the point group symmetry that was used in
the calculation of the fragment itself. This requires of course that one knows the symmetry that has
been used for the fragment calculation.

nremove

The number of fragment orbitals of the pertaining representation that will not be used as basis functions
for the overall system. The highest (in energy eigenvalue) nremove orbitals are discarded. You must not
remove occupied fragment orbitals.

By default (omission of the key) all fragment orbitals are used in the basis set for the system.

Important Note

It is imperative that any removal of fragment orbitals will not break the symmetry of the molecule. This
consideration is relevant when for instance two different subspecies of a fragment irrep contribute to
different partner subspecies in one of the irreps of the molecule. In such a case, when one removes an

79

orbital in such a fragment subspecies, its partner orbital should also be removed. If this is violated an error
may occur or the results will simply be wrong. Quite likely, the program will detect the error, but this may
occur only in the final (analysis) stage of the calculation so that a lot of CPU time may have been wasted.

Example: consider a single-atom fragment, computed in atom symmetry, used as fragment in a c(lin)
molecule and assume that the p:x and p:y fragment orbitals contribute to respectively the pi:x and pi:y
subspecies of the molecule. Then, when you remove one or more p:x fragment orbitals, you should also
remove the same number of p:y fragment orbitals. Practical cases may be more complicated and whenever
you use this key, make sure that you've fully analyzed and understood how the fragment irreps combine into
the molecular symmetry representations. Hint: run the molecule, without removing any fragment orbitals,
and stop at an early stage after the program has computed and printed the build-up of the molecular SFOs
from the fragment orbitals. To control early aborts via input, use the key STOPAFTER.

Density Functional

Exchange Correlation Potentials

The Density Functional, also called the exchange-and-correlation (XC) functional, consists of an LDA, a
GGA part, a Hartree-Fock exchange part (hybrids), and a meta-GGA part (meta-GGA or meta-hybrid). LDA
stands for the Local Density Approximation, which implies that the XC functional in each point in space
depends only on the (spin) density in that same point. GGA stands for Generalized Gradient Approximation
and is an addition to the LDA part, by including terms that depend on derivatives of the density. A hybrid
GGA (for example B3LYP) stands for some combination of a standard GGA with a part of Hartree Fock
exchange. A meta-GGA (for example TPSS) has a GGA part, but also depends on the kinetic energy
density. A meta-hybrid (for example TPSSh) has GGA part, a part of Hartree-Fock exchange and a part that
depends on the kinetic energy density. For these terms ADF supports a large number of the formulas
advocated in the literature. For post-SCF energies only, ADF supports also various other meta-GGA
functionals and more hybrid functionals.

The Perdew-Zunger self-interaction correction (SIC) was implemented [47-49] self-consistently using the
Krieger-Li-Iafrate approximation to the optimized effective potential, and the Vosko-Wilk-Nusair (VWN)
functional or gradient corrected density functionals. This approach is found to improve several properties,
which are sometimes difficult to describe with standard DFT techniques, like for example some 'problematic'
NMR chemical shifts, or some 'difficult' reaction barriers. Note that some of these problems can also be
circumvented with hybrids.

Several asymptotically correct XC potentials have been implemented in ADF, such as the (now somewhat
outdated) LB94 potential [15], the gradient-regulated asymptotic correction (GRAC) [16], and the statistical
average of orbital potentials (SAOP) [244,17]. These can currently be used only for response property
calculations, not for geometry optimizations. For spectroscopic properties, they usually give results superior
to those obtained with LDA or GGA potentials, (see Ref.[18] for applications to (hyper)polarizabilities Cauchy
coefficients, etc. of small molecules). This is particularly true if the molecule is small and the (high-lying)
virtual orbitals are important for the property under study.

It was also shown that, simply using the orbital energies of the occupied Kohn-Sham orbitals of a SAOP
calculation, quite good agreement with experiment vertical ionization potentials is obtained. This is true not
only for the HOMO orbital energy, which should be identical to (minus) the experimental ionization potential
with the exact XC potential, but also for lower-lying occupied orbital energies. The agreement becomes
worse for deep-lying core orbital energies. A theoretical explanation and practical results are given in Ref.
[19].

If a functional contains a part of Hartree-Fock exchange then the LDA, GGA, metaGGA, or MODEL key
should not be used in combination with this key, and one should only specify one of HartreeFock, HYBRID

80

or MetaHYBRID. Dispersion can be added. Note that it is not recommended to use (part of the) Hartree-
Fock exchange in combination with frozen cores, since at the moment the frozen core orbitals are not
included in the Hartree Fock exchange operator. The implementation in ADF of the calculation of exact
exchange (Hartree Fock exchange), which is also needed for the hybrid functionals, is based on work by
Watson et al., Ref. [138]. In ADF one can do unrestricted Hartree-Fock (or hybrid or meta-hybrid)
calculations, as long as one has integer occupation numbers (ROHF is not implemented in ADF, only UHF).
Note that the DEPENDENCY key is switched on for Hartree-Fock exchange in order to circumvent
numerical problems, see also the ADDDIFFUSEFIT key. You also need to the same XC-potential in the
create run of the atoms, which is done automatically if you use the BASIS key.

The key that controls the Density Functional is XC, with sub keys LDA and GGA (or equivalently: gradients)
to define the LDA and GGA parts of the functional, and MODEL in case one of the special 'model' XC
potentials is required in stead of LDA or GGA. All subkeys are optional (need not be used). Some may occur
twice in the data block.

XC
{LDA LDA {Stoll}}
{GGA GGA}
{MetaGGA metagga}
{Model MODELPOT [IP]}
{HartreeFock}
{OEP fitmethod {approximation}}
{HYBRID hybrid {HF=HFpart}}
{MetaHYBRID metahybrid}
{XCFUN}
{RANGESEP {GAMMA=X} {ALPHA=a} {BETA=b}}
{DISPERSION [s6scaling] [RSCALE=r0scaling] [Grimme3] [BJDAMP] [PAR1=par1] [PAR2=par2]

[PAR3=par3] [PAR4=par4] }
{DISPERSION dDsC}
{DISPERSION UFF}

end

LDA

Defines the LDA part of the XC functional and can be any of the following:
Xonly: The pure-exchange electron gas formula. Technically this is identical to the Xalpha form (see
next) with a value 2/3 for the X-alpha parameter.
Xalpha: the scaled (parameterized) exchange-only formula. When this option is used you may
(optionally) specify the X-alpha parameter by typing a numerical value after the string Xalpha
(separated by a blank). If omitted this parameter takes the default value 0.7
VWN: the parameterization of electron gas data given by Vosko, Wilk and Nusair (ref [20], formula
version V). Among the available LDA options this is the more advanced one, including correlation
effects to a fair extent.

Stoll

For the VWN or GL variety of the LDA form you may include Stoll's correction [21] by typing Stoll on
the same line, after the main LDA specification. You must not use Stoll's correction in combination
with the Xonly or the Xalpha form for the Local Density functional.

PW92: the parameterization of electron gas data given by Perdew and Wang (ref [288]).

GGA

Specifies the GGA part of the XC Functional, in earlier times often called the 'non-local' correction to the
LDA part of the density functional. It uses derivatives (gradients) of the charge density. Separate
choices can be made for the GGA exchange correction and the GGA correlation correction respectively.
Both specifications must be typed (if at all) on the same line, after the GGA subkey.

81

For the exchange part the options are:
Becke: the gradient correction proposed in 1988 by Becke [22].
PW86x: the correction advocated in 1986 by Perdew-Wang [23].
PW91x: the exchange correction proposed in 1991 by Perdew-Wang [24]
mPWx: the modified PW91 exchange correction proposed in 1998 by Adamo-Barone [25]
PBEx: the exchange correction proposed in 1996 by Perdew-Burke-Ernzerhof [26]
RPBEx: the revised PBE exchange correction proposed in 1999 by Hammer-Hansen-Norskov [27]
revPBEx: the revised PBE exchange correction proposed in 1998 by Zhang-Wang [28]
mPBEx: the modified PBE exchange correction proposed in 2002 by Adamo-Barone [174]
PBEsolx: the PBEsol exchange correction proposed in 2008 by Perdew-Ruzsinszky-Csonka-Vydrov-
Scuseria [285]
HTBSx: the HTBS exchange correction [437]
OPTX: the OPTX exchange correction proposed in 2001 by Handy-Cohen [29]
BEEx: the BEEx exchange correction proposed in 2005 by Mortensen-Kaasbjerg-Frederiksen-Nørskov-
Sethna-Jacobsen [284]

For the correlation part the options are:
Perdew: the correlation term presented in 1986 by Perdew [30].
PBEc: the correlation term presented in 1996 by Perdew-Burke-Ernzerhof [26] .
PBEsolc: the PBEsol correlation correction proposed in 2008 by Perdew-Ruzsinszky-Csonka-Vydrov-
Scuseria [285]
PW91c: the correlation correction of Perdew-Wang (1991), see [24].
LYP: the Lee-Yang-Parr 1988 correlation correction [31-33].

Some GGA options define the exchange and correlation parts in one stroke. These are:
BP86: this is equivalent to Becke + Perdew together.
PW91: this is equivalent to pw91x + pw91c together.
mPW: this is equivalent to mPWx + pw91c together.
PBE: this is equivalent to PBEx + PBEc together
RPBE: this is equivalent to RPBEx + PBEc together
revPBE: this is equivalent to revPBEx + PBEc together
mPBE: this is equivalent to mPBEx + PBEc together
PBEsol: this is equivalent to PBEsolx + PBEsolc together
HTBS: this is equivalent to HTBSx + PBEc together
BLYP: this is equivalent to Becke (exchange) + LYP (correlation).
OLYP: this is equivalent to OPTX (exchange) + LYP (correlation).
OPBE: this is equivalent to OPTX (exchange) + PBEc (correlation) [175].
XLYP: this is equivalent to XLYPx [172] (exchange, not available separately from LYP) + LYP
(correlation).
BEE: this is equivalent to BEEx (exchange) + PBEc (correlation).
SSB-D: dispersion corrected functional by Swart-Solà-Bickelhaupt [286,287]. Single point only. Use
METAGGA SSB-D in other cases.
S12g: dispersion corrected (Grimme-D3) functional by Swart, successor of SSB-D [367].
LB94: this refers to the XC functional of Van Leeuwen and Baerends [15].
KT1: this refers to the KT1 functional of Keal and Tozer [171].
KT2: this refers to the KT2 functional of Keal and Tozer [171].

The string GGA must contain not more than one of the exchange options and not more than one of the
correlation options. If options are applied for both they must be separated by a blank or a comma.

MetaGGA

Specifies that a meta-GGA should be used during the SCF. All electron basis sets should be used. The
meta-GGA can be one of the following:
M06-L: functional by Yan-Truhlar [223,224]

82

TPSS: functional by Tao-Perdew-Staroverov-Scuseria [246,247]
revTPSS: revised TPSS functional [438]
SSB-D: dispersion corrected GGA functional by Swart-Solà-Bickelhaupt [286,287]. Use GGA SSB-D for
NMR calculations.

MODEL

Specifies that one of the less common XC potentials should be used during the SCF. These potentials
specify both the exchange and the correlation part. No LDA, GGA, MetaGGA, HartreeFock, HYBRID or
MetaHYBRID key should be used in combination with these keys. It is also not advised to use any
energy analysis in combination with these potentials. For energy analysis we recommend to use one of
the GGA potentials. It is currently not possible to do a Create run with these potentials. It is possible to
do a one atom regular ADF calculation with these potentials though, using a regular TAPE21 file from
an LDA or GGA potential as input.

LB94: this refers to the XC functional of Van Leeuwen and Baerends [15]. There are no separate
entries for the Exchange and Correlation parts respectively of LB94. Usually the GRAC or SAOP
potentials give results superior to LB94.

GRAC: the gradient-regulated asymptotic correction, which in the outer region closely resembles the
LB94 potential [16]. It requires a further argument: the ionization potential [IP] of the molecule, in hartree
units. This should be estimated or obtained externally, or calculated in advance from two GGA total
energy calculations.

SAOP: the statistical average of orbital potentials [244,17]. It can be used for all electron calculations
only. It will be expensive for large molecules, but requires no further parameter input.

IP: should be supplied only if GRAC is specified.

HartreeFock

Specifies that the Hartree-Fock exchange should be used during the SCF.

OEP

Defines the optimized effective potential expanded into a set of the fit functions. The subkeyword
fitmethod can be any of the following: BARTLETT [248], SCUSERIA [249]. In the case of SCUSERIA one
of the following approximations needs to be specified: CEDA, KLI or SLATER. An application of OEP
in ADF can be found in Ref.[250].

HYBRID

Specifies that a hybrid functional should be used during the SCF. The hybrid can be one of the
following:
B3LYP: ADF uses VWN5 in B3LYP. functional (20% HF exchange) by Stephens-Devlin-Chablowski-
Frisch [176].
B3LYP*: modified B3LYP functional (15% HF exchange) by Reiher-Salomon-Hess [177].
B1LYP: functional (25% HF exchange) by Adamo-Barone [178].
KMLYP: functional (55.7% HF exchange) by Kang-Musgrave [179].
O3LYP: functional (12% HF exchange) by Cohen-Handy [180].
X3LYP: functional (21.8% HF exchange) by Xu-Goddard [172].
BHandH: 50% HF exchange, 50% LDA exchange, and 100% LYP correlation.
BHandHLYP: 50% HF exchange, 50% LDA exchange, 50% Becke88 exchange, and 100% LYP
correlation.
B1PW91: functional by (25% HF exchange) Adamo-Barone [178].
mPW1PW: functional (42.8% HF exchange) by Adamo-Barone [25].
mPW1K: functional (25% HF exchange) by Lynch-Fast-Harris-Truhlar [181].

83

PBE0: functional (25% HF exchange) by Ernzerhof-Scuseria [211] and by Adamo-Barone [212], hybrid
form of PBE.
OPBE0: functional (25% HF exchange) by Swart-Ehlers-Lammertsma [175], hybrid form of OPBE.
S12H: dispersion corrected (Grimme-D3) functional (25% HF exchange) by Swart [367].

HFpart

Specifies the amount of HF exchange that should be used in the functional, instead of the default
HF exchange percentage for the given hybrid. Example HF=0.25 means 25% HF exchange.

MetaHYBRID

Specifies that a meta-hybrid functional should be used during the SCF. The meta-hybrid can be one of
the following:
M06: functional (27% HF exchange) by Yan-Truhlar [223,224]
M06-2X: functional (54% HF exchange) by Yan-Truhlar [223,224]
M06-HF: functional (100% HF exchange) by Yan-Truhlar [223,224]
TPSSH: functional (10% HF exchange) by Tao-Perdew-Staroverov-Scuseria [246,247]

XCFUN

XCFun is a library of approximate exchange-correlation functionals, see Ref. [354], for which functional
derivatives can be calculated automatically. For example, with XCFUN the full (non-ALDA) kernel can
be evaluated and this has been implemented in the calculation of TDDFT excitations. The Full kernel
can not be used in combination with symmetry, singlet-triplet excitation calculations, or excited state
geometry optimizations. The following functionals can be evaluated with XCFUN at the present time:

• LDA: VWN5, X-ALPHA PW92
• GGA exchange: Becke88, PBEX, OPTX, PW91X, mPW, revPBEX
• GGA correlation: LYP, Perdew86, PBEC
• MetaGGA: TPSS, M06L, B95
• MetaHybrids: M06, M05, M062X, M06HF, PW6B95, PWB6K
• Hybrids: PBE0, B3LYP, BHandH, B1LYP, B3LYP*, PBEFALFX, CAMY-B3LYP

RANGESEP {GAMMA=X} {ALPHA=a} {BETA=b}

If RANGESEP is included, by default a long-range corrected (LC) functional is created with range
separation parameter GAMMA of 0.75. As switching function in ADF the Yukawa potential is utilized,
see Ref. [355]. Range separated functionals require XCFUN and are limited to GGA, meta-GGA, and
CAMY-B3LYP. The CAMY-B3LYP functional is not the same as the CAM-B3LYP functional, since a
different switching function is used. No other hybrids or meta-hybrids are supported. The special
CAMYB3LYP functional is defined by three parameters, ALPHA, BETA and the attenuation parameter
GAMMA. For CAMYB3LYP by default ALPHA is 0.19, BETA is 0.46, and GAMMA is 0.34. Singlet-triplet
excitation calculations or excited geometry optimizations are not possible for functionals that require
XCFUN.

DISPERSION Grimme3 BJDAMP

If DISPERSION Grimme3 BJDAMP is present a dispersion correction (DFT-D3-BJ) by Grimme [436]
will be added to the total bonding energy, gradient and second derivatives, where applicable. This is the
latest dispersion correction in the DFTB-D family. Parametrizations are implemented for the functionals:
B3LYP, TPSS, BP86, BLYP, PBE, PBEsol, and RPBE. It has four parameter. One can overide this
using PAR1=.. PAR2=.., etc. In the table the relation is shown between the parameters and the real
parameters in the Dispersion correction.

variable variable on Bonn website

84

http://www.thch.uni-bonn.de/tc/downloads/DFT-D3/functionalsbj.html

PAR1 s6

PAR2 a1

PAR3 s8

PAR4 a2

DISPERSION Grimme3

If DISPERSION Grimme3 is present a dispersion correction (DFT-D3) by Grimme [292] will be added to
the total bonding energy, gradient and second derivatives, where applicable. Parametrizations are
available for: B3LYP, TPSS, BP86, BLYP, revPBE, PBE, PBEsol, and RPBE, and will be automatically
set if one of these functionals is used. There are also parameters directly recognized for S12g and
S12h. For all other functionals, PBE-D3 parameters are used as default. You can explicitly specify the
three parameters

variable variable on Bonn website

PAR1 s6

PAR2 sr,6

PAR3 s8

DISPERSION {s6scaling]} {RSCALE=r0scaling}

If the DISPERSION keyword is present (without the argument Grimme3) a dispersion correction (DFT-
D) by Grimme [226] will be added to the total bonding energy, gradient and second derivatives, where
applicable. The global scaling factor with which the correction is added depends on the exchange-
correlation functional used at SCF but it can be modified using the s6scaling parameter. The following
scaling factors are used (with the XC functional in parantheses): 1.20 (BLYP), 1.05 (BP), 0.75 (PBE),
1.05 (B3LYP). In all other cases a factor 1.0 is used unless modified via the s6scaling parameter. The
SSB-D functional includes the dispersion correction (factor 0.847455) by default.
Unlike the MMDISPERSION keyword, the van der Waals radii used in this implementation are
hardcoded in ADF. However, it is possible to modify the global scaling parameter for them using the
RSCALE=r0scaling argument. The default value is 1.1 as proposed by Grimme [226]. Please also see
additional documentation for more information about this topic.

DISPERSION dDsC

The DISPERSION dDsC key invokes the density dependent dispersion correction [316], which has
been parametrized for the functionals BLYP, PBE, BP, revPBE, B3LYP, PBE0 and BHANDHLYP.

DISPERSION UFF

The DISPERSION UFF key invokes the universal correction of density functional theory to include
London dispersion (DFT-ulg) [366], which has been parametrized for all elements up to Lr (Z=103), and
for the functional PBE, PW91, and B3LYP. For other functionals the PBE pareameters will be used.

DISPERSION MBD

85

http://www.thch.uni-bonn.de/tc/downloads/DFT-D3/functionals.html

The DISPERSION MBD key invokes the MBD@rsSCS method [377], which is designed to accurately
describe long-range correlation (and thus dispersion) in finite-gap systems, including at the same time a
description of the short-range interactions from the underlying DFT computation of the electronic
structure.

Defaults, special cases, simple input

If the XC key is not used, the program will apply only the Local Density Approximation (no GGA terms). The
chosen LDA form is then VWN.

If only a GGA part is specified, omitting the LDA sub key, the LDA part defaults to VWN, except when the
LYP correlation correction is used: in that case the LDA default is Xonly: pure exchange.

The reason for this is that the LYP formulas assume the pure-exchange LDA form, while for instance the
Perdew-86 correlation correction is a correction to a correlated LDA form. The precise form of this correlated
LDA form assumed in the Perdew-86 correlation correction is not available as an option in ADF but the VWN
formulas are fairly close to it.

Be aware that typing only the sub key LDA, without an argument, will activate the VWN form (also if LYP is
specified in the GGA part).

PBE functionals

Starting from ADF2009.01 the default PBE functional uses LDA PW92, instead of LDA VWN, and uses for
the GGA part routines provided by Burke.

Before this bug-fix the 'correct' PBE functional could be obtained with explicit specifying the LDA PW92
functional and the correct PBEc correlation functional:

XC
LDA PW92
GGA PBE USEBURKEROUTINES

End

Now this is default if one uses

XC
GGA PBE

End

The old ('incorrect') defaults can be calculated with

XC
LDA VWN
GGA PBE USESPROUTINES

End

SSB-D functional

Currently (ADF2009.01), there are some numerical issues with the GGA implementation in ADF of SSB-D
(Ref. [286,287]) for some systems. Because of this, the GGA SSB-D option is only available for single-points
(and NMR). Geometry optimizations (etc.) are still possible by using instead:

86

XC
METAGGA SSB-D

END

This METAGGA implementation is only possible with all-electron basis sets. Use GGA SSB-D for NMR
calculations.

The SSB-D functional by definition already includes a dispersion correction by Grimme (factor 0.847455).

Meta-GGA potentials

Starting from ADF2009.01 the meta-GGA's M06-L and TPSS can be used during the SCF. Also starting
from ADF2009.01 the meta-GGA's can be used in combination with geometry optimization, TS, IRC, LT,
numerical frequencies, and excitation energies (ALDA kernel used). All electron basis sets should be used.

The M06-L functional needs high integration accuracy (at least BeckeGrid quality good) for reasonable
gradients. For TPSS moderate integration accuracy for reasonable gradients is sufficient. For heavier
elements (Z>36) and if one uses the M06-L functional it is also necessary to include the following keyword

FragMetaGGAToten

Using this key FRAGMETAGGATOTEN the difference in the meta-hybrid or meta-GGA exchange-
correlation energies between the molecule and its fragments will be calculated using the molecular
integration grid, which is more accurate than the default, but is much more time consuming. Default is to
calculate the meta-GGA exchange-correlation energies for the fragments in the numerical integration grid of
the fragments.

Model potentials

The LB94, GRAC, and SAOP functionals have only a SCF (=Potential) implementation, but no Energy
counterpart. Therefore, they must not be used together with the Energy specification for Apply. If LB94 or
GRAC is used for the Potential (SCF), the gga energy expression defaults to Becke (exchange part) +
Perdew (correlation). For SAOP, the energy functional is PW91. This can be overruled by selecting another
choice in the 'gga Energy ...' specification. However, it is recommendable to use a GGA for the XC potential
if the main interest is in energies.

The LB94, GRAC, and SAOP forms are density functionals specifically designed to get the correct
asymptotic behavior. This yields much better energies for the highest occupied molecular orbital (HOMO)
and better excitation energies in a calculation of response properties (Time Dependent DFT). Energies for
lower lying orbitals (sub-valence) should improve as well (in case of GRAC and SAOP, but not LB94). The
energy expression underlying the LB94 functional is very inaccurate. This does not affect the response
properties but it does imply that the energy and its derivatives (gradients) should not be used because
lb94-optimized geometries will be wrong, see for instance [34]. The application of the LB94 functional in a
runtype that involves the computation of energy gradients is disabled in ADF. You can override this internal
check with the key ALLOW.

In case of a GRAC calculation, the user should be aware that the potential in the outer region is shifted up
with respect to the usual level. In other words, the XC potential does not tend to zero in the outer region in
this case. The size of the shift is the difference between the HOMO orbital energy and the IP given as input.
In order to compare to regular GGA orbital energies, it is advisable to subtract this amount from all orbital
energies. Of course, orbital energy differences, which enter excitation energies, are not affected by this shift
in the potential.

The LB94, SAOP, and GRAC potentials cannot be used in a Create run (due to an implementation limitation
in the code). If you need the energy difference of a molecule with respect to LB94-atoms, you have to run

87

the single-atom calculations with LB94 separately, using the same non-LB94 Create atoms as fragments as
you did for the whole molecule. This will give you the required energy corrections.

Hartree-Fock and (meta-)hybrid potentials

Starting from ADF2009.01 the meta-hybrids M06, M06-2X, M06-HF, and TPSSH can be used during the
SCF. Also starting from ADF2009.01 Hartree-Fock and the (meta-)hybrid potentials can be used in
combination with geometry optimization, TS, IRC, LT, and numerical frequencies; hybrids can be used in
calculating NMR chemical shift; PBE0 can be used in calculating NMR spin-spin coupling; Hartree-Fock and
(meta-)hybrid can be used in calculating excitation energies, in which the kernel consists of the Hartree-Fock
percentage times the Hartree-Fock kernel plus one minus the Hartree-Fock percentage times the ALDA
kernel (thus no (meta-)GGA kernel). Hartree-Fock and the (meta-)hybrid potentials still can not or should not
be used in combination with analytical frequencies, the (AO)RESPONSE key, EPR/ESR g-tensor, and
frozen cores. Starting from ADF2010 it is possible to use Hartree-Fock and hybrids to calculate CD spectra.

In ADF one can do unrestricted Hartree-Fock (or hybrid or meta-hybrid) calculations, as long as one has
integer occupation numbers (ROHF is not implemented in ADF, only UHF).

Starting from ADF2009.01 it is possible to change the amount of HF exchange in the input for hybrids (not
for meta-hybrids and Hartree-Fock). For many hybrid functionals the sum of the amount of Hartree-Fock
exchange and the amount of LDA exchange (or GGA exchange) is one. If that is the case, then if one
changes the amount of Hartree-Fock exchange in the input the amount of LDA exchange (or GGA
exchange) will also be changed, such that the sum remains one. Example:

XC
Hybrid B3LYP HF=0.25

END

In this case the amount of Hartree-Fock for the B3LYP functional will be changed to 25% (instead of 20%),
and the amount of LDA exchange to 75% (instead of 80%). The LDA correlation and GGA exchange and
correlation part will be left unaltered.

Memory usage

Calculation of the Hartree-Fock exchange may require a lot of memory. Starting from ADF2012, shared
memory is used to buffer the necessary data used by all processes on a multi-processor node. By default,
ADF will use 30% of the total physical memory of the computer for this buffer, which may be more than is
desirable or possible. This amount, in megabytes, can be set using a HFMAXMEMORY input keyword.

HFMaxMemory mbytes

The amount of memory used is related how many atoms can be done in a single pass. Thus, another way to
limit the amount of memory used by ADF is to limit the number of atoms done per pass. The latter can be
done using the HFATOMSPERPASS keyword. The safest, but also the slowest, is to set
HFATOMSPERPASS to 1.

HFAtomsPerPass AtomsPerPass

If both HFMAXMEMORY and HFATOMSPERPASS are present, the value specified in
HFATOMSPERPASS takes precedence. To debug memory usage in the Hartree-Fock routine, one can use
a PRINT HFEXCHANGE keyword.

Numerical issues

Numerical problems have been found with the present implementation of Hartree-Fock or (meta-)hybrids
during the SCF, especially if the molecule has symmetry NOSYM and a basis set TZP or larger is used.
Workaround is to use always the DEPENDENCY key with rather strict criteria for the basis set dependence,

88

http://www.scm.com/Doc/Doc2014/ADF/ADFUsersGuide/metatagNMR_SHIELDING_NMR.html
http://www.scm.com/Doc/Doc2014/ADF/ADFUsersGuide/metatagNMR_SPINSPIN.html

namely bas=4e-3. In ADF2010 these numerical problems have been reduced. Starting from the ADF2006.01
the DEPENDENCY key is automatically switched on in the case of a Hartree-Fock or a (meta-)hybrid
potential. The result of the DEPENDENCY key is that linear dependence of the basis set is reduced by
removing linear combinations that correspond with eigenvalues in the virtual SFOs overlap matrix, which are
smaller than, in this case, 4e-3. Note that this is a rather large value, such that it will have an effect on the
bonding energy. For DZ and DZP basis sets this value will normally not result in reduction of the virtual
space. However, for TZP, TZ2P, QZ4P and larger this will often result in reduction of the basis set, which will
have an effect on the accuracy of the bonding energy. In these cases one could try a smaller value than
4e-3, but be aware that numerical problems may occur. If the molecule has symmetry the numerical
problems are reduced.

The origin of this problem is that for an accurate description of Hartree-Fock exchange one needs more
(diffuse) fit functions in the fit procedure which is used in ADF, which uses only fit fuctions on the two centers
of the two STOs. One can get more diffuse fit functions if one adds in the Create run of an atom the key:

AddDiffuseFit

If the BASIS key is used one can also add this key in the molecular calculation (the scripts in ADF will then
automatically add this in the Create runs of the atoms). If one adds this key preliminary results indicate that
one can lower the value for the dependency key to bas=1e-4. Such a low value for the dependency key
normally means that the basis set is not reduced for basis sets of TZP or TZ2P quality.

A different way to add fit functions that is useful for standard basis setsl DZ, DZP, TZP, and TZ2P is to add
the subkey 'Fittype QZ4P' in the BASIS key, thus:

BASIS
Type ...
Core ...
FitType QZ4P

End

In ADF2013 use is made of distance cut-offs for the calculation of the HF exchange integrals. This can
reduce computation time and memory usage, especially for large molecules, however, this can also reduce
the precision, which can lead to numerical problems. It is possible to set the distance cut-off threshold
(starting from ADF2013.01b) for the calculation of the HF exchange integrals, A value of 99 for hffit virtually
excludes the possibility that something will be neglected:

LINEARSCALING
HF_FIT hffit

END

An accuracy issue is relevant for some of the meta-GGA functionals, in particular the M06 functionals.
These need high integration accuracy (at least BeckeGrid quality good) for reasonable gradients. For
TPSSH moderate integration accuracy for reasonable gradients is sufficient. For heavier elements (Z>36)
and if one uses one of the M06 functionals it is also necessary to include the following keyword

FragMetaGGAToten

Using this key FRAGMETAGGATOTEN the difference in the metahybrid or metagga exchange-correlation
energies between the molecule and its fragments will be calculated using the molecular integration grid,
which is more accurate than the default, but is much more time consuming. Default is to calculate the meta-
hybrid or meta-GGA exchange-correlation energies for the fragments in the numerical integration grid of the
fragments.

For benchmark calculations one would like to use a large basis set, like the QZ4P basis set. In such cases it
is recommended to use a good numerical quality. Thus for accurate hybrid calculations of small molecules
one could use:

89

basis
type QZ4P

end
AddDiffuseFit
Dependency bas=1e-4
NumericalQuality good

However, for larger molecules and in case the molecule contains heavy elements (Z>36) one still should use
rather strict criteria for the basis set dependence, such as bas=4e-3.

SCF problems

In case of SCF problems that might be related to numerical issues one can try one or more of the following,
that were discussed before

LINEARSCALING
HF_FIT 99

END
Basis
FitType QZ4P

End
AddDiffuseFit
Dependency bas=5e-3

Note that HF_FIT can be used starting from ADF2013.01b.

Range-separated functionals

Range-separated functionals make use of a modified form of the Coulomb operator that is split into pieces
for exact exchange and DFT. As switching function in ADF the Yukawa potential is utilized, see Ref. [355].
Global hybrids can be thought of as a special case of a range-separated functional where the split is
independent of the interelectronic distance and is a simple X% exact and 1-X% DFT in all space.

In a general RS-functional the split depends on the interelectronic distance. How the split is achieved
depends on the functional in question but it is achieved using functions that smoothly go from 1 to 0. In ADF
an exponential function is used (the error function is common in Gaussian based codes). In a range-
separated function the potential goes from a Coulomb interaction to a sum of Coulomb functions attenuated
by an exponential function.

In practical terms, this means that a range-separated functional looks very much like a hybrid (or meta-
hybrid) functional but with additional integrals over the attenuated interaction with fit functions on the exact
exchange side and a modified functional on the DFT side.

DFT part of RS-functionals

Using Hirao's approach for creating RS-functionals, the RS form of a given exchange functional is created
by multiplying the standard energy density by a factor that depends on the energy density. The factor is the
same for all functionals and the only difference is introduced by the individual energy densities.

Exact exchange part of RS-functionals

The range-separation comes in at the level of the integrals over the operator with fit functions. They are very
similar to the standard Coulomb integrals.

RS-functionals

90

An RS-functional is described by a series of regions describing each of the pieces of the Coulomb operator.
The total function is built up by looping over the regions and adding up all the pieces. Currently, simple LC
functionals can be defined where the exact exchange goes from 0 to 1 as the interelectronic distance
increases and the DFT part does the reverse. In addition CAMY-B3LYP type functionals can be defined.
More general functionals are not possible yet.

Functionality/Limitations

RS functionals require XCFUN and are limited to the GGA and meta-GGA functionals and one hybrid
CAMY-B3LYP. The following functionals can be evaluated with range-separation at the present time:

• LDA: VWN5, X-ALPHA PW92
• GGA exchange: Becke88, PBEX, OPTX, PW91X, mPW, revPBEX
• GGA correlation: LYP, Perdew86, PBEC
• MetaGGA: TPSS, M06L, B95
• Hybrids: CAMY-B3LYP

The following functionality has been tested: XC potential, energy, ground state geometry, TDDFT. Singlet-
triplet excitation calculations or excited geometry optimizations are not possible at thim time.

Numerical stability

The range-separated implementation requires that the range-separation parameter is not too close to the
exponent of a fit function. In practice this means that values of the separation parameter between 1.0 and 50
can cause numerical problems. Typical useful values are in the range 0.2 to 0.9 so this should not be too
serious a limitation.

Input

XC
...
XCFUN
RANGESEP {GAMMA=X} {ALPHA=a} {BETA=b}

END

Range separation is activated by putting RANGESEP in the XC block. Inclusion of XCFUN is required, see
the XCFUN description. By default a long-range corrected (LC) functional is created with range separation
parameter of 0.75. The parameter can be changed by modifying X in GAMMA=X in the RANGESEP card.
Range separation typically will be used in combination with a GGA or METAGGA functional.

Range separation can not be included with a hybrid or meta-hybrid, with one exception, the special RS
functional: CAMY-B3LYP. This is entered as HYBRID CAMY-B3LYP and must be used in combination with
XCFUN (see XCFUN description) and RANGESEP. The CAMY-B3LYP functional is defined by three
parameters, alpha, beta and the attenuation parameter gamma. The gamma parameter can be modified as
for the LC functionals. For CAMY-B3LYP it defaults to 0.34. The alpha and beta parameters can be modified
through ALPHA=a and BETA=b in the RANGESEP card. They default to 0.19 and 0.46 respectively.

XC
HYBRID CAMY-B3LYP
XCFUN
RANGESEP GAMMA=0.34 ALPHA=0.19 BETA=0.46

END

Simple XC potential input

XC
functionalspecification

91

{dispersion [Grimme3]}
end

functionalspecification

The simplest use of the XC kewyord is to use one of the following lines for
functionalspecification. More details and other options of the XC keyword can be found in the
previous sections.

LDA VWN
LDA Xalpha
LDA PW92
GGA Becke Perdew
GGA BLYP
GGA PW91
GGA mPW
GGA PBE
GGA RPBE
GGA revPBE
GGA mPBE
GGA OLYP
GGA OPBE
GGA BP86
GGA BLYP
GGA PBE
GGA PBEsol
GGA HTBS
GGA KT1
GGA KT2
GGA SSB-D
GGA S12g
Model LB94
Model SAOP
HartreeFock
Hybrid B3LYP
Hybrid B3LYP*
Hybrid B1LYP
Hybrid KMLYP
Hybrid O3LYP
Hybrid X3LYP
Hybrid BHandH
Hybrid BHandHLYP
Hybrid B1PW91
Hybrid MPW1PW
Hybrid MPW1K
Hybrid OPBE0
Hybrid PBE0
Hybrid S12h
MetaGGA M06L
MetaGGA TPSS
MetaHybrid M06
MetaHybrid M06-2X
MetaHybrid M06-HF
MetaHybrid TPSSH

dispersion {Grimme3 BJDAMP} {dDsC} {UFF} {MBD}

92

If DISPERSION Grimme3 BJDAMP is present a dispersion correction DFT-D3-BJ is added.
DISPERSION dDsC invokes the density dependent dispersion correction. The DISPERSION UFF key
invokes the universal correction of density functional theory to include London dispersion (DFT-ulg).
The DISPERSION MBD key invokes the MBD@rsSCS method.

Range separated functionals

XC
functionalspecification
XCFUN
RANGESEP

end

functionalspecification

List of the most important functionals, for which one can use range separation:

LDA VWN
GGA BLYP
GGA BP86
GGA PBE
HYBRID CAMY-B3LYP

Post-SCF energy functionals

GGA energy functionals

In principle you may specify different functionals to be used for the potential, which determines the self-
consistent charge density, and for the energy expression that is used to evaluate the (XC part of the) energy
of the charge density. To be consistent, one should generally apply the same functional to evaluate the
potential and energy respectively. Two reasons, however, may lead one to do otherwise:

• The evaluation of the GGA part in the potential is more time-consuming than LDA. The effect of
the GGA term in the potential on the self-consistent charge density is often not very large. From
the point of view of computational efficiency it may, therefore, be attractive to solve the SCF
equations at the LDA level (i.e. not including GGA terms in the potential), and to apply the full
expression, including GGA terms, to the energy evaluation a posteriori: post-SCF.

• A particular XC functional may have only an implementation for the potential, but not for the
energy (or vice versa). This is a rather special case, intended primarily for fundamental research
of Density Functional Theory, rather than for run-of-the-mill production runs.

One possibility is to calculate a whole list of post-SCF energy functionals using the METAGGA keyword, see
next section. For some functionals the next possibility is enough. One has to specify different functionals for
potential and energy evaluations respectively, using:

XC
{LDA {Apply} LDA {Stoll}}
{GGA {Apply} GGA}

end

Apply

States whether the functional defined on the pertaining line will be used self-consistently (in the SCF-
potential), or only post-SCF, i.e. to evaluate the XC energy corresponding to the charge density. The
value of apply must be SCF or Energy. A value postSCF will also be accepted and is equivalent to
Energy. A value Potential will also be accepted and is equivalent to SCF. For each record separately

93

the default (if no Apply value is given in that record) is SCF. For each of the two terms (LDA, GGA) in
the functional: if no record with Energy specification is found in the data block, the evaluation of the XC
energy will use the same functional as is applied for the potential.

LDA, GGA

See the XC potential section for all possible values.

Meta-GGA and hybrid energy functionals

Starting from the ADF2004.01 version, several GGA [26-28,35-39], meta-GGA [40-46], hybrid GGA (for
example B3LYP), and hybrid meta-GGA energy XC functionals have been implemented that have been
shown to give good results for energies. This implementation enables only energies to be calculated with
most of these functionals. In more recent versions of ADF some of the (meta-)GGA and (meta-)hybrid
functionals can be used during the SCF, for optimizations and in property calculations, see the separate
sections on meta-GGA potentials and (meta-)hybrid potentials.

The post SCF energy calculation is an easy and cheap way to get a reasonable guess for the bond energies
for different XC functionals at the same time. Note that post-SCF energy calculations for a certain XC
functional will not be so accurate if the functional form of the XC functional used in the SCF is very different
from the XC functional used post SCF. The relative accuracy of post-SCF energies may not be so high if
one looks at small energy differences. For accurate energy calculations it is recommended to use the same
XC functional during the SCF as for the energy.

The implementation in ADF of the calculation of exact exchange (Hartree Fock exchange), which is needed
for the hybrid functionals, is based on work by Watson et al., Ref. [138]. The difference with their method is
the way in which ADF the orbital densities are fitted.

The calculation of a large, prespecified list of LDA, GGA, and meta-GGA energy functionals is invoked by
specifying

METAGGA

as a separate keyword. The following (incomplete) list gives an idea of the (meta-)GGA density functionals
that will then be calculated:

BP, PW91, mPW, BLYP, PBE, RPBE, revPBE, mPBE, OLYP, OPBE, KCIS, PKZB, VS98, FT97,
BLAP3, HCTH, tau-HCTH, BmTau1, BOP, OLAP3, TPSS, KT1, KT2, B97, M06-L.

The hybrid GGA and hybrid meta-GGA energy functionals are calculated if in addition to the METAGGA key,
the key

HARTREEFOCK

is included. The following (incomplete) list gives an idea of the extra hybrid (meta-)GGA density functionals
that will then be calculated:

B3LYP, B3LYP*, B1LYP, KMLYP, O3LYP, X3LYP, BHandH, BHandHLYP, B1PW91, MPW1PW,
MPW1K, PBE0, OPBE0, TPSSh, tau-HCTH-hybrid, B97, M05, M05-2X, M06, M06-2X.

In ADF2007.01 the Zhao-Truhlar M05 (Ref.[221,222]) and M06 (Ref.[223,224]) class xc energy functionals
have been implemented.

The keys METAGGA and HARTREEFOCK can be used in combination with any XC potential. Note that at
the moment hybrid functionals can not be used in combination with frozen cores. Also most METAGGA
functionals will give wrong results if used in combination with frozen cores. Thus it is best to use an all
electron basis set if one of the keywords METAGGA or HARTREEFOCK is used. One should include the

94

HARTREEFOCK keyword also in the create runs of the atoms. In ADF the hybrid energies only make sense
if the calculation is performed with completely filled orbitals (ROHF is not implemented in ADF, only UHF).

For comparison with previous results instead of the key HARTREEFOCK one can also use the key
HFEXCHANGE:

HFEXCHANGE

This key is now obsolete. The difference with the HARTREEFOCK key is the way in which the orbital
densities are fitted. The key HFEXCHANGE can not be used in combination with frozen cores or spin-orbit
coupling.

The Examples document describes an application to the OH molecule for the METAGGA option. More
output, on the total XC energy of the system, can be obtained by specifying

PRINT METAGGA

This latter option is intended for debugging purposes mainly and is not recommended for general use.

The implementation calculates the total XC energy for a system and writes it to a file. This is always done in
Create runs. If the basic fragments are atoms, the keyword

ENERGYFRAG
ATOM [filename]
ATOM [filename]
... ...

END

specifies that different atomic fragment files are to be used in the meta-GGA energy analysis than the
regular atomic fragment files from the create runs. This keyword cannot be used for molecular fragment
files. In order to compare meta-GGA energy differences between molecular fragments and the total
molecule, results from the various calculations need to be combined by hand.

In such situations, it is advisable to use a somewhat higher integration accuracy than one would normally
do, at least for the smaller fragments, as there is no error cancellation as in a regular ADF bond energy
analysis.

A general comment is that some functionals show a more stable behavior than others (at least in our current
implementation). In general, the functionals which are dependent on the Laplacian of the density may
display a large variation with respect to basis set changes or different numerical integration accuracy. For
this reason we currently recommend FT97 in favor of FT98. Similarly, the results with the BmTau1 functional
should still be carefully checked. In our test calculations on the G2 set of molecules, the VS98 showed best
performance, both for the average error and for the maximum error. The G2 set consists only of small
molecules with elements up to Cl. The relative performance for transition metals and heavy elements is
unknown and may well be very different from the ordering for the G2 set.

Post Hartree-Fock energy functionals

Next text is mostly taken from text by the authors of Ref. [381]. In the early days of DFT, non-self-consistent
Kohn-Sham energy was often evaluated upon Hartree-Fock (HF) densities as a way to test new
approximations. This method was called HF-DFT. It has been discovered that in some cases, HF-DFT
actually gave more accurate answers when compared to self-consistent DFT calculations. In Ref. [381], it
was found that DFT calculations can be categorized into two different types of calculations. The error of an
approximate functional can be decomposed into two parts: error from the functional (functional error), and
error from the density (density-driven error). For most calculations, functional error is dominant, and here
self-consistent DFT is usually better than non-self consistent DFT on more accurate densities (called density
corrected DFT (DC-DFT)). Unlike these 'normal' calculations, there is a class of calculations where the
density-driven error is much larger, so DC-DFT give better a result than self-consistent DFT. These

95

calculations can be classified as 'abnormal'. HF-DFT is a simple implementation of DC-DFT and a small
HOMO-LUMO gap is an indicator of an 'abnormal' calculation, thus, HF-DFT would perform better in such
cases.

In ADF one can do HF-DFT with:

XC
HartreeFock

END
MetaGGA

This will produce a large, prespecified list of LDA, GGA, meta-GGA, hybrid, and metahybrid energy
functionals.

Self-Interaction Correction

In the ADF2004.01 version the Perdew-Zunger (PZ) self-interaction energy correction (SIC) with the Krieger-
Li-Iafrate (KLI) approximation to the self-interaction corrected optimized effective potential (OEP) is
implemented[47-49]. The block key SICOEP should be used.

Note: The existing auxiliary fitting sets, employed in ADF, were optimized for the calculation of the Coulomb
potential of the total electron density. These standard fitting sets are quite flexible in the valence region, but
do not include functions of high angular momentum in the inner regions. It was found (Ref [47]) that self-
consistent SIC calculations with the standard fitting sets result in very poor SCF convergence, and large fit
incompleteness corrections, particularly for the orbitals with substantial p and d contributions. Once the
auxiliary fit sets are augmented with additional functions of high angular momentum, and reoptimized, the
SCF convergence problems largely disappear. The reason is that the fit set must be able to approximate
densities of each individual localized orbital, both in direction, and shell structure.

The key

SINGULARFIT FAST

activates fast(er) treatment of linearly dependent fits. It precomputes and stores singular value
decomposition of fit overlap integrals, making fitting itself faster. Because SIC needs to fit a lot of densities
on each iteration, it can improve performance by an order of magnitude. Use of 'SINGULARFIT FRUGAL'
requests the old treatment of linearly-dependent fits, recomputing SVD parameters on each iteration. This is
always slower than 'SINGULARFIT FAST', but uses less disk space.

The localization transformation is essential for obtaining realistic total and atomization energies. For
example, without localization, SIC-Vosko-Wilk-Nusair (VWN) predicts molecular oxygen to be unstable with
respect to the dissociation to two neutral oxygen atoms. At the same time, when using the localized orbitals,
SIC-VWN compares favorably to both VWN itself, and to sophisticated gradient-corrected functionals. In
ADF the Foster-Boys localization procedure is used.

Remarks: Fractional occupation are treated right. GGA functionals are supported, even for open-shell. SIC
works for Linear Transit calculations. Frozen core SIC potentials are computed (GGA). The code is not well
suitable for treating d and f electrons within the valence shell. Ds and Fs are fine within the frozen core. The
SIC code does not allow parallel calculations. Geometry optimizations are not yet possible. SIC in
combination with spin-orbit coupling is not possible yet.

Usage of the block key SICOEP:

SICOEP
{IPRINT n}
{NOLOCALIZE}
{LOCALIZE {thrs}}

96

{LDA name {Xa}}
{GGA name}
{SELFCONSISTENT n}
{POSTSCF}
{SKIPCYCLES every {start}}
{STABLE frac}
{NHOMO Nalpha {Nbeta}}
{CORE cor}
{DENSITY mode}
{SHIPV filename}
{READV filename}
{READMOS filename {FREEZE}}
{WRITEMOS filename}
{NAILCANONICALS {eps}}
{NPFITS n}

end

IPRINT n

-2 = no printing except for fatal errors
-1 = condensed printing
0 = normal printing
1 = verbose printing
5 = debug printing
10 = exorcism printing

NOLOCALIZE

Calculate SIC energies for canonical MOs. Except for atoms and certain small molecules, this is
guaranteed to produce non-optimal SIC energies, and/or lead to severe convergence problems.

LOCALIZE {thrs}

Calculate SIC energies for localized MOs. In this version, Boys-Foster procedure is used to obtain
localized orbitals. By default, all occupied orbitals will participate in the Boys-Foster procedure. This can
be changed by supplying thrs parameter, which will only allow mixing of canonical orbitals within thrs eV
of each other. Calculate SIC energies for canonical MOs. Except for atoms and certain small molecules,
this is guaranteed.

LDA name {Xa}

Requests a specific local density functional in Perdew-Zunger energy correction and KLI contribution to
the XC potential (If name is XALPHA, the default alpha of 0.7 can be changed by specifying the
additional argument). Normally, SIC code will use LDA functional requested (explicitly or implicitly) in
the XC keyblock. Specifying 'NONE' with suppress LDA contribution in SIC energy and potential.
Because the Perdew-Zunger energy correction, and the corresponding term in the XC potential are
trying to remove a non-physical self-interaction contribution from the Kohn-Sham E(XC)/v(XC)
contribution, this key should only be used for debugging.

GGA name

Requests a specific gradient-corrected functional in the SIC part, overriding the default choice (same as
in 'XC' keyblock). Specifying 'NONE' will suppress GGA contribution to the SIC energy and potential.
Note that very little input checking is done for this key. It is possible to specify a non-existent functional
here, which will lead to unpredictable results. Use this key only for debugging.

SELFCONSISTENT {n}

97

Includes KLI contribution in the XC potential. This is the default. In case of convergence difficulties,
v(KLI) will be recomputed until n-th SCF cycle (90 cycles by default). All subsequent SCF cycles will use
v(KLI) from the n-th cycle. If a SIC calculation runs into convergence difficulties, it is important to make
sure that the SIC energy does not change significantly between the last cycle where potential was
computed, and the final SCF cycle.

POSTSCF

Calculates Perdew-Zunger energy correction, using orbitals from standard Kohn-Sham calculation
(possibly after localizing them - see LOCALIZE/NOLOCALIZE). Except in a few special cases, such as
atoms or the hydrogen molecule, post-SCF SIC corrections are not reliable (see S. Patchkovskii and T.
Ziegler, JCP 116, 7806, Ref.[48]).

SKIPCYCLES every {start}

Requests that v(KLI) is recomputed after a given number of SCF iterations. By default, v(KLI) is
recomputed on each SCF iteration (every=1). Because v(KLI) evaluation is expensive, using 2 or 3 here
may lead to a reduction in computation time. If an optional second parameter is included, v(KLI) is
omitted during the first few SCF cycles. This may reduce calculation time if starting guess is not very
accurate. Because SIC energy expression is defined as a functional of orbitals, v(KLI) is always omitted
in the first SCF cycle, regardless of the "start" setting.

STABLE frac

Specifies mixing coefficient for v(KLI) contribution to exchange-correlation potential. On each iteration
where v(KLI) is recomputed, the it is updated as: v(n) = frac*v(KLI) + (1-frac)*v(n-1). The default for frac
is 1.0 (i.e. no mixing). Supplying a value smaller than 1 may improve SCF convergence.

NHOMO Nalpha {Nbeta}

Chooses treatment of the free parameter in the KLI approximation (see S. Patchkovskii, J. Autschbach,
and T. Ziegler, JCP 115, 26, Ref.[47]). The default is to choose the free parameter such that per-orbital
potential shifts are non-negative. If this key is supplied, the per-orbital shifts of Nalpha/Nbeta highest
occupied orbitals will be set to zero instead. Both choices are usually identical for converged solutions,
but the default exhibits much better convergence behavior.

CORE cor

cor can be one of:
IGNORE: Ignores contributions of frozen core orbitals to SIC energy and potential. Only valence orbitals
will appear in KLI potential mixing expression (eq. 14 of [49]).
RHO: Includes core density in the total density of eq.14, but ignore core orbitals otherwise.
POTENTIAL: Includes SIC potential of the core orbitals in v(KLI), but sets corresponding potential shifts
to zero.
FULL: Full treatment of the frozen core - frozen core orbitals participate in KLI potential equilibration (eq.
16) on the equal footing with the valence orbitals. This is the default.
For POTENTIAL and FULL, tesseral harmonics are used for the angular part of the core orbitals.

DENSITY mode

This keyword controls evaluation of per-orbital densities in a SIC calculation. mode can be one of:
EXACT: Evaluate densities from molecular orbitals. This is the default.
FIT: Evaluate densities from auxiliary fits. Using this option is not recommended - it is both slower, and
less accurate than EXACT.

SHIPV filename

98

Write v(KLI) contribution to XC potential on grid, to an external file. When using this option, it is a good
idea to write out the numerical integration grid as well, by adding "SAVE TAPE10" to the ADF input file.

READV filename

v(KLI) is taken from an external file, and add it to the XC potential. Current integration grid must match
the grid used to calculate the potential. The only certain way to guarantee this is to save the integration
grid on TAPE10, and pass it around, together with the v(KLI) potential. Specifying this keyword will
deactivate add other processing in SIC code, including calculation of Perdew-Zunger energies and SIC
potential updates.

READMOS filename {FREEZE}

For the first evaluation of the v(KLI) potential, loads localized orbitals from the specified file, instead of
localizing canonical Kohn-Sham MOs. Unless FREEZE is specified, subsequent SCF cycles will use
localized canonical MOs.

WRITEMOS filename

Stores localized orbitals to an external file. Reading these orbitals back with READMOS provides a
rudimentary restart capability.

NAILCANONICALS {eps}

Stabilize orientation of degenerate canonical MOs prior to localization. The default is not to stabilize.
eps is the degeneracy criterion in eV (0.001 by default). Supplying this key may improve convergence
when high local symmetry is present in a molecule.

NPFITS n

Number of fit coefficient sets to be computed in a single pass. Large values will improve performance,
but need more memory. The default of 15 is usually adequate.

General remarks

• The phrase non-local in the discussion of density functionals does not mean that non-local
potentials are involved. The potentials are perfectly local, but when you go beyond LDA and
include gradient corrections, the value of the density functional potential in a point r is evaluated
not only from the local value of the charge density, but also from the gradient of the charge
density.

• The Stoll formula is considered to be a correlation correction to the Local Density Approximation. It
is conceptually not correct to use the Stoll correction and apply non-local gradient (GGA)
corrections to the correlation. It is the user's responsibility, in general and also here, to avoid using
options that are not solidly justified theoretically.

• It is questionable to apply gradient corrections to the correlation, while not doing so at the same
time for the exchange. Therefore the program will check this and stop with an error message. This
check can be overruled with the key ALLOW.

• The issue of the 'best' density functional is a subject of extensive and widespread research. It is
generally recognized that applying gradient corrections to the simplest Local Density
Approximation usually gives better results for comparison with experimental data, especially as
regards bond energies and the spectra computed from one-electron energies.

• The incorporation of gradient corrections during the SCF significantly increases the computing
effort. In this respect it makes no difference which specific GGA formula is applied. The Energy
(PostSCF) feature is therefore an alternative worthwhile considering: it saves a lot of time and the
effects of this approximation are often small as regards the SCF solution, so the non-self-
consistent aspect hardly shows up in the computed bond energy. In Geometry Optimizations,
however, the Post-SCF option implies that the energy gradients are computed from the LDA

99

energy expression and hence the resulting optimized geometry corresponds to the LDA functional.
In such a case, including the GGA term may make a substantial difference to the computed
equilibrium geometry.

Dispersion corrected functionals

DFT-D3 functionals

In ADF2012 Stefan Grimme's latest dispersion correction is implemented. Grimme and his coworkers at the
Universität Münster outlined the parameterization of this new correction, dubbed DFT-D3, in Ref. [292]. A
slightly improved version with a more moderate BJ damping function appeared later, and was called DFTB-
D3-BJ. [436] Here they list the advantages of the new method as the following:

• It is less empirical, i.e., the most important parameters are computed from first principles by
standard Kohn-Sham (KS)-(TD)DFT.

• The approach is asymptotically correct with all DFs for finite systems (molecules) or nonmetallic
infinite systems. It gives the almost exact dispersion energy for a gas of weakly interacting neutral
atoms and smoothly interpolates to molecular (bulk) regions.

• It provides a consistent description of all chemically relevant elements of the periodic system
(nuclear charge Z = 1-94).

• Atom pair-specific dispersion coefficients and cutoff radii are explicitly computed.
• Coordination number (geometry) dependent dispersion coefficients are used that do not rely on

atom connectivity information (differentiable energy expression).
• It provides similar or better accuracy for "light" molecules and a strongly improved description of

metallic and "heavier" systems.

DFT-D3-BJ is invoked with the XC block, for example

XC
GGA BLYP
Dispersion Grimme3 BJDAMP

END

Parametrizations are available for: B3LYP, TPSS, BP86, BLYP, revPBE, PBE, PBEsol, and RPBE (not for
BJ damping), and will be automatically set if one of these functionals is used. Otherwise PBE parameters
will be used. The parameters can be set manually, see the XC key block.

DFT-D functionals

An implementation for dispersion corrections based, called DFT-D is available starting from ADF2008. Like
DFT-D3 this implementation is easy to use and is also supported by the GUI.

This DFT-D implementation is based on the paper by Grimme [226] and is extremely easy to use. The
correction is switched on by specifying DISPERSION, possibly with parameters, in the XC input block. See
description of the XC input block for details about the DISPERSION keyword.

Energies calculated Post-SCF using different DFT-D or GGA-D functionals are also present in table printed
when METAGGA keyword is specified. These include: BLYP-D, PBE-D, BP86-D, TPSS-D, B3LYP-D, and
B97-D. NOTE: this option does not require specifying a DISPERSION keyword in the XC block and thus
there is no correction added to the energy gradient in this case. Please also note that although the
original B97 functional includes HF exchange (and is thus a hybrid functional), the B97-D is a pure GGA.

100

B3LYP-D is, however, a hybrid functional. The following functional-dependent global scaling factors s6 are
used: 1.2 (BLYP-D), 0.75 (PBE-D), 1.05 (BP86-D), 1.0 (TPSS-D), 1.05 (B3LYP-D), and 1.25 (B97-D). These
are fixed and cannot be changed.

Regarding performance of different functionals, testing has shown that BLYP-D gives good results for both
energies and gradients involving VdW interactions. Post-SCF energy-only calculations at fixed geometries
showed that also B97-D gives good binding energies compared to high-level reference data. Thorough
comparison of different DFT-D functionals can be found in ref. [227]

Note: The original paper by Grimme included parameters for elements H throughout Xe. In ADF2009.01
values for dispersion parameters for DFT-D functionals for heavier elements (Cs-Rn) have been added.
These new values have not been tested extensively. Thus, in this implementation, no dispersion correction
is added for interactions involving atoms heavier than Radon.

DFT-D is invoked with the XC block, for example

XC
GGA BLYP
Dispersion

END

MM dispersion (old implementation)

The idea to get an accurate description of van der Waals complexes by density functional theory by
including empirical corrections by Grimme [211] was implemented in ADF by J.M. Ducere from the group of
Prof. L. Cavallo [215]. Please contact this group for more details on this functionality.

This is an expert option. As input one needs certain atomic parameters and (for a given basis set and
functional optimized) parameters for a damping function. At the moment only for a few atoms atomic
parameters can be found in the file $ADFHOME/atomicdata/MMDispersion/disp-param. Only for the PBE
functional with a DZP or TZP basis set parameters are optimized for the damping function. This optimization
was done with respect to MP2 theoretical data. The parameters from Grimme's paper can also be used.

MMDispersion
{FILE_NAME filename}
{DAMPING damping}
{DAMP_PARAM damp_param {a b c}}
{COMBI combi}
{DISPALL}
{NODEFAULT}
{ATOMTYPE

attype c6 pol rad
SUBEND}

End

FILE_NAME filename

Optional. The filename (full path) from which are read the C6 parameters, polarizabilities and radii. The
file is expected to have the following structure:

attype c6 pol rad

The attype must exactly match the atom-type name present in the ATOMS key-block (case-sensitive),
for being recognized; c6, pol, and rad are in atomic units (hartree and bohr). A "---" sequence indicates
the end of the read part. Even if the sqrt option is chosen for COMBI, a polarizability is needed. If the

101

environment variable ADFRESOURCES ($ADFHOME/atomicdata) is set, the default value for filename
is $ADFRESOURCES/MMDispersion/disp-param.

DAMPING damping

Optional. Defines the kind of damping function to be used, damping can be one of:
sigm: sigmoid (default)
fermi: Fermi-like function (Grimme [211])

DAMP_PARAM damp_param {a b c}

Optional. Defines which parameters of the damping function should be used, damp_param can be one
of:
tz: parameters optimized for PBE/TZP (default)
dz: parameters optimized for PBE/DZP
grimme: parameters from Grimme paper
cust a b c: parameters are a, b and c

COMBI combi

Optional. Defines the kind of combination rule to be used, combi can be one of:
s-k: Slater-Kirkwood combination rule (default)[214]
sqrt: square-root combination rule

DISPALL

Optional. If present, all atom-pairs are considered, else, only contributions from different fragments
(different indexes, see below) are considered. DISPALL is NOT the default.

NODEFAULT

Optional. By default, if there is no match for a given atom-type, ADF looks in the parameter file specified
in FILENAME for atomic default parameters (Grimme's ones). NODEFAULT switches off this check.
Example: suppose the atom-type is H.text. By default if there is no match for H.text, but there is a match
for H, parameters for H will be used. If NODEFAULT is set, and there is no match for H.text an error
message is printed and ADF will stop.

ATOMTYPE

Optional. For input supplied c6, polarizability and radius paramaters of atom-types; attype must exactly
match an atom-type name present in the ATOMS block for being recognized; c6, pol and rad are in a.u.

Atom-types and fragment-indexes are specified in the ATOMS keyblock:

ATOMS
atom-type x y z FD=n
...

END

FD is the index of the fragment. FD=0 switch off the calculation for the atom. If DISPALL is present in the
input, non-zero values of FD only have an analytical role. If DISPALL is not present, the contributions are
calculated between atoms of different non-zero values of FD. By default, FD=1 for all atoms.

dDsC: density dependent dispersion correction

The DISPERSION dDsC key invokes the density dependent dispersion correction [316], which has been
parametrized for the functionals BLYP, PBE, BP, revPBE, B3LYP, PBE0 and BHANDHLYP.

102

XC
GGA BLYP
Dispersion dDsC

END

DFT-ulg

The DISPERSION UFF key invokes the universal correction of density functional theory to include London
dispersion (DFT-ulg) [366], which has been parametrized for all elements up to Lr (Z=103), and for the
functional PBE, PW91, and B3LYP. For other functionals the PBE pareameters will be used. Example:

XC
GGA PBE
Dispersion UFF

END

DFT-MBD functionals

The DISPERSION MBD key invokes the MBD@rsSCS method [377], which is designed to accurately
describe long-range correlation (and thus dispersion) in finite-gap systems, including at the same time a
description of the short-range interactions from the underlying DFT computation of the electronic structure.
The MBD (many-body dispersion) method [376] obtains an accurate description of van der Waals (vdW)
interactions that includes both screening effects and treatment of the many-body vdW energy to infinite
order. The revised MBD@rsSCS method [377] employs a range-separation (rs) of the self-consistent
screening (SCS) of polarizabilities and the calculation of the long-range correlation energy. It has been
parametrized for the elements H-Ba, Hf-Rn, and for the functional PBE and PBE0. Note that the
MBD@rsSCS method depends on Hirshfeld charges. In calculating forces the dependence of the Hirshfeld
charges on the actual geometry is neglected. The MBD method is implemented in case the BeckeGrid is
used for the numerical integration. Example for PBE MBD@rsSCS:

XC
GGA PBE
Dispersion MBD

END

One can use user defined values with:

XC
Dispersion MBD {RSSCS|TS} {BETA=beta}

END

MBD {RSSCS|TS} {BETA=beta}

The default method for MBD is MBD@rsSCS. Optionally one can use MBD@TS or change the used
parameter β with setting beta.

Relativistic effects

RELATIVISTIC {level} {formalism} {potential}

Level

103

May be None (this suppresses the key, and is equivalent to not using the key at all), Scalar (default:
scalar relativistic effects), or SpinOrbit (using double group symmetry).

Formalism

Pauli (default) or ZORA (ZORA is recommended!)

Potential

SAPA (default) or Full. The Full option is obsolete. It is here mainly for historical reasons. The SAPA
method is described in Ref.[50] for the BAND program. The same potential is used in the ADF program.
One may think that the Full option gives extra accuracy. However, this is not the case, it only leads to
extra CPU time and extra DISK space usage.

The key RELATIVISTIC instructs ADF to take relativistic effects into account. By default (omission of the
key) this is suppressed. Recommendation use: Relativistic Scalar ZORA or Relativistic SpinOrbit ZORA.

Pauli

Specification of the Pauli formalism means that the first order relativistic corrections (the Pauli Hamiltonian)
will be used [51-60]. In a scalar relativistic run ADF employs the single point group symmetry and only the
so-called scalar relativistic corrections, Darwin and Mass-Velocity. The treatment is not strictly first-order, but
is quasi-relativistic, in the sense that the first-order scalar relativistic Pauli Hamiltonian is diagonalized in the
space of the non-relativistic solutions, i.e. in the non-relativistic basis set.

The quasi-relativistic approach improves results considerably over a first-order treatment. There are,
however, theoretical deficiencies due to the singular behavior of the Pauli Hamiltonian at the nucleus. This
would become manifest in a complete basis set but results are reasonable with the normally employed basis
sets. However, this aspect implies that it is not recommended to apply this approach with an all-electron
basis set for the heavy atoms, and for very heavy elements even a frozen core basis set often fails to give
acceptable results. The problems with the quasi relativistic approach of the Pauli Hamiltonian are discussed
for example in Ref.[61].

ZORA

The ZORA approach gives generally better results than the Pauli formalism. For all-electron calculations,
and in fact also for calculations on very heavy elements (Actinides), the Pauli method is absolutely
unreliable. Therefore, with its formal introduction in ADF1999, the ZORA method is the recommended
approach for relativistic calculations with ADF.

ZORA refers to the Zero Order Regular Approximation [61-65]. This formalism requires special basis sets,
primarily to include much steeper core-like functions; applying the ZORA method with other, not-adapted
basis sets, gives unreliable results. The ZORA basis sets can be found in the ADF database, in
subdirectories under the $ADFHOME/atomicdata/ZORA directory.

The ZORA formalism can also be used in Geometry Optimizations. However, there is a slight mismatch
between the energy expression and the potential in the ZORA approach, which has the effect that the
geometry where the gradients are zero does not exactly coincide with the point of lowest energy. The
differences are very small, but not completely negligible, order of magnitude: less than 0.001 Angstrom. In
ADF2010 this difference is reduced to order 0.0001 Angstrom. In ADF2010 also the calculation of analytical
frequencies has improved in case of QZ4P basis sets and heavy elements, like uranium.

104

Spin-Orbit coupling

The Spin-Orbit option uses double-group symmetry. The symmetry-adapted orbitals are labeled by the
quantum number J rather than L and any references in input to subspecies, such as a specification of
occupation numbers, must refer to the double group labels.

Create runs must not use the Spin-Orbit formalism. The SFO analysis of Molecular Orbitals for a Spin-Orbit
calculation is only implemented in the case of a scalar relativistic fragment file, which is the whole molecule.
Starting from the ADF2007.01 version gradient calculations for the Spin Orbit formalism have been
implemented. Therefore, you may now calculate harmonic frequencies (numerical) and do geometry
optimizations including spin-orbit coupling.

In a Spin-Orbit run each level can allocate 2 electrons (times the dimension of the irreducible representation)
as in a normal restricted calculation. However, contrary to the normal case these two electrons are not
directly associated with spin-α and spin-β, but rather with the more general Kramer's symmetry. Using the
unrestricted feature in order to assign different numbers of electrons to a and b spin respectively cannot be
applied as such. However, one can use the unrestricted option in combination with the collinear or
noncollinear approximation. In that case one should use symmetry NOSYM, and each level can allocate 1
electron.

Relativistic core potentials

In all relativistic calculations - scalar as well as spin-orbit - the relativistic atomic core densities and the
relativistic atomic potentials must be made available to ADF on a file specified with the key
COREPOTENTIALS. Starting from the ADF2006.01 release this is necessary only in the 'create' run of the
atoms. In the molecular calculation this key is not required anymore. If supplied then the file must contain
data for all atom types in the molecule, even for those atoms where relativistic aspects are expected to be
negligible or that may not have a frozen core at all (such as Hydrogen). Excepted are any Ghost atoms (for
instance for a BSSE calculation): these can not have any core potentials. This is tested by the program,
internally, by looking at the nuclear charge and at the number of electrons belonging to an atom: if both
numbers are zero, no (relativistic or other) core potential is allowed. Also the potential used in the ZORA
kinetic energy operator in the SAPA (sum of neutral atomic potential approximation) method should be
present on this file (which will be the case if the program DIRAC is used to generate this file).

Relativistic potentials can and should be generated with the auxiliary program dirac, see the next section,
and the examples.

As of ADF2003, the recommended way to generate atomic fragments and relativistic potentials is by using
the BASIS keyword.

Dirac program: Relativistic Potentials

The auxiliary program DIRAC, which is installed together with ADF, serves to compute relativistic frozen
core potentials (and densities), necessary to apply the (scalar) relativistic option in ADF. The database
atomicdata has a subdirectory Dirac, which contains input files for DIRAC for all atoms of the periodic table
of elements. The names of the input files indicate the frozen core level: Ag.3d for instance is the input file for
a calculation on a Silver atom with a frozen core up to and including the 3d shell (i.e.: 1s, 2s, 2p, 3s, 3p, and
3d). The frozen core level used in the DIRAC calculation defines the core data computed and should
therefore match the frozen core level in the ADF Create run for the atom that it will be used for.

A DIRAC run with the inputs provided in the database involves a fully relativistic calculation on the atom
(spin-orbit coupling, double group symmetries). It generates a file TAPE12 with the corresponding core
potential and density (a table of values for a sequence of radial distance values). Other files produced by

105

DIRAC should be removed after the DIRAC run; they are needed for other applications of the program but
play no role here.

If you run DIRAC while a file TAPE12 already exists the computed core data will be written at the end of it,
after the existing data. The program will assume, however, that the existing data on the file are also core-
data from DIRAC runs, and may abort otherwise.

Starting from ADF2006.01 it is not necessary anymore to make one big TAPE12 which contains data for all
atoms involved in the molecular calculation. Instead only in the ADF Create run for each atom one needs a
TAPE12 which contains data for the atom that is created. The corresponding core data is written to the
TAPE21 of this atomic fragment. In the molecular ADF run one then should not include the CorePotentials
key, such that ADF will read core data on the TAPE21's of the atomic fragments. One can still use the
CorePotentials key, but then one should proceed as in previous releases.

In previous releases (ADF2005 and older), if a CorePotentials file was needed for an adf calculation with the
(scalar) relativistic option, the simplest approach was to subsequently run DIRAC for each of the involved
atoms types. This builds up the TAPE12 file for this particular molecule. Then, specify in the ADF input
which sections correspond to the distinct atom types. Alternatively, which we do not recommend, if you
frequently perform relativistic ADF runs, with many different types of atoms, you might, once and for all,
construct one big TAPE12 file, containing the core potentials of all atoms that you may ever need, and use
that file again and again. Of course you need then to remember which section numbers correspond to which
atoms.

Implied options

The DIRAC calculations imply the local Density Functional in its simple X-alpha approximation without any
gradient corrections. Not the scalar relativistic but the fully relativistic Hamiltonian is used, including spin-
orbit coupling. In ADF you may use the scalar relativistic Hamiltonian and most users will employ a more
sophisticated lda than X-alpha, such as the default vwn (Vosko, Wilk, Nusair) formulas, and may in addition
routinely apply gradient corrections. The core potential may not exactly match the Fock operator applied in
the molecular calculation. The effect is very small and one can neglect the discrepancy.

Input

The ascii input files for DIRAC, as available in the database directory $ADFHOME/atomicdata/Dirac (point
nucleus) and $ADFHOME/atomicdata/Dirac (finite nucleus), have a structure as described below. With this
information you should be able to construct alternative input files, with other frozen cores for instance.

1 Title (60 characters at most). Plays no role

2 Ngrid, Nshell, rmin, rmax, Z, Xion, Anuc
Ngrid=number of radial grid points, in which the core potentials are computed.
Nshell=number of atomic orbital shells
rmin, rmax=minimum and maximum radial grid values
Z=nuclear charge
Xion=net charge of the 'atom'
Anuc=atomic weight

3 Pinit, Pfinal, eps, del, delrv
Pinit, Pfinal= initial and final density iteration averaging factors. Each iteration cycle changes the actual
averaging factor by taking the average of the previous and the final one, starting with the 'initial' one.
eps=Exp(-sqrt(eps)) is set to zero, so eps determines the exponential underflow control.
del=absolute convergence criterion for orbital eigenenergies.
delrv=convergence criterion on the potential (multiplied by the radial distance r).

4 Idirc, Nmax, Ndebu, Nprin, Ipun, Ircor, Iwcor
Idirc=zero for non-relativistic, otherwise one.
Nmax=maximum number of iterations allowed to reach convergence.

106

Ndebu=non-zero for additional output (for debugging purposes mainly)
Nprin=print parameter. Use 2 or larger to get the orbitals printed.
Ipun=punched output is produced if Ipun is non-zero. (out-of-date)
Ircor=number of core orbitals from the fully relativistic run, to be kept frozen in the subsequent (if any) first-
order perturbation calculation.
Iwcor=number of core orbitals used to construct the core density and core potential, that are output on
TAPE12. So, here you specify the relativistic core.

5 Xalph, Xlatt, Rnuc
Xalph= Exchange parameter in the Xalpha formalism.
Xlatt=Coulomb tail parameter
Rnuc=size of nuclear radius, in bohr. If set to 1.0 or larger, it is recomputed as 0.0000208*Anuc**(1/3)

6 For each orbital shell:
N, L, J, E, Z, D
N, L, J = The usual orbital quantum numbers. J is used only for relativistic runs.
E = Initial estimate of orbital energy, in atomic units.
Z = Number of electrons on the shell
D = Initial estimate of the error in the orbital energy

7 Icorp, Npcl, Demp, Peps
Icorp = If 1 (one): Do a first order perturbation calculation after the fully relativistic run. This option plays no
role in the current application for ADF.
Npcl = Maximum number of cycles in the perturbation calculation.
Demp = Damping factor in the perturbation iterations
Peps = Convergence criterion in the perturbation iterations.

Solvents and other environments

COSMO: Conductor like Screening Model

You can study chemistry in solution, as contrasted to the gas phase, with the implementation in ADF [66] of
the Conductor like Screening Model (COSMO) of solvation [67-69]. The energy derivatives can also be
calculated, so geometry optimization, harmonic frequencies, et cetera are available within this model.

The COSMO model is a dielectric model in which the solute molecule is embedded in a molecule-shaped
cavity surrounded by a dielectric medium with given dielectric constant ε. Energy-related terms are
computed for a conductor first, then scaled by the function

f(ε) = (ε-1)/(ε+x) (2.1.1)

The empirical scaling factor x is specified in the input data block for the SOLVATION key. The block key
SOLVATION turns the solvation calculation on. In most cases default values are available for the involved
parameters.

It is also possible to include a linear parameterization of non-electrostatic terms as a function of surface
area. To include such term can be specified in the input data block for the SOLVATION key. Starting from
ADF2012 the default is to include only the part of this term that is proportional to the surface area (default
CAV0=0.0, CAV1=0.0067639):

Enon-elst = f(ε) × (CAV0 + CAV1×area) (2.1.2)

The COSMO routine has never been tested with non-gas phase fragments. It is designed to correct the
"total" energy (wrt fragments gas phase) for solvation. The COSMO energy of the fragments is never taken

107

into account, not even for the atoms, and no information is passed in regarding the COSMO energy when
the fragments are defined.

If a calculations was done on a fragment, then the wavefunction obtained would be optimal for the fragment
in solution, but not optimal for gas phase. The energies with the gas phase Hamiltonian would be higher,
and the apparent solvation contribution to bonding would also be higher. The net point is that normally the
COSMO procedure reports the energy of Esolv(AB), but to get the solvation energy, you need to subtract
the E(AB, solv) from E(AB,gas) because the wavefunction changes (unless you are doing it post-SCF.) For
this you need to have the same reference fragments in each case A(g) and B(g).

SOLVATION
{SURF Esurf {NOKEEP}}
{SOLV {Name=solvent} {Eps=78.4} {Del=1.4} {Rad=1.4}

{Neql=1.9}{Emp=0.0}{Cav0=0.0}{Cav1=0.0067639} }
{DIV {Ndiv=3} {NFdiv=1} {Min=0.5} {OFAC=0.8}

{leb1=23} {leb2=29}{rleb=1.5} }
{NOASS}
{RADII
name1=value1
name2=value2
...

subend }
{CHARGED {Method=meth} {Conv=1e-8} {Omega=1.0} (Iter=1000} {Corr} }
{C-MAT How {SCF} tol=1e-10 }
{DISC {SC=0.01} {LEG=4} {TOL=0.1} }
{SCF {When} {How}
{NOCSMRSP}
{LPRT}

End

Presence of the SOLVATION key block triggers the solvent calculation and does not require additional data.
With subkeys you can customize various aspects of the model, for instance to specify the type of solute.
None of the subkeys is obligatory. Follows a description of the subkeys

SURF Esurf {NOKEEP}

Esurf must be Wsurf, Asurf, Esurf, Klamt, or Delley. Five different cavity types are available. In
ADF2010 the numerical stability of the COSMO surface has been improved, by merging close lying
COSMO surface points, and removing COSMO surface points with a small surface area. The Wsurf,
Asurf, and Esurf surfaces are constructed with the GEPOL93 algorithm [70]

Wsurf

Wsurf triggers the Van der Waals surface (VdW), which consists of the union of all atomic spheres.
Not recommended to be used.

Asurf

Asurf gives the Solvent-Accessible-Surface (SAS). This is similar to VdW but consists of the path
traced by the center of a spherical solvent molecule rolling about the VdW surface or, equivalently,
a VdW surface created by atomic spheres to which the solvent radius has been added. These two
surface types contain cusps at the intersection of spheres. Not recommended to be used.

Esurf

Esurf (the default) gives the Solvent-Excluding-Surface (SES), which consists of the path traced by
the surface of a spherical solvent molecule rolling about the VdW surface. Primarily, this consists of

108

the VdW surface but in the regions where the spheres would intersect, the concave part of the
solvent sphere replaces the cusp. This SES surface is the default in ADF.

Klamt

The fourth surface option is Klamt as described in [67]. It excludes the cusp regions also. Note that
this surface might give an incomplete COSMO surface in case of more complicated molecules. Not
recommended to be used.

Delley

The fifth surface is the so called Delley surface, see also Ref. [245]. This Delley type of cavity
construction is recommended to be used in COSMO calculations, which results are used as input
for COSMO-RS calculation, see the corresponding manual for COSMO-RS.

NOKEEP

The optional parameter NOKEEP controls surface creation during calculation of frequencies by
numerical differentiation. By default, the surface is constructed only once at the central geometry
and is used for the rest of the calculation. If the NOKEEP is specified then ADF will construct a new
surface at each displaced geometry. The NOKEEP option was the default in ADF2005 and earlier
versions but it was found to cause problems. Since ADF2006 one needs to specify SURF NOKEEP
to get the same behavior.

DIV

The actual construction of the surface involves a few technical parameters controlled with the subkey
DIV

Ndiv, NFdiv

Ndiv controls how fine the spheres that in fact describe the surface are partitioned in small surface
triangles, each containing one point charge to represent the polarization of the cavity surface.
Default division level for triangles Ndiv=3. Default final dision level for triangles NFdiv=1
(NFdiv≤Ndiv). Not used in the Delley surface.

Min

Min specifies the size, in angstrom, of the smallest sphere that may be constructed by the SES
surface. For VdW and SAS surfaces it has no meaning. Default Min=0.5. Not used in the Delley
surface.

Ofac

Ofac is a maximum allowed overlap of new created spheres, in the construction procedure. Default
Ofac=0.8. Not used in the Delley surface.

leb1, leb2, rleb

Only used in the Delley surface. For the Delley type of construction one needs to set the variables
leb1 (default value 23), leb2 (default value 29), and rleb (default value 1.5 Angstrom) to set the
number of surface points. If the cavity radius of an atom is lower than rleb use leb1, otherwise
use leb2. These values can be changed: using a higher value for leb1 and leb2 gives more
surface points (maximal value leb1, leb2 is 29). A value of 23 means 194 surface points in case
of a single atom, and 29 means 302 surface points in case of a single atom Typically one could use
leb1 for the surface point of H, and leb2 for the surface points of other elements.

NOASS

109

http://www.scm.com/Doc/Doc2014/COSMO-RS/page1.html

By default all new spheres that are created in the surface-construction are assigned to atoms, for the
purpose of gradient computations (geometry optimization). Specifying the noass subkey turns this off. It
has no argument.

SOLV

Solvent details.

Eps, Rad

Eps specifies the dielectric constant (the default relates to water). In ADF an infinite value for Eps is
chosen if Eps is specified to be lower than 1.0. Rad specifies the radius of the (rigid sphere) solvent
molecules, in angstrom. Instead of specifying Eps and Rad one can specify a solvent name or
formula after 'name='. The following table lists names and formulas that are recognized with the
corresponding values for Eps and Rad. The Rad in this table are calculated from the density, the
molar mass, and a spherical approximation for the solvent. The names and formulas are case-
insensitive.

Name Formula Eps Rad
AceticAcid CH3COOH 6.19 2.83
Acetone CH3COCH3 20.7 3.08
Acetonitrile CH3CN 37.5 2.76
Ammonia NH3 16.9 2.24
Aniline C6H5NH2 6.8 3.31
Benzene C6H6 2.3 3.28
BenzylAlcohol C6H5CH2OH 13.1 3.45
Bromoform CHBr3 4.3 3.26
Butanol C4H9OH 17.5 3.31
isoButanol (CH3)2CHCH2OH 17.9 3.33
tertButanol (CH3)3COH 12.4 3.35
CarbonDisulfide CS2 2.6 2.88
CarbonTetrachloride CCl4 2.2 3.37
Chloroform CHCl3 4.8 3.17
Cyclohexane C6H12 2 3.5
Cyclohexanone C6H10O 15 3.46
Dichlorobenzene C6H4Cl2 9.8 3.54
DiethylEther (CH3CH2)2O 4.34 3.46
Dioxane C4H8O2 2.2 3.24
DMFA (CH3)2NCHO 37 3.13
DMSO (CH3)2SO 46.7 3.04
Ethanol CH3CH2OH 24.55 2.85
EthylAcetate CH3COOCH2CH3 6.02 3.39
Dichloroethane ClCH2CH2Cl 10.66 3.15
EthyleneGlycol HOCH2CH2OH 37.7 2.81
Formamide HCONH2 109.5 2.51
FormicAcid HCOOH 58.5 2.47
Glycerol C3H8O3 42.5 3.07
HexamethylPhosphoramide C6H18N3OP 43.3 4.1
Hexane C6H14 1.88 3.74
Hydrazine N2H4 51.7 2.33
Methanol CH3OH 32.6 2.53
MethylEthylKetone CH3CH2COCH3 18.5 3.3
Dichloromethane CH2Cl2 8.9 2.94

110

Methylformamide HCONHCH3 182.4 2.86
Methypyrrolidinone C5H9NO 33 3.36
Nitrobenzene C6H5NO2 34.8 3.44
Nitrogen N2 1.45 2.36
Nitromethane CH3NO2 35.87 2.77
PhosphorylChloride POCl3 13.9 3.33
IsoPropanol (CH3)2CHOH 19.9 3.12
Pyridine C5H5N 12.4 3.18
Sulfolane C4H8SO2 43.3 3.35
Tetrahydrofuran C4H8O 7.58 3.18
Toluene C6H5CH3 2.38 3.48
Triethylamine (CH3CH2)3N 2.44 3.81
TrifluoroaceticAcid CF3COOH 42.1 3.12
Water H2O 78.39 1.93

Del

Del is the value of Klamt's delta_sol parameter, only relevant in case of Klamt surface.

Neql

If Neql=εNEQL is included a nonequilibrium solvation is used, i.e. that the dielectric constant εNEQL
used in RESPONSE is different from the ground state dielectric constant ε. Only relevant in case of
TDDFT calculations. Default εNEQL = ε. The reason for using two different dielectric constants is
that the electronic transition can so fast that only the electronic component of the solvent dielectric
can respond, i.e., one should use the optical part of the dielectric constant. This is typically referred
to as non-equilibrium solvation. The optical dielectric constant can be obtaining from the (frequency
dependent) refractive index n of the solvent as: εneql = n2.

Emp

Emp addresses the empirical scaling factor x in the formula 2.1.1 above.

Cav0, Cav1

Other options specify a linear parameterization of non-electrostatic terms as a function of surface
area, see the formula 2.1.2 above. Possible values for CAV0 and CAV1 are CAV0 = 1.321 and
CAV1 = 0.0067639, see Ref. [299]), which were the default values for CAV0 and CAV1 in
ADF2009. In ADF2010 the default values for CAV0 and CAV1 are CAV0 = 0.0 and CAV1 = 0.0.
However, starting from ADF2012 the default values for CAV0 and CAV1 are CAV0 = 0.0 and CAV1
= 0.0067639, If CAV0 is not zero, Esolv(AB) is not the same as Esolv(A) + Esolv(B) if A and B are
far apart. This is the reason why CAV0 is set to zero, by default. By default CAV1 is not set to zero,
thus by default there is a solvation energy term that does depend on the size of the cavity (surface
area).

COSMO Radii

In order to construct the surface you have to specify the atomic ('Van der Waals') radii. There are three
ways of doing this. In the first method you append 'R=value' to the atomic coordinates record, in the
ATOMS key block. This would look like, for instance

C 1 2 3 CC CCO CCOH f=C.dz R=2.0

It assigns a radius of 2.0 to the Carbon atom.
In the second method you apply the same format, but specify a symbol (identifier) rather than a value

111

C 1 2 3 CC CCO CCOH f=C.dz R=C-sp3

The identifiers must be defined in the (optional) RADII subkey block in the Solvation data block (see
next).
In the third method, you don't modify the Atoms block at all. In this case, the RADII subkey must be
used and the 'identifiers' in it must be exactly the atom type names in the Atoms block.

RADII

This subkey is block type. Its data block (if the subkey is used) must terminate with a record subend. In
the Radii data block you give a list of identifiers and values

SOLVATION
...

Radii
name1=value1
name2=value2
...

Subend
...

End

The values are the radii of the atomic spheres, in the same units of length as used in the Atoms block
(angstrom or bohr). The names specify to which atoms these values apply. As discussed for the Solv
subkey this depends on the Atoms block. If in the specification of atomic coordinates you have used the
'R=' construct to assign radii, with identifiers rather than values for the R-value, these identifiers must be
defined in the Radii sub block. If no 'R=' construct was applied in the Atoms block, you must use the
atom type names as they occurred in the Atoms data block. Referring to the example given in the Solv
subkey discussion, you might have

...
Radii
C-sp3=2.0
...

Subend
...

A simple atom type reference might look like

...
Radii
C=2.0
...

Subend
...

When no radius specified a default value is used. The default value for an atom is the corresponding
Van der Waals radius from the MM3 method by Allinger (Ref. [290]) divided by 1.2.

This concludes the discussion of the Radii subkey.

CHARGED

This addresses the determination of the (point) charges that model the cavity surface polarization. In
COSMO calculations you compute the surface point charges q by solving the equation Aq=-f, where f is
the molecular potential at the location of the surface charges q and A is the self-interaction matrix of the
charges. The number of charges can be substantial and the matrix A hence very large. A direct method,
i.e. inversion of A, may be very cumbersome or even impossible due to memory limitations, in which

112

case you have to resort to an iterative method.
Meth specifies the equation-solving algorithm. Meth=INVER requests direct inversion. Meth=GAUS
calls for the Gauss-Seidel iterative method. Meth=Jacobi activates another standard iterative procedure.
The latter two methods require a positive-definite matrix (which may fail to be the case in an actual
calculation) and can be used with a relaxation technique, controlled by the relaxation parameter
OMEGA (1.0=no relaxation).
Meth=CONJ (default) uses the preconditioned biconjugate gradient method. This is guaranteed to
converge and does not require huge amounts of memory.
CONV and ITER are the convergence criterion and the maximum number of iterations for the iterative
methods.

Some of the molecular electronic charge distribution may be located outside the cavity. This affects the
assumptions underlying the COSMO equations. Specifying the CORR option to the CHARGED subkey
constrains the computed solvent surface charges to add up to the negative of the molecular charge.

C-MATRIX

- How: For the potential f we need the Coulomb interaction between the charges q and the molecular
electronic density (and nuclei). Three methods are available, specified by the first option to the C-Matrix
subkey.
a) EXACT: compute the straightforward Coulomb potential due to the charge q in each point of the
molecular numerical integration grid and integrate against the electronic charge density. This is, in
principle, exact but may have inaccuracies when the numerical integration points are very close to the
positions of a charge q. To remedy this, the point charges q can be 'smeared out' and represented by a
disc, see the next subkey DISC.
b) FIT: same as EXACT, but the q-potentials are now integrated not against the exact electronic charge
density, but against the (much cheaper-to-compute) fitted density. The same DISC considerations
apply.
c) POT: evaluate the molecular potential at the position of the charge q and multiply against the q-
strength. Since the molecular Coulomb potential is computed from the fit density, any difference in
results between the FIT and the POT approach should be attributed to the DISC issue.
POT is the default, because it is faster, and is only inadequate if the fit density is very inaccurate, which
would be a problem anyway.
- SCF: If you specify this option, the computation of the Coulomb interaction matrix (between electrons
and surface charges) is carried out during the SCF procedure, but this turns out to hamper the SCF
convergence behavior. Therefore: not recommended. IF you use it, the program will switch to one of the
other 3 methods, as given by the 'How' option, as soon as the SCF convergence error drops below
TOL: (applies only to the SCF option, which is not recommended).

DISC

Applies only when the C-matrix method is EXACT or FIT. Note, however, that the default for the C-
matrix method is POT, in which case the DISC subkey has no meaning. The DISC key lets the program
replace the point charges q by a solid uniformly charged spherical surface disc whenever the numerical
integration accuracy requires so, i.e. for those charges that are close to numerical integration points.
Options:
SC defines a shrinking factor, by which the actual disc radius used is reduced from its 'normal' value: an
inscribed disc in the triangular surface partitions that define the distribution of surface charges, see the
subkey DIV.
LEG gives the polynomial expansion order of the disc potentials. The Legendre expansion converges
rapidly and the default should be adequate.

TOL is a tolerance parameter to control the accuracy of the disc potential evaluations.

SCF

In COSMO calculations you can include the surface charges in the Fock operator self-consistently, i.e.
by recomputing the charges q at every SCF cycle and include them in the equations, or in a

113

perturbational manner, i.e. post-SCF. This is controlled with the first option. The When option must be
either VAR or PERT, for variational and perturbational, respectively. Default is VAR.
The second (HOW) option applies only to the WHEN=VAR case and may affect the speed of SCF
convergence. The COSMO calculation implies a considerable increase in CPU time! Values for HOW:
- ALL: This includes it in all SCF cycles (except for the first SCF cycle, which is gas-phase)
- LAST: This lets the program first converge the SCF completely without any solvent effects. Thereafter,
the COSMO is turned on, hopefully converging in fewer cycles now, to compensate for the 'double' SCF
effort.
- TOL=0.1 (or another value) is an in-between approach: converge the gas-phase SCF until the SCF
error is below TOL, then turn on COSMO.

NOCSMRSP

Relevant only in combination with the time-dependent DFT (TDDFT) applications: the EXCITATION, the
RESPONSE, or the AORESPONSE key. If this subkey NOCSMRSP is included the induced electronic
charges which are present in the TDDFT calculations, will not influence the COSMO surface charges.
No dielectric constant in the response might be closer to the optical dielectric constant than using the
full dielectric constant, see also subargument NEQL of the subkey SOLV of the key SOLVATION. By
default, in absence of this subkey NOCSMRSP, the induced electronic will influence the COSMO
surface charges. If one does geometry optimization of the excited state this makes sense, since then
the solvent dielectric has time to fully respond. Note that inclusion of the key ALLPOINTS is needed in
case of TDDFT COSMO calculations.

LPRT

This is a debug switch and triggers a lot more output related to the cavity construction etc.

Warning about frequencies with COSMO model

Numerical frequencies calculated with COSMO should be checked for stability with respect to the disrad, the
numerical differentiation step size. The problem is that the COSMO surface changes slightly when a nucleus
is moved from its equilibrium position. The change is usually smal but in some cases it may result is creation
or annihilation of surface points, which will lead to discontinuities in the potential energy surface and may
result in inaccurate frequencies.

Thus, when calculating vibrational frequencies numerically with COSMO, one should try decreasing the
disrad value until no changes in frequencies are observed. However, the value should not be too small
because then the total numerical noise may become too large compared to the generated forces. A general
recommendation would be to try to decrease disrad by a factor of 2 at a time. Of course, this procedure may
be very expensive for a large molecule. If this the case, one should use the SCANFREQ keyword and
recalculate only a small number of frequencies. It should be noted that generally frequencies that have a
small force constant are more sensitive to the numerical noise.

QM/MM: Quantum mechanical and Molecular Mechanics model

ADF supports the QM/MM method to handle large systems or environment effects by treating only part of
the atoms quantum-mechanically and the other ones by molecular mechanics. Use of this feature is invoked
by the QM/MM keyword (block type). The functionality and all details of the keyword, involving quite a few
options and aspects, are described in the separate QM/MM manual.

See also the pdb2adf utility, described in detail in the ADF QM/MM document, which transforms a PDB file
into an ADF input file, for use with QM/MM.

114

http://www.scm.com/Doc/Doc2014/QMMM/page1.html
http://www.scm.com/Doc/Doc2014/QMMM/metatagPDB2ADF.html

Quild: Quantum-regions Interconnected by Local Descriptions

The QUILD (Quantum-regions Interconnected by Local Description) program has been developed for
enabling calculations through multi-level approaches, in which different computational treatments are used
for different regions of the system under study, see the separate Quild manual.

DIM/QM: Discrete Interaction Model/Quantum Mechanics

The Discrete Interaction Model/Quantum Mechanics (DIM/QM) method facilitates calculating the optical
properties of molecules under the influence of a discrete solvent or a metal nanoparticle, see for example
Ref. [362]. DIM/QM relies on one of three descriptions of the system: Discrete Reaction Field (DRF), where
the atoms interact via induced dipoles and static charge, Capacitance Polarizability Interaction Model
(CPIM), where the atoms interact via induced dipoles and induced charges, and Polarizability Interaction
Model (PIM), where the atoms interact via induced dipoles only. DRF is best for solvents, CPIM is best for
small metal nanoparticles, and PIM is best for large metal nanoparticles.

The DRF module is now a part of DIM/QM, so DRF is now a submodule of DIM/QM.

To perform a DIM/QM calculation, two block keys are required. The first is the DIMQM block which activates
the DIM/QM module. The parameters for each DIM atom must also be given, and they can be given with
either the DIMPAR block which is most convenient for metal nanoparticles, or with the EXTERNALS block
which is designed for DRF.

DRF: Discrete Solvent Reaction Field Model

The Discrete Solvent Reaction Field (DRF) model is a hybrid Quantum mechanical and Molecular
Mechanics (QM/MM) model for studying solvation effects on (time-dependent) molecular properties such as
dipole moments, excitation energies and (hyper)polarizabilities[141-145]. The classical solvent molecules
are represented using distributed atomic charges and polarizabilities.

Within the Discrete Solvent Reaction Field model the QM/MM operator is

HQM/MM = ∑i vDRF (ri,ω) = ∑i vel (ri) + vpol (ri,ω)

where the first term, vel, is the electrostatic operator and describes the Coulombic interaction between the
QM system and the permanent charge distribution of the solvent molecules. The second term, vpol, is the
polarization operator and describes the many-body polarization of the solvent molecules, i.e. the change in
the charge distribution of the solvent molecules due to interaction with the QM part and other solvent
molecules. The charge distribution of the solvent is represented by atomic point charges and the many-body
polarization by induced atomic dipoles at the solvent molecules. The induced atomic dipole at site s is found
by solving a set of linear equations

μinds,α(ω) = αs,αβ [Finits,β(ω) + ∑t≠s T(2)st,βγ μindt,γ(ω)],

where αs,αβ is a component of the atomic polarizability tensor at site s. The screened dipole interaction
tensor is given by

T(2)st,βγ = 3fTstRst,αRst,β/R5st - fEstδαβ/R3st

where the damping functions fTst and fEst have been introduced, see also [146]. A smeared-out point charge
model [147] is used for short-range damping of the QM/MM operator

115

http://www.scm.com/Doc/Doc2014/Quild/page1.html

1/Rst → 1/Sst = erf(Rst)/Rst

The scaled distance, Sst, then replaces the normal distance, Rst, in the QM/MM operator.

In order to perform a DRF calculation two types of parameters (model atomic charges and atomic
polarizabilities) for each type of atom in the MM part are required. The point charges should represent at
least the permanent molecular dipole moment, and the distributed atomic polarizabilities the full molecular
polarizability tensor. The atomic charges can straightforward be obtained using e.g. Multipole Derived
Charges (MDC) [See section on MDC] and the distributed polarizabilities by adopting standard parameters
or refitting them to match the calculated polarizability tensor [146,147]. This allows for a simple procedure to
obtain the solvent model parameters which subsequently can be used in the DRF calculation.

DIMQM block key

DIMQM
<DRF|PIM|CPIM>
NOPOL
NOCHAR
NOCROSS
DDA
FULLGRID
LOCALFIELD
EFIELD x y z
SCREEN <ERF|EXP|ESP|NONE> {length}
:: FREQUENCY-DEPENDENT PARAMETERS
FREQUENCY
OM_H value
OM_C value
OM_O value
OM_N value
:: CONTROL OVER SOLVER
ALGORITHM <BEST|DIRECT|BRUTE|SINGLE|MULTI>
TOLERANCE tol
NITER iterations
VOLUME vol_in_nm^3
MULTIPLIER aterm bterm cterm
GRID <COARSE|MEDUIM|FINE>
:: GRADIENT OPTIONS
FORCEFIELD
CHEMBOND qmindex dimindex
COORDDEPEND
CHEMISORPTION
COORDPAR atomtype e0 e1 r0 r1 CNmax Rmax Rmin
CHEMPAR atomtype e0 e1 r0 r1 cutoff
PROJECTIONMATRIXPOINTS <ALL|CUTOFF radius|OFF>
:: OUTPUT CONTROL
PRINTATOMICDIPOLES
PRINTLJPAR
DEBUG

END

<DRF|CPIM|PIM>

DIM/QM relies on one of three descriptions of the system: Discrete Reaction Field (DRF), where the
atoms interact via induced dipoles and static charge, Capacitance Polarizability Interaction Model
(CPIM), where the atoms interact via induced dipoles and induced charges, and Polarizability
Interaction Model (PIM), where the atoms interact via induced dipoles only. DRF is best for solvents,

116

CPIM is best for small metal nanoparticles, and PIM is best for large metal nanoparticles. One and only
one of these three keys must be included in every DIM/QM calculation.

NOPOL

The NOPOL key turns off the polarization terms, and thus all induced dipoles are zero. This key is only
valid for DRF or CPIM calculations.

NOCHAR

The NOCHAR key turns off the charge terms, and thus all induced or static charges are zero. This key
is only valid for DRF or CPIM calculations.

NOCHOSS

The NOCROSS key turns off the charge-dipole interactions. This key is only valid for CPIM calculations.

DDA

By default, the dipole-dipole, charge-dipole and charge-charge interactions are screened to take into
account that atoms are not point charges. The DDA key will turn off this screening so that the results
can be compared directly to the discrete dipole approximation (DDA).

FULLGRID

This is used in conjunction with the frozen density approximation.

LOCALFIELD

When the molecule interacts with a (for example) metal nanoparticle, there are two types of interactions:
the image field and the local field. The image field is caused by the dipoles induced into the nanoparticle
by the molecule's electron density. This is always taken into account in a DIM/QM calculation. The local
field arises by direct interactions of the nanoparticle with an external field. Addition of the LOCALFIELD
key causes the DIM/QM calculation to include this effect, but by default this is not included in a DIM/QM
calculation.

EFIELD x y z

The EFIELD key is used to include an external static electric field in the vector x y z. Internally, the static
charges used in a DRF calculation use ADF's EFIELD block, and therefore use of the EFIELD block is
not allowed with the DIMQM block. This key is included so the user may include an electric field that
would normally be included by the EFIELD block.

<SCREEN ERF|EXP|ESP|NONE> {length}

The SCREEN key indicates what functional form is used to screen the interactions between each DIM
atom and the QM density. The choices are ERF (error function), EXP (exponential), ESP (error function
for potential operator only), or NONE. For CPIM and PIM the default is EXP; for DRF, the default is
ESP. In all cases, the default screening length is 1.0, but this may be changed with the optional length
parameter.

FREQUENCY

The FREQUENCY key turns on frequency-dependent parameters.

OM_[HCON] value

117

The OM_H, OM_C, OM_O, and OM_N keys provide the resonance frequency (in atomic units) for the
elements H, C, O and N, respectively. These keys are only for use with DRF and only when the older
EXTERNALS block is used.

<ALGORITHM BEST|DIRECT|BRUTE|SINGLE|MULTI>

DIM/QM can choose between several solver algorithms. The DIRECT method solves the linear system
of equations directly with a LAPACK routine; this should be considered the most robust method, but
scales poorly with the number of atoms (O(N3) where N is the number of atoms in the system). The
other three methods use an iterative technique, The BRUTE method (brute force) takes into account all
atoms in the matrix-vector multiply step, and scales as O(N2). The SINGLE method uses the single-
level cell-multipole-method (CMM), wherein dipoles that are spatially similar are collected into a
multipole moment which effectively reduces the system size. This also scales as O(N2) but with a lower
prefactor than BRUTE. The MULTI method uses the multi-level cell-multipole-method, which uses larger
and large multipole the farther apart the dipoles are. This is the fastest method and scales as O(N log
N).

Due to technical limitations, CPIM can only use DIRECT. Further, depending on the system size
DIRECT or SINGLE may be more efficient than MULTI. To simplify choosing the solving algorithm,
there is a BEST option that chooses the best algorithm for the particular system. BEST is the default
option for algorithm.

TOLERANCE tol

The TOLERANCE key allows the user to specify a tolerance for the iterative solver. By default the
tolerance is based on ADF's INTEGRATION key. This has no effect with the DIRECT solver.

NITER iterations

The NITER key allows the user to specify the maximum number of iterations for the iterative solver. By
default this is MAX(N/100, 200) where N is the number of DIM atoms.

VOLUME vol_in_nm3

The VOLUME key is used to specify the DIM system volume. The volume is used to determine how to
partition the system for the cell multipole method (ALGORITHM options SINGLE or MULTI), and is also
use to determine the scattering efficiencies for frequency-dependent polarizability calculations. The
volume does not need to be supplied; if it is missing, it will be calculated based on each atom's radius
and the MULTIPLIER key.

MULTIPLIER aterm bterm cterm

An efficient way to get a approximation for the volume of the system is to sum the volume of each atom
in the system, modified to account for the space between the atoms. This is done by modifying the
atomic radius by a formula that takes into account the number of DIM atoms so that the effective radius
changes with surface-to-bulk ratio. This formula is given by

reff = -ar/Nb + c

where r is the atomic radius, reff is the effective radius, N is the number of atoms, and the a, b, and c
terms are the three parameters defined by the MULTIPLIER key. If the MULTIPLIER key is missing, the
default values are 0.7, 0.5, and 1.13, respectively.

GRID <COARSE|MEDIUM|FINE>

In the cell multipole method (ALGORITHM options SINGLE or MUTLI), a certain number of the closest
atom interactions must be calculated explicitly. The GRID key controls how many atoms must be

118

calculated this way, with COARSE being the least and FINE being the most. COARSE will be the
fastest to calculate but may be numerically unstable. FINE is slowest to calculate but is the most stable.
If the GRID key is missing, the default is MEDIUM.

FORCEFIELD

The FORCEFIELD key indicates that the DIM/QM calculation will include the DIM/QM force field.
Currently the only maintained potential is the Lennard-Jones 12-6 potential (see Ref. [362]). This key is
required to perform a DIM/QM geometry optimization and vibrational frequencies. By default, the DIM/
QM force field is not included into the calculation.

Currently, DIM/QM geometry optimizations must be done in Cartesian coordinates which is specified in
the GEOMETRY block. The user should be aware that ADF's default convergence criterion for a
geometry optimization are relatively low, thus it is strongly suggested for a DIM/QM calculation to set
the numerical integration quality (BeckeGrid) to good and change the convergence criterion of the max
gradient to 1E-4.

COORDDEPEND

The COORDDEPEND key indicates that the DIM/QM force field will be coordination dependent. This
only effects the Lennard-Jones parameters for DIM atoms (see Ref. [362]). By default, the DIM/QM
force field is not coordination dependent.

CHEMISORPTION

The CHEMISORPTION key will include chemisorption corrections for all atoms that have chemisorption
parameters within a given cutoff radius. By default, the DIM/QM force field does not included
chemisorption corrections.

COORDPAR atomtype e0 e1 r0 r1 CNmax Rmax Rmin

The COORDPAR key allows the user to add additional coordination dependent parameter for a
selected element type. atomtype specifies the element type (i.e., Ag for silver) for the given parameter
set. e0, e1, r0, and r1 are the coordination dependent Lennard-Jones parameters; see Ref. [362]) for
more details. The coordination numbers of the DIM atoms are computed as an effective coordination
number. This scheme requires a maximum and minimum cutoff distances, Rmax and Rmin
respectively, and a maximum coordination number, CNmax. All parameters need to be in atomic units.

CHEMPAR atomtype e0 e1 r0 r1 CUTOFF

The CHEMPAR key allows the user to add additional chemisorption dependent parameter for a
selected element type. atomtype specifies the element type (i.e., N for nitrogen) for the given parameter
set. e0, e1, r0, and r1 are the coordination dependent Lennard-Jones parameters; see Ref. [362]) for
more details. The code determines if there is a chemical bond by a cutoff distance parameter, CUTOFF.
If the QM-DIM bond is within the cutoff, the code uses the chemisorption parameter; otherwise, the
code uses the standard parameter set. All parameters need to be in atomic units.

CHEMBOND qmindex dimindex

The CHEMBOND key indicates that there will a chemisorption correction used for the bond between the
specified QM and DIM atoms. The user may repeat the CHEMBOD key up to 50 times to specify up to
50 different chemical bonds for the force field. The qmindex is an integer based on the order of atoms in
the ATOMS block; i.e. the fifth QM atom in the ATOMS block would have qmindex = 5. The dimindex is
the same but corresponds to the DIM atom involved in the bond. This key should only be used when the
CHEMISORPTION key is also specified. When using CHEMBOND, the cutoff distance parameter for
chemisorption correction parameter key will be ignored. It is suggested to use CHEMBOND if the user
is generating a potential energy surface with a chemisorbed QM system.

PROJECTIONMATRIXPOINTS <ALL|CUTOFF> <radius|OFF>

119

The PROJECTIONMATRIXPOINTS key specifies what DIM atoms to include for the projection matrix
when removing rigid motions out of the gradient. The methods available are ALL, CUTOFF, or OFF.
The ALL option causes PROJECTIONMATRIXPOINTS to include all DIM atoms. OFF will turn off the
removal of rigid motions. CUTOFF includes any DIM atom points within a cutoff radius from the center
of mass of the QM system to the DIM atom points and requires a cutoff radius to be given in Angstrom.
This key only applies to a geometry optimization. If the PROJECTIONMATRIXPOINTS key is not given,
the option CUTOFF with a cutoff radius of 25.4 Angstrom is assumed.

PRINTATOMICDIPOLES

The PRINTATOMICDIPOLES key causes all the induced dipole moments of each DIM atom to be
printed at the conclusion of each SCF cycle and each RESPONSE or AORESPONSE polarizability
calculation. Because DIM/QM is typically used with many thousands of atoms, this can result in a large
output file, but they may be useful for debugging purposes or to calculate electric fields. By default
these are not printed.

PRINTLJPAR

The PRINTLJPAR key specifies that all Lennard-Jones parameters used for the calculation will be
printed in the output file. The QM atoms' Lennard-Jones parameters are also printed with the DEBUG
key.

DEBUG

The DEBUG key will print out extra information in the process of the calculation.

EXTERNALS block key

The EXTERNALS block key controls the input data for the MM atoms. The EXTERNALS block is designed for
DRF calculations. For each MM atom the following data are required:

EXTERNALS
atm num grp-nam grp-num, char, x, y, x, pol
...
GROUP
{...}

end

atm

Type of atom, i.e., H, O, ...

num

number of atoms (optional)

grp-nam

Name of the group to which the atom belongs

grp-num

Number of the group to which the atom belong

char

atomic charge (in atomic units)

x

120

x-coordinate

y

y-coordinate

z

z-coordinate

pol

atomic polarizability (in atomic units)

GROUP

Indicates the end of group

The separation of molecules into GROUP's are important. Since in the many-body polarization operator only
inter-molecular interactions, i.e. only interaction between sites which do not belong to the some group, are
included. Therefore, it is important that the combined string (grp-nam + grp-num) is unique for each
GROUP.

An example of a EXTERNALS block for two water molecules:

EXTERNALS
O 4 water 2, -0.6690, -11.380487, -11.810553, -4.515226, 9.3005
H 5 water 2, 0.3345, -13.104751, -11.837669, -3.969549, 0.0690
H 6 water 2, 0.3345, -10.510898, -12.853311, -3.320199, 0.0690
GROUP
O 7 water 3, -0.6690, -1.116350, 9.119186, -3.230948, 9.3005
H 8 water 3, 0.3345, -2.822714, 9.717033, -3.180632, 0.0690
H 9 water 3, 0.3345, -0.123788, 10.538199, -2.708607, 0.0690
GROUP
{...}

end

DIMPAR block key

In this block, the parameters for the DIM atoms are defined.

DIMPAR
Element

RAD val
POL val
CAP val
CHAR val
OM val
OM1 val
OM2 val
GM1 val
GM2 val
SIZE val
BOUND val
EXP /path/to/experimental/dielectric/file
DRUDE plasma damping {EV}
FERMI val
<LRTZ|LRTZ1> osc res damp {EV}

121

LRTZ2 osc pls res damp {EV}
LRTZ3 pls res damp {EV}

SUBEND
XYZ

{/absolute/path/to/coordinates.xyz}
{natoms
elem x.xxx y.yyy z.zzz
elem x.xxx y.yyy z.zzz
elem x.xxx y.yyy z.zzz
...}

SUBEND
END

Element

Within the DIMPAR block, you will need a sub-block that defines the parameters for each element that
is in your DIM system. You will need to replace 'Element' with the element you are assigning
parameters to, as in

Ag
...

SUBEND

if you are assigning parameters to Ag. Note that the first letter MUST be capitalized and the second
MUST be lowercase.

RAD val

RAD specifies the atomic radius in the unit defined by the input file. RAD is required for all PIM
calculations, all calculations with ALOGORITHM options SINGLE or DIRECT, and all frequency-
dependent calculations where the AORESPONSE LIFETIME key is given.

POL val

POL specifies the polarizability parameter (in a.u.) used in DRF or CPIM.

CAP val

CAP specifies the capacitance parameter (in a.u.) used in CPIM.

CHAR val

CHAR specifies the atomic charge (in a.u) used in DRF.

OM val

OM specifies the resonance frequency (in a.u) used in DRF. This replaces the OM_[HCON] key in
the DIMQM block.

OM1 val

OM1 specifies the ω1 parameter (in a.u) used in CPIM.

OM2 val

OM2 specifies the ω2 parameter (in a.u) used in CPIM.

GM1 val

122

GM1 specifies the γ1 parameter (in a.u) used in CPIM.

GM2 val

GM2 specifies the γ2 parameter (in a.u) used in CPIM.

SIZE val

SIZE specifies the size-dependent parameter used in CPIM.

EXP /absolute/path/to/experimental/dielectric/file

In PIM, the atomic polarizabilities are calculated from the dielectric constant. If you have access to
the experimental dielectric constant, this may be supplied directly to DIM/QM. The values will be
splined, so it is not necessary to ensure that each frequency at which you are calculating be in the
file. DIM/QM expects the file to be formatted with the wavelength (in nm) in the first column, the real
part of the dielectric in the second column, and the imaginary part of the dielectric in the third
column. All other columns that may exist will be ignored, as well as lines beginning with the hash
(#) symbol.

BOUND val

A Drude function is typically written as

ε∞ - ωp2/(ω(ω+iγ))

with the second term being the Drude function, and the first term accounting for bound electrons.
For a conductor with no bound electrons, ε∞ = 1 which is the default value for BOUND. To account
for bound electrons you may set BOUND to a value greater than 1. This key only affects PIM.

DRUDE plasma damping {EV}

The formula for a Drude function is

ε∞ - ωp2/(ω(ω+iγ))

where ε∞represents the bound electrons (as discussed for BOUND), ωp (plasma) is the plasma
frequency, and γ (damping) is the damping parameter (decay rate). Optionally, EV may be added
to specify the values be read in units of electron volts, otherwise they are read in units of a.u. This
key only affects PIM.

FERMI val

The FERMI key is used to specify a Fermi velocity (in m/s) so that the Drude function may be size-
corrected using a modified Drude function:

ε∞ - ωp2/(ω(ω+i(γ+vfermi/Reff)))

where +vfermi is the Fermi velocity and Reff is the effective nanoparticle radius. This can also be
used in conjunction with EXP and DRUDE to size-correct experimental dielectric parameters. This
key only affects PIM.

<LRTZ|LRTZ1> osc res damp {EV}
LRTZ2 osc pls res damp {EV}
LRTZ3 pls res damp {EV}

123

There are three forms of the Lorentzian function seen in the literature:

∑n fn Ω0,n2/(Ω0,n2 - ω2 - i Γn ω)

∑n fn ωp2/(Ω0,n2 - ω2 - i Γn ω)

∑n Ωp,n2/(Ω0,n2 - ω2 - i Γn ω)

where Ω0,n (res) is a bound electron resonance frequency, fn (osc) is a bound electron oscillator
strength, Γn (damp) is a bound electron excited state decay rate (or damping parameter), ωp (pls) is
the free electron plasma frequency, and Ωp,n (pls) is the bound electron plasma frequency. You
may choose the Lorentzian for against which your parameters were parametrized. The top form is
LRTZ1, the middle is LRTZ2, and the bottom is LRTZ3. Because LRTZ1 is the most common, it is
also aliased as LRTZ. Optionally, EV may be added to specify the values be read in units of
electron volts, otherwise they are read in units of a.u. This key only affects PIM. You may give any
of the form of the LRTZ key up to 50 times supply up to 50 Lortenzian functions to make a Drude-
Lorentz function.

XYZ

The XYZ sub-block is where the DIM atom coordinates are given. Two methods of supplying
coordinates are allowed.

In-File Coordinates

As an example of how to supply coordinates in-file, imagine you wish to calculate a Au dimer
system on the Z-axis. You might define your coordinates as:

XYZ
2
Au 0.0 0.0 0.0
Au 0.0 0.0 3.0

SUBEND

The first line gives the number of atoms to follow. Every line after that contains the element in the
first column (first letter MUST be capitalized, second MUST be lowercase), then the x-component,
then the y-component, then the z-component. You may not number the atoms.

External File Coordinates

When the DIM system size becomes large, it is often more convenient to keep the DIM coordinates
in a separate file. The XYZ block would then look like:

XYZ
/absolute/path/to/coordinates.xyz

SUBEND

Note that you MUST include the absolute path to your file.

The .xyz file is set up identically to the in-file table, except that there is a space between the
number of atoms and the first coordinate in case a comment need be added. The .xyz file for our
dimer system would be:

2
A gold dimer (this line will be ignored)

124

Au 0.0 0.0 0.0
Au 0.0 0.0 3.0

FDE: Frozen Density Embedding

The Frozen-Density-Embedding (FDE) option invokes calculation of the effective embedding potential
introduced by Wesolowski and Warshel [184] in order to take into account the effect of the environment on
the electronic structure of an embedded system. The embedding potential (Eq. 3 in Ref. [240]) depends
explicitly on electron densities corresponding to the embedded subsystem (e.g. a solvated molecule) and its
environment (e.g. solvent). For a detailed review, see Ref. [205]. The ADF implementation of the method is
described in detail in Ref. [185,217]. The implementation of FDE in ADF2007 has been completely revised
and improved. Therefore, the input format has been changed with respect to ADF2006.

A time-dependent linear-response generalization of this embedding scheme was derived in Ref. [186]. Its
implementation in an approximate form, which assumes a localized response of the embedded system only
(uncoupled FDE), is described in the supplementary material to Ref. [187]. For possible drawbacks and
pitfalls in connection with this approximation, see Refs. [185,190,193].

The theory of coupled excited states for subsystems is described in Refs. [296,297], and extended for
general response properties in Ref. [298]. This theory (subsystem TDDFT, coupled FDE) allows to treat the
mutual response of several subsystems, including the ones that are considered environment.

A generalization of the FDE scheme to the calculation of NMR shieldings has been given in Ref. [218],
where also the approximations involved and possible problems are discussed.

With the exception of interaction energies, the current implementation in ADF only allows the calculation of
molecular properties that only depend on the electron density and of response properties using TDDFT. For
an application to the calculation of several molecular properties in solution and a comparison to the DRF
model also available in ADF, see Ref. [190]. For further applications of the ADF implementation, see Ref.
[189] (weakly interacting complexes), Refs. [185,190-192] (solvent effects), and Refs. [206-207] (other
environment effects).

FDE Input

To invoke a frozen-density embedding calculation, two additional specifications in the input are required.
First, one or more frozen fragments have to be included in the FRAGMENTS block, and second, the block
key FDE has to be included. In the simplest case, this input should look like this:

FRAGMENTS
...
FragType FragFile type=FDE
...

END

FDE
PW91K

end

In the FRAGMENTS block, for any fragment it is possible to specify the option type=FDE to indicate that the
density of this fragment is kept frozen. This density is imported from the file FragFile. The frozen fragments
have to be included in addition to the usual, nonfrozen fragments. The atoms of the frozen fragments have
to be included in the ATOMS block. As with normal fragments, the fragment found in the file will be rotated
and translated to its position specified in the ATOMS block. For more details on specifying fragments, see
the section 'fragment files'. In the FDE input block, the recommended PW91k (also known as GGA97)
approximant is recommended for the non-additive kinetic energy (the default is the local density
approximant). A recommended alternative is NDSD. For all other options the defaults will be used.

125

Please note that throughout the FDE part of the documentation, the word "approximant" is used instead of
the more usual "functional" to emphasize that the exact functional is not known, also in the case of the
kinetic energy functional. In the literature one may encounter both words used interchangeably.

By including more than one frozen fragment, it is possible to use a frozen fragment that is a superposition of
the densities of isolated molecules (this was possible in the previous version of ADF using the DENSPREP
option). For a discussion and tests of the use of such approximate environment densities, see Ref. [185].

There is no restriction on the use of symmetry in FDE calculations, and usually the correct symmetry will be
detected automatically. However, in the preparation of frozen fragments that will be rotated and/or translated
in the FDE calculation, one has to include the keyword NOSYMFIT for technical reasons.

In the current implementation, only the electron density of the embedded (nonfrozen) system is calculated.
Therefore, with the exception of interaction energies, only properties that depend directly on the electron
density (e.g. dipole moments) are available. In particular, the calculation of energy gradients is not
implemented yet. All quantities given in the output refer (unless explicitly specified otherwise) to the
nonfrozen system only.

The TDDFT extension of the FDE formalism allows the calculation of electronic excitation energies and
polarizabilities. This extension is automatically activated if FDE is used in combination with the
EXCITATIONS or the RESPONSE key. To allow the mutual response of several subsystems, see the secion
on [subsystem TDDFT].

To employ the extension of FDE to the calculation of NMR shieldings, the file TAPE10 has to be used in the
FDE calculation (by including the option SAVE TAPE10), and subsequently the NMR shielding has to be
calculated using the program NMR (not with EPR).

Fragment-specific FDE options

For each frozen fragment, several additional options can be applied. To do this, the fragment specification is
used as a subblock key by appending a & sign. The subblock is terminated with SubEnd. This subblock key
looks, in the most general form, as follows:

FRAGMENTS
...
FragType FragFile type=FDE &

{FDEOPTIONS [USEBASIS] [RELAX or FREEZEANDTHAW]}
{FDEDENSTYPE [SCF | SCFexact | SCFfitted]}
{RELAXCYCLES n or FREEZEANDTHAWCYCLES n}
{XC [LDA | GGA ggapotx ggapotc | MODEL SAOP]}

SubEnd
...

END

FDEOPTIONS

FDEOPTIONS USEBASIS

If the USEBASIS option is specified, the basis functions of this frozen fragment will be included in
the calculation of the embedded subsystem. This allows to expand the density of the embedded
subsystem using not only atom-centered basis sets localized in the embedded subsystem but also
the ones in the environment Ref. [238]. In large-scale simulations using the embedding potential,
this option is recommended to be used in the preparation stage to investigate the basis set
dependence of the results (chapter 5.3 in Ref. [205]). This option is also an indispensable element
in the procedure introduced in Ref. [238] to test approximants to the kinetic-energy component of
the embedding potential introduced by Wesolowski and Warshel.

FDEOPTIONS RELAX or FREEZEANDTHAW

126

If the RELAX option (or equivalent FREEZEANDTHAW option) is specified, the density of this
frozen fragment will be relaxed in freeze-and-thaw cycles [Ref. 240], i.e., the embedded subsystem
is frozen, while this fragment is thawed. This is repeated, until convergence is reached or until the
maximum number of iterations has been performed. By relaxing frozen fragments, it is possible to
improve a given approximate environment density by including the polarization of the environment
due to the embedded system.
This option is recommended to be used in the preparation stage of a large-scale numerical
simulation. The freeze-and-thaw calculations lead to a pair of electron densities (embedded system
and environment) that minimizes the total energy. As a consequence, the electron density of the
environment derived from the freeze-and-thaw calculations can be used as a reference to verify the
adequacy of the assumed electron density for the environment in a large-scale simulation. Due to
technical restrictions, freeze-and-thaw is not possible if an open-shell (unrestricted) fragment is
present.

FDEOPTIONS USEBASIS RELAX or FDEOPTIONS USEBASIS FREEZEANDTHAW

It is further possible to combine USEBASIS and RELAX or FREEZEANDTHAW. In this case, the
basis functions of the nonfrozen fragment will be included when the density of the fragment is
relaxed. This allows fully relaxed calculations with supermolecular expansion of the electron density
of each subsystem. This option is to be used to test approximants to the kinetic-energy component
of the embedding potential introduced by Wesolowski and Warshel by means of the procedure
introduced in [Ref. 238].

FDEDENSTYPE

The FDEDENSTYPE option can be used to specify which density is read from the fragment file. The
possible options are:

FDEDENSTYPE SCF (or FDEDENSTYPE SCFexact)

The exact density (not calculated using the fit functions) is used. This is the default.

FDEDENSTYPE SCFfitted

The fitted density is used. This is less accurate but can be significantly faster.

RELAXCYCLES n or FREEZEANDTHAWCYCLES n

This gives the maximum number of freeze-and-thaw cycles that are performed for this fragment. If the
maximum number given in the FDE block is smaller, or if convergence is reached earlier, then fewer
cycles are performed. For historical reasons, two equivalent keywords are available.

XC

The XC option can be used to select the exchange-correlation potential that is used for this fragment
when it is relaxed. By default, the same potential as for the nonfrozen system is used, but in some
cases it might be preferable to use another approximation for certain fragments. An example is given in
Ref. [189].

XC LDA

This option selects LDA as exchange-correlation potential for relaxing this fragment.

XC GGA ggapotx ggapotc

This selects a GGA potential for relaxing this fragment. The GGA potential is specified by giving the
name of the exchange potential, followed by the name of the correlation potential. The available
potentials are listed in the documentation for the XC key.

127

XC MODEL SAOP

This selects the model potential SAOP for relaxing this fragment.

Kinetic energy approximants

The approximants to the kinetic energy dependent component of the embedding potential are described
here.

FDE
{approximants to the kinetic energy dependent

component of the embedding potential}
{CJCORR [rho_cutoff]}
{GGAPOTXFD exchange approximant}
{GGAPOTCFD correlation approximant}

end

approximants to the kinetic energy dependent component of the embedding
potential

Several approximants to the kinetic-energy-dependent component of the effective potential given in Eq.
(21) of [Ref. 184] are available. None of them is applicable if the embedded system is covalently bound
to its environment. The user is recommended to look at the numerical value of the TSNAD(LDA)
parameter which is given in the units of energy and can be considered as a measure of the overlap. The
following rule of thumb should be applied: if this parameter is smaller than the estimated interaction
energy between the embedded subsystem and the environment, then the available approximants are
most probably adequate. If it exceeds this limit, the results can be less reliable. Printing TSNAD(LDA) is
not done by default, as it can be quite time-consuming. Its printing is switched on by including
"EXTPRINTENERGY", and "PRINTRHO2", and "FULLGRID" in the FDE input block.
If no kinetic energy approximant is specified, by default the local-density approximation (Thomas-Fermi
approximant) is used. For an assessment of approximants for weakly overlapping pairs of densities see
Refs. [238, 239, 188, 241]. Based on these studies, the use of PW91k (= GGA97) is recommended.

APPROXIMANTS TO BE USED IN NORMAL APPLICATIONS

THOMASFERMI (default)

Local-density-approximation form of vt[rhoA,rhoB] [237] derived from Thomas-Fermi expression for
Ts[rho] [194, 195].

GGA97 (or PW91K)

Generalized-gradient-approximation form of vt[rhoA,rhoB] [239] derived from the Lembarki-
Chermette [197] approximant to Ts[rho]. This approximant is currently the recommended one
based on the numerical analysis of its accuracy [188,239] and the fact that the used enhancement
factor disappears at large reduced density gradients, i.e. where the second-order gradient-
expansion approximation fails [238, 241].

NDSD

Similarly to GGA97, the NDSD approximant is constructed by taking into account the asymptotic
behavior of the functional vt[rhoA,rhoB] at small density gradients. In the construction of NDSD, the
exact property of vt[rhoA,rhoB] at rho_A → 0$ and for ∫ rhoB = 2 given in Eq. A6 of Ref. [279] is
also taken into account. The analysis of the accuracy of this potential [279] shows that NDSD is of
the same or superior quality as GGA97. NDSD is, therefore, recommended as the successor of
GGA97 to be used anywhere where the quality of the results depends directly on the accuracy of
the potential vt[rhoA,rhoB], i.e., for obtaining electronic-structure-dependent properties. The
analytical form of the corresponding approximant to the functional Tsnad [\rho_A,\rho_B]$ exists

128

(Eq. 23 in Ref. [279]). It is not possible, however, to obtain the analytical form of the corresponding
parent functional for the kinetic energy Ts[rho]. To reflect this and the fact that, similarly to the GGA
approximants to vt[rhoA,rhoB], the numerical values of only first- and second derivatives of density
are needed, the label NDSD (Non-Decomposable Second Derivatives) is used.

OBSOLETE APPROXIMANTS (can be used but GGA97 leads usually to a better embedding potential
see [238,239])

LLP91

Generalized-gradient-approximation form of vt[rhoA,rhoB] [238] derived from Lee-Lee-Parr [Ref.
198] approximant to Ts[rho].

PW86k

Generalized-gradient-approximation form of vt[rhoA,rhoB] [238] derived from the Fuentealba-Reyes
approximant to Ts[rho] [242].

THAKKAR92

Generalized-gradient-approximation form of vt[rhoA,rhoB] [239] derived from the Thakkar
approximant to Ts[rho] [201].

APPROXIMANTS WHICH MIGHT BE USEFUL ONLY FOR THEORY DEVELOPMENT

The accuracy of some of these approximants was investigated in detail [239, 238, 188, 241]. Each of
them was shown to lead to a qualitatively incorrect embedding potential. They shouldn't be used in
practical applications.

COULOMB

Neglecting completely vt[rhoA,rhoB] (vt[rhoA,rhoB] equals zero) together with the exchange-
correlation component of the embedding potential introduced by Wesolowski and Warshel.

TF9W

The approximant to vt[rhoA,rhoB] [184] derived from the second-order gradient expansion [242]] for
Ts[rho].

WEIZ

The approximant to vt[rhoA,rhoB] [241] derived from the von Weizsäcker approximant to Ts[rho]
[186].

OL91A

Generalized-gradient-approximation form of vt[rhoA,rhoB] [238] derived from the first Ou-Yang and
Levy approximant to Ts[rho] [200].

OL91B

Generalized-gradient-approximation form of vt[rhoA,rhoB] [239] derived from the second Ou-Yang
and Levy approximant to Ts[rho] [200].

E00

Generalized-gradient-approximation form of vt[rhoA,rhoB] [263] derived from a kinetic energy
functional by Ernzerhof [264] which represents the gradient expansion approximation up to the
fourth order.

129

P92

Generalized-gradient-approximation form of vt[rhoA,rhoB] [263] derived from a kinetic energy
functional by Perdew [265] which represents the gradient expansion approximation up to the sixth
order.

LONG DISTANCE CORRECTIONS TO THE EFFECTIVE POTENTIAL

CJCORR

Option to switch on a long-distance correction. By default this option is not used. As was shown in Ref.
[220], with the available approximate kinetic-energy approximants, the embedding potential has the
wrong form in the limit of a large separation of the subsystems. In particular, it was shown that this can
have serious consequences in the case of "supermolecular expansion of electron density of each
subsystem" calculations (USEBASIS option). In Ref. [220], a correction is proposed that enforces the
correct long-distance limit. (See also this reference for limitations of this correction.)

CJCORR [rho_cutoff]

This option switches on the long-distance correction. This option has to be used in combination
with one of the above kinetic-energy approximants. By default, a density cut-off of 0.1 is employed.

NONADDITIVE EXCHANGE-CORRELATION APPROXIMANT

GGAPOTXFD
GGAPOTCFD

Option to specify the nonadditive exchange-correlation approximant. By default, in the construction of
the effective embedding potential the exchange-correlation approximant that was specified in the XC
block is used. It is possible to specify a different approximant with the GGAPOTXFD and GGAPOTCFD
options. This is particularly useful in combination with the use of model potentials like SAOP, that can
not be used in the embedding potential because of their orbital dependence. (For a discussion, see Ref.
[189].)

GGAPOTXFD exchange approximant

The exchange approximant is used in the construction of the embedding potential. The same
exchange approximants as in the XC key are available.

GGAPOTCFD correlation approximant

The correlation approximant is used in the construction of the embedding potential. The same
correlation approximants as in the XC key are available.

General FDE options

In addition to the fragment-specific options and the kinetic energy approximants, there are also a number of
options available in FDE calculations that will be described in the following.

FDE
{FULLGRID}
{RELAXCYCLES n or FREEZEANDTHAWCYCLES n}
{RELAXPOSTSCF or FREEZEANDTHAWPOSTSCF}
{EXTPRINTENERGY}
{PRINTRHO2}
{ENERGY}

end

FULLGRID

130

By default, FULLGRID is not used, and in FDE calculations the integration grid is generated as
described in Ref. [185] by including only atoms of the frozen subsystem that are close to the embedded
subsystem in the generation of the integration grid. The distance cutoff used is chosen automatically,
based on the extent of the basis functions of the embedded subsystem. (It can also be chosen
manually, see the option qpnear in the INTEGRATION key) This scheme results in an efficient and
accurate integration grid. However, it is possible that the default integration scheme is not accurate
enough. This can be the case for weakly interacting systems and when the distance between the frozen
and the embedded system is large. It is therefore recommended to check the quality of the default
integration grid by comparing to results obtained using the full supermolecular grid (FULLGRID option).

If the subkey FULLGRID is included, all atoms of the frozen system are included in the generation of the
integration grid. This results in the same grid that would be used in a supermolecular calculation of the
combined frozen and embedded system. The integration grid generated by this option might be much
larger than the default grid. This option should be used to check the quality of the default integration
grid.

RELAXCYCLES n or FREEZEANDTHAWCYCLES n

Specifies the maximum number n of freeze-and-thaw iterations [Ref. 240] that are performed (for frozen
fragments with the RELAX) option. If a smaller number of iterations is specified as a fragment-specific
option, for this fragment this smaller number is used. Furthermore, if convergence is reached earlier, no
more iterations will be performed.

RELAXPOSTSCF or FREEZEANDTHAWPOSTSCF

If this option is included, several post-SCF properties will be calculated after each freeze-and-thaw
cycle [Ref. 240]. These are otherwise only calculated in the last cycle.

EXTPRINTENERGY
PRINTRHO2

If the options EXTPRINTENERGY and PRINTRHO2 are included (both are needed and should be listed
on separate lines), several additional quantities will be printed, including TSNAD(LDA). In order to
obtain meaningful numbers, also the FULLGRID keyword (see above) has to be used.

ENERGY

Option to switch on the calculation of the FDE energy as the sum of the energy E[rhoA] of the active,
embedded system and the interaction energy Eint[rhoA,rhoB] of the embedded system with the frozen
environment. This relies on the calculation of the total energy for the embedded system and all caveats
and restrictions for total energy evaluations apply (see keyword TOTALENERGY). All energy
contributions are evaluated on the grid of the active subsystem. Some contributions to the interaction
energy Eint[rhoA,rhoB] require an accurate integration grid in the region of the environment. Thus, in
pure embedding calculations (without fragment-specific option RELAX), an accurate calculation of the
FDE energy requires a full supermolecular integration grid (FULLGRID option). Details on the
implementation and the performance of kinetic energy functionals for interaction energies are
documented in Ref. [263]

The calculation of the full, variationally minimized subsystem DFT energy, that is, the sum of the energy
of two subsystems E[rhoA] and E[rhoB] and their interaction energy Eint[rhoA,rhoB] in the framework of
FDE, is invoked if then the fragment densities are relaxed in freeze-and-thaw cycles (option
RELAXCYCLES and fragment-specific FDE option RELAX). In this case the supermolecular integration
grid is not required. Instead, in each step of the freeze-and-thaw cycle, the critical energy terms are
taken from the previous freeze-and-thaw step of the presently frozen fragment. The convergence of the
energy contributions with the number of freeze-and-thaw iterations should be carefully monitored. Due
to conceptual problems for the evaluation of the non-additive kinetic energy contribution, only two
subsystems, that is, one frozen fragment, is supported for FDE energy calculations with freeze-and-
thaw.

131

Subsystem TDDFT, coupled FDE

The linear-response subsystem TDDFT code implements the theory of coupled excited states for
subsystems as described in Refs. [296,297]. This theory is based on the FDE extension to excited states
[186], which is implemented in ADF in a local response approximation, i.e., neglecting the dynamic response
of the environment [187].

The subsystem TDDFT code allows to treat the mutual response of several subsystems, including the ones
that are considered environment. A more typical situation would be a system composed of several
equivalent chromophores treated as individual subsystems. In this case, the local response approximation
leads to uncoupled excited states of the subsystems (hence the acronym FDEu is employed often), while
the subsystem TDDFT code couples the monomer excitations to obtain the excited states of the total system
(often denoted as coupled frozen density embedding, FDEc). This can be related to excitonic couplings
between the monomers [297].

The current implementation is restricted to NOSYM calculations and Singlet-Singlet excitations without
frozen core approximation. It makes use of the ALDA kernel (including a Thomas-Fermi part for the
contribution arising from the non-additive kinetic energy) for consistency with the uncoupled FDE
implementation for excited states. Some features have not or not extensively been tested and should be
used with great care, e.g., linear dependencies in the basis set. Details on the calculation of transition
moments, oscillator and rotational strengths are described in Ref. [298].

Subsystem TDDFT (FDEc) calculations can be invoked with the SUBEXCI key.

SUBEXCI input

FDEc calculations on coupled excited states first require that an uncoupled FDE-TDDFT calculation has
been performed for every subsystem that should be included in the coupled calculation, and that the
corresponding TAPE21 files, in which the considered subsystems are "active", have been saved (see the
separate FDE input description). This means that it is not possible to use the information on frozen/inactive
fragments from a TAPE21 file of a previous uncoupled FDE calculation, which contains all subsystems.

Although it is technically possible to use TAPE21 files from non-FDE calculations on the separate
subsystems, this would lead to results that are inconsistent with the subsystem TDDFT methodology from
Ref. [296]. In any case, a previous TDDFT calculation for each subsystem that should be included in the
coupling procedure is necessary. If that is not the case, the subsystem will still be considered in the
calculation of the total electron density (needed in the setup of the exchange-correlation kernel), but will not
be included in the coupling procedure.

The first subsystem should always be one of the coupled subsystems. The input will then look like the
corresponding input for an uncoupled FDE-TDDFT calculation, but in addition should contain the following
block:

SUBEXCI
{LOWEST nlowest}
{OPTSTATES list_of_optstates}
{CTHRES coupling_threshold}
{SFTHRES solutionfactor_threshold}
{COUPLBLOCK}
{TDA}
{CICOUPL}

END

LOWEST nlowest

The selection of the excited states to be coupled consists of two steps. First, a number of reference
states are selected. As a default, the nlowest (default: 10) lowest excited states present on the
fragment file for the first subsystem are considered.

132

OPTSTATES list_of_optstates

If the keyword OPTSTATES is given, only those excited states of the first subsystem are considered as
reference states that are given in the list_of_optstates (numbers of states separated by blanks).

CTHRES coupling_threshold

Second, all excitations of all subsystems (present on the fragment TAPE21 files) with an excitation
energy that differs by less than coupling_threshold (to be given in units of eV; default: 30 eV) from
one of the reference states are selected to be included in the coupling. Note that additional excited
states of system 1 may be included here.

COUPLBLOCK

If COUPLBLOCK is specified in the input, all couplings between all of these local excited states are
included. Otherwise (default), the coupling_threshold is also applied to select pairs of states for
which couplings are calculated. I.e., couplings are not calculated if the two particular states to be
coupled differ in energy by more than coupling_threshold.

SFTHRES solutionfactor_threshold

To reduce the computational effort, it is possible to ignore the effect of orbital pairs with coefficients less
than solutionfactor_threshold in the solution factors (TDDFT eigenvectors) of the underlying
uncoupled calculation in the construction of the exact trial densities during the calculation of the
coupling matrix elements. These orbital pair contributions are not ignored in the subsequent calculation
of transition moments, oscillator, and rotational strengths. The default value of 0.00001 typically leads to
a precision of the coupled excitation energies of about 0.0001 eV.

TDA

TDA specifies the use of the Tamm-Dancoff-Approximation (section on TDA) in the underlying
uncoupled FDE-TDDFT calculations (Ref. [364]). Contrary to the full SUBEXCI-TDDFT variant,
SUBEXCI-TDA allows for the usage of hybrid functionals in the underlying uncoupled FDE-TDDFT
calculations.

CICOUPL

Within the Tamm-Dancoff Approximation, the couplings between localized excited states on different
subsystems correspond directly to so-called exciton couplings (see Ref. [364]). The CICOUPL keyword,
in conjunction with TDA, prints these exciton couplings. It is also possible to use CICOUPL with full
FDEc-TDDFT. In that case, the excitonic couplings between monomers are reconstructed from an
effective 2x2 CIS-like eigenvalue problem, as e.g. done in Ref. [297].

In addition, the input file may contain either an EXCITATION block or the keyword DIFFUSE. Both options
lead to a slight adaption of the integration grid. Apart from this, the EXCITATION block will be ignored.

The key ALLOW PARTIALSUPERFRAGS is currently necessary to be able to use subsystem information for
only one subsystem from a TAPE21 file of a previous FDE calculation:

ALLOW PARTIALSUPERFRAGS

Restrictions and pitfalls

In the current implementation, only the electron density of the embedded system is calculated. Therefore,
with the exception of interaction energies, only properties that depend directly on the electron density (e.g.,
dipole moments) are available. In addition, the TDDFT extension allows the calculation of electronic
excitation energies and polarizabilities, and NMR shieldings can be calculated.

133

EVERYTHING ELSE IS NOT YET IMPLEMENTED. THE RESULTS OBTAINED FOR OTHER
PROPERTIES MIGHT BE MEANINGLESS.

In particular, energy gradients are not yet available.

Kinetic energy approximant:
Although the effective embedding potential is derived from first principles using universal density
approximants, the ADF implementation relies on approximations. Currently, two implemented
approximations are recommended [188]: PW91k (also known as GGA97) which uses electron densities and
the corresponding gradients to express the nonadditive kinetic energy component of the embedding
potential, or TF (Thomas-Fermi LDA approximant), which does not use gradients at all. Either approximation
is applicable only in cases where the overlap between electron densities of the corresponding interactions is
small. Note: so far, no approximation has been developed for the strong-overlap case - two subsystem
linked by covalent bonds for instance.

SCRF: Self-Consistent Reaction Field

The following sections describe the SCRF method and explain the related ADF input options. SCRF may not
be available in the standard distribution on all platforms, contact SCM (support@scm.com) to request SCRF
on your platform.

Introduction

by Donald Bashford, St. Jude Children's Research Hospital Memphis, updated October 26, 2011.

SCRF (Self-Consistent Reaction Field) is a method of accounting for the effect of a polarizable solvent (and
optionally, a classical macromolecular system) on the quantum system. Consider first the case with only a
polarizable solvent. The solvent is modeled as a dielectric continuum with a dielectric constant, EPSSOL,
that fills the space outside the quantum system. The boundary between the interior (where the dielectric
constant is unity) and the higher-dielectric exterior is the molecular surface, as defined by Connolly [251].
The charges of the quantum system cause polarization of this continuum, giving rise to a reaction field which
then acts back on the quantum system potentially altering its charge distribution. The SCRF algorithm
calculates the reaction field through solutions to the Poisson or Poisson--Boltzmann equation, and iteratively
obtains self-consistency between the reaction field and charge distribution of the quantum system. These
ideas have their roots in Onsager's consideration of a dipole and a molecule with point-dipole polarizabilities
inside a sphere [252], and have also been developed in the Polarizable Continuum Model of Tomasi and co-
workers [253, 254]. The first use of these ideas in DFT calculations using ADF was by Chen et al. [255] and
Mouesca et al. [256]. At around the same time the Tomasi group also used the PCM model with DFT [257].
In the past, SCRF calculations with ADF were done in the research groups of Noodleman, Bashford and
Case using custom modifications of ADF. Now the method is available in a standardized form.

More recently, the ability to include a classical representation of a macromolecular environment, such as a
protein around an enzyme active site, has been added to ADF. In what follows, we refer to the
macromolecule surrounding the QM system as 'the protein' for historical reasons. It should be understood
that the QM region and the protein region are distinct. For example, if the QM region includes some protein
sidechain moieties, these are part of the QM system, and not the protein.

The protein exerts its effect in two ways: (1) The protein region can be assigned a dielectric constant
(EPSPROT) that is different from either the QM region (1.0) or the solvent region (EPSSOL). This changes
the reaction field that arises from the polarization of the environment by the charges of the QM atoms. (2)
The protein has charges of it's own, which interact with the QM region in a way that is mediated by the
complex dielectric environment described above. Calculations of this kind were first done by Li et al. [343].

The specific algorithm is:

1. Solve for the electronic structure in vacuum by the usual QM methods.

134

mailto:support@scm.com

2. Nucleus-centered partial charges are derived from the electronic structure using a least-squares
potential-fitting SVD algorithm [256], which is somewhat similar to the CHELPG algorithm [258].

3. Only in calculations with a surrounding protein: Calculate the electrostatic potential due to the
partial charges of the protein in the three-dielectric environment defined by the protein and QM-
region coordinates and radii. We refer to this field as the 'protein field' φprot.

4. Using the nucleus-centered partial charges:
◦ Solve the Poisson equation (or, if an ionic strength is specified, the Poisson-Boltzmann

equation) for φsol, the electrostatic potential in the presence of the above-described
solvent dielectric environment.

◦ Solve the Poisson equation for φvac, the electrostatic potential in a uniform vacuum
environment.

◦ The reaction field potential φrf is the difference between these two potentials: φrf = φsol -
φvac.

5. Recalculate the electronic structure in the presence of the reaction field, and the protein field (if a
protein field is present). This is done by adding the potentials φrf (and possibly φprot) to the total
potential evaluated on the numerical integration grid when calculating Fock matrix elements.

6. Check changes in energy for convergence, and if not converged, return to step 4. Note that
because φprot does not depend on electronic structure in the QM region, there is no need to return
to step 3.

The algorithm also includes a correction for the small difference between the fit and true electron densities.

At this time, the SCRF procedures are only available for single-point calculations. No geometry optimization
or frequency calculations can be done together with SCRF.

Several user-settable options can affect the SCRF procedure.

It is important the the QM calculation be done without use of molecular symmetry, as the finite-difference
Poisson solver involves approximations that do not respect symmetry. Therefore, one should specify
SYMMETRY NOSYM in the general input.

The choice of atomic radii and the probe radius determines the location of the dielectric boundary. This
molecular surface comprises spherical patches of the contact surface generated by a solvent-sized probe
rolling over the atomic radii, the toroidal surfaces swept out as the probe roles in grooves between pairs of
atoms, and the inverse spherical patches generated when the probe simultaneously touches three or more
[251, 259]. In volumetric terms, the In volumetric terms, the molecular surface divides the space of all points
that are accessible to any part of a probe sphere that cannot penetrate into any of the atomic spheres, for
the space that is not accessible [260]. The solvent accessible volume is assigned the solvent dielectric
constant, while the inaccessible volume is assigned a dielectric constant of unity (the vacuum dielectric
constant). Smaller radii move the dielectric surface closer to the atomic nuclei which typically leads to
stronger calculated solvent effects.

The routine for calculating atomic partial charges chooses charges that best reproduce the potential outside
the molecule that is generated by the nuclei and the electron density. It sets up a grid of potential-sampling
points in a region outside the molecule, calculates the potential on this grid due to the electron density and
nuclei, and finds the set of nucleus-centered charges that provides the best fit, in a least-squares sense, to
the potential on the sampling points. The charge optimization is done using a singular value decomposition
(SVD) method described by Mouesca et al. [256]. These calculations can be affected by user options
concerning constraints on total charge and dipole, charge-fitting grid spacing and SVs to be deleted.

The solution of the Poisson or Poisson--Boltzmann equation utilizes libraries from Donald Bashford's MEAD
programming suite. These use a finite-difference method that involves setting up cubic lattices around the
molecule. Finer grids can be nested inside coarser ones to help manage trade-offs between accuracy and
computational cost. The finest grid should cover the entire quantum system (that is, regions of significant
electron density), and for good accuracy of φrf should be no coarser than about 0.15 Å. The outermost grid
should extend 10 to 15 Å into the space beyond the model so that boundary conditions are accurate. A

135

reasonable scheme for grid selection based on atomic coordinates is implemented as the default, but the
MEAD grids are also user-adjustable.

The SCRF method should not be used in the same ADF run with other solvation modeling methods such as
COSMO or DRF. However, it is often useful to do geometry optimization with COSMO to get the single-point
geometry for an SCRF run.

Additional considerations with a protein environment

The special considerations that apply when a protein environment is specified are similar to those in QM/MM
calculations. The classical macromolecular region is specified by a .pqr file that provides the Cartesian
coordinates, partial charges and radii of all the atoms of the region, as well as atom identifiers such as
residue and atom numbers, in a format similar to PDB format. The QM atoms are specified in the ADF input
file in the usual way. In contrast to the QM/MM situation, the ATOM block in the ADF input should specify
only QM atoms, while the .pqr file should specify only the atoms of the protein. It is essential that no
symmetry be used in the QM calculation (i.e. SYMMETRY NOSYM) even if the QM system possesses
symmetries. The protein surroundings, as well as the numerical asymmetries of the finite-difference Poisson
solver, will break any symmetry that might exist, but the QM part of the calculation has no way to know in
advance about this broken symmetry.

Classical--QM bonds

If there is no covalent linkage between atoms in the QM region and the protein, the situation is
straightforward. If there is such a linkage, some of the same considerations regarding capping atoms and
link atoms as in QM/MM calculations apply [ref. Sec. 1.2 of ADF QM/MM manual]. One must typically add
capping hydrogen atoms to the QM system to satisfy valence requirements. Because the interaction
between the regions is purely electrostatic, we do not encounter the classical-side valency issues or van der
Waals interaction issues that one finds in the QM/MM case. This is because this model involves no concept
of bonds among the protein atoms. However, the link atom will typically be only a few tenths of an Angstrom
from the capping hydrogen atom, so if the link atom has a significant partial charge, it could perturb the QM
system in strange ways. Therefore we typically choose the link atom to be one that would normally only
have a small partial charge (such as an aliphatic carbon) and then set its charge to zero in the .pqr file,
perhaps with some minor adjustments of nearby partial charges to maintain the correct total charge.

Generation of the .pqr file

Typically one has at hand a PDB-format file of the macromolecule that one would like to include as the
'protein' part of the environment, and one needs to generate a suitable pqr file from this. PDB files usually
lack hydrogen atoms, and often have missing heavy atoms at chain termini and in flexible loops. These
problems need to be addressed in much the same way as for standard molecular mechanics calculations,
although the requirements for a pqr file are less rigorous given the lack of classical bonds in the model.
Although there are no specific tools for generating PQR files in the ADF distribution, a number of tools are
available in the molecular modeling community. Amber users can use the usual LEaP tool to prepare prmtop
and coordinate files, and then the utility, ambpdb can be used with the -pqr flag to generate a pqr file. Users
of CHARMM can generate a structure file (PSF file) for the protein and a CHARMM-generation PDB file
(containing hydrogens and using CHARMM naming conventions) and then use a perl script provided by the
MEAD suite (available from http://stjuderesearch.org/site/lab/bashford) to generate a pqr file from the
CHARMM-generated files. Another option is to use pdb2pqr either as a downloaded program or as web
server. Information about pdb2pqr can be found at http://www.poissonboltzmann.org/pdb2pqr.

Once the initial version of the pqr file is generated, it is likely that some hand editing will be needed,
particularly if there are covalent linkages between the protein and QM atoms. In cases with no linkages,
such as a (QM) drug in a (classical) protein binding site, the most straightforward procedure is to leave the
drug out during generation of the pqr file. Then no pqr-editing needs to be done, but it is necessary that the
QM coordinates and the coordinates in the pqr file be compatible, e.g., that the drug is correctly positioned in
the binding site. If there are covalent links between the QM and protein regions, for example if some
sidechains in an enzyme active site are part of the QM region, then the pqr file will probably have been
prepared with these sidechains included. Any atoms that will be part of the QM region must be removed

136

http://www.scm.com/Doc/Doc2014/QMMM/page1.html
http://stjuderesearch.org/site/lab/bashford
http://www.poissonboltzmann.org/pdb2pqr

from the pqr file. If this is not done, the QM region will ``feel'' protein partial charges that sit on top of the
QM-region nuclei; this will generate unphysical results or outright program crashes. There is no need to
worry about dangling valences in the pqr file, but it may be necessary to edit link-atom charges, as noted
above. The QM atom set may need to include capping atoms, (typically hydrogen) to satisfy valence
requirements where bonds cross the QM--protein boundary.

Format of the pqr file

A pqr file is similar to a PDB (Protein Data Bank) file but with atomic charge and radii in the occupancy and
B-factor columns, respectively. More specifically, lines beginning with either 'ATOM' or 'HETATM' (no
leading spaces) are interpreted as a set of tokens separated by one or more spaces or TAB characters.
Other lines are ignored. The tokens (including the leading ATOM or HETATM are interpreted as follows:

ignored ignored atName resName resNum x y z charge radius chainID

The first two (ignored) tokens must be present, or the line will not be parsed correctly. The chainID token is
optional, and any tokens beyond that are ignored. Tokens can be of arbitrary length, but must not contain
spaces or tabs. Lines that do not begin with "ATOM" or "HETATM" are ignored. The programs make no
distinction between ATOMs and HETATMs. No atname-resnum-chainid combination can occur more than
once.

Note that the .pqr format does not support some PDB-isms such as a altLoc fields, and a one-character
chainID between resName and resSeq. Doing so would break the whitespace separated tokens convention
that allows for easy processing with perl scripts, etc. Instead we put 'chainID' in a position more or less
analogous with the PDB segID. (Note that the pdb2pqr program differs on this point, and pqr files with
chainIDs between resName and resSeq may need to be modified.

SCRF Input

The SCRF input is contained in an SCRF input block as shown below, optional keywords being surrounded
by curly brackets.

SCRF
MEADGRID string integer real
RADIUS string real
{CYCLES integer}
{TOLERANCE real}
{ATOM_MAXR real}
{CHGFIT_CONSTRAIN string}
{DELATOM integer}
{GRID_SPACING real}
{SVD_CONDITION real}
{SV_DELETE integer}
{EPSSOL real}
{IONIC_STR real}
{SOLRAD real}
{PROTEIN string}
{EPSPROT real}
{SAVESTATE string}

END

The SCRF block contains two mandatory keys: MEADGRID and RADIUS. All other keys are optional.

MEADGRID string integer real

Specifies the centering style, dimension and spacing for the MEAD grid. Recognized centering styles
are "ON_ORIGIN" and "ON_GEOM_CENT". The grid dimension specifies the number of points on one
edge of a cubic grid. The grid spacing is given in Angstroms. The edge length of the grid is the product

137

of the dimension minus 1 and the spacing. Multiple records may be used to specify sequentially finer
grid levels, but finer grids must fit within the coarsest grid.

RADIUS string real

Specifies the radius in Angstroms for an atom type. Used in fitting the ADF electronic structure to partial
atomic charges and for defining the boundary between regions of low and high dielectric in MEAD. The
atom types should be the same as those used in the ATOMS input block. There must be one RADIUS
record for each atom type in the ATOMS input block.

CYCLES integer

Specifies the maximum number of cycles of SCRF to perform. Whether or not the SCRF run has
converged, it will terminate when the number of cycles exceeds the value specified by CYCLES.

TOLERANCE real

Specifies convergence criterion in kcal/mol for SCRF. For each cycle of SCRF the sum of ADF energy,
reaction energy, the energy correction and nuclear reaction energy is calculated. If the difference in
subsequent sums is less than the TOLERANCE value, SCRF is considered to have converged.
Defaults to 0.01.

ATOM_MAXR real

Specifies the outer atomic radius in Angstroms for the system. For each atom, grid points that lie
between the atomic radius specified by the RADIUS keyword and the outer atomic radius specified here
are included in charge fitting. Defaults to 5.0.

CHGFIT_CONSTRAIN string

Specifies the type of constraints to be used in charge fitting. Recognized constraints are "NONE",
"CHARGE" or "DIPOLE". NONE specifies no constraints will be applied, CHARGE specifies that only
the molecular charge will be constrained and DIPOLE specifies that both the molecular charge and
dipole will be constrained. Default is DIPOLE.

DELATOM integer

Specifies which atoms should be excluded from the charge fitting procedure. The input order in the
ATOMS input block is used to identify the excluded atom. Multiple DELATOM records may be declared
and will be applied cumulatively. The default is to include all atoms.

GRID_SPACING real

Specifies the grid spacing in Angstroms for the charge fitting grid. The default is 0.2.

SVD_CONDITION real

Specifies a condition number threshold for inclusion of singular values (SV) in singular value
decomposition (SVD) during charge fitting. The default is 0.000001.

SV_DELETE integer

Instead of using a condition number threshold for deciding which SV to include in charge fitting,
SV_DELETE may be used to specify how many SV should be excluded. The smallest SV are excluded
first. The default is to use a condition number threshold. If both SV_DELETE and SVD_CONDITION are
specified, the SV_DELETE value will take precedence.

EPSSOL real

138

Specifies the solvent dielectric for MEAD. Defaults to the dielectric of water: 80.0.

IONIC_STR real

Specifies an ionic strength in mol/L for the solvent in MEAD. Defaults to 0.0.

SOLRAD real

Specifies the radius in Angstroms of a solvent-sized probe that rolls along the surface of the molecular
system to define the dielectric boundary. Defaults to a water-sized probe size of 1.4.

PROTEIN string

Use of this keyword turns on the SCRF solinprot option by specifying the prefix of a pqr file containing
the protein definition for MEAD solinprot. The filename suffix must be pqr. Pqr format contains one line
per atom and begins with the ATOM keyword followed by 10 fields separated by white space and in the
order: atom number, atom name, residue name, residue number, x, y and z coordinates, partial atomic
charge and atomic radius. The atoms of the quantum mechanical system should NOT be included in the
pqr file.

EPSPROT real

Specifies the protein dielectric for MEAD. Defaults to 4.0.

SAVESTATE string

Specifies a filename in which ground state data for a subsequent VSCRF calculation will be saved. The
data is saved in a binary KF file.

VSCRF: Vertical Excitation Self-Consistent Reaction Field

Introduction

by Donald Bashford, St. Jude Children's Research Hospital Memphis, October 26, 2011.

VSCRF is a method of accounting for the effect of the solvent environment (and possibly a macromolecular
environment) on the energy of absorption/emission transitions between electronic states. It is built on the
DeltaSCF method of calculating electronic transition energies and a continuum dielectric model of the
environment in a way that is consistent with the Franck--Condon principle. The original development and
application of the procedure can be found in the papers of Liu et al. [344] and Han et al. [345].

Suppose one is calculating the energy for a transition between an initial state i with total density (including
nuclei) ρi and a final state f with total density ρf. State i has existed long enough that the dielectric
environment surrounding it has had time to fully respond, including changes in the distributions of nuclear
coordinates and solvent-molecule dipole moments. The density ρi has therefore given rise to a reaction field

φ(r)i,eq and is self-consistent with it according to the ideas described in the SCRF part of the documentation,
therefore the energy in solvent of the initial system is

Gi(ρi) = Eο(ρi) + 1/2 ∫ ρi(x) φ(r)i,eq(x) d3x

where Eο is the vacuum density functional. During the excitation process, the change in density Δ ρfi = ρf - ρi
must work against the non-optical component of the pre-existing equilibrium reaction field as well as the
optical reaction field arising in response to Δ ρ itself. The full theoretical development is given in the paper of
Liu et al. [344] and the result is that the excitation energy is:

139

Δ Gifex = Eο(ρi) - Eο(ρf) 1/2 ∫ Δ ρi(x) [2 φ(r)i,eq(x) + Δ φ(r)op(x)] d3x

where Δ φ(r)op is the reaction field that arises from the optical dielectric constant which is related to the index

of refraction: εop = n2 ≈ 2 for organic liquids.

In the following description of the VSCRF algorithm, we adopt the language of an optical absorption
calculation. The initial state is therefore referred to as the ground state, and the final state as the excited
state. For emission calculations, these roles would be reversed. If there is a macromolecular environment
surrounding the protein that modeled by macroscopic dielectric theory as described in the SCRF
documentation in this manual, this is referred to as the 'protein'. With these definitions in mind, the VSCRF
algorithm is:

1. An SCRF calculation for the ground state, either with or without a surrounding protein, is a
prerequisite for a VSCRF calculation.

2. The electronic structure of the excited state (with occupations initially selected by the user) is
calculated in vacuum.

3. The ground-state reaction field, the protein field (if any) and electron density are read in from the
results of the previous ground-state calculation. It is essential that the excited-state and ground
state calculations use exactly the same geometry, ADF grids, basis functions, XC functionals,
MEAD grids and so on.

4. The excited-state electron density calculated in step 1 is subtracted from the stored ground-state
density to obtain Δρ.

5. Nucleus-centered partial charges are derived from δρ using a least-squares potential-fitting SVD
algorithm [256] which is somewhat similar to the CHELPG algorithm [258].

6. ◦ Set the exterior dielectric environment to the optical dielectric constant of the solvent,
and the optical dielectric constant of the protein. These are equal to the square of the
index of refraction of these materials, and are typically ≈ 2 (the default value).

◦ Using the nucleus-centered partial charges for Δρ, solve the Poisson equation using the
finite-difference method in the above dielectric environment to obtain Δφsol.

◦ Set the exterior dielectric constant to 1 everywhere and solve the Poisson equation by
the finite-difference method to obtain Δφvac

◦ The optical reaction field to the excitation, Δφ(r)op is the difference between Δφsol and
Δφvac. In this subtraction, artifacts related to the finite difference method cancel out.

7. Recalculate the electronic structure in the presence of the optical reaction field, as well as the
previously stored ground-state reaction field and the protein field (if any). This is done by placing
these potentials on the ADF numerical integration grid when calculating Fock matrix elements.

8. Check changes in energy for convergence, and if not converged, return to step 6.

It should be noted that some additional calculations may be needed to obtain a proper excited-state energy.
For example, if the first excited singlet state is prepared by promoting one of the α electrons from the HOMO
to the LUMO, the resulting (single-determinant) wavefunction is not a pure singlet state but actually a
mixture of singlet and triplet states [323]. Calling this mixed state S'1, the resolution of the problem is to also
calculate the energy of a corresponding triplet state, T1 (prepared, for example, by adding one α electron to
the LUMO and removing one β electron from the HOMO) and using the formula [323]:

ES1 = 2S'1 - ET1

See Liu et al. [344] or Han et al. [345]. for specific examples of this in the ADF/VSCRF context.

VSCRF Input

The VSCRF input is contained in a VSCRF input block as shown below, optional keywords being
surrounded by curly brackets.

140

VSCRF
MEADGRID string integer real
RADIUS string real
INITIAL_STATE string
{CYCLES integer}
{TOLERANCE real}
{ATOM_MAXR real}
{CHGFIT_CONSTRAIN string}
{DELATOM integer}
{GRID_SPACING real}
{SVD_CONDITION real}
{SV_DELETE integer}
{EPS_OPT_SOL real}
{SOLRAD real}
{PROTEIN string}
{EPS_OPT_PROT real}

END

The VSCRF block contains three mandatory keys: MEADGRID, RADIUS and INITIAL_STATE. All other
keys are optional. It is highly recommended that the parameters specifying the MEAD grid and the details of
the charge-fitting SVD procedure be the same for both the SCRF initial state and the VSCRF final state
calculations. These procedures involve some numerical error, and keeping parameters the same will
promote cancellation of these errors as energy differences are taken as the final results.

MEADGRID string integer real

Specifies the centering style, dimension and spacing for the MEAD grid. Recognized centering styles
are "ON_ORIGIN" and "ON_GEOM_CENT". The grid dimension specifies the number of points on one
edge of a cubic grid. The grid spacing is given in Angstroms. The edge length of the grid is the product
of the dimension minus 1 and the spacing. Multiple records may be used to specify sequentially finer
grid levels, but finer grids must fit within the coarsest grid. It is highly recommended that the parameters
specifying the MEAD grid be the same for both the SCRF initial state and the VSCRF final state
calculations.

RADIUS string real

Specifies the radius in Angstroms for an atom type. Used in fitting the ADF electronic structure to partial
atomic charges and for defining the boundary between regions of low and high dielectric in MEAD. The
atom types should be the same as those used in the ATOMS input block. There must be one RADIUS
record for each atom type in the ATOMS input block.

INITIAL_STATE string

Specifies the filename of a binary KF file containing the ground state data for VSCRF. The KF file is
created by a preliminary SCRF calculation using the SAVESTATE option. It is highly recommended that
the parameters specifying the MEAD grid and the details of the charge-fitting SVD procedure be the
same for both the SCRF initial state and the VSCRF final state calculations.

CYCLES integer

Specifies the maximum number of cycles of VSCRF to perform. Whether or not the VSCRF run has
converged, it will terminate when the number of cycles exceeds the value specified by CYCLES.

TOLERANCE real

Specifies convergence criterion in kcal/mol for VSCRF. For each cycle of VSCRF the sum of ADF
energy, Potential Term, and Response Term is calculated. If the difference in subsequent sums is less
than the TOLERANCE value, VSCRF is considered to have converged. Defaults to 0.01.

141

ATOM_MAXR real

Specifies the outer atomic radius in Angstroms for the system. For each atom, grid points that lie
between the atomic radius specified by the RADIUS keyword and the outer atomic radius specified here
are included in charge fitting. It is highly recommended that the parameters specifying the details of the
charge-fitting SVD procedure be the same for both the SCRF initial state and the VSCRF final state
calculations. Defaults to 5.0.

CHGFIT_CONSTRAIN string

Specifies the type of constraints to be used in charge fitting. Recognized constraints are "NONE",
"CHARGE" or "DIPOLE". NONE specifies no constraints will be applied, CHARGE specifies that only
the molecular charge will be constrained and DIPOLE specifies that both the molecular charge and
dipole will be constrained. It is highly recommended that the parameters specifying the details of the
charge-fitting SVD procedure be the same for both the SCRF initial state and the VSCRF final state
calculations. Default is DIPOLE.

DELATOM integer

Specifies which atoms should be excluded from the charge fitting procedure. The input order in the
ATOMS input block is used to identify the excluded atom. Multiple DELATOM records may be declared
and will be applied cumulatively. It is highly recommended that the parameters specifying the details of
the charge-fitting SVD procedure be the same for both the SCRF initial state and the VSCRF final state
calculations. The default is to include all atoms.

GRID_SPACING real

Specifies the grid spacing in Angstroms for the charge fitting grid. It is highly recommended that the
parameters specifying the details of the charge-fitting SVD procedure be the same for both the SCRF
initial state and the VSCRF final state calculations. The default is 0.2.

SVD_CONDITION real

Specifies a condition number threshold for inclusion of singular values (SV) in singular value
decomposition (SVD) during charge fitting. It is highly recommended that the parameters specifying the
details of the charge-fitting SVD procedure be the same for both the SCRF initial state and the VSCRF
final state calculations. The default is 0.000001.

SV_DELETE integer

Instead of using a condition number threshold for deciding which SV to include in charge fitting,
SV_DELETE may be used to specify how many SV should be excluded. The smallest SV are excluded
first. The default is to use a condition number threshold. If both SV_DELETE and SVD_CONDITION are
specified, the SV_DELETE value will take precedence. It is highly recommended that the parameters
specifying the details of the charge-fitting SVD procedure be the same for both the SCRF initial state
and the VSCRF final state calculations.

EPS_OPT_SOL real

Specifies the dielectric constant of the solvent at optical frequencies for MEAD. This value is equal to
the square of the index of refraction of the solvent. Defaults to the value for water: 2.0.

SOLRAD real

Specifies the radius in Angstroms of a solvent-sized probe that rolls along the surface of the molecular
system to define the dielectric boundary. Defaults to a water-sized probe size of 1.4.

PROTEIN string

142

Use of this keyword turns on the VSCRF solinprot option by specifying the prefix of a pqr file containing
the protein definition for MEAD solinprot. This option can only be used if the ground state SCRF
calculation also used a protein. The filename suffix must be pqr. Pqr format contains one line per atom
and begins with the ATOM keyword followed by 10 fields separated by white space and in the order:
atom number, atom name, residue name, residue number, x, y and z coordinates, partial atomic charge
and atomic radius. The atoms of the quantum mechanical system should NOT be included in the pqr
file.

EPS_OPT_PROT real

Specifies the dielectric constant of the protein at optical frequencies for MEAD. This value is equal to
the square of the index of refraction of the protein. Defaults to the value for organic liquids: 2.0.

3D-RISM: 3D Reference Interaction Site Model

Introduction

The three-dimensional reference interaction site model with the closure relation by Kovalenko and Hirata
(3D-RISM-KH) provides the solvent structure in the form of a 3D site distribution function, gγUV(r), for each
solvent site, γ. Note that the use of 3D-RISM as implemented in ADF is an export option.

It enables, at modest computational cost, the calculations of thermodynamics, electronic properties and
molecular solvation structure of a solute molecule in a given molecular liquid or mixture. Using 3D-RISM,
one can study chemical reactions, including reaction coordinates and transition state search, with the
molecular solvation described from the first principles. The method yields all of the features available by
using other solvation approaches. The 3D-RISM part of ADF has not been parallellized.

Details on the implementation of 3D-RISM-KH in ADF can be found in Ref. [300], with applications in Ref.
[301]. The theory of 3D-RISM-KH in combination with DFT can be found in Refs. [302-304,349]. A
combination of 3D-RISM-KH with FDE (frozen-density embedding) can be found in Ref. [305].

Similar to explicit solvent simulations, 3D-RISM properly accounts for chemical peculiarities of both solute
and solvent molecules, such as hydrogen bonding and hydrophobic forces, by yielding the 3D site density
distributions of the solvent. Moreover, it readily provides, via analytical expressions, all of the solvation
thermodynamics, including the solvation free energy potential, its energetic and entropic decomposition, and
partial molar volume and compressibility. The expression for the solvation free energy (and its derivatives) in
terms of integrals of the correlation functions follows from a particular approximation for the so-called closure
relation used to complete the integral equation for the direct and total correlation functions.

Solvation free energy

The solvation free energy can be calculated as:

Solvation Free Energy

= [(Total Bonding Energy) + (Internal Energy) - T * (Entropy) + (Excess Chemical Potential)]_3D-RISM

- [(Total Bonding Energy) + (Internal Energy) - T * (Entropy)]_Gas-Phase

If one assumes that the internal energy and the vibrational and rotational entropy of the solute molecule is
the same in solution and in gas phase, then this simplifies to:

Solvation Free Energy

= [(Total Bonding Energy) + (Excess Chemical Potential)]_3D-RISM

- [(Total Bonding Energy)]_Gas-Phase

143

However, a formally accurate calculation should include the difference between the thermal corrections from
frequency calculations produced by ADF in the SCF calculation with 3D-RISM-KH solvation and in gas
phase.

Input

When performing 3D-RISM simulations, each atom in the ATOMS block must have two parameters
specified, SigU and EpsU, for example:

ATOMS
C 0.00 0.00 0.00 SigU=3.50 EpsU=0.066
...

END

The SigU and EpsU parameters have the same meaning as Sigma_alpha and Eps_alpha for atoms of the
solvent in the SOLVENT sub-block below. They can be obtained from a Lennard-Jones force-field
parameter sets.

All 3D-RISM-related input keys are contained in a RISM input block. Below, only the mandatory keywords
are shown. Optional keywords are described in the next section.

RISM title
RISM1D

FLUIDPARAM temper=298. DielConst=78.497 UTotDens=1/A3 0.03333
SUBEND
SOLVENT ArbitrarySolventName

UNITS uWeight=g/mol ULJsize=A ULJenergy=kcal/mol Ucoord=A Udens=1/A3
PARAMETERS Weight NAtomTypes

N1 Z_alpha1 Sigma_alpha1 Eps_alpha1 X1_1 Y1_1 Z1_1
X1_2 Y1_2 Z1_2
...

N2 Z_alpha2 Sigma_alpha2 Eps_alpha2 X2_1 Y2_1 Z2_1
X2_2 Y2_2 Z2_2
...

...
DENSPE=density

SUBEND
SOLUTE ArbitrarySoluteName

BOXSIZE sizeX sizeY sizeZ
BOXGRID npX npY npZ

SUBEND
END

The RISM1D sub-block contains general parameters for the 1D-RISM calculation of the solvent(s). Even
though all RISM1D sub-keys have reasonable defaults, the FLUIDPARAM sub-key deserves a special
attention because its default values are only applicable if the solvent is water. Thus, you may need to
change some of these values when modeling a different solvent, at least the dielectric constant and the
density. Note that even when using all default values from the RISM1D sub-block the sub-block itself must
be specified, even if empty. See below for complete description of the RISM1D sub-block.

The SOLVENT sub-block can be repeated if the solvent is a mixture. Each SOLVENT sub-block contains
parameters for one solvent. First, each solvent has a name, which is specified on the SOLVENT keyword's
line and is arbitrary. The first line in the SOLVENT sub-block must contain the UNITS key. You should leave
it at the default values. Then follow the actual solvent parameters. In principle, each solvent consists of
multiple atoms and functional groups. For simplicity, we will call each of them an atom. For example, in 3D-
RISM therms, methanol consists of 3 "atoms": CH3, O, and H. Each such atom has a set of three
parameters, shared between all atoms of the same type, and the coordinates. These parameters follow the
PARAMETERS keyword. The line with the PARAMETERS keyword itself must specify the molecular weight

144

of the solvent and the number of atom types that follow. The first line for each atom type contains, in this
order: number of atoms of this type, zα, σα, εα, three coordinates for the first atom of this type. If there is
more than one atom of this type then the coordinates for the 2nd and other atoms follow on subsequent
lines. The SOLVENT sub-block is concluded by the specific density of this solvent, by default, in molecules
per cubic angstrom. This number should be equal to the total density for mono-component solvents.

For example, the SOLVENT block for water would typically look as:

SOLVENT water
UNITS uWeight=g/mol ULJsize=A ULJenergy=kcal/mol Ucoord=A

Udens=1/A3
PARAMETERS Weight=18.015 nAtoms=2
1 -0.8476 3.166 0.1554 0.000000 0.00000 0.000000
2 0.4238 1.000 0.0460 -0.816490 0.00000 0.577359

0.816490 0.00000 0.577359
DENSPE=0.03333

SUBEND

The SOLUTE sub-block specifies 3D-RISM parameters for your molecule. The BOXSIZE and BOXGRID
sub-keys specify dimensions of the simulation box, in Angstrom, and the number of points of grid in each
direction. The box should be twice as large as the molecule and the BOXGRID values must be a power of 2.
The size/np ratio defines the grid spacing in each direction and this should be not larger than 0.5 angstrom.

The optional 3D-RISM keys for the RISM1D and SOLUTE sub-blocks are listed below together with their
defaults.

...
RISM1D Theory=RISM Closure=KH

! optional RISM1D subkeys with their default values:
FLUIDPARAM temper=298. DielConst=78.497 UTotDens=1/A3 0.03333
OUTPUT PrintLev=5 File=solvent OutList=GXT
GRID Nr=8192 dR=0.025 MaxRout=100.0 MaxKout=0.0
MDIIS N=20 Step=0.5 Tolerance=1.e-12
ELSTAT LRsmear=1.0 Adbcor=0.5
ITER Ksave=-1 Kshow=1 Max=10000

SUBEND
...

OUTPUT key:
PrintLev - print level;
File - common base name for output files;
OutList - which information will be written to output files: G - distribution function, C - direct correlation
function, H - total correlation function, T - thermodynamics.

GRID key:
Nr - the size of the 1D-RISM grid, must be a power of 2;
dR - mesh size in Angstrom;
MaxRout - plot range in direct space;
MaxKOut - plot range in reciprocal space.

MDIIS key:
N - number of vectors in the DIIS space;
Step - step size;
Tolerance - convergence criterion.

ELSTAT key:
LRsmear - smearing parameters for coulomb potential;

145

ITER key:
Ksave - save the current solution every Ksave steps (0 - do not save);
Kshow - print convergence progress every Kshow steps;
Max - maximum number of iterations.

FLUIDPARAM key:
Temper - temperature;
DielConst - dielectric constant;
UTotDens - units for total density: g/cm3, kg/m3, 1/A3 are valid units followed by the density value.

...
SOLUTE ArbitrarySoluteName

outlist=MH closure=KH xvvfile=solvent.xvv outfile=rism3d
Nis=10 DELOZ=0.5 TOLOZ=2.0e-6
Ksave=-1 Kshow=1 Maxste=10000
Output=4
CHRGLVL=MDCq

SUBEND
...

Outlist - output requested: G - distribution function, C - direct correlation function, H - total correlation
function
Closure - closure for the 3D problem: KH – Kovalenko-Hirata, HNC - hypernetted chain approximations, PY -
Perkus-Yevik
Xvvfile - name of the file with the results of the 1D-RISM calculation specified in the RISM1D keyword
above, with .xvv appended to it;
Outfile - name of the output text file;
Output - print level;
CHRGLVL - which charges computed by ADF to use. This can be MDCq (default), MDCd, MDCm, or
EXACT.
The Nis, DELOZ, and TOLOZ have the same meaning for 3D-RISM as parameters of the MDIIS keyword of
the RISM1D block. Likewise, Ksave, Kshow, and Maxste are analogous to the parameters of the ITER key
in RISM1D.

Parameters for some solvents

Atom zα / a.u. σα / Å εα / kcal/mol X / Å Y / Å Z / Å
Water Weight=18.015 nAtoms=3

O -0.8476 3.166 0.1554 -0.0646 0.0 0.0
H 0.4238 0.7 0.046 0.5127 0.8165 0.0
H 0.4238 0.7 0.046 0.5127 -0.8165 0.0

Methanol Weight=32.042 nAtoms=3
CH3 0.265 3.775 0.207 -1.43 0.0 0.0
O -0.7 3.07 0.17 0.0 0.0 0.0
H 0.435 0.7 0.046 0.2998 0.8961 0.0

Ethanol
CH3 0.0 3.775 0.207 -1.9028 -1.4551 0.0
CH2 0.265 3.905 0.118 -1.43 0.0 0.0
O -0.7 3.07 0.17 0.0 0.0 0.0
H 0.435 0.7 0.046 0.2998 0.8961 0.0

Acetonitrile Weight=41.0520 nAtoms=3
CH3 0.269 3.6 0.38 1.46 0.0 0.0
C 0.129 3.4 0.099 0.0 0.0 0.0
N -0.398 3.3 0.099 -1.17 0.0 0.0

146

Dimethylsulfoxide Weight=78.135 nAtoms=4
CH3 0.160 3.81 0.16 0.0 1.7167 -0.5413
CH3 0.160 3.81 0.16 -1.6653 -0.4168 -0.5413
S 0.139 3.56 0.395 0.0 0.0 0.0
O -0.459 2.93 0.28 0.0 0.0 1.53

Isopropanol Weight=60.09502 nAtoms=5
O -0.700 3.0700 0.1700 1.32393 0.14660 -0.01452
H 0.435 0.7000 0.0460 1.84501 0.01837 -0.79238
CH 0.265 3.8500 0.0800 0.84520 1.49406 -0.00612
CH3 0.000 3.7750 0.2070 1.38816 2.18026 1.24895
CH3 0.000 3.7750 0.2070 -0.68415 1.45191 -0.02015

Benzene
C -0.115 3.55 0.07 1.4 0.0 0.0
C -0.115 3.55 0.07 0.7 -1.2124 0.0
C -0.115 3.55 0.07 -0.7 -1.2124 0.0
C -0.115 3.55 0.07 -1.4 0.0 0.0
C -0.115 3.55 0.07 -0.7 1.2124 0.0
C -0.115 3.55 0.07 0.7 1.2124 0.0
H 0.115 2.42 0.03 2.48 0.0 0.0
H 0.115 2.42 0.03 1.24 -2.1477 0.0
H 0.115 2.42 0.03 -1.24 -2.1477 0.0
H 0.115 2.42 0.03 -2.48 0.0 0.0
H 0.115 2.42 0.03 -1.24 2.1477 0.0
H 0.115 2.42 0.03 1.24 2.1477 0.0

OPLS-AA Parameters for common atoms and atom group

The table below contains sigma and epsilon parameters for some of the most common solvent groups
collected from [433, 434, 435]. These parameters are kindly provided by Leonardo Costa.

Atom Example σα / Å εα / kcal/mol Reference
All atoms model

C (SP3) methane 3.73 0.294 433

C (SP3) neopentane 3.80 0.050 433

C (SP2) isobutene 3.75 0.105 433
C (SP) acetonitrile 3.40 0.099 434
C (arom) benzene 3.55 0.07 434
C chloroform 4.10 0.05 435
H O---H 0.7 0.046 434
H hydrocarbons 2.42 0.03 434
O water 3.166 0.1554 434
O alcohol 3.07 0.17 434
O sulfoxide 2.93 0.28 434
N (SP) acetonitrile 3.3 0.099 434
S sulfoxide 3.56 0.395 434
Cl chloroform 3.40 0.300 435

United atom model

CH (SP3) isobutane 3.850 0.080 433

CH (SP2) 2-butene 3.800 0.115 433

147

CH (arom) benzene 3.750 0.110 433

CH2 (SP3) n-butane 3.905 0.118 433

CH2 (SP2) 1-butene 3.850 0.140 433
CH3 hydrocarbon 3.775 0.207 433
CH3 acetonitrile 3.6 0.38 434
CH3 sulfoxide 3.81 0.16 434
NH2 amine 3.3 0.17 434

Electric Field: Homogeneous, Point Charges, Polarizability

A homogeneous external electric field and/or the field due to point charges can be included in the Fock
operator. Either can be applied in both a Single-Point calculation (or a Create run) or in geometry
optimization. When applied in geometry optimization, it will allow for the molecule to rotate with respect to
point charges or the field vector but not translate. Rigid translation is explicitly disabled to avoid drifting of
the molecule in the external electric field.

EFIELD {ex ey ez}
{x y z q
x y z q
...

end }

EFIELD

This general key can be used as a simple key or as a block key. The block form applies if no argument
(ex, ey, ez) is given or when the argument is followed by the continuation symbol (&).

ex,ey,ez

Define a homogeneous electric field in atomic units: hartree/(e bohr) = 27.211 V/bohr; the relation to SI
units is: 1 hartree/(e bohr) = 5.14 ... *1011V/m.
The units applied by ADF for the interpretation of homogeneous field values are not affected by any
units used for specifying atomic coordinates. By default no homogeneous E-field is included.

x, y, z, q

The Cartesian coordinates and strength of a point charge (in elementary charge units, +1 for a proton).
Each point charge must be specified on a separate line in the data block. The Cartesian coordinates are
in the units of length that was set by units (for interpreting atomic coordinates input). By default no point
charges are included.

Orientation of the fields

When the atomic coordinates are input in z-matrix format, the direction of the homogeneous field and the
location of the point charges as specified in input are interpreted as referring to the standard Cartesian
frame associated with z-matrix input. The standard frame means: the first atom at the origin, the second on
the positive x-axis, the third in the xy-plane with positive y.

If the program rotates (and translates, as the case might be) the atoms from the input frame - or the auto-
generated frame in case of z-matrix input - to some other frame, for instance to accommodate the internal
ADF symmetry orientation requirements, the fields are transformed along with the atoms.

Symmetry

148

The homogeneous electric field and the point charge fields may polarize the electronic charge density. This
must be accounted for in the point group symmetry. If symmetry is not specified in input, the program
computes the symmetry from the nuclear frame and the fields.

Bonding energy

The bonding energy is computed as: the energy of the molecule in the field minus the energy of the
constituent fragments in the same field. Of course, the fragments may not be polarized and hence not be
self-consistent in this field. This depends on how the fragments themselves were computed.

Polarizability and hyperpolarizability

ADF supports a direct calculation of the (hyper) polarizability (see section on Spectroscopic Propereties).
The static (hyper) polarizabilities can also be computed by applying a small homogeneous field and
comparing the results with the field-free data.

2.5 Structure and Reactivity

See also
ADF-GUI tutorial: geometry optimization, vibrational frequencies, HCN isomerization reaction, spin coupling
in Fe4S4
GUI manual: structure and reactivity
Examples: geometry optimization, reactivity

Run Types

The different run types are characterized by how the geometry is manipulated:

SinglePoint

The SCF solution is computed for the input geometry.

GeometryOptimization

The atomic coordinates are varied in an attempt to find a (local) energy minimum. One may let all
coordinates free or only a subset, keeping the others frozen at their initial values.

TransitionState

Search for a saddle point. Similar to a GeometryOptimization, but now the Hessian at the stationary
point presumably has one negative eigenvalue.

LinearTransit

The geometry is modified step by step from an initial to a final configuration. All of the coordinates or
only a subset of them may be involved in the transit. The coordinates to be modified are the
LinearTransit parameters. For each of the LinearTransit points (geometries) the computation may be a
Single Point SCF calculation or a GeometryOptimization. In the latter case only those coordinates (or a
subset of them) can be optimized that are not LinearTransit parameters. The LinearTransit feature can
be used for instance to sketch an approximate reaction path in order to obtain a reasonable guess for a
transition state, from where a true TransitionState search can be started.

IRC or IntrinsicReactionCoordinate

149

http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagGO_ETHANOL.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagFREQ_ETHANE.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagHCN.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagSPIN_FE4S4.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagSPIN_FE4S4.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagSPIN_FE4S4.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagSPIN_FE4S4.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_reference/metatagSTRUCTURE.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagGO.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagReactivity.html

Tracing a reaction path from a transition state to reactants and/or products. A fair approximation of the
transition state must be input. The end-point(s) - reactants / products - are determined automatically.

Frequencies

Computation of force constants and from these the normal vibrational modes and harmonic frequencies.
The force constants can be calculated by numerical differentiation of the energy gradients at the
equilibrium geometry and the slightly deviating geometries (making small displacements of the atoms).
There is however also a possibility with the post-ADF program SD, to calculate the second derivatives
analytically. This should usually be faster and in some cases more robust (no SCF convergence
problems in displaced geometries, as only a single SCF is required). Note that this program still has
some limitations. Most importantly, it can only handle X$alpha and VWN (LDA), but not GGA,
calculations at this moment.

CINEB

Calculation of the reaction path and transition state search using Climbing-Image Nudged Elastic Band
method. This method is further referrer to as NEB or CI-NEB. Using this method one can find a
transition state between two known states, further referred to as initial and final states. The choice
which state is initial and which is final is arbitrary. During calculation with this method, a number of
replicas, or images, of the system is calculated. These images can be considered as being linked by an
elastic band. Each image is optimized in such a way that on each step the forces parallel to the reaction
path are removed and spring forces are added that keep distances to this image's neighbors equal. At
the end of the optimization the images are evenly distributed along the reaction path, the image highest
in energy being the transition state (if the climbing-image option is on, the default).

For all features that involve changes in geometry, i.e. all run types except the SinglePoint, it is imperative
that you use single-atom fragments. Larger molecular fragments can only be applied in SinglePoint
calculations.

Four keys are involved in the specification of the geometry and its manipulation:

atoms

sets the atomic (starting) positions.

geometry

Controls the run type and strategy parameters, such as convergence thresholds and the maximum
number of geometry steps to carry out.

atoms and geometry

These two keys together are sufficient for a straightforward Optimization, TransitionState search, IRC
run or a Frequencies computation. (Of course, you also need to specify the Fragments or BASIS key.

constraints

May be used to impose constraints for geometry optimizations, LT, and TS, in the new branch for
optimization, which is the default for these optimizations. This key can not be used for IRC, NEB, or for
the old branch of optimizations.

geovar

May be used to impose constraints, for instance when only a subset of all coordinates should be
optimized. This key should be used for IRC, NEB, or for the old branch of optimizations, to impose
constraints. GeoVar may also be used in a LinearTransit or NEB run to define the LinearTransit or NEB
parameters, respectively, and their initial and final values.

150

Constraints and LinearTransit parameters in the old branch of optimizations may also be controlled within
the atoms block if a MOPAC-style input format is used, see below.

Runtype control and strategy parameters

With the block key GEOMETRY you define the runtype and strategy parameters.

GEOMETRY {RunType { RunTypeData}}
RunType {RunTypeData}

End

RunType

Can be:
- SinglePoint or SP
- GeometryOptimization or GeoOpt or GO
- TransitionState or TS
- IntrinsicReactionCoordinate or IRC
- LinearTransit or LT
- Frequencies or FREQ
- CINEB
If omitted the run type is GeometryOptimization.
If the key GEOMETRY is not used at all the run type is SinglePoint.
The run type specification can be given as argument to the geometry key, or in the data block, but not
both. For some run types additional data may be given after the run type specification.

RunTypeData

(Optional) further specifications, depending on the run type. See the sections below.

Omission of the GEOMETRY key altogether effectuates a SinglePoint calculation. A straightforward
optimization, with all features that can be set with geometry at their default values, is activated by supplying
the key with an empty block:

GEOMETRY
End

More subkeys are available in the geometry block than just the run type specification. They are used to
control strategy parameters such as convergence criteria. All subkeys are optional: default values take effect
for those omitted. Some of the subkeys are only meaningful for certain run types. They will be ignored for
other run types.

The initial approximation of the Hessian matrix may affect the number of optimization steps that are carried
out to reach convergence. See the section Initial Hessian.

Geometry Optimization

Geometry Optimizations in ADF is based on a quasi Newton approach [6-8], using the Hessian for
computing changes in the geometry so as to make the gradients vanish. The Hessian itself is initialized (for
instance based on a force field) and updated in the process of optimization. The optimization in delocalized
coordinates is mainly based on the works by Marcel Swart [225]. The initial implementation relied heavily on
[QUILD]. In ADF2010 and 2012, however, many algorithms have been reimplemented, including generation
of delocalized coordinates, transformation of the computed step from delocalized to Cartesian coordinates,
etc..

151

http://www.scm.com/Doc/Doc2014/Quild/page1.html

Several subkeys in the geometry block can be used for control of the Geometry Optimization procedure and
related strategy parameters.

GEOMETRY
Optim {Delocal/ Cartesian / Internal } {All / Selected}
Branch {New / Old}
Iterations Niter {Niter2}
Hessupd HessUpdate
Converge {E=TolE} {Grad=tolG} {Rad=TolR} {Angle=tolA}
Step {Rad=MaxRadStep} {Angle=MaxAngleStep}

{TrustRadius=MaxRadius}
DIIS {N=NVect} {CYC=Ncyc}
Externprogram externprog.exe coord=coords.inp

energy=energy.out grad=grads.out
Inithess inithessian.file

End

Optim

GEOMETRY
Optim {Delocal/ Cartesian / Internal } {All / Selected}

..
END

Optim

Delocal

Optimization in delocalized coordinates (Delocal) is the default in geometry optimizations, transition
state searches, and (linear) transits. Starting from ADF2007 with delocalized coordinates you can
use constraints (see also CONSTRAINTS key) and restraints, and you can supply the atoms in Z-
matrix coordinates. You can not use dummy atoms, ghost atoms, or alternative elements. Starting
from ADF2007 the adapted delocalized coordinates are used as described in Ref. [225].

Cartesian / Internal

Cartesian or Zmatrix (equivalently: internal) specifies the type of coordinates in which the
minimization is carried out. By default the coordinate type is applied that was used in the ATOMS
key for the input of the (initial) atomic positions. (Cartesian if atoms were input in zcart format).
Note that Zmatrix optimizations can only be done with the old branch of optimizations.

Cartesian optimization is allowed if the atoms were input in Z-matrix format, but no constraints (see
the key GEOVAR) can then be used: all coordinates are optimized. An attempt to explicitly freeze
variables may result in an error abort. Optimization in Z-matrix coordinates is not allowed if only
Cartesian were supplied in atoms: the program does not construct a Z-matrix by itself. One should
then use the zcart format: give Cartesian coordinates and supply the structure of the Z-matrix.
Again, in this case you cannot use constraints.

Selected

For use with old branch of optimizations. Only those coordinates are optimized that are defined with
the key GEOVAR.

All

152

(The default value) means that in principle all atomic coordinates will be varied. With the new branch of
optimization the key CONSTRAINTS one may set constraints on the optimization. With the old branch
of optimization one can use the key GEOVAR to set constraints.

Branch

GEOMETRY
Branch {New / Old}

..
END

Branch

Old / New

Expert option. Specifies which branch of the code to use for making steps. Default the branch of
code used depends on the optimization used. Optimization in delocalized coordinates can only be
done with the new branch. Optimization in Z-matrix coordinates can only be done with the old
branch. In case of Cartesian optimization default the new branch is used, but the old branch can
also be used. The new branch can be used (and is default) in geometry optimizations, transition
state searches, and in LT. The old branch is default in IRC and NEB, for which one can not use the
new branch.

Iterations

GEOMETRY
Iterations Niter {Niter2}

..
END

Iterations

Niter

The maximum number of geometry iterations allowed to locate the desired structure. The default is
max(30,2*Nfree), where Nfree is the number of free variables, which is typically close to
3*N(atoms).
This is a fairly large number. If the geometry has not converged (at least to a reasonable extent)
within that many iterations you should sit down and consider the underlying cause rather than
simply increase the allowed number of cycles and try again.

Niter2

An optional second parameter that plays only a role in a LinearTransit run, see the LT section. It
must not be used in other runtypes.

Hessupd

GEOMETRY
Hessupd HessUpdate

..
END

Hessupd

HessUpdate

153

Specifies how the Hessian matrix is updated, using the gradient values of the current and the
previous geometry. The methods available depend on the optimization branch being used. For both
the old and new branches, the following options are available:
(i) BFGS : Broyden-Fletcher-Goldfarb-Shanno
(ii) MS : Murtagh-Sargent
(iii) FARKAS : Farkas-Schlegel, Eq. (15) and (16) of Ref. [139]
(iv) FARKAS-BOFILL : Farkas-Schlegel-Bofill, Eq. (15) and (14) of Ref. [139]
In the old branch, the following extra options are available:
(i) DFP : Davidon-Fletcher-Powell
(ii) FS : Fletcher switch
(iii) HOSHINO : Hoshino
In the new branch, the following extra option is available:
(i) BAKKEN-HELGAKER: Bakken-Helgaker, see Ref. [219]
The default is BFGS for geometry optimizations.

Converge

GEOMETRY
Converge {E=TolE} {Grad=tolG} {Rad=TolR} {Angle=tolA}

..
END

Converge

Convergence is monitored for three items: the energy, the Cartesian gradients and the estimated
uncertainty in the (chosen type of optimization) coordinates. For the latter, lengths (Cartesian
coordinates, bond-lengths) and angles (bond-, dihedral-) are considered separately.
Convergence criteria can be specified separately for each of these items:

TolE

The criterion for changes in the energy, in Hartrees. Default: 1e-3.

TolG

Applies to gradients, in Hartree/angstrom. Default: 1e-3. Note, the default value has been changed
in ADF2008.01, before it was 1e-2.

TolR

Refers to changes in the Cartesian coordinates or bond lengths, depending on in what coordinates
you optimize, in angstrom. Default: 1e-2. Note that if the gradient is 10 times less than the
convergence criterion for the gradient, then this convergence criterion for the step size is ignored.

TolA

Refers to changes in bond- and dihedral angles, in degrees. This is only meaningful if optimization
takes place in Z-matrix coordinates. Default: 0.5 degree.
If only a numerical value is supplied as argument for converge, rather than a specification by name,
it is considered to apply to the gradients (only). The other aspects (energy and coordinates) retain
their default settings then.

Remarks:

1. Molecules may differ very much in the stiffness around the energy minimum. Application of standard
convergence thresholds without second thought is therefore not recommended. Strict criteria may
require a large number of steps, a loose threshold may yield geometries that are far from the minimum
as regards atom-atom distances, bond-angles etc. even when the total energy of the molecule might be

154

very close to the value at the minimum. It is good practice to consider first what the objectives of the
calculation are. The default settings in ADF are intended to be reasonable for most applications but
inevitably situations may arise where they are inadequate.

2. The technical numerical accuracy of the calculation (e.g. numerical integration) should somehow
match the required level of convergence in gradients (strict convergency criteria may require high
numerical accuracy). A simple way of changing the numerical accuracy is through the NumericalQuality
keyword.

3. The convergence threshold for the coordinates (TolL, TolA) is not a reliable measure for the precision
of the final coordinates. Usually it yields a reasonable estimate (order of magnitude), but to get accurate
results one should tighten the criterion on the gradients, rather than on the steps (coordinates). The
reason for this is that the program-estimated uncertainty in the coordinates is related to the used
Hessian, which is updated during the optimization. Quite often it stays rather far from an accurate
representation of the true Hessian. This does usually not prevent the program from converging nicely,
but it does imply a possibly incorrect calculation of the uncertainty in the coordinates.

Step

GEOMETRY
Step {Rad=MaxRadStep} {Angle=MaxAngleStep} {TrustRadius=MaxRadius}

..
END

Step

Controls that changes in geometry from one cycle to another are not too large:

MaxRadStep

Can only be used in combination with the old branch. An upper bound on changes in Cartesian
coordinates or bond lengths, as the case may be. Default: 0.3 angstrom when optimization is
carried out in internal coordinates, 0.15 angstrom for Cartesian optimizations.

MaxAngleStep

Can only be used in combination with the old branch. Similarly this option limits changes in bond
angles and dihedral angles. Default: 10 degrees.
Input for MaxRadStep, MaxAngleStep is in angstrom and degrees respectively, independently of
the units used for atomic coordinates input.

Note: Optimization of ring structures carried out in internal (z-matrix) coordinates is sometimes
tricky due to the ill-defined last segment of the ring. When problems arise, try Cartesian
optimization or consider using smaller limits on the steps (in particular the angles) so as to prevent
the program from breaking the ring beyond repair.

MaxRadius

Can only be used in combination with the new branch. By default, the trust radius is set to 0.01
Bohr times the number of atoms with a minimum of 0.2 Bohr. Using the key, the user can override
this, setting a constant value. A conservative value is 0.2. A large system (eg 100 atoms) typically
needs a larger trust radius (eg 0.8).

DIIS

GEOMETRY
DIIS {N=NVect} {CYC=Ncyc}

155

..
END

DIIS N=NVect CYC=Ncyc

Can only be used in combination with the new branch. NVect is the number of vectors used by the DIIS
interpolation method. NCYC is the number of geometry cycles run before the DIIS starts to modify the
geometry steps. Default DIIS is used and default N=5 and CYC=0.

Externprogram

GEOMETRY
Externprogram externprog.exe coord=coords.inp

energy=energy.out grad=grads.out
..
END

Externprogram

Expert option, can only be used in combination with the new branch. Subkey EXTERNPROGRAM has
been added to to allow energies and gradients to be calculated by an external program for use in a
geometry optimization.

Note that you need to supply information about atomic fragments, such as the basis set, even though
these are not actually used in the calculations.

When ADF is ready to perform an energy and gradient calculation, it writes the current cartesian
coordinates to the file name given in the input. The format is similar to the ATOMS block in the ADF
input file: it has one atom per line, with the element symbol given, followed by the x, y, and z
coordinates.

ADF will then run the executable program, and then read in the energy and gradients from the file
names given in the input file. The external program is thus responsible for reading the coordinates (in
atomic units) written by ADF from file, generating the corresponding energy and gradients (in atomic
units), and writing these to the appropriate files. ADF will then take another geometry step, and the
process will repeat.

Inithess

GEOMETRY
Inithess inithessian.file

..
END

Inithess

Can only be used in combination with the new branch. With this INITHESS subkey it is possible to read
a hessian from a text files. The only argument is the name of the file containing the initial hessian. The
hessian must be given in full, in non-mass-weighted cartesian coordinates, and in atomic units (hartree/
bohr**2).

Transition State

A transition state (TS) search is very much like a minimization: the purpose is to find a stationary point on
the energy surface, primarily by monitoring the energy gradients, which should vanish. The difference

156

between a transition state and a (local) minimum is that at the transition state the Hessian has a negative
eigenvalue.

Because of the similarities between a minimization and a TS search most subkeys in geometry are
applicable in both cases, see the Geometry Optimization section. However, practice shows that transition
states are much harder to compute than a minimum. For a large part this is due to the much stronger
anharmonicities that usually occur near the ts, which threaten to invalidate the quasi-Newton methods to find
the stationary point. For this reason it is good advice to be more cautious in the optimization strategy when
approaching a Transition State and for some subkeys the default settings are indeed different from those for
a simple optimization. In addition, certain additional aspects have to be addressed.

GEOMETRY
TransitionState {Mode=Mode} {NegHess=NegHess}

end

NegHess

The number of negative eigenvalues that the Hessian should have at the saddle point. In the current
release it is a rather meaningless key, which should retain its default value (1).

Mode

Controls the first step from the starting geometry towards the saddle point: it specifies in which direction
the energy is to be maximized while the optimization coordinates will otherwise be varied so as to
minimize the energy. A positive value means that the eigenvector #mode of the (initial) Hessian will be
taken for the maximization direction. This means: put all Hessian eigenvalues in ascending order,
ignoring those that correspond to impossible movements (rigid rotations and translations, symmetry
breaking) and then take the eigenvector of #mode in the remaining list.

Default: mode=1. Generally the program performs best with this default: it will simply concentrates on
the mode with the lowest eigenvalue, which should of course finally be the path over the transition state
(negative eigenvalue).

After the first geometry step, the subsequent steps will attempt to maximize along the eigenvector that
resembles most (by overlap) the previous maximization direction.

As mentioned before, the other subkeys have the same functionality as for minimizations, but different
defaults or options may apply:

Hessupd

HessianUpdate

Different (fewer) options apply now. The methods available depend on the optimization branch
being used. For both the old and new branches, the following options are available:
(i) Powell: Powell
(ii) BFGS: Broyden-Fletcher-Goldfarb-Shanno
(iii) BOFILL : Bofill, Eq. (13) and (14) of Ref. [139]
(iv) MS : Murtagh-Sargent
In the old branch, the following extra option is available:
(i) DFP : Davidon-Fletcher-Powell
The default is Powell for transition state searches.

Step

MaxRadStep

157

Default: 0.2 angstrom for Z-matrix optimization, 0.1 angstrom for Cartesian optimization. Not used
in the new branch.

MaxAngleStep

Default: 5 degrees. Not used in the new branch.

Note: in Transition State searches precision is often much more critical than in minimizations. One might
consider using NumericalQuality Good or better.

Transition State Reaction Coordinate (TSRC)

Starting from ADF2010 it is possible to specify a reaction coordinate for transition state search via a TSRC
input block, similar to QUILD. This feature is especially useful when an accurate Hessian is not available. In
such a case ADF uses an approximate Hessian that can be poor when weak interactions and/or transition
metals are involved. What then happens is that the mode with the lowest Hessian eigenvalue does not
correspond to the reaction coordinate along which transition state is sought for, thus leading optimization in
the wrong direction.

This problem can now be solved by specifying a reaction coordinate along which the transition state is
sought for. Such a reaction coordinate can consist of one or more distance, valence or dihedral angle, or just
a combination of vectors on certain atoms.

TSRC
{ATOM i x y z {fac}}
{DIST i j {fac}}
{ANGLE i j k {fac}}
{DIHED i j k l {fac}}

end

i, j, k, l, x, y, z, fac

Here, i, j, k, and l are atom indices, x, y, and z are corresponding components of a TSRC vector for
atom i, and fac is the factor (and thus also the sign) of a particular coordinate in the TSRC. By default
fac = 1.0.

Restrictions and notes:

The TSRC feature does not work in combination with the old optimization branch. In general, the old branch
is no longer developed so all new features related to geometry optimization work with the new branch only.

The DIST, ANGLE and DIHED specifications should be used in combination with optimization in delocalized
coordinates only (i.e. not with Cartesian).

Only one type of the keyword is allowed in a TSRC block. That is, the keys must be either all ATOM or all
DIST, etc. Thus, mixing of different keywords is not allowed.

One should be careful when specifying more than one bond or angle as a TSRC. For example, suppose
atom 2 is located between atoms 1 and 3. Then the following TSRC block:

TSRC
DIST 1 2 1.0
DIST 3 2 -1.0

END

158

means that the TSRC consists of two distances: R(1-2) and R(2-3). The positive direction of the TSRC is
defined as increase of the distance R(1-2) and decrease of the distance R(2-3), which, in turn, means that
this TSRC corresponds to atom 2 is moving along the R(1-3) axis.

Linear Transit

In a Linear Transit (LT) run you define a number of atomic coordinates (at least one) to be the LT
parameters: these get an initial and a final value. The LT is defined as the simultaneous linear change of
these parameters from their initial to their final values. This is carried out in a number of equidistant steps. In
a non-linear transit calculation these may be not equidistant steps. The total number of LT points is specified
on input. At each LT point the remaining atomic coordinates - those that are not LT parameters - may or may
not be optimized: the (final) structure and energy at each LT point are computed. A Linear Transit (LT) run is
therefore just a sequence of (related) constrained Geometry Optimizations.

The LT scan may be used for instance to sketch an approximate path over the transition states between
reactants and products. From this a reasonable guess for the Transition State can be obtained which may
serve as starting point for a true transition state search for instance.

Whenever a geometry subkey is applicable in a Geometry Optimization, it will apply in a Linear Transit run in
each of the optimizations that are carried out at the distinct Linear Transit points, and the same default
values apply.

Linear Transit (new branch)

A transit calculation option has been added in the new optimization branch. This is capable of performing
both linear transits, and non-linear transits, and is the default when the LINEARTRANSIT or TRANSIT
subkey is included in the GEOMETRY block key.

The new transit code works differently to the old: the transit is represented as a sequence of constrained
optimizations. The CONSTRAINTS block key should be used to delineate the constraints applied at each
stage of the transit.

To perform a linear transit, start and end values are supplied.

Constraints
angle 2 1 3 start=100.0 end=120.0

End

Geometry
Transit 4
Optim Deloc

End

In the example above, 4 stages are required; ADF will interpolate the start and end values supplied for the
angle between atoms 2, 1, and 3. Note that TRANSIT can now be used in place of LINEARTRANSIT, due to
the more general nature of the new transit calculations.

Non-linear transits are possible, and can even be combined with linear transits in other coordinates. To
perform a non-linear transit in a particular coordinate, explicit values must be given.

Constraints
dist 1 2 0.8 0.9 1.1 1.15
angle 2 1 3 start=100.0 end=120.0

End

159

Geometry
Transit 4
Optim Deloc

End

In the example above, 4 values are given for the distance between atoms 1 and 2. This distance constraint
will be applied simultaneously with the linear transit constraints for the angle, with other degrees of freedom
optimized at each stage of the transit.

It is worth noting that fixed constraints can also be used in a transit.

Constraints
dist 1 2 0.8 0.9 1.1 1.15
angle 2 1 3 100.0

End

Geometry
Transit 4
Optim Deloc

End

In this example, the angle between atoms 2, 1, and 3 will be fixed at 100.0 degrees at all stages of the
transit.

Finally, it should be pointed out that fully converged constraints are used by default in the transit
calculations. They do not have to be fully met in the input, but if the input geometry is far from meeting the
constraints, a large, erratic first geometry step may result.

You can avoid fully enforcing constraints, by adding a CONSTRAINTS subkey to the geometry block key:

Geometry
..
CONSTRAINTS partialconverge

End

In this case the constraints are not required to be fully met at each intermediate geometry, but are fully met
at the converged geometries,

Linear Transit (old branch)

The LINEARTRANSIT runtype has to be specified. Additional specifications are optional.

GEOMETRY
Branch Old
LinearTransit {NPoints}

end

NPoints

The number of LT points for which an optimization will be carried out
If no value is supplied the default takes effect: 5.

There are a few obvious differences between a single optimization and a LT run. Most important is that the
coordinate(s) that describe the LT path, the LT parameters, cannot be optimized: at each of the LT points
they are frozen. This implies that technically speaking at each LT point a constrained optimization is carried
out. One of the consequences is that the atoms coordinate type - Cartesian or Z-matrix - must also be the

160

optimization coordinate type. The LT parameters themselves must be defined with the key GEOVAR, see
below.

It is possible to freeze all coordinates so that the LT run is similar to a sequence of Single Point runs.
However, energy gradients will be computed at each step, so that more CPU time is spent at each LT point
than for just a Single Point calculation.

The number of LT points by which the path is traced is defined by the npoints argument to the subkey
LinearTransit. It is possible to execute only a subset of these points, usually with the purpose to complete
the calculation by using the restart facility of ADF. In this way you can break down a very large calculation
into several smaller ones, or have the opportunity to check how things have been going for the first few LT
points before deciding whether a continuation is useful. This may be achieved of course by simply defining
different start- and end-values for the LT parameters in a related series of calculations, but it is more
comfortable to specify the complete path once and just execute parts of it at a time. This is accomplished by
giving a second value to the iterations subkey in the geometry block.

...
iterations Niter Niter2
...

Niter

The first argument of the subkey iterations in the GEOMETRY block, controlling the maximum number
of iterations allowed to reach convergence, applies now for each LT point separately.

Niter2

The second argument specifies the maximum number of LT points to calculate in this run. If omitted
(default) the whole LT scan is completed. Doing only part of the scan may be combined with the restart
feature, so that the remainder can be done in a continuation run. See the restart key.
A too large value of LT points is automatically adjusted: no more LT points are computed than required
to complete the LT path as defined by the lineartransit subkey. A negative or zero value is not accepted
and internally reset to one (1).

WARNING: if you use the QMMM functionality in combination with a Linear Transit, then only the
coordinates of the true QM atoms can be used as LT parameters, no MM atoms must be involved in the LT
parameter set.

Symmetry in a Linear Transit

In a Linear Transit run it is imperative that the complete Linear Transit path as defined by the parameters
conforms to the specified symmetry. If such is not the case, an error will occur or possibly the program will
continue but not produce correct results. Note that when no symmetry is specified in input, the initial
geometry defines the specified symmetry.

Intrinsic Reaction Coordinate

The path of a chemical reaction can be traced from the Transition State to the products and/or to the
reactants, using the Intrinsic Reaction Coordinate method (IRC) [9,10]. The starting coordinates should be a
fair approximation of the Transition State. The final values at the endpoint(s) - reactants, products - are
computed. The IRC path is defined as the steepest-descent path from the Transition State down to the local
energy minimum. The energy profile is obtained as well as length and curvature properties of the path,
providing the basic quantities for an analysis of the reaction path. Additional properties along the path
(dipole moment, atomic charges) are computed.

161

Technically speaking the path is computed by taking small steps along the path meanwhile optimizing all
atomic coordinates orthogonal to it so that, like in a Linear Transit run, a sequence of constrained
optimizations is carried out. The total number of steps along the path is not known in advance. The
maximum number of such steps can be set in input. If the path is not completed in the run, a Restart can be
used to finish it. Each of the constrained optimizations in the run is treated as it would be in a Linear Transit
run: convergence thresholds, maximum numbers of optimization iterations et cetera are set with subkeys in
the geometry block.

You can set the IRC runtype by typing it in the geometry block

GEOMETRY
IRC {Forward} {Backward} {Points=Points} {Step=Step}

{StepMax=StepMax} {StepMin=StepMin} {Start=Start}
End

IRC

The runtype IntrinsicReactionCoordinate would also be recognized.

Forward, Backward

Specifies execution of the two possible paths from the Transition State to the adjacent local minima. By
default both are computed. If Forward is specified only, the other path is turned off and similarly for
Backward. For the definition of which of the two directions down from the Transition State to an adjacent
minimum is 'forward' see below.

Points

The maximum number of IRC points computed in the run, for both paths together and including the
initial (TS) central point (as far as applicable). Default 100.

Step

The (initial) step length when proceeding from one IRC point to another along the path. The difference
between two geometries, to which the step quantity applies, is measured in mass-weighted coordinates.
The default value for step is 0.2 (amu)1/2 bohr. Larger steps reduce, in principle, the required number of
IRC points from the transition state to the minimum, but usually at the expense of more optimization
steps at each of the points so the net gain in computation time may not be very large, or even negative.
The default size is rather conservative and in many cases you may increase it to save a few steps.
However, to some extent you can leave that to the program. When going from one point to the next, the
program will increase or decrease the stepsize depending on whether or not the previous point to a
large number of geometry cycles to converge. The adjusting algorithm also tends to be more cautious
when the successive IRC points show more drastic changes in the atomic geometrical configuration. In
all cases the IRC step sizes remain between pre-set maximum and minimum values, see the next
items.

StepMax

The maximum step length that the program will select in the step-adjusting algorithm. Default: 1.0 or 10
times the initial step length, whichever is larger.

StepMin

The minimum step length that the program will select in the step-adjusting algorithm. Default: 0.03 or
0.3 times the initial step length, whichever is smaller.

Start

162

Defines how the initial direction of the path is chosen to move away from the Transition State. It does
not imply whether the first step along this direction is taken positively or negatively. See for this aspect
the section about Forward/Backward IRC paths.
The admissible values for start are:
Grad: compute the gradient and take that direction right from the start. Obviously, if we start perfectly at
the Transition State this will be meaningless since the gradient vanishes there completely.
Read : the initial path direction is read in with the key IRCstart, see the section IRC Start Direction.
Hess n : the initial path coincides with the n-th Hessian eigenvector (ordered by ascending
eigenvalues); n must be an integer in the appropriate range.
The default (omission of any start specification at all) is the first Hessian eigenvector, presumably
corresponding to the path over the Transition State (negative Hessian eigenvalue!).

IRC start direction

As mentioned above, the IRC path is initialized by a first step away from the Transition State. If perfect
information is available this should be along the unique Hessian eigenvector with a negative eigenvalue.
Therefore, it is preferable to supply (with a restart file) a good approximation of the Hessian at the Transition
State. This can be computed in a Frequencies run. In many cases the automatic internally generated (force
field based) Hessian will not severely disturb the procedure and may only require a few more initial search
steps for the right direction to take, while saving a potentially expensive Frequencies calculation.

If you decide to use a precalculated Hessian, then usually the approximate Hessian resulting from a
Transition State run will be good enough. The latter approach is more attractive of course since the TS run
will usually be done anyway, as a preliminary to the IRC run, while an additional Frequencies run would be
very demanding. At the other hand, Transition State runs often require a preceding Frequencies run. In such
case, the Frequencies result file may be used both for the TS run and for the IRC run. The fact that the
Frequencies run may have been performed not at the exact TS may affect slightly the adequacy for using it
as a start-up for the IRC run, but this is likely not significant.

In some case you may want to specify the initial direction of the IRC path explicitly. This is done as follows:

IRCSTART
data
data
...

end

IRCstart

A block-type key. The data in the data block are values for all atomic coordinates (Cartesian or Z-matrix,
as the case may be) that are not frozen and not (by geovar) explicitly instructed to remain equal. All
such coordinate data together define a direction vector in the space of all (free) coordinates, which then
serves as the initial segment of the IRC path.

Note that only a direction vector is defined here: the size of the total vector plays no role.

Furthermore, the initial step may be in the positive or negative direction along the so-defined initial path,
see the section Forward / Backward IRC paths.

Forward / Backward IRC paths

Obviously there are two IRC paths down the transition state: Forward and Backward. We would have liked
to chemically define forward and backward by determining (in advance!) which of the endpoints is reactants
and which products. This is not well doable in practice. Therefore we define the directions in terms of the
initial path vector: select simply the atomic coordinate with the largest (absolute) change in the initial vector

163

and define Forward as the direction in which this coordinate increases and Backward as the direction in
which it decreases.

Climbing-Image Nudged Elastic Band

The reaction path can be found by simultaneous optimization of a number of replicas of the system in
question starting from some rough approximation [159]. In the simplest case, implemented in ADF, the initial
approximation is just a polynomial interpolation between initial and final states (see keyword geovar). The
images are optimized not independently of each other but, in fact, forces on each image depend on its
neighbors. At each step the forces parallel to the reaction path are eliminated and a so-called spring force is
added which keeps the image in the middle between its neighbors. This does not let images slide to the
initial or final reaction state and ensures that they are evenly distributed along the reaction path. There are
also options to distribute images more densly near the transition state (energy-dependent spring force).

Below is the list of NEB options:

GEOMETRY
CINEB {NumImages}
{NEBSPRING Nspring Spring Spring2 Spower}
{NEBOPT OptMethod}
{NEBECONO}
{NOCLIMB}
{NONEBOPTENDS}

End

CINEB

The runtype. Nudged will also be recognized.

NumImages

The number of NEB images excluding initial and final stated. The default is 8.

NEBSPRING Nspring Spring Spring2 Spower

Nspring determines the type of spring used, which, in turn, determines which of the spring parameters
are used:

1: constant spring, spring=Spring
2: exponential scaling, spring = Spring+Spring2*exp((dE-dEmax)**Spower)
3: power scaling, spring = Spring+Spring2*(dE/dEmax)**Spower
4: another exponential with different meaning of Spower, spring = Spring+Spring2*exp((dE-
dEmax)*Spower)
5: another exponential scaling very close to #4, spring = Spring+Spring2*(2**(dE-
dEmax))**Spower)

Units for Spring and Spring2 are Hartree/bohr. Default values, when NEBSPRING is not present in the
input, are 1 for Nspring and 0.1 for Spring. If NEBSPRING is specified with Nspring 1 then the Spring
parameter is required. If Nspring>1 is specified then also Spring2 and Spower are required.

NEBOPT OptMethod

Specifies the optimization procedure.
Since NEB is conceptually different from simple optimization, not all or not always options used in
simple geometry optimization applicable to NEB. There are two optimization modes available for NEB:
global (covering all images simultaneously) and local (that is, local to each image). Each method has its
pro's and con's. The global method usually converges in fewer steps than local because its Hessian

164

takes into account all degrees of freedom at once. On the other hand, the size of the matrix may
become too large for moderate-size system, which might lead to problems (one dimension of the
Hessian matrix may be as large as N(atoms)*3*N(images)).
There are two geometry update methods available for both global and local optimization: Quasi-Newton
and Conjugate-Gradient. Quasi-Newton is the preferred method at all times. NEB optimization in Z-
matrix coordinates is not available at this time.

OptMethod can take any of the following values:

GLOBALQN: global Quasi-Newton.
QN: Local Quasi-Newton. The preferred (and default) method.

NEBECONO

(local optimization only) Requests that when at some point an image's geometry converges this image
will not be recalculated in subsequent steps. This option can be used to speed up calculation in the end
when some images have already converged. Please note though that even if an image has converged
at one point it may become "un-converged" at a subsequent point due to increase in spring force (which
is determined by position of the image with respect to its neighbors). This option is irrelevant in case of
the global optimization because then the convergence state of a single image is not determined.

NOCLIMB

Switches off the climbing-image feature. This option is generally not recommended and exists for
debugging and troubleshooting purposes.

NONEBOPTENDS

Do not optimize geometries the initial and final reaction states during NEB optimization.

Recommendations concerning the NEB method.

Preparing input
Please pay attention to the following points when preparing input for a NEB calculation:

• If an approximated transition state is known then try to use this information when preparing the
input: do not just specify the initial and final state coordinates in the GEOVAR input section but
also add some values in between to take advantage of the higher-order interpolation of the initial
reaction path approximation.

• Try to optimize geometries of the initial and final reaction states (the end-points) as good as
possible. ADF will by default optimize them too but doing this in advance can save quite a bit of
time.

• If you do not want to optimize the end-points during NEB optimization you can use the
NoNEBOptEnds input keyword and you know that the end-point geometries do not correspond to
local minima, then you must make sure that they lie on the reaction path. If one (or both) of the
end-points lie off the path then this may result in the images next to them sliding downhill behind
the end-points, which will inevitably break the optimization.

• Choosing an optimization method. There are several optimization methods used in NEB but
you should probably use one of the two Quasi-Newton methods: local (default) or global (NEBOPT
GlobalQN input option). The main difference in functionality between the wto methods is that the
Climbing image technique is possible only with the GlobalQN method. In the default (local)
method, the images are optimized in such a way that the cartesian distance between them is
always constant. This means that the image with the highest energy is not necessarily the
transition state. With the GlobalQN method, you are guaranteed that the image with the highest
energy is at the point of the maximum energy on the reaction path.

165

Problems during optimization
Many problems may be avoided if you follow the recommendations above. If, however, you did follow the
recommendations and still have problems then please read below. Here follows a list of common problems
with possible solutions:
Optimization stops with a message that the angle has become too small.

• Provided that the end-points are local minima, this may still happen if the initial guess for the
reaction path was too rough an approximation. This usually result in very large forces on some of
the images, which may result in very large steps. This is not a problem in itself but a problem may
be that neighboring images get significantly different steps. If this happens, the NEB chain
becomes jagged. This may get quickly out of hands if the Cartesian distances between images are
comparable with the steps taken during optimization. The cure in this case is to either reduce the
number of images (to increase distances between them) or to decrease the max step size (the
STEP RAD= parameter).

• Another reason for the angle becoming too sharp is that the reaction path is very complex. In this
case, it may help to use more images to "smoothen" it.

In all other cases it is recommended to contact the SCM support and specify exactly what went wrong and
send along the input and output files. It is recommended to use the DEBUG NEB input keyword, which
produces extra debugging information. Doing so will speed things up a lot because we won't have to repeat
your calculation.

Special Features

Initial Hessian

In a Geometry Optimization (or Transition State search) the Hessian matrix - second derivatives of the
energy with respect to changes in coordinates - is updated while the program steps around in an attempt to
find the (local) energy minimum. The quality of the initial Hessian may have a considerable impact on the
required number of steps to reach geometric convergence.

By default the initial Hessian is read from a restart file (see the key RESTART) if a restart file is present.
Otherwise it is constructed from a force field [11] that is implemented in the program. When using the new
branch, the initial Hessian is calculated by the same method as in QUILD [[225]]. In case of the old branch of
optimization one can modify this with the key HESSDIAG. With the new branch of optimization it is possible
to read an Hessian from an input file, see subkey INITHESS of the key GEOMETRY.

Constrained optimizations, LT (new branch)

The key CONSTRAINTS can only be used in case of the New branch for optimization of coordinates. The
input for this key is very similar to that of the RESTRAINT keyword. The key CONSTRAINTS can, however,
also be used to constrain Cartesian coordinates. Note that the key RESTRAINT and freezing of coordinates
with the GEOVAR key can also be used in the New branch for optimization of coordinates. Currently, the
New branch for optimization can only be used in geometry optimizations and transition state searches.

The CONSTRAINTS keyword allows geometry optimizations with constraints for the distance between two
atoms, an angle defined by three atoms, a dihedral angle defined by four atoms, or to freeze a block of
atoms:

CONSTRAINTS
ATOM Ia1 {Xa1 Ya1 Za1}
COORD Ia1 Icoord {valcoord}
DIST Ia1 Ia2 Ra
ANGLE Ib1 Ib2 Ib3 Rb

166

DIHED Ic1 Ic2 Ic3 Ic4 Rc
BLOCK bname

end

The ATOM, COORD, DIST, ANGLE, and DIHED constraints do not have to be satisfied at the start of the
geometry optimization. The ATOM and COORD constraints can only be used in Cartesian optimizations
while all other constraints may only be used with delocalized coordinates.

Important note about constraints and symmetry: if the system has some symmetry, which is going to be
maintained, that is if a non-NOSYM symmetry is specified on input or if the initial geometry has non-NOSYM
symmetry and "Symmetry NOSYM" is not specified, then the constraints specified here must also be
symmetric. This means that if, for example, two distances are equivalent due to symmetry then and are
going to be constrained then both must be specified in the CONSTRAINTS input block. It is incorrect to
specify only one of them and hope that ADF will take care of the other automatically.

ATOM

When ATOM is specified, the Cartesian coordinates of atom Ia1 are constrained to: Xa1 Ya1 Za1. The
atom number should be given in Input order; the value for the coordinates in Angstrom. Optionally one
can give the three Cartesian coordinates a value. This key can only be used in Cartesian optimizations.

COORD

When COORD is specified, the Icoord Cartesian coordinate of atom Ia1 is constrained to: valcoord The
atom number should be given in Input order; the value for the coordinate in Angstrom. Icoord is 1
means the x-coordinate. Icoord is 2 means the y-coordinate. Icoord is 3 means the z-coordinate.
Optionally one can give the Cartesian coordinate a value. This key can only be used in Cartesian
optimizations.

DIST

When DIST is specified, the distance between atoms Ia1 and Ia2 is constrained to the value Ra in
Angstrom.

ANGLE

When ANGLE is specified, the angle between atoms Ib1, Ib2 and Ib3 (Ib1-Ib2-Ib3) is constrained to the
value Rb in degrees.

DIHED

When DIHED is specified, the dihedral angle between atoms Ic1, Ic2, Ic3 and Ic4 (Ic1-Ic2-Ic3-Ic4) is
restrained to the value Rc in degrees. The dihedral angle Ic1-Ic2-Ic3-Ic4 is defined in the same way as
for the Z-matrix in ADF. The dihedral angle is projected onto the [0,2π] interval, so there should be no
difference between specifying -30° or 330°.

BLOCK

Block constraints allow the internal degrees of freedom of a block of atoms to be frozen, so that the
block moves as a whole. To apply block constraints, you add block labels to atoms in the Atoms block,
and then add the block constraint in the Constraints input block:

ATOMS
1.C -0.004115 -0.000021 0.000023 b=b1
2.C 1.535711 0.000022 0.000008 b=b2
3.H -0.399693 1.027812 -0.000082 b=b1
4.H -0.399745 -0.513934 0.890139 b=b1
5.H -0.399612 -0.513952 -0.890156 b=b1
6.H 1.931188 0.514066 0.890140 b=b2

167

7.H 1.931432 0.513819 -0.890121 b=b2
8.H 1.931281 -1.027824 0.000244 b=b2

END

CONSTRAINTS
BLOCK b1
BLOCK b2

END

Note: The following restrictions apply to optimization with block constraints:

• block constraints may only be used with delocalized coordinates;
• there should be no other constrained coordinates used together with block constraints although

this may work in many situation;
• the user should absolutely avoid specifying other constraints that include atoms of a frozen block.

Constrained optimizations, IRC, NEB, LT (old branch)

GEOVAR

The block key GeoVar is used

• In case of the old branch of optimizations
• To put restrictions on the number of coordinates that are varied and
• To define Linear Transit or NEB parameters and assign them initial and final (and in case of NEB -

also intermediate) values.

geovar can also be used to assign (initial) values to coordinates without other implications, but this feature is
accidental.

In the input section of atomic coordinates (key ATOMS) identifiers (names) may be used rather than
numerical values wherever coordinate values are expected: x, y, z in case of Cartesian coordinate input; r,
q, f in case of internal coordinates. All such identifiers must then be specified under geovar and assigned a
value.

GEOVAR
Name Data
...

end

Name

An identifier that can be used in place of a numerical value for one or more of the atomic coordinate
values under atoms.

Data

Either of the following three formats:

1 A single value simply assigns the value to the corresponding atomic coordinate(s).

2 Two or more values (separated by a delimiter) imply that the corresponding atomic coordinate is a
Linear Transit or a Nudged Elastic Band parameter. For Linear Transit, only two values are allowed in
which case they specify initial and final values of the LT path, respectively. In case of a NEB calculation
one can provide more than just initial and final values to get a better initial approximation of the reaction
path. It is generally recommended (and in some cases necessary) to use more values. Intermediate
images will be obtained by polynomial interpolation of degree N-1, where N is the number of values.

168

3 A single value followed by a letter F assigns the value to the corresponding atomic coordinates and
specifies that these coordinates are frozen: they will not be optimized.

As regards the optimization of coordinates other than the frozen ones and the LT or NEB parameters, the
meaning and effect of the input under geovar depends on the subkey optim in the geometry block:

If selected has been set, optimizations are carried out only for the coordinates that are referred to under
geovar (and that are not Linear Transit parameters or Frozen). All coordinates that were input as simple
numerical data under atoms are kept frozen then.

Alternatively, if selected has not been set (: all, the default) all atomic coordinates are optimized (except the
Linear Transit parameters and the explicitly frozen coordinates). In that case, each assignments under
geovar other than to freeze the coordinate or to define it as a Linear Transit parameter simply assigns an
initial value to the pertaining coordinates. In this respect it is not different from typing the numerical value
directly in the atoms block, except for the next aspect. Please note that whereas during a linear transit run
the LT parameters are never optimized, the NEB parameters specified in the geovar section are always
optimized.

The same identifier may be used for two or more coordinates in atoms. If they are varied (i.e. if they are not
frozen) they will forcibly be kept equal throughout the optimization so that they constitute only one degree of
freedom. Don't use the same geovar variable for coordinates that belong to atoms of different chemical
types or to different types of coordinates (an angle and a bond length for instance). It is not sensible to do so
and it will very probably lead to an error abort or to stupid results.

It is allowed to put as atomic coordinate under atoms minus a geovar variable name, i.e. the name preceded
directly by a minus sign (without a blank in between!). The coordinate will then be kept equal, but with
opposite sign, to coordinates that are defined by the same variable without the minus sign. The initial (and
final, in case of a LT or NEB run) value for that coordinate is the negative of the geovar value.

Coordinate types

Restricted optimizations are performed by freezing certain coordinates, by explicitly referring to one and the
same geovar identifier for different coordinates, or by using the selected option. In addition, they are implicit
in each Linear Transit or IRC run. All restricted optimizations demand that the type of optimization variables
(Cartesian or Z-matrix) equal the type of coordinates used in atoms. zcart input under atoms is considered to
be Cartesian in this respect.

If this is violated in a Linear Transit calculation the program will abort. If you apply the Frozen option under
geovar, while not using the same coordinate type for atoms as for optimization, an error will occur. If you
refer to the same geovar identifier for distinct coordinates while the atoms and the optimization types of
variables do not match, the program will continue and assume that you only have assigned the same
starting values to the pertaining coordinates. No equality constraints will be in effect then during the
optimization.

Linear combinations of constraint

It is often desirable to carry out a geometry optimization in internal coordinates where two or more of the
coordinates are required to maintain constant values relative to each other. The most simple case, where
two internal coordinates a kept equal can be achieved by referencing both coordinates to a single variable in
the GEOVAR block. Ensuring a different relationship, such as forcing one bond length in a molecule to be
0.5 Angstrom longer than another is more difficult to achieve. These kind of constraints can often be be
managed through the creative use of dummy atoms but this is generally laborious and not always possible
at all.

This key can not be used in case of optimization in delocalized coordinates.

The LINEARCONSTRAINTS keyword allows geometry optimizations with constraints defined by arbitrary
linear combinations of internal coordinates to be performed quite straightforwardly. The keyword allows the

169

linear combination to be constrained or used as part of a linear transit calculation with the constrained value
being stepped as would a variable from the GEOVAR block.

LINEARCONSTRAINTS
Name1 Data1
VAR11 Coef11
VAR12 Coef12
...
SUBEND
Name2 Data2
VAR21 Coef21
VAR22 Coef22
...
SUBEND
....

end

Namex

Identifier of the xth linear constraint.

Datax

Either of two formats
1) A single number, giving the value of the xth constraint
2) Two numbers, the first as in 1) and the second the final value in a linear transit calculation. The
LINEARTRANSIT keyword must be present in the GEOMETRY block.

Varxy

Name of the yth variable in that is part of the xth constraint. Varxy must be defined in the GEOVAR
block.

Coeffxy

Coefficient of Varxy in the linear combination defining the constraint. Thus:
Coeff11*Var11 + Coeff12*Var12 ...= Data1
The summation must be consistent with the initial values of the Varxy.

This procedure is only possible when the geometry is defined in terms of internal coordinates. Although the
program will not complain, it makes no sense to have linear combinations containing both bonds and angles
of course.

The number of linear constraints must be less than or equal to the number of entries in the GEOVAR block.
Only internal coordinates involving QM atoms can be included at this stage.

As a geometry optimization is run, the force acting on the linear constraints will be printed immediately after
the forces on the internal coordinates. The constraint forces may be useful in the search for a transition state
for instance.

Z-matrix and symmetry

If the structure of the Z-matrix does not reflect the symmetry of the molecule and constraints are applied the
program may encounter algorithmic problems to match all demands. As a result some of the frozen
coordinates may be found to change. Usually these changes are very small. To cure this: build the Z-matrix
in a symmetric way.

Summary of geovar, optim, and atoms

170

For unconstrained optimization: don't use geovar, apply optim if Cartesian optimization is required while the
data in the atoms block was in z-matrix format or when z-matrix optimization is required while the atoms
input was in zcart format. Provide the atomic coordinates (atoms) directly as numerical data.

For optimizations where only very few coordinates are frozen: use geovar to set a few coordinates to frozen
and/or to enforce equality of optimization coordinates whose values should remain equal. Don't use optim:
the type of optimization coordinates - Cartesian or internal - must be identical to what is used in the atoms
input part because you're using constraints now. In the atoms section, use identifiers for the frozen
coordinates and for those that should satisfy equality conditions; use numerical input for all other
(optimization) coordinates.

For very limited optimization: turn on the selected option with optim and assign with geovar initial values to
the coordinates that you want to optimize. In the atoms input use identifiers for these coordinates. The
numerical input coordinates are kept frozen automatically now.

Initial Hessian

By default the initial Hessian is read from a restart file - see the key RESTART - or constructed from a force
field [11] that is implemented in the program. In the latter case the user can modify the so-generated initial
Hessian in four ways:

1. By setting all diagonal elements to some constant.
2. By defining three constants, one for distances (or Cartesian displacements, as the case may be),

one for bond angles, and one for dihedral angles. All diagonal elements of the Hessian are
adapted accordingly.

3. By supplying a list of diagonal values.
4. By giving diagonal-Hessian values for one or more specific coordinates.

For each element i for which a diagonal Hessian value Hii is supplied the off-diagonal elements Hij, (all j i≠j)
are set to zero.

A combination of the above options is possible. The rules of how combinations are interpreted by the
program are:

• The program first initializes the Hessian using the force field (or restart data).
• If a single constant (1) or three constants (2) are supplied, all diagonal elements are adjusted (and

all off diagonal elements are set to zero).
• If a list of diagonal values is supplied (3), this overrides the first so many values of the diagonal.

Such a list is not required to cover all diagonal elements. If the list is shorter than the dimension of
the Hessian, i.e. the number of atomic coordinates, only the first so many elements will be
adjusted.

• If any individual elements are supplied specifically (4), their values are replaced in the diagonal
defined thus far.

All input values of the Hessian are in units of Hartree/bohr2 for Cartesian coordinates and bond lengths.
Hartree/radian2 for bond angles and dihedral angles.

The first 3 options are controlled by the key HESSDIAG:

HESSDIAG {General}
{ List
end }

HESSDIAG

A general key: it has either an argument (General), or a data block (List). It is also possible to supply the
argument and the data block, but this requires that the continuation symbol (&) is given after the
argument, separated from the argument by at least one blank.

171

General

Must be either a single numerical value, or one or more named specifications of options, in the format
optionname=value.

If a single numerical value is given, this value is assigned to all the options that are available. If the
named-option format is applied, any named options that are not found get the value 1.0.
The options are: rad=radvalue to assign a value to all Hessian diagonal elements that refer to distance
coordinates (bond length in case of z-matrix coordinates, Cartesian coordinates otherwise),

ang=angvalue to assign a value to all elements that refer to bond angles, and finally dih=dihvalue for
dihedral angles.
ang and dih are not significant in Cartesian optimizations.

List

A list of numerical values, which may expand over any number of lines. If n numbers are supplied, they
are assigned to the first n diagonal elements of the Hessian. The remaining diagonal elements, if any,
are not effected. The maximum number of Hessian diagonal elements equals the number of atomic
coordinates.

The force field derived initial Hessian can be printed for inspection. Type in input:

HESSTEST

ADF will construct and print the initial Hessian and then abort.

Hessian values for selected coordinates

The diagonal elements for selected free coordinates can be given if these free variables are named in the
geovar block.

GEOVAR
Varname Data H=HessValue

end

Varname, Data

The name of the variable and any data as discussed in the sections above: assignment of initial value,
final value (in case of a Linear Transit run), or a Frozen specification.

HessValue

The value for the diagonal element of the Hessian associated with that variable. All atomic coordinates
that are defined by this variable will get the HessValue as diagonal element in the initial force field.
Specification of a HessValue for a frozen coordinate or a Linear Transit parameter is meaningless.

Restrained optimizations

With the old branch of optimizations, the only way to constrain distances, angles or dihedral angles within a
geometry optimization is by using a Z-matrix, and freezing that particular coordinate. With the key
RESTRAINT it is possible to select any coordinate (distance, angle, dihedral), irrespective of the
coordinates used, and restrain this coordinate.

Note the difference between constrained and restrained coordinates. At every step in the geometry
optimization, the value of a constrained coordinate should match exactly a predefined fixed value. On the
other hand, with restraints, a potential is added to the potential energy in order to satisfy the restraint, which

172

means that the restraint does not have to be satisfied exactly. For example, one can start with a geometry in
a geometry optimization run in which the restraint is not satisfied.

The RESTRAINT keyword allows geometry optimizations with restraints for the distance between two
atoms, an angle defined by three atoms, a dihedral angle defined by four atoms, and (or) a distance
difference defined by four atoms:

RESTRAINT
DIST Ia1 Ia2 Ra {[Aa] [Ba]}
ANGLE Ib1 Ib2 Ib3 Rb {[Ab] [Bb]}
DIHED Ic1 Ic2 Ic3 Ic4 Rc {[Ac] [Bc]}
DD Id1 Id2 Id3 Id4 R0 [{Ad} {Bd}]

end

DIST

When DIST is specified, the distance between atoms Ia1 and Ia2 is restrained to the value Ra. The
atom numbers should be given in Input order; the value for the distance in Angstrom. The Aa and Ba
values are mere technical values, that don't have to be specified (in fact, recommended not to change
these values); the default values of 2.0 resp. 0.1 have been chosen on sensible grounds.

ANGLE

When ANGLE is specified, the angle between atoms Ib1, Ib2 and Ib3 (Ib1-Ib2-Ib3) is restrained to the
value Rb. The atom numbers should be given in Input order; the value for the angle in degrees. The Aa
and Ba values are mere technical values, that don't have to be specified (in fact, recommended not to
change these values); the default values of 1.0 resp. 0.1 have been chosen on sensible grounds.

DIHED

When DIHED is specified, the dihedral angle between atoms Ic1, Ic2, Ic3 and Ic4 (Ic1-Ic2-Ic3-Ic4) is
restrained to the value Rc. The atom numbers should be given in Input order; the value for the angle in
degrees. The Aa and Ba values are mere technical values, that don't have to be specified (in fact,
recommended not to change these values); the default values of 0.5 resp. 0.1 have been chosen on
sensible grounds. The dihedral angle Ic1-Ic2-Ic3-Ic4 is defined in the same way as for the Z-matrix in
ADF. The dihedral angle is projected onto the [0,2π] interval, so there should be no difference between
specifying -30° or 330°.

DD

When DD is specified, it is possible to restrain a difference between two distances: R0 = (r1 - r2) - (r3 -
r4), where r1..r4 are positions of four atoms Id1..Id4 and R0 is the final restrained property. The
functional form and meaning of Ad and Bd is the same as with plain distance restraints. Atoms Id1..Id4
need not all to be different.

Symmetry versus constraints

The symmetry of the atomic system defined by the input Schönfliess symbol is preserved during
optimization. If the input information (which coordinates are kept frozen and which are optimized) conflicts
with the symmetry, the result is unpredictable. For example, if two distances are equivalent due to symmetry
then and are going to be constrained then both must be specified in the CONSTRAINTS input block. It is
incorrect to specify only one of them and hope that ADF will take care of the other automatically.

Input specifications that are in conflict with the point group symmetry may lead to an error or a non-
converging optimization.

173

Frequencies

Harmonic frequencies can be computed in ADF either numerically or analytically. The frequencies are
computed numerically by differentiation of energy gradients in slightly displaced geometries [12, 13]. The
analytical second derivatives implementation in ADF is based on [208, 209, 210].

Analytical Frequencies

The frequencies are calculated analytically by specifying the AnalyticalFreq block keyword (see below for
more details). The analytical frequencies are as accurate as the numerical frequencies for the same
integration accuracy, but can be up to 3 to 5 times quicker to compute, depending on the molecule,
integration grid parameters, and choice of basis set. The analytical frequencies are fully parallelized and
linearly scaled.

Note: The analytical calculation of frequencies in case of ZORA and frozen cores contains a bug in all
version up to and including ADF2006.01b. In this case the numerical frequencies are more reliable. The
analytical calculation of frequencies in case of ZORA and all electron basis sets does not give problems. In
ADF2010 the accuracy of the calculation of analytical frequencies in case of ZORA using the large QZ4P
basis sets for heavy elements, like uranium, has been improved a lot compared to ADF2009 and before.
The calculated numerical frequencies were already reliable in these cases.

Calculating the analytical frequencies requires the solution of the Coupled Perturbed Kohn-Sham (CPKS)
equations, which is an iterative process. This part of the process is of order 3 x number of atoms, and is
generally the main bottle neck in calculating the frequencies. (The immediate result of the solution of the
CPKS equations is the U1 matrix, the components of which are closely related to the derivatives of the MO
coefficients. One of the adjustable parameters in the input of an analytical frequencies calculation can be
used to control the accuracy of the U1 matrix components.)

One disadvantage in calculating analytical frequencies is that the range of exchange-correlation functionals
is limited. (This is because derivative formulas have to be derived for each exchange-correlation functional
in ADF, which is not an straight forward task). Here are the currently available functionals:

LDA: XONLY, VWN, STOLL, PW92
Exchange GGA: Becke88, OPTx, PBEx, rPBEx, revPBEx
Correlation GGA: LYP, Perdew86, PBEc
XC GGA shortcuts: BP86, PBE, RPBE, revPBE, BLYP, OLYP, OPBE

Any functional not mentioned above is not implemented, including PW91 and Hartree-Fock.

To calculate the frequencies analytically, include the block key word ANALYTICALFREQ. Subkeys are
available, but in general, to calculate the frequencies, no subkeys are required, and including the following in
your run file is sufficient:

AnalyticalFreq
End

Unlike the numerical frequencies, the analytical frequencies can be computed immediately after a geometry
optimization by including both block keywords in the same input file.

Geometry
... Geometry optimization options here ...

End

AnalyticalFreq
End

174

A note of caution: For accurate frequencies it is especially important to also have an accurately optimized
geometry. During a geometry optimization the integration accuracy is set by default to "Normal", and so the
resulting frequencies will also have this level of integration accuracy while it may be desirable to have
frequencies computed with a higher accuracy. One might consider using Good NumericalQuality (or
BeckeGrid quality) and set the convergence criteria for the geometry optimization tighter.

The format for the AnalyticalFreq block key is:

AnalyticalFreq
PRINT {eigs} {u1} {parts} {raw_freq}
DEBUG {fit} {hessian} {b1} {densities} {numbers}

{symmetry} {all}
MAX_CPKS_ITERATIONS Niter
CHECK_CPKS_FROM_ITERATION N
U1_ACCURACY x
NUC N1 N2 ... Nk

End

An explanation of the subkeys follow.

PRINT

This is primarly for debugging purposes. Choosing EIGS results in the print out of the MO eigenvectors,
while U1 results in the print out of the U1 matrices. Except for small molecules this will result in a lot of
data being output, and so they are not recommended. Choosing PARTS results in the print out of
various sub-hessians that add up to give the final analytical hessian. RAW_FREQ gives the eigenvalues
of the initial force matrix, which are essentially the frequencies before rotational and translational
degrees of freedom have been removed from the force matrix.

DEBUG

This is for debugging purposes. The choice FIT results in the print out of information related to the
calculation of the fit coefficients and their derivatives. HESSIAN results in the printing out of many of the
sub-Hessians that add ups to give the final Hessian. Many more Hessians are printed out with this
option that with the print parts subkey option (mentioned above). Choosing B1 gives data related to the
frozen core orthogonalization coefficients and their derivatives. DENSITIES gives the integrals and
moments of various densities computed during the calculation of the frequencies. Including NUMBERS
results in the print out of numbers of basis functions, fit functions etc, as well as various integer arrays
that are crucial to the calculation of the analytical second derivatives. SYMMETRY results in symmetry
information and symmetry matrices being printed out. ALL can be used to print out all debug
information.

MAX_CPKS_ITERATIONS Niter

Calculating the analytical frequencies requires the solution of the Coupled Perturbed Kohn-Sham
(CPKS) equations, which is an iterative process. For most systems tested so far, convergence to the
required accuracy in the U1 matrix is achieved within Niter=20 iterations, which is the default. If
convergence is not achieved (a warning will be printed in the output if this is the case) then this subkey
can be used to increase the number of iterations, although convergence is not guaranteed. The user
required accuracy of the U1 matrix, as well as the ADF integration accuracy, can effect the rates of
convergence.

CHECK_CPKS_FROM_ITERATION N

Solution of the CPKS equations is an iterative process, and convergence is achieved if the difference
between U1 matrix of successive iterations falls below a certain threshold. This key can be used to
determine at which iteration the checking should start taking place. The default is 1.

175

U1_ACCURACY x

Solution of the CPKS equations is an iterative process, and convergence is achieved if the difference
between U1 matrix of successive iterations falls below a certain threshold. This subkey can be used to
set the threshold. The accuracy of the U1 will be 10**(-x). So, the higher the number the more accurate
the U1 will be. The default is 4. While this parameter effects the accuracy of the frequencies, other
factors also effect the accuracy of the frequencies, especially the ADF integration accuracy.

NUC N1 N2 ... Nk

By default, when calculating the frequencies analytically, the derivatives of the energy with respect to all
nuclei are calculated. This gives a complete Hessian (second derivative) matrix, from which the
vibrational frequencies of the molecule can be calculated. However, there may be certain cases where
only derivatives with respect to a subset of all the nuclei are required. In this case it is a considerable
saving in time if only a partial Hessian is calculated. With this subkey, a list of the nuclei for which the
derivatives are required can be specified. However, the frequencies in this case are not the vibrational
frequencies of the molecule, but may be used in guiding certain transition state searches.

Restarting Analytical Frequency jobs

Analytical frequency jobs can be restarted if a previous job did not finish. A restart can be done if the file
TAPE21 has been saved without any corruption to the file. Upon doing a restart for analytical frequencies,
the ADF program will check for the presence of an incomplete Hessian and/or for the presence of an
incomplete U1 matrix, then attempt to figure out what more needs to be done.

The restart option may also be useful in combination with the atom selection option (i.e. by specifying a list
of atoms following the keyword nuc in the analyticalfreq block key, see previous notes in this section). So for
instance, you could calculate the partial Hessian for a subset of atoms of a molecule, and at a later time add
another subset of atoms, or the rest of the atoms of the molecule to complete the Hessian.

Numerical Frequencies

Input options

Calculation of the numerical frequencies is specified using the FREQUENCIES keyword in the GEOMETRY
block. Most of the subkeys in the geometry block are meaningless for the calculation of frequencies. Indeed,
a Frequencies calculation is not a variation on optimization, but rather a sequence of Single Point runs for
the equilibrium geometry and a series of slightly different geometries. By comparison of the computed
gradients the force constants and hence the frequencies are computed (in the harmonic approximation of
the energy surface).

GEOMETRY
Frequencies {Symm} {Allowed} {Numdif=Numdif} {Disrad=drad}

{Disang=dang} {SCANALL} {NOSCAN}
iterations Niter
end

Symm

This switch requests that frequencies are calculated in symmetric displacements. During such a
calculation first symmetric atomic displacements are constructed. The number of such displacements in
each irreducible representation corresponds to the number of frequencies with the corresponding
symmetry. All displaced geometries within one representation have the same symmetry, which enables
us to use it to speed up the computation significantly. This is a new option and for now it only works with
geometries specified in Cartesian coordinates. This option does not work correctly with a restart file.
This option does not work correctly when symmetry is explicitly specified in the input file.

176

Allowed

Another advantage of the symmetric displacements is that only a subset of frequencies can be
calculated. The ALLOWED option requests computation of only IR-visible frequencies. This option is
only useful for symmetric molecules where it can be a big time-saver.

Numdif

Must have the value between 1 and 4 and specifies the type of numerical differentiation that is applied
to compute the force constants from gradients in slightly displaced geometries: 1-, 2-, 3-, or 4-point
numerical differentiation. In the case of 1-point differentiation the gradients of the displaced geometry
are compared with the gradients at the input (equilibrium) geometry. In 2-point case both a negative and
a positive displacement are applied, yielding much more accurate results but at the expense of more
computations. This option is the default.
In certain cases the 3-point differentiation method gives better result than 2-point because it also takes
gradients in the middle point into account. This is the case when geometry has not completely
converged and the residual gradients are not quite close to zero. In this method, a formula is used that
interpolates the second derivative (i.e. force constant) at the zero-force point. This way, the error due to
a small deviation from the minimum geometry is decreased. The requirement is that the residual forces
are small enough, more precisely, less that forces at displaced geometries (that is, using numdif=3 for
arbitrary geometries is a bad idea).
When Numdif=4 is specified, force constants matrix will be computed by making two displacements in
each direction, the standard (see drad, dang below) and twice as short. The force constant is then
computed using the Romberg formula that reduces the higher-order and noise components:
H(tot)=(4*H(dx/2)-H(dx))/3. Although this method requires twice as many single-point evaluations, one
can probably get reliable results using lower integration accuracy, which might be faster than the
default.

dang and drad

The displacements of the coordinates that will be varied. Dang applies to angles (bond and dihedral) in
degrees and drad applies to Cartesian (x, y, z) coordinates and to bond lengths, in angstrom. Defaults:
1 degree and 0.01 angstrom.

Niter

In a calculation of frequencies it is the total number of (displaced) geometries for which gradients are
computed. By default this is internally determined such that the calculation of frequencies can be
completed. If you reduce it, the run will only partially build the matrix of force constants and a restart is
required to complete the computation.

WARNING: you cannot combine a Frequencies calculation with the QM/MM feature.

SCANALL and NOSCAN

ADF can scan some or all normal modes after a frequency calculation to verify the corresponding
frequencies. By default, the normal modes corresponding all found imaginary frequencies are scanned.
This can be switched off by specifying NOSCAN. Specifying SCANALL will tell ADF to scan along all
normal modes. These options apply only to calculations in atomic displacements, that is when SYMM is
not specified. These two options are mutually exclusive, the one specified last taking precedence.

Cartesian versus Z-matrix displacements

Cartesian displacements yield usually a higher accuracy than Z-matrix displacements because in the former
case cancellation of numerical integration errors between the different geometries is (almost always) larger.

177

If Z-matrix coordinates are used as the displacement variables, then make sure that no bond angles of 180
(or zero) degrees are among them. They will very probably be treated incorrectly. If your molecule has such
bond angles, use dummies to redefine the coordinates or use Cartesian displacements.

Frequencies and GEOVAR keyword

The use of the GEOVAR keyword in combination with a Frequencies run implies that constraints may be
applied to the displacements, even if no coordinates are explicitly frozen. If different coordinates are
connected to the same variable in the GEOVAR block, only combined displacements of the atoms will be
allowed that correspond to a small change in the GEOVAR variable. For this reason, the combination of the
GEOVAR and Frequencies keywords is to be handled with extreme caution. If no constraints are intended, it
is recommended not to use the GEOVAR keyword, but to use DEFINE instead, or to specify the coordinates
explicitly

Mobile Block Hessian (MBH)

The mobile block Hessian (MBH) method [282, 283] is useful when calculating vibrational frequencies of a
small part of a very large system (molecule or cluster). Calculation of the full spectrum of such a system may
be inefficient and is unnecessary if one is interested in one particular part. Besides, it may be difficult to
extract normal modes related to the interesting sub-system out of the whole spectrum. Using MBH it is
possible to treat parts of the system as rigid blocks. Each block will usually have only six frequencies related
to its rigid motions compared to 3*N for when each atom of the block is treated separately.

The calculation of frequencies using mobile blocks is invoked by specifying FREQUENCIES and MBH
keywords at the same time in the GEOMETRY input block:

GEOMETRY
FREQUENCIES
MBH blockname1 blockname2 ...

End

The names of blocks must correspond to the ones specified in the b= parameter in the ATOMS input block.

The second derivatives with respect to block motions are calculated by numerical differentiation. Since the
number of degrees of freedom is reduced, the number of second derivatives is reduced as well. Therefore
the MBH can realize a speed-up in the calculation of the Hessian compared to a full numerical frequency
calculation.

MBH for partially optimized structures

MBH is suitable to calculate frequencies in partially optimized structures. Assume a geometry optimization is
performed with the BLOCK subkey in the CONSTRAINTS section [see constrained geometry optimizations].
During the geometry optimization, the shape of the block is not changed. The internal geometry of the block
is kept fixed, but the block as a whole can still translate or rotate.

At the end of such a partial geometry optimization, the position and orientation of the block are optimized.
The total force on the block is zero. However, there might be still some residual forces within a block, since
those degrees of freedom were not optimized.

A traditional frequency calculation performed on this partially optimized structure might result in non-physical
imaginary frequencies without a clear interpretation. Therefore one should use an adapted formulation of
normal mode analysis: the Mobile Block Hessian method. The MBH does not consider the internal degrees
of freedom of the block (on which residual forces) apply, but instead uses the position/orientation of the
block as coordinates. In the resulting normal mode eigenvectors, all atoms within the same block move
collectively.

Of course, MBH can also be applied on a fully optimized structure.

178

Accuracy

The second derivatives with respect to Cartesian displacements (3 translations) of the free atoms (atoms not
belonging to any block) and those with respect to block motions (3 block translation/3 block rotations) are
calculated by numerical differentiation of the gradient. The accuracy of the second derivatives is mainly
influenced by the accuracy of the gradient evaluation (e.g. accuracy numerical integration) and the step size
in the numerical differentiation. The parameters DISRAD and DISANG can be specified to set the step size
for Cartesian displacements (translations) and block rotations respectively. The step size for angles is
automatically scaled with the block size.

FREQUENCIES {DISRAD=drad} {DISANG=dang}

The default values for drad and dang are the same as in the case of a standard numerical frequency run.

MBH Notes

Blocks consisting of 1 or 2 atoms are not supported and are ignored. This means that each atom of such a
block is treated separately.

At this moment, it is not possible to calculate IR intensities with the MBH method.

The printed output of the MBH normal mode analysis lists all frequencies, including the ones corresponding
to rotations and translation of the molecule as the whole. Note that while frequencies corresponding to
translations should always be close to zero, the magnitude of the ones corresponding to rotations depends
on how well the geometry is optimized.

Debug information can be obtained if one includes DEBUG MBHNormalModes.

Thermodynamics

At the end of a completed Frequencies calculation, a survey is given of thermodynamic properties: Heat
Capacity, Internal Energy, Entropy. The computed results assume an ideal gas, and electronic contributions
are ignored. The latter is a serious omission if the electronic configuration is (almost) degenerate, but the
effect is small whenever the energy difference with the next state is large compared to the vibrational
frequencies.

THERMO {P=pressure} {T=temp1 {temp2}} {nT=nT}

pressure

The Pressure in atmospheres. Default value: 1.0. A zero or negative pressure is adjusted by the
program to a (very) small number 1e-4

temp1,temp2

The endpoints of the Temperature range (in K), for which the results are computed. By default only
room temperature is considered (298.15 K).
If the option T= is used and only one value supplied (temp1), then temp2 is assumed to be equal to
temp1.
A zero or negative temparture is adjusted by the program to a (very) small number 1e-4

nT

The number of steps by which the temperature interval is scanned. By default it is computed by the
program from the temperature range (temp1, temp2), such that the step size is as close as possible to
10 K. Note that the number of temperatures for which the calculations are done is one more than the
number of temperature steps.

179

The thermal analysis is based on the temperature dependent partition function. The energy of a (non-linear)
molecule is (if the energy is measured from the zero-point energy)

E/NkT = 3/2 + 3/2 + ∑j3N-6[hνj/(2kT) + hνj/(kT(ehνj/(kT)-1))] - D/kT (5.1.2)

The summation is over all harmonic νj, h is Planck's constant and D is the dissociation energy

D = D0 + ∑j hνj/2 (5.1.3)

Contributions from low (less than 20 1/cm) frequencies to entropy, heat capacity and internal energy have
always been excluded from the total values for thermodynamical quantities listed before. In ADF2013 they
are also listed separately so the user can add them if they wish.

Gibbs free energy change for a gas phase reaction

Here an example is given how to calculate the free energy change for a reaction. In the ADF output of a
frequency calculation you can find the electronic bonding energy and nuclear kinetic energies, at room
temperature. Example part of the ADF output of a nonlinear molecule:

hartree eV kcal/mol
kJ/mol

-------------------- ----------- ----------

Total Bonding Energy: -0.744356253597793 -20.2550 -467.091
-1954.31
Zero-Point Energy : 0.033172 a.u.
=================== 0.902646 eV

Temp Transl Rotat Vibrat
Total

---- ------ ----- ------

298.15 Entropy (cal/mole-K): 34.441 11.494 0.126
46.061

Internal Energy (Kcal/mole): 0.889 0.889 20.847
22.624

Constant Volume Heat Capacity (cal/mole-K): 2.981 2.981 0.533
6.495

The nuclear internal energy = zero point energy + 3 kT + small correction term = 22.624 kcal/mol.
3 kT = 3/2 kT for rotation, and 3/2 kT for translation (i.e. 1/2 kT for each degree of freedom). The small
correction term is a term due to the vibration partition function, depending on the temperature not only the
ground state vibrational levels are occupied, see also Eq. (5.1.2).

The electronic internal energy = -467.091 kcal/mol.
In ADF the electronic internal energy is normally calculated with respect to (artificial) spherical averaged
neutral atoms.

The electronic + nuclear internal energy U = -467.091 + 22.624 = -444.467 kcal/mol
Gas phase pV/n = RT = 8.314472 * 298.15 / 4184 = 0.592 kcal/mol
Enthalpy H = U + pV = -444.467 + 0.592 = -443.875 kcal/mol
Gibbs free energy G = H - TS = -443.875 - 298.15*46.061/1000 = -457.608 kcal/mol

For a calculation of the free energy change for reaction (Δ G), you will of course have to to this for the
reactant and product molecules, and add and subtract these energies, for each molecule proportional to the
number of molecules that take place in the reaction. Application of ADF for obtaining enthalpy, entropy and
Gibbs free energy can for instance be obtained in Refs. [347,348]

180

Accuracy

Accuracy is a crucial aspect in the computation of frequencies, in particular for modes with low frequencies:
the gradients at the geometries displaced along that mode will hardly change - analytically - from their
equilibrium values, so numerical integration noise may easily affect the reliability of the computed
differences in gradients. It is worthwhile to consider carefully the size of the displacements. At one hand they
should be small in order to suppress the effect of higher order (anharmonic) terms in the energy surface
around the minimum, at the other hand they should be large enough to get significant differences in
gradients so that these are computed reliably.

High precision calculations where low frequency modes are involved may require high integration settings
[14]. It is sometimes advisable to increase the numerical accuracy of the calculation:

NumericalQuality {Good|VeryGood}

Using 2-point differentiation rather than 1-point differentiation implies two-sided displacements of the atoms.
This doubles the computational effort but in the so-computed force constants all anharmonic terms of odd
order are eliminated. Since in general the lowest anharmonicity is third order this eliminates the first
anharmonicity. Again, this is a feature directed primarily at obtaining highly accurate and reliable results.

The 3- and 4-point methods are intended to assist in special cases and as an extra check when the results
obtained with the 2-point formula are not satisfactory. The 3-point formula should be used when residual
forces after geometry optimization are between 0.01 and 0.0001 a.u./angstrom. In this case frequencies
obtained with the 3-point formula are much closer to those that would be computed at the exact optimum
geometry.

If a Frequencies calculation is carried out only to construct a good start-up Hessian for a TS search (see the
restart key), accurate results are not crucial. The most important thing in such a situation is to get a fair
guess for the negative eigenvalue and its associated mode, and to avoid spurious additional negative
eigenvalues. We recommend to avoid the rather time-consuming standard Hessian-computing preparation
run for a TS search and to lower the precision of the Frequencies run. A reasonable value should be 4.0.

Isotope Shifts of Vibrational Frequencies

To calculate isotopic shifts using ADF do the following:

• Calculate frequencies and save TAPE21 with a different name, say result.t21
• Modify the input file as follows:

◦ add "RESTART result.t21" anywhere in the input file
◦ create new fragment file with different mass
◦ specify the fragment file in FRAGMENTS section

• Run ADF with the new input

Alternatively one can use the the key ATOMPROPS to change the masses of the atoms.

Please note that if you change the fragment file for an atom that has symmetry-equivalent ones then the
new fragment file will be applied to all of the atoms.
Example: first calculate the NH3 frequencies in the C(3v) symmetry and then change H to D. This will mean
that one calculates the frequencies of a ND3 molecule and not of NH2D as one might want to do. If one
wants to calculate the frequencies of NH2D one first has to do a calculation with lower symmetry, say C(s),
to be able to change isotope of only one of the hydrogens.

181

Scanning a Range of Frequencies

In ADF2006 it was already possible to request a full scan of all frequencies obtained by finite differences.
This was originally done to help identify spurious imaginary frequencies that sometimes appear where one
would expect a very low (nearly zero) frequency. Most frequently this happens when there is a barrier-free
rotation of, for example, methyl groups.

Starting from ADF2007.01, it is possible to scan any range of frequencies calculated in the same run or
found in a restart file. Note that one should not use the key SCANFREQ in combination with the key
SYMMETRY. The input keyword used to request the scan is as follows:

SCANFREQ low high {NUM=num DISRAD=disrad}

low, high

Two values defining an interval of frequencies to scan. Frequencies that fall within the interval will be
recalculated by numerical differentiation of the gradient along the respective frequency's normal mode.
This means that 2*N single-point calculations with gradients will be performed, where N is the number
of frequencies within the range. Imaginary frequencies are specified using negative values, which is
consistent with the notation adopted within ADF.

num

Num is an integer number specifying how many points are to be used for numerical differentiation: 2, 4,
or 6. The default value is 2.

disrad

Disrad specifies the step size (in Angstrom) to be made in each direction for 2-point differentiation. For
the 4-point differentiation the maximum deviation from the equilibrium geometry will be twice as large as
for the 2-point one and so on. The default value for disrad is the same as used for numerical
frequencies.

The main advantage of this method is that single-point calculations used to obtain a force constant are
performed within the same symmetry and, usually, with the same numerical integration grid, which
significantly reduces the level of numerical noise and thus increases accuracy of the calculated frequency.

Moments of inertia

In case frequencies are calculated in ADF, ADF also reports the moments of inertia of the molecule in units
of amu bohr2 (amu = atomic mass unit).

Excited state (geometry) optimizations

See the key EXCITEDGO.

2.6 Spectroscopic properties

See also
ADF-GUI tutorial: excitation energies, vibrational frequencies
GUI manual: spectroscopic properties
Examples: IR spectra, excitation energies, response properties, NMR, ESR, EFG

182

http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagEXCITATION_ETHENE.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagFREQ_ETHANE.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_reference/metatagSPECTROSCOPY.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagIR.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagEXCITATION.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagRESPONSE.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagNMR.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagESR.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagEFG.html

IR spectra, (resonance) Raman, VROA, VCD

In ADF infrared and Raman spectroscopy can be studied for molecular vibrations. In the Born-Oppenheimer
and harmonic approximations the vibrational frequencies are determined by the normal modes
corresponding to the molecular electronic ground state potential energy surface. In resonance Raman
spectroscopy the molecule is excited to near one of its electronic excited states, to improve the sensitivity
compared to traditional Raman spectroscopy. Vibrational circular dichroism (VCD) is the differential
absorption of left and right circularly polarized infrared light by vibrating molecules.

IR spectra

The IR frequencies can be calculated with the FREQUENCIES subkey of the key GEOMETRY (numerical
frequencies),

GEOMETRY
FREQUENCIES

END

or with the block key ANALYICALFREQ (analytical frequencies),

ANALYICALFREQ
END

These keys are described more extensively here: IR Frequencies.

Raman scattering

Raman scattering intensities and depolarization ratios for all molecular vibrations at a certain laser frequency
can be calculated in a single run. The run type must be Frequencies, which is arranged with the
FREQUENCIES subkey of the key GEOMETRY (numerical frequencies), or with the block key
ANALYICALFREQ (analytical frequencies), see IR Frequencies.

The RESPONSE key is used to specify that Raman intensities are computed. The frequency dependent
Raman scattering can be calculated for 1 laser frequency at the time.

RESPONSE
RAMAN
Nfreq 1
FrqBeg Laserfreq
[Optional Frequency/Energy Unit]

END

Frequencies or wavelengths

The number of frequencies Nfreq should be 1. With subkey Frqbeg the value of the Laser frequency
value (Laserfreq) can be given. Default frequency unit is eV. This can be changed into Hartree units
(a.u.) or in wavelengths (angstroms) by typing HARTREE or ANGSTROM on a separate line within the
RESPONSE block, instead of [Optional Frequency/Energy Unit].

For static Raman scattering (ω = 0) use:

RESPONSE
RAMAN

END

183

The Raman scattering calculation is very similar to an IR intensity calculation. In fact, all IR output is
automatically generated as well. At all distorted geometries the dipole polarizability tensor is calculated. This
is very time-consuming and is only feasible for small molecules. More details on the RESPONSE key can be
found here.

There are a few caveats:
- Numerical integration (BeckeGrid) accuracy must be high
- A calculation in which only a subset of the atoms is displaced is not possible for Raman calculations.
- For good results, a well converged (with the same basis and functional) equilibrium geometry must be
used.

Because of this last point, it is wise to always start the RAMAN calculation with a TAPE13 restart file from a
previous geometry optimization with the same basis, accuracy parameters, and density functional.

Atomic coordinate displacements in a RAMAN calculation must be Cartesian, not Z-matrix. Furthermore, the
current implementation does not yet support constrained displacements, i.e. you must use all atomic
coordinate displacements. However, one can calculate Raman for selected frequencies, see next section.

The alternative Raman implementation with the AORESPONSE offers some unique features like lifetime
options.

AORESPONSE
RAMAN

END

Raman Intensities for Selected Frequencies

The RAMANRANGE keyword can be used to calculate Raman intensities for a range of frequencies only.
Recommended to be used in the case one use a t21 as a restart file, which has frequencies on them. Using
this option is a fast alternative for the existing method of calculating Raman intensities. Note that one should
not use the key RAMANRANGE in combination with the key SYMMETRY. The input keyword is as follows:

RAMANRANGE low high {NUM=num DISRAD=disrad}

low, high

Two values defining an interval of frequencies to calculate the Raman intensities for. The Raman
intensities are calculated by numerical differentiation of the polatizability tensor. Only frequencies within
the interval that are known to be Raman-active will be included. This means that 2*N single-point
TDDFT calculations will be performed, where N is the number of Raman-active frequencies within the
range. Imaginary frequencies are specified using negative values, which is consistent with the notation
adopted within ADF.

num

Num is an integer number specifying how many points are to be used for numerical differentiation: 2, 4,
or 6. The default value is 2.

disrad

Disrad specifies the step size (in Angstrom) to be made in each direction for 2-point differentiation. For
the 4-point differentiation the maximum deviation from the equilibrium geometry will be twice as large as
for the 2-point one and so on. The default value for disrad is the same as used for numerical
frequencies.

Main advantages of the method:

184

• Full symmetry at each displaced geometry is used, which does not only speeds the calculation up
but also makes it more accurate.

• Only Raman-active modes are included in the calculation, which may save a lot of time for
molecules with symmetry.

• There is no need to recalculate frequencies if you already have a t21 file with them as it can be
used as a restart file.

For static Raman scattering (ω = 0) one does not need to add the RESPONSE block key. However, for the
calculation of the frequency dependent Raman scattering the following RESPONSE block key is needed in
the input:

RESPONSE
RAMAN
Nfreq 1
FrqBeg Laserfreq
[Optional Frequency/Energy Unit]

END

Frequencies or wavelengths

The number of frequencies Nfreq should be 1. With subkey Frqbeg the value of the Laser frequency
value (Laserfreq) can be given. Default frequency unit is eV. This can be changed into Hartree units
(a.u.) or in wavelengths (angstroms) by typing HARTREE or ANGSTROM on a separate line within the
RESPONSE block, instead of [Optional Frequency/Energy Unit].

Resonance Raman: excited-state finite lifetime

In this method (Ref.[266]) the resonance Raman-scattering (RRS) spectra is calculated from the geometrical
derivatives of the frequency-dependent polarizability. The polarizability derivatives are calculated from
resonance polarizabilities by including a finite lifetime (phenomenological parameter) of the electronic
excited states using time-dependent density-functional theory.

It is similar to the simple excited-state gradient approximation method (see next section) if only one
electronic excited state is important, however, it is not restricted to only one electronic excited state. In the
limit that there is only one possible state in resonance the two methods should give more or less the same
results. However, for many states and high-energy states and to get resonance Raman profiles (i.e., Raman
intensities as a function of the energy of the incident light beam) this approach might be more suitable. The
resonance Raman profiles in this approach are averaged profiles since vibronic coupling effects are not
accounted for. At the moment this method needs numerically calculated frequencies in Cartesian
coordinates. The method described in the next section can use a basis of normal coordinates rather than
Cartesian coordinates, so that in that method the calculation can be restricted to a couple of modes.

GEOMETRY
FREQUENCIES

END
ALLPOINTS
AORESPONSE
RAMAN
FREQUENCY 1 freq1 units
LIFETIME width

END

This method needs ALLPOINTS, because of the AORESPONSE key, and numerically calculated
frequencies. The RRS is not calculated if one uses symmetric displacements in the numerically calculated
frequencies or if one uses analytically calculated frequencies. The documentation of the AORESPONSE key
explains in more detail the meaning of the subkeywords in the block key AORESPONSE, which are required

185

to calculate RRS. Similarly to the normal Raman module, the AOREPONSE-Raman only works with one
frequency.

Resonance Raman: excited-state gradient

According to a the time-dependent picture of resonance-Raman (RR) scattering the relative intensities of RR
scattering cross sections are, under certain assumptions, proportional to the square of the excited-state
energy gradients projected onto the ground-state normal modes of the molecule (see Ref. [202]). For an
alternative implementation of RR scattering using a finite lifetime of the excited states, and a discussion of
some of the differences, see the previous section.

The excited-state gradients which are needed in this method can be computed numerically by ADF's
VIBRON module, which is invoked by selecting the VIBRON runtype in the GEOMETRY block key, the use
of the VIBRON block key and the EXCITATION block key:

GEOMETRY
VIBRON

END

VIBRON
NMTAPE filename
RESRAMAN
{...
..}

END

EXCITATIONS
LOWEST nlowest

END

The VIBRON module always requires an EXCITATIONS input block, in which the total number of excited
states to be calculated must be specified. NMTAPE is the only obligatory keyword for the VIBRON module.
It specifies the name of a TAPE21 file from a previous frequency calculation. This TAPE21 file is needed to
read the normal modes w.r.t. which the derivatives are computed. I.e., a separate frequency calculation
must be carried out first. The second subkeyword RESRAMAN invokes the resonance Raman calculation.
Note that the VIBRON module is not suited for open-shell TDDFT.

Resonance Raman for several excited states

The numerical evaluation of resonance Raman intensities has the advantages that

• Relative Intensities can be computed for several excited states at a time, since all excitation
energies are determined simultaneously.

• Intensities can be computed for a selected no. of modes.

The intensities calculated for two different states cannot directly be compared, since the excited-state
gradients only provide relative intensities for each excited state in resonance. For RR intensities from
different excited states, also other quantities play a role. The most important one is the transition dipole
moment to the excited state in resonance, which enters the intensity expression with to the fourth power.

Restrictions: (avoided) crossings between excited-states

The numerical calculation of excited-state gradients has a number of advantages, but also a possible
problem: If the step size is chosen too large, or if there are close-lying excited-states, then the order of the
excited states can change. For such cases, the excited-state gradient method to estimate relative RR
intensities is not reliable: If states with different electronic character (but of the same symmetry) are close in
energy, this will cause an avoided crossing. If the numerical derivatives are, in this case, computed w.r.t. the

186

adiabatic states, they will probably not reflect the true situation. Especially if the coupling matrix elements
between the two excited states is small, the spectroscopic properties often behave as if there is no avoided
crossing, i.e., according to the diabatic states. Such cases should be handled with extreme care, since it is
often not possible in advance to see whether the adiabatic or the diabatic picture should be invoked.

Because of the possible (avoided) crossings the user must make sure that always enough excited states are
calculated to include the state(s) of interest. E.g., if the resonance Raman intensities are required for the first
excited state, also some higher excited states have to be included in the excitation calculation, as the first
excited state at the ground-state equilibrium might be higher in energy for displaced structures.

Restrictions: results not trustworthy for higher excited states

Users should be aware of another technical point: Excited states are usually calculated from a Davidson
diagonalization procedure, i.e., only a small number of eigenvalues and eigenvectors describing the lowest
excitations are obtained. During finite displacements, some of the higher calculated states might leave the
calculated energy window, while others enter it. Hence, the character of some of the higher calculated states
can change. In such a case, the numerical differentiation based on a (simple) diabatic pictures will fail for the
higher states, since no mapping between the excited states for reference (equilibrium) and displaced
structure can be carried out.

The solution is rather simple: Users should always ask for more excited states than they are actually
interested in, and discard the data for higher states, in particular for those which could not successfully be
mapped for displaced structures (look for messages in the output like 'State No. X cannot be expressed in
terms of reference states').

For advanced users it should be mentioned that it is possible to set an energy window within the range of
states calculated, and only the states within this energy window will be taken into account in the evaluation.
See the subkey ELTHRESH and EUTHRESH of the block key VIBRON.

Furthermore, it is possible to pick out certain states from this energy window, and only perform the mapping
(and diabatization, if requested) and differentiation for them. See the subkey SELSTATE of the block key
VIBRON.

Advanced Restarts

In some cases, it only becomes obvious which states have to be included in a (simple) diabatization after
excitation energies for all displaced structures are calculated. Therefore, the selected states and the energy
window settings can also be adjusted in a restart (with the usual restart key) after all single-point calculations
are done. However, this is only possible if all raw data are saved to TAPE21, which might be an enormous
amount of data.

Therefore, the user has to specify the subkeyword SAVERAWDAT of the key VIBRON in the production run,
and the subkeyword USERAWDAT of the key VIBRON in the (evaluation) restart. Such a restart does not
invoke any new SCF and will, therefore, typically only take a couple of seconds or minutes. If
SAVERAWDAT is not specified, restarts are still possible, but the energy window cannot be adjusted
differently, and no new state selection can be performed.

Resonance Raman Input options

A number of options are available for the VIBRON module, most of which are for special applications. All the
options mentioned below have to appear in the VIBRON block. The VIBRON module always requires an
EXCITATION input block, in which the total number of excited states to be calculated must be specified.

VIBRON
NMTAPE filename
RESRAMAN
{DISPTYPE disptype}
{STPSIZE stpsize}

187

{ONLYSYM}
{NOTONLYSYM}
{DOMODES list}
{DONTMODES list}
{DSCHEME dscheme}
{EUTHRES euthres}
{ELTHRES elthres}
{SELSTATE list}
{SAVERAWDAT}
{USERAWDAT}

END

The most important ones in connection with RR calculations are:

NMTAPE filename

NMTAPE is the only obligatory keyword for the VIBRON module. It specifies the name of a TAPE21 file
from a previous frequency calculation. This TAPE21 file is needed to read the normal modes w.r.t.
which the derivatives are computed. I.e., a separate frequency calculation must be carried out first.

RESRAMAN

The second subkeyword RESRAMAN invokes the resonance Raman calculation.

DISPTYPE disptype

Select type of displacement steps; possible values are:
- MASSWE: steps in terms of mass-weighted normal mode vectors [default]
- CARTES: steps in terms of cartesian normal mode vectors
- REDUCE: steps in terms of reduced normal modes
- ENERGY: steps in terms of expected energy change (according to harmonic approximation)
- ZPELEV: like energy, but energy is expressed in ZPE units

STPSIZE stpsize

Sets the step size for the numerical differentiation in the default unit for the given DISPTYPE

ONLYSYM

Calculate derivatives only for totally symmetric modes (this is useful since this RR estimate only holds
for Franck-Condon type Raman scattering, which is zero for non-symmetric modes). This option is ON
per default in RR calculations, it can be switched off with the key NOTONLYSYM.

DOMODES list

Calculate derivatives only for the normal modes with numbers mentioned in list.

DONTMODES list

Calculate derivatives for all normal modes except the ones with numbers mentioned in list.

DSCHEME dscheme

The type of differentiation to be used can be set. Three different values for dscheme are available:

ELCHAR

A simple diabatic picture in which adiabatic states are mapped to the adiabatic states for the
references structure based on a maximum transition density overlap criterion [default].

188

EIGVEC

A diabatic picture in which a diabatization is carried out as explained in Ref. [203]. I.e. the energies
used here are the diagonal elements of the potential energy matrix for the nuclear Schrödinger
Equation.

ADIABS

The adiabatic picture; can only be used if the symmetry of the excited states is supplied from a
separate calculation, since the VIBRON module cannot check which states are allowed to cross as
no symmetry is used in the excitation calculations. Consult the ADF-VIBRON manual [204] for
information.

ELTHRESH elthresh
EUTHRESH euthresh

For advanced users it is possible to set an energy window within the range of states calculated, and
only the states within this energy window will be taken into account in the evaluation.
- elthresh: lower bound in eV, default 0 eV.
- euthresh: upper bound in eV, default 1.0E10 eV.

SELSTATE list

For advanced users it is furthermore possible to pick out certain states from the energy window, and
only perform the mapping (and diabatization, if requested) and differentiation for them. Here list includes
the number (in ascending excitation energy) of the excited state at the reference (equilibrium) structure.

SAVERAWDAT

All raw data are saved to TAPE21, which might be an enormous amount of data. The selected states
and the energy window settings can then be adjusted in a restart (with the usual restart key) and the
inclusion of the subkey USERAWDATA after all single-point calculations are done.

USERAWDAT

All raw data are read from a previous calculation. The selected states and the energy window settings
can now be adjusted. You need to invoke the usual restart key. Such a restart does not invoke any new
SCF and will, therefore, typically only take a couple of seconds or minutes. If SAVERAWDAT is not
specified in the previuous calculation, restarts are still possible, but the energy window cannot be
adjusted differently, and no new state selection can be performed.

VROA: (Resonance) vibrational Raman optical activity

In ADF2010 a method is implemented to calculate both on- and off-resonance vibrational Raman optical
activities (VROAs) of molecules using time-dependent density functional theory, see Ref. [306]. This is an
extension of a method to calculate the normal VROA by including a finite lifetime of the electronic excited
states in all calculated properties. The method is based on a short-time approximation to Raman scattering
and is, in the off-resonance case, identical to the standard theory of Placzek. The normal and resonance
VROA spectra are calculated from geometric derivatives of the different generalized polarizabilites obtained
using linear response theory which includes a damping term to account for the finite lifetime. Gauge-origin
independent results for normal VROA have been ensured using either the modified-velocity gauge or gauge-
included atomic orbitals.

For the normal VROA use numerical frequencies, and the subkey VROA of the key AORESPONSE.
Example input:

189

GEOMETRY
frequencies

END
AORESPONSE
NEWPOLCODE
VROA
scf converge 1d-6 iterations 100
frequency 1 5145 Angstrom
ALDA
FitAOderiv
EL_DIPOLE_EL_DIPOLE VELOCITY
EL_DIPOLE_EL_QUADRUPOLE VELOCITY
EL_DIPOLE_MAG_DIPOLE VELOCITY

END

For the resonance VROA use numerical frequencies, and the subkey VROA and LIFETIME of the key
AORESPONSE. Example input:

GEOMETRY
frequencies

END
AORESPONSE
NEWPOLCODE
VROA
scf converge 1d-6 iterations 100
frequency 1 5.15462 eV
lifetime 0.0037
ALDA
FitAOderiv
EL_DIPOLE_EL_DIPOLE VELOCITY
EL_DIPOLE_EL_QUADRUPOLE VELOCITY
EL_DIPOLE_MAG_DIPOLE VELOCITY

END

Vibrational Circular Dichroism (VCD) spectra.

Starting from ADF2007.01 it has become possible to calculate VCD spectra. The following keyword enables
calculation of rotational strength during an analytical frequencies calculation:

VCD

It is important to note that the VCD keyword only works in combination AnalyticalFreq and symmetry
NOSYM.

AnalyticalFreq
End

SYMMETRY NOSYM

The VCD intensities are calculated using Stephens' equations for VCD. For the calculation of the atomic
axial tensors (AATs), analytical derivatives techniques and London atomic orbitals (the so called GIAO) are
employed. As a result the calculated rotational strengths are origin independent, and therefore the common
origin gauge is used [216].

Calculation of the AATs requires an analytical frequencies calculation. This limits the choice of functionals
that can be used for VCD calculations. See the ANALYTICALFREQ keyword for a complete list of the

190

available functionals. The VCD calculations can be done immediately after a geometry optimization, just like
analytical frequencies calculations.

The accuracy of the vibrational rotational strengths are determined by the accuracy of the harmonic force
field, atomic polar tensors (APTs) and AATs. The most critical parameter being the harmonic force field.
Thus, for a fair comparison with experimental data, accurate geometries and functionals that yield accurate
force fields (e.g. BP86, OLYP, etc) should be used. Our tests showed that the BP86 functional in
combination with TZP basis sets is always a safe choice. For a comparison of VCD spectra calculated with
various functionals (e.g BP86, OLYP, BLYP, B3PW91 and B3LYP) see [216]. Regarding the geometries, we
recommend the following strict settings, 10-4 for the geometry convergence of the gradients, and BeckeGrid
quality good. The default settings should be used for the calculation of the frequencies.

The current VCD implementation does not support symmetry and therefore symmetry NOSYM should be
specified in the input file. The frozen core approximation and open shell systems are also not supported.

By default, only the vibrational rotational strengths are printed in the ADF output file. The AATs can also be
printed by specifying the keyword:

PRINT VCD

Vibrationally resolved electronic spectra

See the section on vibrationally resolved electronic spectra.

Time-dependent DFT

Excitation energies, frequency-dependent (hyper) polarizabilities, Van der Waals dispersion coefficients,
higher multipole polarizabilities, Raman scattering intensities and depolarization ratios of closed-shell
molecules are all available in ADF [71,72] as applications of time-dependent DFT (TDDFT) ; see [73] for a
review.

New in ADF2004.01 is the calculation of circular dichroism (CD) spectra, and the calculation of the optical
rotation (dispersion).

Starting from the ADF2005.01 version it is possible to calculate excitation energies for open-shell systems
with TDDFT, including spin-flip excitation energies. New in ADF2005.01 is the possibility to use time-
dependent current-density functional theory (TDCDFT).

New in ADF2006.01 is the possibility to calculate excitation energies for closed-shell molecules including
spin-orbit coupling.

New in ADF2008.01 is the possibility to calculate lifetime effects in (dynamic) polarizabilities
(AORESPONSE key).

The input description for these properties is split in three parts: (a) general advice and remarks, (b)
excitation energies, and (c) frequency-dependent (hyper) polarizabilities (two alternative implementation:
RESPONSE key and AORESPONSE key) and related properties.

General remarks on the Response and Excitation functionality

Symmetry

As in calculations without TDDFT the symmetry is automatically detected from the input atomic
coordinates and need not be specified, except in the following case: infinite symmetries cannot be

191

handled in the current release (ATOM, C(lin), D(lin)). For such symmetries a subgroup with finite
symmetry must be specified in the input. The usual orientation requirements apply.
If higher multipole polarizabilities are required, it may also be necessary to use a lower subgroup (the
program will stop with an error message otherwise). For verification of results one can always compare
to a NOSYM calculation.

Closed-shell

The current implementation often supports only closed-shell molecules. If occupation numbers other
than 0 or 2 are used the program will detect this, (but only at a later stage of the calculation) and abort.
All 'RESPONSE' calculations must be spin-restricted.

Open-shell

Excitation energies can be obtained for open-shell systems in a spin-unrestricted TDDFT calculation.
Spin-flip excitation energies can only be obtained in a spin-unrestricted TDDFT calculation.

Atomic coordinates in a RAMAN calculation

Atomic coordinate displacements in a RAMAN calculation must be Cartesian, not Z-matrix.
Furthermore, the current implementation does not yet support constrained displacements, i.e. you must
use all atomic coordinate displacements.

Use of diffuse functions

The properties described here may require diffuse functions to be added to the basis (and fit) sets. Poor
results will be obtained if the user is unaware of this. As a general rule, diffuse functions are more
important for smaller than for larger molecules, more important for hyperpolarizabilities than for normal
polarizabilities, more important for high-lying excitation energies (Rydberg states) than for low-lying
excitations, more important for higher multipole polarizabilities than for dipole polarizabilities. The user
should know when diffuse functions are required and when they are not: the program will not check
anything in this respect. For example, in a study on low-lying excitation energies of a large molecule,
diffuse functions will usually have little effect, whereas a hyperpolarizability calculation on a small
molecule is pointless unless diffuse functions are included. Diffuse even tempered basis sets are
included in the ET/ directory of the database), for the elements H-Kr. Somewhat older basis sets can be
found in the Special/Vdiff directory in the database. For other atoms, the user will have to add diffuse
basis and fit functions to the existing data base sets. It is not necessary to start from basis V as was
done for the basis sets in Special/Vdiff. For example, for heavier elements it may be a good idea to start
from the ZORA/QZ4P basis sets. It may be expected that even more extensive basis sets will come
available in the future, when usage and experience increase.

Linear dependency in basis

If large diffuse basis sets are used, or if diffuse functions are used for atoms that are not far apart the
calculation may suffer from numerical problems because of (near-) linear dependencies in the basis set.
The user should be aware of this danger and use the DEPENDENCY key to check and solve this.

The LINEARSCALING input keyword

For reasons of numerical robustness and safety rather strict defaults apply for the neglect of tails of
basis and fit functions (see the key LINEARSCALING) in a Response or Excitation calculation. This
may result in longer CPU times than needed for non-TDDFT runs, in particular for larger molecules.
Possibly this precaution is not necessary, but we have not yet tested this sufficiently to relax the
tightened defaults.

Relativistic effects

The Response and Excitations options can be combined with scalar relativistic options (ZORA or Pauli).
The one-electron relativistic orbitals and orbital energies are then used as input for the property

192

calculation. Spin-orbit effects have been incorporated only in this part of the code (excitation energies).
In case of a ZORA calculation, the so-called 'scaled' orbital energies are used as default.

Choice of XC potential

For properties that depend strongly on the outer region of the molecule (high-lying excitation energies,
(hyper) polarizabilities), it may be important to use a XC potential with correct asymptotic behavior
(approaching -1/r as r tends to infinity). Finally, several asymptotically correct XC potentials have been
implemented in ADF, like the LB94 potential [15] and the statistical average of orbital potentials SAOP
[244,17]. SAOP is recommended. Because of the correct asymptotic behavior the SAOP potential (and
the LB94 potential) can describe Rydberg states correctly. The potentials based upon the so-called
GRadient regulated seamless connection of model potentials (GRAC) for the inner and the outer region
[16,18] have similar performance to SAOP, but have the disadvantage that the ionization energy of the
molecule has to be used as input.

With the SAOP and GRAC functionals for the potential (as well as for LB94), the XC potential is
computed from the exact charge density for reasons of stability and robustness (whereas for other
functions the (cheaper) fit density is used). This implies that computation times may be longer. Another
'side effect' is that, since there is no energy expression corresponding to these potentials, the final
(bonding) energy of such calculations uses another GGA and hence the energy result is not (exactly)
consistent with the SCF procedure. Note, finally, that these potentials have been found to be not
suitable for geometry optimizations because they maybe are not sufficiently accurate in the bonding
region, see the discussion of the XC input key. Applications with SAOP to (hyper)polarizabilities and
excitation energies, also for Rydberg transitions, can be found in [17] and with SAOP and Becke-
Perdew-GRAC in [16,18]. Applications with the old LB94 potential to response calculations can be
found in [74] (polarizabilities), [75-77] (hyperpolarizabilities), [78] (high-lying excitation energies), [79]
(multipole polarizabilities and dispersion coefficients).

XC kernel

If most cases the adiabatic local density approximated (ALDA) kernel is used in the TDDFT
functionality. In case of calculating excitation energies with a hybrid functionals the Hartree-Fock
percentage times the Hartree-Fock kernel plus one minus the Hartree-Fock percentage times the ALDA
kernel is used.

For excitation eenrgy calculations in some cases the full (non-ALDA) kernel can be evaluated, see the
full XC kernel description. The Full kernel can not be used in combination with symmetry or excited
state geometry optimizations.

COSMO

The COSMO model for solvation is a cheap method to include solvation effects in the TDDFT
applications, see the SOLVATION key. Note that inclusion of the key ALLPOINTS is needed in case of
TDDFT COSMO calculations. Note that in TDDFT calculations one may have to use two dielectric
constants. The reason is that the electronic transition is so fast that only the electronic component of the
solvent dielectric can respond, i.e., one should use the optical part of the dielectric constant. This is
typically referred to as non-equilibrium solvation. The optical dielectric constant can be obtaining from
the (frequency dependent) refractive index n of the solvent as: εopt = n2. One can use the argumen
NEQL in the subkey SOLV of the key SOLVATION to set a value for the optical dielectric constant. No
dielectric constant in the response might be closer to the optical dielectric constant than using the full
dielectric constant, This can be achieved if one includes the subkey NOCSMRSP in the block key
SOLVATION, such that the induced electronic charges do not influence the COSMO surface charges.
However, if one does geometry optimization then the full dielectric constant should be used in the
TDDFT simulations since the solvent dielectric now has time to fully respond. The default is that the full
dielectric constant is used in the TDDFT calculations.

Accuracy check list

193

As mentioned before, the TDDFT module is relatively new and not extensively tested for a wide range
of applications. Therefore, we strongly recommend the user to build experience about aspects that may
affect the accuracy of TDDFT results. In particular we advise to 'experiment' with

- Varying integration accuracy

- Varying the SCF convergence

- Varying the ORTHONORMALITY and TOLERANCE values in an Excitation calculation

- Varying the linearscaling parameters

- Using diffuse functions

- Using the Dependency key

- Applying the ZORA relativistic corrections for molecules containing heavy nuclei

- Using an asymptotically correct XC potential such as SAOP

Analysis options for TDDFT (excitation energies and polarizabilities)

Several options are available to obtain more detailed results than a few bare numbers for excitation
energies, oscillator strengths, transition dipole moments, and (hyper)polarizabilities. For a zero-order
understanding of which occupied and virtual orbitals play an important in the polarizability or intensity of an
absorption peak,

it may be useful to know the values of the dipole matrix elements between (ground-state) occupied and
virtual Kohn-Sham orbitals. If these dipole matrix elements are large for a particular occupied-virtual orbital
pair, then this pair is almost certainly of great importance for the whole spectrum or polarizability. This
information can be obtained by specifying somewhere in the input file (but NOT inside the RESPONSE or
EXCITATION block keys):

PRINT DIPOLEMAT

Time-dependent Current DFT

The time-dependent current-density-functional (TDCDFT) implementation is built entirely upon the normal
TDDFT implementation. Therefore all general remarks that are made for the TDDFT part of the program are
also valid for TDCDFT. Only the polarizability and excitation energies of closed shell molecules can be
calculated with TDCDFT in the present implementation.

If TDCDFT is used together with the ALDA functional (NOVK option) it will give the same results for the
polarizability and excitation energies as TDDFT in a complete basis set. TDCDFT in ADF by default uses the
VK functional [160,161], since this is the only current dependent functional that is known presently. Many
aspects of the functional are still unknown and the functional should therefore be used with caution. The
user is referred to the references for more information on when the VK functional gives good results and
when not.

For more information on the implementation and applications of the TDCDFT and the VK functional please
read the references: [162-165]. For more details on the theory and implementation in ADF see: [166].

To activate TDCDFT and the VK functional one should add the following block key to the input file:

CURRENTRESPONSE
END

194

To calculate the polarizability the keyword Response can be used with the following options:

RESPONSE
ALLCOMPONENTS
Nfreq Nfreq
FrqBeg FirstFreq
FrqEnd LastFreq
[Optional Frequency/Energy Unit]

END

The block key EXCITATION can be used with all of its options.

In ADF2012 the block keyword AORESPONSE can also be used with the Vignale-Kohn functional. The
current-density is generated on the fly but otherwise the computation is based on the time dependent
density response.

In default the VK functional will be applied where the NCT parameterization [167] is chosen for the
transverse exchange-correlation kernel for the polarizability and singlet excitation energies (giving the best
results for the systems studied so far). For triplet excitation energies the only available parameterization will
be used [168]. This option is not tested much and the results are in general much worse than ALDA [166]. It
is therefore suggested that VK is not used to calculate triplet excitation energies.

In the output the polarizability tensor (in case of an ALLCOMPONENTS calculation) has a different shape,
the results are printed in the more intuitive order x, y, z, instead of y, z, x that the TDDFT implementation
uses.

The following subkeys are available within the datablock of CURRENTRESPONSE

CURRENTRESPONSE
QIANVIGNALE
NOVK
END

QIANVIGNALE

The QV parameterization [168] will be used for the transverse exchange-correlation kernel instead of
NCT.

NOVK

TDCDFT will be applied with the ALDA functional instead of the VK functional. In a complete basis this
will give the same results as a TDDFT calculation.

Excitation energies: UV/Vis spectra, X-ray absorption, CD, MCD

Ultraviolet-visible (UV/Vis) spectroscopy studies electronic excitations of valence electrons, whereas X-ray
spectroscopy studies electronic excitations of core electrons. Excitation energies and oscillator strengths are
all available in ADF as applications of time-dependent DFT (TDDFT). Excitation energies can be calculated
for closed-shell as well as for open-shell molecules. It is also possible to include spin-orbit coupling and to
calculate core excitations (X-ray absorption spectra). Circular dichroism (CD) is the differential absorption of
left- and right-handed circularly polarized light.

Excitation energies, UV/Vis spectra

You can perform a calculation of singlet-singlet and singlet-triplet excitation energies of a closed-shell
molecule by supplying in the input file the block key EXCITATION. See the next sections for settings of

195

technical parameters, the calculation of excitation energies for open shell molecules, inclusion of spin-orbit
coupling, and the calculation of CD spectra.

EXCITATIONS
EXACT &

IRREP1 N1
IRREP2 N2

SUBEND
DAVIDSON &

IRREP3 N3
IRREP4 N4

SUBEND
ALLOWED
ONLYSING
ONLYTRIP
LOWEST nlowest

End

Several options can be addressed with subkeys in the data block. This functionality is based on TDDFT and
consequently has a different theoretical foundation than the SCF techniques described elsewhere in this
User's Guide. Two possible ways are available to solve the eigenvalue equation from which the excitation
energies and oscillator strengths are obtained, of which the iterative Davidson procedure is the default. In
this case, the program needs to know how many excitation energies are needed per irrep, what accuracy is
required, and what type of excitation energies are required (singlet-singlet or singlet-triplet). Suitable defaults
have been defined for all of these. Each of these points is discussed below.

Exact diagonalization vs. iterative Davidson procedure

The most straightforward procedure is a direct diagonalization of the matrix from which the excitation
energies and oscillator strengths are obtained. Since the matrix may become very large, this option is
possible only for very small molecules. It can be activated by specifying the word EXACT as one of the
subkeys in the Excitations data block. The default is the iterative Davidson method. A few of the lowest
excitation energies and oscillator strengths are then found within an error tolerance. An advantage of
the EXACT option is that additional information is produced, such as the Cauchy coefficients that
determine the average dipole polarizability. The EXACT option can not be used in unrestricted
calculations.

Singlet versus triplet

By default, the singlet-singlet and singlet-triplet excitation energies are both calculated. The singlets are
handled first, then the corresponding triplet excitation energies. One can skip one of these two parts of
the calculation by specifying either ONLYSING or ONLYTRIP as a subkey in the data block.

In case of a calculation including spin-orbit coupling one can not separate the singlet-singlet and singlet-
triplet excitations. The subkeys ONLYSING and ONLYTRIP are misused in this case to do a spin-
restricted calculation, or a spin-polarized calculation, respectively. One should in fact only use the
results of the spin-polarized calculation.

Dipole-allowed versus general excitations.

If you are interested in the optical absorption spectrum, you may not want to compute singlet-triplet
excitation energies, nor singlet-singlet excitation energies which, by symmetry, have zero oscillator
strengths. This subkey should not be used in case of spin-orbit coupling. The subkey ALLOWED tells
ADF to treat only those irreducible representations for which the oscillator strengths will be nonzero. Of
course, the oscillator strengths may still be negligibly small. The ALLOWED subkey automatically
implies ONLYSING. The simplest, fastest, and recommended way to obtain information about the ten
lowest dipole-allowed excitation energies would be:

196

EXCITATIONS
ALLOWED
LOWEST 10

END

Which excitation energies and how many?

The user can specify how many excitation energies per irrep should be calculated. If no pertaining input
is available the program determines these numbers from the smallest differences between occupied
and virtual Kohn-Sham orbital energies. By default it looks at the 10 lowest orbital energy differences.
This number can be modified, by specifying inside the Excitation block key, for example:

LOWEST 30

One should be aware that this procedure does not guarantee that the lowest 10 (or 30) excitation
energies will actually be found, since the orbital energy difference approximation to the excitation
energy is rather crude. However, if the program decides on the basis of this procedure to calculate 4
excitation energies in a certain irreducible representation, these 4 excitation energies are certainly the
lowest in that particular irrep.

The user has more control when the number of excitations per irrep is explicitly specified within the
EXCITATION block key by the Davidson subkey:

DAVIDSON &
E'' 5
T1.u 2

SUBEND

The DAVIDSON sub key is a general (simple or block type) subkey. For usage as block type it must, be
followed by the continuation code (&). Its data block may contain any number of records and must end
with a record SUBEND. In the subkey data block a list of irreps, followed by the number of requested
excitation energies is specified. Note that the irrep name may not be identical to the usual ADF name.
For example E'' is called EEE in ADF. The Excitation code will skip an irrep if the label is not
recognized. For multidimensional irreps, only the first column is treated, because the other would
produce identical output. This implies that the oscillator strengths for E-irreps have to be multiplied by 2
and the oscillator strengths for T-irreps by 3. The ALLOWED subkey should not be used if irreps are
specified with the Davidson block subkey, however, the subkey ONLYSING (or ONLYTRIP) can be
used in this case.

The EXACT subkey, mentioned already above, can also be used as a block type subkey to treat only a
few irreps instead of all. The number of excitation energies does not have to be specified then.

Tamm-Dancoff approximation

Excitation energies can be calculated using the Tamm-Dancoff approximation (TDA) [158] if one includes,
besides the EXCITATION block key, the key TDA:

TDA

Full XC kernel

With XCFUN the full (non-ALDA) kernel can be evaluated, see the XCFUN description. To use the non-
ALDA kernel the keyword FULLKERNEL should be put in the EXCITATIONS block. FULLKERNEL can be
used with GGAs (including hybrids and RS functionals) but not meta-GGAs or meta-hybrids. FULLKERNEL

197

can not be used in combination with symmetry, excited state geometry optimizations or other response
properties.

SYMMETRY NOSYM
XC
...
XCFUN

End
EXCITATIONS
...
FullKernel

END

Singlet-triplet excitations are not possible with FULLKERNEL. Thus for closed shell systems, one needs to
include ONLYSING.

SYMMETRY NOSYM
XC
...
XCFUN

End
EXCITATIONS
...
ONLYSING
FullKernel

END

Excitations as orbital energy differences

Instead of the relative expensive TDDFT calculation of excitation energies, sometimes just calculating Kohn-
Sham orbital energy differences may already be useful. The keyword KSSPECTRUM, in combination with
the block key EXCITATIONS, will calculate excitation energies as Kohn-Sham orbital energy differences.
For a given excitation from an occupied orbital to a virtual orbital the oscillator strength is calculated from the
the dipole transition moment between this occupied orbital and this virtual orbital. Especially useful for core
excitation energy calculations. If KSSPECTRUM is used, it is possible to use fractional occupation numbers
in the SCF, like is used in the DFT transition state (DFT-TS) scheme, see, for example, Ref. [359]. Note: for
fractional occupation numbers, typically an orbital is treated in the excitation calculation as if it is fully
occupied if the occupation number is 1.5 or more, and it is treated as if it is fully unoccupied if the occupation
number is 0.5 or less.

KSSPECTRUM
EXCITATIONS
Lowest 20
KFWRITE 0

END

KSSPECTRUM

keyword to use only orbital energy differences

KFWRITE kfwrite

Subkeyword in EXCITATIONS block key. If kfwrite is 0 then do not write contributions, transition
densities, and restart vectors to TAPE21, since this can lead to a huge TAPE21, especially if many
excitations are calculated. Default value kfwrite is 3, which means that contributions, transition
densities, and restart vectors are written to TAPE21.

198

Accuracy and other technical parameters

A summary of technical parameters with their defaults is:

EXCITATIONS
VECTORS 40
TOLERANCE 1e-6
ORTHONORMALITY 1e-8
ITERATIONS 200
KFWRITE 3

END

VECTORS vectors

The maximum number of trial vectors in the Davidson algorithm for which space is allocated. If this
number is small less memory will be needed, but the trial vector space is smaller and has to be
collapsed more often, at the expense of CPU time. The default if usually adequate.

TOLERANCE tolerance

Specifies the error tolerance in the square of the excitation energies in hartree units. The default is
probably acceptable but we recommend that you verify the results against a stricter default (e.g. 1e-8)
for at least a few cases.

ORTHONORMALITY orthonormality

The Davidson algorithm orthonormalizes its trial vectors. Increasing the default orthonormality criterion
increases the CPU time somewhat, but is another useful check on the reliability of the results.

ITERATIONS iterations

The maximum number of attempts within which the Davidson algorithm has to converge. The default
appears to be adequate in most cases.

KFWRITE kfwrite

If kfwrite is 0 then do not write contributions, transition densities, and restart vectors to TAPE21, since
this can lead to a huge TAPE21, especially if many excitations are calculated. Default value kfwrite is 3,
which means that contributions, transition densities, and restart vectors are written to TAPE21.

Excitation energies for open-shell systems

Excitation energies can be obtained for open-shell systems in a spin-unrestricted TDDFT calculation [154].
To perform an open-shell TDDFT calculation one just needs to do an unrestricted SCF calculation and use
the EXCITATION keyword. Presently the excitation energies can only be found with Davidson's procedure.
In case of spin-orbit coupling, see the section on approximate spin-orbit coupled excitation energies open
shell molecule.

The printed symmetry in the output in TDDFT calculations is actually the symmetry of transition density. For
closed-shell systems, the symmetry of the excited state is the same as the symmetry of the transition
density, while for open-shell systems, the symmetry of the excited states is the direct product between the
symmetry of the transition density and the ground state symmetry. Note that the ground state symmetry of
an open shell molecule is not necessarily A1.

For degenerate representations such as the 2-dimensional E-representations or the 3-dimensional T-
representations, the occupation should be either fully occupied or zero. For example, for an orbital in an E-

199

representation the α and β occupation number should be either 2 or 0. The α occupation number can of
course be different from the β occupation number.

As for the spin-state, the general rule is that if the excited state mainly results from transitions from the singly
occupied orbitals to virtual orbitals or from fully occupied orbitals to the singly occupied orbitals, the spin
state of the excited state should roughly be the same as that of the ground state. However, if the excited
state mainly comes from transitions from fully occupied orbitals to virtual orbitals, the spin state of the
excited state are usually a mixture since TDDFT can only deal with single excitations within adiabatic
approximation for the XC kernel [155]. Sometimes we just suppose the spin state of this kind of excited
states to be the same as that of ground state [154]. In the MO → MO transitions part for the excitations of
the output file, the spin of each molecular orbitals are also specified to help assign the spin state of the
excited states. The transitions are always from α spin-orbital to α spin-orbital or from β spin-orbital to β spin-
orbital.

Spin-flip excitation energies

Spin-flip excitation energies [156,157] can only be obtained in a spin-unrestricted TDDFT calculation. This
can not be used in case of spin-orbit coupling. At present, the spin-flip excitation energies can only be
calculated with Tamm-Dancoff approximation (TDA) [158] and Davidson's method.

To calculate spin-flip excitation energies, one must specify two keys:

SFTDDFT

and

TDA

anywhere in the input file in addition to the EXCITATION block keyword.

In spin-flip TDDFT, the XC kernel can be calculated directly from the XC potential. To use the LDA potential
for the XC kernel, which roughly corresponds to the ALDA in ordinary TDDFT, one must specify the key

FORCEALDA

anywhere in the input file. Only calculations using the LDA potential in the SCF are fully tested. Using other
GGA potentials in the SCF and using the FORCEALDA key at the same time may introduce unreasonable
results, while using LB94 or SAOP potential in the SCF without the FORCEALDA key may give unstable
results. Unstable results have been reported for the PW91 functional.

For open-shell molecules, spin-flip transition can result in transition to the ground state with a different Sz
value, while the symmetry of the transition density is A1. The excitation energy of this transition should be
zero and this can be used to test the reliability of spin-flip TDDFT.

The symmetry of the excited states can be determined in the same way as that in spin-unrestricted TDDFT
calculations. As for the spin state, similar to that in the spin-unrestricted TDDFT calculations, some states
may be more or less pure spin states, others may just be mixtures. The users can interpret the excited state
through the transitions that contribute to this state. Note that the transitions are always from α spin-orbital to
β spin-orbital in spin-flip calculations, or from β spin-orbital to α spin-orbital.

Select excitation energies, Core Excitation energies, X-ray absorption

Two methods can be used to reduce the computational costs of, for example, core excitation energies, or
some other high lying excitation energy. In the state selective method scheme a guess vector for the orbital
transition has to be provided. An overlap criterion is used to follow the wanted eigenvector. In this scheme

200

the one-electron excited state configuration space remains complete, see Ref [346]. In the second scheme,
the range of excitations that are calculated is modified, which means that the one-electron excited state
configuration space is reduced to the interesting part, see Ref. [169]. The calculated excited states are more
accurate with the state selective method if convergence is reached, however, the second scheme is more
robust, and it is easier to find convergence.

These selection methods can also be used in case one calculates excitation energies as Kohn-Sham orbital
energy differences, see key KSSPECTRUM.

State selective optimization excitation energies

The state selective method (key SELECTEXCITATION) can be used to reduce the computational costs of,
for example, core excitation energies. In this scheme a guess vector for the orbital transition has to be
provided. It should be used in combination with the Davidson method to calculate excitation energies. An
overlap criterion is used to follow the wanted eigenvector. This method for state selective optimization of
excitation energies is based on the method by Kovyrshin and Neugebauer, see Ref. [346]. This key can also
be used in case of spin-orbit coupling. The use of the key SELECTEXCITATION is similar as the use of the
key MODIFYEXCITATION. However, the key SELECTEXCITATION can not be used in combination with
the key MODIFYEXCITATION. In the state selective method (key SELECTEXCITATION) the one-electron
excited state configuration space remains complete, whereas it is reduced in case the scheme with the
MODIFYEXCITATION key.

The starting guess vector(s) for the excitation energies can be selected, for example by selecting 1 occupied
orbital and 1 virtual orbital.

SELECTEXCITATION
OscStrength oscstrength
UseOccVirtRange elowoccvirt ehighoccvirt
UseOccVirtNumbers nrlowoccvirt nrhighoccvirt
UseOccRange elowocc ehighocc
UseVirtRange elowvirt ehighvirt
UseOccupied

irrep orbitalnumbers
irrep orbitalnumbers
...

SubEnd
UseVirtuaL

irrep orbitalnumbers
irrep orbitalnumbers
...

SubEnd
UseScaledZORA

end

OscStrength oscstrength

Use only pairs of an occupied and virtual orbital as guess vectors, for which the oscillator strength of the
single-orbital transition is larger than oscstrength.

UseOccVirtRange elowoccvirt ehighoccvirt

Use only pairs of an occupied and virtual orbital as guess vectors, for which the orbital energy
difference is between elowoccvirt and ehighoccvirt (in hartree).

UseOccVirtNumbers nrlowoccvirt nrhighoccvirt

201

Use only pairs of an occupied and virtual orbital as guess vectors, for which in the sorted list of the
orbital energy differences, the number of the single-orbital transition is between nrlowoccvirt and
nrhighoccvirt.

UseOccRange elowocc ehighocc

Use only occupied orbitals in the guess vectors which have orbital energies between elowocc and
ehighocc (in hartree).

UseVirtRange elowvirt ehighvirt

Use only virtual orbitals in the guess vectors which have orbital energies between elowvirt and
ehighvirt (in hartree).

UseOccupied

Use only the occupied orbitals in the guess vectors which are specified.

UseVirtual

Use only the virtual orbitals in the guess vectors which are specified.

irrep

The name of one of the irreducible representations (not a subspecies) of the point group of the system.
See the Appendix for the irrep names as they are used in ADF.

orbitalnumbers

A series of one or more numbers: include all numbers of the orbitals in the guess vectors that are to be
used. In an unrestricted calculation the same numbers are used for the spin-α orbitals and the spin-β
orbitals.

Modify range of excitation energies

The key MODIFYEXCITATION can be used to reduce the computational costs of, for example, core
excitation energies. This key can also be used in case of spin-orbit coupling. The use of the key
MODIFYEXCITATION is similar as the use of the key SELECTEXCITATION. However, the key
MODIFYEXCITATION can not be used in combination with the key SELECTEXCITATION. In the state
selective method (key SELECTEXCITATION) the one-electron excited state configuration space remains
complete, whereas it is (effectively) reduced in case the scheme with the MODIFYEXCITATION key.

One possibility is to allow only selected occupied orbitals and or selected virtual orbitals in the TDDFT
calculations. In this scheme the complete one-electron excited state configuration space is reduced to the
subspace where only the core electrons are excited, see Stener et al. [169]. In the actual implementation
this is done by artificially changing the orbital energies of the uninteresting occupied orbitals to a large
negative value (default -1d6 hartree), and by by artificially changing the orbital energies of the uninteresting
virtual orbitals to a large positive value (default 1d6).

In ADF2010 an extra possibility is added with the new subkey UseOccVirtRange, which restricts the space
of excitation energies, by allowing only pairs of occupied and virtual orbitals, for which the difference in
orbital energy is between a certain range.

MODIFYEXCITATION
OscStrength oscstrength
UseOccVirtRange elowoccvirt ehighoccvirt
UseOccVirtNumbers nrlowoccvirt nrhighoccvirt

202

UseOccRange elowocc ehighocc
UseVirtRange elowvirt ehighvirt
UseOccupied

irrep orbitalnumbers
irrep orbitalnumbers
...

SubEnd
UseVirtuaL

irrep orbitalnumbers
irrep orbitalnumbers
...

SubEnd
SetOccEnergy esetocc
SetLargeEnergy epsbig
UseScaledZORA

end

OscStrength oscstrength

Use only pairs of an occupied and virtual orbital as guess vectors, for which the oscillator strength of the
single-orbital transition is larger than oscstrength.

UseOccVirtRange elowoccvirt ehighoccvirt

Use only pairs of an occupied and virtual orbital, for which the orbital energy difference is between
elowoccvirt and ehighoccvirt (in hartree).

UseOccVirtNumbers nrlowoccvirt nrhighoccvirt

Use only pairs of an occupied and virtual orbital as guess vectors, for which in the sorted list of the
orbital energy differences, the number of the single-orbital transition is between nrlowoccvirt and
nrhighoccvirt.

UseOccRange elowocc ehighocc

Use only occupied orbitals which have orbital energies between elowocc and ehighocc (in hartree).

UseVirtRange elowvirt ehighvirt

Use only virtual orbitals which have orbital energies between elowvirt and ehighvirt (in hartree).

UseOccupied

Use only the occupied orbitals which are specified.

UseVirtual

Use only the virtual orbitals which are specified.

irrep

The name of one of the irreducible representations (not a subspecies) of the point group of the system.
See the Appendix for the irrep names as they are used in ADF.

orbitalnumbers

A series of one or more numbers: include all numbers of the orbitals that are to be used. In an
unrestricted calculation the same numbers are used for the spin-α orbitals and the spin-β orbitals.

203

SetOccEnergy esetocc

All occupied orbitals that have to be used will change their orbital energy to esetocc. In practice only
useful if one has selected one occupied orbital energy, and one want to change this to another value.
Default: the orbital energies of the occupied orbitals that are used are not changed.

SetLargeEnergy epsbig

The orbital energies of the uninteresting occupied orbitals are changed to -epsbig hartree, and the
orbital energies of the uninteresting virtual orbitals are changed to epsbig hartree (Default: epsbig =
1d6 hartree).

UseScaledZORA

Use everywhere the scaled ZORA orbital energies instead of the ZORA orbital energies in the TDDFT
equations. This can improve deep core excitation energies. Only valid if ZORA is used. Default: use the
unscaled ZORA orbital energies.

Excitation energies and Spin-Orbit coupling

Spin-orbit coupling can be included in the TDDFT calculation of excitation energies for closed-shell
molecules. Two methods can be used in ADF. The first one includes spin-orbit coupling as a perturbation to
a scalar relativistic calculation of excitation energies. The second one includes spin-orbit coupling self-
consistently in the ground state calculation. If spin-orbit coupling is large, the second one is more accurate,
but is also more time-consuming.

The results of these spin-orbit coupled TDDFT calculations include the calculation of the zero field splitting
(ZFS) of triplet excited states and the calculation of radiative rate constants, which could be used to
calculate radiative phosphorescence lifetimes.

Perturbative inclusion of spin-orbit coupling

SOPERT {NCALC=ncalc} {ESHIFT=eshift}
RELATIVISTIC SCALAR ZORA
EXCITATIONS
END

The perturbative method, which is described in Ref.[280], is an approximate time-dependent density-
functional theory (TDDFT) formalism to deal with the influence of spin-orbit coupling effect on the excitation
energies for closed-shell systems. In this formalism scalar relativistic TDDFT calculations are first performed
to determine the lowest single-group excited states and the spin-orbit coupling operator is applied to these
single-group excited states to obtain the excitation energies with spin-orbit coupling effects included. The
computational effort of the present method is much smaller than that of the two-component TDDFT
formalism. The compositions of the double-group excited states in terms of single-group singlet and triplet
excited states are obtained automatically from the calculations. In Ref.[280] it was shown that the calculated
excitation energies based on the present formalism affords reasonable excitation energies for transitions not
involving 5p and 6p orbitals. For transitions involving 5p orbitals, one can still obtain acceptable results for
excitations with a small truncation error, while the formalism will fail for transitions involving 6p orbitals,
especially 6p1/2 spinors.

Although this method is not completely correctly implemented for (meta-)hybrids or Hartree-Fock, it still
gives reasonable excitation energies, and can thus be useful also in that case. Note that SYMMETRY C(2H)
is not implemented for spin-orbit coupled excitations, use SYMMETRY C(S), C(I) or NOSYM, instead.

NCALC=ncalc

204

Number of spin-orbit coupled excitation energies to be calculated. Default (and maximum) value: 4
times the number of scalar relativistic singlet-singlet excitations.

ESHIFT=eshift

The actually calculated eigenvalues are calculated up to the maximum singlet-singlet or singlet-triplet
scalar relativistic excitation energy plus eshift (in hartree). Default value: 0.2 hartree.

Some extra information about the spin-obit matrix is written to the output if one includes:

SOPERT {NCALC=ncalc} {ESHIFT=eshift}
PRINT SOMATRIX

If one includes PRINT SOMATRIX the spin-orbit matrix on basis of singlet and triplet excited states will be
printed. On the diagonal the singlet or triplet energies is added. The spin-orbit matrix has a real and
imaginary part. This spin-orbit matrix is the one that is diagonalized to get the spin-orbit coupled excitation
energies.

GSCORR

If one includes GSCORR the singlet ground state is included, which means that spin-orbit cupling can also
have some effect on energy of the ground state. The spin-orbit matrix in this case is on basis of the ground
state and the singlet and triplet excited states.

Self-consistent spin-orbit coupling

RELATIVISTIC SPINORBIT ZORA
EXCITATIONS

{ALSORESTRICTED}
END

Starting from the ADF2006.01 version in ADF the relativistic TDDFT formalism, including spin-orbit coupling,
is implemented for closed-shell molecules with full use of double-group symmetry [182]. This relativistic
time-dependent density-functional theory (TDDFT) is based on the two-component zeroth-order regular
approximation (ZORA) and a noncollinear exchange-correlation (XC) functional. This two-component
TDDFT formalism has the correct nonrelativistic limit and affords the correct threefold degeneracy of triplet
excitations.

In case of a calculation including spin-orbit coupling one can not separate the singlet-singlet and singlet-
triplet excitations. By default the spin-polarized excitation energies are calculated (the noncollinear scheme
is used for the spin-dependent exchange-correlation kernel). The subkeys ALSORESTRICTED can be used
to include also excitation energies in which a spin-restricted exchange-correlation kernel is used. One
should in fact only use the results of the spin-polarized calculation, which is based on the noncollinear
exchange-correlation (XC) functional. For the same reason, the ALLOWED subkey should not be used if
spin-orbit coupling is included. Note that SYMMETRY C(2H) is not implemented for spin-orbit coupled
excitations, use SYMMETRY C(S), C(I) or NOSYM, instead.

To perform a spin-orbit coupled TDDFT calculation one just needs to do a spin-orbit coupled SCF
calculation and use the EXCITATION keyword. The molecule needs to be closed shell, and should be
calculated spin-restricted. Thus do not use the UNRESTRICTED, COLLINEAR, or NONCOLLINEAR
keyword. See, however, also next section.

The contribution to the double group excited states in terms of singlet and triplet single group excited states
can be estimated through the inner product of the transition density matrix obtained from two-component
and scalar relativistic TDDFT calculations to better understand the double group excited states [183]. In
order to get this analysis one needs to perform a scalar relativistic TDDFT calculation of excitation energies

205

on the closed shell molecule first, and use the resulting TAPE21 as a fragment in the spin-orbit coupled
TDDFT calculation of excitation energies, including the keyword STCONTRIB (Singlet and Triplet
CONTRIButions):

STCONTRIB

This STCONTRIB analysis is not performed for (meta-)hybrids, unless one uses the Tamm-Dancoff
approximation (TDA) approximation, but then it may also fail. If one wants this STCONTRIB analysis for
(meta-)hybrids one may consider to the perturbative inclusion of spin-orbit coupling in the calculation of
excitation energies.

Note that if hybrids are used, the dependency key is automatically set, and this may effectively reduce the
number of excitations, which may give problems in the STCONTRIB analysis. A workaround for these
problems is to first calculate the scalar relativistic fragment without the EXCITATIONS keyword. Use the
TAPE21 of this calculation as fragment in a scalar relativistic calculation with the EXCITATIONS keyword.
Use the TAPE21 of the second calculation as fragment in the spin-orbit coupled calculation, inclding the
STCONTRIB keyword.

Highly approximate spin-orbit coupled excitation energies open shell molecule

Excitation energies can be obtained for open-shell systems in a spin-unrestricted TDDFT calculation
including spin-orbit coupling. This approximate method uses a single determinant for the open shell ground
state. The Tamm-Dancoff approximation (TDA) is needed and symmetry NOSYM should be used. Best is to
use the noncollinear approximation. For analysis it is advised to calculate the molecule also with the scalar
relativistic spin-restricted method and use it as fragment in the spin-orbit coupled calculation. This will make
it easier to identify the excitations.

Relativistic spinorbit ZORA
Unrestricted
NonCollinear
Symmetry Nosym
TDA
Excitations
End

Note that this approximate method for open shell molecules is not able to show the subtle effects of spin-
orbit coupling. Some of the reasons are the approximate nature of the XC functionals for open shell
molecules, the single determinant that is used for the open shell ground state, and that only single
excitations are included in the excitation. If one does not include spin-orbit coupling the spin-unrestricted
TDDFT approach introduces spin-contamination such that the result does not represent transitions between
pure spin states. Inclusion of spin-orbit coupling will not simplify this. However, if spin-orbit coupling is large,
then this method may help to identify excitations.

Note that the approximations made in this approximate method are much worse than for spin-orbit coupled
TDDFT for closed shell systems. In that case one can get a reasonable description of the subtle effects of
spin-orbit coupling, for example, for the zero-field splitting of a triplet excited state.

CD spectra

Circular dichroism (CD) is the differential absorption of left- and right-handed circularly polarized light.
Starting from ADF2010 Hartree-Fock and hybrids can also be used to calculate CD spectra.

EXCITATIONS
CDSPECTRUM
ANALYTIC

206

VELOCITY
End

CDSPECTRUM

If the subkey CDSPECTRUM is included in the key EXCITATIONS the rotatory strengths for the
calculated excitations are calculated, in order to simulate Circular Dichroism (CD) spectra [80,81].
Interesting for chiral molecules. This subkey should not be used in case of spin-orbit coupling. For
accuracy reasons you should also use the subkey ANALYTIC in the block key EXCITATIONS,
otherwise the results may be nonsense.

ANALYTIC

If the subkey ANALYTIC is included the required integrals for the CD spectrum are calculated
analytically, instead of numerically. Only used in case of CD spectrum.

Velocity

If the subkey VELOCITY is included ADF calculates the dipole-velocity representation of the oscillator
strength. If applicable (use of subkey CDSPECTRUM) the dipole-velocity representation of the rotatory
strength is calculated. Default the dipole-length representation of the oscillator strength and rotatory
strength is calculated.

MCD

MCD or magnetic circular dichroism is the differential absorption of left and right circularly polarized light in
the presence of a magnetic field. MCD intensity is usually described in terms of different contributions called
A, B and C terms, see Refs. [273,274]. A further parameter D is often discussed in MCD studies. D is
proportional to the intensity of an absorption band and is closely related to the oscillator strength. A and B
terms for closed and open-shell molecules and C terms of open-shell molecules induced by spin-orbit
coupling can be calculated. Starting from ADF2010 C terms related to spatially degenerate states, i.e.
breaking of degeneracies can be calculated.

For MCD calculations for molecules that have C(2) or D(2) symmetry use SYMMETRY NOSYM.

Input options

EXCITATIONS
MCD {options}
ONLYSINGLET
{SELECT transition number}
{DTENSOR {Dxx Dxy Dyy Dxz Dyz|D E/D}}

End
ALLPOINTS
{RELATIVISTIC ZORA}
{SOMCD}
{ZFS}

MCD

If the subkey MCD is included in the key EXCITATIONS the MCD parameters of some or all of the
excitations considered in the TDDFT procedure are calculated [275-278]. This subkey should not be
used with spin-orbit coupling (but, see below). Several other keywords could be important.
ALLPOINTS: required for an MCD calculation.
ONLYSINGLET: this keyword should be used in combination with a MCD calculation.
RELATIVISTIC ZORA: required for a calculation of temperature-dependent C terms. In this case the
keyword SOMCD must also be added as a key by itself. If only A and B terms are calculated then

207

ZORA is not needed but can be included if desired.
ZFS: If the ZFS keyword and MCD with SOMCD are also included then the influence of the calculated
zero-field splitting (ZFS) on the temperature-dependent MCD is evaluated. The MCD in the presence of
ZFS is described as anisotropic in the output because the Zeeman splitting becomes orientation
dependent in the presence of ZFS.

In ADF2010 the temperature-dependent MCD due to the breaking of degeneracies of excited states by
spin-orbit coupling can be calculated. Although all temperature-dependent MCD is typically called "C
terms", the parameters associated with the MCD are labeled "CE" to distinguish them from the MCD
due to mixing between states caused by spin-orbit coupling that is labeled "C". The CE terms have a
derivative shape like A terms. They have the same temperature-dependence as normal C terms. If they
are present, CE terms are calculated automatically along with C terms if the keyword SOMCD is
included in the input.

MCD {options}

Options include NMCDTERM, NMIX, DCUTOFF, MCDOUT, CGOUT, NANAL, NANAL2, FULLOMEGA,
NOAB, NODIRECT, NOCG, CONVCG, ITERCG, ITER2CG, BMIN, BMAX, TMIN, TMAX and NTEMP.

NMCDTERM=nmcdterm

Number of excitations for which MCD parameters are to be calculated. The nmcdterm lowest
energy excitations are treated. The default is the number of transitions considered in the TDDFT
calculation.

NMIX=nmix

Number of transitions allowed to mix in a SOS calculation. Default is the number of transitions
considered in the TDDFT calculation.

DCUTOFF=dcutoff

MCD parameters will only be calculated for transitions with sufficient intensity. Each cartesian
component of each transition is considered separately. If the dipole strength D of that component is
below dcutoff then the MCD is not calculated. The default is 1.0e-6.

MCDOUT=mcdout

Number that determines the amount of output to be printed about the MCD calculation. Higher
means more output. Possible values are 0, (orientationally averaged and cartesian components of
MCD parameters only) 1 (as for 0 but with the addition of a short analysis) or 2 (as for 1 but with
the addition of a lengthy analysis). Theoretical analyses of MCD parameters are presented in
several places including Refs. [273-274,276-278]. The default for MCDOUT is 0.

CGOUT=cgout

The perturbed transition densities used to evaluate the B and C term parameters can be obtained
through an iterative conjugate-gradient procedure. Convergence information of the conjugate-
gradient algorithm is printed every cgout iterations. Default is 10.

NANAL=nanal, NANAL2=nanal2

If MCDOUT is set to 2, a detailed analysis of the B and/or C term parameters in terms of which
states mix and how much MCD each mixing causes, is presented. The parameters NANAL and
NANAL2 determine how many contributions are included in the analyses. Defaults are 10 for
NANAL and 5 for NANAL2.

FULLOMEGA

208

A standard TDDFT calculation involves the solution of an eigenvalue equation to obtain the
excitation energies and transition densities of interest. ADF can solve this eigenvalue equation two
ways: through diagonalization of the full Omega matrix or through the Davidson procedure where
Omega is never explicitly constructed. Construction of the complete Omega matrix is generally only
feasible for smaller problems. The matrix Omega appears again in the equations solved to obtain
MCD. Here again Omega can be built or only the products of Omega with a vector can be used as
is the case in the Davidson procedure. The default is to not construct Omega. If the keyword
FULLOMEGA is included then Omega is constructed. Note that the choice of FULLOMEGA is
completely independent of whether EXACT or DAVIDSON is chosen in the earlier TDDFT
calculation.

NOAB

If this keyword is included then A and B terms are not calculated. NOAB only makes sense if
SOMCD is included in the input otherwise no MCD will be calculated at all.

NODIRECT

The perturbed transition density needed to evaluate B and C term parameters is obtained through
the solution of a large system of equations. This system of equations is solved in two ways: through
a sum-over-states (SOS) type approach where the solution is expanded in a known set of transition
densities or through the direct solution of the system of equations by the conjugate gradient
procedure. The SOS method is much faster but also less accurate, particularly for larger systems.
By default MCD parameters are evaluated through both approaches. If the NODIRECT keyword is
included then only the SOS calculation is performed.

NOCG

The conjugate gradient procedure is first used in combination with a preconditioner that generally
speeds up convergence significantly. If no solution is found in a reasonable number of iterations
then the procedure is restarted without the preconditioner. If the NOCG keyword in included then
the preconditioner is never used.

CONVCG

Convergence criterion for the CG iterative methods. The default value of 0.01 is probably good
enough for most applications. This choice seems to produce B and C terms that are converged to 3
significant figures. Except for small systems, it is not recommended that CONVCG be set to a
much smaller number as this will probably cause a large number of convergence failures.

ITERCG=itercg

Number of iterations before failure in the first (preconditioned) CG solver. This solver either
succeeds quickly or not at all so the default value is 30.

ITER2CG=iterc2g

Number of iterations before failure in the B of C term parameter calculation of the unconditioned
CG solver. This solver is often slow so the default value is 200.

BMIN=bmin, BMAX=bmax, NBFIELD=nbfield, TMIN=tmin, TMAX=tmax, NTEMP=ntemp

Temperature dependent MCD intensity often varies nonlinearly with T and B when T is small and/or
B is large. It may therefore be of interest to evaluate the MCD intensity over a range of
temperatures and/or magnetic fields. This can be achieved through the use of the BMIN, BMAX,
NBFIELD, TMIN, TMAX and NTEMP keywords. The MIN and MAX keywords give the maximum
values of B or T. NBFIELD and NTEMp indicate how many values are to be considered. Note that
magnetic fields are assumed to be given in Tesla and temperatures in Kelvin. For example,

209

BMIN=1, BMAX=5, NBFIELD=5 means that fields of 1,2,3,4 and 5 T will be considered. Defaults
are BMIN=BMAX=1, TMIN=TMAX=5 and NBFIELD=NTEMP=1.

SELECT nselect1 nselect2 nselect3...

Rather than selecting the first nmcdterm transitions for consideration individual transitions can be
selected through the SELECT keyword. The transitions of interest are listed after the SELECT keyword.
Note that the numbering follows that given in the summary table at the end of the TDDFT calculation.
To consider a degenerate transition only the first component need be included. Note that it makes no
sense to use both the SELECT and NMCDTERM keywords together.

DTENSOR Dxx Dxy Dyy Dxz Dyz
DTENSOR D E/D

As noted earlier, if the ZFS keyword is included with MCD and SOMCD then the influence of zero-field
splitting on temperature-dependent MCD will be evaluated. As an alternative to the ZFS keyword the D-
tensor parameters can be entered directly through the DTENSOR keyword in the EXCITATIONS block.
Two input formats are possible. Five real numbers Dxx Dxy Dyy Dxz Dyz can be entered. These five
numbers are sufficient to define the traceless tensor D. Alternatively, the two parameters D and E/D can
be entered. In this case the coordinate system chosen to define the molecular geometry must be the the
principle axis system of the D-tensor. D, Dxx, Dxy, Dyy, Dxz and Dyz should be given in wavenumbers
(cm-1).

Notes

If an MCD calculation is run, the transition densities obtained in the TDDFT calculation are saved to
TAPE21. For large molecules this can result in a very large TAPE21 file.

An MCD calculation relies on the excitation energies and, in particular, the transition densities that result
from the preceding TDDFT calculation. If the results of the TDDFT calculation are poor then it is likely that
the results of the MCD calculation will be poor. It therefore should be kept in mind that most TDDFT
calculations will make use of the Davidson method for finding the eigenvalues and eigenvectors of the
TDDFT equation. The Davidson approach involves some approximations that can lead to some variation in
results with the applied parameters. The most important example of this is the fact that the results vary
depending on how many eigenvalue/eigenvector pairs are calculated, ie how many transitions are selected
through the LOWEST keyword. The variation is small for the eigenvalues (excitation energies) but can be
significant for the eigenvectors (transition densities). A variation in the transition densities leads to variation
in the transition dipoles which can significantly impact calculated MCD parameters. The moral of this story is
that when calculating MCD parameters it is best to choose one value of LOWEST and stick with it.

The most time-consuming part of an MCD calculation is the solution of the system of equations through the
conjugate-gradient solver. The solver can fail so be aware of warnings concerning convergence in the
output. A few hints to improve convergence are: a) choose a value of LOWEST that is at least double the
number of transitions for which you desire MCD parameters. This helps to improve the SOS calculation
which provides an initial guess for the conjugate gradient solver. The solver is sensitive to the initial guess
so changing LOWEST by a small amount may help (or hinder) convergence significantly. Keep the previous
note in mind when playing with LOWEST however. b) The preconditioned conjugate gradient solver is
usually fast but does not converge monotonically to the correct answer. The unpreconditioned solver is
much slower but tends to converge monotonically. If the preconditioned solver fails but leaves a fairly well
converged result for the unpreconditioned solver the latter usually converges quickly. If the preconditioned
solver does not leave a fairly well converged result it may be worth changing the number of iterations it uses
since a few iterations earlier or later may provide a much better converged answer. c) The SELECT keyword
can be used to work on the remaining transitions for which converged results have not been obtained.

All MCD parameters are presented in au. To convert A and C terms to the alternative unit D2 (Debye
squared) the value in au should be multiplied by 6.46044. To convert the B term to the alternative unit of
D2/cm-1 the value in au should be multiplied by 2.94359e-05.

210

The A, B and C terms are defined through the equation suggested by Stephens (equation 1 in [278] and also
see [273-274,107]). This equation assumes that MCD intensity varies linearly with applied magnetic field
and that the temperature-dependent component varies linearly with temperature as 1/T. For the most part,
these assumptions are reasonable. An exception is that the temperature-dependent part varies from linearity
when T is very small. To allow for this situation a temperature and magnetic field dependent multiplicative
constant (chi(B,T)) is evaluated whenever temperature-dependent MCD parameters are considered. This
constant includes all magnetic field and temperature dependence of the temperature-dependent MCD. Thus
chi(B,T)*C can be used in place of B*C/kT in equation 1 of [278] when MCD spectra are to be simulated.
Note that, since the g-factor for all states is here approximated by 2.0, chi applies to all transitions.

Applications of the Excitation feature in ADF

It may be useful to consult the following (early) applications of the Excitation feature in ADF:

1. For excitation energies based on exact XC potentials: [82]
2. Calculations on Free Base Porphin: [83]; calculations on metal-porphyrins: a series of papers by

Rosa, Ricciardi, Baerends, e.g. [84,85].
3. Calculations on MnO4-, Ni(CO)4 and Mn2(CO)10: [86]
4. Calculations on M(CO)5 (M=Cr, Mo, W), using the scalar ZORA relativistic approach: [87]
5. Excitation energies of open-shell molecules: [154,157]
6. Calculations on [PtCl4]2-, [PtBr4]2-, and [Pt(CN)4]2-, using the ZORA relativistic approach including

spin-orbit coupling: [183]
7. For details regarding the (near linear scaling and parallelized) implementation, please check

Refs.[71,88]

Excited state (geometry) optimizations

Starting from ADF2010 it is possible to do excited state geometry optimizations, see Ref. [350]. Note that not
all aspects of such calculations have been tested thoroughly.

With the keyword EXCITEDGO the gradients of the TDDFT excitation energy can be calculated. Naturally,
the EXCITATIONS block must also be included in the input. The excitation energy gradients will only be
calculated if the ground state gradients are calculated. Thus, the GEOMETRY keyword is also required.

The gradients of the excitation energy are combined with the ground state gradients to give the gradients of
the excited state. These gradients can be used in much the same way as ground state gradients are used.
The type of calculation is chosen in the same way as for a ground state calculation. Possible run types are:

• Geometry optimization
• Frequency analysis with numerical second derivatives: (analytical second derivatives

(ANALYTICALFREQ) are not possible).
• Linear transit
• Transition state search
• IRC calculations may be possible but this possibility has not been tested yet.

In general, an option that applies to a ground state geometry optimization will also apply to an excited state
geometry optimization. For example, convergence criteria can be set and constraints can be used. These
options are set through the GEOMETRY block as usual. A TDDFT geometry optimization will proceed in
very much the same way as a ground state geometry optimization. The major difference will be that a
TDDFT calculation will take place after the SCF and before the ground state gradients are evaluated.
TDDFT gradients are calculated after the ground state gradients.

211

Gradients for closed-shell singlet-singlet, closed shell singlet-triplet, conventional open shell and spin-flip
open-shell TDDFT calculations can be evaluated. The FORCEALDA option and TDA options should be
used with spin-flip calculations.

Not all functionals can be used in combination with TDDFT gradients. The following should work:
LDA: VWN, XALPHA
GGA: Any allowed combination of the Perdew86, LYP and PBEc correlation functionals and the
Becke88, revPBEx, RPBEx, PBEx and OPTx exchange functionals.
Hybrid: B1LYP, B3LYP, B3LYP*, BHANDHLYP, BHANDH, O3LYP, X3LYP, B1PW91, MPW1PW, PBE0,
OPBE0

QM/MM TDDFT gradients can be calculated.

Scalar relativistic effects can be included with the ZORA or mass-velocity-Darwin Hamiltonians.

At this time, gradients involving frozen cores, spin-orbit TDDFT and solvation can not be calculated.

TDDFT gradients can take advantage of symmetry but if the point group of interest includes degenerate
irreducible representations then all grid points are needed in integration (equivalent to the ALLPOINTS
keyword). This situation is detected automatically. This use of the full grid may make it more efficient to use
a point group with only one-dimensional irreducible representations where only the symmetry-unique slice is
utilized.

Degenerate excitations can be optimized. However, since in reality such degeneracies will be split by a
Jahn-Teller distortion it is recommended that the symmetry of the chosen point group be lowered so that the
transition of interest is no longer labeled by a degenerate representation. A Jahn-Teller distortion will not
occur when the degeneracy cannot be broken by nuclear motion, e.g. for a diatomic molecule.

The EXCITEDGO block key has the following form:

EXCITEDGO
{STATE Irreplab nstate}
{SINGLET/TRIPLET}
{OUTPUT=n}
{CPKS EPS=err PRECONITER=precon NOPRECONITER=noprecon ITEROUT=iter}
{EIGENFOLLOW}

END

STATE Irreplab nstate

Choose the excitation for which the gradient is to be evaluated.

Irreplab

Irreplab is the label from the TDDFT calculation. NOTE: the TDDFT module uses a different
notation for some representation names, for example, A′ is used instead of AA.

nstate

This value indicates that the nstate-th transition of symmetry Irreplab is to be evaluated. Default is
the first fully symmetric transition.

Note that in a numerical FREQUENCIES calculation symmetry is turned off except to reduce the
number of points calculated so irrespective of the specified point group Irreplab is A in this case. Care
should be taken to ensure that nstate is correct in a frequencies calculation as this number can change
when the point group is changed.

SINGLET/TRIPLET

212

SINGLET: A singlet-singlet excitation is considered. The default.
TRIPLET: A singlet-triplet excitation is considered.

OUTPUT=n

The amount of output printed. A higher value requests more detailed output. Default: Output=0

CPKS EPS=err PRECONITER=precon NOPRECONITER=noprecon ITEROUT=iter

Some control parameters for the CPKS(Z-vector) part of the TDDFT gradients calculation.

EPS=err

err is a real number that gives the convergence requirement of the CPKS. Default is 0.0001

PRECONITER=precon

precon is the maximum number of iterations allowed for the preconditioned solver. Default = 30.

NOPRECONITER=noprecon

noprecon is the maximum number of iterations allowed for the unpreconditioned solver.
Default=200.

ITEROUT=iter

Details of the CPKS calculation are printed every iter iterations. Default is 5.

EIGENFOLLOW

This key tries to follow the eigenvector in excited state geometry optimizations. In the initial
implementation the target state of an excited state geometry optimization was indicated by a number
and a symmetry, e.g. A2g 3 or the 3rd state of A2g symmetry. This approach becomes problematic
when states cross and the state you are interested in become the 4th A2g state for example. An
eigenvector-following option has been added that attempts to alleviate this problem. This option is off by
default. If the subkeyword EIGENFOLLOW in is included, the state of interest in the first iteration is the
same as before. In the second and subsequent iterations the state for which gradients are determined is
decided on the basis of the overlap between the transition density of the transition from the previous
iteration and the transition densities available in the current iteration. The same symmetry is maintained.
Note that this method is not full proof. It assumes that the transition density changes only because of
the contributions from the various occupied-virtual orbital pairs change but that the orbitals remain
unchanged. This is not necessarily the case. Secondly, the sign of the transition density components is
not taken into account.

At each iteration of a TDDFT-gradients calculation the excited state electric dipole moment is also
calculated. If the Output parameter is 1 or greater then the excited state dipole moment will be printed out.

Vibrationally resolved electronic spectra

To calculate vibrational effects on the electronic excitations (Uv/vis, X-ray), one needs to do a frequency
calculation both at the ground state as well as the excited state of interest. Next Franck-Condon factors
need to be calculated for the transition between the two electronic states, which can be done with the FCF
program, described below. These Franck-Condon factor can then be used to predict the relative intensities
of absorption or emission lines in the electronic spectra. Note that the Herzberg-Teller effect is not taken into
account.

213

FCF program: Franck-Condon Factors

fcf is an auxiliary program which can be used to calculate Franck-Condon factors from two vibrational mode
calculations [418].

fcf requires an ascii input file where the user specifies the TAPE21 files from two adf vibrational mode
calculations, carried out for two different electronic, spin or charge states of the same molecule. These
calculations can be either numerical or analytical. The number of vibrational quanta that have to be taken
into account for both states in the evaluation of the Franck-Condon factors have to be specified.

fcf produces a (binary) KF file TAPE61, which can be inspected using the KF utilities. Furthermore, fcf writes
the frequencies, vibrational displacements and electron-phonon couplings for both states too the standard
output, including any error messages.

Introduction

Franck-Condon factors are the squares of the overlap integrals of vibrational wave functions. Given a
transition between two electronic, spin or charge states, the Franck-Condon factors represent the
probabilities for accompanying vibrational transitions. As such, they can be used to predict the relative
intensities of absorption or emission lines in spectroscopy or excitation lines in transport measurements.

When a molecule makes a transition to another state, the equilibrium position of the nuclei changes, and this
will give rise to vibrations. To determine which vibrational modes will be active, we first have to express the
displacement of the nuclei in the normal modes:

k=L'Tm1/2(B0x0-x'0)

Here, k is the displacement vector, L is the normal mode matrix, m is a matrix with the mass of the nuclei on
the diagonal, B is the zero-order axis-switching matrix and x0 is the equilibrium position of the nuclei. For
free molecules, depending on symmetry constraints, the geometries of both states may have been
translated and/or rotated with respect to each other. To remove the six translational and rotational degrees
of freedom, we can center the equilibrium positions around the center of mass and rotate one of the states
to provice maximum overlap. The latter is included with the zero-order axis-switching matrix B, implemented
according to [419].

When we have obtained the displacement vector, it is trivial to calculate the dimensionless electron-phonon
couplings. They are given by:

λ=(Γ/2)1/2k

Here, Γ=2πω/h is a vector containing the reduced frequencies. [420]. The Huang-Rhys factor g is related to
λ as:

g = λ2

The reorganization energy per mode is

E = (h/2π) ω λ2

When the displacement vector k, the reduced frequencies Γ and Γ', and the Duschinsky rotation matrix
J=L'TB0L have been obtained, the Franck-Condon factors can be calculated using the two-dimensional
array method of Ruhoff and Ratner[420].

There is one Franck-Condon factor for every permutation of the vibrational quanta over both states. Since
they represent transition probabilities, all Franck-Condon factors of one state which respect to one
vibrational state of the other state must sum to one. Since the total number of possible vibrational quanta,

214

and hence the total number of permutations, is infinite, in practice we will calculate the Franck-Condon
factors until those sums are sufficiently close to one. Since the number of permutations rapidly increases
with increasing number of vibrational quanta, it is generally possible to already stop after the sum is greater
than about two thirds. The remaining one third will be distributed over so many Franck-Condon factors that
their individual contributions are negligible.

In the limiting case of one vibrational mode, with the same frequency in both states, the expression for the
Franck-Condon factors of transitions from the ground vibrational state to an excited vibrational state are
given by the familiar expression:

|I0,n|2=e-λ2
λ2n/n!

Input

The input for fcf is keyword oriented and is read from the standard input. fcf recognizes several keywords,
but only two have to be specified to perform the calculation. All input therefore contains at least two lines of
the following form:

$ADFBIN/fcf << eor
STATES state1 state2
QUANTA l1 l2
eor

STATES state1 state2

The filenames of two TAPE21 files resulting from a numerical or analytical frequency calculation. The
calculations must have been performed on the same molecule, i.e. the type, mass and order of
occurrence of all the atoms (or fragments) has to be the same in both files.

(optional) MODES first last

The first and last mode to be taken into account in the calculation. If this option is omitted, all modes are
taken into account. This option can be used to effectively specify and energy range for the Franck-
Condon factors. When using this options, always check if the results (electron-phonon couplings,
ground state to ground overlap integral, average sum of Franck-Condon factors, etc.) do not change too
much.

(optional) LAMBDA lambda

The minimum value of the electron-phonon coupling for a mode to be taken into account in the
calculation. The default value is zero. Together with the MODES option, this provides a way to
significantly reduce the total number of Franck-Condon factors. As with the MODES option, always
check if the results do not change too much.

QUANTA l1 l2

The maximum number of vibrational quanta to be taken into account for both states. Franck-Condon
factors will be calculated for every permutation of up to and including l1/l2 quanta over the vibrational
modes.

(optional) TRANSLATE

Move the center of mass of both geometries to the origin.

(optional) ROTATE

Rotate the geometries to maximize the overlap of the nuclear coordinates.

215

(optional) SPECTRUM freqmin freqmax nfreq

If SPECTRUM is included the vibrational spectrum is calculated. A histogram of the spectrum is
calculated for the frequency range that is provided on input. The three parameters that define the
frequency range are:

freqmin

minimum frequency for which the spectrum is calculated.

freqmax

maximum frequency for which the spectrum is calculated.

nfreq

number of frequencies for which the spectrum is calculated.

Only a few keys from the TAPE21 file are used for the calculation of the Franck-Condon factors. Disk space
usage can be significantly reduced by extracting just these keys from the TAPE21 file before further
analysis. The following shell script will extract the keys from the KF file specified by the first argument and
store them in a new KF file specified by the second argument using the cpkf utility:

#!/bin/sh
cpkf $1 $2 "Geometry%nr of atoms" "Geometry%xyz" "Geometry%nr of
atomtypes" \
"Geometry%fragment and atomtype index" "Geometry%atomtype"
"Geometry%mass" \
"Freq%Frequencies" "Freq%Normalmodes"

Result: TAPE61

After a successful calculation, fcf produces a TAPE61 KF file. All results are stored in the Fcf section:

contents of TAPE61 comments
firstmode, lastmode the first and last vibrational mode taken into account
lambda the minimum value of the electron-phonon coupling

maxl1, maxl2 maximum level (or maximum number of vibrational quanta) in
both states

translate, rotate whether the TRANSLATE and ROTATE options were specified in
the input

natoms number of atoms in the molecule
mass atomic mass vector (m)
xyz1, xyz2 equilibrium geometries of both states (x0 and x0')
b0 zero-order axis-switching matrix matrix (B0)
nmodes number of vibrational modes with a non-zero frequency
gamma1, gamma2 reduced frequencies of both states (Γ and Γ')
lmat1, lmat2 mass-weighted normal modes of both states (L and L')
jmat Duschinsky rotation matrix (J)

kvec1, kvec2 displacement vectors for both states (k and k', kvec1 is used for
the calculation of the Franck-Condon factors)

lambda1, lambda2 electron-phonon couplings for both states (λ and λ')

maxp1, maxp2 maximum number of permutations of maxl1/maxl2 quanta over
the vibrational modes

i0 ground state to ground state overlap integral (I0,0)

216

freq1, freq2 frequencies of every permutation of the vibrational quanta for
both states

fcf maxp1 by maxp2 Franck-Condon factor matrix
fcfsum1, fcfsum2 average sum of the Franck-Condon factors for both states

In addition to producing a binary TAPE61 file, fcf also writes the frequencies, displacement vectors and
electron-phonon couplings for both states to the standard output.

Example absorption and fluorescence

In this example it is assumed that the molecule has a singlet ground state S0, and the interesting excited
state is the lowest singlet excited state S1. First one needs to a the ground state geometry optimization,
followed by a frequency calculation. The TAPE21 of the ground state frequency calculation will be called
s0.t21. Next one needs to do an excited state geometry optimization. Here it is assumed that the lowest
singlet excited state S1 is of interest:

EXCITATION
Onlysing
Lowest 1

END
EXCITEDGO

State A 1
Singlet

END
GEOMETRY
END

To get the frequencies for this excited state, numerical frequencies need to be calculated, at the optimized
geometry of the first excited state.

EXCITATION
ONLYSING
lowest 1
END
EXCITEDGO

State A 1
Singlet

END
GEOMETRY

frequencies
END
...
mv TAPE21 s1.t21

Next for the absorption spectrum, we look at excitations from the lowest vibrational state of the electronic
ground state to the vibrational levels of the first singlet excited state S1 (S1 ← S0), using the FCF program,
which calculates the Franck-Condon factors between the vibrational modes of the two electronic states, with
input

STATES s0.t21 s1.t21
QUANTA 0 5
SPECTRUM 0 10000 1001
TRANSLATE
ROTATE

217

http://www.scm.com/Doc/Doc2014/ADF/ADFUsersGuide/metatagFCF.html

The number of vibrational quanta for the excited state should be larger in case of small molecules. See the
description of FCF program for more details.

For the fluorescence spectrum, we look at excitations from the lowest vibrational state of the first singlet
excited state S1 to the vibrational levels of the singlet ground state state S0 (S1 → S0). Input for the FCF
program is in this case:

STATES s0.t21 s1.t21
QUANTA 5 0
SPECTRUM -10000 0 1001
TRANSLATE
ROTATE

The number of vibrational quanta for the ground state should be larger in case of small molecules.

Note that the FCF program calculates the spectrum relative to the 0-0 transition. Thus one should add to
spectrum calculated with FCF the difference in energy of the lowest vibrational state of the ground state S0
and the lowest vibrational state of the electronically singlet excited state S1.

Example phosphorescence

In this example it is assumed that the molecule has a singlet ground state S0, and the interesting excited
state is the lowest triplet excited state T1. Emission from a triplet state to a singlet state is spin forbidden,
however, due to spin-orbit coupling such transitions may occur. In the following we assume that the
geometry of the triplet excited state is not influenced much by spin-orbit coupling.

First one needs to a the ground state geometry optimization, followed by a frequency calculation. The
TAPE21 of the ground state frequency calculation will be called s0.t21. Next one needs to do an excited
state geometry optimization of the lowest triplet excited state, followed by a frequency calculation.

CHARGE 0.0 2.0
UNRESTRICTED
GEOMETRY
END
AnalyticalFreq
End
...
mv TAPE21 t1.t21

For the phosphorescence spectrum, we look at excitations from the lowest vibrational state of the first triplet
excited state T1 to the vibrational levels of the singlet ground state state S0 (T1 → S0). Input for the FCF
program is in this case:

STATES s0.t21 t1.t21
QUANTA 5 0
SPECTRUM -10000 0 1001
TRANSLATE
ROTATE

The number of vibrational quanta for the ground state should be larger in case of small molecules.

Note that the FCF program calculates the spectrum relative to the 0-0 transition. Thus one should add to
spectrum calculated with FCF the difference in energy of the lowest vibrational state of the ground state S0
and the lowest vibrational state of the electronically triplet excited state T1.

218

http://www.scm.com/Doc/Doc2014/ADF/ADFUsersGuide/metatagFCF.html
http://www.scm.com/Doc/Doc2014/ADF/ADFUsersGuide/metatagFCF.html
http://www.scm.com/Doc/Doc2014/ADF/ADFUsersGuide/metatagFCF.html
http://www.scm.com/Doc/Doc2014/ADF/ADFUsersGuide/metatagFCF.html
http://www.scm.com/Doc/Doc2014/ADF/ADFUsersGuide/metatagFCF.html
http://www.scm.com/Doc/Doc2014/ADF/ADFUsersGuide/metatagFCF.html

Zero field splitting (ZFS) and the radiative rate constants (i.e. radiative phosphorescence lifetimes) could be
calculated with spin-orbit coupled ZORA time-dependent density functional theory (ZORA-TDDFT). In ADF
spin-orbit couping can be treated self-consistently (i.e. non perturbatively) during both the SCF and TDDFT
parts of the computation, see the section on excitation energies and spin-orbit coupling.

An alternative to the use of the unrestricted formalism to calculate the lowest triplet excited state is to use
the TDDFT formalism:

EXCITATION
Onlytrip
Lowest 1

END
EXCITEDGO

State A 1
Triplet

END
GEOMETRY
END

To get the frequencies for this excited state, numerical frequencies need to be calculated, at the optimized
geometry of the first excited state.

EXCITATION
Onlytrip
Lowest 1

END
EXCITEDGO

State A 1
Triplet

END
GEOMETRY

frequencies
END
...
mv TAPE21 t1.t21

(Hyper-)Polarizabilities, ORD, magnetizabilities, Verdet constants

A (frequency dependent) electric field induces a dipole moment in a molecule, which is proportional to the
(frequency dependent) molecular polarizability. Van der Waals dispersion coefficients describe the long-
range dispersion interaction between two molecules. Optical rotation or optical activity (ORD) is the rotation
of linearly polarized light as it travels through certain materials. A (frequency dependent) magnetic field
induces a magnetic moment in a molecule, which is proportional to the (frequency dependent) molecular
magnetizability. The Faraday effects describes the rotation of the plane-polarized light due to a magnetic
field, which is proportional to the intensity of the component of the magnetic field in the direction of the beam
of light. The Verdet constant describes the strength of the Faraday effect for a particular molecule. All these
properties are available in ADF as applications of time-dependent DFT (TDDFT).

Polarizabilities

The calculation of frequency-dependent (hyper)polarizabilities and related properties (Raman, ORD) is
activated with the block key RESPONSE

RESPONSE
END

219

In this example only the zz component of the dipole polarizability tensor is calculated, at zero frequency. The
orientation of the molecule is therefore crucial. Be aware that the program may modify the orientation of the
molecule if the input coordinates do not agree with the symmetry conventions in ADF!
(This calculation could equivalently be done through a finite field method).

See also the alternative implementation with the AORESPONSE key that offers some unique features like
magnetizability, and lifetime options.

The impact of various approximations on the quality of computed polarizabilities has been studied in, for
instance, Refs. [74,82,89]. If you are new to this application field, we strongly recommend that you study a
few general references first, in particular when you consider hyperpolarizability calculations. These have
many pitfalls, technically (which basis sets to use, application of the DEPENDENCY key) and theoretically
(how do theoretical tensor components relate to experimental quantities, different conventions used).
Please, take a good look both at ADF-specific references [75-77,90] and at general references related to this
subject: Refs. [91-93], the entire issues of Chem.Rev.94, the ACS Symposium Series #628, and further
references in the ADF-specific references.

RESPONSE
ALLCOMPONENTS
Nfreq Nfreq
FrqBeg FirstFreq
FrqEnd LastFreq
[Optional Frequency/Energy Unit]
ALLTENSOR
Quadrupole
Octupole

END

Entire tensor or only one component

You specify the ALLCOMPONENTS subkey to get the entire polarizability tensor, instead of just the zz
component.

Frequencies or wavelengths

Instead of performing the calculation at zero frequency (which results in the static polarizability), one
can specify an even-spaced sequence of frequencies, using the subkeys Nfreq, FrqBeg, and FrqEnd
with obvious meaning. The (first and last) frequency values are by default in eV. This can be changed
into Hartree units (a.u.) or in wavelengths (angstroms) by typing HARTREE or ANGSTROM on a
separate line within the RESPONSE block, instead of [Optional Frequency/Energy Unit].

Higher multipole polarizabilities

Instead of just calculating the dipole-dipole polarizability, one may address the dipole-quadrupole,
quadrupole-quadrupole, dipole-octupole, quadrupole-octupole, and octupole-octupole polarizability
tensors. These can all be calculated in a single run, using the subkey ALLTENSOR. If only quadrupole-
quadrupole or octupole-octupole tensors are needed, the subkey quadrupole or octupole should be
used.

Accuracy and convergence, RESPONSE key

RESPONSE
erralf 1e-6
erabsx 1e-6
errtmx 1e-6

220

ncycmx 30
END

erralf, erabsx, errtmx

The subkeys erralf, erabsx, errtmx determine the convergence criteria for a polarizability calculation.
The strict defaults are shown. It is rarely necessary to change the defaults, as these are rather strict but
do not lead to many iterations.

ncycmx

The maximum number of attempts within which the algorithm has to converge. The default appears to
be adequate in most cases.

Hyperpolarizabilities

Hyperpolarizabilities

RESPONSE
HYPERPOL LaserFreq

END

The first hyperpolarizability tensor b is calculated (in atomic units in the 'theoreticians convention', i.e.
convention T=AB in Ref. [92]) if the subkey HYPERPOL is present with a specification of the laser
frequency (in hartree units). If also the subkey ALLCOMPONENTS is specified, all components of the
hyperpolarizability tensor will be obtained.

As mentioned before, by default only the static dipole hyperpolarizability tensor is computed. If one is
interested in the frequency-dependent hyperpolarizability, the input could look like:

RESPONSE
ALLCOMPONENTS
HYPERPOL 0.01
DYNAHYP

END

The subkey DYNAHYP has to be added and the main frequency ω has to be specified in Hartrees after
the subkey hyperpol. In the output all nonzero components of the tensors governing the static first
hyperpolarizability, second harmonic generation, electro-optic pockels effect, and optical rectification
are printed.

Note: Second hyperpolarizabilities are currently not available analytically. Some can however be
obtained by calculating the first hyperpolarizability in a finite field.
The effect of using different DFT functionals (LDA, LB94, BLYP) on hyperpolarizabilities in small
molecules has been investigated in [77].

Van der Waals dispersion coefficients

RESPONSE
ALLCOMPONENTS
VANDERWAALS NVanderWaals
{ALLTENSOR}

END

Dispersion coefficients

221

Simple dispersion coefficients (the dipole-dipole interaction between two identical molecules, the C6
coefficient) are calculated in a single ADF calculation. General dispersion coefficients are obtained with
the auxiliary program DISPER, which uses two output files (file named TENSOR) of two separate ADF
runs as input. See the Properties and the Examples documents.
To get the dispersion coefficients one has to calculate polarizabilities at imaginary frequencies between
0 and infinity. The ADF program chooses the frequencies itself. The user has to specify the number of
frequencies, which in a sense defines the level of accuracy, as an argument to the subkey
VanDerWaals.

NVanderWaals

One can specify the number of frequencies with NVanderWaals. Ten frequencies is reasonable.
Without the key ALLTENSOR only dipole-dipole interactions are considered. If ALLTENSOR is
specified, higher dispersion coefficients are also calculated. This ADF calculation generates a file with
name TENSOR, which contains the results of multipole polarizabilities at imaginary frequencies. This
TENSOR file has to be saved. Similarly, the TENSOR file for the second monomer has to be saved.
The files have to be renamed to files 'tensorA' and 'tensorB' (case sensitive) respectively. Then the
program DISPER has to be called in the same directory where the 'tensorA' and 'tensorB' files are
located. DISPER needs no further input.

DISPER program: Dispersion Coefficients

The DISPER program was originally written by V.Osinga [79]. The original documentation was written by
S.J.A. van Gisbergen.

Van der Waals dispersion coefficients

The program DISPER computes Van der Waals dispersion coefficients up to C10 for two arbitrary closed-
shell molecules. ADF itself can already compute some C6 and C8 coefficients between two identical closed-
shell molecules. These coefficients describe the long-range dispersion interaction between two molecules. It
requires previous ADF-TDDFT calculations for the polarizability tensors at imaginary frequencies for the two
interacting molecules. Each such ADF calculation produces a file TENSOR (if suitable input for ADF is
given). The TENSOR files must be renamed tensorA and tensorB, respectively and must be present as local
files for DISPER. The DISPER program takes no other input and prints a list of dispersion coefficients.

A schematic example, taken from the set of sample runs, for the usage of DISPER is the following:

Step1: run ADF for, say, the HF molecule. In the input file you specify the RESPONSE data block:

RESPONSE
MaxWaals 8 ! Compute dispersion coefficients up to C8
ALLTENSOR ! This option must be specified in the ADF calc for a

! subsequent DISPER run
ALLCOMPONENTS ! Must also be specified for DISPER

End

At the end of the run, copy the local file 'TENSOR' to a file 'tensorA'. For simplicity, we will now compute the
dispersion coefficients between two HF molecules. Therefore, copy 'tensorA' to 'tensorB'.

Now run DISPER (without any other input). It will look for the local files 'tensorA' and 'tensorB' and compute
corresponding dispersion coefficients to print them on standard output.

$ADFBIN/disper -n1 << eor
eor

The output might look something like this:

222

DISPER 2000.02 RunTime: Apr04-2001 14:14:13
********** C-COEFFICIENTS **********
n LA KA LB KB L coefficient(Y) coefficient(P)
6 0 0 0 0 0 28.29432373 28.29432373
6 2 0 0 0 2 7.487547697 3.348533127
8 0 0 0 0 0 416.1888455 416.1888455
8 0 0 2 0 2 0.4323024202E-05 0.1933315197E-05
8 2 0 0 0 2 402.3556946 179.9389368
8 2 0 2 0 4 0.4238960180E-05
8 4 0 0 0 4 -36.67895539 -12.22631846
8 4 0 2 0 6 -0.2000286301E-05

The n-value in the first column refers to the long-range radial interaction. The case n=6 refers to the usual
dipole-dipole type interaction related to a 1/R6 dependence in the dispersion energy. The n=7 case relates to
a dipole-quadrupole polarizability on one system and a dipole-dipole polarizability on the other (this is not
symmetric!). The n=8 term may contain contributions from a quadrupole-quadrupole polarizability on one
system in combination with a dipole-dipole polarizability on the other as well as contributions from two
dipole-quadrupole polarizabilities.

Terms which are zero by symmetry are not printed. In the example above, this is the case for all n=7 terms,
because the systems (apparently) are too symmetric to have a nonzero dipole-quadrupole polarizability. The
best known and most important coefficients are the isotropic ones, determining the purely radial dependence
of the dispersion energy. They are characterized by the quantum numbers: 6 0 0 0 0 0 (or 8 0 0 0 0 0 etc.)
Other combinations of quantum numbers refer to different types of angular dependence. The complete set
determines the dispersion energy for arbitrary orientations between the two subsystems A and B.

The complete expressions are rather involved and lengthy. We refer the interested reader to the paper [79]
which contains a complete description of the meaning of the various parts of the output, as well as
references to the earlier literature which contain the mathematical derivations. In particular, a useful review,
which was at the basis of the ADF implementation, is given in [414]. Of particular significance is Eq.(8) of the
JCP paper mentioned above, as it defines the meaning of the calculated coefficients Cn(LA,KA,LB,KB,L) as
printed above.

For highly symmetric systems, a different convention is sometimes employed. It is based on Legendre
polynomials (hence the 'P' in the final column) instead of on the spherical harmonics (the 'Y' in the column
before the last). The 'P' coefficients are defined only for those coefficients that are nonzero in highly
symmetric systems and never contain additional information with respect to the 'Y' coefficients. They are
defined [Eq. (14) in the mentioned J. Chem. Phys. paper] in terms of the 'Y' coefficients by:

CnL = (-1)LCnL,0,0,0,L/√(2L+1)

Because the quality of the dispersion coefficients is determined by the quality of the polarizabilities that are
the input for DISPER, it is important to get good polarizabilities from ADF. For that it is important, in the case
of small systems, to use an asymptotically correct XC potential (several choices are available in ADF, such
as SAOP or GRAC) and a basis set containing diffuse functions. We refer to the ADF User's Guide for
details.

Optical rotation dispersion (ORD)

RESPONSE
OPTICALROTATION

END

OPTICALROTATION

223

With the subkey OPTICALROTATION the (frequency dependent) optical rotation [80,94] will be
calculated. For correct calculations one should calculate the entire tensor (see also the subkey
ALLCOMPONENTS), which is done automatically.

An alternative implementation uses the AORESPONSE key, in which life time effects can be included.

AORESPONSE: Lifetime effects, polarizabilities, ORD, magnetizabilities, Verdet
constants

The AORESPONSE key offers some unique features compared to the RESPONSE key, namely lifetime
effects (polarizabilities at resonance), polarizabilities in case of spin-orbit coupling, the calculation of
(dynamic) magnetizabilities, Verdet constants, the Faraday B terms, and an alternative way to calculate
(resonance) Raman scattering factors. Note that the RESPONSE key also has many unique features, like
the use of symmetry during the calculation.

AORESPONSE key

If the block key AORESPONSE is used, by default, the polarizability is calculated. This can be modified
using one of the keys below. Note that if the molecule has symmetry the key ALLPOINTS should be
included.

AORESPONSE
OPTICALROTATION
VELOCITYORD
MAGNETICPERT
MAGOPTROT
RAMAN
FREQUENCY Nfreq freq1 freq2 ... freqN units
FREQRANGE freq1 freqN TotFreq units
LIFETIME width
ALDA|XALPHA

END
ALLPOINTS

OPTICALROTION

Specify OPTICALROTION to calculate optical rotatory dispersion spectrum instead of polarizabilities.

VELOCITYORD

This option should be used instead of OPTICALROT with GIAO if the finite lifetime effects need to be
taken into account (LIFETIME option).

MAGNETICPERT

Calculate static or time-dependent magnetizability, see also Ref. [230].

MAGOPTROT

Specify MAGOPTROT to calculate the Verdet constant instead of polarizability, see for the details of the
implementation Ref. [307]. When it is specified together with the LIFETIME key the real and imaginary
part of the damped Verdet constant will be calculated. Combination of three keys MAGOPTROT,
LIFETIME and FREQRANGE yields the magnetic optical rotatory dispersion and magnetic circular
dichroism spectrum (Faraday A and B terms) calculated simultaneously in the range from freq1 to
freqN. It is also possible to combine MAGOPTROT, LIFETIME and FREQUENCY. In order to obtain the

224

Faraday B terms from the Verdet constant calculations it is necessary to perform several steps,
involving a fit of the imaginary Verdet data to the MCD spectrum. You can request SCM for details on
the fitting procedure. For details of the method, see Ref. [272].

RAMAN

Calculates the Raman scattering factors. The AOREPONSE-Raman only works with one frequency. If
one frequency is specified the Raman scattering factors are calculated at that frequency. The Raman
option is compatible with the lifetime option so that resonance Raman scattering can be calculated. For
details of this method, see Ref. [266]. To get Raman intensities with AORESPONSE, numerical
frequencies need to be calculated using a FREQUENCIES key in the GEOMETRY input block. Non-
resonance Raman intensities can also be obtained using the RESPONSE key or, alternatively, using
RAMANRANGE in combination with analytically or numerically pre-calculated frequencies.

FREQUENCY Nfreq freq1 freq2 ... freqN units

To calculate time-dependent properties, one needs to specify frequency of perturbation field. Here
Nfreq specifies the number of frequencies that follow. The last item on the line specifies the units and is
one of EV, HARTREE, ANGSTROM.

FREQRANGE freq1 freqN TotFreq units

This key is useful when it is necessary to specify more than 20 equally spaced frequencies for the
response calculations. The first frequency is freq1 and the last one is freqN. The total number of
frequencies including the first and the last one is TotFreq. The last item specifies the units: EV,
HARTREE or ANGSTROM.

LIFETIME width

Specify the resonance peak width (damping) in Hartree units. Typically the lifetime of the excited states
is approximated with a common phenomenological damping parameter. Values are best obtained by
fitting absorption data for the molecule, however, the values do not vary a lot between similar
molecules, so it is not hard to estimate values. A value of 0.004 Hartree was used in Ref. [266].

ALDA|XALPHA

If ALDA is specified the VWN kernel is used. This option is the default. If ALPHA is specified the Xα
kernel is used instead of the default VWN one.

The spin-orbit ZORA polarizability code (Ref. [311]) is automatically selected if the AORESPONSE keyword
is given in a spin-orbit coupled calculation. In this case a spin-restricted calculation is required, but, unlike
the rest of AORESPONSE, also SYMMETRY NOSYM. Spin-polarization terms in the XC response kernel
are neglected. In Ref. [311] the imaginary polarizability dispersion curves (spin-restricted) match well the
broadened spin-orbit TDDFT data from Ref. [182]. Thus the corrections from the spin-polarization terms
appear to be rather minor. No picture change corrections were applied in the ZORA formalism.

Technical parameters and expert options

AORESPONSE
...
SCF {NOCYC} {NOACCEL} {CONV=conv} {ITER=niter}
GIAO
FITAODERIV

END

SCF {NOCYC} {NOACCEL} {CONV=conv} {ITER=niter}

225

Specify CPKS parameters such as the degree of convergence and the maximum number of interations:
NOCYC - disable self-consistence altogether
NOACCEL - disable convergence acceleration
CONV - convergence criterion for CPKS. The default value is 10-6.
The value is relative to the uncoupled result (i.e. to the value without self-consistence).
ITER - maximum number of CPKS iterations, 50 by default.
Specifying ITER=0 has the same effect as specifying NOCYC.

GIAO

Include the Gauge-Independent Atomic Orbitals (GIAO). This option should not be used with damping
(LIFETIME keyword) and the VELOCITYORD option should be used instead.

FITAODERIV

Use fitted AO Derivatives. This will improve the density fitting, can only be used in cae of STO fitting. In
case of ZlmFit one can improve the fitting with the ZLMFIT block key.

COMPONENTS {XX} {XY} {XZ} {YX} {YY} {YZ} {ZX} {ZY} {ZZ}

Limit the tensor components to the specified ones. Using this option may save the computation time.

Applications of AORESPONSE

It may be useful to consult the following applications of the AORESPONSE key in ADF:

1. Calculation of static and dynamic linear magnetic response in approximate time-dependent
density functional theory [230]

2. Calculation of CD spectra from optical rotatory dispersion, and vice versa, as complementary tools
for theoretical studies of optical activity using time-dependent density functional theory [231]

3. Calculation of origin independent optical rotation tensor components for chiral oriented systems in
approximate time-dependent density functional theory [232]

4. Time-dependent density functional calculations of optical rotatory dispersion including resonance
wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules
[233]

5. Calculation of optical rotation with time-periodic magnetic field-dependent basis functions in
approximate time-dependent density functional theory [234]

6. A Quantum Chemical Approach to the Design of Chiral Negative Index Materials [235]
7. Calculation of Verdet constants with time-dependent density functional theory. Implementation and

results for small molecules [236]
8. Calculations of resonance Raman [266,267]
9. Calculations of surface-enhanced Raman scattering (SERS) [268,269]

10. Calculation of magnetic circular dichroism spectra from damped Verdet constants [272]
11. Calculation of the polarizability in case of spin-orbit coupling [311]

NMR

NMR chemical shifts and NMR spin-spin couplings can be calculated. Effects due to spin-orbit coupling can
be included. All electron basis sets can be used.

The separate program EPR/NMR ($ADFBIN/epr) program is no longer documented, since most of its
capabilities are implemented in newer modules. See for the old documentation the ADF2010 EPR/NMR
module documentation.

226

http://www.scm.com/Doc/Doc2010/ADF/Properties/metatagNMR_SHIELDING_EPR.html
http://www.scm.com/Doc/Doc2010/ADF/Properties/metatagNMR_SHIELDING_EPR.html

NMR Chemical Shifts

NMR Chemical shifts have been implemented [113-117] in a separate property program NMR. It requires
the TAPE21 result file from an ADF calculation. The NMR module can be combined with the ZORA
treatment for relativistic effects and with Spin-Orbit effects, making it suitable for treatment of heavy
elements. See also the general review on relativistic computations of NMR parameters [331].

Important notes

TAPE21 and TAPE10

NMR requires an ASCII input file and TAPE21 and TAPE10 result files from an ADF calculation on the
molecule to be analyzed. The ADF result files TAPE21 and TAPE10 must be present with names TAPE21
and TAPE10 in the directory where you execute NMR. Use the keywords SAVE TAPE10 in the adf
calculation in order to obtain a TAPE10 result file.

Reaclculation of TAPE10 by NMR

Warning: the NMR property program will not always give the correct result for every SCF potential in the
ADF calculation, like for example the SAOP potential, or if one uses COSMO in the ADF calculation, if one
lets the NMR recalculate TAPE10. This is due to the GIAO method used in this program, which requires the
calculation of the SCF potential, which is not done correctly for potentials, other than the standard LDA and
GGA potentials. To obtain correct results one should, in addition to the use of TAPE21, also use TAPE10
that ADF generates, using the keywords SAVE TAPE10, and use it as input for the NMR property program.
On TAPE10 the SCF potential is written, which is read in by the NMR program.

Atomic calculation

NMR calculations on 1 atom must have symmetry NOSYM.

Spin-orbit coupling

NMR calculations on systems computed by ADF with Spin Orbit relativistic effects included must have used
NOSYM symmetry in the ADF calculation. NMR can also be combined with ADF ZORA calculations. The
NMR program reads from TAPE21 the relativistic option that is used in the ADF calculation, and will use the
same relativistic option in the NMR calculations.

Bug spin-orbit part ADF2008 - ADF2013

In the ADF2008.01 a bug was introduced in the spin-orbit part of the calculated chemical shielding, which
caused the calculated chemical shielding to be gauge dependent. This bug is relevant for spin-orbit coupled
calculations for ADF versions ADF2008-ADF2013. In ADF2014 this bug has been fixed.

Unscaled ZORA default ADF2014

There is gauge dependence if the scaled ZORA method is used in the calculation of NMR chemical
shieldings. Therefore the default method for NMR chemical shielding calculations is changed in ADF2014 to
use the unscaled ZORA method.

SAOP

The use of the model SAOP potential leads to isotropic chemical shifts which are substantially improved
over both LDA and GGA functionals, and of similar accuracy as results with a self-interaction-corrected
functional (SIC), see [421]. SAOP is computationally expedient and routinely applicable to all systems,
requiring virtually the same computational effort as LDA and GGA calculations.

227

NICS

The Nucleus-Independent Chemical Shift (NICS) can be calculated at any point in the molecule.

Hybrids

Starting from ADF2009.01 Hartree-Fock and the hybrid potentials can used in combination with NMR
chemical shielding calculations. see Refs. [422,423]. Use SAVE TAPE10 in the ADF calculation. The use of
frozen cores and hybrids gives gauge dependent results for the NMR chemical shieldings, therefore the
NMR program will stop in this case.

Meta-GGA's and meta-hybrids

Meta-GGA's and meta-hybrids should not be used in combination with NMR chemical shielding calculations.
The results are wrong due to an incorrect inclusion of GIAO terms.

Bug fix ADF2005.01 off-diagonal part shielding tensor

Bug fix off-diagonal part shielding tensor: In the ADF2005.01 the bugs in the NMR module are fixed that
gave problems in the ADF2004.01 and older versions.

Input options

The input file for NMR uses the block key NMR, with several (optional) sub keys, each having a series of
options. For analysis a separate block key can be used.

$ADFBIN/nmr << eor
ZSOAO2007
RECALCULATETAPE10
NMR

...
End
Analysis

...
End
eor

ZSOAO2007 keyword

In the ADF2008.01 a bug was introduced in the spin-orbit part of the calculated chemical shielding, which
caused the calculated chemical shielding to be gauge dependent. This bug is relevant for spin-orbit coupled
calculations for ADF versions ADF2008-ADF2013. Workaround in ADF versions ADF2008-ADF2013 is to
include the keyword ZSOAO2007 in the NMR part of the input, which causes a one-center approximation to
be used. The bug has been fixed in ADF2014 by introducing an extra gauge-correction term for the spin-
orbit coupled part. One can still get the (slightly) incorrect results in ADF2014 by using the keyword
WRONGSOGAUGE, and not including ZSOAO2007.

REACALCULATETAPE10 keyword

If there is no TAPE10 present the NMR program will stop. One can use the key REACALCULATETAPE10
such that TAPE10 will be recalculated by the NMR module. Not recommendended to be used. Better use
'SAVE TAPE10' in the ADF calculation, and use this TAPE10 as input for NMR.

NMR block key

NMR
Out OutOptions

228

Calc CalcOptions
Use UseOptions
U1K U1KOptions
Nuc NucOptions
Atoms AtomsOptions
Ghosts GhostsOptions
Analysis AnalysisOptions

End

Out OutOptions

The sub key Out controls printed output. Its options specify the details by their (optional) presence. The
following OutOptions are recognized (Default ISO):

All

Implies all the other options except for 'ISO', which may be specified in addition.

ISO

Isotropic shielding constants

Tens

Shielding tensors

Eig

Eigenvectors

U1

The U1 matrix

F1

The first order change in the Fock matrix

S1

The first order change in the Overlap matrix

AOP

The paramagnetic AO matrix (= the matrix in the representation of elementary atomic basis
functions)

AOD

The diamagnetic AO matrix

AOF

The Fermi-contact AO matrix

REFS

Literature references

INFO

229

General information

Calc CalcOptions

The sub key Calc controls what is actually calculated. The following options are available (Default ALL):

All

Implies all of the other options to this key

Para

The paramagnetic part

Dia

The diamagnetic part

FC

The Fermi-contact part in case of the Pauli Hamiltonian

SO

The Fermi-contact part in case of the ZORA Hamiltonian

Use UseOptions

The sub key Use controls some optional options (default none)

SCALED

Implies the scaled ZORA method, which gives (slightly) gauge dependence results. Note that in
case of the ZORA Hamiltonian default the unscaled ZORA method is used. For chemical shifts,
only compare results with the same options.

SO1C

Before ADF2008.01 in the the spin-orbit term a 1-center approximation was used, which does not
suffer from gauge dependence. This 1-center approximation can be used with USE SO1C.

U1K U1KOptions

The sub key U1K determines which terms are included in the calculation of the U1 matrix (first order
changes in MO coefficients). Options (Default none):

Best

The best (recommended) options for each relativistic option are included for this sub key.

All

Implies all the other options to this key.

MV

The mass-velocity term

Dar

230

The Darwin term

ZMAN

The Spin-Zeeman term.

ESCL

Scaled ZORA orbital energies in U1 matrix

Note: for chemical shifts, only compare results with the same options. If the sub key U1K is used with the
option ALL in the ZORA calculation, then the scaled ZORA orbital energies are used in the making of the U1
matrix, which is not recommended. Recommended is to use 'U1K Best' in all cases, which uses plain ZORA
orbital energies in the making of the U1 matrix.

NUC NucOptions

The (sub) key Nuc determines for which nuclei the chemical shifts are computed. If this (sub) key is
omitted from the NMR block, the calculations are carried out for all nuclei. Else you may use this options
by simply typing Nuc in the NMR block (without any further data); this means: for no nuclei at all.
Alternatively you may type the index of the atom(s) you want to see analyzed. Default all nuclei are
calculated, i.e. as for omitting this sub key.

Example:

NUC 2 1

The numbers refer to the internal numbering of the nuclei as it appears somewhere early in the general
ADF output. This internal numbering is also the internal NMR numbering, but it is not necessarily the
same as the input ordering. Use the subkey ATOMS to specify the nuclei according to this input
ordering in the ADF calculation.

Note that the number of nuclei has a significant consequence for the total CPU time.

Atoms AtomsOptions

This subkey ATOMS specifies for which nuclei the NMR shielding is calculated. Default all nuclei are
calculated, i.e. as for omitting this sub key.

Example:

ATOMS 2 1

The numbers refer to the input ordering in the ADF calculation. Use the subkey NUC to specify the
nuclei according to the internal NMR numbers of the atoms.

GHOSTS

The subkey GHOSTS is a block type subkey. The format is:

Ghosts
xx1 yy1 zz1
xx2 yy2 zz2
......

SubEnd

With this key, the user can specify ANY point(s) within the molecule at which the shielding is to be
calculated (whatever the physical meaning of this shielding is). One can think of those points as
neutrons within the molecule. There is a publication by P. Schleyer et al. using a similar feature (J. Am.

231

Chem. Soc. 118, 6317, 1996). They call it NICS, Nucleus-Independent Chemical Shift. Note that the
NICS value is minus 1 times the isotropic part of the shielding tensor that is calculated at these points.

xx1 yy1 zz1

real numbers that specify the Cartesian coordinates of 'ghost' 1, etc.

The coordinates have to be specified in the same units as any other input (ADF subkey Units). That is,
you use Angstrom for the ghosts if you did so for the atomic coordinates, or bohr otherwise. The same
set of coordinates has to be specified as 'point charges with charge zero' using the key EFIELD. This is
necessary in order to allow the appropriate distribution of integration points around the ghosts.

E.g., if you want to have two 'ghosts' with the coordinates xx1 yy1 zz1 and xx2 yy2 zz2 then you must
also have in the input the key EFIELD as follows

EFIELD
xx1 yy1 zz1 0.0
xx2 yy2 zz2 0.0

END

(the last number is the charge at these coordinates - zero).

Eventually, this step should be programmed internally but for now the procedure outlined above works.
No check is done to verify whether those 'point charges' are taken care of or not, but their omission
leads to unpredictable results.

Only Cartesian coordinates are possible for ghosts, even if the atoms were originally specified using
internal coordinates. This shouldn't be a problem, though (e.g., one could start an ADF run of the
molecule of interest, and get very soon the Cartesian coordinates of the atoms in the output. This run
would then be aborted, and restarted with the ghosts specified as desired.) The ghosts are numbered in
the output as NNUC+1, NNUC+2 ... where NNUC is the total number of nuclei in this molecule. Default:
no ghosts.

Analysis AnalysisOptions

The sub key Analysis controls the MO analysis. After the word (sub key) Analysis you type an integer,
which then specifies that the first so many MOs are to be analyzed. Default no Analysis. The value of
this analysis subkey in the block key NMR is somewhat limited. The separate ANALYSIS block key can
give more analysis of the NMR chemical shielding.

Analysis block key

The NMR shielding tensor, can be analyzed in detail, see Refs. [329-331]. For the analysis option with the
ANALYSIS block key there are some restrictions. In the ADF calculation all electron basis sets should have
been used, and SYMMETRY NOSYM. Can not be used in case of non-relativistic calculations. The ADF
calculation should use relativistic scalar ZORA or relativistic spinorbit ZORA. In case of scalar relativistic
ZORA the keyword FAKESO should be added to the NMR input (outside of the NMR or Analysis block
keys). The analysis utilizes the ZORA spin-orbit branch of the NMR code. For scalar ZORA, the NMR
analysis contributions will appear in equivalent pairs for spin-orbitals even if the ADF calculation is closed-
shell spin restricted. The MO numbering then also reflects this doubling of MOs. In the analysis, canonical
MOs number 1 and 2 are the alpha and beta spin ADF MO 1, canonical MOs number 3 and 4 correspond to
the alpha and beta spin ADF MO 2, and so on. In case of spinorbit relativistic ZORA the keyword FAKESO
should not be included. For an NBO analysis of NMR, see the section on NBO analysis.

Analysis
print threshold
canonical
{components}

232

End
{FakeSO}

print threshold

The print keyword selects printout of contributions relative to the total diamagnetic, paramagnetic. For
example in case of 'print 0.01' only contributions greater than 1% are printed. Set to zero to print ALL
contributions.

canonical

It enables an analysis of the shielding in terms of the canonical MOs.

components

The components keyword is optional and enables an analysis not only of the isotropic shielding but also
of the diagonal cartesian components of the tensor XX, YY, and ZZ). In order to analyze the principal
shielding tensor components with canonical MOs you can calculate the shielding tensor first with the
NMR code, rotate the molecule such that the principal axes system aligns with the Cartesian coordinate
system, and then repeat the NMR calculation with the analysis features switched on.

Paramagnetic NMR Chemical Shifts

Knowledge of the g-tensor and hyperfine A-tensor can be used in the prediction and analysis of
paramagnetic NMR shifts, see Refs. [340-342]. Because of the dependence on the g-tensor, prediction of
paramagnetic NMR (pNMR) shifts is not straightforward, as the dependence of the pNMR shift on excess α
or β electron spin density at a nucleus is to be combined with the sign and magnitude of the isotropic g-
value. Ref. [340] describes in detail how to calculate pNMR contact chemical shifts and pNMR pseudo-
contact chemical shifts, using the ADF program.

Of course, like for NMR chemical shielding of closed shell molecules, one also needs to calculate of the so
called orbital dependent part of the NMR chemical shielding of the open shell molecule. For open shell
molecules in ADF this can only be calculated without taken into account spin-orbit coupling:

$ADFBIN/adf << eor
CHARGE charge spinpolarization
unrestricted
Relativistic scalar ZORA
Basis
Core None

End
SAVE TAPE10
...
eor
$ADFBIN/nmr << eor
ALLINONE
nmr
u1k best
calc all
out iso tens

end
end input
eor

Note that one can only do this at the scalar relativistic ZORA level, one needs to use all electron basis sets,
and one needs to include the key ALLINONE in the input for NMR,

233

NMR spin-spin coupling constants

The NMR spin-spin coupling constants [118, 119] have been implemented in a separate program CPL. It
can be combined with ZORA and Spin-Orbit treatment of relativistic effects to study heavy elements. The
original version of this part of the User's Guide was written by Jochen Autschbach, primary author of the
CPL code.

Introduction

The CPL code of the Amsterdam Density Functional program system allows the user to calculate Nuclear
Spin-spin Coupling Constants (NSSCCs) [118,119]. NSSCCs are usually observed in NMR (Nuclear
Magnetic Resonance) spectroscopy and give rise to the splitting of the signals of the NMR spectrum in
multiplets. They contain a wealth of information about the geometric and electronic structure of the
compound being investigated.

The calculation needs a standard TAPE21 ADF output file. CPL reads also an input key and optional
settings from stdin (usually from an input file). Technical parameters such as the maximum memory usage
can be set here as well.

One of the key features of the program is its ability to treat heavy nuclei with the ZORA relativistic formalism.
We refer the reader to the literature for details about our implementation [118,119], and the general review
on relativistic computations of NMR parameters [331]. Please use the information printed in the output
header of the CPL program in order to provide references of this work in scientific publications.

The development of the CPL program started in 2000. CPL provides the main functionality in order to
evaluate NSSCCs based on DFT, as well as a number of additional features in order to provide an analysis
of the results. Several analysis features for the coupling constant have been added, see the
CONTRIBUTIONS sub key. Please report bugs or suggestions to SCM at support@scm.com.

Theoretical and technical aspects

Within the non-relativistic theory of nuclear spin-spin coupling, there are four terms contributing to the
NSSCC between two nuclei A and B: the paramagnetic and diamagnetic orbital terms (OP and OD,
respectively), and the electron-spin dependent Fermi-contact (FC) and spin-dipole term (SD). In the
literature, the OP and OD terms are often named PSO and DSO (for paramagnetic and diamagnetic spin-
orbital). In the more general ZORA formulation, very similar operators are responsible for the NSSCC,
therefore we use the same terminology for the individual contributions. In general, the interpretation of the
results for a heavy atom system is basically equivalent to a non-relativistic situation.

In most cases, the FC term yields the most important contribution to the NSSCC. However, many exceptions
are known for which one or each of the other terms can be non-negligible or even dominant. We therefore
suggest that you always check, at least for a smaller but similar model system, or by using a smaller basis
set, which of the four terms are negligible and which are dominant.

By default, the CPL program computes the FC coupling between the first and all other nuclei of the
molecule, respectively. Other couplings or the computation of the OP, OD and SD terms can be requested
by input switches (see the 'Running CPL' section of this document for details).

All contributions to the NSSCC are evaluated with the help of the numerical integration scheme implemented
into ADF. In general, the computation of the OD term is computationally very cheap, since only integrals
involving the electron density have to be evaluated. The next expensive term is the OP term. For this
contribution, the first-order perturbed MOs have to be computed. With the available density functionals in
ADF, the OP term does not cause a change in the Kohn-Sham potential, and the first-order MOs can be
computed directly (i.e. without an iterative procedure). This is equivalent to the approach that has been
implemented in the NMR code for ADF.

234

Both the FC and the SD terms induce electron spin-density to first-order as a perturbation. Equivalent to the
iterative solution of the unperturbed Kohn-Sham equations, the first-order MOs depend on that first-order
spin-density, which in turn depends on the first-order MOs. Therefore, in order to evaluate the FC and SD
NSSCC contributions, the CPL program carries out a SCF cycle. In the scalar or non-relativistic case, the
computational cost for the FC term is comparable to an ADF single point calculation with a local density
functional. The evaluation of the SD term is more expensive. The current implementation utilizes the CPL
spin-orbit code to compute the combined FC+SD contribution and therefore leaves some room for future
speed-ups. In most cases, the SD term yields a negligible NSSCC and the much faster code for the scalar-
or non-relativistic FC term can be used. However, it is very important to include the SD term in the
computation if coupling anisotropies are to be evaluated.

In the case where the NSSCC computation is based on spin-orbit coupled relativistic two component ZORA
MOs, the SD term causes only a marginal increase in computational time as compared to the FC term
alone. Generally, in this case the computational cost for the FC term is already approximately one order of
magnitude higher than in the scalar or non-relativistic case, since the 3 (x, y, z) components of the spin-
density with respect to 3 components of the perturbation, respectively, have to be determined self-
consistently. The additional presence of the SD term only shows up in a somewhat more costly evaluation of
the matrix elements of the perturbation operator. However, CPL spends most of its computational time in the
SCF cycle. Therefore, in spin-orbit computations the computation of the FC+SD terms is the default. The OP
term has to be evaluated self-consistently, too, in this case and is added as a perturbation in the SCF cycle
upon request.

We use the terminology 'perturbing' and 'responding nucleus' within the CPL output. The 'perturbing' nucleus
is the one, for which the first-order MOs have to be computed (self-consistently), while the NSSCC is then
determined by these first-order MOs and the FC, SD, and OP matrix elements of the second, 'responding'
nucleus. For the OD term, this distinction makes no sense but is used in the output for reasons of
consistency.

Experimental NSSCCs between two nuclei A and B are usually reported as J(A,B) in Hertz. From a
computational point of view, the so-called reduced NSSCCs K(A,B) are more convenient for comparisons.
CPL outputs both. The J's are set to zero in case the nuclear magneto-gyric ratio of one of the nuclei A or B
is not available at run time.

Further technical aspects and current limitations

In order to facilitate the future computation of rather large molecules, all matrix elements of the perturbation
operators FC, SD, and OP are evaluated in the Slater AO basis that is specified as input in the CREATE
runs of ADF. The AO matrix elements are further transformed to the basis of MOs and the calculation
proceeds within the MO basis. This allows for a convenient analysis of the results in terms of contributions
from individual occupied and virtual MOs. Such an analysis can be requested by input.

The matrix elements themselves as well as the first-order contributions to the potential are evaluated by
numerical integration. The CPL code, which is parallelized, can use multiple processors for these steps of
the computation. The accuracy setting for the numerical integration is of high importance to obtain accurate
matrix elements. Furthermore, the basis set being employed needs to be flexible enough to describe the
perturbation correctly. This means usually that modified basis sets have to be used in particular for heavy
element calculations.

The first-order potential is currently approximated by the VWN functional. The Xα potential is available as an
alternative but usually leads to less accurate results. In ADF2009.01 the first order potential of the PBE
family of GGA functionals and the hybrid PBE0 functional can be used.

Currently, only spin-restricted computations for systems with an even number of electrons are supported.
Further, the calculation does not make use of symmetry and must be based on an ADF run with input
SYMMETRY=NOSYM. Non-Aufbau configurations are not supported. The atom input list must not contain
dummy atoms.

235

With the present version of CPL, the SD term and the FC/SD cross term cannot be evaluated separately.
Either, the sum of FC + SD + cross terms, or the FC term individually, are computed.

CPL is restartable after various time-consuming steps of the computation.

In ADF2009.01 the hybrid PBE0 functional can be used in combination with NMR spin-spin coupling
calculations, see the documentation for the extra keys that are needed. However, other hybrid functionals
and Hartree-Fock can not or should not be used in combination with NMR spin-spin coupling calculations.

In ADF2009.01 the effects of a finite size of a nucleus on the spin-spin couplings can be calculated. A finite
size of the nucleus can be set with the NUCLEARMODEL key in the input for the ADF calculation.

Bug fix in case more than 1 perturbing atom and DSO or PSO

In the ADF2006.01b version a bug in the CPL module is fixed that gave problems in ADF2006.01 and older
versions. The problem in ADF2006.01 and older versions is: In case there is more than 1 perturbing atom
and the DSO or PSO term is calculated, only the results of the spin-spin couplings for the first perturbing
atom are correct, but the results of the other spin-spin couplings may be incorrect.

Input file for CPL: TAPE21

In order to run the CPL code, you need the general ADF output file TAPE21 being present in the directory
where CPL is running. Most of the computation's specific settings will be taken from TAPE21, such as the
integration accuracy, the basis set, the density functional being employed, nuclear coordinates, and so on.
That also means that nearly all of the aspects that affect the quality of CPL's results are already determined
in the input for the ADF run. Five aspects are of particular importance here:

1. The numerical integration accuracy: the perturbation operators are large in the vicinity of the nuclei.
Therefore, you have to make sure that the integration grid is fine enough in the atomic core regions.

2. The basis set: NSSCCs are sensitive chemical probes, and therefore flexible basis sets have to be
employed in order to yield a valid description of the MOs that determine the NSSCCs. We have found
that it is imperative to use at least basis set TZ2P (V) from the ADF basis set database. Additional
polarization functions in the valence shell may be necessary. Furthermore, the FC perturbation usually
requires additional steep 1s functions (i.e. with exponents much higher than the nuclear charge) for a
proper description. In the relativistic heavy element case, the use of additional steep basis functions as
compared to the ZORA/TZ2P basis is mandatory. The use of steep functions is only of high importance
for those nuclei, for which the NSSCC is to be evaluated.
In ADF2009.01 some basis sets suitable for NSSCCs has been added to the ADF basis set directory, in
the directory $ADFHOME/atomicdata/ZORA/jcpl. For elements not available in this directory we suggest
to use basis TZ2P as a starting point and to add some 1s basis functions (and appropriate fit functions)
with higher exponents in order to improve the accuracy of the FC term. This is especially important for
the heavy NMR nuclei.
For the nuclei for which NSSCCs are to be evaluated, it is necessary to use all-electron basis sets. This
is not a restriction due to the implementation, but we have found that, with the available frozen core
basis sets, the flexibility of the basis in the vicinity of the nuclei is not sufficient. It is possible to use
frozen core basis sets if you add enough basis functions in the core region such that the basis
approaches the flexibility of at least a double-zeta all-electron basis there [118]. In that sense, the
savings in computational time due to usage of a frozen core basis are not as pronounced as in standard
ADF computations. Unless reliable frozen-core basis sets for the NSSCC computation are available we
strongly discourage the use of frozen core basis sets with the CPL program!

3. The finite size of a nucleus: typically, the isotropic J-couplings are reduced in magnitude by about 10
to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more
so for couplings between two heavy atoms, see Ref. [270]. However, one should have really large basis
sets with tight basis functions to observe this effect in calculations, see the previous point about basis

236

sets. The basis sets in the directory $ADFHOME/atomicdata/ZORA/jcpl are suitable for finite nucleus
calculations. A finite size of the molecule can be set in the ADF program with the key
NUCLEARMODEL:

NuclearModel Gaussian

4. The density functional: the results of the CPL code depend mostly on the shape of the MOs that have
been determined by ADF, and their orbital energies. Both, in turn, depend on the density functional or
Kohn-Sham potential that has been chosen for the ADF run (and the basis set quality). It is difficult to
give a general advice here concerning the NSSCCs. So far we have found that the use of GGAs
improves the NSSCCs with respect to experiment in most cases in comparison to LDA. Different GGAs
often yield very similar results. Further, in particular for those cases for which the OP term is large or
even dominant, both standard LDAs and GGAs sometimes do not provide an accurate enough
description of the orbitals, and deviation of the CPL results as compared to experiment can be
substantial. Future developments of density functionals might be able to cure these problems. For the
time being, we recommend that you base the CPL run on different choices of density functionals in the
ADF run, and investigate the convergence of the result with respect to basis set and integration
accuracy. Note that CPL itself uses the VWN functional by default to determine the first-order perturbed
MOs. There are enough indications to believe that this is a reasonable approximation for NMR
purposes. In ADF2009.01 the first order potential of the PBE family of GGA functionals and the first
order potential of the hybrid PBE0 functional can be used. See Refs. [425,426] for applications of such
first order potentials. However, other hybrid functionals and Hartree-Fock can not or should not be used
in combination with NMR spin-spin coupling calculations.

5. Modeling the experimental setup: computing such sensitive numbers as NMR chemical shifts and in
particular NSSCCs can result in substantial deviations from experimental data. The simple reason might
be that the isolated system that has been computed at zero temperature is not at all a good
approximation to the system that has been studied experimentally. We [403,404] and other authors
have found that in particular solvent effects can contribute very substantially to the NSSCC. In case you
are comparing CPL results to experimental data obtained in strongly coordinating solvents we suggest
that you consider solvent effects as a major influence. We have found that even weakly coordinating
solvents can cause sizeable effects on the NSSCCs for coordinatively unsaturated metal complexes.
Other sources of errors can be the neglect of vibrational corrections to the NSSCCs (usually in the
range of a few percent).

If the parameters of the underlying ADF computation are carefully chosen and the density functional is able
to provide an accurate description of the molecule under investigation, it is possible to compute NSSCCs by
means of DFT with very satisfactory accuracy (please note that for properties as sensitive as NSSCCs,
agreement with experimental results within about 10% error can be regarded as quite good). Further,
chemical trends will be correctly reproduced for a related series of molecules in most cases. However, due
to the inherent approximate character of the density functionals currently available with ADF, and necessary
basis set limitations, great care should be taken that the results are reliable. CPL assumes Aufbau
configurations. Please make sure that there are no empty orbitals with energies below the highest occupied
MO (HOMO). In addition, the SYMMETRY NOSYM key has to be used in the ADF computation. It is
currently not possible to use dummy atoms in the ADF input if the TAPE21 is intended to be used for a
subsequent CPL computation.

Running CPL

Main input switches

With the ADF output TAPE21 present in the current working directory, the CPL code is invoked by:

$ADFBIN/cpl < input_file

237

where input_file contains the input for CPL. We have tried to ensure some backward compatibility with older
ADF versions, such as ADF 1999 and ADF 2.3. Normally, you will use the ADF suite that contains the CPL
code of the same version. CPL tries to detect if the TAPE21 belongs to an older version of ADF and exits
with an error message in case it is not able to process this file. For ADF 2.3, you have to supply also the
TAPE10 of ADF 2.3 in addition to TAPE21 (specify SAVEFILE TAPE10 in the ADF input file). We provide
this option for testing purposes, however this functionality is not supported and we do not recommend to run
CPL on top of the output of an older ADF version.

input_file must contain at least one block-type input key in order to start the CPL run. The input key is

$ADFBIN/cpl << eor
NMRCOUPLING
END
eor

This represents a minimal input file for CPL. The NMRCOUPLING key hosts all optional keys that are
relevant for the NSSCCs themselves. In addition to the mandatory NMRCOUPLING key, CPL recognizes
the following input switches:

$ADFBIN/cpl << eor
GGA
..
eor

See the separate section for this key, which influences the first order potential that is used.

$ADFBIN/cpl << eor
RESTART restart_file
..
eor

restart the computation from file restart_file. This is the TAPE13 produced during a CPL run. By default,
TAPE13 is deleted after a successful completion of CPL. As with ADF restarts, you can not use the name
TAPE13 for restart_file but you have to rename it, e.g. to tape13.restart.)

$ADFBIN/cpl << eor
SAVEFILE TAPE13
..
eor

keep the restart file even after a successful completion of CPL. TAPE13 is currently the only file that is
meaningful as a parameter to SAVEFILE

NMRCOUPLING subkeys

The available switches within a NMRCOUPLING/END block control the computation of the NSSCCs. By
default, the program will evaluate the FC coupling contribution for the first nucleus being the perturbing
nucleus and all remaining nuclei responding.

Please note that the ordering of atoms in CPL is generally different from the ADF input. The ordering of
atoms is the one being stored in TAPE21 and it is grouped by fragment types. In case you are in doubt
about the ordering of atoms, you can run CPL for a few seconds. It will print a list of atoms with their
coordinates. The ordering is currently the same as required the NMR program in the ADF program system.
On the other hand, note that for the subkeys ATOMPERT and ATOMRESP the number of the atoms refer to
the input ordering in the ADF calculation.

Available subkeys are:

238

$ADFBIN/cpl << eor
NMRCOUPLING

NUCLEI {npert nresp1 nresp2}
ATOMPERT {npert1 npert2 npert3}
ATOMRESP {nresp1 nresp2 nresp3}
GAMMA {nnuc gamma}
DSO
PSO
SD
FC
SCF {ITERATIONS=25 | NOCYCLE | CONVERGE=1e-4 }
XALPHA
CONTRIBUTIONS {1E19} {LMO, SFO, LMO2, SFO2}

END
..
eor

NUCLEI {npert nresp1 nresp2}

Use nucleus no. npert as the perturbing nucleus, and nuclei nresp1, nresp2, etc as responding nuclei.
You can supply more than one NUCLEI keys, in which case CPL evaluates the first-order MOs for each
perturbing nucleus that is specified and computes the NSSCCs between all specified responding nuclei.
For each NUCLEI line in the input, CPL has to perform an SCF cycle. Note: for the numbers of the
atoms the internal CPL numbering should be used.

ATOMPERT {npert1 npert2 npert3}
ATOMRESP {nresp1 nresp2 nresp3}

ATOMPERT: use nucleus no. npert1, npert2, etc. as the perturbing nuclei. ATOMRESP: use nucleus
no. nresp1, nresp2, etc. as the responding nuclei. You can supply more than one ATOMPERT and (or)
ATOMRESP key. CPL computes the NSSCCs for all pairs of combinations of perturbing atoms and
responding atoms. For each perturbing atom CPL has to perform an SCF cycle, which is the expensive
part in the calculation. Note: the numbers refer to the input ordering in the ADF calculation. Use the
subkey NUCLEI to specify the nuclei according to the internal CPL numbers of the atoms.

GAMMA {nnuc gamma}

Input a non-default magneto-gyric ratio of g = gamma for nucleus no. nnuc, in units of rad/(T s). Note
that one should include the the typical 107 factor. CPL normally uses the g value of the most abundant
NMR active isotope for a nucleus of a given charge by default. With the GAMMA keyword you can
override this value or supply a value if CPL does not know about it. A list of g's that is used in the
computation is printed in the output. You have to provide the GAMMA key for each nucleus you want to
specify.

DSO

Compute the diamagnetic orbital term for each NSSCC that is requested (not default)

PSO

Compute the paramagnetic orbital term for each NSSCC (not default)

SD

Compute the SD term for each NSSCC. This is only default for spin-orbit ADF runs. The output will
contain the sum of the FC and SD contributions. Please note that requesting this option results in a
greatly increased computational cost in scalar or non-relativistic runs. The option NOSD will turn the SD
computation off in spin-orbit runs and has no effect otherwise.

239

FC

Compute the FC contribution to the NSSCCs. This is the default option. Please note that it is currently
not possible to compute the SD term without the FC term. Consult the 'practical aspects' section for
instructions how to estimate the FC/SD cross term. The option NOFC will disable both the FC and SD
computation.

SCF {ITERATIONS=25 | NOCYCLE | CONVERGE=1e-4 }

Settings related to the SCF cycle that is carried out by CPL. Valid options are (with default values if
applicable):

ITERATIONS 25

maximum number of iterations

NOCYCLE

perform no cycle, equivalent to ITERATIONS 0

CONVERGE 1e-4

convergence criterion, an input of e corresponds approximately to a convergence of log(-e) digits,
i.e. the results will be converged to about four significant digits by default. The measurement for the
convergence is based on the sum S of the magnitudes of all occupied-virtual matrix elements of the
induced first-order exchange potential. Note that the actual convergence criterion being used in the
computation is e times S of the first cycle, i.e. the convergence criterion is set relative to the initial
value of S.

XALPHA

Use first-order Xalpha potential instead of VWN potential (default). This will usually decrease the
accuracy for couplings involving hydrogen, and does not have a large effect for couplings between
heavier nuclei (not default). The key is mainly intended to ensure compatibility with our previously
published results.

CONTRIBUTIONS {1e19} {LMO, SFO, LMO2, SFO2}

Print contributions from individual orbitals to the FC and OP term of the NSSCCs that are larger in
magnitude than a certain threshold. The threshold refers to the reduced coupling constant K in SI units
(not default). Additionally, an analysis in terms of Boys localized MOs (see User's Guide and SFOs. At
present, either each key LMO, SFO, LMO2, SFO2 can be used individually, or grouped as {LMO,
SFO2} or {SFO2, LMO}. If you need all analyses or different combinations, it is recommended to restart
the CPL calculation from TAPE13, and to specify 0 iterations in the SCF. This way, the only additional
computational cost should be the analysis itself.

The equation and an application for the analyses due to the LMO and SFO keys is described in Refs.
[368,369]. The other analysis is based on the same equation as in Ref. [370]. For an NBO analysis of
the spin-spin couplings, see the section on NBO analysis.

In order for the LMO-based analyses to work, the MO → LMO transformation matrix needs to be stored
on TAPE21. In the ADF input, you can achieve this with the option "STORE" to the LOCORB key, i.e.

LOCORB STORE
... options

END

GGA key

240

$ADFBIN/cpl << eor
GGA
..
eor

GGA

Use first-order GGA potential instead of the first-order VWN potential. Should only be used for the PBE
family of GGA exchange-correlation functionals and for the hybrid functional PBE0. See Refs. [425,426]
for applications of calculating spin-spin couplings with PBE0. However, other hybrid functionals and
Hartree-Fock can not or should not be used in combination with this key GGA. For consistency reasons
of the first-order potential one should use the keyword USESPCODE in the ADF calculation. An
example input for ADF for the hybrid PBE0 would then contain:

USESPCODE
XC
hybrid PBE0

End

Practical Aspects

Minimal input

The default settings for CPL are invoked by the simple minimal content of the input file:

$ADFBIN/cpl << eor
NMRCOUPLING
END
eor

This is equivalent to

$ADFBIN/cpl << eor
NMRCOUPLING
NUCLEI 1 2 3 4 5 6 7 8 ..(up to number of atoms)
SCF CONVERGE 1e-4 ITERATIONS 25
FC

END
eor

Restarts

CPL is restartable after the computation of each the complete set of FC or FC/SD and OP matrix elements,
and after their transformation to the MO basis. Further, in spin-orbit runs or in scalar- or non-relativistic
computations involving the SD term, CPL is restartable after each SCF cycle. As with ADF restarts, you
need to supply a proper input file for a restarted computation, and the restart file TAPE13 (which needs to be
renamed). Changing the input of a calculation for a restart is not supported. In restarted runs, the program
will automatically continue at the latest possible point before the execution stopped, and changing the input
between restarts can cause inconsistencies that may lead to a crash.

Unless you are computing a very large molecule, the most likely need for a restart will probably occur during
a computation of the FC/SD SCF cycle. We have already mentioned that this is a very time consuming part
of the computation, and for this reason CPL can be restarted after each completed SCF cycle. The
convergence of the results should not be affected by a restart. You can, e.g., use this in order to complete a
lengthy CPL computation in case you have tight time limits in your queuing system, or after a power loss.

How to avoid the unnecessary computation of many SCF cycles

241

As already mentioned, once the first-order MOs with respect to the perturbation by one of the nuclear spins
have been determined, the NSSCC between this and all other nuclei can be computed rather quickly. For
each nucleus that participates in at least one of the coupling constants to be determined, the matrix
elements of the FC, SD, and OP operators have to be evaluated once (unless the computation of the
respective terms is disabled).

You can use this information in order to minimize the number of nuclei for which an SCF cycle has to be
performed. This can lead to a great speedup of the computation. The final result, the NSSCC between A and
B, does not depend on which nucleus has been chosen as the 'perturbing' one, and which as the
'responding' one (convergence has to be good enough, though). Suppose you want to compute the
NSSCCs in the water molecule, with O being nucleus no. 1. In that case,

NUCLEI 1 2 3
NUCLEI 2 3

yields the same O-H and H-H coupling constants as the input

NUCLEI 2 1
NUCLEI 1 3
NUCLEI 3 2

but with less computational effort due to the fact that only 2 instead of 3 SCF cycles will be performed. The
example chosen here is trivial, but in other cases it can be worthwhile to consider different sequences of
computations.

Alternatively you can use the ATOMPERT and ATOMRESP subkeys:

ATOMPERT 1 2
ATOMRESP 2 3

which will calculate the spin-spin coupling of the nuclei 1-2, 1-3, and 2-3 (skips 2-2, since the nuclei are the
same), which are the same O-H and H-H couplings as before.

Note: the numbers of the nuclei for the subkeys ATOMPERT and ATOMRESP refer to the input ordering in
the ADF calculation, whereas the numbers of the nuclei for the subkey NUCLEI refer to the internal CPL
numbers of the atoms.

Computing individual terms in the coupling tensor

As we have mentioned before, the FC, OP and OD terms can be calculated individually, but not the SD
term. In case the SD input option is given, the FC+SD contribution is evaluated instead. This is NOT equal to
the sum of the individual FC and SD contributions since there is a cross term between these two. Due to
computational simplicity and efficiency, CPL evaluates either the matrix elements for the FC operator, or the
combined ones for FC+SD. The final result therefore contains either FC only, or FC, SD plus the cross
terms. Only the latter, in addition to the OP and OD contributions, should be compared to experimental
results. We will implement the computation of the individual SD term in a future version of CPL in order to
assist the analysis of the CPL results.

Likewise, in a spin-orbit based relativistic computation, there exists a cross term between the spin-
dependent FC and SD terms, and the OP term. In the scalar- or non-relativistic limit, this contribution is
always zero. With the PSO option present, CPL computes the FC, SD and OP terms including all cross
contributions. Even though the output suggests that the individual OP and FC+SD terms are printed, they
contain additional cross terms if spin-orbit coupling is large. You can run CPL with the options

$ADFBIN/cpl << eor
NMRCOUPLING
NOFC
NOSD

242

PSO
END
..
eor

in order to evaluate the individual OP contribution(s). In a second run, you can then compute just the FC+SD
contributions. The differences between these two CPL runs and a third one with all three terms present
yields the relativistic (FC+SD)/OP cross term.

Two-bond and more-bond couplings

CPL does not discriminate between one-bond and two-bond couplings etc. in any technical sense. Even
though we [118,119,403,404] have validated the code mostly for one-bond NSSCCs, the coupling between
any pair of nuclei in the molecule can be computed. See Ref. [404] for an example.

Principal axis system, the whole coupling tensor

CPL evaluates the complete 3x3 coupling tensor with respect to the Cartesian input coordinate system.
Depending on the orientation of the molecule, and the local symmetry, the coupling tensor has in fact often
only a small number of independent components. CPL evaluates the 'principal components' by the following
procedure: the 3x3 matrix is transformed into the basis of the eigenvectors of its symmetric part. This
diagonalizes the symmetric part of the coupling tensor. A set of eigenvectors (= 'principal axis system') is
also printed.

References

[118] J. Autschbach, T. Ziegler, J. Chem. Phys. 2000, 113, 936.
[119] J. Autschbach, T. Ziegler, J. Chem. Phys. 2000, 113, 9410.
[403] J. Autschbach, T. Ziegler, J. Am Chem. Soc. 2001, 123, 3341.
[404] J. Autschbach, T. Ziegler, J. Am Chem. Soc. 2001, 123, 5320.
[270] J. Autschbach, ChemPhysChem, 2009, 10, 2274.
[425] J. Autschbach, J. Chem. Phys. 2008, 129, 094105, J. Chem. Phys. 2009, 130, 209901.
[426] D.L. Bryce and J. Autschbach, Can. J. Chem. 2009, 87, 927.
[331] J. Autschbach and S. Zheng, Ann. Rep. NMR Spectr. 2009, 67, 1.

See also:
[371] N. F. Ramsey, Phys. Rev. 91, 303 (1953).
[372] Dickson, R.M.; Ziegler, T. J. Phys. Chem. 1996, 100, 5286.
[370] Khandogin, J.; Ziegler, T. Spectr Acta A 1999, 55, 607.
[373] D. L. Bryce, R. Wasylishen, J. Am. Chem. Soc. 122, 3197 (2000).
this ADF User's manual, SCM, Vrije Universiteit, Amsterdam, The Netherlands.
[374] G. Schreckenbach, S. K. Wolff, T. Ziegler, Modeling NMR chemical shifts, ACS Symposium Series,
Washington DC (1999).

ESR/EPR

The EPR (ESR) g-tensor, hyperfine interaction (A-tensor), nuclear quadrupole interaction (Q-tensor), and
zero-field splitting (ZFS, D-tensor) can be calculated. Effects due to spin-orbit coupling can be included. All
electron basis sets can be used.

The separate program EPR/NMR ($ADFBIN/epr) program is no longer documented, since most of its
capabilities are implemented in newer modules. See for the old documentation the ADF2010 EPR/NMR
module documentation, and Refs. [120,121,416,417].

243

http://www.scm.com/Doc/Doc2010/ADF/Properties/metatagNMR_SHIELDING_EPR.html
http://www.scm.com/Doc/Doc2010/ADF/Properties/metatagNMR_SHIELDING_EPR.html

ESR/EPR g-tensor and A-tensor

A-tensor, no spin-orbit coupling

$ADFBIN/adf << eor
ESR
END
CHARGE charge spinpolarization
unrestricted
{Relativistic scalar ZORA}
{NUCLEARMODEL gaussian}
eor

If spin-orbit coupling is neglected, the spin in the effective spin Hamiltonian, which is commonly used for the
interpretation of ESR experiments, is the real electronic spin of the paramagnetic molecule. In the spin-
unrestricted DFT calculations one then uses eigenfunctions of Sz. The A-tensor can then simply be
calculated as expectation value of the corresponding operator, see [96].

The A-tensor will be calculated for all nuclei. Terms due to the spin-polarization density at the nucleus are
included in the evaluation of the A-tensor. For an accurate evaluation of the spin-polarization density at the
nucleus it is important to use an all-electron basis set for the nuclei that one is interested in, avoiding the
frozen core approximation. For heavy elements the incorporation of a Gaussian finite nucleus model can be
important. However, one should have really large basis sets with tight basis functions to observe this effect
in calculations. One possibility is to use the $ADFHOME/atomicdata/ZORA/QZ4P basis set, although even
this large basis set is not large enough sometimes. The basis sets in the directory $ADFHOME/atomicdata/
ZORA/jcpl (not available for all elements) are suitable for finite nucleus calculations.

In case one uses a finite nuclear model for the charge distribution, starting from ADF2013 ADF also uses a
finite distribution of the nuclear magnetic dipole moment for the calculation of the A-tensor.

A-tensor, perturbative inclusion spin-orbit coupling

$ADFBIN/adf << eor
CHARGE charge spinpolarization
unrestricted
Relativistic scalar ZORA
Symmetry NOSYM
...
eor
$ADFBIN/cpl << eor
hyperfine
atoms 1 2 :: calculates A-tensor for atom 1 and 2, input order
SCF Converge=1e-7 {Iterations=25}

end
...
eor

The calculation of A-tensors is implemented in the CPL program as a second derivative property (spin-orbit
coupling and nuclear magnetic field as perturbation) within the two-component relativistic zeroth-order
regular approximation (ZORA), see Ref. [340]. This implementation allows for hybrid (only PBE0) DFT
calculations, but not metaGGA's and not metahybrids.

Note that the CPKS convergence in CPL has to be set tightly (1e-7 or 1e-8) to get converged PSOSO terms
for the A-tensor. For hyperfine calculations the default value is 1e-7.

g-tensor, perturbative inclusion spin-orbit coupling

244

$ADFBIN/adf << eor
CHARGE charge spinpolarization
unrestricted
Relativistic scalar ZORA
Symmetry NOSYM
...
eor
$ADFBIN/nmr << eor
nmr
gfactors
u1k best
calc all
out iso tens

end
end input
eor

The calculation of g-tensors is implemented in the NMR program as a second derivative property (spin-orbit
coupling and external magnetic field as perturbation) within the two-component relativistic zeroth-order
regular approximation (ZORA), see Ref. [339]. This implementation allows for hybrid (B3LYP, PBE0, etc)
DFT calculations, but not metaGGA's and not metahybrids. This implementation requires the use of all
electron basis sets.

For an older implementation of this method, see the ADF2010 EPR/NMR module documentation, and Refs.
[120,121,416,417].

g-tensor and A-tensor, self consistent spin-orbit coupling

$ADFBIN/adf << eor
ESR
END
CHARGE charge
unrestricted
Relativistic spinorbit ZORA
Collinear
Symmetry NOSYM
eor

In a spin-orbit coupled spin unrestricted relativistic ZORA calculation and the ESR block key, the g-tensor
and the nuclear magnetic dipole hyperfine interaction (A-tensor) will be calculated, see also Refs. [95,96]. In
such a calculation degenerate perturbation theory is used with the external magnetic field or nuclear
magnetic field as perturbation. The calculation must use the collinear approximation, and symmetry must be
NOSYM. This implementation does allow for metaGGA, and (meta-)hybrid DFT calculations, but then
GIAO's are not used. There may be more than one unpaired electron. Terms due to the spin-polarization
density at the nucleus are included in the evaluation of the A-tensor. However, one can not set the number
of unpaired electrons, the 'spinpolarization' argument of the key CHARGE will be ignored.

Note: in a spin-orbit coupled spin restricted relativistic ZORA calculation and the ESR block key, ADF will
also calculate and print the nuclear magnetic dipole hyperfine interaction, but the terms due to the spin-
polarization density at the nucleus are absent. Furthermore, if there is more than one unpaired electron, the
computed results will simply be incorrect, without any warning from the program. On the other hand, in case
of one unpaired electron, and very large effects of spin-orbit coupling, the spin-restricted calculation may be
of interest, since it uses Kramer's symmetry exact.

245

http://www.scm.com/Doc/Doc2010/ADF/Properties/metatagNMR_SHIELDING_EPR.html

ESR/EPR Q-tensor

For the calculation of the ESR Q-tensor see the key QTENS.

ESR/EPR Zero-field splitting (D-tensor)

With the keyword ZFS the zero-field splitting (ZFS) of the ground state can be calculated.

ZFS
RELATIVISTIC SCALAR ZORA

Zero-field splitting is the breaking of degeneracies of the ground state that is not described by a standard
nonrelativistic Hamiltonian. ZFS as calculated by ADF is that exhibitted by molecules whose ground state
has spin S>1/2 and no spatial degeneracy. This type of ZFS has two contributions, second-order spin-orbit
coupling and spin-spin coupling. In the present implementation only the spin-orbit coupling term is included.
The calculation of ZFS with DFT is described in [312-315]

ZFS can be calculated in combination with LDA and GGAs but not hybrid or meta-GGA functionals. In order
to calculate ZFS the RELATIVISTIC SCALAR ZORA option must be included.

Just the simple keyword ZFS is needed in order to calculate zero-field splitting. Several optional additional
keywords can also be included. The complete list is:

ZFS {PEDERSON|NEESE} {ANALYSIS|FULLANALYSIS}

PEDERSON|NEESE

PEDERSON: The available approaches for calculating ZFS with DFT each differ subtly from the others.
We believe that the method proposed by van Wüllen and coworkers [314,315] is the most theoretically
complete but it may be that for certain systems the other approaches are more accurate. The van
Wüllen formulation is the default but if the PEDERSON keyword in included then the equation proposed
by Pederson and Khanna [312] is used.
NEESE: If the NEESE keyword is included then the equation for ZFS proposed by Neese [313] is used.

ANALYSIS|FULLANALYSIS

ANALYSIS: Neese has presented some interesting analyses of ZFS [313]. If the ANALYSIS keyword is
invoked then the contributions to the ZFS is divided into terms from alpha-beta, alpha-alpha, beta-beta
and beta-alpha one-electron excitations.
FULLANALYSIS: The output requested by the ANALYSIS keyword is further extended to analyze each
of the alpha-beta, alpha-alpha, beta-beta and beta-alpha contributions in terms of the individual one-
electron excitations.

Nuclear Quadrupole Interaction (EFG)

QTENS

This key activates the computation of the Nuclear Electric Quadrupole Hyperfine interaction. It can be
applied to open-shell and to closed-shell systems. QTENS gives you the Nuclear Electric Quadrupole
Hyperfine interaction (Q-tensor) [97]. The latter is directly related to the Electric Field Gradient (EFG) . The
Q-tensor elements (in MHz) equal the the electric field gradient tensor elements (in a.u.) times 234.9647
times the nuclear quadrupole moment (NQM in barn units, 1 barn = 10-28m2 = 10-24cm2) and divided by
2I(2I-1), where I is the nuclear spin. The Nuclear Quadrupole Coupling Constant (NQCC) (in MHz) is the

246

largest value of the principal values of the EFG (in a.u.) times 234.9647 times the nuclear quadrupole
moment (in barn units). The electric field gradient tensor is printed next to the Q-tensor.

In the case of ZORA the program will also calculate the EFG in the so called ZORA-4 approximation, which
includes a small component density ("picture-change correction"), see [97]. If one includes spin-orbit
coupling the EFG in the ZORA-4 approximation is only calculated if the symmetry in the calculation is
NOSYM.

In case QTENS is used for 57Fe, 119Sn, 125Te, 193Ir, and 197Au, quadrupole splittings are written in units of
mm/s, used in Mössbauer spectroscopy.

Analysis of the EFG

With the EFG keyword in AOResponse a Mulliken type analysis of the EFG principal components, and an
analysis in terms of canonical MOs, can be performed. Required is symmetry NOSYM. This not
implemented in case of spin-orbit coupling. For an NBO analysis of the EFG, see the section on NBO
analysis. For an explanation of the output and a general usage tutorial, see [327]. Further references and
recommended citations, see [328].

Symmetry NOSYM
Aoresponse
efg NUC

end

efg NUC

Here NUC is the number of the nucleus at which the EFG is to be computed (ADF internal atom
ordering). Avaliable for one nucleus at the time.

Mössbauer spectroscopy

Isomer shifts

By default the electron density at the nuclei is calculated, no input key is required. In the implementation in
ADF, the electron density is not calculated exactly at the center of the nucleus, however, at points on a small
sphere around the center of a nucleus. The printed electron density in the output of ADF is the average
electron density on these points. The radius of the sphere is an approximated finite nuclear radius. The
electron density at the nuclei could be used for the interpretation of isomer shifts in Mössbauer
spectroscopy. Typically one needs to perform a fit of the experimentally measured isomer shifts and
calculated electron densities, like, for example, is done in Ref. [281].

One should use all electron basis sets for the Mössbauer active elements. Important is to use the same
basis set, same exchange correlation functional, same integration accuracy, and same nuclear model (see
key NUCLEARMODEL), if electron densities at nuclei in different molecules are compared. Note that the
absolute electron density at a nucleus heavily depends on the accuracy of the basis set in the core region of
this nucleus, especially if relativistic effects are included.

Quadrupole splittings

For the calculation of Mössbauer quadrupole splittings see the key QTENS.

Nuclear resonance vibrational spectroscopy (NRVS)

247

The nuclear resonance vibrational spectroscopy (NRVS) experiment can be thought of as Mösbauer
spectroscopy with vibrational sidebands. The NRVS experiment provides the complete set of bands
corresponding to modes that involve motion of the Mössbauer active atoms. In order to calculate this with
the ADF program a partial vibrational Density-Of-States (PVDOS) has been implemented. A PVDOS factor
for a given atom is the ratio of this atom nucleus kinetic (vibrational) energy to the total vibrational energy of
all nuclei, for a given mode. PVDOS factors for every atom and every mode are written to TAPE21 if IR
Frequencies are calculated. To visualize the calculated PVDOS use the ADFspectrum program: select the
PVDOS spectrum type. Next select one or more atoms to get the PVDOS spectrum generated by the
selected atoms. This is useful for analysis of NRVS spectra in bioinorganic chemistry for NRVS-active
nuclei.

2.7 Transport properties

See also
Examples: transport properties

Charge transfer integrals (transport properties)

ADF can provide input parameters, such as charge transfer integrals, that are needed in approximate
methods that model charge transport properties. ADF has the unique feature that it can (also) calculate such
transfer integrals based on the direct method by the use of its unique fragment approach.

In theoretical models of charge transport in organic materials, see Refs. [293-295], the whole system is
divided into fragments, in which an electron or hole is localized on a fragment, and can hop from one
fragment to another. In the tight-binding approximation that is used in these models the electron or hole is
approximated with a sinlge orbital, and it is assumed that only the nearest neighboring fragments can
couple. The models require accurate values of electronic couplings for charge transfer (also referred to as
charge transfer integrals or hopping matrix elements) and site energies (energy of a charge when it is
localized at a particular molecule) as a function of the geometric conformation of adjacent molecules.
Charge transfer integrals for hole transport can be calculated from the energetic splitting of the two highest-
occupied molecular orbitals (HOMO and HOMO-1) in a system consisting of two adjacent molecules, also
called "energy splitting in dimer" (ESID) method. For electron transport these can be calculated from the two
lowest-unoccupied orbitals (LUMO and LUMO+1) in this ESID method. ADF can also calculate transfer
integrals based on the direct method by the use of its unique fragment approach. see Refs. [294,295]. ADF
allows one to use molecular orbitals on individual molecules as a basis set in calculations on a system
composed of two or more molecules. The charge transfer integrals obtained in this way differ significantly
from values estimated from the energy splitting between the highest occupied molecular orbitals in a dimer.
The difference is due to the nonzero spatial overlap between the molecular orbitals on adjacent molecules.
Also, ADF's methods are applicable in cases where an orbital on one molecule couples with two or more
orbitals on another molecule.

Charge transfer integrals with the TRANSFERINTEGRALS key

In this method the matrix elements of the molecular Kohn-Sham Hamiltonian in the basis of fragment orbitals
is used to calculate site energies and charge transfer integrals. Likewise the overlap integrals between
fragment orbitals are calculated. No explicit electrons are removed or added in this method. For electron
mobility calculations the fragment LUMO's are considered. For hole mobility calculations the fragment
HOMO's are considered.

To calculate the charge transfer integrals, spatial overlap integrals and site energies, include the key
TRANSFERINTEGRALS in the input for ADF. Symmetry NOSYM should be used. The molecular system
typically should be build from 2 fragments. In the fragment calculation full symmetry can be used.

248

http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagTRANSPORT.html

TRANSFERINTEGRALS
Symmetry NOSYM
Fragments
frag1 frag1.t21
frag2 frag2.t21

End

By default, integrals are calculated only for the HOMO (LUMO) of the fragments, and possibly HOMO-1,
HOMO-2 (LUMO+1, LUMO+2) if the energy of those fragment orbitals are close to the HOMO (LUMO) of
that fragment. To calculate the matrix elements and overlap integrals based on all fragment orbitals one can
use the key:

PRINT FMATSFO

The method described here to calculate charge transfer integrals is more approximate than the next method
that uses FDE. The major difference is how effects of a localized charge are included.

Charge transfer integrals with FDE

Overview

The ELECTRONTRANSFER keyblock invokes the calculation of Hamiltonian (site energies and couplings)
and overlap matrix elements with FDE-derived localized states. Two FDE calculations are (not strictly)
needed before running the ELECTRONTRANSFER calculation. The calculated matrix elements are
theoretically similar to the ones obtained with the TRANSFERINTEGRALS keyword.

Relation with the TRANSFERINTEGRALS key

The key difference between TRANSFERINTEGRALS and ELECTRONTRANSFER is that the latter allows to
include

• Effects of orbitals relaxation due to localized charges, Refs.[352,353]
• Effects of polarization due to molecules in the environment, Ref.[353]
• ELECTRONTRANSFER is linear scaling in the number of fragments when the system is

composed by more than one fragment

Limitations

• Hybrid functionals are not yet supported
• The code cannot be used in conjunction with the BASIS key
• The code is not parallelized yet and must run on a SINGLE processor
• The code can only tackle hole and excess electron transfer, i.e. charge separation or triplet energy

transfer are not yet implemented

The first three limitations do not apply to the method with the TRANSFERINTEGRALS key.

ELECTRONTRANSFER input

The minimum input for the ELECTRONTRANSFER key is:

ELECTRONTRANSFER
FRAGMENTS
frag1 FragFile1
...
fragN FragFileN

END
ELECTRONTRANSFER

249

NumFrag N
END

where frag1 ... fragN are the labels of the fragments in the calculation, and FragFile1 ... FragFileN are the
TAPE21 files of spin RESTRICTED calculations of the isolated fragments, N is the total number of
fragments employed in the calculation.

Files and file names

The fragment files to be used in the ELECTRONTRANSFER calculation are generally different from the
TAPE21 files used in the FRAGMENTS key block. Two types of fragment TAPE21 files are needed by the
calculation:

1. The isolated closed-shell TAPE files for the FRAGMENTS keyblock
2. The TAPE21 files of the charge or spin localized states (which can be obtained with an FDE

calculation as done in the example below)

There are 2 charge localized states. They are labelled with A and B. The respective TAPE21 files must be
names as follows:

fragA1.t21, fragA2.t21, ... , fragAN.t21 (for state A)
fragB1.t21, fragB2.t21, ... , fragBN.t21 (for state B)

The above files should be copied to the working folder of the ADF calculation prior to executing ADF.

Options

ELECTRONTRANSFER
NumFrag N
{Joint|Disjoint}
{Debug}
{Print EIGS|SAB}
{FDE}
{INVTHR threshold}

END

Joint|Disjoint

The default is "Joint". Joint is always recommended. The "Disjoint" formalism is described in Ref.[353]
and is much faster than the "Joint" formalism when more than 2 fragments are considered. Joint and
Disjoint are equivalent for systems composed of only 2 fragments. Disjoint should only be used if the
fragment files are obtained in an FDE calculation (see FDE below).

Debug

The code performs additional checks (determinants, diagonalizations, inversions, traces, etc.).
Substantial increase in the output should be expected.

Print

If EIGS, it will print the (unformatted) matrix of the MO coefficient in the AO representation. If SAB, it will
print the (unformatted) matrix of the diagonal and transition overlap matrix in the MO representation.

FDE

An FDE calculation including more than 2 fragments must include the following key block

250

ELECTRONTRANSFER
FDE

END

and the numericalintegration precision in the *last* FDE calculation for every subsystem should be set
to no less than:

BeckeGrid
Quality Good

End

if in the subsequent ELECTRONTRANSFER calculation the DISJOINT subkey is used.

Invthr threshold

Default 1.0e-3, is a threshold for the Penrose inversion of the transition overlap matrix. If warnings
about density fitting are printed, invthr may be increased up to 1.0e-2. Larger invthr might affect the
quality of the calculated couplings and excitation energies.

Output

The output of the example in $ADFHOME/examples/adf/ElectronTransfer_FDE_H2O is discussed here.
This example involves the calculation of electronic coupling, site energies and charge-transfer excitation
energy for the hole transfer in a water dimer.

============ Electron Transfer RESULTS ===================

Electronic Coupling = 0.000000 eV
Electronic Coupling = -0.003569 cm-1
H11-H22 = -1.396546 eV
Excitation Energy = 1.396546 eV
Overlap = 0.000000
H11 H22 H12 = -152.443000816341 -152.391678701092 -151.743979368040

Eh
S11 S22 S12 = 0.981795415192 0.981006454450 -0.000000023700

=========== END Electron Transfer RESULTS ================

Due to symmetry, the overlap is almost diagonal (Overlap = 0.00), thus the transition density is evaluated
with one less electron as explained in Ref. [353].

The electronic coupling between the state with a positive charge localized on one water molecule and
another with the charge localized on the other water molecule is given by "Electronic Coupling" and is
reported in eV and cm^-1.

"H11-H22" is the difference of the site energies in eV. Values of the site energies are given by the first two
values of "H11 H22 H12" in atomic units.

"Excitation Energy" reports the value of the transfer excitation energy as calculated by diagonalization of the
2X2 generalized eigenvalue problem in the basis of the charge-localized states, see Refs. [352,353].

"S11 S22 S12" are the values of the non-normalized overlaps.

GREEN: Non-self-consistent Green's function calculation

green is an auxiliary program which can be used to calculate the density of states (DOS) and transmission
of molecules connected to semi-infinite contacts. The transmission is the electron transmission through a

251

molecule connected to semi-infinite contacts. The calculation is based on the non-self-consistent Green's
function method. The details of this method can be found in chapter 2 and appendix C of the PhD thesis of
Jos Seldenthuis (2011). See Ref. [365] for more details on the applicability of the wide-band limit
approximation.

Introduction

The utility program green calculates the density of states (DOS) and zero-bias transmission of molecule
connected to two semi-infinite contacts. A typical calculation consists of two parts. The first is the calculation
of the effect of the semi-infinite contacts, contained in the so-called self-energy matrix. The second is the
calculation of the desired properties of the molecule with the self-energies.

Self-energy

Figure 1: Geometry of the gold contact used in the calculation of the self-energy. The lead consists of two
surface layers, left (red) and right (blue), and a bulk layer (green). Each principal layer in turn consists of
three atomic layers. This should be sufficient to ensure that the Hamiltonian of the central (green) layer is a
bulk Hamiltonian.

Since the contacts are semi-infinite, the calculation of their self-energy is effectively a bulk calculation. Since
ADF only works with systems of finite size, approximations have to be made. Fig. 1 shows the typical
geometry used in the calculation of a gold contact. The geometry consists of three parts, the so-called
principal layers. These layers should be large enough that the atoms on one side are not influenced by
whatever is attached to the other side. Three atomic layers usually suffice. The green region is the bulk
layer. The red and blue regions are the surface layers. Note that the blue region corresponds to the left
contact of a molecule and the red region to the right contact.

To calculate the self-energy, we first need to do a single-point calculation of a principal layer. This layer is
then used as a fragment in the following calculations. Note that all ADF calculations have to be performed
with SYMMETRY NOSYM. We then build up the contact geometry from three copies of the layer fragment
as in Fig. 1 and perform another single-point calculation. This results in a Hamiltonian describing the three
contact layers and the coupling between them.

From the TAPE21 file green can now calculate the self-energy matrices with the SURFACE key. This has to
be done once for every energy for which we want to calculate the DOS or transmission. For the left contact
of the molecule, green needs the blue and green fragments. The self-energy is calculated by taking the
(blue) surface layer and iteratively adding more (green) bulk layers until matrices converge to the semi-
infinite result. The self-energy of the right contact is similarly calculated from the red and green fragments.
Since the self-energy described the effect of an infinite chain of (green) bulk regions on a (red or blue)
surface layer, this calculation does not depend on whatever is attached to the contacts. The self-energy
matrices can therefore be reused for different molecules.

DOS and transmission

252

http://www.scm.com/Doc/Seldenthuis2011.pdf
http://www.scm.com/Doc/Seldenthuis2011.pdf

Figure 2: Geometry of the extended molecule used in the calculation of a benzenedithiol junction. The
molecule is shown in green, while the left and right contact regions are shown in red and blue, respectively.
Note that the red region corresponds to the blue surface layer in Figure 1 and vice versa.

Once the self-energy matrices have been calculated for the desired energies, we can compute the DOS and
transmission of a molecule. However, since the self-energy matrices couple to the surface layers of the
contacts, we need to include those surface layers in the calculation of the molecule (see Fig. 2). We
therefore first perform a single-point calculation with ADF of the isolated molecule. The result is then used as
a fragment and combined with the fragments of the surface layers to construct the so-called extended
molecule. We then perform another single-point calculation of the final geometry.

From the self-energies of the contacts and the TAPE21 file of the extended molecule, green can now
compute the DOS and transmission. This calculation is non-self-consistent since the ADF calculations are all
performed on finite instead of semi-infinite systems. This will result in certain artifacts in the DOS and
transmission spectra, but those can be made arbitrarily small by choosing the principal layers large enough.

Wide-band-limit

In the wide-band limit (WBL) the coupling to the leads is assumed to be independent of energy. Therefore
one does not need to calculate any self-energies. This also means that the eigenspace of the Green's
function is independent of energy. It can therefore be diagonalized in advance, greatly speeding up the
calculation of the DOS and the transmission. See Ref. [365] for more details on the applicability of the wide-
band limit in DFT-based molecular transport calculations.

In the example $ADFHOME/examples/adf/green_Al/green_WBL.run of green, the transmission of
benzenedithiol junction in the wide-band limit (WBL) is calculated. In order to model the molecule-metal
interface, we do need to include a few gold layers in the calculation. However, unlike before, only a single
atomic layer as the principal layer is used. Because a single atomic layer is an unnatural configuration for
gold, a minor amount of smearing is necessary to make the calculation converge. The molecule is
sandwiched in between the electrodes just like before (see Fig. 2 in the example for benzenedithiol).
However, this time each atomic layer of gold gets its own fragment. The reason for this configuration is that
if the WBL is used on the entire gold contact the result is an an unphysical coupling to the leads; even the
gold atoms contacting the molecule would have a direct coupling to the environment. A much better result
can be obtained by only using the WBL on the back-most atomic layer and letting the electrons propagate
naturally through the rest of the contact. Because the WBL is computationally so inexpensive, we can easily
calculate the DOS and transmission for 10,000 points instead of 1000.

A comparison of the resulting transmission with the calculation with self-energies is shown in the following
figure:

253

http://www.scm.com/Doc/Doc2014/ADF/Examples/metataggreen_BDT.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metataggreen_Au.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metataggreen_BDT.html

The WBL shows good agreement with the non-WBL transmission around the Fermi energy (-0.195 Hartree
or -5.306 eV). Note that the quality of the WBL depends on the choice of the coupling (ETA). For this
particular contact geometry we obtain good agreement for ETA = 0.02 Hartree, but a better value may be
found for other electrodes. Finally, the WBL can be incrementally improved by adding more gold layers to
the extended molecule. For many layers it converges to the calculation with full self-energies.

Input options

The input for green is keyword oriented and is read from the standard input. green is typically first used to
calculate the self-energy matrices of the left and right contacts (with the SURFACE key), and then to
calculate the density of states (DOS) and transmission (with the DOS and TRANS keys, respectively), using
those self-energies. The only keyword required to be present in all calculations is the EPS keyword, which
specifies the energy range.

$ADFBIN/green << eor
EPS mineps maxeps numeps
{ETA eta}
{SO sh sl {moc}}
{SURFACE filename

FRAGMENTS f1 f2
END}

{DOS filename}
{TRANS
LEFT filename

FRAGMENT fragment
ETA eta

END
RIGHT filename

FRAGMENT fragment
ETA eta

END}
eor

EPS mineps maxeps numeps

254

The energy range for which either the self-energy matrices or the DOS and transmission have to be
calculated. The range consists of numeps (≥ 1) points running from mineps to maxeps inclusive.

(optional) ETA eta

The imaginary energy, or the distance from the real axis, in the calculation of the Green's function. The
value needs to be a small positive number to prevent singularities in the calculation. The default value
(10-6 Hartree) is sufficient for most calculations.

(optional) SO sh sl {moc}

The shifts for the scissors operator. All occupied orbitals (HOMO and below) are shifted by sh, while the
unoccupied orbitals (LUMO and above) are shifted by sl. Orbitals are considered occupied if their
(possibly fractional) occupation is larger than moc (default 0). The scissor operator can partially remedy
the underestimation of the HOMO-LUMO gap in DFT. The sh and sl shifts generally have the same
magnitude, but opposite sign (with sh usually being negative and sl positive). A good estimate for the
magnitude is the sum of the ionization potential and the energy of the HOMO of the free molecule. This
can be improved by including image charge effects. For more details, see Ref. [351]. By default,
sh=sl=0.

(optional) SURFACE

SURFACE filename
FRAGMENTS f1 f2

END

The SURFACE block key enables the calculation of the self-energy matrices. The filename specifies the
TAPE21 file resulting from an ADF calculation of the contacts. This calculation has to be performed with
SYMMETRY NOSYM. The FRAGMENTS key is used to specify the two principal layers between which
the surface is defined. The resulting self-energy matrices (one for every energy point given by EPS) is
stored in a binary KF file named SURFACE.

(optional) DOS filename

The DOS key enables the calculation of the density of states. The filename specifies the TAPE21 file
containing the result of an ADF calculation of the extended molecule (performed with SYMMETRY
NOSYM). Two text files will be generated: DOS_A and DOS_B, containing, respectively, the DOS of the
spin-A and spin-B electrons. In the case of a spin-unrestricted calculation, DOS_A and DOS_B might
differ. If only the DOS of the spin-A electrons is required, the calculation can be sped up by specifying
NOSAVE DOS_B. The DOS key requires the presence of the LEFT and RIGHT keys.

(optional) TRANS

The TRANS key enables the calculation of the transmission. The filename specifies the TAPE21 file
containing the result of an ADF calculation of the extended molecule (performed with SYMMETRY
NOSYM). Two text files will be generated: TRANS_A and TRANS_B, containing, respectively, the
transmission of the spin-A and spin-B electrons. In the case of a spin-unrestricted calculation,
TRANS_A and TRANS_B might differ. If only the transmission of the spin-A electrons is required, the
calculation can be sped up by specifying NOSAVE TRANS_B. The TRANS key requires the presence
of the LEFT and RIGHT keys.

LEFT/RIGHT

LEFT filename
FRAGMENT fragment
ETA eta

END

255

The LEFT and RIGHT block keys specify the left and right self-energies used in a calculation of the
DOS and transmission. If a filename is specified, the self-energy matrices are read from that file. The
energy range of the self-energies has to be consistent with the range specified by the EPS keyword.
The FRAGMENT key is used to denote the fragment in the extended molecule (given by the argument
to the DOS or TRANS key) to which the self-energy couples. If no filename is specified, the wide-band
limit is used. The ETA key can then be used to specify the magnitude of the coupling (10-3 Hartree by
default).

Output

After a successful calculation of the self-energy matrices, green produces a binary KF file named SURFACE
containing two sections. The Surface section contains the energy range:

contents of Surface comments
mineps start of the energy range
maxeps end of the energy range
numeps number of points

The Sigma section contains the real and imaginary parts of the self-energy matrices:

contents of Sigma comments

nfo number of fragment orbitals (dimension of the self-energy
matrices)

Re(Sigma_%d) the real part of the %d self-energy matrix (numbered from 1 up to
numeps)

Im(Sigma_%d) the imaginary part of the %d self-energy matrix (numbered from
1 up to numeps)

A successful calculation of the density of states (DOS) or transmission results in the text files DOS_A and
DOS_B, and TRANS_A and TRANS_B, respectively. The suffixes _A and _B denote the different spins. The
text files the DOS and transmission for every energy point and can be plotted with, for example, gnuplot.

2.8 Analysis

See also
ADF-GUI tutorial: all ADF tutorials, fragment analysis
GUI manual: analysis
Examples: analysis

Molecules built from fragments

ADF analyzes the results in terms of user-specified subsystems from which the total system is built. The
program tells you how the 'Fragment orbitals' (FO's) of the chemically meaningful sub-units mix with FO's on
other fragments to combine to the final molecular orbitals.

ADF builds a molecule from user-defined fragments, which may be single atoms or larger moieties, for
example, ligands, functional groups, or complete molecules in a donor-acceptor complex. In practice, this
means that the results of the ADF calculation on a fragment are saved on a file and that the fragment files
are then used in setting up the calculation on the overall system. The fragment orbitals (FOs), i.e., the MOs
from the calculations on the fragments, are employed as basis functions in the new calculation. This does
not imply a basis set truncation or contraction because the virtual FOs are included: the FOs constitute only
a transformation of the basis set. If there are symmetry-equivalent fragments, for example, the six CO

256

http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagADF.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagFRAGMENT.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_reference/metatagANALYSIS.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagANALYSIS.html

molecules in octahedral Cr(CO)6, the program generates symmetry combinations of the FOs and uses the
symmetrized fragment orbitals (SFOs) as basis functions. The SFOs transform as the irreducible
representations (irreps) of the molecule, allowing a symmetry-driven analysis of the results. In absence of
any symmetry the SFOs are identical to the FOs.

The fragment approach offers considerable advantages. It enhances the interpretative power of ADF as it
leads to a more transparent picture of bonding, which reduces from a complicated mixing of many primitive
basis functions (possessing little physical relevance) to a few key interactions between meaningful fragment
(frontier) orbitals. The fragment approach also improves the numerical precision. In ADF, energies are
calculated directly, with respect to the fragments, by one single numerical integral of the difference energy
density ε[ρ,r]-∑AεA[ρA,r] between the overall molecule and the constituting fragments.

Δ E[ρ] = ∫ dr (ε[ρ,r]-∑AεA[ρA,r])

In other words, we evaluate the energy of the overall molecule, E[ρ] = ∫ dr ε[ρ,r], and the energies of each of
the fragments, say the atoms that constitute the overall molecule, EA= ∫ dr εA[ρA,r], in the same numerical
integration grid. This provides more accurate relative energies than subtracting total energies from separate
calculations, because the same relative numerical integration error applies to a much smaller quantity,
yielding, in turn, a much smaller absolute error.

Note that the user has the freedom to make his own choice of fragments. This is, however, not a matter of
plain arbitrariness, and it does not make the analysis tools less meaningful. On the contrary, this freedom
simply reflects the many perspectives from which a particular chemical phenomenon can be viewed.

In practice, many calculations are performed using as fragments the so-called basic atoms, which are the
smallest possible building blocks in ADF. The basic atoms are not necessarily physically realistic objects -
indeed, usually they are not, as they must be spin-restricted and spherically symmetric. The computed
(bonding) energy w.r.t. basic atoms, then, does not yield quantities that can be compared to experimental
data directly. Rather, one must correct for the true ground state of the isolated single atoms.

Text is mostly taken from: Chemistry with ADF, G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca
Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler J. Comp. Chem. 22 (2001) 931.

Link: How to make molecular fragments Tutorial: ADF fragment analysis
Examples: analysis options

Bond energy analysis

No special input keys are required, except if one has open shell fragments, see key FRAGOCCUPATIONS.

ADF calculates various chemically meaningful terms that add up to the bond energy, with an adaptation of
Morokuma's bond energy decomposition to the Kohn-Sham MO method. The individual terms are chemically
intuitive quantities such as electrostatic energy, Pauli repulsion, and orbital interactions. The latter are
symmetry decomposed according to the Ziegler transition state method. For a discussion of bonding energy
decompositions and applications see e.g. [3, 110, 112, 130-136]

In ADF2012 the calculation of the Pauli repulsion for metaGGA's and metahybrids is implemented. Note that
for hybrids this was already implemented before in case of closed shell fragments. In ADF2012 for hybrids,
metaGGA's, and metahybrids the calculation of the Pauli repulsion is also implemented if one is simulating
an unrestricted fragment with the key FRAGOCCUPATIONS.

In ADF2012 for hybrids the exact exchange contribution to the Pauli term is isolated and the contributions to
the orbital term are divided amongst orbital symmetries.

257

http://www.scm.com/Doc/publist.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagFRAGMENT.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagANALYSIS.html

Bond energy details

In the framework of Kohn-Sham MO theory and in conjunction with the fragment approach, one can
decompose the bond energy between the fragments of a molecular system - say, a base and a substrate for
E2 elimination - into contributions associated with the various orbital and electrostatic interactions. In ADF,
we follow a Morokuma-type energy decomposition method. The overall bond energy ΔE is divided into two
major components. In the first place, the preparation energy ΔEprep corresponding to the amount of energy
required to deform the separated fragments, A and B say, from their equilibrium structure to the geometry
they acquire in the overall molecule (ΔEprep,geo), and to excite them to their valence electronic configuration
(ΔEprep,el). In the second place, the interaction energy ΔEint between the prepared fragments.

ΔE = ΔEprep + ΔEint = ΔEprep,geo + ΔEprep,el + ΔEint

In the following step, the interaction energy ΔEint is further decomposed into three physically meaningful
terms, which are printed in the ADF output file.

ΔEint = ΔVelst + ΔEPauli + ΔEoi = ΔE0 + ΔEoi

The term ΔVelst corresponds to the classical electrostatic interaction between the unperturbed charge
distributions of the prepared fragments as they are brought together at their final positions, giving rise to an
overall density that is simply a superposition of fragment densities ρA+ρB. (Note that we use the convention
that energy terms containing potential energy only, kinetic energy only, or both kinetic and potential energy
are indicated by V, T, and E, respectively.) For neutral fragments, ΔVelst is usually attractive. The Pauli
repulsion ΔEPauli arises as the energy change associated with going from ρA+ρB the wave function

Ψ0=NA[ΨAΨB] that properly obeys the Pauli principle through explicit antisymmetrization (A operator) and
renormalization (N constant) of the product of fragment wave functions. It comprises the destabilizing
interactions between occupied orbitals, and is responsible for any steric repulsion. In case of neutral
fragments, it can be useful to combine ΔVelst and ΔEPauli in a term ΔE0 which, in the past, has been
conceived as the steric interaction. However, we prefer to reserve the designation steric interaction or
repulsion for ΔEPauli because that is, as already mentioned, the only source of net repulsive interactions

between molecular fragments. Finally, the wavefunction is allowed to relax from Ψ0 to the fully converged
wave function Ψ. The associated orbital interaction energy ΔEoi accounts for electron pair bonding, charge
transfer (e.g., HOMO-LUMO interactions) and polarization (empty/occupied orbital mixing on one fragment
due to the presence of another fragment). This can be further decomposed into the contributions from the
distinct irreducible representations Γ of the interacting system using the extended transition state method. In
systems with a clear σ/π separation, this symmetry partitioning proves to be very informative.

ΔEoi = ∑Γ ΔEoi,Γ

An extensive discussion of the physical meaning of all the terms in the energy decomposition is given in
F.M. Bickelhaupt and E.J. Baerends,
Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry,
In: Rev. Comput. Chem.; Lipkowitz, K. B. and Boyd, D. B., Eds.; Wiley-VCH: New York, 2000, Vol. 15, 1-86.

Text is mostly taken from: Chemistry with ADF, G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca
Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler J. Comp. Chem. 22 (2001) 931.

Total energy evaluation

ADF normally does not calculate the total energy of a system (the energy wrt bare nuclei and free electrons).
However, ADF calculates the energy of the system with respect to fragment energies. By default, these

258

http://www.scm.com/Doc/publist.html

fragments are the spherical spin-restricted neutral atoms, but one can also use larger fragments. For this
reason total energies from other programs could not be compared to ADF directly. Note, however, that only
energy difference comparisons are meaningful. These are the only energies that play a role in chemistry of
course, and for this one does not need total energies.

If you really want to calculate the total energies, there are two options in ADF

Total energy by adding the binding energy of the atoms

There is a work-around to calculate the total energy of a system: calculate the total energies of the atomic
fragments and add them to the bonding energy. Because total energy of an atom is, by definition, the energy
difference between the atom and the (nucleus+free electrons) system one can calculate it by calculating a
single atom with the charge equal to the number of electrons. 'Bonding energy' of such an 'atom' will then be
equal to negative of the total energy of the atomic fragment. Care should be taken to apply this procedure to
frozen-core fragments. In this case, it only makes sense to remove the valent electrons and leave the frozen
core.

TOTALENERGY keyword

The total energies have not been tested extensively and should therefore be used with caution. In addition to
bond energies it is now possible to compute total energies with ADF by including the keyword
TOTALENERGY in the input. This work is in progress.

TOTALENERGY

The total energy will be computed for the chosen XC functional (LDA, GGA, hybrid functionals, or Hartree-
Fock). MetaGGA functionals, (ZORA) scalar relativistic and relativistic spin-orbit calculations, electric fields
and QM/MM are not supported yet.

In particular the requirements to the integration accuracy are somewhat higher than for bond energies. It is
recommended to use an integration grid (BeckeGrid) of quality "Good". If in doubt, a convergence test with
respect to the integration accuracy is recommended.

Symmetry

Together with the point group symmetry, a tolerance parameter can be supplied.

SYMMETRY {symbol} {tol=tolerance}

symbol

The Schönfliess symmetry symbol. A complete list of allowed values for this argument is given in
Appendix 5.3.

tolerance

The tolerance (absolute deviation in the Cartesian coordinates) for atomic positions being symmetry
equivalent. The same tolerance applies to check the mapping of fragments on attached fragment files
with the actual fragments.
If the tolerance is specified it is interpreted in the chosen unit of length (units). The default tolerance is
0.001 Angstrom and the maximum is 0.1 a.u.

Input atomic coordinates that are slightly (within the tolerance) off from their correct positions are adjusted
by the program.

259

Localized Molecular Orbitals

ADF provides the Boys-Foster method for localization of Molecular Orbitals [122-124]. This implies a unitary
transformation of the occupied molecular orbitals as computed in the SCF procedure, with the objective to
obtain a (transformed) set of orbitals that represent exactly the same charge density but with molecular
orbitals that are more localized in space than the original MOs.

The goal of orbital-localization lies in analysis: the localized orbitals provide an easier-to-interpret picture.

Orbital localization procedures require a measure of the localization of the orbitals which can then be
optimized in the space of the allowed unitary transformations. Methods advocated in the literature differ in
the definition of this measure. The Boys-Foster method minimizes the mean extension of the occupied
orbitals around their center of gravity; see the literature for details.

Occasionally it is useful to apply the localization only to a subset of the MOs, with the objective to expose
certain features better. This is accomplished by performing the localization in a number of distinct steps,
where at each step the localization is restricted by keeping a subset of the MOs frozen. A case is worked out
in the Examples document.

The computation of localized orbitals is controlled with the block-type key. By default (if the key is not
supplied in input) no orbital localization is carried out.

LOCORB {nopop store}
Spintype FrozenMOs
Spintype FrozenMOs
...

end

nopop

Specifies that no SFO population analysis is to be carried out on the localized MOs. By default this
population analysis will be printed in the output file.

store

Specifies that the transformation from MOs to localized MOs is stored on TAPE21.

Spintype

Must be either alfa or beta (not case sensitive) and refers to spin-A and spin-B orbitals respectively. In a
spin-restricted run beta records are meaningless and must not be used.

FrozenMOs

A list (possibly empty) of integers, referring to a list of MOs from the SCF, and/or labels of irreducible
representations. The integers and/or labels may be given in any order.

Each record Spintype FrozenMOs in the data block defines a localization cycle in which the localization
procedure is carried out on all orbitals (of the indicated spin), except those indicated by the FrozenMOs.

For either spin at least one localization cycle is carried out. If no data record for that spin is found in the data
block, a full localization is performed, without any MOs excluded.

The data block may be completely empty (but the record end must be supplied since the key is block-type)
and would be equivalent with specifying two records, one for either spin, without any FrozenMOs:

LOCORB {nopop}
end

260

is equivalent with

LOCORB {nopop}
alfa
beta

end

The integers in FrozenMOs refer to an overall list of SCF MOs consisting of all valence MOs in each
symmetry representation up to and including the highest non-empty one. So, when for instance in the first
irrep MO #4 is the highest non-empty one and in the second irrep mo #2 is the highest non-empty one, then
in the overall list the first 4 are the orbitals of the first irrep, the no.s 5 and 6 are from the second irrep, et
cetera.

Each symmetry label in FrozenMOs collectively denotes in one stroke all molecular orbitals of that
representation up to and including the highest occupied one (in that symmetry). The label may be the name
of an irreducible representation or of a subspecies. In the former case all partner representations are
denoted collectively. In an atom symmetry for instance, specifying P would be equivalent to P:x P:y P:z.

Note that if the final SCF has in any symmetry representation empty orbitals below the highest non-empty
orbital in that symmetry - violating the Aufbau principle - then these empty orbitals are included in the above-
defined overall list and hence a FrozenMOs specification is necessary, namely to avoid mixing MOs with
different occupation numbers in the localization.

Note:

It is imperative that in a particular localization cycle only MOs from the SCF are combined that have identical
occupation numbers. If this is violated the program will carry out the localization without error message, but
the results are incorrect in the sense that the density defined by the localized orbitals is not the same
anymore as the SCF density.

So, if any of the MOs in the overall list defined above is not fully occupied (open shell, excited state, ...) you
need to define precisely the localization cycles - localizing in each cycle only MOs with identical occupations
and freezing all others - in order to obtain sensible results.

In the output file the localized MOs are printed as expansions in SFOs and (optionally) a population analysis
is given, again in terms of the SFOs. Furthermore, each localized MO has associated with it an energy value
and an occupation number. The energy is the expectation value of the Fock operator for the orbital. The
occupation number is obtained as a weighted sum from the SCF MOs that were combined into the localized
orbital. As mentioned before one should combine only SCF MOs with identical occupations into a localized
orbital, in which case its occupation number will be the same. The printout of the occupation number of the
localized orbital allows therefore a verification that a correct localization procedure has been carried out.

Advanced charge density and bond order analysis

In addition to Mulliken charge analysis, ADF calculates several atomic charges that do not share the flaws of
Mulliken (strong basis set dependence). The multipole-derived charge analysis exactly reproduces dipole
and higher multipole moments of the molecule. Other charge analysis methods ('Voronoy deformation
density' and 'Hirshfeld' provide atomic charges that agree well with chemical intuition. Nalewajski bond
orders can be calculated and show good agreement with experimental trends and chemical intuition, even
for transition metal compounds.

Note that the amount of data can be regulated with the keys PRINT, NoPrint, EPrint and Debug.

261

Charges, Populations, Bond orders

Mulliken populations

See the input key EPRINT. See also the section on Mulliken populations.

Hirshfeld charges, Voronoi deformation density

No special input key required. See also the section on Hirshfeld charges, Voronoi deformation density.

Multipole derived charges

No special input key required. See also the section on MDC.

Charge model 5 (CM5)

Charges calculated with CM5 activated by keyword

CM5

See also the section on CM5.

Bond orders

See also the section on bond order analysis.

Nalewajski-Mrozek Bond orders

Bond order analysis in ADF is activated by keyword

BONDORDER {tol=xxx} {printall}

By default bond order indices calculated by the Nalewajski-Mrozek [148-152] method are calculated. There
exist three alternative definitions of the valence and bond order indices within the Nalewajski-Mrozek
approach. By default the values obtained from partitioning of Tr(PΔP) are calculated and printed in the
output. For more information on alternative Nalewajski-Mrozek bond order indices see Results/Properties
section (4.1).

tol=xxx

The tol=xxx option specifies the threshold value for bond orders to be printed in the output (default=0.2).

printall

The values calculated from all three versions of the Nalewajski-Mrozek approach are printed when the
option printall is present; in addition the Gopinathan-Jug [153] and Mayer [140] bond order indices are
calculated for comparison.

Present bond order analysis is based on SFOs. Symmetry used in the calculation should be NOSYM. For
this reason the analysis may be used only if the symmetry in the calculation is NOSYM. The analysis may
be used also for multi-atomic fragments, the fragment-fragment bond orders are printed in such a case. Note
that in the present implementation all fragment types should be different.

Mayer Bond orders

The Mayer bond orders are calculated and printed if the keyword

EXTENDEDPOPAN

262

is included in the input. Next to the Mayer bond orders Mulliken atom-atom populations per l-value will be
calculated and printed if this keyword is included in the input. Note that this keyword is not a subkey.

ETS-NOCV: Natural Orbitals for Chemical Valence

With the ETS-NOCV charge and energy decomposition scheme the deformation density is partitioned into
the different components (σ, π, δ) of the chemical bond. The energy contributions to the total bond energy is
calculated for each specific orbital interactions between fragments, giving insight in the orbital interactions
also for non-symmetric molecules. The ETS-NOCV analysis offers a compact quantitative picture of the
chemical bond, which is also qualitatively attractive to chemists.

Theory

The Natural Orbitals for Chemical Valence (NOCV) approach has been derived from the Nalewajski-Mrozek
valence theory [148, 150]. From the mathematical point of view, each NOCV ψi is defined as an eigenvector
of the deformation density matrix in the basis of fragment orbitals.

ΔP ψi = νi ψi

Thus, the deformation density Δρ can be expressed in the NOCV representation as a sum of pairs of
complimentary eigenfunctions (ψ-k,ψk) corresponding to eigenvalues -νk and νk with the same absolute
value but opposite signs:

Δρ(r) = Σ Δρk(r) = Σ νk[-ψ2-k(r)+ψ2k(r)]

here, k goes over the pairs of NOCV's.

In the combined ETS-NOCV scheme the orbital interaction term ΔEorb is expressed in terms of NOCV's as
[261, 262]:

ΔEorb = Σ ΔEkorb = Σ νk[-FTS-k+FTSk]

here, FTS-k and FTSk are diagonal transition-state Kohn-Sham matrix elements corresponding to NOCV's
with eigenvalues -νk and νk, respectively. The advantage of this expression is that usually only a few
complimentary NOCV pairs significantly contribute to the total ΔEorb. Another advantage of this approach is
that not only can each Δρk(r) be visualized but there is also a well defined bonding energy contribution

ΔEkorb corresponding to it.

Remarks

The ETS-NOCV analysis is often not very useful when atomic fragments are used. No symmetry must be
used in the final calculation, thus, use a Symmetry NOSYM keyword if your molecule is symmetric. The
analysis is not completely implemented for meta-GGA's and meta-hybrids.

Improvements in ADF2012 to both the ETS and NOCV analysis with hybrids. ETS: Now the exact exchange
contribution to the Pauli term is isolated and the contributions to the orbital term are divided amongst orbital
symmetries. NOCV: The exact exchange contribution to the Fock operator is included when calculating
energy contributions. These changes do not apply to meta-hybrids.

Usage

In order to perform the ETS-NOCV analysis, the following two keywords must be specified at the same time:

263

ETSNOCV RHOKMIN=rhokmin EKMIN=ekmin ENOCV=enocv
PRINT {ETSLOWDIN | ETSLOWDIN-Unrestricted}

ETSNOCV

The ETSNOCV keyword specifies thresholds for printing of NOCV-related information. All three
arguments are optional and when all three are omitted only the NOCV's corresponding to eigenvalues
abs(νk) ≥ 0.05 are included in the analysis.

RHOKMIN

The threshold for population analysis of each deformation density contribution in terms of individual
SFO's.

EKMIN

The threshold for orbital interaction energy contributions corresponding to deformation density
components originating from each NOCV-pairs.

ENOCV

The threshold for NOCV-eigenvalues.

PRINT {ETSLOWDIN | ETSLOWDIN-Unrestricted}

Only one of the two PRINT options is supposed to be used to activate printing of ETS-NOCV results.
The choice depends on the bonding situation.

ETSLOWDIN

If one is interested in a description of bonding between closed-shell molecular fragments, then
'PRINT ETSLOWDIN' keyword must be used. In such a case one set of NOCV's originating from
the total deformation density matrix ΔP=(ΔPα+ΔPβ) will be printed out. See the example of carbene
bonding between closed shell CH2 and Cr(CO)5.

ETSLOWDIN-Unrestricted

If, however, one is interested in a description of bonding between open-shell molecular fragments
then the 'PRINT ETSLOWDIN-Unrestricted' keyword must be used. In this case two sets of
NOCV's originating from ΔPα and ΔPβ will be printed out. See the example of CH3-CH3 bonding
between two CH3 radicals with opposite spins. This option must also be used when one wants to
analyze bonding in a molecule with unpaired electrons.

Adfnbo, gennbo: NBO analysis

Dr. Autschbach, SCM, and Prof. Weinhold have collaborated to prepare a simple in put file generator, called
adfnbo, for the GENNBO program of Prof. Weinholds Natural Bond Orbital (NBO) package. In ADF2013 the
NBO 6.0 version is supported http://nbo6.chem.wisc.edu.

The GENNBO executable is included in the ADF distribution and can be enabled via the license file for all
those who buy an NBO manual from either the NBO authors or from SCM (info@scm.com). An extensive
documentation of GENNBO is part of the NBO manual. The application of ADFNBO to frozen-core basis
sets needs to be further tested. Usage can be found below and in the Examples Document.

Next a brief summary of the capabilities of GENNBO is given (by Prof. Weinhold).
GENNBO implements most capabilities of the full NBO 6.0 program suite as described on the NBO website:
http://nbo6.chem.wisc.edu

264

http://nbo6.chem.wisc.edu
mailto:info@scm.com
http://nbo6.chem.wisc.edu

These include determination of natural atomic orbitals (NAOs), bond orbitals (NBOs), and localized MOs
(NLMOs), as well as the associated NPA (atomic charges and orbital populations) and NRT (resonance
structures, weightings, bond orders) valence descriptors, for a wide variety of uncorrelated and correlated
(variational, perturbative, or density functional) theoretical levels. GENNBO-supported options include all
keywords except those explicitly requiring interactive communication with the host electronic structure
system (viz., $DEL deletions, NEDA, NCS, NJC). The GENNBO program typically sits conveniently on the
PC desktop, ready to analyze (or re-analyze at will, with altered options) the final results of a complex ADF
calculation performed on a remote cluster.

GENNBO "communicates" with the original ADF calculation through an archive file (JOB.47 file, preserving
all necessary details of the final density) that is initially generated by ADF and subsequently becomes the
input file for GENNBO. The .47 file contains a standard $NBO ... $END keylist that can be edited with a
standard word processor or text editor to include chosen NBO keyword options, just as though they might
have appeared in the original input stream of an interactive ADFNBO run. The stand-alone GENNBO
program therefore allows many alternative NBO analysis options to be explored at leisure, without costly re-
calculation of the wave function.

Using the GENNBO executable is possible only if NBO6 is enabled in your license file by SCM. In that case
you will get access to an NBO 6.0 manual in electronic form that explains in detail how GENNBO can be
used and how the output should be interpreted.

NBO analysis of EFG, NMR chemical shifts, NMR spin-spin coupling

For certain molecular properties it is possible to perform detailed analyses in terms of Natural Bond Orbitals
(NBOs) and Natural Localized Molecular Orbitals (NLMOs). These features generally require a sequence of
ADF and/or property code runs. An initial nonrelativistic or scalar relativistic ADF run, followed by the
generation of NBO and NLMO data, is required, and the resulting data files need to be present in
subsequent property calculations, along with a keyword indicating that the NBO analysis is requested in the
property module.

We have noted in the past some slight loss of numerical accuracy of the results after going through the
various orbital transformations in the NBO - NLMO sequence. It is important that the user verifies in each
case that the total contributions from the analysis are in agreement with the total calculated property, within
the numerical integration accuracy limits. In order to assist the user with this, the analysis program always
print the total analysis contributions, including small nonprinted values.

Moreover, there appears to be a problem with the analysis of the Fock matrix in the NBO program in
conjunction with ADF calculations. Therefore please do NOT use the Fock matrix second order perturbation
theory analysis in NBO at this time. We will remove this disclaimer once the issue has been fixed.
Applications of the NBO-NLMO property analysis codes have so far given no indication that the Fock matrix
issue interferes with the analysis.

Important note: If properties are analyzed from within spin-orbit relativistic computations, the NBO/NLMO
analysis is performed in terms of scalar (spin-free) relativistic orbitals, as detailed in the technical references.
The results from these analyses are exact in the sense that they fully reproduce the final spin-orbit property
result, and they allow to dissect the property in terms of more intuitive one component real scalar relativistic
localized orbitals. Typically, the property analysis in a spin-orbit calculation involves contributions from
unoccupied scalar NLMOs, whereas there are no such contributions if a nonrelativistic or scalar relativistic
property is analyzed.

Available properties for NBO analysis: EFG, NMR chemical shifts and NMR spin-spin coupling.

NBO analysis of EFG

EFGs: nonrelativistic and scalar ZORA, in ADF/AORresponse. Requires initial ADF run with

265

http://www.scm.com/Doc/Doc2014/nbo/nbo6_man.pdf

AOresponse
donothing

End

in order to generate orbitals that re equivalent to those generated in the subsequent ADF run where the EFG
is calculated. Alternatively, simply calculate the EFG twice, once before the NBO generation step, and once
afterward.

The next step (see below) is to create the NBOs and the required data files for the analysis. Afterward, in the
second ADF run, use

Aoresponse
efg NUC nbo

end

efg NUC nbo

Here NUC is the number of the nucleus at which the EFG is to be computed (ADF internal atom
ordering). Example: efg 1 nbo.

In addition to the optional NBO analysis, the EFG program in AOResponse prints a Mulliken type analysis of
the EFG principal components, and an analysis in terms of canonical MOs.

WARNING: the ordering of the principal components is lowest to highest including the sign. That is, we have
V11 ≤ V22 ≤ V33. This does not conform to the usual convention of |V11| ≤ |V22| ≤ |V33|. Please make sure
you select the right component for your analysis.

Example job: $ADFHOME/examples/adf/AlCl3_efgnbo.
For an explanation of the output and a general usage tutorial, see [327]. Further references and
recommended citations, see [328].

NBO analysis of NMR Chemical shift

An implementation is currently available for spin-orbit ZORA computations. If scalar ZORA calculations are
to be analyzed, provide the input keyword

FAKESO

in the NMR input (outside of the 'nmr' keyword). A native scalar ZORA implementation that does not require
this keyword is under development. If this feature is requested one should restrict the calculation to a single
shielding tensor per NMR run. It would be good practice to check the results against regular NMR
calculations where the analysis feature is not requested. No ZORA scaling is applied in the analysis results.
The data should be equivalent to a regular computation in the NMR input with

NMR
u1k best
calc all

END

Depending on whether scalar or spin-orbit calculations are to be analyzed, the sequence of calculations is
different:

scalar:
1. ADF, scalar ZORA
2. generate NBOs and required data files for analysis
3. NMR with FAKESO and analysis keywords, use TAPE21, TAPE10 from step 1.

spin-orbit:
1. ADF, scalar ZORA

266

2. generate NBOs and required data files for analysis
3. delete TAPE21, TAPE10, TAPE15
4. ADF, spin-orbit ZORA
5. NMR with analysis keywords, using TAPE21, TAPE10 from step 4

In the NMR run, in addition to the NMR keyword, provide the following

analysis
print 0.01
canonical
nbo
components

end

The optional canonical keyword can be used independently from the NBO analysis features. It enables an
analysis of the shielding in terms of the canonical MOs. The components keyword is optional and enables
an analysis not only of the isotropic shielding but also of each principal component of the tensor. The print
keyword selects printout of contributions relative to the total diamagnetic, paramagnetic. In the example,
only contributions greater than 1% are printed. Set to zero to print ALL contributions.

Example job: $ADFHOME/examples/adf/CH4_nmrnbo.
References [329-331].

NBO analysis of NMR spin-spin coupling (J-coupling)

Nonrelativistic, scalar ZORA, spin-orbit ZORA

The sequence of jobs is similar to those in the NMR section.

scalar or nonrelativistic:
1. ADF, scalar ZORA or nonrel.
2. generate NBOs and required data files for analysis
3. CPL with analysis keyword, use TAPE21, TAPE10 from step 1.

spin-orbit:
1. ADF, scalar ZORA
2. generate NBOs and required data files for analysis
3. delete TAPE21, TAPE10, TAPE15
4. ADF, spin-orbit ZORA
5. CPL with analysis keyword, using TAPE21, TAPE10 from step 4

In the CPL run provide the following 'contributions' keyword to enable the analysis

nmrcoupling
... other options
contributions 1E19 nbo

end

The numerical value selects a print threshold in SI units of T**2/J for the analysis. Increase the value to
obtain less detail in the analysis. By default, 'contributions' triggers an analysis of the J-coupling in terms of
canonical MOs. The nbo keyword enables in addition the NBO-NLMO analysis.

Please note that due to the history of how the program was developed the output from the scalar/nrel.
analysis and from the spin-orbit calculations differs somewhat. The qualitative content is the same.

In scalar ZORA or nonrelativistic CPL calculations without the SD term an orbital based analysis is only
performed for the Fermi-contact mechanism. If you also need an analysis for the PSO and SD mechanisms
but do not want to run a spin-orbit calculation with ADF please use the SD or NOSD keywords which will
cause the spin-orbit branch of the CPL code to be used. In ZORA spin-orbit calculations the FC, SD, PSO,

267

and cross terms are analyzed together by default. You can selectively switch them on or off in order to get
individual mechanism analyses. The DSO mechanism is often negligible. An analysis tool for this
mechanism has therefore not yet been developed.

Example job: $ADFHOME/examples/adf/CPL_CH3OH_NBO.
References NMR spin-spin couplings with NBO analysis [331-334]:

Generation of NBOs

How to generate the NBOs, NLMOs, and the data files needed for these calculations (step 2 below is step 2
in the examples above):

1. run ADF with scalar ZORA or nonrelativistic options, and keep TAPE21 and TAPE15.

2.

run adfnbo in WRITE mode to create the gennbo input file FILE47
and one of the required property analysis files, adfnbo.kf

$ADFBIN/adfnbo << eor
write
spherical
end input
eor

rm -f adfnbo.37 adfnbo.39 adfnbo.49 adfnbo.48
$ADFBIN/gennbo6 FILE47

run adfnbo in COPY mode to create the second property analysis
file, adfnbo2.kf

$ADFBIN/adfnbo << eor
spherical
copy

end input
eor

run adfnbo in READ mode: prepare locorb on TAPE21

$ADFBIN/adfnbo << eor
spherical
read

end input
eor

rm -f adfnbo.37 adfnbo.39 adfnbo.49 adfnbo.48

keep the TAPE21 after this sequence in order to
be able to plot the NBOs and NLMOs with adfview:

mv TAPE21 nbonlmo.t21

clean up, keep adfnbo*.kf for any NBO property analyses.

268

QTAIM: Atoms in Molecules

Starting from the ADF2008.01 version in ADF one can calculate Bader atomic charges using a grid based
method. This is based on the quantum theory of atoms in molecules (QTAIM). In ADF2012 one can also
calculate critical points of the density and bond paths. Another possibility for Bader's analysis is to use the
adf2aim utility such that a third party program Xaim can be used.

Bader atomic properties (grid based method)

A fast Bader atomic property calculation (see Refs. [228,229]]) is performed by specifying the BADER
keyword in the input file. This calculation can be used for relatively big systems (hundreds of atoms). The
default calculation produces atomic electron density populations, charges, density Laplacian, dipole
moments and quadrupole moments. In ADF2012 the default calculation also includes the calculation of
critical points of the density and bond paths (see Ref. [363]]), which can be visualized with the ADF-GUI.

BADER {Energy} {Spacing=value}

Spacing

Specifies spacing (distance between neighboring points) of the initial grid when searching for critical
points, in Angstrom. The default spacing value is 0.5 Bohr (or approximately 0.26 Angstrom). It may be
useful to specify a smaller value if the default results in some critical points being missed, which will
result in a more accurate but slower calculation.

Energy

If the argument Energy is included, also calculate Bader atomic energies. Note that this option to
calculate Bader atomic energies is only valid in cases, where the key TOTALENERGY can be used,
and that this option further implies that the key EXACTDENSITY is set.

The accuracy of this this calculation [228,229] can be determined by the standard method: the integration of
the Laplacian of the electron density must vanish over the Bader atomic basins. The default output produces
these integrations. The accuracy of the method can be improved by using larger integration grids. Usually
the default grid suffices an average atomic integration accuracy of 10-3 a.u. (differences of milliHartree in the
energies energies). The convergence of the integration of the electron density Laplacian is not monotone but
sinusoidal. So the integration of the Laplacian is not always closer to zero as a larger grid is used. So this
type of Bader atomic property calculation might be considered as an approach where computational
efficiency is critical and moderate accuracy is sufficient [228,229].

ADF2AIM

The ADF utility adf2aim (original name rdt21) developed by Xavi López, Engelber Sans and Carles Bo
converts an ADF TAPE21 to WFN format (for Bader analysis)

The program rdt21 is now called adf2aim and is part of the ADF package, starting from ADF2004.01.

The WFN file is an input file for the third party program Xaim (see http://www.quimica.urv.es/XAIM for
details), which is a graphical user interface to programs that can perform the Bader analysis. Usage of
adf2aim can be found in the Examples Document.

Printed Output

The amount of printed output is regulated with the keys Print, NoPrint, EPrint and Debug. (No)Print and
Debug are simple keys, EPrint is a block type key.

269

http://www.quimica.urv.es/XAIM

Many print options pertain to debugging situations and are included here only for completeness. This section
is intended to give a survey of all possibilities. Some items may be mentioned again in other sections where
the subject of a particular print switch is discussed.

Print / NoPrint

PRINT Argumentlist
Print Argumentlist
NoPrint Argumentlist

Argumentlist

A sequence of names separated by blanks or commas.
The keys Print and NoPrint may occur any number of times in the input file. The names in the argument
list may refer to various items. For some of them printing is normally on, and you can turn them off with
NoPrint. For others the default is not printing; use Print to override that.

Follows a list of the recognized items that are applicable in the argument lists, with a short explanation and
defaults. Item names must be used exactly as given in the table - abbreviated or elongated forms will not be
recognized - but they are not case sensitive.

Item Default Explanation

$ALL No
Turns on all print options. This will not be affected by any additional
noprint instructions. Be careful: this generates a large amount of output.
To be used only for debugging purposes.

Atdist No Inter-atomic distance matrix at each new geometry (in an optimization)
Bas Yes General control of output related to elementary basis functions (bas).

BlockCheck No Intermediate data during the determination of the block length. (see
Blocks)

Blocks No

Numerical integrals, consisting of loops over large numbers of points, are
split up in loops over blocks of points. The block length is determined by
the available amount of workspace. Given this amount, the maximum
block lengths, according to memory usage in a few relevant routines, are
computed (and printed with this print option) and used to impose upper
bounds on the block length actually use.

Character-Table No Table of characters for the irreducible representations of the pointgroup
symmetry.

Computation Yes Reports progress of the computation, with (concise) info about each SCF
cycle and each Geometry update in an optimization.

Core No
Description of the frozen core: frozen core expansion functions (corbas)
and the expansion coefficients for the frozen orbitals. This printing can
only be activated if Functions is also on, otherwise it is ignored.

CoreOrt No

The valence basis set contains auxiliary Core Functions. They are not
degrees of freedom but are used solely to ensure orthogonalization of the
valence set to the frozen Core Orbitals. The orthogonalization coefficients
and some related overlap matrices are printed.

CoreTable No

Internally the charge density and potential of the atomic frozen cores are
processed as tables with values for a sequence of radial distances. A few
initial and a few final values from these tables are printed, along with the
(radial) integral of the core density, which should yield the number of core
electrons.

EKin No At the end of SCF: Kinetic energy of each occupied MO.

EndOf No Flags the exit from a few major routines, with cpu times used in these
modules. Primarily a debug tool.

270

EPauli Yes
The repulsive Pauli term in the bonding energy (also called exchange
repulsion) with its decomposition in density functional (lda and nl) and
Coulomb terms.

Fit Yes General control of output related to the density fitting.
Fmat No Fock matrix computed at each cycle of the SCF.

FmatSFO No

Fock matrix (and overlap matrix) in the basis of symmetrized fragment
orbitals (SFOs). This option requires the FULLFOCK and ALLPOINTS
keyword to be present in the input. The matrix is printed only at the last
SCF cycle. Use 1 iteration in the SCF for the Fock matrix at the first SCF
cycle.

ForceConstants Yes Force constants matrix (Frequencies run only)

FreqHess No
matrix of force constants (Frequencies run) after each applicable step in
its processing: transformation from/to Cartesian and Z-matrix coordinates,
symmetrizations, ...

Frag No General control of output related to build-molecule-from-fragments.
Functions Yes List of employed Slater-type exponential basis functions and fit functions.
Gradients No detailed info of computed energy gradients (in optimization runs)

Group-Operators No 3*3 matrices of pointgroup symmetry operators, with the axis and angle of
rotation

HessEig No

Eigenvalues of the Hessian in each cycle of a Geometry Optimization.
The print-out in the intermediate cycles is suppressed if output of updated
coordinates etc. is turned off (see the eprint subkey Repeat (option
GeoStep).

Idfree No
List of free atomic coordinates with indication whether they are
optimization coordinates (this info is also contained in the output of new
atomic coordinates at each step of an optimization)

Inertia No Warning message in the log file in case of zero product of moments of
inertia (this may correctly be the case for certain molecules)

Inputkeys No

List of keys that were specified in input, together with some of the
associated data. The list is printed directly after the echo of the Input File,
before the header with ADF program information.
A few special keys will not be echoed: (No)Print,(No)Skip, Allow.

Irrep-Matrices No Irreducible representation matrices

Logfile Yes At the end of the calculation a copy of the log file is appended to standard
output

low No Construction of the LOW basis from the elementary BAS functions and
from the SFOs: combination coefficients

lowMO No MOs are printed in the LOW (Lowdin) representation, in the RESULTS
section

OvlBAS No Overlap matrices processed during the construction of the LOW basis

Parser No

Most input records are echoed twice (at the very beginning of output). First
the original version, then the parsed version in which expressions have
been replaced, redundant blanks removed, etc. The parsed version is
what the program really uses as input.
Comment blocks, and function definitions (in define blocks) are not
parsed, and are not affected by this switch. If the print switch is off only the
original, non-parsed input record is echoed in output.
This print switch affects only the part of input after its occurrence.

Pmat No The density matrix (in Lowdin representation) in each cycle of the SCF.

QMpot Yes At the end of the SCF for each atom the electrostatic potential at its
nucleus (excluding its own contribution of course).

No Redundant Coordinates used in the construction of the initial - force field
derived - Hessian

RedCrdBonds No atom-atom bonds determined for the construction of the initial Hessian

271

RedCrdH No Hessian in the redundant coordinates representation

SCF Yes Controls the information about progress of the SCF procedure. Applies
only if the print switch computation is on.

sdiis No Expansion coefficients applied by the DIIS procedure during the SCF.

sdiismat No

Turns on sdiis(see above) and prints the error vector constructed by the
DIIS routine (this is the commutator of the Fock matrix and the Density
matrix). This is used to determine the DIIS expansion coefficients and to
assess convergence.

SFO Yes
General control of SFO-related output. If turned off, (almost) all such
output is suppressed. If on, as is the case by default, such printing is
controlled by the eprint subkey SFO.

Smat No Overlap matrix of BAS functions.

Smearq No
Smear parameter - if and when applied - used in the determination of
electronic occupation numbers for the MOs, with details of how it works
out at every cycle of the SCF. For debugging purposes.

SpinOrbit No detailed information about how double-group symmetry representations
are related to the single group representations

Tails No

In each block of integration points (see Blocks) the evaluation of (Slater-
type) exponential functions (basis, fit) is skipped when the function has
become negligible for all points in that block due to the distance of those
points from the atom where the function is centered. The relative savings
due to this distance screening is printed at the first geometry cycle (use
debug for printing at all cycles).

TechPar Yes
Technical parameters such as maximum vector length in vectorized
numerical integration loops, SCF and Geometry Optimization strategy
parameters.

Timing No
Print out of more timing info (in particular with respect to performance of
the parallel version of ADF) than is provided by the standard Timing
Statistics tables at the end of each output.

TimingDetail No Similar, but more details.
TimingTooMuchDetail No Similar, but even worse.
Workspace No Statistics of calls to the Workspace Manager (memory management).
Arguments for the keys print and noprint.

For print switches that start with Frag.., Fit.., Freq..,Geostep..., Numint.., Repeat..., SCF..., TF..., see the key
EPRINT below.

Debug

The key DEBUG is used to generate extensive output that is usually only relevant for debugging purposes. It
operates exactly like the PRINT key but there is no converse: nodebug is not recognized; it would be
irrelevant anyway because by default all debug print switches are off.

A list of the possible items for the DEBUG key is given below.

All items of the print list can also be used with the debug key. If they are not mentioned in table III, the
meaning is the same as for the print key, but the corresponding output may be generated more often, for
instance at every SCF cycle rather than at the last one only.

Item Explanation

Basis Construction of the orthonormal LOW basis from elementary (BAS) and fragment
(FO) basis.

Core Core Orthogonalization procedure

272

Ekin Kinetic energy matrices. (compare the print switches EKIN)
Fit Construction of the symmetry adapted fit functions
Fitint Construction of integrals used in the Fit procedure.

Freq Force matrices processed in the computation of frequencies: Cartesian and internal
representation, before and after symmetrization, etc. (as far as applicable).

GeoStep Geometry optimization procedure. All relevant items.
Hess Complete eigensystem of the Hessian during geometry optimizations.

NumInt Numerical integration. Very extensive output (including the coordinates and weights of
all generated points).

Pmat P-matrix (density matrix) during SCF and in the ETS analysis program in the BAS
representation.

Rhofih Computation of fit coefficients during the SCF.

SCF Extensive output during the SCF procedure about many different items. See also
EPRINT, subkey SCF.

SDIIS All data concerning the DIIS as used during the SCF. See ERPRINT, subkey SDIIS.

TransitionField The Transition State procedure to compute and analyze certain terms in the bonding
energy. The distinct components, the involved transition field Fock matrices, etc.

Table III. Arguments for the print key DEBUG. All debug switches are by default off.

Eprint

The key EPRINT is an extended version of the (no)print key, employed for print switches that require more
specification than just off or on.

Contrary to what is the case for the keys print and noprint, the key EPRINT must occur only once in the input
file; any subsequent occurrences are incorrect and ignored or lead to abort.

EPRINT
subkey
subkey
...

end

subkey

A subkey-type structure: it consists of a keyword followed by data, so that it functions as a simple
(sub)key, or it is a keyword followed by a data block which must then end with the word subend.

The subkeys used in the eprint data block are called Eprint keys. A complete list of them is given below. All
available eprint keys are discussed in the schemes below. The enclosing records eprint and end are omitted
in these schemes.

EPRINT subkeys Subject
AtomPop Mulliken population analysis on a per-atom basis
BASPop Mulliken population analysis on a per-bas-function basis
Eigval One-electron orbital energies
Fit Fit functions and fit coefficients
Frag Building of the molecule from fragments.
FragPop Mulliken population analysis on a per fragment basis
Freq Intermediate results in the computation of frequencies (see debug: freq).
GeoStep Geometry updates (Optimization, Transition State, ...)
NumInt Numerical Integration

273

OrbPop
(Mulliken type) population analysis for individual MOs, both on a per-SFO basis and
on a per-bas function basis. In a SpinOrbit calculation no SFO-type analysis is
available (not yet implemented).

OrbPopEr Energy Range (ER) in hartree units for the OrbPop subkey
Repeat repetition of output in Geometry iterations (SCF, optimization, ...)
SCF Self Consistent Field procedure

SFO Information related to the Symmetrized Fragment Orbitals and the analysis
(populations and MO coefficients) in this representation.

TF Transition Field method for the evaluation and analysis of certain bonding energy
terms.

Table IV. List of eprint subkeys.

Eprint subkeys vs. Print switches

Several eprint subkeys are merely shortcuts for normal (no)print switches. All such simple subkeys are used
in the following way:

EPRINT
ESUBKEY argumentlist

END

Esubkey

One of the following eprint subkeys: Fit, Frag, GeoStep, NumInt, Repeat, SCF, sdiis, SFO, TF, Time.

argumentlist

A sequence of names, separated by delimiters. Each of these names will be concatenated with the
esubkey and the combination will be stored as a normal print switch.
Example:
Frag rot, SFO
will be concatenated to fragrot and fragsfo and both will be stored as print switches. All such
combinations can also be specified directly with the key PRINT. The example is therefore exactly
equivalent with the input specification:
print FragRot, Fragsfo

If any of the names starts with the two characters no, the remainder of the name will be concatenated with
the eprint, but now the result will be stored and treated as a noprint switch. Items that are on by default can
in this way be turned off. Example:

EPRINT
FRAG noRot Eig

END

This turns Rot off and Eig on for the eprint subkey Frag. Equivalent would be:

NOPRINT FragRot
Print FragEig

Follows a description of all simple EPrint subkeys:

Fit

The subkey fit controls output of how the elementary fit functions are combined into the symmetric (A1) fit
functions. It controls also printing of the initial (start-up) and the final (SCF) fit coefficients.

274

EPRINT
FIT list

END

list

A list of items, separated by blanks or commas. The following items are recognized: Charge, Coef,
Comb.

Charge

The amount of electronic charge contained in the fit (start-up), total and per fragment.

Coef

The fit coefficients that give the expansion of the charge density in the elementary fit functions.

Comb

The construction of the totally symmetric (A1) fit function combinations from the elementary fit functions.

By default all options are off.

Frag

The subkey frag controls output of how the molecule is built up from its fragments.

EPRINT
FRAG list

END

list

A list of items, separated by blanks or commas. The following items are recognized: Eig, Fit, Rot, SFO.

Eig

The expansion coefficients in elementary functions (bas) of the fragment Molecular Orbitals as they are
on the fragment file.

Rot

The rotation (and translation) required to map the master fragment (i.e. the geometrical data on the
fragment file) onto the actual fragment which is part of the current molecule.
N.B.: if eig and rot are both on, the rotated fragment orbitals are printed also.

Fit

The fit coefficients that describe the fitted charge density of the fragments after the rotation from the
master fragment on file to the actual fragment. These are the molecular fit coefficients that are used (by
default) to construct the total molecular start-up (fitted) charge density and hence the initial Coulomb
and XC potential derived from it.

SFO

The Symmetry-adapted combinations of Fragment Orbitals that are used in the current calculation. This
feature ensures that the definition of the SFOs is printed. This will happen anyway whenever the eprint
subkey SFO itself is activated.
By default all options are off.

275

Remark: SFO analysis in a Spin-Orbit relativistic calculation is implemented only in the case there is
one scalar relativistic fragment., which is the whole molecule.

Freq

Controls printing of Force matrices and a few more data that are intermediate results in the computation of
frequencies after all coordinate displacements have been carried out.

EPRINT
FREQ list

END

list

contains any of the items SymCoord, DMuRot, Hess.

SymCoord

print the Symmetry Coordinates, both as they are generated, and some related info in their processing
later on. The Symmetry Coordinates are symmetry-adapted combinations of cartesian displacements,
with the pure translations and rotations projected out.

dmuRot

info about generating Dipole-Derivative information in transformation between cartesian and internal
coordinate representation as regards the rotational aspects.

Hess

processing of the completed matrix of force constants, symmetrization, transformation to other
coordinates.

By default all options are off.

GeoStep

Controls output concerning the geometry update method, parameters, energy gradients, etc. It plays no role
in a SinglePoint calculation.

EPRINT
GEOSTEP list

END

list

A list of items, separated by blanks or commas. The following items are recognized: Energy,
GradientTerms, Gradients, Upd.

Energy

summary of the (bonding) energy and its components as computed in the geometry update procedure.

Gradients

Energy gradients on the free variables. These may be all or some of the cartesian or the Z-matrix
coordinates, depending on the case.

GradientTerms

The decomposition of the gradients in computed terms, as described in the thesis of L.Versluis [7].

276

Upd

parameters used and adapted in the geometry update procedure.

By default Gradients, Upd are on, the other items off.

NumInt

Output related to the numerical integration procedure: parameters, generated points, tests on the accuracy
of the generated scheme, etc.

EPRINT
NUMINT list

END

list

A list of items, separated by blanks or commas. The following items are recognized: All, Geo, Ovl, Par,
Pnt, Res, Sym, Test.

All

includes all other options and prints in addition the coordinates and weights of all generated points. This
can be a lot of output!

Geo

geometric data such as boundary planes around the molecule, as they are computed and used in the
program section where the point grid is generated.

Ovl

numerically integrated are the auto-overlaps of symmetry-adapted combinations of elementary basis
functions SBAS. The deviations from the analytically computed values is printed. The test option, see
below, yields a summary of these data: the maximum error and the root-mean-square error.

Par

employed precision parameters, atomic spheres radii etc.

Pnt

the generated numbers of points in each of the subregions processed in the point-generating
procedure.

Res

results as regards the total number of points, the sum-of-weights and the partitioning of the points in
blocks (for segmented vectorization).

Sym

the symmetry operators that are computed directly from the coordinates (irrespective of the input
Schönfliess symbol) and that are used to construct thec numerical integration grid in a symmetric
fashion.

Test

a few external tests are performed after the grid has been generated, such as the numerical integration
of the sum-of-fragment densities. See also the norms option.

277

By default Res and Test are on, the other options off.

OrbPop

Specifies that (Mulliken type) population analysis should be printed for individual MOs, both on a per-SFO
basis and on a per-bas function basis. The format of the subkey is as follows:

EPRINT
ORBPOP TOL=X Nocc Nunocc
SUBEND

END

X is the threshold for the SFO coefficient value to include in the listing for the per-SFO analysis. Nocc is the
number of the highest occupied and Nunocc is the number of the lowest unoccupied orbitals to analyze.

OrbPopER

Specifies the energy range for the MOs to which the OrbPop key applies. The default range is from -0.7
below the HOMO to 0.2 hartree above the LUMO. Usage:

EPRINT
OrbPopER minEn maxEn

END

where minEn and maxEn are both in hartree, and have the defaults just specified. In order to get information
on many more orbitals, simply specify a large negative value for minen and a large positive value to maxen.

Repeat

Control the repetition of output in Geometry iterations: optimization, computation of frequencies, transition
state search.

EPRINT
Repeat list

END

list

contains one or more of the following items: NumInt, SCF.

NumInt

Output from the numerical integration procedure, like parameters, numbers of points generated, test
data is controlled by the numint subkey (see below). The repeat subkey controls whether the output is
repeated for all geometries (if the flag is on) or only for the first (if the flag is off). Some concise info is
produced (repeatedly) anyway if the print switch computation is on.

SCF

Controls similarly the SCF output, like population analysis and orbital eigenvalues. If the flag is on,
these items are printed at the last SCF cycle in every geometry, otherwise only at the last (in case of an
optimization, not in case of a Frequencies calculation).

By default both options are off.

SCF

Output during the SCF procedure.

278

EPRINT
SCF list

END

list

is a list of items, separated by blanks or commas. The following items are recognized: Eigval, Eigvec,
Err, Fmat, Keeporb, MOPop, Occ, Pmat, Pop, Start.

Eigval

Eigenvalues of the one-electron orbitals at the last SCF cycle. In a run with multiple SCF runs
(Geometry Optimization,..) this printing occurs only for the last SCF procedure. See also the eigval
subkey of EPRINT. (Use debug or the repeat subkey of EPRINT to get output on all cycles).

Eigvec

MO eigenvector coefficients in the BAS representation. Only printed on the last SCF cycle.

Err

SCF error data which are checked for convergence. By default this takes effect after cycle 25 of the
SCF. If the key is set it takes effect at the first cycle. Optionally one may type ErrN,where n is an integer
(written directly after Err without a blank in between), in which case the key takes effect at cycle n.

Fmat

Fock matrix in the low representation.

Keeporb

If the KeepOrbitals option is activated (see the key SCF), output is generated whenever this option
actually results in a change of occupation numbers as regards the energy ordering.

Occ

concise output of SCF occupation numbers on last SCF cycle if no eigenvalues are printed (see:
Eigval).

moPop

Mulliken populations in terms of the elementary basis functions (bas), per MO, for input-specified MOs
(see the eprint subkey orbpop)

Pmat

Density matrix

Pop

General control of bas Mulliken populations. This supervises all printing (whether populations are
printed or not) according to the eprint subkeys atompop, fragpop, orbpop (the latter only as regards the
bas population analysis at the end of the SCF procedure).

Start

Data pertaining to the first SCF cycle (of the first SCF procedure, in case of an optimization; use repeat
to get this for all SCFs).

279

By default Eigval, Keeporb, Occ, and Pop are on, the others off.

SFO

Information pertaining to the use of Symmetrized Fragment Orbitals (for analysis purposes).

EPRINT
SFO list

END

list

A list of items, separated by blanks or commas. The following items are recognized: eig, eigcf, orbpop,
grosspop, fragpop, ovl.

Eig

The MO coefficients in terms of the SFOs.

Eigcf

idem, but now also containing the coefficients pertaining to the CoreFunctions.

OrbPop

population analysis of individual orbitals. The orbitals analyzed are set with the eprint subkey orbpop.

GrossPop

Gross populations of the SFOs, split out in symmetry representations. GrossPop is automatically turned
on when OrbPop is activated.

FragPop

Population analysis on a per-FragmentType basis. This analysis does in fact not depend on the SFOs
(ie, the result does not depend on how the SFOs are defined), but the computation of these populations
takes place in the SFO-analysis module, which is why it is controlled by the SFO print option. FragPop
output is given per orbital when OrbPop is activated, per symmetry representation when GrossPop is
activated, and as a sum-over-all-orbitals-in-all-irreps otherwise (if FragPop is active).

Ovl

Overlap matrix of the SFO basis, separately for each symmetry representation.

By default orbpop is on, the other options off. Note that before ADF2008.01 eig en ovl were on by
default.

In a Spin-Orbit calculation the SFO analysis is not yet implemented completely.

Remark: the options eig, eigcf replace the pand revious (now disabled) simple print options eigsfo and
eigsfo.

Note that the simple print key SFO controls whether or not the eprint subkey sfo is effective at all.

TransitionField

Part of the bonding energy is computed and analyzed by the so-called Transition State procedure [3, 110].
This has nothing to do with physical transition states, but is related to the Fock operator defined by an
average charge density, where the average is taken of the initial (sum-of-orthogonalized-fragments) and the
final (SCF) charge density. There is also an analogous term where the average is taken of the sum-of-

280

fragments and the sum-of-orthogonalized-fragments. Various terms, Fock operators and Density Matrices
used in this approach may be printed. To avoid confusion with real Transition States (saddle points in the
molecular Energy surface) the phrase TransitionField is used here.

EPRINT
TF list

END

List

A list of items, separated by blanks or commas. The following items are recognized: Energy, Fmat,
DiagFmat, FragPmat, DiagFragPmat, F*dPmat, DiagF*dPmat, OrbE.

Energy

Energy terms computed from the TransitionField.

Fmat

TransitionField Fock matrices.

DiagFmat

Idem, but only the diagonal elements.

FragPmat

The molecular P-matrix constructed from the sum-of-fragments.

DiagFragPmat

idem, but only the diagonal elements.

F*dPmat

The TransitionField energy term can be expressed as a Fock operator times the difference between two
P-matrices (initial and final density).

DiagF*dPmat

only diagonal elements

OrbE

Orbital energies in the TransitionField.

By default all options are off.

Other Eprint subkeys

We discuss now the remaining eprint sub keys that are not simple shortcuts for print switches.

Orbital Energies

EPRINT
Eigval noccup {nvirtual}

END

281

This specifies the number of one-electron orbitals for which in the SCF procedure energies and occupation
numbers are printed whenever such data is output: the highest noccup occupied orbitals and the lowest
nvirtual empty orbitals. Default values are noccup=10, nvirtual=10. If only one integer is specified it is taken
as the noccup value and nvirtual is assumed to retain its standard value (10). Printing can be turned off
completely with the eprint sub key SCF, see above.

Mulliken Population Analysis

All population subkeys of eprint refer to Mulliken type populations.

EPRINT
ATOMPOP level

END

Populations accumulated per atom.

level must be none, gross or matrix. none completely suppresses printing of the populations; gross yields
the gross populations; matrix produces the complete matrix of net and overlap populations. Default value:
matrix.

EPRINT
BASPop level

END

Populations are printed per elementary (bas) basis function. The level options are none, short, gross, matrix.
none, gross and matrix are as for atompop.

short yields a summary of BAS gross populations accumulated per angular momentum (l) value and per
atom.

Default value: gross.

EPRINT
FragPop level

END

Completely similar to the atompop case, but now the populations per fragment. Of course in the case of
single-atom fragments this is the same as atompop and only one of them is printed. Default: matrix.

For all three population keys atompop, fragpop and baspop, specification of a higher level implies that the
lower-level data, which are in general summaries of the more detailed higher level options, are also printed.

Printing of any populations at the end of the SCF procedure is controlled with the eprint sub key SCF (pop).

Population Analysis per MO

A very detailed population analysis tool is available: the populations per orbital (MO). The printed values are
independent of the occupation numbers of the MOs, so they are not populations in a strict sense. The actual
populations are obtained by multiplying the results with the orbital occupations.

The analysis is given in terms of the SFOs and provides a very useful characterization of the MOs at the end
of the calculation, after any geometry optimization has finished. This feature is now also available in a Spin-
Orbit coupled relativistic calculation, in the case there is one scalar relativistic fragment, which is the whole
molecule.

The same analysis is optionally (see EPRINT subkey SCF, option mopop also provided in terms of the
elementary basis functions (bas).

282

EPRINT
OrbPop {noccup {nvirtual}} {tol=tol}

subspecies orbitals
subspecies orbitals
...

subend
END

noccup

Determines how many of the highest occupied orbitals are analyzed in each irrep. Default noccup=10.

nvirtual

Determines in similar fashion how many of the lowest virtual orbitals are analyzed in each irrep. Default
nvirtual=4.

tol

Tolerance parameter. Output of SFO contributions smaller than this tolerance may be suppressed.
Default: 1e-2.

subspecies

One of the subspecies of the molecular symmetry group. Can not be used (yet) in a Spin-Orbit coupled
calculation.

orbitals

A list of integers denoting the valence orbitals (in energy ordering) in this subspecies that you want to
analyze. This overrules the noccup,nvirtual specification for that symmetry representation. In an
unrestricted calculation two sequences of integers must be supplied, separated by a double slash (//).

Any subset of the subspecies can be specified; it is not necessary to use all of them. No subspecies must
occur more than once in the data block. This can not be used in a Spin-Orbit coupled equation (yet).

A total SFO gross populations analysis (from a summation over the occupied MOs) and an SFO population
analysis per fragment type are preformed unless all MO SFO-populations are suppressed.

Reduction of output

One of the strong points of ADF is the analysis in terms of fragments and fragment orbitals (SFOs) that the
program provides. This aspect causes a lot of output to be produced, in particular as regards information
that pertains to the SFOs.

Furthermore, during the SCF and, if applicable, geometry optimizations, quite a bit of output is produced that
has relevance merely to check progress of the computation and to understand the causes for failure when
such might happen.

If you dislike the standard amount of output you may benefit from the following suggestions:

If you are not interested in info about progress of the computation:

NOPRINT Computation

If you'd like to suppress only the SCF-related part of the computational report and make the
GeometryUpdates related part more concise:

283

NOPRINT SCF, GEO

(Keep computation on, so you get at least some info about the GeometryUpdates)

If you don't want to see any SFO stuff:

NOPRINT SFO

To keep the SFO definitions (in an early part of output) but suppress the SFO-mo coefficients and the SFO
overlap matrix:

EPRINT
SFO noeig, noovl

END

Note: the SFO-overlap matrix is relevant only when you have the SFO-MO coefficients: the overlap info is
needed then to interpret the bonding/anti-bonding nature of the various SFO components in an MO.

If you are not interested in the SFO populations:

EPRINT
SFO noorbpop

END

2.9 Accuracy and Efficiency

See also
GUI manual: accuracy
Examples: accuracy

Precision and Self-Consistency

The precision of a calculation is determined by

• The function sets (basis sets, levels of frozen core approximation,
and fit sets for the computation of the Coulomb potential)

• Numerical integration settings in real space
• The accuracy of the density fitting procedure
• Convergence criteria (for the SCF procedure and the geometry optimization)
• A few more items that are rather technical and usually irrelevant (these are not discussed here).

The fragments you attach determine, through the fragment files, the function sets. Since each fragment
traces back to one or more Create runs, the employed data base files in the Create runs determine the
finally employed function sets.

For convergence of the geometry optimization see the key GEOMETRY.

In this part we examine numerical integration, density fitting and the SCF procedure.

With the key NUMERICALQUALITY one can set the density fitting quality (ZlmFit) and the numerical
integration quality (BeckeGrid) simultaneously

NUMERICALQUALITY {basic|normal|good|verygood|excellent}

284

http://www.scm.com/Doc/Doc2014/GUI/GUI_reference/metatagACCURACY.html
http://www.scm.com/Doc/Doc2014/ADF/Examples/metatagACCURACY.html

Numerical Integration

Becke grid for numerical integration

Many integrals in ADF are evaluated by numerical integration: Fock matrix elements, several terms in the
(bonding) energy, gradients in geometry optimization, and so on.

The default numerical integration method in ADF2013 is a refined version of the fuzzy cells integration
scheme developed by Becke [361]. This implementation in ADF is described in Ref. [375].

Note that in ADF2012 and previous versions the default integration scheme was the cellular Voronoi
quadrature scheme, implemented by te Velde and Baerends. Thanks to a smoother behavior of the relative
integration error as a function of the nuclear coordinates, the Becke grid is better suited for geometry
optimization and TS search compared to the Voronoi scheme.

The default quality of the Becke grid is normal. It can be changed with the block key BECKEGRID:

BECKEGRID
Quality {basic|normal|good|verygood|excellent}
AtomDepQuality

Ia1 {basic|normal|good|verygood|excellent}
Ia2 {basic|normal|good|verygood|excellent}
...

SubEnd
{qpnear qpnear}

End

Quality

For a description of the various "qualities" and the associated numerical accuracy, see Ref. [375]

AtomDepQuality

One can define a different grid quality for each atom, with input numbers Ia1, Ia2, etc. If an atom is not
present in the AtomDepQuality seciton, the quality defined in the Quality key will be used.

qpnear

Only relevant if you have specified point charges in the input file. ADF generates grids only about those
point charges that are close to any real atoms. The criterion, input with the qpnear subkey, is the closest
distance between the point charge at hand and any real atom. Default 4.0 Angstrom. Any input value is
interpreted in the unit-of-length specified with the Units key.

Notes:

• If either the (block) key INTEGRATION or the key NOBECKEGRID are used in the input, the
Voronoi grid is used.

NOBECKEGRID

• A Becke grid of normal quality is roughly equivalent (in both absolute accuracy and computation
time) to INTEGRATION 4 (Voronoi scheme), and a Becke grid of good quality is roughly
equivalent to INTEGRATION 6 (Voronoi scheme).

• The Becke grid is not very well suited to calculate Voronoi deformation density (VDD) charges. For
accurate calculation of VDD charges the Voronoi integration scheme is recommended.

285

• A new atomic partition function, called MPV, is used in ADF2014. To use the same partition
function that was used in ADF2013, include the following key in the block key BECKEGRID:

PartitionFunction YukawaLike

Voronoi grid

A sophisticated numerical integration procedure is the Voronoi integration method [104, 105]. It requires only
one input parameter which determines the precision of numerical integrals and derives from that the number
of integration points. Starting from ADF2013 this method is no longer the default sheme for integration. The
so called Becke grid is the default, see the key BECKEGRID. If the key INTEGRATION is used, the Voronoi
scheme will be used.

INTEGRATION accint

accint

A positive real number: the numerical integration scheme generates points and weights such that a
large number of representative test integrals are evaluated with an accuracy of accint significant digits.
The default for accint depends on the runtype: 4.0 for Single Point runs and simple Geometry
Optimizations, including Linear Transits; 5.0 for Transition State searches; 6.0 for the computation of
Frequencies; 10.0 in Create runs.

The number of integration points varies strongly with accint, and this determines to a large extent the
computational effort. Decreasing accint from 4.0 to 3.0 for instance roughly halves the number of points (this
depends somewhat on the molecule).

The defaults should yield good precision for the very large majority of applications. Lower values (3.0 or
even 2.0) can be used if precision is not crucial and the purpose is to get an impression. We recommend
that you experiment for yourself to get a feel for how results may vary in quality and computing time.

The default in Create mode is very large: 10.0. This is computationally no problem thanks to the simplicity of
the single atom case, in particular due to the high symmetry. There is no reason to override the default
integration settings when creating basic atoms.

We've now only explained the normal, simple application of the Integration key, which we hope and expect is
adequate for all your computations. Next additional details will be discussed. The distribution of points over
space is internally regulated by quite a few parameters. Each of these parameters can be controlled in input.
By default they depend on one another, and all of them depend on the main parameter accint. Advanced
users may wish to experiment and override the default relations between the parameters.

You may also have rather non-standard applications where the default relations are less adequate. A
thorough understanding of the underlying method is required to make a sensible choice for all parameters
[105, 109].

The key INTEGRATION has been introduced in its simple form before.

INTEGRATION accint

accint is a real number. The key is used as a simple key here.

Alternatively you can use it as a block key. This is activated if you give no argument. In the data block you
specify which of several integration methods you want to use, and you give values for the involved
parameters. Consult the literature for detailed information about the various schemes.

INTEGRATION
data

286

data
...

end

The block form is used to override default relations between various parameters that are applied in the
generation of the integration grid in the polyhedron method [105]. All these parameters are accessible with
subkeys in the data block of Integration. Most of the subkeys are simple keys with one single value as
argument; a few subkeys are block-type (sub) keys themselves and hence require the usual format of a data
block closed by subend.

accint

The main precision parameter
Its value defines the number of significant digits by which an internal set of standard integrals must be
evaluated. The number and distribution of integration points is tuned accordingly. For normal
applications this should yield a nearly optimal (given the underlying method) generation of points and
weights. The default depends on the run type.

accsph

The polyhedron method of generating integration points partitions space in atomic polyhedrons,
partitioned in pyramids with their tops at the atom in the center of the polyhedron. A core like atomic
sphere is constructed around the atom; this truncates the tops of the pyramids. accsph specifies the test
precision for the generation of points within the spheres. By default accsph=accint.

accpyr

Similarly this subkey sets the test level for the parts of the pyramids outside the atomic sphere. Default:
accpyr=accint.

accpyu, accpyv, accpyw

The truncated pyramids are mathematically transformed into unit cubes. A product Gauss integration
formula is applied to the cubes, with three (test precision) parameters for the three dimensions. Accpyw
controls the direction that is essentially the radial integration from the surface of the atomic sphere to
the base of the pyramid. The other two control the orthogonal directions (angular). By default all three
equal accpyr.

accout

The region of space further away from the atoms, outside the polyhedrons, has its own precision
parameter. By default accout=accint.

nouter

This outer region is treated by a product formula: outwards times parallel. The latter involves two
dimensions: the surface of the molecule say. The outward integration is performed with Gauss-
Legendre quadrature, in a few separate steps. The lengths of the steps are not equal, they increase by
constant factors. The total length is fixed. The number of steps is controlled with this subkey; default: 2.

outrad

The parameter that defines the number of Gauss-Legendre integration points for each outward step.
The precise relation between the actual number of points and this subkey, and the default relation
between outrad and accout can be found in the implementation.

outpar

287

Similarly the integration in the directions parallel to the surface of the atomic system is controlled by a
parameter. See the implementation for details.

dishul

Sets the distance between the outermost nuclei of the molecule and the boundary planes that define the
boundary between the polyhedrons and the outer region. By default dishul=2.3*R, where Ris the radius
of the largest atomic sphere in the molecule.

frange

The outward range of the outer region: integration is not performed to infinity but to a distance frange
from the outermost atoms, where all functions can be assumed to be essentially zero. By default frange
is derived both from accint, the general precision parameter, and from the present chemical elements:
heavier atoms have longer-range functions than hydrogen say. The precise relations can be found in
the implementation.

linrot

This parameter is significant only for symmetries with an axis of infinite rotational symmetry: Cand D
It is the highest rotational quantum number around this axis that occurs among the integrands. This
depends on the employed basis functions and fit functions. By default the program finds this out for
itself.

qpnear

If you specify point charges in the input file, there are two considerations implied for the numerical
integration grid.
First, since the point charges create a Coulomb singularity. The integrands (of for instance the basis
function products against the Coulomb potential) can only be evaluated with high precision if the grid
around the point charges has spherical symmetry and uses local spherical coordinates, exactly as is
done for the atomic nuclei. Second, the point charges do not carry fit or basis functions, hence they play
only a role in the more diffuse tails of the actual functions involved in integrals. Therefore, a relative low
precision of the integral part close to the point charge may have little effect on the total integration
accuracy.
Since additional 'spherical centers' with their own surrounding grids increase the total number of points
significantly, typically a few thousands per Coulomb center, this may result in high computational effort.
Therefore, the program generates spherical grids only about those point charges that are close to the
other atoms. The criterion, input with the qpnear subkey, is the closest distance between the point
charge at hand and any real atom. Default 4.0 Angstrom. Any input value is interpreted in the unit-of-
length specified with the Units key.

Next come the subkeys that require a list of data. The subkey must be placed on one line, the data on the
next. This somewhat peculiar structure suggests that the subkeys are block keys; however their data blocks
have no end code (subend) as for normal block type subkeys.

The list of data for such a subkey contains one value for each atom type. The data must be in the order in
which the atom types were defined under atoms, implicitly or explicitly: remember that atoms belonging to
different fragment types automatically have different atom types, even if their atom type names have been
specified as identical under atoms.

rspher

gives the radii of the atomic spheres, one value for each atom type. By default, the radii are derived
from the chemical element (heavier atoms get larger spheres) and from the environment: the sphere
must not be too large for the atomic cell (polyhedron).

linteg

288

The maximum angular momentum quantum number of integrands centered on an atom of that type
(one value for each atom type). This depends on the basis functions and on the fit functions. By default
the program checks the function sets and sets the linteg values accordingly. This subkey is applied for
the generation of grid points in the atomic spheres.

Items that relate to geometric lengths (dishul, frange, rspher) must be given in bohr (=atomic units),
irrespective of the unit of length defined with units.

Atomic radial grid

For each atom the charge densities and the coulomb potentials of frozen core and valence electrons are
computed in a radial grid and stored on TAPE21. The values in the points of the molecular numerical
integration grid are then evaluated by interpolation from the table of radial values.

The radial grid consists of a sequence of r-values, defined by a smallest value, a constant multiplication
factor to obtain each successive r-value, and the total number of points. Equivalently it can be characterized
by the smallest r-value, the largest r-value, and the number of points; from these data the program computes
then the constant multiplication factor. The characteristics are set with

RADIALCOREGRID {nrad=points} {rmin=rmin} {rmax=rmax}

points

The number of radial grid points; default: 5000.

rmin

The shortest distance used in the radial grid; default 1e-6 Angstrom

rmax

The largest distance in the radial grid; default: 100 Angstrom.

rmin and rmax, when specified, are interpreted as specified in units of length defined by units.

The keyword name radialcoregrid has historical reasons: in earlier releases the radial grid was used only for
the frozen core density and potential.

SCF

The SCF procedure is regulated with keys that set the maximum number of iterations, the convergence
criterion, and various items that control the iterative update method. Molecules may display wildly different
SCF-iteration behavior, ranging from easy and rapid convergence to troublesome oscillations. We expect
that the default settings take care of most cases, but one should realize that this is a difficult and tricky
subject. The user has a few (main) options to adapt the procedure to the situation at hand: simple damping
or the DIIS procedure (Direct Inversion in the Iterative Subspace). Either of them can be combined with
Level-Shifting.

Please refer to the SCF troubleshooting section in case of SCF convergence problems.

At each cycle the density is computed as a sum of occupied orbitals squared; the new density defines the
potential from which the orbitals are re-computed. The cycle is repeated until convergence is reached. To
speed-up convergence and to avoid non-convergent oscillatory behavior the values at the next iteration are
constructed as a mixture of the computed new data and those used at the cycles before. This may involve
only the previouss cycle and is then called damping. Alternatively the DIIS procedure can be invoked, which
is a generalization of damping to include more previouss iterations.

289

In ADF2009.01 two methods, called ARH and Energy-DIIS, have been implemented that can solve
problematic cases for SCF convergence. These methods will be discussed separately, after the main
options of the SCF key. Both methods require the total energy to be calculated at each step, which makes
them much more expensive compared to the standard SCF procedure, and not applicable in all cases.
Therefore, these methods should only be used when the standard SCF procedure fails.

In ADF2010.01 ADIIS was implemented, which performs similar to the Energy-DIIS scheme but it does not
require calculation of the total energy. Therefore it is much faster than E-DIIS.

In ADF2012, LISTi has been implemented.

Main options

Subkeys in the data block of the master key SCF control the aspects mentioned above. Each subkey is
optional. Omission means the application of default values. Omission of the SCF key altogether implies
defaults for all subkeys.

SCF
Iterations Niter
Converge SCFcnv { sconv2 }
Mixing mix
Diis {N=n} {OK=ok} {CX=cx} {CXX=cxx} {BFAC=bfac} {cyc=cyc}
Lshift vshift {Err=shift_err} {Cyc=shift_cyc}

End

Iterations Niter

Niter

The maximum number of SCF cycles allowed. In case of Geometry Optimizations it applies
separately to each of the SCF procedures that are executed. Default is 300. The program executes
at least one cycle, even if you specify a non-positive number.

Converge SCFcnv { sconv2 }

SCFcnv

The criterion to stop the SCF updates. The tested error is the commutator of the Fock matrix and
the P-matrix (=density matrix in the representation of the basis functions) from which the F-matrix
was obtained. This commutator is zero when absolute self-consistency is reached. Convergence is
considered reached when the maximum element falls below SCFcnv and the norm of the matrix
below 10*SCFcnv. The default is 1e-6 (in Create mode: 1e-8).

sconv2

A second criterion which plays a role when the SCF procedure has difficulty converging.
When in any SCF procedure the currently applicable criterion does not seem to be achievable, the
program stops the SCF. When the secondary criterion (sconv2) has been met, only a warning is
issued and the program continues normally. If the secondary criterion was not met either, the
program terminates any further geometry optimizations, frequency steps, etc. You can prevent the
program from terminating in such a case with the key ALLOW.
The default for sconv2 is 1e-3.

Mixing mix

mix

290

The relative weight of the new potential, as computed from the occupied orbitals, to be mixed with
the potential that was used in the previous cycle, to define the potential for the next. Mixing is used
only if, and as long as, the DIIS procedure (see below) is not operational. Default: 0.2.
For problematic systems that require strong damping, one should decrease the mix-parameter.

Diis {N=n} {OK=ok} {CX=cx} {CXX=cxx} {BFAC=bfac} {cyc=cyc}

The DIIS subkey specification(s) can be given to control the DIIS procedure. Each of these
specifications is optional. Simple damping will be used during the first few cycles, until the DIIS
procedure becomes operational. Two conditions must be satisfied for this: 1) at least two iterations must
have been done anyway (to build up sufficient information for the DIIS to work at all) and 2) the error
must be small enough; see however the cyc option below.
There have been claims in the literature that the DIIS should not be used until fair convergence has
been reached. Our experience thus far does not indicate that this should be taken too seriously, except
in special situations. To allow the user complete control, the start-up criteria can be set in input.

N

The number of expansion vectors used in the DIIS. The number of previous cycles taken into the
linear combination is then n-1 (the new computed potential is also involved in the linear
combination.
Default n=10. An input value smaller than 2 disables the DIIS. Note that this number applies not
only to Pulay DIIS scheme but also to other DIIS-like methods, such as A-DIIS, Energy-DIIS, and
LISTi.

OK

The DIIS starting criterion. The DIIS procedure is not invoked until a) the maximum commutator
element is smaller than OK (default: 0.5) or b) a certain number of SCF cycles has been executed.

Cyc

The SCF cycle no. at which the DIIS will start irrespective of the OK value above. Default: 5.

Cx

An upper bound on linear combination coefficients as applied in the DIIS. As soon as any
coefficient exceeds cx, all information about older cycles but the last two is discarded and the DIIS
starts again to accumulate info from the current cycle on. The computed linear combination, with
the large coefficient(s), is used for the next iteration, however. Default=5.0

Cxx

A second upper bound on the coefficients (should in principle be bigger than cx). When a
coefficient exceeds cxx, the computed linear combination is not used for the next cycle, but simple
damping is applied.

Bfac

A factor to bias the DIIS combination vector in favor of the new computed potential. Default=0 (no
bias). A sensible alternative value is 0.2

Lshift vshift {Err=shift_err} {Cyc=shift_cyc}

VShift

The level shifting parameter. The diagonal elements of the Fock matrix, in the representation of the
orbitals of the previous iteration, are raised by vshift hartree energy units for the virtual orbitals.
This may help to solve convergence problems when during the SCF iterations charge is sloshing

291

back and forth between different orbitals that are close in energy and all located around the Fermi
level. Level shifting is not supported in the case of Spin-Orbit coupling. At the moment properties
that use virtuals, like excitation energies, response properties, NMR calculations, will give
incorrect results if level shifting is applied.

Shift_err

Specifies that level shifting will be turned off by the program as soon as the SCF error drops below
a threshold; default value: 0. (Note that the default value has changed in ADF2004.01, previous
value: 1e-2).

Shift_cyc

Specifies that level shifting is not turned on before the given SCF cycle number (for the start-up
geometry); default value: 1.

Note1: very strong damping, i.e. a very small value of mix such as 1e-3, may not combine very well with the
DIIS procedure. The reason is that with strong damping successive SCF cycles tend to be very similar and
the vectors building up the DIIS space become linearly dependent. We recommend in difficult cases either to
use a not too strong damping (mix=0.03) or to use strong damping while the DIIS is disabled (by setting n=0
for the DIIS subkey and include the NOADIIS subkey of SCF) during a limited number of SCF iterations, and
then restart with DIIS activated and less stringent damping.

Note2: Another feature, electron smearing, may be used to overcome convergence difficulties. The idea is
to distribute electron occupations fractionally over a few states around the Fermi level, by a pseudo-thermal
distribution function. This aspect is controlled with the Smear option to the Occupations key. One should be
aware that the applied distribution of occupations is not really an approximation to the finite-temperature
case. In fact, the results are unphysical and one should not use the results as a meaningful outcome. The
smearing trick is only to be used to overcome convergence difficulties. Having reached convergence with it,
one should typically do a follow-up restart calculation without smearing, using the converged outcomes to
hopefully get the thing to converge properly. A typical 'allowed' application is the usage of smearing during
geometry optimizations, because the intermediate geometries are not relevant anyway and only a step
towards the final results. By default, the program does not apply any smearing unless during a geometry
optimization. See the Occupations key for more details.

Energy-DIIS

SCF
EDIIS
...

End

IN ADF2009 Energy-DIIS is implemented following the paper by Kudin, Scuseria, and Cances [289]. The
method is invoked by specifying an EDIIS keyword in the SCF block. Please note that similar to ARH and
unlike the standard SCF procedure in ADF this method requires energy evaluation at each SCF cycle, which
makes it significantly slower compared to energy-free SCF. You might need a higher integration accuracy to
get an accurate total energy. The same restrictions apply as for the key TOTALENERGY. The EDIIS method
will start at the 2nd SCF cycle, and the size of the DIIS space will be the same as for the normal DIIS. This
subkey EDIIS can be used in addition to the other subkeys of the block key SCF.

ADIIS

In ADF2010 ADIIS is implemented following the paper by Hu and Wang [291]. The method is invoked by
specifying an ADIIS keyword in the SCF block. According to some test, ADIIS performs similar to the

292

Energy-DIIS scheme but it does not require calculation of the total energy. Therefore it is much faster than
E-DIIS.

SCF
ADIIS {THRESH1=a1 THRESH2=a2}
...

End

a1, a2

Here, a1 and a2 (a1 > a2) correspond to values of the maximum element of the [F,P] commutator
matrix, ErrMax. If ErrMax ≥ a1, only A-DIIS coefficients are used to determine the next Fock matrix. If
ErrMax < a2 then only SDIIS coefficients are used. For ErrMax between a2 and a1 the total DIIS
coefficients are calculated from SDIIS and A-DIIS values weighted proportionally according to the
ErrMax value. Thus, the weight of A-DIIS coefficients decreases with the ErrMax value. The default
values for a1 and a2 are 0.01 and 0.0001, respectively.

ADIIS is automatically switched on when there is no SCF convergence after 15 iterations. To disable this
behavior, specify NoADIIS in the SCF block.

Note: A-DIIS is not compatible with enforced non-aufbau electronic configurations it should be disabled in
such a case. A non-aufbau electronic configuration may be enforced using a block form of the Occupations
key, but it may also result from the KeepOrbitals (a.k.a. orbital tracking) feature. In both cases A-DIIS should
not be used.

LISTi

The LISTi method has been implemented in ADF2012 following the paper by Y.K. Chen and Y.A. Wang
[432]. This method is invoked by specifying a single LISTi keyword in the SCF block.

SCF
LISTi
...

End

Even though the keyword does not take any arguments, the number of vectors to store specified in the DIIS
keyword also applies to LISTi. This number is a very important parameter and it is worthwhile increasing or
decreasing it in case of SCF convergence problems. A word of caution: do not just blindly increase the
number for every system. Testing showed that a large number breaks convergence for some, mainly small,
systems.

Our tests show that LISTi performance is similar to A-DIIS although sometimes it may require fewer or more
steps to converge. A nice feature of LISTi is that the algorithm used in it scales better in parallel because it
does not require evaluation of the [F,P] commutator.

Augmented Roothaan-Hall (ARH)

ARH Introduction

The Augmented Roothaan-Hall method has been developed by T. Helgaker and coworkers and is
extensively discussed in Ref. [271]. The basic idea of the method is that the density matrix is optimized
directly to minimize total energy. At each step, the new density matrix is parametrized in terms of matrix
exponent:

293

Pnew = exp(-X) Pold exp(X),

here, X is an anti-symmetric step matrix subject to the following conditions:

X = argmin{E(P(X))} - X minimizes the energy

|X| < h - length of X is smaller than or equal to some trust radius

The optimal X is found using a Conjugate Gradient method, possibly with pre-conditioning. The trust radius
is updated based on how well the energy change is predicted.

ARHOPTIONS Input

It is possible to specify ARH options without turning on the method itself unconditionally. The ARHOPTIONS
subkey has the same arguments as the ARH subkey (see below). It should be used in combination with the
ALLOW ARH keyword. The ARH procedure will then be invoked automatically if SCF has trouble
converging.

SCF
ARHOPTIONS
...

End
SYMMETRY NOSYM
ALLOW ARH

ARH Input

The ARH procedure is invoked using an ARH keyword in the SCF input block. This subkey ARH can be
used in addition to the other subkeys of the block key SCF.

SCF
ARH {CONV=conv} {ITER=iter} {NSAVED=nsaved} {START=start}

{FINAL} ...
...

End
SYMMETRY NOSYM

All parameters in the ARH keyword are optional. The following arguments determine the main parameters of
the ARH procedure.

CONV=conv

ARH convergence criterion. When the RMS gradient and its maximum components are both lower than
the criterion, the ARH procedure will be considered converged. The default value is 10-4.

ITER=iter

Maximum number of ARH iteration to perform. Please note that in difficult cases a huge number of
iterations may be required for complete SCF convergence. The default value is 500.

FINAL

Determines whether SCF is continued after ARH has completed. If this option is set, one Fock matrix
diagonalization will be performed to get orbitals and the SCF procedure will be halted. By default this
option is OFF.

START=start

294

Sets the SCF cycle number on which the ARH method is invoked. The default value is 2. Using a larger
value may provide a better starting guess for the ARH minimization.

NSAVED=nsaved

Sets the number of saved density and Fock matrices used for augmentation of the electronic Hessian.
The default value is 8. A larger nsaved value should be used in difficult cases when the number of
orbitals very close to the Fermi level is large.

The default minimization method is Untransformed Pre-conditioned Conjugate Gradient. The following two
parameters may be used to change this.

NOPRECOND

Disables pre-conditioning during the CG minimization. This option should not be used if atoms heavier
than the second-row elements are present.

TRANSPCG

Specifying this option will enable the use of the Transformed Pre-conditioned CG method, which may
result in better SCF convergence in some cases.

At each SCF step, the procedures begins by performing usual CG minimization keeping track of the total
step length. If at some micro-iteration the step length exceeds the trust radius, the procedure switches to
trust-radius optimization in the reduced space, which, in turn, is halted as soon as the level-shift parameter
mu has converged. The final step is then calculated as a Newton step in the reduced space of all the trial
vectors generated during CG minimization. The following options may be used to modify this behavior.

NOSWITCHING

Setting this option turns OFF the switching from the normal CG to a trust-radius minimization in reduced
space. Using this option helps to reduce the total number of SCF cycles is some cases.

SHIFTED

Setting this option will turn ON the trust-radius optimization from the first micro- iteration.

CGITER=cgiter

Sets the maximum number of micro-iterations.

The next two options determine the trust radius.

TRUSTR=trustr

Initial value for the trust radius. Default: 0.5

MAXTRUSTR=maxtrustr

The maximum trust radius value. This is set to 0.5 by default and should never be changed.

ARH Notes and Recommendations

Restriction: The method currently works for symmetry NOSYM calculations only. The NOSYM requirement
comes from the fact that during direct optimization of the density matrix it may have a symmetry lower than
that of the molecule.

The method requires the total energy to be calculated at each step, which makes it much more expensive
compared to the standard SCF procedure that does not need or use the energy. Therefore, the method

295

should only be used when the standard SCF procedure fails. Another complication caused by the use of the
total energy is that somewhat higher integration accuracy may be required to get stable SCF convergence,
and that the method may not be applicable in all cases. It is also recommended to use the ADDDIFFUSEFIT
keyword to increase accuracy of the total energy and, thus, improve convergence. Please refer to the
TOTALENERGY keyword for more information.

Scalable SCF

The new (still experimental) ScalableSCF module has been added to ADF. This is an almost complete
rewrite of the SCF procedure using distributed matrices. It is supposed to scale much better in parallel
compared to the original SCF and it also writes less data to disk during SCF.

The ScalableSCF can be turned on by including ScalableSCF in the key SCF.

SCF
...
ScalableSCF

End

ScalableSCF uses the A-DIIS+SDIIS convergence acceleration scheme automatically but the LISTi is also
implemented.

Currently, the following features are not yet supported by ScalableSCF:

• Spin-orbit in combination with Hartree-Fock exchange, including hybrid functionals such as
B3LYP;

• spin-unrestricted spin-orbit calculations;
• SOPERT, SOMCD, ZFS, STCONTRIB, RESTOCC, CONSTRUCTPOT keywords;
• some types of FDE calculations such as FDESubtract;
• some types of SCF convergence aids are not implemented (smearq, steep, vshift, E-DIIS).

In all cases listed above ScalableSCF will be automatically disabled and the calculation will proceed using
the old SCF.

Density fitting

Zlm Fit: density fitting with radial spline functions and real spherical harmonics

Note: In ADF2013 and previous versions, a different density-fitting scheme (pair-fit) was used. Include the
key STOFIT if you want to use the old fitting scheme.

The basic ideas behind the so-called Zlm Fit can be described as follows. The total electron-density is split
into atomic densities (in a similar way as the volume is partitioned for the Becke grid). These atomic
densities are then approximated by a combination of radial spline functions and real spherical harmonics
(Zlm). The implementation in ADF is described in Ref. [379]. The algorithm that is used in ADF is related to
the procedures proposed by Becke [380] and Delley [360]).

The Zlm Fit scheme (which is the default fitting scheme in ADF2014) offers certain advantages compared to
the old pair-fit method, especially the possibility to calculate the Coulomb potential to very high precision.

ZLMFIT
Quality {basic|normal|good|verygood|excellent}
AtomDepQuality

Ia1 {basic|normal|good|verygood|excellent}
Ia2 {basic|normal|good|verygood|excellent}

296

...
SubEnd

End

Quality

The default quality of the Zlm Fit is normal. It can be changed with the subkey Quality.

AtomDepQuality

One can define a different Zlm Fit quality for atoms, with input numbers Ia1, Ia2, etc.

The Zlm Fit method can be used for most features of the ADF program. However, it is not implemented for
the calculation of Hartree-Fock exchange integrals.

Pair fit: symmetric density fit

The non-default density fitting procedure in ADF, called pair fit method, is carried out separately for each
pair of atoms. To use it one needs to include the keyword STOFIT.

STOFIT

The implemented approach has several advantages in efficiency but it has a drawback in that it necessitates
the use of all available fit functions rather than only the symmetric combinations although the final result of
course needs only a symmetric fit because the total density is a symmetric (A1) function. For atoms far apart
the density fitting is performed with only symmetric functions. Given the implemented algorithm this entails
an approximation which can be tuned:

A1FIT atomicseparation

atomicseparation

is the threshold distance between atoms, in Angstrom. The symmetric fit approximation is applied only
for atoms farther apart. Default is 10.0 Angstrom

Pair fit: fit integrals

STOFIT

For the computation of the Coulomb potential with the pair fit method the program uses a large number of
so-called fit integrals: the overlap integrals of a fit function with a product of two basis functions, where at
least two of the involved three functions are centered on the same atom. In fact these are ordinary overlap
integrals of STOs because the fit and basis functions are all STOs and a product of STOs on a center is
itself also an STO. To use this STO fitting method, which was previously the default, use the key STOFIT in
the input of adf (also include it in the create mode of an atom, if that is explicitly used).

Obviously, when the two involved atoms are far enough apart, such overlap integrals become negligibly
small. All fit integrals are ignored (and not computed) that are smaller - according to a rough but reasonable
estimate - than a preset threshold.

The value of this treshold can be set via input, using the subkey CUTOFF_FIT of the LINEARSCALING
block key word.

True density in XC potential

For the computation of the exchange-correlation potential (XC-potential) the program uses as default the
fitted density. This is an approximation. For the XC potential the true density can be used if one includes the
keyword EXACTDENSITY:

297

EXACTDENSITY

Using the EXACTDENSITY keyword makes the calculation more time-consuming but more accurate in the
following cases:

• calculations that require accurate description of virtual orbitals, such as most of the TDDFT;
• when studying systems where weak interaction, such Van der Waals forces and hydrogen bonds,

are important. For example, EXACTDENSITY should be switched on when performing geometry
optimization of DNA pairs.

Dependency (basis set, fit set)

Conceivably the sizes of basis and/or fit sets may be so large that the function sets become almost linearly
dependent. Numerical problems arise when this happens and results get seriously affected (a strong
indication that something is wrong is if the core orbital energies are shifted significantly from their values in
normal basis sets). Although for the fit set a few (incomplete) tests are carried out, the program will generally
not check such aspects and carry on without noticing that results may be unreliable.

A new feature has been implemented to take care of this. For reasons of compatibility with previous versions
and also because our experience with it is limited so far, we have chosen to make application of it not the
default.

You have to activate it explicitly. Our experience so far suggests that real problems only arise in case of
large basis sets with very diffuse functions (i.e.: not with the normal basis sets provided in the standard
package).

Use of the key DEPENDENCY turns internal checks on and invokes countermeasures by the program when
the situation is suspect. A few technical (threshold-type) parameters can be set as well, but this is not
necessary, assuming that the defaults are adequate.

DEPENDENCY {bas=tolbas} {eig=BigEig} {fit=tolfit}

tolbas

A criterion applied to the overlap matrix of unoccupied normalized SFOs. Eigenvectors corresponding to
smaller eigenvalues are eliminated from the valence space. Default value: 1e-4. Note: if you choose a
very coarse value, you'll remove too many degrees of freedom in the basis set, while if you choose it too
strict, the numerical problems may not be countered adequately.

BigEig

Merely a technical parameter. When the DEPENDENCY key is activated, any rejected basis functions
(i.e.: linear combinations that correspond with small eigenvalues in the virtual SFOs overlap matrix) are
normally processed until diagonalization of the Fock matrix takes place. At that point, all matrix
elements corresponding to rejected functions are set to zero (off-diagonal) and BigEig (diagonal).
Default: 1e8.

tolfit

Similar to tolbas. The criterion is now applied to the overlap matrix of fit functions. The fit coefficients,
which give the approximate expansion of the charge density in terms of the fit functions (for the
evaluation of the coulomb potential) are set to zero for fit functions (i.e.: combinations of) corresponding
to small-eigenvalue eigenvectors of the fit overlap matrix. Default 1e-10.

Notes:

298

• Application / adjustment of tolfit is not recommended: it will seriously increase the cpu
usage while the dependency problems with the fit set are usually not so serious anyway.

• Application of the dependency/tolbas feature should not be done in an automatic way: one should
test
and compare results obtained with different values: some systems look much more sensitive than
others.
We have, so far, not been able to understand an unambiguous pattern in these experiences. Of
course,
when things become clearer in this respect, we will implement the corresponding intelligence into
the program.

• When the dependency key is used, the numbers of functions that are effectively deleted is printed
in
the output file, in the SCF part (cycle 1) of the computation section.

• The TAPE21 result file of a calculation that used the DEPENDENCY key contains information
about the omitted
functions and these will also be omitted from the fragment basis when the TAPE21 is used as a
fragment file.

Basis Set Superposition Error (BSSE)

The Ghost Atom feature enables the calculation of Basis Set Superposition Errors (BSSE). The idea is as
follows. In a normal calculation of the bonding energy of a molecule c, composed of fragments a and b, one
compares the total energies of c vs. those of isolated a and isolated b added together. In ADF this can be
done in one stroke by running c from fragments a and b.

The BSSE is determined as the bonding energies of a pseudo-molecule d composed of (1) a plus a ghost b
and (2) b plus a ghost a. The ghost atoms in the calculations are at their normal positions in the true
molecule c, and they have their normal basis (and fit) functions. However, they do not have a nuclear charge
and no electrons to contribute to the molecule. To set such a calculation up one needs first to make the
appropriate ghost database files: for each involved atom, copy the database file that was used for its
creation and modify it so as to remove the frozen core. Next, Create the ghosts with zero mass and zero
nuclear charge. Apply these ghost fragments in the BSSE runs.

An example is worked out in the Examples document.

Control of Program Flow

Limited execution

STOPAFTER programpart

programpart

Must be a predefined name associated with a (major) part of the program With this key you tell ADF to
terminate the job after the named program part has been executed.

A survey of the recognized names with a brief explanation follows below. The program parts are listed in
order of execution: by taking a name further down the list you execute a larger part of the program.

init

initialization procedure, input reading and printing of the output header with the job identification.

input

299

input-reading module.

geomet

geometry section: organization of atoms in types of atoms and fragments, checks of the actual
fragments against information on the attached fragment files.

config

electronic configuration (if not determined only by the SCF procedure), printout of symmetry
subspecies.

mainsy

generation of symmetry information, representation matrices, etc.

symfit

construction of symmetry adapted fit functions.

cblock

generation of integration points and the distribution of them in the blocks that control the internally used
segmented vectorization loops.

engrad

Relevant only in an optimization calculation. Engrad calculates energy gradients. The geometry is not
yet updated and no printing of convergence tests and new coordinates is carried out.

geopt

This routine evaluates energy gradients and updates the geometry accordingly; it also prints the
convergence tests and the computed new coordinates. Compare 'stopafter engrad'.

forcematrix

in a Frequencies run, terminate the calculation when all displacements have been done and before any
further processing of the computed hessian, such as the determination of normal modes, takes place.

Direct SCF: I/O vs. recalculation of data

The program's performance can be defined in terms of the amounts of time (cpu and i/o seconds) and disk
space used in a calculation. Also important for the human user is the turn-around time. On multi-user
machines cpu-cheap jobs may take a lot of real time to execute due to i/o scheduling.

Therefore it can be a good idea to recompute some items rather than store them on disk. This will increase
the amount of cpu time but reduce disk access and it may also improve the turn-around. Another
consideration is of course that storage of data on disk may exhaust the available disk space in case of big
calculations so that recalculation rather than storage is unavoidable.

DISK {{no}fit} {{no}basis}

instructs ADF how to handle the values of the fit functions and basis functions in all integration points:
calculate once and store on disk or recompute whenever needed. The (optional) arguments are fit or nofit,
and basis or nobasis.

300

fit and basis tell ADF to store the corresponding data on file; the prefix no induces recalculation whenever
the data is needed.

Defaults are nofit and nobasis: direct-SCF mode for both features (this can be modified at the installation of
ADF, see the Installation Manual).

The key DISK has replaced in ADF 2.0 the key directSCF in ADF 1.x, and extended the applicability of the I/
O versus recalculation choice from fit functions-only to basis functions as well.

Skipping

With the following key you can restrict which parts of the program are actually executed:

SKIP argumentlist

argumentlist

A sequence of names, separated by blanks or commas. skip may occur any number of times in input.
The names in the argument list refer to various items that are associated with parts of the program. With
this key you tell ADF to skip the named program part(s) and to continue execution thereafter. The
program does not check any consequences and may even crash when variables have not been
initialized or have attained incorrect values due to the skipping.

Use of this key should be contemplated only in debugging and testing sessions, in which you may skip the
computation of certain data when before that data will be needed you'll halt the program to inspect
something.

Recognized and operational arguments are for instance (possibly not complete due to frequent extensions in
this respect): atpair, ets, fitint, orthon, qmpot

Ignore checks

ADF performs several checks during a calculation, and stops with an error message when intermediate
results are suspicious, when input-specified instructions are incompatible, etc. These controlled aborts can
in some cases be overruled. Of course, the checks have been inserted for good reasons and one should
realize that ignoring them probably produces incorrect results and/or may lead to a program-crash.

ALLOW argumentlist

argumentlist

A sequence of names, separated by blanks or commas. allow may occur any number of times in input,
see the list below for the names that can be used.

BadCoreInt

Numerical integration of the frozen core density should closely approximate the analytical value. If the
deviation is large compared to the user-specified numerical integration precision the program aborts
with an error message like 'BAD CORE INTEGRAL'. This control is overruled by using this ALLOW
option.

BadIntegrals

Only applicable when the direct-SCF option is turned off for the basis functions. (This happens
automatically for ZORA full-potential calculations). In that case, a sequence of elementary overlap
integrals are evaluated with the numerical integration grid and the outcomes tested against the

301

analytical value. If the deviation is too large a warning is issued. Above a certain threshold the program
will abort, unless you override the exit with this Allow option.

BadSCF

If the SCF procedure hasn't converged, any geometry manipulations (optimization, linear transit ...) will
be aborted because the energy gradients are not reliably computed in a non-self-consistent field.

CloseAtoms

Atom-atom distances should not be less than 0.2 Bohr. This is checked in the program section where
the numerical integration grid is generated.

RelGeo

Geometry manipulation (optimization, linear transit...) is not supported for all of the relativistic options.
See Relativistic

SmallBlocks

The list of numerical integration points is partitioned in blocks, so as to fit data arrays (for instance
values of all basis functions in the points of a block) in available memory. The program computes the
maximum block length from available memory and size parameters such as numbers of basis functions.
A small block size implies a severe reduction in CPU efficiency. Therefore, the program aborts (by
default, to override by this ALLOW option) if the block length turns out to be very small (less than 10).

xc

Certain combinations of the Density Functional options or application of them with some other features
are not allowed. See XC.

Parallel Communication Timings

With the key

COMMTIMING

in the input you instruct ADF to skip normal execution and perform only a test on the gather, broadcast and
combine routines, used in a PVM version of ADF. Obviously, this is only meaningful if such an ADF version
has been installed.

Technical Settings

GPU Acceleration

ADF2014 can use NVidia GPUs for accelerating ADF calculations that use GGA functionals.

To benefit from GPU acceleration in ADF, you will need:

• A 64 bit Linux OS
• The IntelMPI+CUDA version of ADF2014
• An NVidia GPU with good double precision performance (we also support multi-GPU)
• The official NVidia drivers version 319 or higher installed

What parts of ADF are accelerated?

302

Single Point, Geometry Optimization and Frequency calculations can be accelerated. Only GGA functionals
are supported at the moment. The GPU acceleration in ADF uses a hybrid scheme in which the GPU works
in tandem with the CPU, so both need to be beefy for fast calculations.

What GPU do I need for accelerating ADF?

You will need an NVidia GPU that has good double precision performance. This currently (september 2014)
means it should be any of the following devices: Tesla C2050/C2075/M2050 /M2070/M2090, Tesla K20/
K20x/K40, GeForce GTX Titan/Titan Black/Titan Z.

How do I get it to work?

• Make sure your Linux OS is 64bit: run the following command in a terminal and check that it says
x86_64 or amd64:
uname -m

• Make sure your NVidia device is recognized and your driver version is higher than 319: run the
following command in a terminal and check the output for driver version and your GPU:
nvidia-smi

• The user running the ADF calculation must have read and write access to the device. To make
sure you can access the GPU, run the following command in a terminal and check the
permissions:
ls -l /dev/nvidia*

• Download and install the IntelMPI+CUDA version of ADF from the "Less frequently used
platforms" section on the download page

• Make sure your calculation uses a GGA functional

What input options are available?

The IntelMPI+CUDA version of ADF2014 enables GPU acceleration by default for any ADF calculation, no
changes to the input are needed for this. To disable GPU acceleration (while using the IntelMPI+CUDA
version), set the SCM_GPUENABLED environment variable to "FALSE". You can do this by inserting the
following two lines on the second line in the .run script of your ADF job:

SCM_GPUENABLED="FALSE"
export SCM_GPUENABLED

The ADF input recognizes the following input options in the GPUENABLED block:

GPUENABLED
SETVALIDDEVS [0 1 2 ...]
NOFOCKY
NOGRADS

END

The SETVALIDDEVS keyword should be followed by a list of integers that correspondent to the CUDA id
numbers of your GPUs (note: these numbers are not the same as the ones reported by nvidia-smi). This
keyword can also be (ab)used for manual load balancing if you have multiple GPUs. For example if you
want to distribute load 2:1 between device 0 and device 1, specify SETVALIDDEVS 0 0 1. If you simply want
to make sure that only your Tesla card is used and not some other NVidia GPU that is in the system, have a
look at the CUDA_VISIBLE_DEVICES environment value in the NVidia documentation.

The NOFOCKY keyword disables GPU acceleration in the SCF cycles that calculate the Fock matrix.

The NOGRADS keyword disables GPU acceleration in the Frequency calculation part.

Some technical details about the GPU acceleration in ADF:

ADF is parallelized using the MPI standard, and CUDA 5.5 is used on top op that.

303

http://www.scm.com/Downloads/2014
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars

The code decides per CPU process which GPU device to use from the SETVALIDDEVS list, or from all
devices that are available in the system with CUDA compute capability 2.0 or higher. This usually means
that multiple CPU cores will be sharing a GPU board for the acceleration, and the ratio of CPU cores per
GPU should thus not be too high. As a rule of thumb it is best to have no more than 6 cores per Fermi Tesla
GPU (the C2050/C2075/M2050 /M2070/M2090 devices), no more than 12 cores per Telsa K20 GPU, and
no more than 16 cores per K40 GPU. A GeForce GTX Titan should perform similar to a Tesla K20 GPU.
Note that other GeForce boards should not be used, as they in general have a very low double precision
performance, which means they likely to slow down your calculation instead of speeding it up.

Only parts of the ADF calculations are GPU accelerated, so you will still need a fast CPU. The accelerated
parts work in a hybrid scheme: the GPU performs a numerical integration while the CPU calculates the
needed input values. The speed-up that can be obtained this way depends on your system, the basis set
size and the grid quality settings. We have seen speed-ups of up to 1.9x for single-point calculations, and up
to 2.2x for frequency calculations.

ADF can use multiple GPUs when running on a single machine and also when running on multiple nodes.
Each CPU process uses one GPU that is local to the CPU it is running on. This means that ADF should run
on at least as many cores as GPUs it is supposed to use. When running in a cluster environment, ADF will
only detect and use GPUs that are inside the node the job is running on.

What should I do if I have problems?

Send an email to support@scm.com that mentions GPU acceleration and explains your problems. Attach
the input and output of your job to this email, as well as the outputs of “nvidia-smi”, “ls -l /dev/nvidia*”,
“uname -a” and “cat /proc/cpuinfo”

Memory usage

The amount of memory used by the program during a calculation is determined by three quantities:

• The size of the program itself (executable statements, static arrays).
This quantity depends on the program version and is currently around 20 MB.

• Buffer space used by ADF for more efficient I/O handling. This quantity is set at installation.
See the Installation Manual.

• Dynamically allocated arrays. The program allocates memory dynamically during the run conform
the requirements of the actual calculation.

Starting from ADF2010 in case of parallel calculations some of the data arrays that are used within ADF will
be shared by processes on the same node, provided the operating system allows shared memory. This will
reduce the total amount of memory used by all ADF processes on each node because only one copy of
certain large arrays per node will be present. Note that shared arrays is not the same as distributed arrays.
To disable the use of shared memory one can specify the following keyword:

NoSharedArrays

Vector length

Numerical integration is applied in ADF to evaluate Fock matrix elements and many other quantities that are
defined as integrals over basis functions, the charge density, the potential, etc. As a consequence a large
part of the CPU time is spent in simple do-loops over the integration points. The total number of points
depends on the required precision and on the number of atoms, the geometry and symmetry. All such
numerical integration loops are segmented into loops over blocks of points, each block consisting of a
certain number of points. This latter defines the most inner do-loop and hence determines vectorization
aspects.

304

Depending on the computer, c.f. the compiler, vector operations may be executed more efficiently using
longer vectors. Long vectors increase the demand on Central Memory however because the program may
sometimes have to access large numbers of such vectors in combination (for instance all basis functions) so
that they must be available in memory simultaneously. The optimum vector length depends therefore on the
balance between vectorization efficiency and memory usage. The maximum vector length that you allow the
program to use can be set via input.

VECTORLENGTH vectorlength

The default is set at the installation of ADF on your platform, see the Installation manual. For organizational
reasons the true vector length actually used in the computation may be smaller than the value defined with
this key, but will not exceed it (except in a Create run, but in that case performance and memory usage are
no hot topics).

Tails and old gradients

The key TAILS is currently obsolescent because of the introduction of the LINEARSCALING keyword and
may be removed in future versions. The key TAILS was used in older versions, ADF2004.01 and before, in
the calculation of the gradients.

Each block of points (see above) covers (more or less) a certain region in space and can hence be assigned
a distance value with respect to a particular atom. These distances are used to control whether or not to
evaluate functions centered on that atom in that particular block of points.

TAILS {bas=tailbas} {fit=tailfit}

tailbas, tailfit

Accuracy levels, similar to the integration parameter: a higher value implies higher precision: in this
case, basis functions and fit functions respectively are assumed zero in blocks of points that are at a
sufficiently large distance from the atom at which the function is centered. Sufficiently large is defined by
comparing the integral of the (radial part of the) function beyond that distance with the total integral. By
default tailbas and tailfit both depend on the numerical integration parameter

Note: in contrast with some of the older versions, supplying only the keyword without parameters does not
switch off the use of function cutoffs. To effectively switch off the distance effects in gradients evaluation one
should specify large values for the BAS and FIT parameters. The value of 100 should be more than enough,
thus, for example:

TAILS bas=100 fit=100

Improved performance in geometry optimizations and frequency runs is achieved by a new implementation
of the calculation of the gradients that now uses linear scaling techniques. This is now the default. One can
still use the old implementation if one includes in the input:

OLDGRADIENTS

The key TAILS is not used in geometry optimizations anymore. For controlling the use of distance effects in
normal SCF calculations, and for calculations with the RESPONSE or EXCITATIONS keywords, please
check the LINEARSCALING keyword.

Linearscaling

The LINEARSCALING keyword has a very similar function to the TAILS keyword described above. In
addition to defining the precision of operations related to operations in the numerical integration grid, it also
defines the precision for the calculation of the overlap matrix, the fit integrals, and the density fit procedure.

305

Default values have been chosen which result in negligible differences in the results for our test calculations,
so that these defaults can be considered safe. They have been chosen similarly to the defaults for the TAILS
keyword.

However, it may be advisable to modify the settings for the linear scaling parameters in two cases. First, if a
very accurate result is needed, and numerical noise is to be completely eliminated, strict values can be
specified. Especially for small molecules, where timings are not so large anyway, this may be of interest.
Second, for large molecules, in which the calculations are very time-consuming, one can experiment with
less strict values for the LINEARSCALING block keyword. In such a case one should be aware of the
reduced accuracy and preferably test the influence of the changes on the results.

In the simplest application of the LINEARSCALING keyword, only one parameter is provided. All the
subkeys described below will then be given this value. A very large value implies a calculation where no
distance cut-offs are used. A normal value (almost default situation) would be 8 for linscal, 6 gives a faster
but somewhat sloppier result. Whether this is acceptable is strongly case-dependent. A value of 10 or 12 is
already quite strict and, unless there are some sort of numerical problems, there should not be much
influence on the results by choosing a stricter value than that. A value of 99 for linscal virtually excludes the
possibility that something will be neglected.

LINEARSCALING linscal

More refined control is possible by using the full block key

LINEARSCALING
CUTOFF_FIT epsfit
OVERLAP_INT ovint
PROGCONV progconv
CUTOFF_COULOMB epsvc
CUTOFF_MULTIPOLES epsmp

END

CUTOFF_FIT

determines how many atom pairs are taken into account in the calculation of the fit integrals and the
density fit procedure. If the value is too low, charge will not be conserved and the density fitting
procedure will become unreliable. This parameter is relevant for the timings of the FITINT and RHOFIH
routines of ADF.

OVERLAP_INT

determines the overlap criterion for pairs of AO's in the calculation of the Fock-matrix in a block of
points. Indirectly it determines what the cut-off radii for AO's should be. The value of ovint has a strong
influence on the timing for the evaluation of the Fock matrix, which is very important for the overall
timings. The default value for ovint is accint + 2 (typically 6). Again, a higher value implies a safer but
slower calculation.

PROGCONV

determines how the overall accuracy changes during the SCF procedure ('progressive convergence').
The idea is that one might get away with a lower accuracy during the initial SCF cycles, as long as the
last cycle(s) is/are sufficiently accurate. The current default is that progconv has the value 0, which
means that the accuracy in the beginning of the SCF is the same as in the rest of the SCF. This
keyword is currently still in the testing phase, so we do not recommend changing its default value. The
value of progconv determines how much lower the other parameters in the LINEARSCALING input
block are at the beginning of the SCF than at the end.

CUTOFF_COULOMB

306

determines the radii for the fit functions in the evaluation of the (short-range part of) the Coulomb
potential. As the Coulomb potential may take a sizable amount of time, the value chosen for epsvc may
influence the total ADF timing significantly as well. The default value for epsvc is accint + 4 (typically 8).

CUTOFF_MULTIPOLES

determines the cut-offs in the multipole (long-range) part of the Coulomb potential. This term scales
quadratically with system size, but has a small prefactor. In most cases, change in the epsmp value will
not affect the CPU time significantly. The default value for epsmp is accint + 4 (typically 8).

All Points

ADF makes use of symmetry in the numerical integrations. Points are generated for the irreducible wedge, a
symmetry unique sub region of space. Optionally the symmetry equivalent points are also used. This is
achieved by setting the key

ALLPOINTS

The key has no argument. The CPU time increases roughly by a factor equal to the number of symmetry
operators, and the results should be the same. This key is available only as a debugging feature, to check
the correctness of certain symmetry related algorithms.

Full Fock

At every cycle in the SCF procedure the Fock operator is computed in all integration points. By default the
difference with the values of the previous cycle are used to compute changes in the Fock matrix elements.
This leads in general to better computational efficiency in two ways: 1) when all such difference values in a
block of integration points are very small such a block is skipped in the calculation. 2) if the values are not
negligible but still rather small, the contribution from such a block to matrix elements between basis
functions with small overlaps are neglected.

With the key

FULLFOCK

this is turned off, so that the complete matrix elements are computed, no blocks are skipped and the neglect
of matrix elements between functions with small overlaps (see also the key TAILS) is controlled solely by the
function characteristics and precision requirements, not by the development of the SCF.

Electrostatic interactions from Fit density

By default the program tries to evaluate the electrostatic Coulomb interaction energy between the fragments
in a molecule using the exact fragment charge densities. The implemented algorithm requires that all
fragments are spherically symmetric. This is checked by the program by verifying that all fragments have
been computed in atom symmetry. It that is not the case, an alternative method is applied, using the fitted
charge densities of the atoms; this is an approximation with a small, but not insignificant error. The following
key forces the program to apply the fit density approach even in the case of spherically symmetric
fragments. This aspect applies only to the final bonding energy analysis, not to energy computations and
their gradients within the automatic geometry optimizer. The purpose of this option is to simulate a
previously existing situation where the electrostatic term in the bonding energy was computed from the fit
density regardless of the fragments and their internal symmetries.

FITELSTAT

307

presence of this key in the input file triggers using the fit density.

Save info

Several types of information, gathered during the run, are lost on exit. The SAVE key allows you to prevent
the removal of such information.

SAVE info

info

A sequence of names separated by blanks or commas. save may occur any number of times in the
input file.

save turns save-info options on. A lists of the available options, with their default status.

item default explanation

TAPE10 no File with numerical integration data: points and weights, values of functions
(depends on direct-SCF options) and core densities and potentials.

TAPE11 no File with fit integrals (STOFIT).

TAPE13 no

Check point file. This file is lost (by default) only upon normal program exit, i.e. a
program-controlled termination (including a program-detected error condition
leading to controlled exit). In all such cases all info on TAPE13 is also present on
TAPE21. tape13 exists when the program crashes into a core dump for instance,
in which case it is uncertain what the contents of TAPE21 will be. The save
feature allows you to specify that TAPE13 is kept also upon normal exit.

TAPE14 no Scratch file with numerical integration data, mainly pertaining to individual
fragments.

Timing no

During an ADF calculation the program gathers a large amount of timing
information about the performance of different program parts. It can be printed, at
various levels of detail, on standard output (key PRINT). It can also be stored on
TAPE21, for later inspection, in a section Timing.

Table VII. Arguments for the key save.

2.10 Restarts

Restart files

When an ADF calculation terminates abnormally - not controlled by the program itself, for instance after a
core dump due to some bug - there will usually be a file TAPE13, which serves as a checkpoint file. tape13
can be used to restart the calculation at a point not too far before the fatal condition occurred. It contains
only data for the restart, but none of the special analysis data on TAPE21 that would be useful for analysis,
to serve as fragment file, etc.

TAPE13 is upgraded during the calculation but discarded upon normal termination, namely when all relevant
information has been saved on TAPE21. At that point all info that would have been on TAPE13 is present on
TAPE21. If you wish to keep tape13 anyway - for instance because you plan a restart after normal
termination and don't intend to keep the substantially bigger TAPE21 - you must use the save key.

308

Upon normal (i.e. program-controlled) termination of a calculation, the TAPE21 result file can be used for
restart purposes. When a crash occurs, however, chances are that TAPE21 has not correctly been closed
and that its data structure is inconsistent: during the calculation large portions of TAPE21 are kept in
memory rather than on file, and only at the point of final termination, all data is flushed to file.

General remarks

In all restart calculations a normal input file must be supplied (you can, for instance, simply take the original
one), with a specification of the restart file added: the restart file does not replace the input file. From the
program's point of view, it first reads the 'normal' input file and then inspects whether a restart file is present
to replace some of the information read from input.

The concept of restarts in ADF is rather simple and primarily directed at increasing computational efficiency
by providing cost-expensive data. The continuation run is to a large extent independent from the one that
generated the restart file. The runtype, the choice of density-functional and other features in the Hamiltonian,
precision of numerical integration, thresholds on convergence, et cetera are all determined solely from the
input file for the new run: no such data is read from the restart file. Most input items should, therefore, be
supplied in the restart run again, even if it is a direct continuation of a previous calculation: omission implies
using the standard defaults, which are not necessarily the settings of the calculation that generated the
restart file.

Even the key ATOMS with the list of atomic coordinates must be supplied again: the program needs the
information herein to deduce what fragments are used, which coordinates are free or frozen respectively in
an optimization, etc. The coordinate values may be supplied with the restart file and these will then overwrite
those specified in the input file.

Obviously, the two runs cannot be completely unrelated. To let the restart data make sense the runs should
correspond to the same molecule (i.e. its general definition in terms of fragment building blocks). The
program does not check all aspects related to this and certain abuses will therefore survive the internal
tests, but will surely lead to some error later on: it is the user's responsibility to ensure that the restart data
match the calculation one has in mind.

Interdependencies between data read from the restart file (rather than from input or fragment files) and other
items imply that some input keys and some options to specific keys may be inaccessible when restart data
are provided. In most cases supplying such inaccessible input options will simply be ignored; in some cases
a warning is issued or an error abort occurs.

A restart file supplies data from a previous run that might be useful in the current one. The applications are
(combinations are possible):

• Get a better start in the (first) SCF procedure by providing the electronic charge density
(in the form of fit coefficients) from the preceding run,

• Continue an optimization by supplying the latest geometry (coordinates) from a previous run
via the restart file (rather than typing them in),

• Get faster geometry convergence by supplying a Hessian,
• Breaking large jobs (Linear Transits, Frequencies) in smaller ones, each time doing a part

and passing this on to the continuation run.

WARNING. The SCF and optimization procedures use history to improve convergence behavior. Most of
such history information is not stored on a restart file. As a consequence, a restart may not continue exactly
as the original run would have done if it hadn't terminated. In a SCF restart, for instance, the DIIS procedure
has to rebuild the information. The same holds for geometry optimizations, although history plays usually not
a very big role there.

309

The restart key

The name of the restart file must be provided with the key RESTART (see below). A list of data items is read
from the file (if present on the file and only as far as significant for the new run) and used unless their usage
is explicitly suppressed by the user.

Simple key:

RESTART restartfile

Block key:

RESTART restartfile &
optionlist
optionlist
...

end

restart

This general key can be used as a simple key - to supply the name of the restart file - or as a block key.
In the latter case the continuation code (&) must be applied to tell the program that a data block follows.

restartfile

The name of a file with restart data. The path (absolute or relative) to the file must be included if the file
is not local to the directory where the calculation executes. In most cases it will be a TAPE21 file from
an ADF calculation, but this is not necessary. It may be any file - constructed by the user for instance -
provided it has the right structure. It must be a kf file and the data to be used must be stored in sections
and under variable names as defined below, which is exactly how such data are generated by a normal
ADF run on TAPE21 or on the checkpoint file TAPE13.
Note: the filename must not be one of the standard filenames used internally by the program, such as
TAPE21, TAPE13 etc. Generally: don't use a name like tapenn where nn is a two-digit number.

optionlist

A list of options, separated by blanks or commas. The following options are applicable:

noSCF

Do not use any fit coefficients from the restart file as a first approximation to the (fitted) SCF density for
the new calculation. Instead, the sum-of-fragments density will be used, as in a non-restart run. Note,
typically noSCF should be used in combination with noORB.

noORB

Do not use orbitals from the restart file.

nogeo

Do not use the geometry - Cartesian, Z-matrix, etc. coordinates - from the restart file.

nohes

Do not use any Hessian from the restart file.

SPINFLIP atomnumbers

310

See the separate section about the spin-flip method for converging broken-symmetry systems.

Note: in the continuation of a Linear Transit, IRC or Frequencies run, geometric data are read from the
restart file and will be used: the option nogeo is ignored. In a continued Frequencies run the input
coordinates (key ATOMS) must be correct (i.e. the equilibrium geometry). In a continued LT or IRC run, the
input coordinate values from atoms are ignored (but they must be supplied to give the program a preliminary
count of atoms and fragments involved).

Structure of the restart file

All data that may be retrieved from the restart file must be stored in a specific location on the restart file. If
you're simply using a TAPE21 result file or a TAPE13 checkpoint file you don't need to bother about this:
ADF has put all data in the right place; the following discussion is primarily for those who want to manipulate
the restart file or even construct one themselves.

Since the restart file must be a kf file, the location of the data is of the form Section%Variable, specifying the
section and the variable name. The section and variable names are case sensitive. See the utilities
document for general information about kf files.

If the specified variable is not present in the specified section on the restart file - or if there is no such section
at all - the data is not used, usually without an error message. In some cases a few global tests are carried
out on the retrieved data; if they fail the tests the data are not used and a warning - in some cases an error
abort - may be issued by the program.

KF files are binary files and so are the TAPE21 result file, the TAPE13 checkpoint file and generally any
restart files. If you wish to edit and modify the contents, or just inspect them, the standard KF utilities can be
used. Apply pkf to get a survey of the sections and variables on the file, dmpkf to get a complete ASCII
version of the file and udmpkf to transform an ASCII version - presumably edited and modified - back into
binary format. See Appendix 5.5.

Data on the restart file

Follows a survey of all data items that the program may search for on the restart file.

SCF data

Fit%coef_SCF

The fit-expansion of the charge density to be used as start-up for the next SCF. Without these restart fit
data the first SCF will start from the (fitted) sum-of-fragments charge density.

Fit%coef_FreqCenter

Only in a Frequencies run: the fit-expansion of the SCF-converged equilibrium geometry. It usually
helps to get a somewhat better start-up of the SCF in displaced geometries.

If the noSCF option is used to the restart key, any Fit%coef_? data on the restart file are ignored.

Coordinates

Geometry%xyz

Cartesian atomic coordinates. The option nogeo suppresses using such data. In a Frequencies or
continued Linear Transit run, they may be read but will be ignored (i.e. replaced by other coordinates
data from the restart file, see below).

311

In most applications, when coordinates are read (and used) from the restart file, only Cartesian coordinates
are retrieved and the corresponding Z-matrix values are computed from them, using the Z-matrix structure
defined in the atoms data block. This is one of the reasons why the ATOMS key must be used even when
the atomic coordinates are supplied on the restart file.

Hessian

GeoOpt%Hessian_CART

GeoOpt%Hessian inverted_CART

GeoOpt%Hessian_ZMAT

GeoOpt%Hessian inverted_ZMAT

All these four varieties are searched for if the new run searches for a restart Hessian matrix at all, that
is: in an optimization, Linear Transit or Transition State search. As the names should suggest these
variables stand for the Hessian, respectively the inverse of the Hessian in Cartesian or z-matrix
coordinates.
In all cases the full square matrix must be present, with dimension the number of atomic coordinates, 3
times the number of atoms. This holds also for z-matrix coordinates. The 6 dummy coordinates play no
role, the corresponding matrix elements in the Hessian should be zero. The order of atoms is the same
as in the input.

If a Hessian is searched for on the restart file, all four possibilities above are tried and the first one found is
used, the other ones being ignored. The order in which they are tried is:

If the current run uses Cartesian coordinates as optimization variables, then first the two cart varieties are
tried, and vice versa for z-matrix optimization.

In a minimization (simple optimization or Linear Transit) first the inverted variety is tried; in a Transition State
search the normal (not inverted) Hessian is looked for first.

Note: If a z-matrix Hessian is retrieved from the restart file the program will use the underlying z-matrix
structure to derive a Cartesian Hessian from it. In such case the restart file must also contain:

GeoOpt%kmatrix

The z-matrix structure (references to the atoms in this matrix assume the ordering of atoms as used
internally by the program).

Note: the kmatrix on the file need not be identical to the kmatrix used in the current calculation. In fact, the
current calculation may not even have a z-matrix structure.

Transition State

In a continued TS run the program retrieves, apart from general geometry optimization data such as the
Hessian - see above - only the latest TS search vector: the eigenvector of the (approximate) Hessian that
points to the Transition State. All other TS-specific data are input-determined with corresponding defaults.

The TS search vector is stored in:

TS%mode to follow

A list of atomic coordinates (Cartesian or Z-matrix, depending on the type of optimization variables
used. The underlying list of atoms has the atoms not necessarily in the order in which they have been
given in input: rather they are grouped together by atom type.

312

Linear Transit

In a continued Linear Transit (LT) calculation the continuation run proceeds from where the previous run
stopped. The total number of points by which the transit is scanned, the current point (its index and the
Cartesian coordinates), the accumulated results of completed points on the transit etc. are copied from the
restart file. If the restart file contains a section LT, then all relevant data must be present on it and correct
(i.e. matching those of the current run: same number of LT parameters, and of course the same molecule.

LT%nr of points

The number of points by which the LT is scanned; this is identical to the Fortran variable ltimax in the
code. The value on the restart file applies in the calculations and overwrites any input/default value (see
the subkey lineartransit of the geometry block)

lt%current point

Index of the current LT scan point. This is where the program will continue. In a non-restart LT run, this
index initializes at 1.

LT%Energies

An array with energy values, one for each LT point. When the LT run is completed, this array allows you
to map out the energy along the LT path. The values for the completed LT points are stored on the
restart file. This size of the array on the restart file must (at least) be the total number of points on the
complete path.

LT%Parameters

Initial and final values for the LT parameters, which describe roughly the path (all other coordinates may
be optimized at each point, depending on other input keys). The values from the restart file overwrite
input values. The input values should be supplied, however, as if it were a non-restart run.

LT%atmcrd

zmat if a z-matrix structure is available for the molecule, cart otherwise. This is used to control printing
of results. It does not define the type of optimization variables: see the next item.

LT%geocrd

zmat or cart: the type of optimization variables. This defines in which type of coordinates the LT
parameters are defined and any optimization of other coordinates takes place.

LT%xyz

Cartesian coordinates for all LT points: 3*atoms*ltpoints. The size of the array must conform to this.
Only the values of the completed LT points and those of the current point are relevant. Those of the
current LT point are used as initial coordinates to start the current run.

LT%zmatrix

Same for the Z-matrix coordinates. They should match the Cartesian coordinates for the completed LT
points (this is not checked). Those for the current LT point will be recomputed from the current
Cartesian coordinates.

IRC

In a continued Intrinsic Reaction Coordinate (IRC) calculation, the continuation run processes the path(s) as
specified in input. Any info for such path(s) on the restart file will then be used to continue from there. If the

313

restart file contains the relevant IRC sections, see below, then all relevant data must be present on it and
correct (i.e. matching those of the current run.

The sections on file pertaining to the IRC are:

IRC: this section contains information about the central (TS) point, which variables are optimized in each of
the IRC points, the connection matrix defining the z-matrix structure, etc.

IRC_Forward and IRC_Backward: these sections contain the data of the two paths from the Transition State
down to the two adjacent local energy minima: for each point the distance from the previous point and the
local curvature and molecular properties such as energy, atomic charges and dipole moment.

LT%nr of points

The number of points by which the LT is scanned; this is identical to the Fortran variable ltimax in the
code. The value on the restart file applies in the calculations and overwrites any input/default value (see
the subkey lineartransit of the geometry block)

LT%current point

Index of the current LT scan point. This is where the program will continue. In a non-restart LT run, this
index initializes at 1.

lt%Energies

An array with energy values, one for each LT point. When the LT run is completed, this array allows you
to map out the energy along the LT path. The values for the completed LT points are stored on the
restart file. This size of the array on the restart file must (at least) be the total nr of points on the
complete path.

lt%Parameters

Initial and final values for the LT parameters, which describe roughly the path (all other coordinates may
be optimized at each point, depending on other input keys). The values from the restart file overwrite
input values. The input values should be supplied, however, as if it were a non-restart run.

lt%atmcrd

zmat if a z-matrix structure is available for the molecule, cart otherwise. This is used to control printing
of results. It does not define the type of optimization variables: see the next item.

lt%geocrd

zmat or cart: the type of optimization variables. This defines in which type of coordinates the LT
parameters are defined and any optimization of other coordinates takes place.

lt%xyz

Cartesian coordinates for all LT points: 3*atoms*ltpoints. The size of the array must conform to this.
Only the values of the completed LT points and those of the current point are relevant. Those of the
current LT point are used as initial coordinates to start the current run.

LT%zmatrix

Same for the Z-matrix coordinates. They should match the Cartesian coordinates for the completed LT
points (this is not checked). Those for the current LT point will be recomputed from the current
Cartesian coordinates.

Frequencies

314

In the continuation of a Frequencies calculation all Frequencies-related data are retrieved from the section
Freq on the restart file. (SCF fit data are, as always, retrieved from the section Fit). A fairly large number of
items will be read and must all be present (if a section Freq is present in a restart file supplied to a
Frequencies run). Technical parameters such as the type of numerical differentiation, size of displacements
etc. are read from the restart file. Any input specifications are ignored.

Freq%kountf

Counter of number of geometries completed. In a non-restart run this is initialized at zero; in a restart it
is read from the file.

Freq%nraman

Flag for RAMAN calculations

Freq%numdif

1 or 2: defines numerical differentiation used to compute the force constants from the gradients in
slightly displaced geometries (by 1-point or 2-point differentiation).

Freq%disrad

Size of displacement for cartesian or bond-length displacements.

Freq%disang

Size of angular (bond angle, dihedral angle) displacements.

Freq%atmcrd

zmat or cart: specifies whether a z-matrix structure is present. This does not define the type of
displacement coordinates, see the next item.

Freq%geocrd

Type of coordinates in which the displacements are carried out: zmat or cart

Freq%nfree

Number of free and independent displacement variables.

Freq%idfree

References from the atomic coordinates (in internal order) to the independent displacement variables.

Freq%all freedoms

(logical) flags whether or not the complete energy surface is scanned around the equilibrium or only part
of the internal degrees of freedom are used.

Freq%xyz

equilibrium coordinates (internal order of atoms).

Freq%kmatrix

Z-matrix structure. Pointers are indexed by and refer to atoms in the internally used order.

Freq%zmatrix

315

Z-matrix coordinates of the equilibrium geometry (internal ordering of atoms).

Freq%rigids

6 rigid motion vectors (one may be zero, in case of a linear molecule). Each vector has as many
components as there are atomic coordinates. The values correspond to the internal ordering of atoms.

Freq%xyz displaced

Cartesian coordinates of displaced geometry to carry out now. In a non-restart run this would be the
equilibrium geometry.

Freq%zmatrix displaced

Similar for the Z-matrix coordinates.

Freq%Dipole previous

dipole vector (3 components) for the last geometry handled.

Freq%Dipole

dipole at the equilibrium geometry.

Freq%Dipole derivatives

Derivatives of the dipole wrt atomic coordinate displacements.

Freq%Gradients previous

Energy gradients (derivatives wrt atomic coordinate displacements) in the last handled geometry.

Freq%Force constants

Matrix of force constants. This is, together with the Dipole derivatives the final quantity to compute. At
each cycle of the Frequencies data are added to it. Upon completion of the Frequencies cycles the
frequencies and normal modes are computed from it. Together with the dipole derivatives it then also
yields the InfraRed intensities.

2.11 Examples

See the separate Examples document.

316

http://www.scm.com/Doc/Doc2014/ADF/Examples/page1.html

3 Recommendations, problems, Questions

3.1 Recommendations

Precision

The quality of the calculation, given the selected model Hamiltonian - density-functional, relativistic features,
spin-restricted/unrestricted... - is determined to a large extent by several technical precision parameters.

The most significant ones are:

Basis set

Obviously, the quality of the basis set may have a large impact on the results. As a general rule,
minimum and almost-minimum basis sets (types SZ and DZ) may be used for pilot calculations, but
polarization functions should be included (DZP, TZP) for more reliable results.

SCF convergence

The self-consistent-field (SCF) and geometry optimization procedures terminate when convergence
criteria are satisfied. If these are set sloppy the results may carry large error bars. The default SCF
convergence tolerance is tight enough to trust the results from that aspect. However, when the SCF
procedure encounters severe problems an earlier abort may occur, namely if a secondary (less
stringent) criterion has been satisfied (see the key SCF). Although this still implies a reasonable
convergence, one should be aware that for instance the energy may be off by a few milli hartree (order
of magnitude, may depend quite a bit on the molecule). It is recommended that in such cases you try to
overcome the SCF problems in a secondary calculation, by whatever methods and tricks you can come
up with, rather than simply accept the first outcomes.
Note: in a geometry optimization the SCF convergence criteria are relaxed as long as the geometry
optimization has not yet converged. This should generally not affect the final results: the SCF density
and hence the energy gradients may be somewhat inaccurate at the intermediate geometries, but since
these are not a goal in themselves the only concern is whether this might inhibit convergence to the
correct final geometry. Our experiences so far indicate that the implemented procedure is reliable in this
aspect.

Geometry convergence

This is a far more troublesome issue. Three different types of convergence criteria are monitored:
energy, gradients and coordinates. The energy does not play a critical role. Usually the energy has
converged well in advance of the other items. The coordinates are usually what one is interested in.
However, the program-estimated uncertainty in the coordinates depends on the Hessian, which is not
computed exactly but estimated from the gradients that are computed in the various trial geometries.
Although this estimated Hessian is usually good enough to guide the optimization to the minimum - or
transition state, as the case may be - it is by far not accurate enough to give a reasonable estimate of
force constants, frequencies, and as a consequence, neither of the uncertainties in the coordinates. An
aspect adding to the discrepancy between the Hessian-derived coordinate-errors and the true
deviations of the coordinates from the minimum-energy geometry is that the true energy surface is not
purely quadratic and using the Hessian neglects all higher order terms. The gradients provide a better
criterion for convergence of the minimizer and therefore it is recommended to tighten the criterion on the
gradients, rather than anything else, when stricter convergence than the default is required.
The default convergence criteria, in particular for the gradients, are usually more than adequate to get a
fair estimate of the minimum energy. Tighter convergence should only be demanded to get more
reliable coordinate values (and in particular, when the equilibrium geometry needs to be determined as
a preliminary for a Frequencies run).

317

Numerical integration accuracy

The key BeckeGrid key block (or alternatively the old INTEGRATION key block) determines the
numerical precision of integrals that are evaluated in ADF by numerical integration, primarily the Fock
matrix elements and most of the terms in the gradients. In addition the integration settings also
determine several other computational parameters. The demands on numerical integration precision
depend quite a bit on the type of application. The SCF convergence seems to suffer hardly from limited
integration precision, but geometry convergence does, especially when tight convergence is required
and also in transition state searches, which are generally more sensitive to the quality of the computed
energy gradients. An extreme case is the computation of frequencies, since they depend on differences
in gradients of almost-equal geometries. Frequency calculations on molecules with sloppy modes
suggest that a BeckeGrid of "good" quality may be required. Note: a large integration value implies that
a lot more points will be used in the numerical integrals, thereby increasing the computational effort
(roughly linear in the number of points).

Electronic Configuration

Not specifying occupation numbers in input will not automatically result in the computational of the ground
state. It may even lead to non-convergence in the SCF and/or in the determination of minimum-energy
geometries or transition states. Therefore: whenever possible, specify occupation numbers explicitly in input
(key OCCUPATIONS)!

Misunderstanding results of a calculation may easily result from a lack of awareness of how ADF treats the
electronic configuration, which orbitals are occupied and which are empty. Unless you specify occupation
numbers in input they will be determined from the aufbau principle but only during the first few SCF cycles.
Thereafter the distribution of electrons over the different symmetry representations is frozen (see the key
OCCUPATIONS, options AUFBAU and aufbau2). If at that point the potential has not yet sufficiently relaxed
to self-consistency the final situation may be non-aufbau.

A related aspect is that the ground state does not necessarily have an aufbau occupation scheme. In
principle, different competing electronic states have to be evaluated to determine which has the lowest total
(strongest bonding) energy.

Check output always carefully as to which orbitals are occupied. In general, whenever possible, supply
occupation numbers in input. Be aware that the automatic choice by the program may in a Geometry
Optimization result in different configurations in successive geometries: the automatic assessment by the
program will be carried out anew in each SCF procedure. If competing configurations with comparable
energies have different equilibrium geometries, the geometry optimization has a high failure probability. The
gradients computed from the SCF solution of a particular configuration drive the atoms in a certain direction,
but in the next geometry, when the program re-determines the occupations and finds a different
configuration, the resulting gradients may drive the atoms in another direction.

See the keys CHARGE and OCCUPATIONS for user-control of occupation numbers.

Spin-unrestricted versus spin-restricted, Spin states

If your molecule has unpaired electrons, you should run an unrestricted calculation, in principle. However, if
this exhibits convergence problems (or if you simply want to save time: an unrestricted calculation takes a
factor 2 more CPU time and data storage), you may consider to do it in two steps. First, run a spin-restricted
calculation. Then perform a spin-unrestricted calculation using the restricted TAPE21 as a restart file. In the
follow-up calculation you should specify the precise occupation numbers for the state you're interested in,
and use the SCF input key to specify only one SCF cycle (iterations=1). This prohibits convergence (so you
keep the converged restricted orbitals) and gives you a fairly adequate approximation to a converged
unrestricted result. See also the H2 example run for a discussion in the Examples document.

318

An unrestricted calculation does not necessarily yield the multiplet configuration (triple, doublet ...). This is a
rather complicated matter, see the discussion on multiplet states, key SLATERDETERMINANTS.

Geometry Optimization

Bond angles of zero or 180 degrees

Avoid bond angles of 0 or 180 degrees. Use a dummy atom at a location orthogonal to the co-linear triple
and define angles w.r.t. the dummy atom.

Be aware that bond angles can be explicit - these are easily recognized - but also implicit, in the definition of
dihedral angles: it is absolutely imperative that such implicit bond angles are never 0 or 180 degrees: the
dihedral angle will not be properly defined and an error will occur.

The program may in some cases be able to recover from 0/180 degree bond angles, but this is not a
certainty. If it fails, the geometry update steps may go completely wild. Even worse: the steps may remain
small but convergence is not reached, without a clear and explicit indication in the output about the cause.

Sloppy modes

Many molecules have sloppy modes, implying that geometric departures along these modes from the true
minimum hardly change the energy and do not result in sizeable gradients. This usually shows up in slow
convergence: energy and gradients appear to be converged but the computed step lengths, an assessment
of the error in the geometry itself, do not disappear.

Starting from ADF2005.01 delocalized coordinates can be used in geometry optimizations and transition
state searches. The use of delocalized coordinates often help in convergence of these problematic sloppy
modes.

It depends then on the purpose of the run whether a continued search for the minimum is useful if one has
slow convergence: not if you only want to know the energy at the minimum, but certainly so if you want to
determine all geometric parameters to high precision. Depending on the case you may therefore want to
relax the convergence criterion on the coordinate steps. In the case of Z-matrix optimization this has to be
done primarily for the angular coordinates because the bond lengths are usually much stiffer and will
therefore not suffer from sloppy mode problems. If you insist on strict convergence of sloppy modes you
should use a fair integration precision (BeckeGrid quality: "good").

Step convergence

The criterion on convergence of the coordinates (steps) is often not a reliable measure for the precision of
the final coordinates, although it does give a reasonable estimate (order of magnitude). To get accurate
results you should tighten the criterion for the gradients, rather than for the steps.

What basis set should I use in ADF?

See the section on what basis set should I use in ADF? in this ADF Manual.

319

Frequencies

Outcomes of Frequencies calculations are usually quite sensitive to the geometry, so before computing the
frequencies, one should make sure that the geometry is well converged at the level of the subsequent
Frequencies calculation: the same model parameters and basis sets.

In all cases one should take care that the precision of Numerical Integration is adequate (this is good advice
anyway for a sound Frequencies calculation).

Doing one-point, rather than two-point differentiation will roughly save you half of the time needed to
complete the calculation. Increasing the integration precision will work the other way. To obtain high-
precision results using one-point differentiation requires for one thing that you use very small displacements
(smaller than the defaults) and high accuracy of numerical integration. Some studies [14, 107] suggest to
use a) two-sided displacements, b)

This may not always be feasible due to the high CPU costs, but it should at least stress the importance of
accuracy in the computation of frequencies.

A computation of frequencies runs over discrete displacements of atomic coordinates. When using
Cartesian displacement coordinates, the program applies symmetry to skip symmetry-equivalent
displacements and thereby save CPU time. In the output and logfile you'll find in such a case that the
'frequency displacement counter' skips one or more values: the counter counts all possible displacements,
while only the symmetry-unique ones are actually carried out.

Starting from ADF2005.01 symmetric displacements can be used. This speeds up the computation
significantly.

Relativistic methods

The ZORA relativistic approach is often superior and in other cases at least similar to the older Pauli
method. In particular for all-electron calculations generally, and for very heavy elements even within the
frozen core approach, the Pauli method may exhibit significant shortcomings. This is mostly due to the
variational instability of the Pauli formalism in the deep-core region near the nucleus. The bigger the basis
set and the smaller the frozen core, the more likely this will show up, while generally speaking you might be
tempted to use smaller cores and bigger basis sets to improve your results. The ZORA approach does not
suffer from these problems and is, therefore, highly recommended over the Pauli formalism.

3.2 Trouble Shooting

This chapter contains hints to help you solve some problems and comments on frequently asked questions.

License file corrupt

You may find that, after having installed the license file, the program still doesn't run and prints a message
like 'your license file is corrupt'. To explain how this may come about, and how you overcome this, a few
words on license files.

Each license file consists of pairs of lines. The first of each pair is text that states, in more or less readable
format typical aspects such as an expiration date, the version number of the software and so on. The
second line contains the same information in encrypted format: a (long) string of characters that seem to
make little sense. The program reads the license file and checks, with its internal encrypting formulas, that

320

the two lines match. If not, it stops and prints the 'corrupt' message. So, there are two common reasons why
it may happen to you:

• You are using a license file for another version of the software than your executables correspond
to.
Newer (major) releases may contain a different encrypting formula, so that the match in old
license files
is not recognized anymore.
So, please verify that your license file and executable belong to the same major release.

• More likely: the license file as it has been created has been modified in some way.
Sometimes, people inspect it and 'clean it up' a little bit, for instance by removing 'redundant'
spaces,
or by making some other 'improvements'.
Unfortunately, every such modification will destroy the encryption match and lead to the 'corrupt'
error.
Most of the times, however, the reason lies in the mailing system, by which the license file has
been sent
to you. If the encrypted line is rather long, the mailer may have cut it in two shorter lines.
To verify (and correct) this: edit the license file and see if it consists of pairs of lines as described
above.
If not, re-unify the broken lines and try again.

• Finally, the problem may lie in your O/S, which may have inserted additional hidden <CR>
characters
(Carriage-Return) into the license file. You can remove them with our fix_license utility
(in $ADHFOME/Install), see the Installation manual.

Recover from Crash

A calculation may terminate in two ways: controlled or uncontrolled. Controlled termination includes cases
where the program itself detects an error and decides that continuation of the calculation is impossible or
pointless. In all such cases the standard exit routine is executed, resulting in an output section with some
final information. This also ensures that the general result file TAPE21 is closed properly and all relevant
information flushed to it.

Uncontrolled termination may occur, for instance when some bug causes the program to divide by zero,
violate memory access restrictions, etc. Usually this leads to an immediate abort of the program by the
Operating System and hence loss of control by the program. In such situations the information on TAPE21
may be incomplete because some of the data are kept in memory until the final termination of the program is
carried out. It would be a terrible nuisance to see all time spent so far being lost. To remedy this ADF
supports a check point file, named TAPE13, to help you recover at least some, if not most, of the results: not
for analysis, but for continuation from a point not too long before the fatal condition occurred. TAPE13 can
be used, just like TAPE21, as a normal restart file. See the restart key.

Memory Management

Problem: The program aborts with an error message "MEMORY ALLOCATION ERROR". This message is
issued both in the logfile and in the output file.

Cause: Memory allocation may fail due to:

1. Insufficient virtual (i.e. total RAM + swap) memory
2. On Unix: too low values for per-process memory limits
3. Restrictions of the 32-bit architecture

321

Cure: Problem 1: add more physical RAM or increase the size of the swap space (page file).
Problem 2: add one or more ulimit commands to your run script setting relevant limits to "unlimited".
Problem 3: Perform your calculations on a 64-bit system. ADF version for the most common 64-bit operating
systems are available so use them!

All the three problems above can be avoided by reducing the size of the calculation. The most important
parameter defining the amount of used memory is the size of the basis set or, more precisely, the total
number of Cartesian Slater functions, naos. Current value can always be found in the out file of the
calculation, just search for the "naos" string. The amount of memory used by a particular calculation
depends on the naos value and of the type of the calculation and, for large naos, it scales as naos2. For
example, a non-relativistic calculation during SCF can use up to 40 naos2 bytes of memory. Using spin-orbit
coupling may double this amount and using a hybrid or a meta-GGA XC functional will add extra on top of it.
Also TDDFT calculations require additional memory.

What can be done to reduce memory usage? First of all, reducing the basis set size for non-critical parts of
the molecule will reduce the memory requirement without reducing the quality of the results. Secondly,
performing a calculation with a pure GGA instead of B3LYP will not only reduce the amount of memory used
but also make the calculation faster. The latter especially applies to geometry optimizations because there
B3LYP does not perform any better than some of the GGAs.

Note: If workspace problems occur for relatively small calculations, there might be a bug. Notify your ADF
contact: send us the output file so that we can have a look and check things out.

SCF

SCF convergence problems can have various reasons. Thus, finding the reasons for a particular SCF
behavior is half of solving the problem. You'll be surprised but the majority of SCF convergence problems
are caused by an unphysical calculation setup, such as mistakes in the geometry or a too large negative
charge. Thus, the first thing to do is to check if the geometry is really what it is meant to be. Check for too
short interatomic distances, make sure the coordinates are specified in the right units. By default ADF
expects atomic coordinates in Andgstrom so check that the coordinates are provided in these units. Also
check that no atoms got "lost" when importing coordinates.

So, your calculation is set up correctly, but the SCF still does not converge. Before discussing other options,
let's look at how the SCF process in ADF is organized. In a nutshell, it consists of the following steps:

1. A Fock matrix is constructed from the current density and the potential.
2. The Fock matrix is used in a DIIS procedure where it is mixed with some previous Fock matrices

to construct a new one.
3. This new Fock matrix is diagonalized to obtain molecular orbitals (MOs).
4. MOs are populated by electrons following the aufbau principle or, if the KeepOrbitals feature is

ON, by overlap with a previous density matrix.
5. A new density matrix is constructed from occupied MOs and the steps 1-5 are repeated.

Problems on any of the steps 1, 2, and 4 above can cause problems in the whole SCF process. Usually one
can identify which step causes the problems by looking in the logfile and in the output file. In the logfile, two
values are printed for each SCF cycle: ErrMat and MaxEl. Both values are related to commutator of the
current Fock and density matrices, [F,P]. ErrMax is a sum of squares of the commutator matrix elements
while MaxEl is its largest (by absolute value) element. Below, different SCF patterns will be discussed with
suggestions on how to solve them.

By far the most common reason for non-converging SCF is a very small or absent HOMO-LUMO gap. This
problem is most frequently observed for compounds containing d- and f-elements (transition and rare-earth
metals). This causes different MOs to be populated in subsequent cycles at the step 4 above, which, in turn,

322

leads to large changes in the density and Fock matrices between cycles. In the logfile, the problem
manifests itself by the ErrMat and MaxEl values remaining rather large (in the order of 0.1 to a few tens)
sometimes going down to smaller values but then jumping back up. By looking at the MO population
numbers in the output file one can sometimes see that the HOMO changes from cycle to cycle. There are a
few ways to get the SCF converged in such a situation.

For open-shell electronic configurations, it is possible that a spin-unrestricted calculation will converge better
than a spin-restricted one. Thus, if the molecule is not going to be used as a fragment (in which case it must
be spin-restricted) then it is recommended to perform a spin-unrestricted calculation in a high-spin
configuration. This is particularly useful for molecules with multiple radical centra, such bi- or multi-nuclear
transition metal complexes. After a high-spin calculation of the complex has converged one can perform a
broken-symmetry low-spin calculation using the high-spin results as a restart and a SpinFlip feature. See
also a tutorial on spin coupling of an iron compound for an example of this approach.

If a spin-unrestricted calculation is not desirable or if it also has SCF convergence problems one may
consider trying different DIIS methods in the step 2 above or try a completely different SCF method,
preferrably in the order listed below:

• A-DIIS is a recently published alternative DIIS procedure that combines the strength of E-DIIS and
ARH methods discussed below, but does not require (time-consuming) evaluation of the energy.
By varying the two threshold parameters (see the link above) one can control the switching
between A-DIIS and Pulay DIIS, which can get the SCF converged even in very difficult cases. To
enable A-DIIS from the 1st SCF cycle, just add ADIIS to the SCF input block. A-DIIS is also
automatically invoked when ADF detects SCF problems. In some rare cases, A-DIIS may fail while
the Pulay DIIS converges, even if after many cycles. In this case adding NoADIIS to the SCF
block will disable the automatic switching on the A-DIIS. Note: A-DIIS is not compatible with
enforced non-aufbau electronic configurations it should be disabled in such a case. A non-aufbau
electronic configuration may be enforced using a block form of the Occupations key, but it may
also result from the KeepOrbitals (a.k.a. orbital tracking) feature. In both cases A-DIIS should not
be used.

• LISTi is a method developed by Y.A. Wang and coworkers. LISTi frequently converges as well as
A-DIIS, if not better. Like A-DIIS, this method also affects (replaces) the DIIS step only leaving
other steps unchanged. In the LISTi method, the number of the expansion vectors (also known as
the size of the DIIS space) is an important factor which may have to be adjusted to achieve
convergence.

• Energy-DIIS by Scuseria and Kudin is a powerful method. It requires evaluation of the total
energy, which is its strong point and a weakness at the same time. It is a strong point because it
lets the algorithm converge the SCF to a configuration with the lowest energy and it is a weakness
because energy evaluation is a computationally expensive procedure in ADF. To use Energy-DIIS
just add an EDIIS keyword to the SCF input block.

• The Augmented Roothaan-Hall (ARH) method is an alternative SCF method that combines
steps 2-4 above into a single step. Essentially, ARH performs a direct minimization of the energy
as a function of the density matrix combining a preconditioned conjugate-gradient method with a
trust-radius approach. This is probably the most powerful SCF method to date because it can
converge even the most difficult cases. However, it also has its limitations and drawbacks
discussed in the corresponding section of the ADF User's Guide. The most important drawback is
that, like Energy-DIIS, it also requires evaluation of the total energy. Besides, for the method to
work reliably, the energy must be accurate, which means that an accurate fit and high integration
accuracy should be used.

As mentioned above, A-DIIS, LISTi and Energy-DIIS affect only the DIIS step of the whole SCF process.
Thus, it is possible that the SCF still has trouble converging even with the best DIIS method, because
different MOs are occupied in different SCF cycles, which induces large changes in the density. ADF has a
built-in feature called KeepOrbitals that assigns electrons to MOs based on their overlap with occupied MOs
from the previous SCF cycle. KeepOrbitals is usually enforced starting from the 25th SCF cycle. However, if
there are SCF problems, switching on KeepOrbitals may not have the desired effect. For example, the
system may be trapped in an excited state due to it. Changing the SCF cycle at which KeepOrbitals kicks in

323

http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagSPIN_FE4S4.html

may affect the final electronic configuration. Thus, playing with KeepOrbitals and trying different values for
its parameter (the SCF cycle number) is encouraged.

For the DIIS-like methods listed above (A-DIIS and LISTi), the number of expansion vectors is an important
parameter. We found that in some cases, for example, transition metal clusters, increasing this number to 20
or 25 solves most of the problems. Thus, the first thing to try when there are SCF convergence problems is
to use the following input parameters:

SCF
ADIIS
DIIS N=20
Iterations 300

END
Occupations KeepOrbitals=300

The input above turns A-DIIS on from the first SCF cycle, increases the number of expansion vectors to 20
and disables KeepOrbitals during the whole SCF process. With these settings, the previously non-
converging transition metal clusters have converged in under 100 cycles.

Another trick that may help sometimes is allowing more cycles with simple damping before switching to DIIS.
It is also recommended to use a smaller damping factor in this case. The following SCF settings are then
recommended:

SCF
! The default value of 0.2 may be too high for some systems
! so we change it to 0.1

Mixing 0.1
! The default value DIIS ok=0.5 might make DIIS kick in too soon
! thus making it unstable. The cycle starting from which DIIS is
! enforced may also be shifted forward.

DIIS ok=0.01 cyc=20
! Set the max number of SCF cycles to 100 but you can use an
! even larger value.

Iterations 100
END

Numerical noise in the exchange-correlation potential may also contribute to SCF convergence probems. If
this is the case, the SCF process starts off converging quite well until some point after which the ErrMat and
MaxEl values remain relatively small but do not decrease further. This behavior is typically observed for
systems where weak (Van der Waals or hydrogen bonding) interactions are present. It is caused by a
relatively low accuracy of the density fit in the chemically relevant region between weakly bonded fragments.

This problem can be resolved by adding the EXACTDENSITY keyword to the input file. When using
ADFinput, the corresponding option called "Density used in XC-potential" found on the Accuracy tab should
be set to "Exact" or "Exact MO-based", "Exact" being preferred.

Geometry Optimization

No convergence

First of all one should look how the energy changed during the latest ten or so iterations. If the energy is
changing more or less in one direction (increasin or decreasing), possibly with occasional jumps, then there
is probably nothing wrong with the optimization. This behavior is typical in the cases when the starting
geometry was far away from the minimum and the optimization has a long way to go. Just increase the
allowed number of iterations, restart from the latest geometry and see if the optimization converges.

324

If the energy oscillates around some value and the energy gradient hardly changes then you may need to
look at the calculation setup. We give some recommendations below.

The success of geometry optimization depends on the accuracy of the calculated forces. The default
accuracy settings are sufficient in most cases. There are, however, cases when one has to increase the
accuracy in order to get geometry optimization converged. First of all, this may be necessary if you tighten
the optimization convergence criteria. In some cases it may be necessary to increase the accuracy also for
the default criteria. Here's what you can do to increase the accuracy of gradients:

• Increase the numerical quality to "good"
• Add an ExactDensity keyword or select "Exact" in the "Density used in XC-potential" list in the

Details:Accuracy panel. This will make the calculation 2 or 3 times slower.
• Tighten the SCF convergence criteria, for example, to 1e-8.

Example input with some of these stricter settings using a TZ2P basis set. ExactDensity is not included here
since it will make the calculation much slower.

NumericalQuality Good
Basis

Type TZ2P
Core None

End
SCF
converge 1e-8

End

Small HOMO-LUMO gap: check the HOMO-LUMO gap at the last SCF cycle at a recent geometry. Is it
comparable with the changes in the MO energies between geometries? If yes, then it is possible that the
electronic structure changes between optimization steps, which may lead to non-convergence. This may
indicate a fundamental problem with the calculation setup. First of all, check that you obtain a ground state
in a single-point calculation. Is the spin-polarization value correct? Try calculating some of the high-spin
states if possible and see if they have lower energy. If the MO repopulation that is taking place is between
MOs of different symmetry, then you can try freezing the number of electrons per symmetry using an
OCCUPATIONS block.

In the next two sections we've collected some troubleshooting tips that apply only to the new or only to the
old branch. In the last section, we also address a very rare issue with very short bonds that may appear
independently of the optimization branch.

New Branch

Are there constraints imposed on the optimization? If yes, then check that the constraints do not break the
symmetry. ADF automatically preserves symmetry when the starting structure is symmetric and no
Symmetry NOSYM has been specified. This symmetry preservation may conflict with constraints if the
constraints are not specified according to symmetry. For example, if two interatomic distances are
symmetry-equivalent and you freeze one of them, then you should also freeze the other explicitly.

Optimization in Cartesian coordinates usually needs more steps to converge compared to delocalized. If
you haven't tried delocalized optimization for the system then you should do it.

Near 180-degree angles with optimization in delocalized coordinates. ADF normally does not have a
problem with a near-180-degree valence angle if the initial value of the angle was larger than 175 degrees or
if it is a terminal bond angle. If the initial angle was larger than 175 degrees then it gets a special treatment.
For example, any torsion angle that contains the three atoms is removed or replaced with a torsion angle
involving only the two end atoms of the near-180-degrees angle. If the angle defines a terminal bond then
two angles in two coordinate planes are used to define the bond instead of a valence and a torsion angle.
However, if the initial value of the angle was far from 180 degrees and has become close to it during

325

optimization then optimization may become unstable, especially if this is an angle connecting large
fragments. In this case, it may be useful to restart geometry optimization from the latest geometry. As a last
resort, you may want to constrain the angle to a value close, but not equal, to 180 degrees.

Old Branch

Spurious jumps

Problem: During geometry optimization in Z-Matrix coordinates, the atomic configuration makes a large
unrealistic jump.

Possible cause 1: the triplet of atoms to which the current atom is related by the Z-matrix is (almost) co-
linear. When, in a geometry step, the triplet passes through co-linearity, the dihedral angle for the current
atom should make a discontinuous jump of 180 degrees. This is not checked in the program and the
dihedral angle may not get corrected, resulting in a geometric jump of the atom (and hence of all atoms
related to it by the Z-matrix).

Cure: Check the triplets of atoms, used in your Z-matrix to define the dihedral angles. If one of them is
almost colinear, then redefine the Z-matrix or use Cartesian optimization.

Possible cause 2: the connectivity of the Z-matrix does not reflect some important bonds. Especially when
the molecule contains (a large number of) rings, this badly affects the stability of the geometry update step.
The reason is basically that computed Cartesian forces are transformed into changes of the curvilinear
internal coordinates. The transformation between the two systems of coordinates is non-linear, but
mathematically assumed to be linear. This is only a good approximation for small steps.

Cure: Redefine the Z-matrix and/or (if the geometry steps are very large) set a smaller upper bound on the
maximum step (key GEOMETRY, subkey step).

Constraints are violated

Problem: constraints are violated: coordinates that were specified as frozen turn out to change during the
optimization or coordinates that should remain the same start to differ after a few geometry update cycles.

Possible cause: there is an internal conflict between different demands, usually: symmetry versus
constraints. The problem arises easily when a constrained optimization is requested for a molecule with
some symmetry while the coordinates were defined with a Z-matrix structure that does not properly reflect
the symmetry. Usually the deviations from the requested constraints are small. If they are really large, there
might be a bug and you should contact ADF support.

Cure: redefine the Z-matrix and/or use Cartesian optimization (if the constraints are expressible in
Cartesians).

Very short bonds

If the computed equilibrium geometry appears to exhibit unlikely values, typically significantly too short bond
lengths, you may have run into a basis set problem, in particular (but not only) if the Pauli relativistic method
is applied.

Problem: Optimized bond lengths are clearly too short. The energy may also look suspicious.

Possible cause 1: Basis set trouble: onset of Pauli variational collapse, if you have applied the Pauli
relativistic option. Caused by small (or absent) frozen cores and/or relatively large basis sets, applied to
heavy elements.

326

Possible cause 2: Basis set trouble also, but quite different from the previous potential cause: you have
used relatively large frozen cores. When the atoms approach each other during the optimization and the
frozen cores start to overlap, the energy computation and the computed energy gradients become more and
more incorrect. This is a result of the inappropriateness of the frozen core approximation, which indeed
assumes that frozen cores of neighboring atoms do not significantly overlap. Without going into a detailed
explanation here, the net effect is that certain repulsive terms in the energy computation are missing and
hence a spurious tendency to a 'core collapse' arises, yielding too short bond lengths.

Cure: Best is to abandon the Pauli method and use the ZORA approach instead for any relativistic
calculation. If for whatever reason you insist on using the Pauli formalism, apply bigger frozen cores and, if
that doesn't help, reduce the basis set (not by deleting polarization functions, but by reducing the flexibility of
the occupied-atomic-orbitals space, in particular s- and p-functions). Note, however, that large frozen cores
can be a cause for trouble by themselves, irrespective of any relativistic feature. If you have reason to
believe that your frozen cores might be too large, given the resulting bond lengths in your calculation, you
have to pick smaller cores (and hence be very wary of using the Pauli formalism for any relativity).

Frequencies

Imaginary Frequencies

Problem: totally unexpected significant imaginary frequencies are obtained (in a Frequencies run) where
you are pretty convinced that all frequencies should be real.

Possible cause 1: problems with the electronic configuration. If there are competing configurations, the
electronic states in the different displaced geometries may be different, resulting in energies and gradients
belonging to different potential energy surfaces to be compared and combined into force constants
(frequencies).

Check: orbital occupations and SCF convergence behavior: if the SCFs in the displaced geometries start
with large errors and/or converge very slowly you are likely to have stumbled into different configurations, so
that the results from the displaced geometries are incompatible.

Cure: This is a difficult situation that may require some experimenting and judicious manipulation of the
various SCF options. The bottom line is that you should try anything you can to ensure that all involved
geometries have the same electronic configuration. As long as you fail to achieve this, the results are
meaningless.

Possible cause 2: flat potential energy surface (think about almost free rotation modes) coupled with
relatively high noise level in gradients caused by numerical integration errors or not sufficiently converged
geometry optimization.

Check: visualize the imaginary frequencies in ADFspectra and check that their respective normal modes
correspond to movements that are expected to be have (nearly) flat energy profile.

Cure

:
• restart geometry optimization with more strict convergence criteria. The default criterion on

gradients 0.001 Hartree/Angstrom may be not strict enough for some systems. In such cases a
value of 0.0001 is recommended, and for accuracy reasons use "good" numerical quality, and
EXACTDENSITY (important for GGA's).

Example input with strict settings using analytical frequencies, and a TZ2P basis set. Unlike the numerical
frequencies, the analytical frequencies can be computed immediately after a geometry optimization by
including both block keywords in the same input file.

327

Geometry
converge grad=1e-4

End
AnalyticalFreq
End
NumericalQuality Good
Basis

Type TZ2P
Core None

End

Geometry-displacement numbers in the logfile are not contiguous

Problem: successive displaced geometries in the logfile are numbered, but in your case these numbers
make sudden jumps, like '0, 1, 2, 5, 6, 13...'

Cause: you're using Cartesian displacements in a system that has some symmetry in its equilibrium
geometry. The program skips the displacements of symmetry-equivalent atomic coordinates to save time.
The displacement counts in the logfile do not run over the actually performed displacements but over all
atomic coordinates that could be displaced if no use were made of symmetry properties.

Cure: there is no error, don't worry.

Input ignored

Problem: the program doesn't get past input and aborts with a message eof while reading (....). Or the
program seems to ignore some parts of input and as a consequence goes wrong somewhere. Or it seems
that part of the input has not been read correctly or not at all.

Cause 1. You have used tab characters in your input file. These are not normally visible when you edit your
file, but they will affect the program's scanning of the input. When you use tab characters in the input, it is
very likely that the program will do something wrong somewhere. Tabs may be ignored by the program, so
that items that you believed were separate (by a tab!) are in fact read as contiguous.

Check: the input file on tab characters.

Cause 2: misusage of one of the block-type keys or general keys.

A case that relatively often shows up is typing a title as first line of the input file, without preceding it by the
keyword title. The program does not understand this as the title, but rather tries to interpret the first word as
a keyword. This leads to an error if the first word is recognized as one of the pre-defined block-type keys
(possibly abbreviated).

Check: the input file on usage of block-type keys and on proper usage of a title.

Cause 3: incorrect processing of expressions or unintended replacement of names by numerical values.
Various kinds of mis-typing or incorrect usage of variables may cause this.

Check: how the program sees input, after parsing. This can be done by rerunning the job, with as first line in
input : print parser.

This will cause the program to copy each input line twice to output, the second time after having parsed it.
You may use StopAfter Input or StopAfter Init to let the program quit early so you can inspect what is going
on with the input reading.

328

SFO Populations

In the section that prints the SFO populations of (selected) MOs you may occasionally find, for some SFOs
in some MOs, negative SFO contributions. This may seem unphysical and hence suspicious, but it is 'only' a
result of the Mulliken-type analysis method that underlies the computation of the SFO contributions. See the
section below that discusses the output file. Likewise for larger-than-100% contributions: don't worry too
much, these numbers may be correct (mathematically, given the Mulliken population formulas).

Error Aborts

The program performs a large number of checks during the calculation and may stop when it detects and
error. It is close to impossible to show here a complete list of all possible error messages. In a large number
of cases, additional information is printed in the output file to provide a clue as to the cause of the error. It is
always useful to carefully inspect the printed info and to try to understand the meaning of any error- or
warning messages. If you can't find your way out, try to get help from your ADF provider. If that fails, contact
us directly at support@scm.com

Warnings

The program attempts to detect bugs, instabilities, convergence problems, et cetera and may issue warnings
when something looks suspicious. This is not necessarily fatal to your results, but you should be cautious
and try to understand what the messages are about. Most warnings are printed in the logfile. Usually there is
corresponding and more extensive information in the standard output file.

3.3 Questions

Overlap matrix in BAS representation

How do I get the overlap (S) matrix in the BAS representation?
It is stored on a scratch file TAPE15, which is normally deleted at the end of the calculation because it
can be pretty big. To retain that file, insert 'SAVE TAPE15' in your input, see the Save key.
TAPE15 is a KF file, which you can manipulate with the KF utilities. On TAPE15 the overlap matrix is
stored as the variable 'smat' in the section 'Matrices', in reduced (triangular) format: (1,1), (1,2), (2,2),
(1,3) et cetera

329

4 RESULTS
ADF produces two ASCII files: standard output and the log file. The latter is a very concise summary of the
calculation's progress during the run. Furthermore, ADF produces and reads binary data files. Most of these
files have the so-called KF format. KF stands for Keyed File: KF files are keyword oriented, which makes
them easy to process by simple procedures. KF files are Direct Access binary files. Consult Appendix 5.5 for
how to use some standard utilities for processing KF files.

4.1 Results on standard output

The (standard) output file contains information of the main characteristics of the run, the SCF and geometry
optimization results, bonding energy and population analyzes. Major parts of output can be regulated with
print switches, see the keys (NO)PRINT and EPRINT.

By default the program produces quite a bit of output, for a large part related to (Mulliken-type) population
analyzes of the molecule in total, as well as of individual orbitals, both in terms of the elementary basis
functions and in terms of the SFOs, the symmetry-adapted Fragment Orbitals.

The fragment-oriented approach of ADF is very suitable for a thorough chemical analysis of molecular orbital
properties and a conceptual representation of results. New users are advised to spend time and get familiar
with the SFO-type analysis. It is an extremely more powerful tool to understand the electronic structure of
the molecule than the classical atomic orbital populations.

A summary of output is given below, assuming that default values apply for all print switches. Keep one of
the Example outputs at hand when reading the description below.

Job Characteristics

Input Echo, Output Header

• Copy of the input file, except any InLine records: these are expanded and the contents of the
inlinefile
replaces the InLine command in the echo.

• Header with the program name, the release number and a copyright statement.
• Directly below the header are printed the job identification, title, and any comments that may have

been
supplied via input (key COMMENT).
The job identification is comprised of the ADF release number and the date and time of the
calculation.

Main Job Characteristics

• The Model Parameters such as the Density Functional and relativistic options.
• A list of attached files: restart data files and fragment files.
• The run type: Geometry Optimization, Frequencies...
• (Initial) geometric data: atomic positions, atom types, defined fragments, and the inter-atomic

distance matrix.
• The point group symmetry, with a list of the irreducible representations and subspecies.
• The electronic configuration: occupation numbers (if specified), their distribution over spin-α and

spin-β,
and the net charge of the molecule.

330

Build Info: Fragments and Function Sets

See the print options eprint:frag, eprint:sfo and functions.

• Correspondence between fragments in the molecule and the corresponding master fragments
on the pertaining fragment file. (This output is by default off)

• SFOs: the Symmetry combinations of Fragment Orbitals. The SFOs are the basic conceptual
entities
for the analysis of MOs and other results.
Note: The FO coefficients that expand the SFOs are normalized in the sense that they add up
(squared) to unity.
The resulting SFO function is not necessarily a normalized function. The FOs are normalized,
so it depends on the overlap between the FOs what the self-overlap and hence the norm of the
SFO is.
Also printed are, for each subspecies in each irrep separately, the indices of the elementary basis
functions
from which the FOs and hence the SFOs are built up. (The overlap matrix of SFOs is printed much
later,
in the SFO Populations section after everything (SCF, Geometry) has cycled to convergence).

• The elementary basis functions, fit functions, and the frozen-core levels of the atoms.
First the lists of function sets, defined by radial behavior and the angular quantum number,
are printed for all atom types on which the functions are centered. Thereafter follows the complete
BAS
list where the function sets have been expanded over all atoms (the sets are printed only for the
atom types) and also over all Cartesian harmonics (6, not 5 d-functions, et cetera).
In this printout the numbering can be found to which the SFO survey above refers.

Technical Parameters

See the PRINT key techpar.

• Parallelization and vectorization characteristics.
• Direct versus Store-On-Disk options.
• Update strategy parameters for Geometry updates (if applicable) and for the SCF procedure.
• General precision settings for numerical integration and neglect-of-small function values

(in integral evaluations).

Computational Report

See the print switches computation, eprint:numint, eprint:SCF, eprint:geo.

Numerical integration

General grid-generating parameter(s) and the number of generated (symmetry unique) integration
points, with their distribution over the distinct kinds of integration regions: the atomic (core-like) spheres,
the remaining interstitial regions between the atoms (atomic polyhedra), and the outer region, i.e. the
part of space around the molecule.

Partitioning of the points in blocks. In general there are too many integration points to have all pertaining
data (values of basis functions in the points etc.) in memory. A segmentation in blocks of points is
therefore applied, processing a block of data at a time after loading it from disk or recomputing it
(depending on the Direct options). This also determines vector lengths and hence vectorization
performance in numerical integral evaluations.

Integration Tests. The generation of the points involves an adaptive procedure to tune the point
distribution such that a pre-set precision of several test integrals is achieved with a minimal number of
points. The generated scheme is a posteriori tested by evaluating a few integrals in the actual molecule.

331

This does not result in any subsequent adaptation of the grid but only produces info for the user to verify
that all goes well. If the results are suspicious a warning is issued and if the results are too bad, the
program will abort.
The most important and significant test is the evaluation of the self-overlaps of all symmetry-adapted
elementary basis functions. The maximum and root-mean-square (relative) errors are printed. This
extensive testing is not carried out in Direct-SCF (bas) mode because in that case the necessary
information is not available (basis functions are only computed when needed in the SCF).
A test that is always carried out is the numerical integration of the total frozen core density (summed
over all atoms in the molecule). Also here a warning or even abort will occur when the result indicates
that the integral has insufficient accuracy compared with the integration precision parameter.

SCF procedure

at each cycle: for each irreducible representation: the one-electron orbital energies and the occupation
numbers for a contiguous sequence of orbitals. The indices of the lowest and highest MOs (in energy
ordering) are printed directly after the irrep label. With this information you can check the electronic
configuration. When convergence is problematic, more info appears at the higher iterations.
The involved orbitals are usually the highest few occupied and the lowest few unoccupied orbitals, see
the eprint subkey eigval. During the SCF, as soon as the distribution of electrons over irreps is frozen,
only the occupied orbital energies are computed and hence printed.
Also printed at each SCF cycle is the difference of the density matrix (P-matrix) with the previous cycle:
the average and maximum difference in the diagonal elements.

At the end of the SCF: concise information about the density-fit precision: the error integral for the SCF
density. The error integral is the integral of the difference between the exact density and the fit density,
squared. Such values have very little to do with numerical integration, rather they show whether or not
the employed set of fit functions are adequate to describe the SCF density. Error integral values that
significantly exceed 1e-4 times the number of atoms are suspicious and may indicate some deficiency
in the fit set for the actual calculation.
On the last geometry (in an optimization) the fit-error integrals are also printed (in the Results section,
see below) for the initial (sum-of-fragments) density and the orthogonalized fragments (see Chapter 1.2)

• Gross atomic charges, computed from a Mulliken population analysis.
• Geometry Updates. The contents of this section depends on the RunType:

Geometry Optimization, Frequencies.... It is absent in a Create run and in a SinglePoint
calculation.

• Gradients on the atoms: derivatives of the energy w.r.t. changes in the nuclear coordinates.
• Summary of convergence issues. One of the items considered for convergence is the maximum

Cartesian
gradient. This value corresponds in principle to one of the Gradients on the Atoms.
Differences may occur due to user-set and automatic constraints.
The printed Gradients are the raw gradients, the maximum Cartesian gradient is the maximum
over
relevant gradients: this ignores gradients in frozen coordinates.
Furthermore, gradients in coordinates that are forced to remain equal are averaged before the
maximum
is selected; finally the raw gradients are processed to eliminate spurious components such as
gradients
in rigid motions (translations and possibly rotations).
In a Z-matrix optimization any user-set constraints apply to the Z-matrix coordinate-derivatives
and the maximum Cartesian gradient is selected from the Cartesian gradients that are recomputed
from the constrained z-matrix gradients.

• New coordinates: Cartesian and z-matrix if applicable. Optionally the new inter-atomic distance
matrix
is given (not by default).

The Computational info is repeated in all cycles (SCF and geometry) until the iterations have
terminated.

332

Exit Procedure

normal termination or an error message.

A list of all files that are (still) open when the exit routine is called. The program closes such files at this
point.

Information about buffered I/O processing during the calculation.

A check of workspace to see whether all dynamically allocated arrays have been cleaned-up. If so the
program mentions All Arrays Delocated. Otherwise there is something wrong and the situation will be
summarized. If the calculation seems to have completed normally, but nevertheless workspace has been
found not-clean, we would appreciate to get the complete output file because it might signal a programming
error. This does not apply when you have used the stopafter feature: the program will then abort before the
standard termination and usually not all workspace will have been cleaned up then.

Timing Statistics: a survey of cpu, System (I/O) and Elapsed times spend in various sections of the program.

Logfile

At the end of the calculation the log file is copied (optionally, see print) to the tail of the standard output file.
The log file contains a concise summary of the run.

Nuclear and Electronic Configuration

• The final atomic coordinates (only in an optimization run).
• One-electron orbital data: occupation numbers and energies, HOMO and LUMO energies

and, if applicable, a list of partially occupied MOs.
• Orbital energies of the Core Orbitals

The direct results from the SCF are the orbital energies and occupation numbers. This defines the electronic
configuration: the occupation numbers and HOMO and LUMO energies for instance show whether or not the
aufbau principle is satisfied in the final situation.

The energies of the Core Orbitals can be used to interpret for instance XPS (X-ray Photoelectron
Spectroscopy) data: from Koopman's theorem these core orbital energies are an approximation to the core
ionization energies. This neglects the effect of relaxation upon the ionization so that absolute energy values
may not be very good; relative values, however, should be fair and can therefore be used to study (relative)
chemical shifts.

Structure and Reactivity

Summary of LT or IRC path(s)

At the very end of the results section, a completed LT or IRC calculation will show tables of a few key
properties in each point of the scanned path: atomic coordinates, energy, dipole moment, atomic charges
and a few others, depending on the case. This gives you a quick survey of the computed profile.

Frequencies Results

In a Frequencies calculation the computed harmonic frequencies are printed. If a complete variation of
coordinates has taken place, the program will compute the frequencies and normal modes also in terms of
Symmetry Coordinates, along with the representation in the coordinates that were specified in input.

The zero-point energy is printed, computed as sum over frequencies:

333

E0 = ∑ ν/2 (4.2.1)

Any imaginary frequencies (printed in the output file as negative frequencies) are not included in the
summation.

Thermodynamic properties (Heat Capacity, Entropy, Internal Energy) are printed, based on the ideal gas
approximation. Electronic contributions are omitted. These are small when the energy gap with the next
electronic configuration is large compared with the vibrational frequencies. For (near) degenerate
configurations this assumption is incorrect.

Imaginary frequencies and very small frequencies are ignored in this calculation.

Spectroscopic Properties

The results for the spectroscopic properties that are printed are meant to be self-explanatory. See also the
input options for each spectroscopic property.

Analysis

Mulliken populations

Mulliken populations are based on the elementary atomic basis functions (bas). The individual BAS
populations are printed together with summaries of the populations in all basis functions with the same
angular moment quantum number on the same atom.
A final summary is obtained by adding all functions on each atom, yielding the atom-atom populations. The
atom-atom populations per l-value can be obtained if the key EXTENDEDPOPAN is included. The atomic
gross charges are derived from the net and the overlap populations in the usual way.
In addition, a population analysis may be given of individual MOs (by default this is suppressed). See the
EPrint keys SCF (option mopop) and orbpop.

Mulliken-type populations are computed and printed at various levels of refinement (ranging from per-basis
function to per-fragment type, data for the whole molecule as well as for individual MOs), and in two different
representations, one based on the elementary basis functions (bas), the other on SFOs (Symmetrized
Fragment Orbitals). This is potentially a very large amount of data. Precisely what is printed by default, and
how this can be modified so as to suppress output or, alternatively, to get more information, is regulated by
the print keys (print, eprint).

Hirshfeld charges, Voronoi deformation density

Mulliken populations can be summarized to yield atomic charges. Alternative methods exist to deduce atom
charges from the self-consistent results of a molecular calculation. Several of those alternatives are provided
by ADF: Hirshfeld analysis, Voronoi analysis, multipole derived charges, and charge model 5.

Of the methods applied in ADF to compute charges (Mulliken, Hirshfeld, Voronoi) we recommend the
Hirshfeld analysis [125, 126] and the analysis based on Voronoi deformation density (VDD) charges [109,
127], see below. The fragments to which the Hirshfeld charges apply are enumerated in the early geometry
part of the output file, where for each fragment the numbers of the atoms are given that belong to the
fragment. The sum of the Hirshfeld charges may not add up to the analytical net total charge of the
molecule. Any deviation from this is caused by numerical integration precision (small effect) and the neglect

334

of long-distance terms that ADF uses to speed up the integral evaluations. This approximation does not
affect very much the energy and molecular orbital properties, but it does show up in the sum-of-charges
somewhat more. It does not indicate an error (unless the deviation is really large, say in the order of 1‰ of
the total number of electrons).

The Hirshfeld analysis produces a charge value per fragment, computed as the integral of the SCF charge
density over space, in each point weighted by the relative fraction of the (initial) density of that fragment in
the total initial (sum-of-fragments) density:

Qfrag(i) = ∫ ρSCF ρinitial frag(i)/(∑j ρinitial frag(j)) (5.1.1)

The VDD method is based on the deformation density and a rigorous partitioning of space into non-
overlapping atomic areas, the so-called Voronoi cells [109, 127, 128]. The Voronoi cell of an atom A is the
region in space closer to nucleus A than to any other nucleus (cf. Wigner-Seitz cells in crystals). The VDD
charge of an atom A monitors the flow of charge into, or out of the atomic Voronoi cell as a result of 'turning
on' the chemical interactions between the atoms. The VDD method summarizes the three-dimensional
deformation density on a per-atom basis. It is conceptually simple and affords a transparent interpretation
based on the plausible notion of charge redistribution due to chemical bonding, i.e. the gain or loss of charge
in well-defined geometrical compartments of space. For the use of VDD in analyzes involving molecular
fragments, see Ref. [129].

In the same fashion as for the Hirshfeld analysis, a summation over all atoms is given which should yield
zero (for a neutral molecule). The deviation from zero is caused by numerical integration and by neglect-of-
long-distance-terms; the same remarks apply as for the Hirshfeld analysis above.

The partitioning of space, using mid-way separation planes, is inappropriate to produce useful absolute
numbers when neighboring atoms have very different sizes, for instance, Hydrogen and a heavy metal.
However, changes in the density analyzed in this way do give a reasonable general insight in the effect of
bonding on the location of charge densities, in particular because the Voronoi data per atom are split up in
contributions within the atomic sphere and the rest of its Voronoi cell.

Hirshfeld and Voronoi charge analyzes are printed at the end of the SCF (of the last geometry, in case of an
Optimization).

The Hirshfeld analysis in ADF produces charges per fragment, so that atomic charges are obtained only if
single-atom fragments are used. This limitation does not apply to Voronoi charges (data per atom). Mulliken
charges are given both per atom and per fragment.

In the printout of charges per fragment (as for the Hirshfeld analysis), you have to be aware of the ordering
of fragments. A complete list of fragments is printed in the early GEOMETRY section of standard output,
where you also find which atom(s) correspond(s) to which fragment. Note that even when you use single-
atom fragments only, the order of fragments is usually quite different from the order of atoms in your input
file. Typically (but not necessarily exactly in each case), when you use single-atom fragments: consider the
first non-dummy atom in your ATOMS block. This defines the first atom type. Then browse the ATOMS list
until you find an atom of a different type. This defines the second atom type, and so on. The single-atom
fragment list will often be such that you first get all atoms of the first atom type, then all atoms of the second
type, and so on. Check the printed list-of-fragments always, to avoid mistakes in assigning Hirshfeld charges
to atoms (fragments).

Multipole derived charges

The multipole derived charges (MDC) analysis [170] uses the atomic multipoles (obtained from the fitted
density) up to some level X, and reconstructs these multipoles exactly (up to level X) by distributing charges
over all atoms. This is achieved by using Lagrange multipliers and a weight function to keep the multipoles
local. Since the atomic multipoles are reconstructed up to level X, the molecular multipoles are represented

335

also up to level X. The recommended level is to reconstruct up to quadrupole: MDC-q charges. The SCF
should have converged for a meaningful MDC analysis.

Charge model 5

The charge model 5 (CM5) [378] uses the Hirshfeld analysis in combination with a parametrization to yield
atomic charges that can accurately reproduce dipole moments obtained from experimental results. For input,
use the keyword CM5.

Bond order analysis

The Mayer bond order between two atoms is calculated from the density and the overlap matrices (key
EXTENDEDPOPAN), see Ref. [140].

The bond order analysis with the key BONDORDER. produces the output in which the bond order values
are printed for each pair of atoms for which the Nalewajski-Mrozek bond order value is larger than the
threshold that can be specified with the keyword BONDORDER. For convenience the printed bond orders
are accompanied by the corresponding inter-atomic distance. In the Nalewajski-Mrozek approach [148-153]
the bond order indices bAB are calculated based on the one- and two-center valence indices

bAB = VAB + wABA VA + wABB VB

with the weighting factors for one-center indices given by

wXYX = VcovXY/∑ZVcovXZ

Unlike other definitions of covalent bond orders, the Nalewajski-Mrozek valence indices comprise both,
covalent and ionic contributions. There exist three alternative sets of the Nalewajski-Mrozek valence indices,
[148-153, 140]. The bond order indices calculated from each set of the valence indices differ slightly due to
arbitrariness in the way of splitting the one-center terms between bonds. More detailed description of
alternative valence indices and their physical meaning is summarized in [148]; see also original papers
[149-153]

By default the bond order indices based on the valence indices obtained from partitioning of Tr(PΔP) are
printed in the ADF output. Note that in this version the covalent two-center part (also printed in the output) is
equal to the Gopinathan-Jug [153] bond order. The default values are:

VA = VionA + VcovA

VionA = ∑a∈A {Pαaa ΔPαaa + Pβaa ΔPβaa}

VcovA = 2 ∑a∈A ∑a'∈A,a<a' {Pαaa' ΔPαa'a + Pβaa' ΔPβa'a}

VcovAB = 2 ∑a∈A ∑b∈B {Pαab ΔPαba + Pβab ΔPβba}

To produce the values from all alternative versions of Nalewajski-Mrozek valence indices, accompanied by
the Gopinathan-Jug [153] and Mayer [140] bond orders, see the keyword BONDORDER.

336

The Mayer [140] bond orders can also be calculated using the keyword EXTENDEDPOPAN. The two
implementations of calculating the Mayer bond orders differ slightly if one uses frozen cores. They should
agree exactly in all electron calculations.

Dipole moment, Quadrupole moment, Electrostatic potential

Dipole moment. Note that in a ion the value of the dipole moment depends on the choice of the origin, as
follows from elementary electrostatic theory.

Quadrupole moment. Note that the value of the quadrupole moment often depends on the choice of the
origin, as follows from elementary electrostatic theory.

Electrostatic potential at the nuclei: the Coulomb potential of the molecule at the nuclear positions, where
the contribution from the nucleus itself is omitted.

MO analysis

MOs expanded in SFOs

This gives a useful characterization of the character of the self-consistent molecular orbitals. Additional
information is supplied by the SFO population analysis, see below.
The definition of the SFOs in terms of the Fragment MOs has been given in a earlier part of output
(section build). The SFO occupation numbers that applied in the fragments are printed. This allows a
determination of the orbital interactions represented in a MO.
Be aware that the bonding/antibonding nature of a SFO combination in a mo is determined by the
relative signs of the coefficients and by the overlap of the SFOs. This overlap may be negative! Note
also that SFOs are generally not normalized functions. The SFO overlap matrix is printed later, in the
SFO-populations part below.

SFO population analysis

For each irrep:

- Overlap matrix of the SFOs. Diagonal elements are not equal to 1.0 if the SFO is a linear combination
of two or more Fragment Orbitals. The Fragment Orbitals themselves are normalized so the diagonal
elements of the SFO overlap matrix give information about the overlap of the Fragment Orbitals that
were combined to build the SFO.
- Populations on a per-fragment basis for a selected set of MOs (see EPrint, subkey OrbPop). This part
is by default not printed, see EPRINT subkey SFO.
- SFO contributions per MO: populations for each of the selected MOs. In these data the MO occupation
numbers are not included, so that also useful information about the virtual MOs is obtained. The printout
is in matrix form, with the MOs as columns. In each printed matrix a row (corresponding to a particular
SFO) is omitted if all populations of that SFO are very small in all of the MOs that are represented in
that matrix. See eprint, subkey orbpop.
Note that this method to define SFO populations (for orbitals) is very similar to the classical Mulliken
type analysis, in particular regarding the aspect that gross populations are obtained as the diagonal
(net) populations plus half of the related off-diagonal (overlap) populations. Occasionally this may result
in negative (!) values for the population of certain SFOs, or in percentages higher than 100%. If you
have such results and wonder if they can be right, work out one of the offending cases by hand, using
the printed SFO overlap matrix and the printed expansion of the MOs in SFOs to compute 'by hand' the
population matrix of the pertaining MO. To avoid doing large calculations it is usually sufficient to take
only the few largest MO expansion coefficients; this should at least qualitatively give the correct
outcomes.
- Total SFO gross populations in a symmetry representation: from a summation over all MOs (not only
those analyzed in the previous section of output) in the symmetry representation under consideration. In

337

the gross populations the MO occupation numbers have been included.
- (Per spin): A full list of all MOs (combining all symmetry representations), ordered by energy, with their
most significant SFO populations. Since there might be several significant SFO populations for a
particular MO, and an SFO may actually be a linear combination of several (symmetry-related)
Fragment Orbitals, this table could get quite extensive. In order to confine each SFO population
specification to one line of output, the SFOs are indicated by the characteristics of the first term
(Fragment Orbital) of its expansion in Fragment Orbitals. So, if you see the SFO given as the '2 P:x on
the first Carbon fragment', it may actually refer to the symmetry combination of, for instance, 2P:x and
2P:y orbitals on the first, second and third Carbon fragments. A full definition of all SFOs in terms of the
constituting Fragment Orbitals is given in an early part of the output.

Bond energy analysis

The bond energy and its decomposition in conceptually useful terms: Pauli (exchange) repulsion, total steric
repulsion, orbital interactions (partitioned into the contributions from the distinct irreducible representations),
and corrections for some approximations (fitting and Transition State analysis procedure).
For a discussion of bonding energy decompositions and applications see e.g. [3, 110, 112, 130-136]

The program prints the bonding energy (not in a Create or Frequencies run) and its decomposition in terms
that are useful for chemical interpretation. The total energy is not computed. The bonding energy is defined
relative to the fragments. When basic atoms are employed as fragments one should realize that these do
not represent the atomic ground state since they are computed as spin-restricted and spherically symmetric
objects, with possibly fractional occupation numbers. The correct multiplet state is not computed. To obtain
the bonding energy with respect to isolated atoms you should therefore add atomic correction terms to
account for spin polarization and the multiplet state. See also the SLATERDETERMINANTS key and the
discussion on multiplet states.

The spin polarization energy can be computed by running the single atom unrestricted, using as fragment
the corresponding (restricted) basic atom. The true multiplet state is not necessarily obtained in this way.

For the comparison of computed bonding energies with experimental data one should furthermore be aware
of any aspects that are not represented in the computational formalism, such as zero-point motions and
environment (solvent) effects.

In a Geometry Optimization or Transition State search, the program may print a bonding energy evaluation
at each geometry (depending on print switches). A test-energy value is written in the log file. This is not the
bonding energy, although the difference is usually small. The test-energy printed in the log file is the energy
expression from which the energy gradients are computed. The true bonding energy contains in addition a
few (small) correction terms that are mostly related to the fit incompleteness. These correction terms are
usually very small.

If Electric Fields are used in the computation (homogeneous and/or point charges), the printed Bonding
Energy is the energy of the molecule in the field minus the energy of the fragments in the same field. The
energy terms due to the field are also printed separately so that one can subtract them from the total
bonding energy to obtain the energy-change without field-terms.

4.2 Log file, TAPE21, TAPE13

Log file

The log file (logfile) is generated during the calculation and flushed after (almost) each message that is sent
to it by the program. Consequently, the user can inspect it and see what is going on without being delayed
by potentially large system I/O buffers. Each message contains date and time of the message plus
additional info.

338

A major part of the messages simply states the name of a procedure. Such messages are sent when the
procedure is entered. During the SCF procedure, the SCF errors, which are a measure for non-self-
consistency, are written at every cycle. In calculations where the geometry is changing (optimization,
frequencies...) each set of new coordinates is sent to the log file (Cartesian, in angstrom and also Z-matrix, if
a Z-matrix structure was provided in the input file). Other messages should be self-explanatory.

Be alert on error messages. Take them seriously: inspect the standard output carefully and try to understand
what has gone wrong. Be also alert to warnings. They are not necessarily fatal but you should understand
what they are about before being satisfied with the results of the calculation. Do not ignore them just
because the program has not aborted: in some cases the program may not be able to determine whether or
not you really want to do what appears to be wrong or suspicious. If you believe that the program displays
erratic behavior, then the standard output file may contain more detailed information. Therefore, in such
case save the complete standard output file, together with the logfile, in case we need these files for further
analysis.

TAPE21

TAPE21 is the general result file of an ADF calculation. It is a KF file: Direct-Access, binary, and keyword
driven. It contains information about the calculation. You can use it as a fragment file in a subsequent
calculation on a bigger molecule, where the current one may be a part, or in an analysis program. For more
information on TAPE21, see Appendix 5.4.

TAPE13

TAPE13 is the checkpoint file for restarts after a crash. It is a concise version of TAPE21, containing only
the data the program uses for restarting the calculation. See the RESTART keyword. Like TAPE21, TAPE13
is a binary, keyword driven KF file. For more information on TAPE21, see Appendix 5.4.

4.3 ADF-GUI

The graphical user interface ADF-GUI enables all users to set up complicated calculations with a few mouse
clicks, and provides graphical representations of calculated data fields, see the ADF-GUI overview tutorials,
and advanced ADF-GUI tutorials.

4.4 Densf: Volume Maps

densf is an auxiliary program to generate values of molecular orbitals, charge densities and potentials in a
user-specified grid, to be used typically for plotting or graphical display. The TAPE41 result file can be used
directly by the ADFview program to visualize these properties.

densf requires an ascii input file where the user specifies the grid and the items that he/she wishes to see
calculated on the grid, plus the standard result file TAPE21 from an adf calculation. densf writes a summary
of the items that have been requested to standard output, together with some general information.

densf produces a (binary) KF file TAPE41, see OUTPUTFILE keyword below. TAPE41 is a KF file and all
KF utilities can be used to inspect and process its data.

Furthermore, TAPE41 can be processed by cntrs to generate contour plot data. The ADFview program can
be used to view the data available in TAPE41 in a variety of ways. Cntrs is a separate utility program, see
later sections in this documentation. For the ADFview program separate documentation is available.

339

http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagADF.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagADFadvanced.html

Starting from ADF2007, densf can also read and write cube files. See the CUBINPUT and CUBOUTPUT
input options for details.

Examples of using densf are contained in the set of sample runs; see the Examples document.

Input

The input for densf is keyword oriented. The keywords may be specified in any order with one exception:
INPUTFILE, if present, must be specified before any other option. Reading input by densf ends when it
encounters the record EndInput or the end-of-file, whichever comes first.

The current version of densf does have reasonable defaults for all input. That means that in many cases you
probably will not need to specify any input at all.

Below follows a list of the allowed keywords with their description.

$ADFBIN/densf << eor
INPUTFILE {file}
OUTPUTFILE {file}
VTKFILE {file}
CUBINPUT {file}
CUBOUTPUT {file}
GRID ...
UNITS ...
Density ...
KinDens ...
Laplacian ...
DenGrad ...
DenHess ...
Potential ...
Orbitals ...
NOCV ...
NCI ...
SEDD
eor

Input/Output files

INPUTFILE {file}

INPUTFILE keyword specifies path to the TAPE21 file from which densf reads the input data. Absence of
the keyword is treated as if INPUTFILE TAPE21 has been specified.

OUTPUTFILE {file}

OUTPUTFILE keyword specifies path to the (possibly existing) TAPE41 file. If the file exists, densf will read
grid specifications from it ignoring GRID keyword in the input. Computed quantities are saved in the file
overwriting existing data with the same name, if any.

VTKFILE {file}

VTKFILE keyword specifies path to a file in the format readable by VTK directly. This option exists primarily
for better integration with ADF-GUI and the user should not specify it.

CUBINPUT {file}

340

If the CUBINPUT keyword is present then the grid as specified in the file is used to calculate all requested
quantities. Any volume data found in the cube file is also saved in the output file. NOTE: CUBINPUT option
cannot be used with a pre-existing TAPE41 file because they both specify the grid, which may lead to a
conflict.

CUBOUTPUT {file}

Presence of the CUBOUTPUT keyword tells densf to save all computed quantities as cube files using file as
filename prefix. The prefix can also contain a complete path including directories. For example, specifying
the following in the densf input

CUBOUTPUT /home/myhome/H2O
Density SCF

will result in a file /home/myhome/H2O%SCF%Density.cub being created containing volume data for the
total SCF density. One file per requested quantity is created.

The OUTPUTFILE, CUBOUTPUT and VTKFILE options are mutually exclusive. Absence of any of these
options is treated as if OUTPUTFILE TAPE41 has been specified.

Grid

The Grid key is available either as simple key, or as block key.

The simple key options are as follows:

GRID {save} {coarse|medium|fine}

If the word save is specified, the program will store all grid points on TAPE41 (in addition to the specification
of the grid that is always stored). The default is NOT to store all grid points.

Either coarse, medium or fine may be specified. This instructs the program to generate the grid
automatically within a box enclosing all atoms of the molecule. The distance between grid points is 0.5, 0.2
or 0.1 bohr for respectively a coarse, medium or fine grid. Evidently the size of the result file TAPE41
depends strongly on this specification. The default value (used when the user does not specify the grid) is to
generate a coarse grid.

If GRID is used as a block key it must be followed by the word end in a later record. The records until the
end are the data for the Grid keyword:

Grid {save}
x0, y0, z0
n1, n2, n3
v1x, v1y, v1z, length1
v2x, v2y, v2z, length2
v3x, v3y, v3z, length3

END

If the word save is specified, the program will store all grid points on TAPE41 (in addition to the specification
of the grid that is always stored). The default is NOT to store all grid points.

The records in the data block must contain (in the order specified below!):

• 1 Three coordinates for the 'origin' (lower-left corner) of the grid.
• 2 Three integers: the numbers of points in three independent directions.

If fewer integers are supplied the grid will accordingly be less-dimensional.
• 3 Three records each containing the coordinates for the direction of the independent vector (size

irrelevant)
and the total length of the grid in that direction.

341

If a lower-dimensional grid is requested (see item #2), then fewer such direction-records are read
and
the redundant ones, if any, are ignored.
The unit of length in which the grid size is input is by default Angstrom.
The default can be overridden by using the input key UNITS, see below.

Notes:

• The second record ('three integers...') specifies the number of grid points in the different
directions.
The corresponding number of steps or intervals is one less!

• If the TAPE41 result file is to be used by the contour generating program cntrs,
the grid used in the densf calculation must be two-dimensional.

• If the TAPE41 result file is to be used by ADFview, the grid used must be an three-dimensional
orthogonal grid,
with a single step size for all three dimensions.

• If the output TAPE41 file already exists and it contains valid grid data or if CUBINPUT is specified
then the GRID input is ignored.

• The unit of length used in the input file has no relation to how the data are stored on the result file
and how the program processes the data internally.
Internal processing and storage on file is in bohr (atomic units).

Inline Grid

DENSF can now read grid as list of points. When specifying inline grid the GRID keyword should look as
follows:

Grid Inline
x1 y1 z1
x2 y2 z2
...
xN yN zN

End

Here, x#, y#, and z# are coordinates of points at which requested properties will be calculated. This feature
may be used, for example, by external programs to calculate various properties at a number of points
exactly and avoid interpolation with its inaccuracy. This feature should be used only when the output file has
a TAPE41 format. NOTE: the coordinates must be specified in atomic units regardless of the value of units
of length below.

Units

As in the ADF main program, the unit of length can be set with the block type key

UNITS
Length unit_of_length

END

In densf the only item that can be specified in the UNITS block is the length, so it seems a bit pointless to
make UNITS a block type key rather than a simple key. However, to make its usage identical to the
application in the adf main program the block form has been chosen to apply also here. The unit-of-length
will apply to the grid specification in the input file. Default is angstrom, except for inline grid where it is
always Bohr and cannot be changed.

Density

Generates the charge density in the grid. It is a simple keyword (not block-type).

density {fit} {frag} {ortho} {scf} {trans}

342

Occurrence of the word fit specifies that all densities specified in this record will be computed from the fit
functions (an approximation to the exact density), rather than from the occupied molecular orbitals.

frag, ortho, scf, and trans causes each of the corresponding densities to be computed. frag stands for the
sum-of-fragments (i.e. the initial) density, scf for the final result of the adf calculation, ortho for the
orthogonalized fragments (orthogonalization to account for the Pauli repulsion, see the ADF User's Guide),
and trans for excitation transition density.

Transition density is a product of initial and final states of an excitation. In the simplest case when initial and
final states consist of one molecular orbital each, in this case the corresponding transition density is a
product of the two MOs. To otain transition densities one needs to perform an excitations calculation with
ADF, see EXCITATIONS keyword in ADF User's Guide. Transition densities for all excitations found in the
input TAPE21 file will be calculated. The transition densities are always fit-densities.

If both the exact and the fit-densities are required the density keyword must be repeated, once with and
once without the fit option specified.

The default (when the DENSITY key does not occur in the input file) is to calculate the final SCF density and
the sum-of-fragments density.

The frozen core density is calculated with:

density core

Kinetic Energy Density and Electron Localization Function (ELF)

KinDens {frag} {orth} {scf}

Generates the Kinetic energy density and electron localization function on the grid.

Occurrence of any of the words requests calculation of the two quantities (KinDens and ELF) based on the
corresponding density: sum-of-fragments, orthogonalized fragments, or SCF, respectively. If none of the
options is present, scf is assumed.

Laplacian of the Density

The Laplacian of the exact SCF density is calculated with:

Laplacian

The Laplacian of the fitted SCF density is calculated with:

Laplacian fit

The LAPLACIAN key can occur multiple times. The LAPLACIAN feature is also supported by ADFview.

Gradient of the Density

The gradient of the exact SCF density is calculated with:

DenGrad

The gradient of the fitted SCF density is calculated with:

DenGrad fit

The gradient of the frozen core density is calculated with:

DenGrad core

343

The DENGRAD key can occur multiple times. This feature should be used only when the output file has a
TAPE41 format.

Hessian of the Density

The hessian of the exact SCF density is calculated with:

DenHess

The Hessian of the fitted SCF density is calculated with:

DenHess fit

The Hessian of the frozen core density is calculated with:

DenHess core

The DENHESS key can occur multiple times. This feature should be used only when the output file has a
TAPE41 format.

Potential

Generates the coulomb and/or exchange-correlation potential in the grid.

potential {coul / XC} {frag} {ortho} {scf}

frag, ortho, and scf are as for the density: at least one must be specified.

coul and XC specify that the Coulomb potential, respectively the exchange-correlation potential must be
computed. Precisely one of these options must be specified in the record. If both potential types are
required, another input record with the potential key must be used.

In the present release the xc option is not yet operational.

The default (when the POTENTIAL key does not occur in the input) is to calculate the SCF Coulomb
potential.

Orbitals

A block type key in which the required molecular orbitals are specified. The key can be repeated in input any
number of times; all occurrences are read and applied.

Orbitals type
(data)

END

The argument of the orbitals key (type) must be scf (for the scf orbitals) or frag (for the fragment orbitals) or
loc (for the localized molecular orbitals, see the ADF User's Guide) or generic (see separate section).

The frag option is not operational in the present release.

In many data records in the ORBITALS block, as noted in the description of these data records, you may
specify a HOMOLUMO range.

A HOMOLUMO range is the following:

{HOMO{{-}n}} {LUMO{{+}n}}

HOMO: the highest occupied orbital
HOMO-n, with n an integer: the highest (n+1) occupied orbitals

344

LUMO: the lowest virtual orbital
LUMO+n, with n an integer: the lowest (n+1) virtual orbitals.

The HOMO part, or the LUMO part, or both must be specified. The integer n with sign is always optional,
and the sign is always optional (and has no meaning, it is intended to enhance readability).

Thus, as an example,

HOMO-1 LUMO+1

means a range of 4 orbitals: the two highest occupied ones, and the two lowest virtuals.

Each data record in the orbitals block must have either of the following formats:

1. the word alpha or beta.
This specifies that subsequent records refer to spin-alpha or spin-beta orbitals respectively. In a
restricted calculation this has no meaning and beta must not be specified.
alpha and/or beta may occur any number of times in the orbitals block. All records until the first
occurrence of alpha or beta are assumed to refer to spin-alpha orbitals.
2. label n1, n2, n3, ...
label is one of the subspecies of the point group symmetry used in the adf calculation and n1 etc. are
indices of the molecular orbitals (in that subspecies) that are to be computed. This format is
meaningless and must not be used for the loc orbitals type, because localized orbitals do not
(necessarily) belong anymore to a particular symmetry representation.
3. label HOMOLUMO
label is one of the subspecies of the point group symmetry used in the calculation, the orbitals follow
from the HOMOLUMO range.
4. label occ or label virt
occ specifies all orbitals (in that symmetry representation) up to and including the highest occupied one.
virt specifies all orbitals above the highest occupied one. In this context partially occupied orbitals are
considered occupied. Note carefully that if in a particular symmetry representation an empty orbital is
computed below the highest occupied one in that same representation (excited state), that particular
empty one is included in the list of occ.
Again, this format is meaningless and must therefore not be used for the loc type of orbitals.
5. all occ or all virt or all HOMOLUMO
Specifies for each symmetry representation:

• all orbitals up to and including the highest occupied one (in that symmetry), or
• all orbitals above the highest occupied one, or
• all orbitals defined by the HOMOLUMO range.

This form is not to be used for the LOC type of orbitals. However, using this for LOC will not result in an
error but will be interpreted as identical to the following format.
6. all
This format must be used only for the LOC type of orbitals and simply means: all computed localized
orbitals (irrespective of occupation numbers).
7. n1, n2, ...
a simple list of integer indices. This format must be used only for the loc type of orbitals since no
reference is made to any symmetry representation. The indices refer of course to the list of localized
orbitals as computed by adf, see the User's Guide.

The default value used when the ORBITALS key is not present is:

Orbitals SCF
All HOMO-1 LUMO+1

End

NOCV

345

In ADF2009.01 it is possible to use DENSF to calculate ε*φ2 values of Natural Orbitals for Chemical Valence
(NOCVs). Additional information on NOCVs is available in Ref. [335].

The relevant part of the DENSF input is as follows:

For spin-unrestricted:

NOCV
Alpha
N1α
N2α
...

Beta
N1β
N2β
...

END

For spin-restricted:

NOCV
N1
N2
...

END

N1, N2, etc. specify sequential numbers of the orbitals for which ε*φ2 is to be calculated.

Alpha and Beta specify that the numbers that follow refer to spin α and β, respectively. Both Alpha and Beta
are optional, Alpha being assumed if omitted. The NOCV input block must be closed with "END".

Alternatively, one can specify to calculate all (alpha- or beta-) NOCV's:

For spin-unrestricted:

NOCV
Alpha
ALL

Beta
ALL

END

For both spin-restricted and spin-unrestricted:

NOCV
ALL

END

The last and probably the most convenient form of the NOCV input blocks lets one to specify an NOCV
eigenvalue threshold as a criterion for selecting orbitals:

For spin-unrestricted:

NOCV
Alpha
THRESH threshold

Beta

346

THRESH threshold
END

For both spin-restricted and spin-unrestricted:

NOCV
THRESH threshold

END

When this form of the input is used, only those NOCVs will be included whose absolute eigenvalue is equal
to or larger than the given threshold.

Generic orbitals

There is also a possibility to calculate any orbital as long as it is present in the t21 file in the BAS
representation. The input syntax is as follows:

Orbitals GenBas
section1%variable1
section2%variable2

End

In the example above, each line contains the section and variable name of the orbital in the input t21 file.
The length of the variable should be equal to the number of atomic functions (naos) and it is supposed to
contain expansion coefficients of the orbital on the basis of atomic (primitive) functions.

The calculation results are stored in the output file in sections and variables with exactly the same names as
specified in the input. The section and variable names may contain spaces although the leading and training
spaces are discarded.

NCI

The areas of non-covalent interactions (NCI), see Refs.[356,357], can be recognized by the a low value of
the electron density coupled with a low value of RDG (reduced density gradient s = 1/2 (3π2)-1/3 |∇ρ| ρ-4/3)
and a negative (or a small positive) value of the second eigenvalue of the Hessian of the electron density
(λ2). The regions of significant hydrogen bonding are recognized by strictly negative λ2 while in the regions
of VdW interactions it may be slightly positive. The relevant DENSF input keyword is:

NCI {BOTH|FIT} {RHOVDW=RhoVdW} {RDG=Rdg}

All arguments are optional

By default, the exact density is used to calculate the NCI properties. If FIT is specified then the fitted density
is used to calculate the fields and their names are prepended with "Fit". If BOTH is specified then the NCI
properties are calculated using both exact and the fittend density. Again names of the fields calculated from
the fitted density start with "Fit"

The remaining arguments set relevant thresholds (all in atomic units):
RhoVdW: density threshold for detection of weak interaction regions (default 0.02);
Rdg: threshold on the reduced density gradient value s (default 0.5). A point is considered for NCI only if s
value is smaller than Rdg.

DENSF creates three variables per density type (exact or fitted) when NCI is present in the input:
SCF%RDG (or SCF%FitRDG): the reduced density gradient value s;
SCF%DenSigned (or SCF%FitDenSigned): the sign(λ2) ρ value for regions where s < Rdg;
SCF%NCI (or SCF%FitNCI): the NCI flag value, see below;

347

If the point is considered for NCI (that is if s < Rdg), the sign(λ2)ρ value (or ρ) is tested against RhoVdW. If ρ
< RhoVdW then the NCI value is set to 1 to flag a VdW interaction region. If sign(λ2)ρ < -RhoVdW then the
NCI value is set to -1 to flag a hydrogen bonding region. In all other cases the NCI value is zero.

SEDD

The single exponential decay detector (SEDD), see Ref. [358], extracts information about bonding and
localization in atoms, molecules, or molecular assemblies. The practical evaluation of SEDD does not
require any explicit information about the orbitals. The only quantity needed is the electron density
(calculated or experimental) and its derivatives up to the second order. For the exact equation to be used,
and pictures, see Ref. [358].

Result: TAPE41

Follows a description of the contents of TAPE41. We start with a brief discussion of the sections. At the end
you can find an uncommented list of all variables and sections. Note that some data are only generated
when certain keywords are provided.

Sections on TAPE41

Grid

This is a general section. It contains the grid data and some more general info.

The grid characteristics are stored as:

• The 'origin' of the grid.
• The numbers of points in three independent directions.
• Three vectors, called 'x-vector', 'y-vector' and 'z-vector'.

They are the steps in the three independent directions that define the grid.

If the save option was used in input (key grid) also all grid coordinates are stored: for each point three
coordinates (xyz), also if only a 2-dimensional or 1-dimensional grid has been generated (a 2D grid does not
necessarily lie in the xy-plane).

Note that the grid values are now stored in a simpler manner than in previous (prior to 2004) versions of
densf, because the 'x values', 'y values', and 'z values' now each have their own, separate sections.

The remaining (general) data in this section comprises:

• The number of subspecies ('symmetries') for which data such as Molecular Orbitals may be
present.

• The names of the subspecies.
• A logical with the name 'unrestricted', which flags whether the data pertain to an unrestricted

calculation.
• The total number. of grid points.

SumFrag

Contains grid data of the Sum-of-fragments (charge density, coulomb potential, kinetic energy density, ELF,
etc.).

Ortho

Contains similar data for the orthogonalized-fragments.

SCF

348

Contains the (spin) density, potential, etc. of the final (scf) solution.

Core

Contains grid data of the frozen core (charge density, gradients, Hessian).

TransDens_L1_L2

Contains grid data for electron transition densities. L1 is either SS or ST, and L2 is a symmetry label for all
transitions in the section. Here SS and ST stand for Singlet-Singlet and Singlet-Triplet, respectively.
Variables in each section are Fitdensity_N and Coulpot_N for the density and Coulomb potential for
excitation N within this spin and symmetry.

SCF_label

'Label' is one of the symmetry subspecies.

Each such section contains the total number of orbitals in that subspecies (as used in the adf calculation),
with their occupation numbers and energy eigenvalues.

In addition it contains the grid-values of the (user-specified subset of) MOs in that subspecies. The variable
name corresponding to an orbital is simply its index in the energy-ordered list of all orbitals (in that
subspecies): '1', '2', etc.

LocOrb

Values of the localized orbitals.

NOCV

Values related to the NOCVs.

Geometry

Some general geometric information: the number of atoms (not counting any dummy atoms that may have
been used in the adf calculation), their Cartesian coordinates (in bohr) and nuclear charges.

Note: the order of the atoms here is not necessarily identical to the input list of atoms: they are grouped by
atom type.

Notes

• In an unrestricted calculation the section SCF_label is replaced by SCF_label_A and SCF_label_B
for the spin-alpha and spin-beta data, respectively, and similarly for LocOrb: LocOrb_A and
LocOrb_B.

• One or more subspecies may not have been used in the adf calculation.
This happens when the basis set used in that calculation does not contain the necessary functions
to span symmetry-adapted combinations of basis functions for that subspecies.
In such a case the corresponding section on TAPE41 will not be created by densf.

• If you want to verify the contents of TAPE41, use the pkf utility to obtain a
survey or dmpkf to get a complete ascii printout.

Contents of TAPE41

The information is presented in three columns. In the left-most column, section and variable names are
printed, variable names being indented. In the middle column, variable's type and size is given. If the type is
omitted, double precision floating point is assumed. The right-most column contains comments, if any.

349

Note that the name of a section of variable may consist of more than one word and that blanks in such
names are significant. Furthermore, they are case-sensitive. Each line below contains the name of only one
section or variable.

NAME length Comment
Grid

Start-point (3)
nr of points x (one integer)
nr of points y (idem)
nr of points z (idem)
total nr of points (idem)
x-vector (3)
y-vector (3)
z-vector (3)
nr of symmetries (one integer)
labels (nr of symmetries*160 characters)
unrestricted (one logical)

SumFrag
CoulPot (total nr of points)
XCPot_A (idem) spin-restricted: XCPot
XCPOt_B (idem)
Density_A (idem) spin-restricted: Density
Density_B (idem)
Fitdensity_A (idem) spin-restricted: Fitdensity
Fitdensity_B (idem)
Kinetic Energy Density_A (idem) spin-restricted:

Kinetic Energy Density
Kinetic Energy Density_B (idem)
ELF_A (idem) spin-restricted: ELF
ELF_B (idem)

Ortho
Same variables as in SumFrag

SCF
Same variables as in SumFrag and Ortho, and:
DensityLap_A (idem) spin-restricted: DensityLap
DensityLap_B (idem)
DensityGradX_A (idem) spin-restricted: DensityGradX
DensityGradX_B (idem)
DensityGradY_A (idem) spin-restricted: DensityGradY
DensityGradY_B (idem)
DensityGradZ_A (idem) spin-restricted: DensityGradZ
DensityGradZ_B (idem)
DensityHessXX_A (idem) spin-restricted: DensityHessXX
DensityHessXX_B (idem)
DensityHessXY_A (idem) spin-restricted: DensityHessXY
DensityHessXY_B (idem)
DensityHessXZ_A (idem) spin-restricted: DensityHessXZ
DensityHessXZ_B (idem)
DensityHessYY_A (idem) spin-restricted: DensityHessYY
DensityHessYY_B (idem)
DensityHessYZ_A (idem) spin-restricted: DensityHessYZ
DensityHessYZ_B (idem)
DensityHessZZ_A (idem) spin-restricted: DensityHessZZ
DensityHessZZ_B (idem)

Core

350

Density (total nr. of points)
DensityGradX (idem)
DensityGradY (idem)
DensityGradZ (idem)
DensityHessXX (idem)
DensityHessXY (idem)
DensityHessXZ (idem)
DensityHessYY (idem)
DensityHessYZ (idem)
DensityHessZZ (idem)

TransDens_L1_L2 L1: SS or ST; L2 is excitation's symmetry
Fitdensity_1 (total nr. of points)
Fitdensity_2 (idem)
Fitdensity_3 (idem)
Coulpot_1 (idem)
Coulpot_2 (idem)
Coulpot_3 (idem)

SCF_label_A
(label is a symmetry subspecies.

Spin-restricted: SCF_label)
nr of orbitals (one integer)
Occupations (nr of orbitals)
Eigenvalues (idem)
1 (total nr of points)
2 (idem)
3 (idem)

(as many as there are Molecular Orbitals in that
symmetry representation for the indicated spin)

SCF_label_B
(only if spin-unrestricted same variable as

in SCF_label_A)
LocOrb_A if unrestricted, otherwise

LocOrb
nr of orbitals (one integer)
1 (total nr. of points)
2 (idem)
(etc)

NOCV
Dens_A number*(occupation number) (total nr. of points)
Dens_B number*(occupation number) (idem)
(etc)

Geometry
nnuc (one integer)

(nr of nuclei, omitting dummy atoms)
xyznuc (nnuc times 3)

(the atoms are not in the same order as in the adf input
file. Rather they are grouped by atomtype.)

qtch (nnuc) Atomic charges
x values

x values (total nr. of points)
y values

y values (idem)
z values

z values (idem)

351

4.5 Dos: Density of States

The auxiliary program dos computes various types of densities-of-states (DOS) for a user-specified energy
interval.

dos requires an ascii input file where the user specifies the items to be calculated and computational details,
plus the standard result file TAPE21 from an adf calculation. The latter file must be present as a local file
with name TAPE21 in the directory where dos is executed.

dos produces as result one or more ascii files with the density-of-states values. Error messages and
computational info (if any) are written to standard output.

Introduction

The program dos gives information on the number and character of one-electron levels (molecular orbitals)
as a function of the (orbital) energy. The total density of states N(E) is a well known concept in electronic
structure theory of infinite systems (crystals). N(E)dE denotes the number of one-electron levels (orbitals) in
the infinitesimal energy interval dE. The total density of states (TDOS) at energy E is usually written as

N(E) = ∑i δ(E-εi) (4.5.1)

where the εi denote the one-electron energies. So the integral of N(E) over an energy interval E1 to E2 gives
the number of one-electron states in that interval. Usually the δ-functions are broadened to make a graphical
representation possible.

When the δ-functions are multiplied by a weight factor that describes some property of the one-electron
state φi at energy εi various types of densities-of-states are obtained that provide a graphical representation
of the state character (orbital character) as a function of one-electron energy.

In calculations on finite molecules the total density of states as a function of (orbital) energy may also be
useful, but the main use of various types of densities-of-states is to provide a pictorial representation of
Mulliken populations. The weight factors employed are related to the orbital character determined by means
of a Mulliken population analysis per orbital (see below). The program dos, therefore, provides the same
information as can be generated by the ADF program (a population analysis per orbital) but dos enables an
easy graphical representation and is particularly useful when there are many one-electron levels, for
instance in calculations on clusters. You can obtain a simple view of the character of the orbitals in a certain
energy range. You can also find out in which orbitals (at which energies) certain basis functions or fragment
orbitals give a large contribution, and whether such contributions are bonding, nonbonding or antibonding
with respect to particular bonds. Such information is provided by dos in the form of (weighted) density of
states values over a user-specified energy range, which can for instance be plotted by gnuplot.

The following options are available for computations by dos:

• TDOS: Total Density of States
• GPDOS: Gross Population Density of States
• OPDOS: Overlap Population Density of States
• PDOS: Projected Density of States

The total density of states (TDOS) has large values at energies where there are many states per energy
interval.

The GPDOS (Gross Population based Density Of States) of a function χμ (or a sum of such functions) has
large values at energies where this function (these functions) occur(s) in the molecular orbitals.

352

The PDOS of a function χμ provides similar information, but with the projection of χμ onto the orbital φi as
weight factor for the importance of χμ in the orbital φi.

The OPDOS (Overlap Population based Density Of States) between χμ and χν has large positive values at
energies where the interaction between them is bonding, and negative values where the interaction is
antibonding. An example of the use of these plots is provided in [326].

We review below the Mulliken population analysis, and then describe the forms of density of states analysis
performed by DOS. Finally an input description of DOS is given.

Mulliken population analysis

The orbitals φi with energies εi are expanded in basis functions χμ, which leads to the definition of density
matrices Pi describing orbital densities, from which the total density matrix can be constructed:

φi(r) = ∑μ χμ(r) Cμi

ρi (r) = ∫|φi(r)|2 = ∑μν Pi,μν χμ(r) χν(r); Pi,μν = Cμi Cνi
ρ (r) = ∑i ni ρi (r) = ∑μν Pμν χμ(r) χν(r); Pμν = ∑iniCμi Cνi (4.5.2)

Here μ and μ run over the basis functions, which may be either primitive functions, or combinations of
primitive functions, for instance the SCF orbitals of atoms or larger fragments.

The Mulliken population analysis provides a partitioning of either the total charge density or an orbital
density. The total density is written as

ρ (r) = ∑μν Pμν χμ(r) χν(r) = ∑A≤B ∑μ∈A ∑ν∈B Pμν χμ χν = ∑A≤B ρAB (4.5.3a)
ρAB = ∑μ∈A ∑ν∈B Pμν χμ χν (4.5.3b)

The total number of electrons, N=∫ ρ(r)d(r), is now partitioned over the atoms by assigning an overlap
population PμνSμν + PνμSνμ for one half to the atom A of χμ and one half to atom B of χν,

N = ∫ ρ(r)d(r) = ∑μν Pμν Sμν = ∑μ GPμ (4.5.4a)
GPμ = ∑ν Pμν Sμν (4.5.4b)

GPμ is the gross population of χμ. It contains the net population Pμμ and half of each total overlap population
PμνSμν + PνμSνμ between χμ and χν. Summing the gross populations over the functions μ ∈ A yields the
total number of electrons assigned to atom A, or the gross population of atom A, GPA, and hence the gross
charge QA of atom A,

GPA = ∑μ∈A GPμ (4.5.5a)
QA = ZA - GPA (4.5.5b)

The overlap population OPμν between two functions and the overlap population QAB between two atoms are
defined in an analogous manner,

OPμν = PμνSμν + PνμSνμ (4.5.6a)
QAB = ∑μ∈A ∑ν∈B OPμν (4.5.6b)

These quantities can be evaluated for a single orbital density, N=1=∫|φi(r)|2dr. The gross population GPi,μ of

a function in a specific orbital density |φi(r)|2 is then associated with the fraction of the orbital density
belonging to that function (or the percentage χμ character of orbital φi, and the overlap population OPi,μν
gives an indication of the strength of bonding or antibonding between χμ and χν in orbital φi,

353

GPiμ = ∑ν Pi,μνSμν = ∑ν Cμi Cνi Sμν (4.5.7a)
OPi,μν = Pi,μν Sμν + Pi,νμ Sνμ = 2 Cμi Cνi Sμν (4.5.7b)

Density of states analyses based on Mulliken population analysis

Total density of states

The total density of states TDOS at energy E is written as

TDOS: N(E) = ∑i δ(E-εi) (4.5.8)

so the integral of N(E) over an energy interval E1 to E2 gives the number of one-electron states in that
interval. In practice the delta functions are approximated by Lorentzians,

TDOS: N(E) = ∑i L(E-εi) = ∑i {σ/π ⋅ 1/[(E-εi)2+σ2]} (4.5.9)

A plot of N(E) versus E reveals energetic regions where many levels are located. The width parameter s
determines of course the appearance of the plot. A typical value is 0.25 eV (used as default in dos).

Partial (gross population and projected) density of states

In order to find out if a given function χμ contributes strongly to one-electron levels at certain energies, one
may weigh a one-electron level with the percentage χμ character. We usually determine the χμ character by
the gross populations, obtaining the GPDOS form of the partial density of states,

GPDOS: Nμ(E) = ∑i GPi,μ L(E-εi) (4.5.10)

If the weight factor is determined by projection of φi against χμ, we obtain the projected density of states
PDOS,

PDOS: Nμ(E) = ∑i |< χμ| φi >|2 L(E-εi) (4.5.11)

One should not use the PDOS for d-type or f-type primitive basis functions ('BAS'). A d-type function
consists of 6 Cartesian functions, while there can of course be only 5 true d-type functions among them: one
(linear combination) of them is in fact an s-type function (x2+y2+z2). Similarly, there are 10 f-type Cartesian
functions, 3 of which are in fact p-functions. The PDOS is calculated for the 6 d-type and 10 f-type Cartesian
functions, which leads to undesired results. An PDOS for SFOs does not suffer from this problem.

Overlap population density of states (OPDOS)

If the delta function representing orbital φi is weighed with the overlap population between χμ and χν in φi,
the overlap population density of states OPDOS is obtained,

OPDOS: Nμν(E) = ∑i OPi,μν L(E-εi) (4.5.12)

If an orbital φi at energy εi is strongly bonding between χμ and χν the overlap population is strongly positive
and OPDOS(e) will be large and positive around E=εi. Similarly, OPDOS(E) will be negative around energy
εi when there is antibonding between χμ and χν in φi.

The OPDOS(E) has been used under the name coop (crystal orbital overlap population) in Extended-Hückel
solid state calculations by Hoffmann and coworkers [2].
[2] R. Hoffmann, A chemist's view of bonding in extended structures (VCH Publishers, New York, 1988).

354

Generalizations of OPDOS, GPDOS, PDOS

As observed above, the basis functions in the above expressions may be primitive basis functions ('Slater
type orbitals'), but of course the formulas are equally applicable for other types of MO expansions. In dos the
user may select either the expansion in primitive basis functions ('BAS') or the expansion in SFOs
(Symmetrized Fragment Orbitals) for the DOS analyses.

It is also possible in DOS to treat a set of basis functions simultaneously. For instance, the GPDOS for a set
of basis functions μ1, μ2, ... is simply defined as the summation of the corresponding single-function
GPDOS(E) values

Nμ-set(E) = ∑μ∈μ-set ∑i GPi,μ L(E-εi) (4.5.13)

In a similar fashion the OPDOS can be defined for two sets of basis functions μ1, μ2, ... and ν1, ν2, ... as

Nμ-set,ν-set(E) = ∑μ∈μ-set ∑ν∈ν-set ∑i OPi,μν L(E-εi) (4.5.14)

and finally for the PDOS we get in similar fashion

Nμ-set(E) = ∑μ∈μ-set ∑i |< χμ| φi >|2 L(E-εi) (4.5.15)

Input

The (ASCII) input for dos is keyword oriented. Reading input by dos terminates whenever it finds a line END
INPUT or the end-of-file, whichever comes first.

Follows a list of keywords with their meaning. Generally keys may occur more than once and the order in
which they appear is relevant in some cases. For instance the key energyrange (which defines for what
energy values to compute densities-of-states, see below) applies to all items that come after it in input until
the next occurrence of energyrange.

$ADFBIN/dos << eor
ENERGYRANGE {Npoint=nr} {E-start=e1} {E-end=e2 / E-step=de}
LORENTZIAN width=width
FILE file
TDOS { title }
OPDOS ...
GPDOS ...
PDOS ...
eor

Energy scan values

ENERGYRANGE {Npoint=nr} {E-start=e1} {E-end=e2 / E-step=de}

This specifies for which energy values the densities-of-states are computed that are specified after it in the
input file and until the next occurrence of ENERGYRANGE.

ENERGYRANGE specifies the lower bound, upper bound and number of equidistant energy values
(including end-points). All items are optional with defaults applying for those omitted.

The E end and E-step values determine one another and must therefore not be specified both (or be
consistent).

The initial defaults are:

355

nr=301
e1=-20
de=0.1

All energy data are in eV.

When values have been changed with the key ENERGYVALUE, the so-modified values are the defaults for
the next occurrence of ENERGYVALUE.

Peak widening

The peaks in the DOS curves corresponding to the energies of the molecular orbitals are widened by a
Lorentzian curve, the width of which can be adjusted.

LORENTZIAN width=width

Initial default width is 0.25 (eV).

As for ENERGYRANGE, the key LORENTZIAN may occur more than once and each occurrence sets the
width for all items after it.

Result files

The computed densities-of-states are stored on one or more ascii files, which have to be specified in input.

FILE file

The key FILE may occur any number of times in input. Each time it occurs the specified file is opened by
dos. The file must not yet exist and the new file will accumulate (ascii) the densities-of-states data of all DOS
items subsequently specified, until the next occurrence of FILE. The first occurrence of the key FILE must be
given before any DOS specification (by the keys TDOS, OPDOS, GPDOS, PDOS, see below).

The format of the result file is such that it can be fed directly into gnuplot.

Densities of States

Total density of states.

TDOS { title }

TDOS
instructs the program to compute the total density of states.
title (optional)
will appear as title to the section of corresponding Density-of-States data in the result file.

The other types of densities-of-states require block-type keyword input.

OPDOS { title }
Ftype numbers
Ftype numbers
...
SUBEND
Ftype numbers
Ftype numbers
...
END

Ftype
Specifies the type of basis functions to use in the MO expansions. If the primitive basis functions are to

356

be used Ftype must be bas. For the SFO representation Ftype must be one of the irreducible
representations of the pointgroup symmetry. All Ftype values in the data block must be consistent:
either all are bas or all are irrep labels. The scope of this consistency requirement is the data block of
the current key: in a next OPDOS data block, for instance, a different choice may be made.
numbers
Must be a sequence of integers referring to the basis functions to be selected, i.e. the 'μ-set' and 'ν-set'
in (4.5.13) etc.
If bas-type basis functions are selected the numbers refer to the overall list of all basis functions as
printed in the output file of the adf run. If SFOs are selected the numbers refer to the SFO list of the
pertaining symmetry representation without the core functions, see the adf output file.
SUBEND
Must be typed as such and separates the 'μ-set' and the 'ν-set': all records before subend specify
together the 'μ-set' and all records below subend comprise the 'ν-set'. Each of these two sections may
consist of any number of records.

The input for GPDOS and PDOS are similar, but simpler because only one set of functions ('μ-set') has to be
specified, so there is no subend in the data blocks for these keys.

GPDOS { title }
Ftype numbers
Ftype numbers
...
END

PDOS { title }
Ftype numbers
Ftype numbers
...
END

The keys GPDOS, OPDOS, PDOS and (TDOS) may occur any number of times in input and in any order.
Each time the DOS key occurs the current energyrange and lorentzian settings apply and the results are
written to the current file.

4.6 Other plotting programs

Most of the functionality that the two following two programs can offer, can already be done with the ADF-
GUI.

• cntrs: a program to generate contours for data computed by densf.
• adfplt: a program to graphically display orbitals, densities or potentials computed in a 2D or 3D

grid.

The separate adfplt program is no longer documented (and is not part of the distribution). See for the old
documentation the ADF2010 Analysis document. The ADFview module of the ADF-GUI, see the ADF-GUI
tutorials is the suggested alternative for adfplt that is supported by SCM.

Cntrs: Contour Plots

cntrs is an auxiliary program to generate plot data from TAPE41 produced by densf. In the future cntrs will
be superseded by the ADF-GUI, which will offer both two-dimensional and three-dimensional visualization
possibilities.

cntrs requires an ascii input file where the user specifies which items should be plotted and what scan
values are to be used, plus the standard result file TAPE41 from densf. TAPE41 must be present as a local

357

http://www.scm.com/Doc/Doc2010/ADF/Analysis/page1.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagADF.html
http://www.scm.com/Doc/Doc2014/GUI/GUI_tutorial/metatagADF.html

file in the directory where contrs executed. For usage by contrs TAPE41 must have been generated in a
densf run using a two-dimensional grid.

cntrs produces as result one or more ascii files with plot data.

An example of using cntrs is contained in the set of sample runs (NO2), see the Examples document.

Input

The (ascii) input for cntrs is keyword oriented. The order of keywords in input is relevant for cntrs.

Scan

scan
scanvalues

END

With the scan key you read in values for which contours are to be generated for the items that are specified
subsequently in input. Up to a maximum number of 20 scan values can be supplied. scan may occur any
number of times in input. Each occurrence resets the scan values for the subsequent items. The initial
values, which apply until the first occurrence, if at all, of scan are the eleven values 0, ±2e-2, ±5e-2, ±1e-1,
±2e-1, ±5e-1.

Dash

DASH length

contours corresponding to positive scan values are plotted as solid lines, the zero-contour is plotted by a
dash-dot-dash line, and negative contours are dash-lines.

The dash key defines the length of a dash. Default: 0.2 bohr. dash may occur any number of times in input,
each occurrence resets the dash-length for the items that follow.

Items to be plotted

The remaining part of input has the format:

FILE filename
item {factor}
item {factor}
...
FILE filename
item {factor}
...
(etc.)
END INPUT

Each FILE key requires the name of a file. This file must not yet exist and will be created by cntrs as an ascii
file on which to write plot data. All 'items' until the next occurrence of dash will be combined into one quantity
for the contours of which the plot data are generated.

Each item must be of the form Section%Variable and must in this way correspond to one of the variables on
TAPE41 (case-sensitive!), see the description in the chapter about densf.. All items that belong to one file
will be added up, each one multiplied by its factor (default: 1.0), to the quantity to be plotted. In this way you
can generate contours for instance of density differences or a summation of densities.

Result

358

Each of the ascii result files, the names of which are defined in input (key file), consists of a sequence of
data blocks.

Each block consists of a number of records that contain two values ('x' and 'y') and it ends with a blank line.

Each block defines a contour by plot instructions as follows:

• for the first {x,y}: start to plot at that point.
• for each next {x,y}: (continue to) draw the contour to that point.
• the blank line signals the end of the contour.

The last block does not correspond to a contour, but draws a rectangle around the whole picture.

359

5 APPENDICES

5.1 Database

The database contains standard basis sets (and fit sets, frozen core orbitals) for all chemical elements of the
periodic table at different levels of accuracy. The database is partitioned in subdirectories. Some of these
are special: for example, the subdirectory Dirac contains input files for the program dirac (computation of
relativistic potentials and charge densities). Most subdirectories contain files for the create runs: for
example, the subdirectories SZ through TZ2P. The section about the database of STO basis sets describes
all subdirectories in more details. See also the section about the standard basis sets available in ADF.

The names of the files in the database consist of two parts: the standard symbol for the chemical element
and the level of frozen core approximation. Mn.2p for instance is a data file for Manganese with a frozen
core up to and including the 2p shell.

Polarization functions are provided for most elements. If you contemplate to compile more extended basis
sets, by including one or more polarization functions, a good rule of thumb to choose the functional
characteristics, is the following. Take the next higher l-value that does not yet occur in the function set
(however, do not go beyond f-functions: the program cannot (yet) handle g-type basis functions), select the
minimum value for the main quantum number n that is compatible with the l-value (i.e.: 2p, 3d, 4f), and
determine the exponential decay factor ζ, such that the function attains its maximum value at somewhere
between 1/3 and 1/2 times the bond length. The functional maximum for a Slater-type function is at
R=(n-1)/ζ. The maximum for r2 times the square of a Slater-type function is at R=n/ζ.

Many all-electron basis can be found in the data base, especially for the elements H-Kr. All electron basis
sets for the heavier elements can be found in the ZORA subdirectory. Fit functions for the all-electron basis
sets must include more, in particular more contracted functions than the standard fit sets that are provided in
the frozen core database files. If you would combine a basis set with an inadequate fit set the results are
unreliable and absolutely inadequate, in the same fashion as when you would have used a highly
inadequate basis set.

Data File for Create

The data file supplied to ADF in Create mode contains the following sections:

Title
Basis Functions
Core Expansion Functions
Core Description
Fit Functions
Start-up Fit Coefficients

Each of these items is discussed below. The data file does not define the applied density functional, the
electronic configuration, precision parameters (numerical integration, SCF convergence criterion...), etc
etera. These items can be set in the normal input file if the default is not satisfactory.

Title

is the first record of the file. It may contain any text. Only the first 60 characters are actually used. This title is
(by default) printed in the output; it is also used to stamp an identification on the result file (TAPE21). The file
stamp will be printed whenever you use it as a fragment file in another calculation.

Basis functions

360

A list of Slater type basis function characteristics. This part has the following format (example):

BASIS
1s 5.4
2s 1.24
...
(etc.)
...

end

The words basis and end signal the beginning and the end of this section in the data file. The records in-
between list the basis functions; each record contains the main quantum number, the angular quantum
number, and the exponential decay factor for a set of Slater type basis functions. A function description 3d
2.5 for instance represents the functions reY, m=-2,...,2.

The order of specification of the basis functions is not free. First must come the Core Functions used for
core-orthogonalization, see Chapter 1.2. The CFs must be in order: s-functions first, then p-functions, then
d-functions, and finally f-functions (as far as applicable). In the valence basis set there must be exactly one
core-orthogonalization function for each frozen core shell (1s, 2s, 2p, ...).

Here as well as in all other function definitions below, the unit of length, implicit in the exponential decay
factor, is bohr (atomic units), irrespective of the unit of length used in input for geometric items such as
atomic positions (see units).

Core expansion functions

This part has the form

CORE ns, np, nd, nf
1s 7.68
...
(etc.)
...

end

It looks very much like the basis functions: a list of Slater type function descriptions, closed by end. The
header record however (core...) contains in addition four integers ns, np, nd, nf. They are the numbers
respectively of s-, p-, d-, and f- frozen core shells in the atom. If you create for instance a Ruthenium atom
with a frozen core up to the 4p shell, these numbers would be 4 3 1 0 : four frozen s-shells (1s,2s,3s,4s),
three frozen p-shells (2p,3p,4p), one frozen d-shell (3d), and no frozen f-shells.

The core expansion sets defined in this section are used to describe the frozen core orbitals; they are not
included in the valence basis set. In the list of core expansion sets all s-type functions must come first, then
the p-type functions, then the d-functions, and then the f-functions (as far as applicable).

Core description

Describes the frozen core shells as linear combinations of the core expansion functions. This section has
the form

COREDESCRIPTION
coefficients for the first frozen s-shell
for the second s-shell
...
for the n-th shell
coefficients for the first frozen p-shell
for the second p-shell

361

...
for the d-shells
for the f-shells
pseudopotential parameters

end

For each of the angular momentum quantum numbers l=s, p, d, f all nl frozen shells are described by giving
expansion coefficients. There are as many coefficients as there are function sets with the pertaining l-value
in the list of expansion functions. There are no separate coefficients for all m-values: all m-values are
equivalent in a spherically symmetric model atom. See the Ca example below.

At the end of the (core) description section there is a record with pseudopotential parameters. The
pseudopotential option, as an alternative to the frozen core approximation, is currently not supported, all
values in this record must be zero, one for each frozen core shell. Equivalently you can put one zero,
followed by a slash (/).

Fit functions

is again a list of Slater type functions. These are used for an expansion of the density. The Coulomb
potential due to the electronic charge distribution is computed from this expansion, see Chapter 1.2.

The format of this section is similar to the basis functions:

FIT
1s 10.8
...
...
(etc.)
...

end

The program cannot handle fit functions with l-value higher than 4, i.e. not higher than g-type functions. Bear
this in mind if you construct alternative fit sets.

In view of the next item, one is well advised to put the s-functions first.

Start-up fit coefficients

The initial (start-up for the SCF procedure) expansion of the atomic charge density in terms of the fit
functions. Since the atom is spherically symmetric, only s-type functions should have non-zero coefficients.
This is why the s-type fit functions should be listed first: the list of coefficients can then, after the s-set, be
closed by a slash, rather than putting a long series of zeros.

The higher l-values (p, d...) in the fit set play no role in the creation of the basic atom, because it is
spherically symmetric. They should not be omitted however as they will be needed when the atom is used
as a fragment in a molecule: the charge density around the atom is then not spherically symmetric anymore.

The form of this section is simple:

FITCOEFFICIENTS
coefficients
end

362

Example: Calcium

An example may serve to illustrate the format of a Create data file for Ca (DZ, note that compared to the old
basis II an extra 3D polarization function is added) (empty records inside and between the various sections
are meaningless and ignored):

Calcium (II, 2p frozen)

BASIS
1S 15.8
2S 6.9
2P 8.1

3S 2.6
3S 3.9
3P 2.1
3P 3.4
4S 0.8
4S 1.35
4P 1.06

3D 2.000
END

CORE 2 1 0 0
1S 24.40
1S 18.25
2S 7.40
2S 4.85
3S 4.00
3S 2.55
4S 0.70
4S 1.05
4S 1.65
2P 10.85
2P 6.45
3P 1.85
3P 2.70
3P 4.00

END

DESCRIPTION
0.2076143E+00 0.7975138E+00 -0.7426673E-04 0.1302616E-03 -0.6095738E-04
0.1508446E-04 0.1549420E-06 -0.2503155E-07 -0.1843317E-05
0.8487466E-01 -0.4505954E+00 0.1009184E+01 0.9627952E-01 -0.3093986E-01
0.1678301E-01 -0.2381843E-02 0.6270439E-02 -0.8899688E-02
0.3454503E+00 0.6922138E+00 -0.1610756E-02 0.5640782E-02 -0.5674517E-02

0/
END

FIT
1S 31.80
2S 29.37
3S 25.15
4S 21.06

363

4S 13.99
5S 11.64
5S 8.05
6S 6.69
6S 4.76
6S 3.39
7S 2.82
7S 2.06
7S 1.50
2P 24.10
3P 14.78
4P 9.29
5P 5.98
6P 3.94
6P 2.24
7P 1.50
3D 16.20
4D 10.47
5D 6.91
6D 4.65
6D 2.70
7D 1.85
4F 7.00
5F 4.00
5G 3.50

END

FITCOEFFICIENTS
.567497268648811470E+02 -.452377281899367176E+03 .326145159087736033E+03
.337765644703942453E+05 .131300324467109522E+04 -.704903218559526340E+04
.755210587728052587E+03 .281241738156731174E+03 .864928185630532020E+01

-.230025056878739281E+00 .366639011114029689E-01 .905663001010961841E-03
.160080832168547530E-04 .000000000000000000E+00 .000000000000000000E+00

/
END

5.2 Elements of the Periodic Table

A few characteristics are predefined in ADF for all elements of the periodic table, as shown below.

The electronic configuration defines the default occupation numbers in Create mode. Basis sets for the
elements Rf-Uuo (Z=104-118) are only available in the ZORA atomic database.

Nuclear
Charge Z

mass number of
default isotope
used for mass

electronic configuration

H 1 1 1s1

He 2 4 1s2

Li 3 7 2s1

Be 4 9 2s2

B 5 11 2s22p1

C 6 12 2s22p2

364

N 7 14 2s22p3

O 8 16 2s22p4

F 9 19 2s22p5

Ne 10 20 2s22p6

Na 11 23 3s1

Mg 12 24 3s2

Al 13 27 3s23p1

Si 14 28 3s23p2

P 15 31 3s23p3

S 16 32 3s23p4

Cl 17 35 3s23p5

Ar 18 40 3s23p6

K 19 39 4s1

Ca 20 40 4s2

Sc 21 45 3d14s2

Ti 22 48 3d24s2

V 23 51 3d34s2

Cr 24 52 3d54s1

Mn 25 55 3d54s2

Fe 26 56 3d64s2

Co 27 59 3d74s2

Ni 28 58 3d94s1, 3d84s2

Cu 29 63 3d104s1

Zn 30 64 3d104s2

Ga 31 69 3d104s24p1

Ge 32 74 3d104s24p2

As 33 75 3d104s24p3

Se 34 80 3d104s24p4

Br 35 79 3d104s24p5

Kr 36 84 3d104s24p6

Rb 37 85 5s1

Sr 38 88 5s2

Y 39 89 4d15s2

Zr 40 90 4d25s2

Nb 41 93 4d45s1

Mo 42 98 4d55s1

Tc 43 (98) 4d55s2

Ru 44 102 4d75s1

Rh 45 103 4d85s1

365

Pd 46 106 4d10

Ag 47 107 4d105s1

Cd 48 114 4d105s2

In 49 115 4d105s25p1

Sn 50 120 4d105s25p2

Sb 51 121 4d105s25p3

Te 52 130 4d105s25p4

I 53 127 4d105s25p5

Xe 54 132 4d105s25p6

Cs 55 133 6s1

Ba 56 138 6s2

La 57 139 5d16s2

Ce 58 140 4f15d16s2

Pr 59 141 4f36s2

Nd 60 142 4f46s2

Pm 61 (145) 4f56s2

Sm 62 152 4f66s2

Eu 63 153 4f76s2

Gd 64 158 4f75d16s2

Tb 65 159 4f96s2

Dy 66 164 4f106s2

Ho 67 165 4f116s2

Er 68 166 4f126s2

Tm 69 169 4f136s2

Yb 70 174 4f146s2

Lu 71 175 4f145d16s2

Hf 72 180 4f145d26s2

Ta 73 181 4f145d36s2

W 74 184 4f145d46s2

Re 75 187 4f145d56s2

Os 76 192 4f145d66s2

Ir 77 193 4f145d76s2

Pt 78 195 4f145d96s1

Au 79 197 4f145d106s1

Hg 80 202 4f145d106s2

Tl 81 205 4f145d106s26p1

Pb 82 208 4f145d106s26p2

Bi 83 209 4f145d106s26p3

Po 84 (209) 4f145d106s26p4

366

At 85 (210) 4f145d106s26p5

Rn 86 (222) 4f145d106s26p6

Fr 87 (223) 7s1

Ra 88 (226) 7s2

Ac 89 (227) 6d17s2

Th 90 232 6d27s2

Pa 91 231 5f26d17s2

U 92 238 5f36d17s2

Np 93 (237) 5f46d17s2

Pu 94 (244) 5f67s2

Am 95 (243) 5f77s2

Cm 96 (247) 5f76d17s2

Bk 97 (247) 5f97s2

Cf 98 (251) 5f107s2

Es 99 (252) 5f117s2

Fm 100 (257) 5f127s2

Md 101 (258) 5f137s2

No 102 (259) 5f147s2

Lr 103 (260) 5f146d17s2

Rf 104 (261) 5f146d27s2

Db 105 (262) 5f146d37s2

Sg 106 (263) 5f146d47s2

Bh 107 (264) 5f146d57s2

Hs 108 (265) 5f146d67s2

Mt 109 (268) 5f146d77s2

Ds 110 (269) 5f146d87s2

Rg 111 (272) 5f146d97s2

Cn 112 (277) 5f146d107s2

Uut 113 (280) 5f146d107s27p1

Fl 114 (280) 5f146d107s27p2

Uup 115 (280) 5f146d107s27p3

Lv 116 (280) 5f146d107s27p4

Uus 117 (280) 5f146d107s27p5

Uuo 118 (280) 5f146d107s27p6

Default (most abundant) isotope, used to set atomic mass (nr. of brackets
gives mass directly). Default electronic configurations used in Create mode.

5.3 Symmetry

367

Schönfliess symbols and symmetry labels

A survey of all point groups that are recognized by ADF is given below. The table contains the Schönfliess
symbols together with the names of the subspecies of the irreducible representations as they are used
internally by ADF. The subspecies names depend on whether single-group or double-group symmetry is
used. Double-group symmetry is used only in relativistic spin-orbit calculations.

Note that for some input of TDDFT (Response) calculations, other conventions apply for the subspecies.
This is explicitly mentioned in the discussion of that application.

Point
Group

Schönfliess Symbol in
ADF

Irreducible representations in single-
group symmetry

Irreducible representations in
double-group symmetry

C1 NOSYM A A1/2

R3 ATOM s p d f s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2
Td T(D) A1 A2 E T1 T2 E1/2 U3/2 E5/2

Oh O(H) A1.g A2.g E.g T1.g T2.g A1.u A2.u
E.u T1.u T2.u

E1/2.g U3/2.g E5/2.g E1/2.u U3/2.u
E5/2.u

C∞v C(LIN) Sigma Pi Delta Phi J1/2 J3/2 J5/2 J7/2

D∞h D(LIN) Sigma.g Sigma.u Pi.g Pi.u Delta.g
Delta.u Phi.g Phi.u

J1/2.g J1/2.u J3/2.g J3/2.u J5/2.g J5/
2.u J7/2.g J7/2.u

Ci C(I) A.g A.u A1/2.g A1/2.u
Cs C(S) AA AAA A1/2 A1/2*
Cn C(N), n must be 2 A B E1 E2 ... odd n: without B A1/2 A1/2*

Cnh C(NH), n must be 2
even n: A.g B.g A.u B.u E1.g E1.u
E2.g E2.u ... odd n: AA AAA EE1
EE2 ... EEE1 EEE2 ...

A1/2.g A1/2.g* A1/2.u A1/2.u*

Cnv C(NV), n<9 A1 A2 B1 B2 E1 E2 E3 ... odd n:
without B1 and B2

E1/2 E3/2 E5/2 ... for odd n also: An/
2 An/2*

Dn D(N), n<9 n=2: A B1 B2 B3 other: A1 A2 B1 B2
E1 E2 E3 ... odd n: without B1 B2

E1/2 E3/2 ... for odd n also: An/2 An/
2*

Dnh D(NH), n<9

n=2: A.g B1.g B2.g B3.g A.u B1.u
B2.u B3.u even n (≠2): A1.g A2.g
B1.g B2.g E1.g E2.g E3.g ... A1.u
A2.u B1.u ... odd n: AA1 AA2 EE1
EE2 ... AAA1 AAA2 EEE1 EEE2

even n: E1/2.g E1/2.u E3/2.g E3/2.u
... odd n: E1/2 E3/2 E5/2 ...

Dnd D(ND), n<9
even n: A1 A2 B1 B2 E1 ... odd n:
A1.g A2.g E1.g E2.g ... E(n-1)/2.g
A1.u A2.u E1.u E2.u ... E(n-1)/2.u

even n: E1/2 E3/2 ... odd n: E1/2.g
E1/2.u E3/2.g E3/2.u An/2.g An/
2.u An/2.g* An/2.u*

Schönfliess symbols and the labels of the irreducible representations.

Most labels are easily associated with the notation usually encountered in literature. Exceptions are AA,
AAA, EE1, EEE1, EE2, EEE2, etcetera. They stand for A', A'', E1', E1'', and so on. The AA, etc. notation is
used in ADF to avoid using quotes in input files in case the subspecies names must be referred to.

The symmetry labeling of orbitals may depend on the choice of coordinate system. For instance, B1 and B2
representations in Cnv are interchanged when you rotate the system by 90 degrees around the z-axis so that
x-axis becomes y-axis and vice-versa (apart from sign).

Labels of the symmetry subspecies are easily derived from those for the irreps. For one-dimensional
representations they are identical, for more-dimensional representations a suffix is added, separated by a
colon:
For the two- and three-dimensional E and T representations the subspecies labels are obtained by adding
simply a counting index (1, 2, 3) to the name, with a colon in between; for instance, the EE1 irrep in the Dnh

368

pointgroup has EE1:1 and EE1:2 subspecies. The same holds for the two-dimensional representations of
C∞v and D∞h. For the R3 (atom) point group symmetry the subspecies are p:x, p:y, p:z, d:z2, d:x2-y2, etc.

All subspecies labels are listed in the Symmetry section, very early in the ADF output. To get this, perform a
quick run of the molecule using the STOPAFTER key (for instance: stopafter config).

Molecular orientation requirements

ADF requires that the molecule has a specific orientation in space, as follows:

• The origin is a fixed point of the symmetry group.
• The z-axis is the main rotation axis, xy is the σh-plane (axial groups, C(s)).
• The x-axis is a C2 axis (D symmetries).
• The xz-plane is a σv-plane (Cnv symmetries).
• In Td and Oh the z-axis is a fourfold axis (S4 and C4, respectively) and the (111)-direction is a

threefold axis.

If the user-specified symmetry equals the true symmetry of the nuclear frame (including electric field and
point charges) the program will adapt the input coordinates to the above requirements, if necessary. If no
symmetry has been specified at all ADF assumes you have specified the symmetry of the nuclear frame,
accounting for any fields. If a subgroup has been specified for the molecular symmetry the input coordinates
will be used as specified by the user. If a Z-matrix input is given this implies for the Cartesian coordinates:
first atom in the origin, second atom on the positive x-axis, third atom in the xy-plane with positive y value.

5.4 Binary result Files, KF utilities

TAPE21

TAPE21 is the general result file of an ADF calculation. It is a KF file: Direct-Access, binary, and keyword
driven. It contains information about the calculation. You can use it as a fragment file in a subsequent
calculation on a bigger molecule, where the current one may be a part, or in an analysis program.

The contents of TAPE21 is keyword-accessible and you may use the KF utilities (see Appendix 5.5) for
conversion of TAPE21 from binary to ASCII format and vice versa. This facility is also useful when you
intend to use a TAPE21 result file produced on one type of hardware, for a continuation run on a quite
different computer: Transform the binary file to ASCII format with the KF utilities on the first machine. Then
transport the ASCII file to the other machine, and make a binary out of it again.

Another utility (pkf) can be used to obtain a summary of the contents of TAPE21. The output should be more
or less self-documenting: all variables are listed by name, type (integer, real, ..) and size (number of array
elements) and grouped in named sections.

The data on TAPE21 is organized in Sections which group together related data. Each section contains a
number of variables. Each variable may be an array or a scalar and may be integer, real, logical or character
type.

A complete dump of the contents of TAPE21 is obtained with dmpkf. The resulting ASCII file contains for all
variables on the file:

• The name of the section it belongs to;
• The name of the variable itself;
• Three integers coding for the data of the variable:

◦ The number of data elements reserved on the file for the variable;

369

◦ The number of data elements actually used for the variable.
In virtually all cases the number of used elements is equal to the number of reserved
elements.
The number of used elements is relevant for interpreting the data, the number of
reserved elements
has only relevance for the management of data on the file by kf-specific modules and
utilities;

◦ An integer code for the data type: 1=integer, 2=real, 3=character, 4=logical;
• The variable value(s).

A typical case of the contents of TAPE21 obtained by dmpkf operating on the binary TAPE21 file from an
optimization run on H2O would be:

contents of TAPE21 comment
General name of (first) section
file-ident name of (first) variable in the current section (General)

6 6 3
characteristics of the data: 6 elements reserved on file for the
variable, 6 data elements actually used, 3=integer code for the
data type: character

TAPE21 Value of the variable fileident in the section General.
General again: name of the section
title name of the (second) variable

80 80 3 reserved and used number of data elements (both 80), and the
data type code (3: character)

Water Geometry Optimization with Internal
Coordinates value

(etc.) (etc.)

A description of the various utilities that can be used to process TAPE21 can be found in other parts of this
ADF manual.

Contents of TAPE21

Follows a survey of the sections and variables on TAPE21. Details may differ between different run types
(SinglePoint, Frequencies...). Most items should be self-explanatory. Some are only significant for internal
proceedings of the program and will not be explained in detail. The sections are described in an order that
corresponds to the order in which they are generated and hence printed by the KF utility programs.
However, the order of generation depends somewhat on the type of application, so some difference may be
found when comparing to your own TAPE21 printout.

Note that variable and section names may contain spaces: these are significant.

A special section is the 'SUPERINDEX' section, which is in fact a table-of-contents that lists all the sections
in the file, with technical information regarding their position on the file, the amount of data corresponding to
that section and similar items. The SUPERINDEX section is not discussed further here. See the KF
documentation for more details.

Section General

General information about the calculation and the file

fileident

Name of the file. Here: TAPE21

370

jobid

ADF release number with date and time of the calculation

title

Title of the calculation. This may have been set in the input file, or be internally generated. In a create
run it is picked up from the Create database file (if no input value for the title key has been given).

runtype

The type of calculation, for instance SinglePoint or Frequencies

nspin

1 for a spin-restricted calculation, 2 for spin-unrestricted

nspinf

Similar for the fragment occupation numbers as they are used in the calculation, See the key
FRAGOCCUPATIONS

ldapot

An integer code for the applied LDA part of the XC potential functional used in the SCF. 1 for VWN, 2
for VWN+Stoll ...

xcparv

X-alpha parameter value. Only relevant for the X-alpha LDA potential, meaningless if another LDA
potential functional has been selected.

ldaen

As for ldapot: integer code for the LDA part of the Density Functional, now however pertaining to the
(post-SCF) energy evaluation. Usually ldaen and ldapot are identical. See the key XC for details.

xcpare

As xcparv, but now for the energy evaluation.

ggapot

Specification (string) of the GGA part of the XC potential used in the SCF, for instance 'Becke Perdew'.
If no GGA potential is applied, the string ggapot is empty.

ggaen

Similar for the GGA part of the XC energy evaluation

iopcor

Code for usage of frozen core: 1=use frozen cores, 0=pseudopotentials. Pseudopotentials are not
supported anymore in ADF, so this variable must always be 1.

electrons

The number of valence electrons
Note that this is not necessarily the same as what may consider, chemically, as the valence space.

371

Rather, it equals the total number of electrons in the calculation minus the electrons in the frozen core
orbitals.

unit of length

Transformation factor between input-used geometrical units (for distances) and atomic units (bohr). If
input of, say, the atomic coordinates is in Angstrom, the unit of length is approximately 1.89

unit of angle

Similar for angles. Internal units in the program are radians. Input (bond and dihedral angles) may be in
degrees, in which case the unit of angle equals approximately 0.017

Section Geometry

Geometrical data such as number of atoms, coordinates, etc: Most variable names should be self-
explanatory

grouplabel

Point group symmetry (string) used in the calculation, for instance O(H). This may be set in the input
file.

Geometric Symmetry

Auto-determined ('true') symmetry (considering the nuclear frame and any external fields, but not taking
into account any user-defined MO occupation numbers and hence the electronic charge distribution.

symmetry tolerance

Threshold for allowed deviation of input atomic coordinates from symmetry to be detected or verified.

orient

Affine transformation (3,4 matrix: rotation and translation) between the input coordinates and the frame
in which the program processes the atoms. ADF has certain orientation requirements for all supported
point group symmetries and may rotate and translate the input coordinates accordingly.

oinver

The inverse transformation of orient

lrotat

A logical flag to signal whether or not a rotation has been applied between the input frame and the
internally used frame.

nr of fragmenttypes

The number of distinct types of fragments

nr of dummy fragmenttypes

Idem, but counting only dummy atom fragments. A dummy fragment, if it exists, must consist of one
single (dummy) atom.

fragmenttype

Names (string) of the fragment types.

372

fragment mass

Sum of atomic masses in the fragment.

fragment charge

An array with 3 values per fragment type (nftypes,3): 1=sum of nuclear charges, 2=sum of effective
nuclear charges (discounting for the frozen core shells), 3=nr of valence electrons

fframe

Signals whether or not special local coordinate frames are used for the atoms. Usually this is not so, in
which case the variable has the value DEFAULT. fframe is an array that runs over the atoms. See the
'z=' option to the data in the ATOMS input key block.

cum nr of fragments

An array (0:nftyps) that gives the total number of fragments for the fragment types up to and including
the indexed one. The ordering of fragments and fragment types is printed in the standard output file.

nr of fragments

The total number of fragments in the calculation
This equals the last element of the previous variable 'cum nr of fragments'

nr of dummy fragments

The total number of fragments that each consist of a single dummy atom.

fragment mapping

Affine transformation matrices (3,4: rotation and translation), one for each fragment in the molecule, that
transform the fragment coordinates as they are on the fragment file(s), to the actual position of the
fragments in the molecule.

cum nr of atomtypes

An array (0:fragmenttypes) that counts the number of atom types up to and including the indexed
fragment type.

nr of atomtypes

Total number of atom types in the molecule. Must equal the last element of the 'cum nr of atomtypes'
array

nr of dummy atomtypes

Similar, now counting only the atom types consisting of a dummy atom.

atomtype

Names (strings) of the atom types

mass

Atomic masses: array running over the atom types. Compare 'fragment mass'.

charge

Similar as for 'fragment charge', but now the values per atom type.

373

cum nr of atoms

An array (0:atomtypes) that counts the number of atoms up to and including the indexed atom type.

nr of atoms

Total number of atoms. Must equal the last element of the array 'cum nr of atoms'.

nr of dummy atoms

Total number of dummy atoms

atmcrd

Type of atomic coordinates in input: CART (Cartesian) or ZMAT (Internal).

kmatrix InputOrder

The connection matrix listing (and referencing) the atoms in the order as they were in the input file. This
ordering aspect is significant because internally the program reorders the atoms and groups them
together by atom type and fragment type. Hence it is relevant to know what ordering (input- or internal-)
is assumed in data arrays.

zaxis

For each atom the direction of the local z-axis. Normally this is identical to the standard (0,0,1), but it
may be different for analysis purposes. See the 'z=' option to the data records in the ATOMS block.

fragment and atomtype index

An integer array (natoms,2) that specifies for each atom the fragment and the atom type it belongs to.

atom order index

An integer array (natoms,2) that defines the re-ordering of atoms between the list in the input file and
the internally used list (which is driven by fragment types, fragments, atom types; dummies come last).
The internally used list can be derived from the printout of the fragments, early in the standard output.

kmatrix

The connection matrix using the internally applied ordering of atoms

xyz

Cartesian coordinates of the atoms, in the internally used ordering of atoms

xyz Inputorder

Similar, but now for the ordering of atoms as in the input file.

zmatrix

Internal (Z-matrix) atomic coordinates

zmatrix Inputorder

Internal coordinates in the input-order of atoms

Atomic Distances

374

Inter atomic distance matrix

ntyp

Number of atom types, not counting dummy atoms,

nqptr

A cumulative counting array, very similar to 'cum nr of atoms'
Differences: it runs only over 'ntyp' atom types (not including dummy atoms) and its indexing as well as
its values are shifted by one: nqptr(k) is the total number of atoms plus one, counting the atom types up
to and including #(k-1)

nnuc

Total number of non-dummy atoms

qtch

Nuclear charges of the non-dummy atoms

qeff

Effective nuclear charges (subtracting charge for the frozen core shells) of the non-dummy atoms

nfragm

Total number of non-dummy fragments

nofrag_1

Integer array specifying for each non-dummy atom the fragment it belongs to.

nofrag_2

Integer array specifying for each non-dummy atom the fragment type it belongs to

nuclab

Names of the non-dummy atom types.

Section Fragments

(To be completed)

FragmentFile

Names of all used fragment files

FragRun Ident,Title

Job identification and title of each fragment run that is used in the current molecule

Section AtomTypes

(To be completed)

Section Properties

375

AtomCharge Mulliken

Atomic charges derived from Mulliken population analysis.

Dipole

Dipole moment in atomic units.

FragmentCharge Hirshfeld

Fragment charges derived from Hirshfeld analysis

AtomCharge_initial Voronoi

Atomic charges derived from Voronoi analysis for the initial (sum-of-fragments) charge density

AtomCharge_SCF Voronoi

Similar as the previous item, but now for the SCF density

Electrostatic Pot. at Nuclei

Coulomb potentials at the positions of the atoms, not including the contribution from the nucleus itself

Section Basis

Information about the (valence) basis set

nbset

The total number of basis 'sets', where a 'set' here means a Cartesian function set (3 for a p-type
function, 6 for a d-type function, and so on), given by an entry in the 'list-of-basis-functions' in the data
base file.

nbaspt

Cumulative number of basis sets (see previous variable, for 'set'), on a per atom type basis. Only non-
dummy atoms (type) are considered. nbaspt(k) is 1+nr-of-basis sets up to, but not including atom type
#k

nqbas

Main quantum number of each basis set. A 1s function has nqbas()=1

lqbas

Angular momentum quantum number of each basis set. The current implementation of ADF supports
only s, p, d, and f basis functions, so the allowed lqbas values are 0, 1, 2, and 3

alfbas

The exponential decay parameters of the STO functions in the basis set

basnrm

Normalization coefficients for the basis sets

naos

376

The total number of basis functions, counting all Cartesian polynomials and all copies of the functions
on the atoms of the pertaining atom type

nbos

The total number of Cartesian basis functions, not counting the copies of the functions on the different
atoms of the atom type: the functions are defined per atom type and are (for nbos) counted only once.
The next few variables relate to lists of basis functions that run from 1 to nbos: all the Cartesian
polynomials, but counting the function only once per atom type. Essentially, this means counting all
functions with distinct characteristics (apart from their geometrical center).

nbptr

Index array of the nbos functions, where the entries are the cumulative numbers of functions (+1) up to,
but not including the atom type. The size of the array is (ntyp+1): one plus the number of (non-dummy)
atom types.

kx

Powers of x of the nbos Cartesian STO basis functions

ky

Powers of y of the nbos Cartesian STO basis functions

kz

Powers of z of the nbos Cartesian STO basis functions

kr

Powers of r of the nbos Cartesian STO basis functions

alf

Exponential decay factors of the nbos Cartesian STO basis functions

bnorm

Normalization factors for the nbos Cartesian STO basis functions

nprta

Consider a list of all (naos) Cartesian STO basis functions, including copies of the functions on all
atoms of the same atom type. Build that list by first taking all true valence functions on all atoms (loop
over atom types, inner loops over atoms, inner loop over basis sets of the atom type, inner loop over
Cartesian polynomials for the function set), then all auxiliary core-orthogonalization functions (similar
loop structure). nprta(i) gives the index in that list of function #i, where i corresponds to a similar list of
all naos functions in which the core and valence subsets are not separated.

norde

An array that runs over the non-dummy atom types. Each element gives the maximum of the main
quantum number for all STO basis and fit functions corresponding to that atom type.

lorde

As norde, but lorde applies to the angular momentum quantum numbers.

377

Section Core

Information about frozen core orbitals and the Slater-type exponential functions used to describe them.

nrcset

The number of STO function sets to describe the frozen core orbitals in the calculation. The array is
sized (0:llqcor,1:ntyp). llqcor is the maximum l-value in core orbitals (3), ntyp is the number of non-
dummy atom types.

nrcorb

An array (0:llqcor, 1:ntyp) specifying the number of frozen core orbitals per l-value and per non-dummy
atom type.

ncset

The total number of core expansion STO function sets, not counting copies on all atoms, and not
counting the Cartesian polynomials (1 value per p-set, et cetera)

ncorpt

Index array: 1 + cumulative number of core expansion sets up to, but not including, the indexed atom
type. The array runs from 1 to ntyp+1

nqcor

Main quantum numbers for the core expansion sets

lqcor

Angular momentum quantum numbers for the core expansion sets.

alfcor

Exponential decay factors for the core expansion sets.

cornrm

Normalization factors for the core expansion sets.

ncos

Total number of core expansion functions, counting all copies on different atoms of each atom type, and
counting all Cartesian polynomials.

nccpt

Index array: 1 + cumulative number of core orbitals, counting all copies on different atoms and all
Cartesian (sub) functions.

ncptr

Similar, but applying to the STO core expansion functions.

ccor

All core expansion coefficients, which express the core orbitals in the core expansion functions. The
array stores the expansion coefficient sequence for each core orbital shell (not for each Cartesian sub

378

function) and only one sequence per orbital per atom type (no duplication for the different atoms of the
atom type).

npos

An index array. For each atom type: the index where its data are stored on the TAPE12 core data file.
npos(k) may be zero if no data for atom type #k are available on TAPE12.

kcos

The total number of core expansion functions, like ncos, but now counting only the truly independent
functions. For instance: 5 functions per d-set, while in ncos there are 6 functions per d-set. The s-type
combination in the 6-membered d-set is in the calculation projected out and does not represent a
degree of freedom.

s

The (kcos,kcos) overlap matrix of the core expansion functions. Note that, since the dimension is
(kcos,kcos), the s-type combination has been eliminated, and likewise for the 3 p-type functions in each
f-set.

idfcor

Integer that indicates whether or not the core set contains d- and/or f-type functions. 1=yes, 0=no

nd

Total number of d-type core orbital sets (not counting the Cartesian sub functions)

nf

Total number of f-type core orbital sets (not counting the Cartesian sub functions)

ndorb

An array running over the d-type core orbital sets (loop over atom types, loop over atoms, loop over
core orbitals with l=2). It gives for each the index of the orbital (the first of the Cartesian subset) in the
overall list of all core orbitals in the molecule (including the spurious s-type functions in the d-sets, and
so on)

nforb

Similar as ndorb, but now for the f-type core orbitals.

cmat

Overlap matrix between core-orbitals (ncos, counting all Cartesian functions including the s-type
function in each d-set, et cetera), and the basis functions. In the list of basis functions, all core functions
(the auxiliary orthogonalization functions) come before all true valence basis functions, see array
NPRTA.

Section Fit

This section stores information about the fit functions, which are used for the Coulomb potential evaluation.

Unrestr.SumFrag

379

A logical that flags whether or not the fit coefficients have been set and stored for the sum-of-fragments,
but adjusted for the unrestricted fragments option (see the keys UnrestrictedFragments,
ModifyStartPotential).

coef_SumFrag

Fit coefficients pertaining to the sum-of-fragments charge density.

coef_SCF

SCF fit coefficients.

nfset

Total number of fit function sets (not counting the Cartesian sub functions, not counting the copies of
the functions on the atoms of an atom type)

nfitpt

Index array: 1+the total number of fit function sets up to, but not including, the indicated atom type.

nqfit

Main quantum numbers of the fit sets

lqfit

Angular momentum quantum numbers of the fit sets

alffit

Exponential decay factors of the STO fit sets.

fitnmr

Normalization factors for the STO fit sets.

nfos

Total number of Cartesian fit functions, not counting copies on all atoms of an atom type, but including
all (for instance, 6 for a d-set) Cartesian sub functions.

nfptr

Index array: 1+ total number of Cartesian (see variable nfos) fit functions, up to but not including the
indicated atom type.

nprimf

Total number of Cartesian ('primitive') fit functions, counting also the copies on all atoms of each atom
type.

nsfos

The total number of fully symmetric (A1 symmetry) fit function combinations that represent the true
dimension (variational freedom) of the space of fit functions in the calculation.

na1ptr

Index array, like nfptr, but applying to the nsfos symmetric function combinations.

380

niskf

This refers to an atom-limited symmetry combination of primitive fit functions, in the code and some
documentation indicated as a 'g'. A 'g' is the specific part of a molecule-wide A1 fit function combination
(see nsfos) that consists of all the terms that are centered on one particular atom. The number niskf
gives the total number of such 'g' function combinations.
To clarify this, consider an A1 fit function combination in the molecule. Assume, that it consists of a
specific linear combination the following functions: a p-x function on atom A, its partner p-y function, and
the corresponding p-x and p-y functions on atom B. (Atoms A and B must be symmetry equivalent). In
this example we have one A1 function (in the list of nsfos such functions) and two 'g''s. Each 'g' consists
of a p-x and a p-y function combination on a specific atom.

iskf

Compound index array. It runs over the niskf 'g' fit function combinations and has 4 entries for each
function (1:4,1:niskf). The meaning of the entries is as follows. #1=number of the fit set (not counting the
copies of fit functions on different atoms of an atom type, and not counting the Cartesian sub functions)
this 'g' belongs to. #2=index where the combination coefficients for this 'g' start in the arrays cofcom and
numcom (see next). #3=number of terms in the expansion of this 'g'. #4=number of the molecular fit A1
function combination this 'g' belongs to.

na1cof

Length of the arrays numcom and cofcom, see next

numcom

Numcom (and cofcom) consists of a sequence of smaller sub arrays. Each sub array gives the
expansion of a 'g' function in terms of the Cartesian functions in the pertaining fit function set. The
elements of numcom specify the particular Cartesian sub functions that participate in the expansion. Its
values are therefore limited to lie between 1 and (L+1)(L+2)/2, where L is the maximum l-value
occurring in the fit function sets.

cofcom

Compare numcom: cofcom gives the actual expansion coefficients for the expression of a 'g' function in
primitive Cartesian fit functions.

Section Num Int Params

Numerical integration parameters: the general precision parameter, but also more technical parameters
used by the grid-generating modules.

method

Label of the method used to generate the grid. Usually: 'polyhedra'

accint min

Minimum integration precision parameter. It is the lower bound of the range in which the value of the
actual numerical integration precision parameter may vary.

accint max

Maximum value of the precision general parameter

accint

381

Actual value of the precision parameter. This variable governs by default almost all other integration
parameters.

ldim

In fact, this a geometric parameter: the number of dimensions in which the system is periodic. For
molecules this is zero.

PointChargeTypes

The number of point charges types used in the calculation. Point charges belong to a different point
charge type if, and only if, their strengths are not equal.

accsph

The precision parameter that determines the (radial) integration grid in the atomic spheres

accpyr

The precision parameter that determines the general precision level of the grid in the atomic polyhedra

accout

The precision parameter that determines the general precision level of the grid in the outer region

accpyu

The precision parameter that determines the 1D grid along the first direction in the quadrangles and
triangles of the bases of the atomic pyramids

accpyv

The precision parameter that determines the 1D grid along the second direction in the quadrangles and
triangles of the bases of the atomic pyramids

accpyw

The precision parameter that determines the 1D radial integration in the atomic pyramids, between the
atomic sphere surfaces and the pyramid basis

frange

Estimated maximum range of functions, to determine how far the integration grid has to extend
outwards, away from the molecule

rspher

An array with the radii of the atomic sphere (a value per atom type)

rsph0

The smallest sphere radius

rsphx

The largest sphere radius

dishul

382

The distance between the innermost boundary planes, which separate the atomic pyramids from the
outer region, and the surfaces of the outermost atoms

nouter

The number of intervals in which the outward (radial) integration in the outer region is broken up

outrad

The precision parameter that determines the outward radial integration in the outer region

outpar

The precision parameter that determines the 2D integrals in the outer region parallel to the boundary
planes

linteg

An array with maximum angular momentum quantum numbers (one value per atom type), to determine
the angular integration grid in the atomic spheres

lintgx

Maximum of linteg()

linrot

Angular momentum quantum number to determine the rotational integration parameter around the
molecular axis (in linear molecules only)

ntyps

The number of atom types as seen by the numerical integration grid generator. This means in practice:
the number of non-dummy atom types plus the number of point charge types.

nnucs

The number of atoms as seen by the numerical integration grid generator. This means in practice: the
number of non-dummy atoms plus the number of point charges.

qatm

Nuclear charges for all ntyps atom types

nratst1

The numerical integration grid generator automatically determines the symmetry of the nuclear (nnucs
atoms!) frame and then puts the atoms in sets of symmetry equivalent ones. nratst1() is an array
(0:ntyps) that contains the cumulative number of atoms in the symmetry sets. nratst1(k) is the total
number of atoms in the sets up to and including set #k

xyzatm

Cartesian coordinates of the atoms.

linteg all

Similar to array linteg(), extended to include also the point charge types

npowx

383

Maximum power of the radial variable r, in the set of test functions that the grid generator uses to tune
the grid

alfas

An array that stores the exponential decay factors of all test functions, ordered by atom type and by the
power of the radial variable r.

Section Symmetry

Symmetry related data.

nogr

The number of symmetry operators in the point group used in the calculation. NB, for the special cases
of infinite symmetries, only the operators corresponding to finite elements are counted. Therefore,
ATOM has nogr=1 (only the unit operator); C(LIN) has nogr=1, D(LIN) has nogr=2.

faith

An array that stores all the (3,3) symmetry operator matrices in the real space representation

nsetat

The number of sets of symmetry equivalent atoms under the used symmetry

napp

An array that stores for each atom the number of the symmetry set it belongs to

notyps

An array that stores for each set of symmetry equivalent atoms, the atom type to which the set belongs

noat

Map between the normal list of atoms and the symmetry sets. When you loop over the symmetry sets
and, inside, loop over the atoms in each set, you thereby run over the index of noat(). The value points
to the position of that atom in the original (not set-ordered) list.

ntr

An array (nogr,nnuc) that stores for the each atom A and each symmetry operator R, the atom onto with
A is mapped by R. The row index runs over all symmetry operators, the column index over the atoms.

npeq

The number of symmetry unique pairs of atoms

jjsym

An array that runs over the npeq sets of symmetry equivalent atom pairs. Its value gives for the
indicated set the index of a (c.f. the first) atom pair in that set.

jasym

An array that runs over the npeq sets of equivalent atom pairs. Its value gives for the indicated the set
the number of pairs in that set.

384

ja1ok

An array (1:npeq), with values 0 or 1. 1=the pair density can be fitted using A1 fit functions only. 0=all fit
functions (on the involved atoms) are to be used. The value 1 may arise because of symmetry
properties, or because the distance between the atoms is so large that the inaccuracy from using only
A1 fit functions can be neglected.

ntr_setat

A condensed variety of array ntr: the columns are not the atoms, but the nsetat sets of symmetry
equivalent atoms. The value is the index of the atom, onto which a representative (c.f. the first) atom of
the indicated symmetry set is mapped by the given symmetry operator.

igr

A code that fixes, together with nogr and ngr, the point group symmetry. See the header of routine adf/
maisya for a list

ngr

One of the code components that fix the symmetry group. See routine adf/maisya

grouplabel

Schönfliess symbol as used in ADF

nsym

The number of symmetry representation (including subspecies) used in the calculation.

norb

For each of the nsym representations the number of basis function combinations (SFOs) that belong to
it.

nfcn

For each of the nsym representations the number of primitive atom centered basis functions that
participate in the representation.

ncbs

For each of the nsym representations the number of core orthogonalization functions that participate in
the representation.

jsyml

For each of the nsym representations: if it belongs to a one-dimensional irrep, the value is 1, otherwise:
for the first subspecies in the irrep the value is the dimension of the irrep, for the other subspecies in the
same irrep the value is 0

symlab

For each of the nsym representations the label (string) of the representation

norboc

An array (-2:2,nsym). The column runs over the symmetry representations. The positive row indices
(1,2) specify for spin-A and spin-B (the latter only if the calculation is spin-unrestricted), the highest non-

385

empty orbital. The negative indices (-1,-2) specify for spin-A and spin-B (if the unrestricted fragment
option is used) the total number of non-empty SFOs. The zero row index specifies the number of non-
empty SFOs, before applying any fragment occupation changes.

Section Spin_orbit

(To be completed)

Section Energy

XC energies

16 elements of an array enxc(2,2,4): exchange-correlation energies of various charge densities:
first index: 1=exchange term, 2=correlation term
second index: 1=lda tern, 2=gga term
third index: 1=energy of fragments (summed over fragments), 2=energy of sum-of-fragments density,
3=energy of orthogonalized fragments, 4=SCF.

Pauli TS Correction (LDA)

Correction to the 'Transition State' method to compute terms in the bonding energy, in this case the
Pauli exchange energy term. The Pauli TS Correction is not separately printed in the standard output
file, but included in the Pauli interaction term.

Pauli FitCorrection

The first-order correction to the Pauli exchange interaction term, for the error in the Coulomb energy
due to the fit incompleteness. This correction term is not printed in the output file but included in the
Pauli interaction term

Elstat Core terms

An obsolete variable, not used in the energy computation

Elstat Fitcorrection

The first-order correction to the electrostatic interaction term (putting the fragments together, without
any relaxation of Pauli orthogonalization), for the error in the Coulomb energy due to the fit
incompleteness

Orb.Int. FitCorrection

The first-order correction to the electrostatic interaction term in the SCF relaxation energy (Orbital
Interactions), for the error in the Coulomb energy due to the fit incompleteness. This term is not printed
(anymore) separately, but incorporated in the symmetry-specific interaction terms.

Orb.Int. TSCorrection (LDA)

The difference between the representation-specific orbital interaction terms added, and a
straightforward computation of the SCF relaxation energy is the result of the neglect of higher order
terms in the Taylor expansion that underlies the 'Transition State' method. This difference, therefore,
corrects exactly this neglect. It is not printed separately anymore in the output, but incorporated in
(distributed over) the representation-specific orbital interaction terms.

Ebond due to Efield

Bond energy term due to any homogeneous electric field

386

Corr. due to Orthogonalization

For analysis purposes, the concept of 'orthogonalized fragments' has been introduced and the bonding
energy is split in a part that describes the difference between the sum-of-fragments situation and the
orthogonalized-fragments density at the one hand, and the SCF relaxation (from the orthogonalized
fragments density) at the other. Both terms contain a first order fit correction term. The result of adding
the two parts is not identical to computing the total bonding energy directly and applying the first order
correction to that approach. The difference is given by this term, which therefore corrects for the
additional second order fit errors caused by using the orthogonalized fragments split-up

SumFragmentsSCF FitCorrection

The 'true' first order fit correction for the complete bonding energy, resulting from a direct calculation
that takes the sum-of-fragments as starting point and the SCF as final situation, without the intermediate
step of orthogonalized fragments.

Pauli Efield

The contribution to the Pauli interaction energy due to any electric field

Orb.Int. Efield

The contribution to the SCF relaxation energy (orbital interactions) due to any electric field

Electrostatic Interaction

The electrostatic interaction energy including any first order fit correction (if computed from the fit
density)

Pauli Total

The Pauli exchange (orbital orthogonalization) interaction energy

Steric Electrostatic

INCORRECT. Do not use. The electrostatic interaction energy including any first order fit correction (if
computed from the fit density)

Steric Total

The total steric interaction energy, consisting of the electrostatic and the Pauli interactions

Orb.Int. Irrep

Irrep stands for one of the irreps of the point group symmetry. The value gives the orbital interaction
(SCF relaxation) term for that symmetry representation

Orb.Int. Total

The total orbital interaction energy

SCF Bond Energy

Total bonding energy

elstat

INCORRECT. Do not use. Electrostatic interaction energy. Same as the 'Electrostatic Interaction'
variable in this section

387

Bond Energy

Total bonding energy, same as the 'SCF Bond Energy' variable

Pauli Kinetic

Kinetic energy term in the Pauli exchange interaction energy

Pauli Coulomb

Coulomb energy term in the Pauli exchange interaction energy

Pauli Kinetic+Coulomb

Sum of the kinetic and Coulomb terms in the Pauli exchange interaction energy

Section Point_Charges

NumberofPointCharges

The total number of point charges used

PointCharges

The array with point charge values: (4,np), where np is the number of point charges and the 4
components are, respectively, the x y z components and the strength.

Section GeoOpt

Optimization data.

Where references are made to the list of atoms, the atoms are assumed to be in internal order. This may be
different from the input-list of atoms.

nfree

number of independent optimization variables

idfree

indices (3,nr-of-atoms) for all atomic coordinates referring to the optimization variables (values 1..nfree)
and/or LinearTransit parameters (values nfree+k, k being the k-th LT parameter). A zero value means
that the coordinate is frozen.

all freedoms

A logical the flags whether or not all fundamental degrees of freedom in the system are allowed to vary.
This is not the case when constraints are applied.

Gradients

The most recent values for the derivatives of the energy with respect to the atomic coordinates
(cartesian or z-matrix, depending on the type of optimization variables).

Displacements

The most recent step executed for the atomic coordinates (optimization variables)

kmatrix

388

The connection matrix.

Hessian_CART

The Hessian matrix (second derivatives) as a n*n matrix, in the Cartesian coordinates representation.
Note that the reduced storage mode (typically, Fortran upper-triangular) is not applied.

Hessian_ZMAT

Same, but now in the internal coordinates representation

Hessian inverted_CART

The inverted Hessian, in Cartesian coordinates

Hessian inverted_ZMAT

Likewise, in internal coordinates

Note: in most cases only one, or maybe two of the Hessian cases are present on TAPE13. They can be
transformed into each other quite easily. The order of atoms is the same as in the input.

xyz old

cartesian coordinates at previous geometry cycle

zmatrix old

idem for internal coordinates

Section TS

Information about the Transition State search

modtrc

Defines the initial search direction. Positive value n: the n-th Hessian eigenvector (default:1). Negative
value n: the Hessian eigenvector with the largest (absolute value) component in the n-th optimization
variable

itrace

Index of the Hessian eigenvector that is being followed

neghes

The assumed number of negative eigenvalues of the Hessian at the Transition State. Should be 1:
searches for higher-order transition states are not supported.

mode to follow

Direction vector in atomic coordinates (Cartesian or Z-matrix, depending on the variable geocrd) that
corresponds to the current estimate of the unique Hessian eigenvector with negative eigenvalue

Section LT

Information about the Linear Transit calculation

nr of points

389

The total number of LT points to be computed.

current point

Index of point that is currently computed

Energies

Energy values in the LT points

Dipole

Dipole moments in the LT points

Parameters

LT parameters, initial and final values (along the path, the values are obtained by even-spaced linear
interpolation)

atmcrd

ZMAT if a Z-matrix structure (connection matrix) is available. CART otherwise. Used for printing

geocrd

Type of coordinates to optimize and scan along the path (CART or ZMAT)

xyz

Cartesian coordinates in the LT points (3,natoms,nlt)

zmatrix

Internal coordinates in the LT points

AtomCharge Mulliken

Mulliken atomic charges in the LT points

FragmentCharge Hirshfeld

Hirshfeld fragment charges in the LT points

AtomCharge_initial Voronoi

Voronoi atomic charges corresponding to the sum-of-fragment densities in the LT points

AtomCharge_SCF Voronoi

Voronoi atomic charges corresponding to the SCF densities in the LT points

Section IRC

This section contains general information about the IRC (Intrinsic Reaction Coordinate) calculation. Details
of the computed reaction path are in sections IRC_Forward and IRC_Backward.

atmcrd

ZMAT is a Z-matrix structure (connection matrix) is available. CART otherwise

390

geocrd

CART or ZMAT: the type of coordinates to change, optimize and trace

PointStatus

A string status variable of the current IRC point. Value can be 'DONE' (if the point has been computed),
'EXEC' if its computation has not yet finished.

nfree

Number of optimization coordinates that can be varied. See section GeoOpt

idfree

(3,natoms) pointers to the optimization variables for each of the atomic coordinates. A zero means:
frozen by constraint

xyz

Cartesian coordinates

kmatrix

Connection matrix, if a Z-matrix structure is available

zmatrix

Internal coordinates

Energies

Energy at the Transition State

Dipole

Dipole moment at the Transition State

Gradients

Computed energy gradients at the (assumed) Transition State (should be very small)

AtomCharge Mulliken

Mulliken atomic charges, for the TS geometry

AtomSpinDen Mulliken

Atomic spin densities (Mulliken) at the TS

AtomCharge_initial Voronoi

Voronoi atomic charges at the TS, from the sum-of-fragments density

AtomCharge_SCF Voronoi

Similar, for the SCF density

modtrc

391

Defines the start direction for the IRC path. A positive value n selects the n-th eigenvector of the
Hessian. A value -1 selects the gradient vector (which must then, of course, not be exactly zero). A
value -2 specifies that the start direction is specified in the input file.

step

Step length (in mass-weighted metric) between successive points of the IRC path.

stepMin

The minimum value for the step

stepMax

The maximum value for the step

Hessian inverted_ZMAT

Inverse Hessian in internal coordinates.

lfree

The number of independent optimization step directions (for the restricted optimization orthogonal to the
IRC path.

vfree

Direction vectors (3,natoms,lfree) for the independent optimization directions

GradientVector

The current gradient vector (during optimization)

Section IRC_Forward

Information about the 'forward' IRC path. The choice, which direction down from the Transition State is
forward or backward is arbitrary. By definition, in ADF the forward direction is in the positive direction along
the first Hessian eigenvector, for which the sign convention is that the largest coefficient is positive.

PathStatus

Status (string) variable for the 'forward' half of the IRC path. May be 'EXEC', or 'DONE', 'UNKNOWN',
'WAIT', 'OFF'

PointStatus

Status variable for the current point at the 'forward' path. May be 'DONE', 'EXEC'

nset

Size of arrays to store data in the IRC points along the path. Will be increased when too small

pivot

Coordinates of the current pivot point

xyz

Cartesian coordinates of the IRC points (3,natoms,nset)

392

zmatrix

Internal coordinates of the IRC points (3,natoms,nset)

Path

Lengths measures in mass-weighted metric along the path to the IRC points

Curvature

Local curvature values of the path at the IRC points

Energies

Energy values at the IRC points

Gradients

Energy gradients at the IRC points (one value: the gradient along the path. The orthogonal components
are presumably zero)

Dipole

Dipole moments at the IRC points

AtomCharge Mulliken

Mulliken atom charges at the IRC points

FragmentCharge Hishfeld

Hirshfeld fragment charges at the IRC points

AtomCharge_initial Voronoi

Voronoi atomic charges at the IRC points, corresponding to sum-of-fragments densities

AtomCharge_SCF Voronoi

Voronoi atomic charges at the IRC points, corresponding to the SCF densities

CurrentPoint

Integer index of the current IRC point (in the set of nset points)

step

Current step length

Section IRC_Backward

All entries in this section match those in the section IRC_Forward. Of course, here they refer to the other
half of the IRC path.

Section Freq

This section contains information about (progress) of the Frequencies calculation and results.

kountf

393

An integer counter that keeps track of how many geometric displacements have been carried out to
scan the potential energy surface around the equilibrium

nraman

Integer to flag whether or not Raman intensities are computed

numdif

Integer to determine the type of numerical differentiation (of gradients, to get the second derivative):
1=one-sided, 2=two-sided displacements.

disrad

Size of displacements of Cartesian coordinates or bond lengths (in case of displacements in internal
coordinates)

disang

Size of displacements of angular coordinates

geocrd

Type (string) of coordinates to displace: CART or ZMAT

atmcrd

ZMAT if a z-matrix structure is available. This determines printed output but does not affect the
computation. Compare the variable geocrd

nfree

The number of degrees of freedom

idfree

An array (3,natoms) that stores for each atomic coordinates (Cartesian or internal, depending on
geocrd) the number of the (1..nfree) variational freedom it corresponds to. If zero, the coordinate is
frozen by constraint.

xyz

Cartesian coordinates of the equilibrium geometry

kmatrix

Connection matrix that defines a Z-matrix

zmatrix

The Z-matrix variable values of the equilibrium geometry

all freedoms

Logical: true if all atomic coordinates are allowed to be displaced, not restricted by constraints.

nr of atoms

The total number of atoms, including dummy's

394

rigids

Vectors of rigid motion directions, expressed in the atomic coordinates (3,natoms,6)

Dipole previous

The dipole moment of the previous geometry. This is used to compute dipole derivatives by numerical
differentiation. The 'previous' geometry is the equilibrium geometry in case of one-sided displacements.

Dipole

The dipole moment corresponding to the current geometry

Dipole derivatives

The matrix of dipole derivatives with respect to atomic displacements

Polbty previous

The polarizability tensor (6 elements, triangular representation) of the 'previous' geometry. See the
remarks about the dipole moment

Polbty

The polarizability tensor corresponding to the current geometry

Polbty derivatives

The matrix of derivatives (w.r.t. the atomic coordinates) of the polarizability tensor

Gradients

The energy gradients corresponding to the current geometry

Gradients previous

The energy gradients of the 'previous' geometry. See the remarks about 'previous' dipole moment

Force constants

The matrix of force constants (second derivatives), built up during the frequencies calculation.

xyz displaced

The Cartesian coordinates of the current (displaced) geometry

zmatrix displaced

Internal coordinates of the current (displaced) geometry

Dipole derivatives_CART

Dipole derivatives with respect to Cartesian coordinate changes

Hessian_CART

The Hessian matrix in Cartesian coordinates, computed at the end, when the construction of the 'Force
constants' has been completed.

Frequencies

395

An array with harmonic frequencies.

Sections Ftyp n

n is an integer. All such sections give general information about fragment type #n, and more specifically
about the ADF calculation that produced the corresponding fragment file.

jobid

Job identification of the fragment run

title

Title of that calculation

nsym

Number of symmetry representations (subspecies) used

norb

For each representation the size of the Fock matrix (variational degrees of freedom)

bb

Labels of the subspecies

igr

(Partial) code for the point group symmetry

ngr

(Partial) code for the point group symmetry

grouplabel

Schönfliess symbol of the point group symmetry (of the fragment calculation)

nfcn

An array over the representation: for each subspecies the number of primitive STO basis functions that
participate in that subspecies

jsyml

An array (1:nsym). Value 1 means that the corresponding subspecies belongs to a 1D irrep. A value
larger than 1 means a correspondingly higher dimensionality of the irrep and indicates that that
subspecies is the first in that irrep. A value 0, finally, means that it is not the first subspecies in its irrep.

nfrag

Number of fragments used in that fragment calculation

natom

Number of atoms in the fragment

naos

396

Number of primitive atomic basis functions

nrat 1

Maps the atoms of this fragment (the '1' signals the first fragment of this type) onto the list of all atoms

rotfrg

Rotation matrix to map the fragment coordinates as they are on the fragment file onto their actual
orientation in the molecule

nsot

Total number of MO degrees of freedom, summation over all subspecies

nmis

The number of symmetry representations that could not be spanned by the basis set

mis

Indices of the missing symmetry representations

Sections Ftyp n?

n stands for the n-th fragment type. The ? stands for one of the symmetry representations (of the point group
symmetry used in the fragment calculation)

froc

MO occupation numbers for the MOs in this subspecies

eps

Orbital energies
When they result from a ZORA calculation, the non-scaled values are stored on file (the scaled values
are printed in the standard output file).

eigvf

Fragment MO eigenvectors, expressed in all the primitive atomic orbitals of the fragment.

nsos 1

Total number of MOs in this subspecies: size of variational problem

nbas 1

Number of primitive atomic basis functions that participate in this subspecies

npart 1

Indices that give for each of the nbas functions, the number of the basis function in the list of all basis
functions

FO 1

The fragment MOs (nbas*nsos coefficients)

397

nocc 1

Number of non-empty orbitals

Section Freq Symmetry

Information about the true (possibly input-specified) symmetry of the equilibrium geometry (in a frequencies
calculation). The displaced geometries may loose symmetry. Therefore, the program uses NOSYM
symmetry, internally, for a frequencies calculation. The 'true' symmetry of the system is used for analysis
purposes.

nr of operators

Number of symmetry operators used

operators

(3,3) matrices of the operators

nr of symmetries

Number of subspecies

symmetry labels

Names of the subspecies

atom indices

List of indices to map the symmetry-ordered atoms (loop over symmetry sets, loop over atoms in each
set) to the 'normal' list of all atoms

nr of atomsets

Number of sets of symmetry equivalent atoms

atom mappings

Integer array that provides mapping (back and forth) between the atom list in the input file and the
internally used list, which is atom type driven

atomset indices

The number of atoms in each of the sets of symmetry equivalent atoms

nr of displacements_X

(X must be one of the symmetry representations.) The number of symmetry-combined atomic
displacements that transform as X

degeneracy_X

Degeneracy of X

displace_X

The actual displacement direction vectors (3,natoms,N). N is the number of symmetry displacements for
X.

398

nr of rigids_X

The number of rigid motion direction vectors that transform as symmetry representation X

displ_InputOrder_X

The displacement vectors, but now expressed in the atomic coordinates using the ordering of atoms in
the input file

NormalModes_X

Harmonic frequency normal modes in representation X

Frequencies_X

The harmonic frequency values

IR intensities_X

The infrared intensities

Sections X

X stands here for the label of a subspecies of the point group symmetry, for instance A1. Depending on the
point group symmetry, there may be many such sections, each corresponding to one of the subspecies. All
such sections have an identical structure.

nmo_A

The number of MOs with spin-A, for which the coefficient vectors are calculated. During the SCF this
may be severely reduced, at the end it is usually the complete basis in the pertaining symmetry
representation.

nmo_B

Similar for spin b. This variable is not present in a restricted calculation.

SFO

The definition of the SFOs in the representation, consisting of expansion coefficients in terms of the
primitive atomic STO basis functions

frocf

The occupation numbers of the SFOs in this representation

npart

A list of indices of the bas functions that are used in this symmetry representation

froc_A

The occupation numbers of the MOs in the representation, for spin-A

froc_B

Similar for spin-B, if a spin-unrestricted calculation is performed

smx

399

Overlap matrix between core functions and SFOs

frocor

SFO occupation numbers

Orth-Bas

The orthogonalized fragment orbitals in the BAS representation.

Low-Bas

The Lowdin orbitals in the BAS representation: the matrix to transform the MOs from Lowdin
representation (orthonormalized SFOs) to the BAS representation

Eigen_Bas_A

mo expansion coefficients in the bas representation for all nmo_A orbitals. The coefficients run over all
bas functions indicated by npart

Eigen_Bas_B

Similar for spin-B, if present

eps_A

The orbital energies for the nmo_A orbitals of spin-A
When they result from a ZORA relativistic calculations, the non-scaled values are stored on file. (The
scaled energies are printed in standard output.

eps_B

Similar for spin-B, if present

Eig-CoreSFO_A

MOs expressed in SFOs, for spin-A MOs

Eig-CoreSFO_B

Similar for spin-B

Sections Atyp n X

Each such section contains the (core- and possibly also valence-) radial density and potential of one
particular atom type. X is the atom type label and n is an index running over all atom types in the calculation.
The list of all atom types is printed on standard output in the early geometry section.

The radial densities and potentials may be represented as simple tables - a sequence of values for r, the
distance to the nucleus, and the corresponding density or potential - or as a piecewise expansion in
Chebyshev polynomials over a sequence of intervals (r1,r2).

The core density and potential have been constructed from the Frozen Core orbitals, which are defined in
the section Core. If a TAPE12 (corepotentials) file has been attached to the calculation the core data is read
off from that TAPE12 and stored also.

rx val

Maximum r-value for which the valence density is non-negligible

400

nrint val

Number of intervals for piecewise expansion of the valence density in Chebyshev polynomials

rup val

Arrays (1..nrint) of upper bounds of the intervals. The lower bound of the first interval is zero

ncheb val

Array (1..nrint) with the number of expansion coefficients for each interval

ccheb val

Coefficients of the expansion. All coefficients, for all intervals, are stored contiguously in one linear
array. The parts pertaining to a particular interval are determined by using the arrays ncheb()

nrad

Number of points used in the direct tabular representation of the atomic densities and potentials

rmin

The first r-value of the table: the radial grid is defined by a first value (rmin), a constant multiplication
factor defining rk+1 w.r.t. rk (rfac, see next), and the total nr of points (nrad).

rfac

The multiplication factor of the radial grid

valence den

The valence density, in a table of nrad values.

valence pot

Similar for the Coulomb potential of the density, including a nuclear term Q/r, such that the long-range
monopole term in the potential is zero

qval

The number of electrons contained in the valence density

rx core

Maximum r-value for which the core density is non-negligible

nrint core

Number of intervals for piecewise expansion of the core density in Chebyshev polynomials

rup core

Arrays (1..nrint) of upper bounds of the intervals. The lower bound of the first interval is zero

ncheb core

Array (1..nrint) with the number of expansion coefficients for each interval

ccheb core

401

Coefficients of the expansion. All coefficients, for all intervals, are stored contiguously in one linear
array. The parts pertaining to a particular interval are determined by using the arrays ncheb()

qcore

The number of electrons contained in the core density

core den

The core density, in a table of nrad values.

core pot

Similar for the Coulomb potential of the density, including a nuclear term Q/r, such that the long-range
monopole term in the potential is zero

Section LqbasxLqfitx_xyznuc

This section will be removed again in the future. Temporarily it serves to transfer data from the calling
program to the grid generator.

lqbasx

An array with for each atom type the maximum angular moment quantum number in the basis functions
for that type

lqfitx

An array with for each atom type the maximum angular moment quantum number in the fit functions for
that type

xyznuc

Cartesian coordinates of the non-dummy atoms

Section GenptData

This section will be removed in the future. It serves, temporarily, to transfer data from the calling program to
the numerical integration grid generator. Most of the entries here occur also in other sections but are packed
together as replacement for previous common block structure.

numint

Integer code for the type of integration grid. Usual value: 2 (polyhedra method)

iexcit

Integer flag for excitations (response) calculation

lpolar

Integer flag for polarizability (response) calculation

ldim

Number of dimensions of periodicity

mdim

402

Dimensionality of the molecule, for instance a linear molecule has mdim=1

r0mult

A technical parameter that sets the radius outside which the multipole part of the fit coulomb potential
functions is separated (from the exponentially decaying part), for separate treatment in the evaluation of
the molecular coulomb potential.

avec

(3,3) matrix with lattice vectors. Only the (ldim,ldim) sub matrix is significant.

bvec

Inverse of avec (apart from a factor of 2 pi): lattice vectors in reciprocal space.

ngimax

Maximum number of geometry optimization iterations

llbloc

Block length determination parameter (maximum)

ipnbl

Number of integration blocks processed by the current process

nbleqv

The number of symmetry equivalent blocks to each symmetry unique block of points. This value is 1 if
any equivalent blocks are not constructed and used.

ngmax

The number of integration points, accumulated over all parallel processes

nblock

The number of integration blocks

lblock

The block length

lblx

An upper bound of the block length applied during the computation of the block length

nmax

The number of integration points generated by this process

twopi

Value of the constant 2π

fourpi

Value of the constant 4π

403

Section Multipole matrix elements

Information in a response calculation

dipole elements

The matrix elements of the 3 dipole operator components between occupied and virtual orbitals: outer
loop over the operators (in order: y, z, x), loop over virtual MOs, inner loop over occupied MOs

quadrupole elements

Similar as for dipole. Order of operators:
√(3)*xy
√(3)*yz
z2-(x2+y2)/2
√(3)*xz
√(3)*(x2-y2)/2

octupole elements

Similar as for dipole and quadrupole. Order of operators:
√(10)*y*(3*x2-y2)/4
√(15)*xyz
√(6)*y*(4*z2-x2-y2)/4
z*(z2-3(x2-y2)/2)
√(6)*x*(4*z2-x2-y2)/4
√(15)*z*(x2-y2)/2
√(10)*x*(x2-3y2)/4

hexadecapole elements

Similar as for dipole and quadrupole. Order of operators:
√(35)*xy*(x2-y2)/2
√(70)*z*(3x2y-y3)/4
√(5)*xy*(6z2-x2-y2)/2
√(10)*(4yz3-3yz*(x2+y2))/4
(8z4-24*z2*(x2+y2)+3(x4+2x2y2+y4))/8
√(10)*(4xz3-3xz*(x2+y2))/4
√(5)*(x2-y2)*(6z2-x2-y2)/4
√(70)*z*(x3-3xy2)/4
√(35)(x4-6x2y2+y4)/8

Section Irreducible matrix elements

Information in a response calculation

irreducible dipole elements

The dipole matrix elements between occupied and virtual MOs, as in the section Multipole matrix
elements. Here, however, the matrix elements are ordered by symmetry representations and 'symmetry
zeros' are omitted. The stored arrays, however, have the same size as in the previous section. See the
implementation for details about the storage of this data. (Directory $ADFHOME/adf/response/)

irreducible quadrupole elements

Similar as for the dipole elements

irreducible octupole elements

404

Similar as for the dipole elements

irreducible hexadecapole elements

Similar as for the dipole elements

Section ETS

Technical data used in the ets procedure.

nff

Size of array ncspt (next)

ncspt

Pointer array to find, for each atom type, the first element corresponding to that atom type's section in
the arrays ncsett, alfcst, and cfcset, see below

ncs

Size of the matrices ncsett, alfcst, and cfcset, see below

ncsett

Build a list of products of core orbital expansion functions, taking only the one-center products and
looping over the atom types (not the atoms). ncsett stores the powers of the radial variable r for the
products (from the main quantum numbers, one subtracted). A product of a 1s and a 2p yields
ncsett()=1

alfcst

Similar as ncsett: the sum of the exponential decay factors of the factor functions

cfcset

The density matrix corresponding build from the frozen core orbitals (all atom types, but no copies for
the distinct atoms of a type), in the representation of the core orbital expansion functions. Stored are,
per atom and per l-value (0..3) the upper-triangles of the corresponding density matrices, one after the
other, all in cfcset

nnuc

The number of (non-dummy) nuclei

qcore

For each atom the number of electrons summed over its core orbitals, resulting from analytical
integration of the core orbital expansions in STO core expansion functions.

Using Data from TAPE21

An ASCII dump of TAPE21 (complete or partial) can be obtained with the kf utility dmpkf, see the utilities
document. Alternatively you may build your own small program to extract any required information, using the
KF library routines in the ADF package. Consult the KFS documentation for a description of this software.

405

Representation of functions and frozen cores

adf uses the cartesian representation for the spherical harmonics part in functions:

f(x,y,z)=xaybzcrde-ar

The angular momentum quantum number l is then given by l=a+b+c, and the main quantum number
n=l+d+1.

There are (l+1)(l+2)/2 different combinations of (a, b, c) for a given l-value, rather than (2l+1). The excess is
caused by the presence of spurious non-l Functions in the set; a Cartesian d-set for instance consists of six
functions, five of which are true d-functions while one linear combination is in fact an s-type function
(x2+y2+z2). Only the five true d-combinations are actually used as degrees of freedom in the basis set, but
lists of primitive basis functions (bas) for instance run over all Cartesian functions including the improper
ones.

A function set in ADF is characterized by the quantum numbers l and n, and by the exponential decay factor
a. A set thus represents (l+1)(l+2)/2 Cartesian functions and (2l+1) degrees of freedom.

The atomic frozen core orbitals are described as expansions in Slater-type functions; these are not the
functions of the normal basis set but another set of functions, defined on the data files you use in Create
mode.

Orthogonality of the valence space to the frozen core states is enforced as follows: for each frozen core
shell (characterized by the quantum numbers l and n: all orbitals with m=-l...+l are identical apart from
rotation in space) the set of valence basis functions is augmented with a so-called core orthogonalization
function set. You may conceptually interpret the core orthogonalization functions as single zeta expansions
of the true frozen core states. Each of the normal valence basis functions is now transformed into a linear
combination of that valence function with all core orthogonalization functions, where the coefficients are
uniquely defined by the requirement that the resulting function is orthogonal to all true core functions.

So the list of all Cartesian basis functions is much larger than the degree of freedom of the basis: it contains
the spurious non-l combinations and it contains also the core orthogonalization functions.

Evaluation of the charge density and molecular orbitals

TAPE21 contains all the information you need to evaluate the charge density or a Molecular Orbital (MO) in
any point in space. Most of the information is located in section Basis:

A list of function characteristics (kx,ky,kz,kr,alf), including the core orthogonalization functions. This list does
not run over all bas functions used in the molecule: if a particular function is used on the atoms of a given
atomtype, the function occurs only once in the list, but in the molecule it occurs as many times as there are
atoms of that type.

With array nbptr you locate the subsections in the function list that correspond to the different types of
atoms: for atom type i the functions nbptr(i)...nbptr(i+1)-1.
The distinct atom types are listed in an early section of the standard output file.

Array nqptr gives the number of atoms for type i: nqptr(i+1)-nqptr(i). With this information you construct the
complete list of all functions. Repeat the subsection of type i as many times as there are atoms of that type:
the complete list can be considered to be constructed as a double loop, the outer being over the atom types,
the inner over the atoms that belong to that type.
The total 'overall' list of functions you obtain in this way contains naos functions.
Note that in this way we have implicitly also defined a list of all atoms, where all atoms that belong to a
particular atom type are contiguous. This list is the so-called 'internal' atom ordering, which may not be
identical to the order in which atoms were specified in input, under atoms.

406

For a given symmetry representation (Sections S) the array npart gives the indices of the basis functions in
the overall list that are used to describe orbitals in this representation.
In case of an unrestricted run the array npart applies for either spin: the same basis functions are used; the
expansion coefficients for the molecular orbitals are different of course.

In the symmetry-representation sections Eigen_bas gives the expansion coefficients that describe the MOs.
The expansion refer to the functions indicated by npart, and the function characteristics are given by the
arrays kx,ky,kz,kr,alf, and bnorm, i.e. the expansion is in normalized functions.

The value of an MO is now obtained as a summation of values of primitive basis functions. For the
evaluation of any such basis function you have to take into account that its characteristics are defined in the
local coordinate system of its atom.

To obtain the charge density you sum all MOs, squared and multiplied by the respective occupation
numbers (array froc in the appropriate irrep section).

Note that the auxiliary program densf, which is provided with the ADF package, generates orbital and
density values on a user-specified grid. See the utilities document.

TAPE13

TAPE13 is the checkpoint file for restarts after a crash. It is a concise version of TAPE21, containing only
the data the program uses for restarting the calculation. See the restart keyword.

Like TAPE21, TAPE13 is a binary, keyword driven KF file. You can manipulate it with the KF utilities, to get
a print-out of its 'table of contents', or a complete ASCII dump of its full contents.

The calculation that produces TAPE13 determines which section are written on it. The following sections
may occur (and if they occur, the listed variables are stored in them). The actual values of the variables
should be identical to the corresponding variables on TAPE21. Also they should have the same names and
be located in the same sections. In some cases, TAPE13 contains the complete corresponding section of
TAPE21.

Contents of TAPE13

Section Fit

coef_SCF

SCF fit coefficients. Total number of them is nprimf, the number of primitive fit functions (counting all
Cartesian spherical polynomials: 3 for a p-set, 6 for a d-set, and so on). If the calculation is spin-
unrestricted, each spin has its own set of fit coefficients: first all coefficients of spin-A, then those of
spin-B

coef_FreqCenter

Only in a Frequencies calculation: the fit coefficients that correspond to the equilibrium geometry.
The variable coef_SCF corresponds always to the current geometry, or the previous one if the geometry
has just been changed and the new SCF has yet to start.

Section Freq

This section is identical to the same section on TAPE21.

407

Section Geometry

This section is identical to the same section on TAPE21

Section GeoOpt

This section is identical to the same section on TAPE21

Section IRC

This section is identical to the same section on TAPE21

Section IRC_Forward

This section is identical to the same section on TAPE21

Section IRC_Backward

This section is identical to the same section on TAPE21

Section LT

This section is identical to the same section on TAPE21

Section TS

This section is identical to the same section on TAPE21

KF browser

With the GUI module kfbrowser one can browse through the raw data on KF files (like the .t21 result files).

$ADFBIN/kfbrowser file.t21

KF command line utilities

There are four utility programs for manipulating KF files from the command shell. Two of them convert kf
files from binary to ASCII and vice versa. See the pkf and dmpkf utilities for a description of the ASCII format
of a kf file. An ASCII version of a KF file can be useful to inspect its contents in detail.

In the versions of ADF prior to ADF2006, the conversion back and forth between binary and ASCII was
necessary when a binary KF file generated on a particular platform was to be used on another platform that
is not binary compatible. To do so one had to convert binary file to ASCII, transfer to the other platform and
transfer back to binary. Although a bit tedious, it was occasionally the only way to avoid recomputing a
TAPE21 result file only because you needed it on another machine.

As of ADF2006 this is no longer necessary. All programs from the package will convert a KF file to the
format native to this platform if necessary. In such a case, the original file will be renamed to a file with tilde
"~" appended to its name and a message will printed on the standard output.

408

The KF software (KF= Keyed File) has been developed at the Vrije Universiteit in Amsterdam as a general-
purpose package to store data on files and retrieve it again by keyword-driven procedures. For more
information about the KF package (usage, implementation) consult the SCM web site (http://www.scm.com)
where information about the ADF software is available.

pkf

pkf file1 { file2 ... filen }

pkf prints a summary of the contents of the kf files file1... filen.

The output should be more or less self-documenting: all variables are listed by name, type (integer, real,
character, logical) and size (number of array elements) and they are grouped together in named sections.

To put the results in an ASCII file for later inspection:

pkf file > ascii_result

Each section on the file contains an index of its variables and their associated values. All data are organized
in blocks. Each section may have any number of index blocks and any number of data blocks (this depends
simply on the amount of data to be stored in such a block). In addition there is one special section, the
SuperIndex, which is an index of all sections on the file.

The output of pkf consists of:

• General information about the file (name of the file, internally used unit numbers during processing
the file...)

• A summary of the SuperIndex: an index of blocks on the file and the sections they are associated
with.

• A summary: total numbers of blocks associated with the different types of blocks.
• For each section a list of its variables with for each variable:

◦ Its name.
◦ Its length: the amount of space reserved on the file for the variable.
◦ Its size ('used'): the amount of data associated with the variable; for reals, integers and

logicals:
the number of such elements; for strings: the number of characters.

◦ The (logical) index of the data block it is stored on;
◦ Off-set: its position within the data block in which it is stored;
◦ Its value (for an array: the value of the first element);

Remark: 'length' and 'size' are usually the same, but not necessarily.

cpkf

cpkf file1 file2 {key1 .. keyn}

cpkf copies the sections and/or variables key1 .. keyn from file1 to file2.

If a referenced section or variable already exists on file2 it is overwritten, else it is created. Sections and
variables which are already present on file2 but which are not referenced in the command are not affected.

If no sections and/or variables are explicitly mentioned at all the copy is carried out for all sections and
variables on file1.

A side effect of the copy is that any 'holes' that may be present on the first file are not copied to the second
file so that they no longer take up any space. The data copied to the second file is rearranged for optimum

409

storage efficiency. 'Holes' may be due to sections and variables that have existed in the past but that have
formally been deleted later; one of the KF functionalities is to delete variables or sections. Such activity does
not actually rearrange the KF file, but simply deletes the corresponding entries in index tables.

Alternative form:

cpkf file1 file2 -rm section1 ...

In this form, all sections will be copied except for the ones specified on the command line, thus effectively
removing them from the file.

dmpkf

A utility to extract information from a KF file and make it available in ASCII format.

dmpkf file {key1 .. keyn}

dmpkf prints the sections and/or variables from the file file indicated by key1 .. keyn on standard output. If no
sections and/or variables are explicitly mentioned the complete file is printed.

The format to be used for key1 et cetera is:

Sec%Var

where Var is the variable, which must exist in section Sec. If no Var is mentioned, the complete section Sec
is dumped.

By redirecting the result to another file you get an ASCII version of file:

dmpkf file > ascii_result

The output contains for each printed variable:

• One line with the name of the section it belongs to;
• One line with the name of the variable itself;
• One line with three integers:

◦ The amount of space reserved for the variable on the file (this aspect is relevant for
the software that handles kf files and is mentioned here only for completeness);

◦ The amount of data associated with the variable: for reals, integers, logicals:
the number of such elements; for strings: the number of characters;

◦ An integer code for the data type of the variable: 1=integer, 2=real, 3=character,
4=logical;

• The values of the variable (on as many lines as necessary): for scalar variables only one value,
for arrays as many values as the array contains.

udmpkf

A utility to put information read from standard input into a KF file.

udmpkf file

udmpkf reads an ASCII file in the format created by dmpkf from standard input and creates the KF file file
from this data if it does not already exist, otherwise it adds the sections and/or variables in the input file to
the existing kf file. If sections or variables on the input file already exist in the target file, that data on the
target file is overwritten. Other data on the target file are not affected.

410

The combination of dmpkf and udmpkf makes it easy to modify KF files with a normal text editor:

dmpkf TAPE21 > t21_ASCII

If necessary, edit and modify t21_ASCII, and then

udmpkf < t21_ASCII TAPE21_new

Note carefully that dmpkf and udmpkf do NOT have two arguments, but only one each. The ASCII
'argument' is standard input, respectively output, which you may of course redirect to a file.

5.5 Scripting with ADF

• adfprep: prepare an ADF job from a script (or command line).
• adfreport: get information (including images) from an ADF result file (for use in your script, or to

generate an HTML or tab-separated report).
• pkf, cpkf, dmpkf, udmpkf: the KF utilities, which are command-line utilities to process KF files.

ADFprep: generate (multiple) ADF jobs

The module adfprep is intended to facilitate scripting: it makes it very easy to construct proper jobs, as
saved by ADFinput, from within a script. This module can be used, for example, to run the same type of job
on various molecules, or to change input settings such as basis set choice or numerical integration
accuracy.

ADFprepare ($ADFBIN/adfprep) generates a job script from a .adf file (the template). The .adf file can be
produced by ADFinput, or you can use one of the default templates included. These default templates are
identical to those present in ADFinput.

Two examples are included to give you an idea what you can do with adfprep.

In $ADFHOME/examples/adf/BakersetSP you will find how to use adfprep to run a particular job (a single
point calculation in this case) for all molecules in the Baker set. The molecules are simply xyz files and
contain no ADF specific information. adfreport is used to collect the resulting bonding energies

In $ADFHOME/examples/adf/ConvergenceTestCH4 you will find how to use adfprep to test convergence of
the bonding energy with respect to basis set and integration accuracy. adfreport is used to collect the
resulting bonding energies

Another use of adfprep can be seen in the run script used to calculate something for a batch of conformers.
Please try the conformer GUI tutorial, and study the run script to see how adfprep is used."

The most convenient way to see the options of adfprep is to run the adfprep command without arguments.
You will get output very much alike the following description, but probably more up-to-date.

% adfprep -h
ADFprepare (adfprep) generates a job script from a .adf file (the template),
with user specified changes to input options / method / system.

Usage: adfprep -t template.adf [-m molecule.(adf|xyz|mol|t21)] [-z charge] [-s
spin]

[-i integration] [-b basis] [-c core] [-r
relativity]

411

[-x xcpotential] [-e xcenergy] [-bondsonly]
[-dftbmodel DFTB|SCC-DFTB|DFTB3]

[-dftbparameters dir]
[-logfile logfile] [-j jobname] [-a adffile]

Start with a job template, adjust it for this particular job, and write the
resulting job
to standard output. Values specified should match exactly the values as you
would specify
using ADFinput, also for menu choices.

TEMPLATE
-t: the .adf file (saved by ADFinput) to be used as template, defining the
whole job

All other options override values from this job

Instead of a .adf file, you may also specify the name of one of the
standard templates

as defined in ADFinput: "Single Point", Frequencies, "Geometry
Optimization", etc

Some shortcuts: SP, GO, FREQ, optionally prefixed by
(ADF|BAND|DFTB|UFF|MOPAC)-

For example: ADF-FREQ, BAND-SP, DFTB-GO

CHANGES TO TEMPLATE
-m: the molecule to use, element types and coordinates

This can be taken from anything that ADFinput can import,
for example .adf, .mol, xyz or .t21 files

If you specify an .sdf file, you can select which frames to import:
conformers.sdf#1-10 loop over the first 10 frames
conformers.sdf#e2.0 loop over all frames with energy below 2.0

(units as in the file, wrt the lowest energy of all frames in the
file,

energies from comment lines)
conformers.sdf#1-10e2.0 loop over the first 10 frames,

and use only those with energy below 2.0
conformers.sdf use the first frame of the sdf file

If you specify a .t21 file, you can select which frames or range of frames
to import:

ajob.t21#ircf3 3rd frame in the IRC forward path
ajob.t21#ircb2 2nd frame in the IRC backward path
ajob.t21#h7 7th frame in the history
ajob.t21#lt8 8th frame in the LT path
ajob.t21#ircf3-10 IRCForward frame 3, 4, ... 10
ajob.t21#ircf IRCForward all frames, starting at 1
ajob.t21#ircf0- IRCForward all frames, starting at 0

(original geometry, before first step)

If you specify a .cry file, the compound to import may be specified:
$ADFHOME/atomicdata/Molecules/Crystals/Cubic/CsCl.cry#MgTl

When looping, all resulting jobs will be joined together, the jobname and
adf files

412

may get the frame sequence number appended after an _ when the
-addmolnumber

flag is used

-addmolnumber: see -m when looping over molecules
-irc: when using IRC frames in the -m flag, revert the backwards order

-runtype: run type (SinglePoint,GeometryOptimization,Frequencies)
-z: charge (real number)
-s: spin (integer), if not zero this implies an unrestricted calculation
-i: integration (integer)
-i: Becke integration (Basic, Normal, Good, VeryGood or Excellent)
-i: teVelde integration (integer)
-b: basis type (SZ, DZ, DZP, TZ, TCP, TZ2P, QZ4P)
-c: core type (None, Small, Medium, Large)
-r: relativistic level (None, Scalar, Spin-Orbit), using ZORA
-x: XC potential during SCF, one from the options available in ADFinput:

LDA,
GGA:BP, GGA:BLYP, GGA:PW91, GGA:mPW, GGA:PBE, GGA:RPBE, GGA:revPBE,

GGA:mPBE,
GGA:OLYP, GGA:OPBE,
Model:SAOP, Model:LB94,
Hartree-Fock,
Hybrid:B3LYP, Hybrid:B3LYP*, Hybrid:B1LYP, Hybrid:KMLYP, Hybrid:O3LYP,

Hybrid:X3LYP,
Hybrid:BHandH, Hybrid:BHandHLYP, Hybrid:B1PW91, Hybrid:MPW1PW,

Hybrid:MPW1K,
Hybrid:PBE0, Hybrid:OPBE0

-e: XC energy after SCF (Default, LDA+GGA_METAGGA, LDA+GGA+METAGGA+HYBRIDS)
-k: replace any key, the single argument will be broken into:

the key, the replacement value, and END for a block key
all separated by spaces. To insert a return, add a |
When the key is not found, it is added just before the ATOMS key
The -k key may be repeated, and is applied at the end, replacing even

earlier changes

-dftbmodel DFTB|SCC-DFTB|DFTB3: select the DFTB modele
-dftbparameters dir: select the directory with DFTB parameters

OUTPUT
-bondsonly: only the bonds as generated by the GUI will be exported (the
GUIBONDS block)
-logfile: force the specified logfile to be used in the run script
-j: produce a fully runable job (as the .job files from ADFjobs),

using the specified jobname.
The job script produces files like jobname.out, jobname.t21 etc. Several

job scripts can simply
be concatenated, the results will be stored in different files using th

jobname parameter
the default is a simple run script (the .run file from ADFinput, files are

left as they are)
-a: save a .adf file that matches the run script, except for the -k arguments

(they are listed in the user input field)
adffile is the name of the adffile, including the .adf extension (required)

Example: calculate gradients for a molecule in file mymol.xyz
adfprep -t GO -m mymol.xyz -k "stopafter ggrads"

413

Example: calculate gradients for a molecule in file mymol.xyz, using a good
Becke grid

adfprep -t GO -i Good -m mymol.xyz -k "stopafter ggrads"

Example: calculate DFTB frequencies for a molecule in file mymol.xyz
adfprep -t DFTB-FREQ -m mymol.xyz

ADFreport: generate report

The utility adfreport is intended to facilitate scripting: it makes it very easy to get results calculated by ADF,
BAND, ReaxKF, DFTB, UFF or MOPAC in your own script. The results are available as an HTML file, a tab-
separated file, or on standard output for use in other scripts. In this way, one can quickly compare calculate
values across a set of calculations, as well as specified pictures, such as HOMO and LUMO orbitals.

ADFreport ($ADFBIN/adfreport) gets information (including images from molecules or fields) from a result
file. For ADF this is the .t21 file (TAPE21). It can also be the .runkf file from BAND, the .rxkf file from ReaxKF
or the .rkf file from DFTB, MOPAC or UFF.

The selected information is printed as concisely as possible on standard output. Alternatively, you can write
the information to a tab separated file or to an HTML file. If the file does not exist, adfreport will also
generate one line with headers to identify the information. Images are generated using the ADF-GUI.

Results on a .t21 file may depend on the ordering of atoms. adfreport will report such results in the input
order when you use one of the predefined keys, which is the order that you will normally expect. If you ask
for a dump of a particular KF variable you will get the data exactly as it is present in the file, and it is up to
you to make sense of the data.

A simple example to get the bonding energy from a file:

adfreport job.t21 BondingEnergy

or to generate high-quality pictures of some orbitals:

adfreport job.t21 HOMO LUMO+1 -v "-grid Fine" -v "-antialias" -v "-bgcolor
#ffffff"

The most convenient way to see the options of adfreport is to run the adfreport command without
arguments. This will print a description of all available options.

For up to date documenatation, please run adfreport without arguments:

% adfreport -h
ADFreport (adfreport) converts selected data from ADF and SCM result files
(.t21, .rkf,
.rxkf or .runkf) to either an HTML table or plain text. The plain text version
by default
includes tabs, headers and units for easy use in for example Excel.

To get a minimalist output (as it was before this release), add the -plain
flag or
set the SCM_ADFREPORT_PLAIN environment variable to yes. As the standard
output
already is properly formatted with tabs, the tsv option has been removed.

414

Results on a .t21 file may depend on the ordering of atoms.
adfreport will report such results in the input order when you use one of the
predefined keys, which is the order that you will normally expect.
If you ask for a dump of a particular KF variable you will get the data exactly
as it is present in the file, and it is up to you to make sense of the data.

ADF may also reorient your molecule, as required by the symmetry
(see the ADF User's Guide). All information on a .t21 file is with respect to
the
internal orientation as used by ADF.
The information reported by adfreport will also be in the INTERNAL orientation!

Usage: adfreport [-h] [-i] result.t21 [-o result.html] [[-r] result] [-v
adfview]

Successive calls with the same output file will update the information
contained in that file.

The following flags may be used:

-h: help
Print this help text
If also an input file is present, the command line flags for the

information on that
file will be listed (like a table of contents)

-i: result.t21 is the name of the input .t21 (or .rkf etc) file with the ADF
results

the -i is optional, if no -i flag found the first argument
without flag will be used

-o: result.html
is the name of the html formatted file (a simple html table) in which

the
results will be saved

: absent:
the output will be written to standard output,
with headers and units, nicely formatted with tabs

-plain: only the data, no labels or units
alternatively, set SCM_ADFREPORT_PLAIN to yes in your environment.

-noplain: the default output with labels and units, tab separated.
Only needed to undo the effect of SCM_ADFREPORT_PLAIN in you

environment.

-r: result is a particular result to be reported from the .t21 file.
The -r flag is optional: all arguments without flags will be considered
as result arguments, with exception of the first argument if the -i flag
is also absent

*** KF variables ***

Any proper KF variable is allowed (section%variable, see the KF utilities
documentation), After the variable you can specify details, all separated

with #

- range: one or two numbers, separated with a :, array counts start at 1
- format: TclTk format string for one number, like 8.3f or 12.6g

415

- %nperline: (% with number) insert new line after nperline items

For example: -r "Geometry%xyz#12.4f##3" prints a nicely formatted
table

of the coordinates
-r "Geometry%xyz#1:9#12.4f##3" similar, for the first two

atoms only
-r "Geometry%xyz#12.4f#1:9" the coordinates of the first

two atoms,
all on one line

-r "Geometry%xyz#1" print just the first
coordinate

-r "Energys%Bond Energy" print the bond energy (a
scalar)

*** Predefined Keys ***

When a result without % is specified, it must be one of the pre-defined
keys

If you use HTML output, the name of the keys are used as table headers.
The keys are not cases-sensitive, and * matches any text.
Note: LUMO is interpreted as HOMO+1, so it might not be the real LUMO

*** For .t21 files (ADF result files): ***

orient* : affine transform (3x4) from input to internal ADF
orientation,

format after #
iorient* : affine transform (3x4) from internal ADF to input

orientation,
format after #

title : title of the calculation
type : calculation type (single point, geometry optimization,

...)
weight : molecular weight
symmetry : molecular symmetry
natoms : number of atoms
integration : integration accuracy
integration-min : minimum integration accuracy
integration-max : maximum integration accuracy

scfstatus : status string (CONVERGED if no problems)
charges : shorthand for Voronoi, Hirshfeld and Mulliken charges
voronoi : voronoi deformation charges
hirshfeld : hirshfeld fragment charges, will only work with atomic

fragments
mdc : all available MDC atom charges
mdc-m : MDC-M charges
mdc-d : MDC-D charges
mdc-q : MDC-Q charges
mulliken : Mulliken charges
bondorders : Mayer bond orders
nmr : nmr shieldings
nmr-shieldings: nmr shieldings
nmr-shielding-tensor : nmr shielding tensor
nmr-j-coupling-tensor : nmr j coupling tensor

416

nmr-k-coupling-tensor : nmr k coupling tensor
nmr-j-coupling-constant : nmr j coupling constant
nmr-k-coupling-constant : nmr k coupling constant
dipolev* : dipole vector
dipole : dipole moment (length of dipole vector)
quadrupole : quadrupole tensor
orbital-info : orbital info (energy, occupation and label),

format for energy after #,
range after # with HOMO or LUMO
for example:

orbital-info#HOMO, orbital-info#HOMO-1,
orbital-info#HOMO-2:LUMO+2, orbital-info#HOMO#12.8f

orbital-e* : orbital energies, format and range after # as in
orbital-info

orbital-o* : orbital occupations, format and range after # as in
orbital-info

orbital-l* : orbital labels, format and range after # as in
orbital-info

homo-lumo-gap*: HOMO-LUMO gap, format after #
atomlabels : name of atoms with sequence number, starting at 0
atomlabels-from0 : name of atoms with sequence number, starting at 0
atomlabels-from1 : name of atoms with sequence number, starting at 1
nstep : number of steps in history / LT / IRC data,

type (h,lt,ircf,ircb) after #
step : use coordinates from history / LT / IRC data, step

number after #
with h for history, lt for LT, ircf/ircb for forward/

backward IRC
if no letter after #, history data will be used
(if not, last step will be used)
for example: step#23 (or step#h23), step#lt4, step#ircf3

geometry,
geometry-a*,
geometry-b* : geometry (element type and coordinates), in input order,

in angstrom or bohr (default bohr)
distance : distance between two atoms, in angstrom. Input separated

by #:
labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order
for example: distance#2#3, distance#labels#2#3,

distance#-8.3f#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5,

distance#labels#1#2#3#4
angle : angle between three atoms, in degrees.

Input see distance, but with three atoms per angle
dihedral : dihedral between four atoms, in degrees.

Input see distance, but with our atoms per dihedral
hessian* : hessian (from GeoOpt%Hessian_CART), fmt and nperline

options after #
gradients* : gradients (from GeoOpt%Gradients), fmt and nperline

options after #
energies* : all avaliable energies (bonding up to xc, with labels),

fmt option after #
bonding : total bonding energy
pauli : total pauli repulsion
steric : total steric interaction

417

orbital : total orbital interaction
electrostatic : electrostatic energy
kinetic : electrostatic energy
coulomb : elstat (steric +OrbInt) energy
xc : XC energy
dispersion : dispersion energy
frequencies* : IR Frequencies, format, nperline and range

(n, or n:n, start at 1) after #
freqint* : IR Intensities, format, nperline and range

(n, or n:n, start at 1) after #
freqlabel* : IR Frequencies label (symmetry), format, nperline and

range
(n, or n:n, start at 1) after #

normalmode* : Normal Modes (mass weighted), format, nperline and
range

(n, or n:n, start at 1) after #
zeropoint* : Zero-Point energy
excitation* : Excitation energies, format, nperline and range

(n, or n:n, start at 1) after #
oscillatorstrength*: Oscillator strengths for the excitation energies

format, nperline and range (n, or n:n, start at 1)
after #

excitlabel* : Excitation labels (symmetry), format, nperline and
range

(n, or n:n, start at 1) after #

*** For .rkf files (general SCM result file): ***

natoms : number of atoms
step : use coordinates from history, step number after #

(if not, last step will be used)
for example: step#23

geometry,
geometry-a*,
geometry-b* : geometry (element type and coordinates), in input order,

in angstrom or bohr (default bohr)
distance : distance between two atoms, in angstrom. Input separated

by #:
labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order
for example: distance#2#3, distance#labels#2#3,

distance#-8.3f#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5,

distance#labels#1#2#3#4
angle : angle between three atoms, in degrees.

Input see distance, but with three atoms per angle
dihedral : dihedral between four atoms, in degrees.

Input see distance, but with our atoms per dihedral
hessian* : hessian, fmt and nperline options after #
gradients* : gradients, fmt and nperline options after #
energies : all avaliable energies (with labels)

*** For .rxkf files (SCM ReaxKF result file): ***

natoms : number of atoms
geometry,

418

geometry-a*,
geometry-b* : geometry (element type and coordinates), in input order,

in angstrom or bohr (default bohr)
distance : distance between two atoms, in angstrom. Input separated

by #:
labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order
for example: distance#2#3, distance#labels#2#3,

distance#-8.3f#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5,

distance#labels#1#2#3#4
angle : angle between three atoms, in degrees.

Input see distance, but with three atoms per angle
dihedral : dihedral between four atoms, in degrees.

Input see distance, but with our atoms per dihedral
atomlabel : name of atoms with sequence number, starting at 0
atomlabel-from0 : name of atoms with sequence number, starting at 0
atomlabel-from1 : name of atoms with sequence number, starting at 1
rx-frame n options : information for a particular reaxff frame.

Note the spaces, you will need to quote this key.
n: frame number 0, 1, 2, ...

(thus this is not the ReaxFF step number)
options: a combination of the following

(if omitted, all will be reported):
nframes : total number of frames
step : the ReaxFF step number for the

specified frame
nats : number of atoms
xyz : the xyz coordinates
names : the element names (C, H etc) for

each atom
in the same order as the XYZ

neighbors: bond information
cell : cell information

for example: adfreport water.rxkf "rx-frame 20
step xyz cell"

pdbtrajectory: the trajectory information (including molecule details)
as a sequence of PDB models
due to limitations of the PDB format no more then 99999

atoms,
and it will not be a standard conforming PDB file

xmol : the trajectory information (only element, xyz) in xmol
format

gro : trajectory as .gro file (xyz and velocities)
options after a - sign:
m : print list of molecule names and formulas only
x : allow xyz only frames (missing velocities)
f : add forces if available
tf : add the time step, f is a floating point number

that is the time per step in ps
examples: gro-x, gro-f, gro-xf, gro-ft0.0001,

gro-xt0.001, etc

*** For .runkf files (SCM BAND result file): ***

natoms : number of atoms

419

geometry,
geometry-a*,
geometry-b* : geometry (element type and coordinates), in input order,

in angstrom or bohr (default bohr)
distance : distance between two atoms, in angstrom. Input separated

by #:
labels (optional): include atom labels in output
format (optional): format field
atom numbers, starting at 1, in input order
for example: distance#2#3, distance#labels#2#3,

distance#-8.3f#5#8,
distance#labels#8.4f#1#2, distance#2#3#4#5,

distance#labels#1#2#3#4
angle : angle between three atoms, in degrees.

Input see distance, but with three atoms per angle
dihedral : dihedral between four atoms, in degrees.

Input see distance, but with our atoms per dihedral
atomlabel : name of atoms with sequence number, starting at 0
atomlabel-from0 : name of atoms with sequence number, starting at 0
atomlabel-from1 : name of atoms with sequence number, starting at 1

The -r flag (or arguments without flag) may be repeated for multiple
results

-v: command line to pass to adfview (without filenames) to generate an image
The image will be generated by ADFview, the image will be stored in a
directory with a name based on the result file, and with extension .jpgs.
The result file will contain a path to the image file (directly, or in an

IMG tag)
After the -v the arguments must be listed, with proper quoting.
Repeat the -v flag for multiple arguments.
The individual -scmgeometry, -bgcolor, -zoom, -viewplane, -antialias and

-grid options
will be collected and applied to all view options

Some shortcuts have been defined (HOMO, HOMO+1, LUMO, Molecule, Density,
Potential)

Some useful flags include -scmgeometry (default 200x200), -bgcolor
(default #220000),

-zoom (default 1.0), -viewplane (default {1 2
5}),

-antialias (off when not present, especially
useful

with light bgcolors),
-grid (Coarse when not present, Medium when

specified,
or value after flag if a value is present)

Examples: Molecule HOMO LUMO
HOMO-1 LUMO+1 -v "-viewplane {0 0 1}" -v "-grid Fine" -v

"-antialias"

420

6 References
1. E.J. Baerends, V. Branchadell and M. Sodupe, Atomic reference energies for density functional
calculations, Chemical Physics Letters 265,481 (1997)

2. F.M. Bickelhaupt and E.J. Baerends, Kohn-Sham DFT: Predicting and Understanding Chemistry, in
Reviews in Computational Chemistry, D.B. Boyd and K.B. Lipkowitz, Editors. 2000, Wiley-VCH: New York.
p. 1-86.

3. T. Ziegler and A. Rauk, On the calculation of Bonding Energies by the Hartree Fock Slater method. I. The
Transition State Method, Theoretica Chimica Acta 46, 1 (1977)

4. P.J. van den Hoek, A.W. Kleyn and E.J. Baerends, What is the origin of the repulsive wall in atom-atom
potentials, Comments Atomic and Molecular Physics 23, 93 (1989)

5. E.J. Baerends, Pauli repulsion effects in scattering from and catalysis by surface, in Cluster models for
surface and bulk phenomena, ISBN13: 9780306441028, G. Puccchiori, P.S. Bagus and F. Parmigiani,
Editors. 1992, Springer: New-York. p. 189-207.

6. L. Versluis and T. Ziegler, The determination of Molecular Structure by Density Functional Theory, Journal
of Chemical Physics 88, 322 (1988)

7. L. Versluis, The determination of molecular structures by the HFS method, 1989, University of Calgary

8. L. Fan and T. Ziegler, Optimization of molecular structures by self consistent and non-local density
functional theory, Journal of Chemical Physics 95, 7401 (1991)

9. L. Deng, T. Ziegler and L. Fan, A combined density functional and intrinsic reaction coordinate study on
the ground state energy surface of H2CO, Journal of Chemical Physics 99, 3823 (1993)

10. L. Deng and T. Ziegler, The determination of Intrinsic Reaction Coordinates by density functional theory,
International Journal of Quantum Chemistry 52, 731 (1994)

11. T.H. Fischer and J. Almlöf, General Methods for Geometry and Wave Function Optimization, Journal of
Physical Chemistry 96, 9768 (1992)

12. L. Fan and T. Ziegler, Application of density functional theory to infrared absorption intensity calculations
on main group molecules, Journal of Chemical Physics 96, 9005 (1992)

13. L. Fan and T. Ziegler, Nonlocal density functional theory as a practical tool in calculations on transition
states and activation energies, Journal of the American Chemical Society 114, 10890 (1992)

14. A. Bérces, Application of density functional theory to the vibrational characterization of transition metal
complexes, 1995, University of Calgary: Calgary

15. R. van Leeuwen and E.J. Baerends, Exchange-correlation potential with correct asymptotic behavior,
Physical Review A 49, 2421 (1994)

16. M. Grüning, O.V. Gritsenko, S.J.A. van Gisbergen and E.J. Baerends, Shape corrections to exchange-
correlation Kohn-Sham potentials by gradient-regulated seamless connection of model potentials for inner
and outer region, Journal of Chemical Physics 114, 652 (2001)

17. P.R.T. Schipper, O.V. Gritsenko, S.J.A. van Gisbergen and E.J. Baerends, Molecular calculations of
excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation
potentials, Journal of Chemical Physics 112, 1344 (2000)

421

http://dx.doi.org/10.1016/S0009-2614(96)01449-2
http://dx.doi.org/10.1007/BF00551648
http://dx.doi.org/10.1063/1.454603
http://dx.doi.org/10.1063/1.454603
http://www.cobalt.chem.ucalgary.ca/group/Ind_Home_Pages/versluis/thesis.zip
http://dx.doi.org/10.1063/1.461366
http://dx.doi.org/10.1063/1.466129
http://dx.doi.org/10.1002/qua.560520406
http://pubs.acs.org/doi/abs/10.1021/j100203a036
http://pubs.acs.org/doi/abs/10.1021/j100203a036
http://dx.doi.org/10.1063/1.462258
http://pubs.acs.org/doi/abs/10.1021/ja00053a027
http://www.cobalt.chem.ucalgary.ca/group/Ind_Home_Pages/berces/thesis.zip
http://www.cobalt.chem.ucalgary.ca/group/Ind_Home_Pages/berces/thesis.zip
http://link.aps.org/doi/10.1103/PhysRevA.49.2421
http://dx.doi.org/10.1063/1.1327260
http://dx.doi.org/10.1063/1.480688

18. M. Grüning, O.V. Gritsenko, S.J.A. van Gisbergen and E.J. Baerends, On the required shape correction
to the LDA and GGA Kohn Sham potentials for molecular response calculations of (hyper)polarizabilities and
excitation energies, Journal of Chemical Physics 116, 9591 (2002)

19. D.P. Chong, O.V. Gritsenko and E.J. Baerends, Interpretation of the Kohn-Sham orbital energies as
approximate vertical ionization potentials, Journal of Chemical Physics 116, 1760 (2002)

20. S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local
spin density calculations: a critical analysis, Canadian Journal of Physics 58 (8), 1200 (1980)

21. H. Stoll, C.M.E. Pavlidou, and H. Preuss, On the calculation of correlation energies in the spin-density
functional formalism, Theoretica Chimica Acta 49, 143 (1978)

22. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior,
Physical Review A 38, 3098 (1988)

23. J.P. Perdew and Y. Wang, Accurate and simple density functional for the electronic exchange energy:
generalized gradient approximation, Physical Review B 33, 8822 (1986)

24. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Sing and C. Fiolhais, Atoms,
molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and
correlation, Physical Review B 46, 6671 (1992)

25. C. Adamo and V. Barone, Exchange functionals with improved long-range behavior and adiabatic
connection methods without adjustable parameters: The mPW and mPW1PW models, Journal of Chemical
Physics 108, 664 (1998)

26. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical
Review Letters 77, 3865 (1996)

27. B. Hammer, L.B. Hansen, and J.K. Norskøv, Improved adsorption energetics within density-functional
theory using revised Perdew-Burke-Ernzerhof functionals, Physical Review B 59, 7413 (1999)

28. Y. Zhang and W. Yang, Comment on "Generalized Gradient Approximation Made Simple", Physical
Review Letters 80, 890 (1998)

29. N.C. Handy and A.J. Cohen, Left-right correlation energy, Molecular Physics 99, 403 (2001)

30. J.P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron
gas, Physical Revied B 33, 8822 (1986)
Erratum: J.P. Perdew, Physical Review B 34, 7406 (1986)

31. C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a
functional of the electron density, Physical Review B 37, 785 (1988)

32. B.G. Johnson, P.M.W. Gill and J.A. Pople, The performance of a family of density functional methods,
Journal of Chemical Physics 98, 5612 (1993)

33. T.V. Russo, R.L. Martin and P.J. Hay, Density Functional calculations on first-row transition metals,
Journal of Chemical Physics 101, 7729 (1994)

34. R. Neumann, R.H. Nobes and N.C. Handy, Exchange functionals and potentials, Molecular Physics 87,
1 (1996)

35. J.P. Perdew, K. Burke and M. Ernzerhof, ERRATA for "Generalized Gradient Approximation Made
Simple [Phys. Rev. Lett. 77, 3865 (1996)]" Physical Review Letters 78, 1396 (1997)

36. F.A. Hamprecht, A.J. Cohen, D.J. Tozer and N.C. Handy, Development and assessment of new
exchange-correlation functionals, Journal of Chemical Physics 109, 6264 (1988)

422

http://dx.doi.org/10.1063/1.1476007
http://dx.doi.org/10.1063/1.1430255
http://www.nrcresearchpress.com/doi/abs/10.1139/p80-159
http://dx.doi.org/10.1007/BF00553794
http://link.aps.org/doi/10.1103/PhysRevA.38.3098
http://link.aps.org/doi/10.1103/PhysRevB.33.8800
http://link.aps.org/doi/10.1103/PhysRevB.46.6671
http://dx.doi.org/10.1063/1.475428
http://dx.doi.org/10.1063/1.475428
http://link.aps.org/doi/10.1103/PhysRevLett.77.3865
http://link.aps.org/doi/10.1103/PhysRevLett.77.3865
http://link.aps.org/doi/10.1103/PhysRevB.59.7413
http://link.aps.org/doi/10.1103/PhysRevLett.80.890
http://link.aps.org/doi/10.1103/PhysRevLett.80.890
http://dx.doi.org/10.1080/00268970010018431
http://link.aps.org/doi/10.1103/PhysRevB.33.8822
http://link.aps.org/doi/10.1103/PhysRevB.34.7406
http://link.aps.org/doi/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1063/1.464906
http://dx.doi.org/10.1063/1.468265
http://dx.doi.org/10.1080/00268979600100011
http://dx.doi.org/10.1080/00268979600100011
http://link.aps.org/doi/10.1103/PhysRevLett.78.1396
http://dx.doi.org/10.1063/1.477267

37. A.D. Boese, N.L. Doltsinis, N.C. Handy and M. Sprik, New generalized gradient approximation
functionals, Journal of Chemical Physics 112, 1670 (2000)

38. A.D. Boese and N.C. Handy, A new parametrization of exchange-correlation generalized gradient
approximation functionals, Journal of Chemical Physics 114, 5497 (2001)

39. T. Tsuneda, T. Suzumura and K. Hirao, A new one-parameter progressive Colle.Salvetti-type correlation
functional, Journal of Chemical Physics 110, 10664 (1999)

40. J.B. Krieger, J. Chen, G.J. Iafrate and A. Savin, in Electron Correlations and Materials Properties,
ISBN13: 9780306462825, A. Gonis and N. Kioussis, Editors. 1999, Plenum: New York.

41. J.P. Perdew, S. Kurth, A. Zupan and P. Blaha, Erratum: Accurate Density Functional with Correct Formal
Properties: A Step Beyond the Generalized Gradient Approximation [Phys. Rev. Lett. 82, 2544 (1999)],
Physical Review Letters 82, 5179 (1999).

42. T. van Voorhis and G.E. Scuseria, A novel form for the exchange-correlation energy functional, Journal
of Chemical Physics 109, 400 (1998)

43. M. Filatov and W. Thiel, A new gradient-corrected exchange-correlation density functional, Molecular
Physics 91, 847 (1997)

44. M. Filatov and W. Thiel, Exchange-correlation density functional beyond the gradient approximation,
Physical Review A 57, 189 (1998)

45. E.I. Proynov, S. Sirois and D.R. Salahub, Extension of the LAP functional to include parallel spin
correlation, International Journal of Quantum Chemistry 64, 427 (1997)

46. E.I. Proynov, H. Chermette and D.R. Salahub, New tau-dependent correlation functional combined with
a modified Becke exchange, Journal of Chemical Physics 113, 10013 (2000)

47. S. Patchkovskii, J. Autschbach and T. Ziegler, Curing difficult cases in magnetic properties prediction
with self-interaction corrected density functional theory, Journal of Chemical Physics 115, 26 (2001)

48. S. Patchkovskii and T. Ziegler, Improving "difficult" reaction barriers with self-interaction corrected
density functional theory, Journal of Chemical Physics 1167806 (2002)

49. S. Patchkovskii and T. Ziegler, Phosphorus NMR chemical shifts with self-interaction free, gradient-
corrected DFT, Journal of Physical Chemistry A 106, 1088 (2002)

50. P.H.T. Philipsen, E. van Lenthe, J.G. Snijders and E.J. Baerends, Relativistic calculations on the
adsorption of CO on the (111) surfaces of Ni, Pd, and Pt within the zeroth-order regular approximation,
Physical Review B 56, 13556 (1997)

51. J.G. Snijders and E.J. Baerends, A perturbation theory approach to relativistic calculations. I. Atoms,
Molecular Physics 36, 1789 (1978)

52. J.G. Snijders, E.J. Baerends and P. Ros, A perturbation theory approach to relativistic calculations. II.
Molecules, Molecular Physics 38, 1909 (1979)

53. T. Ziegler, J.G. Snijders and E.J. Baerends, Relativistic effects on bonding, Journal of Chemical Physics
74, 1271 (1981)

54. R.L. DeKock, E.J. Baerends, P.M. Boerrigter and J.G. Snijders, On the nature of the first excited states
of the uranyl ion, Chemical Physics Letters 105, 308 (1984)

55. R.L. DeKock, E.J. Baerends, P.M. Boerrigter and R. Hengelmolen, Electronic structure and bonding of
Hg(CH3)2, Hg(CN)2, Hg(CH3)(CN), Hg(CCCH3)2, and Au(PMe)3)(CH3), Journal of the American Chemical
Society 106, 3387 (1984)

423

http://dx.doi.org/10.1063/1.480732
http://dx.doi.org/10.1063/1.1347371
http://dx.doi.org/10.1063/1.479012
http://link.aps.org/doi/10.1103/PhysRevLett.82.5179
http://dx.doi.org/10.1063/1.476577
http://dx.doi.org/10.1063/1.476577
http://dx.doi.org/10.1080/002689797170950
http://dx.doi.org/10.1080/002689797170950
http://link.aps.org/doi/10.1103/PhysRevA.57.189
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)64:4<427::AID-QUA5>3.0.CO;2-Y
http://dx.doi.org/10.1063/1.1321309
http://dx.doi.org/10.1063/1.1370527
http://dx.doi.org/10.1063/1.1468640
http://pubs.acs.org/doi/abs/10.1021/jp014184v
http://link.aps.org/doi/10.1103/PhysRevB.56.13556
http://dx.doi.org/10.1080/00268977800102771
http://dx.doi.org/10.1080/00268977900102941
http://dx.doi.org/10.1063/1.441187
http://dx.doi.org/10.1063/1.441187
http://dx.doi.org/10.1016/0009-2614(84)85036-8
http://pubs.acs.org/doi/abs/10.1021/ja00324a001
http://pubs.acs.org/doi/abs/10.1021/ja00324a001

56. P.M. Boerrigter, Spectroscopy and bonding of heavy element compounds, 1987, Vrije Universiteit.

57. P.M. Boerrigter, M.A. Buijse and J.G. Snijders, Spin-Orbit interaction in the excited states of the
dihalogen ions F2+, Cl2+ and Br2+, Chemical Physics 111, 47 (1987)

58. P.M. Boerrigter, E.J. Baerends and J.G. Snijders, A relativistic LCAO Hartree-Fock-Slater investigation
of the electronic structure of the actinocenes M(COT)2, M=Th, Pa, U, Np and Pu, Chemical Physics 122,
357 (1988)

59. T. Ziegler, V. Tschinke, E.J. Baerends, J.G. Snijders and W. Ravenek, Calculation of bond energies in
compounds of heavy elements by a quasi-relativistic approach, Journal of Physical Chemistry 93, 3050
(1989)

60. J. Li, G. Schreckenbach and T. Ziegler, A Reassessment of the First Metal-Carbonyl Dissociation
Energy in M(CO)4 (M = Ni, Pd, Pt), M(CO)5 (M = Fe, Ru, Os), and M(CO)6 (M = Cr, Mo, W) by a
Quasirelativistic Density Functional Method, Journal of the American Chemical Society 117, 486 (1995)

61. E. van Lenthe, A.E. Ehlers and E.J. Baerends, Geometry optimization in the Zero Order Regular
Approximation for relativistic effects, Journal of Chemical Physics 110, 8943 (1999)

62. E. van Lenthe, E.J. Baerends and J.G. Snijders, Relativistic regular two-component Hamiltonians,
Journal of Chemical Physics 99, 4597 (1993)

63. E. van Lenthe, E.J. Baerends and J.G. Snijders, Relativistic total energy using regular approximations,
Journal of Chemical Physics 101, 9783 (1994)

64. E. van Lenthe, J.G. Snijders and E.J. Baerends, The zero-order regular approximation for relativistic
effects: The effect of spin-orbit coupling in closed shell molecules, Journal of Chemical Physics 105, 6505
(1996)

65. E. van Lenthe, R. van Leeuwen, E.J. Baerends and J.G. Snijders, Relativistic regular two-component
Hamiltonians, International Journal of Quantum Chemistry 57, 281 (1996)

66. C.C. Pye and T. Ziegler, An implementation of the conductor-like screening model of solvation within the
Amsterdam density functional package, Theoretical Chemistry Accounts 101, 396 (1999)

67. A. Klamt and G. Schüürmann, COSMO: a new approach to dielectric screening in solvents with explicit
expressions for the screening energy and its gradient, Journal of the Chemical Society: Perkin Transactions
2, 799 (1993)

68. A. Klamt, Conductor-like Screening Model for real solvents: A new approach to the quantitative
calculation of solvation phenomena, Journal of Physical Chemistry 99, 2224 (1995)

69. A. Klamt and V. Jones, Treatment of the outlying charge in continuum solvation models, Journal of
Chemical Physics 105, 9972 (1996)

70. J.L. Pascual-ahuir, E. Silla and I. Tuñon, GEPOL: An improved description of molecular surfaces. III. A
new algorithm for the computation of a solvent-excluding surface, Journal of Computational Chemistry 15,
1127 (1994)

71. S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Implementation of time-dependent density
functional response equations, Computer Physics Communications 118, 119 (1999)

72. S.J.A. van Gisbergen, Molecular Response Property Calculations using Time Dependent Density
Functional Theory, in Chemistry. 1998, Vrije Universiteit: Amsterdam. p. 190.

73. E.K.U. Gross, J.F. Dobson and Petersilka, in Density Functional Theory, R.F. Nalewajski, Editor. 1996,
Springer: Heidelberg.

424

http://dx.doi.org/10.1016/0301-0104(87)87007-6
http://dx.doi.org/10.1016/0301-0104(88)80018-1
http://dx.doi.org/10.1016/0301-0104(88)80018-1
http://pubs.acs.org/doi/abs/10.1021/j100345a036
http://pubs.acs.org/doi/abs/10.1021/j100345a036
http://pubs.acs.org/doi/abs/10.1021/ja00106a056
http://dx.doi.org/10.1063/1.478813
http://dx.doi.org/10.1063/1.466059
http://dx.doi.org/10.1063/1.467943
http://dx.doi.org/10.1063/1.472460
http://dx.doi.org/10.1063/1.472460
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U
http://dx.doi.org/10.1007/s002140050457
http://dx.doi.org/10.1039/P29930000799
http://dx.doi.org/10.1039/P29930000799
http://pubs.acs.org/doi/abs/10.1021/j100007a062
http://dx.doi.org/10.1063/1.472829
http://dx.doi.org/10.1063/1.472829
http://dx.doi.org/10.1002/jcc.540151009
http://dx.doi.org/10.1002/jcc.540151009
http://dx.doi.org/10.1016/S0010-4655(99)00187-3
http://www.scm.com/Doc/gisbergen.pdf.tar.gz
http://www.scm.com/Doc/gisbergen.pdf.tar.gz

74. S.J.A. van Gisbergen, V.P. Osinga, O.V. Gritsenko, R. van Leeuwen, J.G. Snijders and E.J. Baerends,
Improved density functional theory results for frequency-dependent polarizabilities, by the use of an
exchange-correlation potential with correct asymptotic behavior, Journal of Chemical Physics 105, 3142
(1996)

75. S.J.A. van Gisbergen, J.G. Snijders, and E.J. Baerends, Time-dependent Density Functional Results for
the Dynamic Hyperpolarizability of C60, Physical Review Letters 78, 3097 (1997)

76. S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Calculating frequency-dependent
hyperpolarizabilities using time-dependent density functional theory, Journal of Chemical Physics 109,
10644 (1998)

77. S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Accurate density functional calculations on
frequency-dependent hyperpolarizabilities of small molecules, Journal of Chemical Physics 109, 10657
(1998)

78. M.E. Casida, C. Jamorski, K.C. Casida and D.R. Salahub, Molecular excitation energies to high-lying
bound states from time-dependent density-functional response theory: Characterization and correction of the
time-dependent local density approximation ionization threshold, Journal of Chemical Physics 108, 4439
(1998)

79. V.P. Osinga, S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Density functional results for
isotropic and anisotropic multipole polarizabilities and C6, C7, and C8 Van der Waals dispersion coefficients
for molecules, Journal of Chemical Physics 106, 5091 (1997)

80. J. Autschbach and T. Ziegler, Calculating molecular electric and magnetic properties from time-
dependent density functional response theory, Journal of Chemical Physics 116, 891 (2002)

81. J. Autschbach, T. Ziegler, S.J.A. van Gisbergen and E.J. Baerends, Chiroptical properties from time-
dependent density functional theory. I. Circular dichroism spectra of organic molecules, Journal of Chemical
Physics 116, 6930 (2002)

82. S.J.A. van Gisbergen, F. Kootstra, P.R.T. Schipper, O.V. Gritsenko, J.G. Snijders and E.J. Baerends,
Density-functional-theory response-property calculations with accurate exchange-correlation potentials,
Physical Review A 57, 2556 (1998)

83. S.J.A. van Gisbergen, A. Rosa, G. Ricciardi and E.J. Baerends, Time-dependent density functional
calculations on the electronic absorption spectrum of free base porphin, Journal of Chemical Physics 111,
2499 (1999)

84. A. Rosa, G. Ricciardi, E.J. Baerends and S.J.A. van Gisbergen, The Optical Spectra of NiP, Nipz,
NiTBP, and NiPc. Electronic effects of meso-tetraaza substitution and tetrabenzoannulation, Journal of
Physical Chemistry A 105, 3311 (2001)

85. G. Ricciardi, A. Rosa and E.J. Baerends, Ground and Excited States of Zinc Phthalocyanine studied by
Density Functional Methods, Journal of Physical Chemistry A 105, 5242 (2001)

86. S.J.A. van Gisbergen, J.A. Groeneveld, A. Rosa, J.G. Snijders and E.J.Baerends, Excitation energies for
transition metal compounds from time-dependent density functional theory. Applications to MnO4-, Ni(CO)4

and Mn2(CO)10, Journal of Physical Chemistry A 103, 6835 (1999)

87. A. Rosa, E.J. Baerends, S.J.A. van Gisbergen, E. van Lenthe, J.A. Groeneveld and J. G. Snijders,
Article Electronic Spectra of M(CO)6 (M = Cr, Mo, W) Revisited by a Relativistic TDDFT Approach, Journal
of the American Chemical Society 121, 10356 (1999)

88. S.J.A. van Gisbergen, C. Fonseca Guerra and E.J. Baerends, Towards excitation energies and
(hyper)polarizability calculations of large molecules. Application of parallelization and linear scaling

425

http://dx.doi.org/10.1063/1.472182
http://dx.doi.org/10.1063/1.472182
http://link.aps.org/doi/10.1103/PhysRevLett.78.3097
http://dx.doi.org/10.1063/1.477762
http://dx.doi.org/10.1063/1.477762
http://dx.doi.org/10.1063/1.477763
http://dx.doi.org/10.1063/1.477763
http://dx.doi.org/10.1063/1.475855
http://dx.doi.org/10.1063/1.475855
http://dx.doi.org/10.1063/1.473555
http://dx.doi.org/10.1063/1.1420401
http://dx.doi.org/10.1063/1.1436466
http://dx.doi.org/10.1063/1.1436466
http://link.aps.org/doi/10.1103/PhysRevA.57.2556
http://dx.doi.org/10.1063/1.479617
http://dx.doi.org/10.1063/1.479617
http://pubs.acs.org/doi/abs/10.1021/jp003508x
http://pubs.acs.org/doi/abs/10.1021/jp003508x
http://pubs.acs.org/doi/abs/10.1021/jp0042361
http://pubs.acs.org/doi/abs/10.1021/jp991060y
http://pubs.acs.org/doi/abs/10.1021/ja990747t
http://pubs.acs.org/doi/abs/10.1021/ja990747t

techniques to time-dependent density functional response theory, Journal of Computational Chemistry 21,
1511 (2000)

89. S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, A Density Functional Theory study of frequency-
dependent polarizabilities and van der Waals dispersion coefficients for polyatomic molecules, Journal of
Chemical Physics 103, 9347 (1995)

90. B. Champagne, E.A. Perpète, S.J.A. van Gisbergen, E.J. Baerends, J.G. Snijders, C. Soubra-Ghaoui,
K.A. Robins and B.Kirtman, Assessment of conventional density functional schemes for computing the
polarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initio investigation of polyacetylene
chains, Journal of Chemical Physics 109, 10489 (1998)
Erratum: Journal of Chemical Physics 111, 6652 (1999)

91. D.M. Bishop, Aspects of Non-Linear-Optical Calculations, Advances in Quantum Chemistry 25, 3 (1994)

92. A. Willets, J.E. Rice, D.M. Burland and D.P. Shelton, Problems in comparison of experimental and
theoretical hyperpolarizabilities, Journal of Chemical Physics 97, 7590 (1992)

93. D.P. Shelton and J.E. Rice, Measurements and calculations of the hyperpolarizabilities of atoms and
small molecules in the gas phase, Chemical Reviews 94, 3 (1994)

94. J. Autschbach, S. Patchkovskii, T. Ziegler, S.J.A. van Gisbergen and E.J. Baerends, Chiroptical
properties from time-dependent density functional theory. II. Optical rotations of small to medium sized
organic molecules, Journal of Chemical Physics 117, 581 (2002)

95. E. van Lenthe, A. van der Avoird and P.E.S. Wormer, Density functional calculations of molecular g-
tensors in the zero order regular approximation for relativistic effects, Journal of Chemical Physics 107, 2488
(1997)

96. E. van Lenthe, A. van der Avoird and P.E.S. Wormer, Density functional calculations of molecular
hyperfine interactions in the zero order regular approximation for relativistic effects, Journal of Chemical
Physics 108, 4783 (1998)

97. E. van Lenthe and E.J. Baerends, Density functional calculations of nuclear quadrupole coupling
constants in the zero-order regular approximation for relativistic effects, Journal of Chemical Physics 112,
8279 (2000)

98. R.E. Bulo, A.W. Ehlers, S. Grimme and K. Lammertsma, Vinylphosphirane.Phospholene
Rearrangements: Pericyclic [1,3]-Sigmatropic Shifts or Not? Journal of the American Chemical Society 124,
13903 (2002)

99. R. Pauncz, Spin Eigenfunctions, ISBN13: 9780306401411, 1979, New York: Plenum Press

100. A. Szabo and N.S. Ostlund, Modern Quantum Chemistry, ISBN13: 9780070627390, 1st ed. revised ed.
1989: McGraw-Hill

101. H. Eschrig and V.D.P. Servedio, Relativistic density functional approach to open shells, Journal of
Computational Chemistry 20, 23 (1999)

102. C. van Wüllen, Spin densities in two-component relativistic density functional calculations: Noncollinear
versus collinear approach, Journal of Computational Chemistry 23, 779 (2002)

103. S.G. Wang and W.H.E. Schwarz, Simulation of nondynamical correlation in density functional
calculations by the optimized fractional orbital occupation approach: Application to the potential energy
surfaces of O3 and SO2, Journal of Chemical Physics 105, 4641 (1996)

104. P.M. Boerrigter, G. te Velde and E.J. Baerends, Three-dimensional Numerical Integration for Electronic
Structure Calculations, International Journal of Quantum Chemistry 33, 87 (1988)

426

http://dx.doi.org/10.1002/1096-987X(200012)21:16<1511::AID-JCC8>3.0.CO;2-C
http://dx.doi.org/10.1002/1096-987X(200012)21:16<1511::AID-JCC8>3.0.CO;2-C
http://dx.doi.org/10.1063/1.469994
http://dx.doi.org/10.1063/1.469994
http://dx.doi.org/10.1063/1.477731
http://dx.doi.org/10.1063/1.479106
http://dx.doi.org/10.1016/S0065-3276(08)60017-9
http://dx.doi.org/10.1063/1.463479
http://pubs.acs.org/doi/abs/10.1021/cr00025a001
http://dx.doi.org/10.1063/1.1477925
http://dx.doi.org/10.1063/1.474590
http://dx.doi.org/10.1063/1.474590
http://dx.doi.org/10.1063/1.475889
http://dx.doi.org/10.1063/1.475889
http://dx.doi.org/10.1063/1.481433
http://dx.doi.org/10.1063/1.481433
http://pubs.acs.org/doi/abs/10.1021/ja027925u
http://pubs.acs.org/doi/abs/10.1021/ja027925u
http://dx.doi.org/10.1002/(SICI)1096-987X(19990115)20:1<23::AID-JCC5>3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1096-987X(19990115)20:1<23::AID-JCC5>3.0.CO;2-N
http://dx.doi.org/10.1002/jcc.10043
http://dx.doi.org/10.1063/1.472307
http://dx.doi.org/10.1002/qua.560330204

105. G. te Velde and E.J. Baerends, Numerical Integration for Polyatomic Systems, Journal of
Computational Physics 99, 84 (1992)

106. A. Bérces and T. Ziegler, The harmonic force field of benzene calculated by local density functional
theory, Chemical Physics Letters 203, 592 (1993)

107. A. Bérces and T. Ziegler, The harmonic force field of benzene. A local density functional study, Journal
of Chemical Physics 98, 4793 (1993)

108. F. Neese and E. I. Solomon, MCD C-Term Signs, Saturation Behavior, and Determination of Band
Polarizations in Randomly Oriented Systems with Spin S ≥ 1/2. Applications to S = 1/2 and S = 5/2,
Inorganic Chemistry 38, 1847 (1999)

109. G. te Velde, Numerical integration and other methodological aspects of bandstructure calculations, in
Chemistry. 1990, Vrije Universiteit: Amsterdam.

110. T. Ziegler and A. Rauk, A theoretical study of the ethylene-metal bond in complexes between
copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater
transition-state method, Inorganic Chemistry 18, 1558 (1979)

111. L. Noodleman, and E.J. Baerends, Electronic Structure, Magnetic Properties, ESR, and Optical Spectra
for 2-Fe Ferredoxin Models by LCAO-Xa Valence Bond Theory, Journal of the American Chemical Society
106, 2316 (1984)

112. F.M. Bickelhaupt, N.M. Nibbering, E.M. van Wezenbeek and E.J. Baerends, The Central Bond in the
Three CN* Dimers NC_CN, CN-CN, and CN-NC: Electron Pair Bonding and Pauli Repulsion Effects, Journal
of Physical Chemistry 96, 4864 (1992)

113. G. Schreckenbach and T. Ziegler, The calculation of NMR shielding tensors using GIAO's and modern
density functional theory, Journal of Physical Chemistry 99, 606 (1995)

114. G. Schreckenbach and T. Ziegler, The calculation of NMR shielding tensors based on density
functional theory and the frozen-core approximation, International Journal of Quantum Chemistry 60, 753
(1996)

115. G. Schreckenbach and T. Ziegler, Calculation of NMR shielding tensors based on density functional
theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes,
International Journal of Quantum Chemistry 61, 899 (1997)

116. S.K. Wolff and T. Ziegler, Calculation of DFT-GIAO NMR shifts with inclusion of spin-orbit coupling,
Journal of Chemical Physics 109, 895 (1998)

117. S.K. Wolff, T. Ziegler, E. van Lenthe and E.J. Baerends, Density functional calculations of nuclear
magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA
nuclear magnetic resonance, Journal of Chemical Physics 110, 7689 (1999)

118. J. Autschbach and T. Ziegler, Nuclear spin-spin coupling constants from regular approximate density
functional calculations. I. Formalism and scalar relativistic results for heavy metal compounds, Journal of
Chemical Physics 113, 936 (2000)

119. J. Autschbach, and T. Ziegler, Nuclear spin-spin coupling constants from regular approximate
relativistic density functional calculations. II. Spin-orbit coupling effects and anisotropies, Journal of
Chemical Physics 113, 9410 (2000)

120. G. Schreckenbach and T. Ziegler, Calculation of the G-tensor of electron paramagnetic resonance
spectroscopy using Gauge-Including Atomic Orbitals and Density Functional Theory, Journal of Physical
Chemistry A 101, 3388 (1997)

427

http://dx.doi.org/10.1016/0021-9991(92)90277-6
http://dx.doi.org/10.1016/0021-9991(92)90277-6
http://dx.doi.org/10.1016/0009-2614(93)85316-G
http://dx.doi.org/10.1063/1.464983
http://dx.doi.org/10.1063/1.464983
http://pubs.acs.org/doi/abs/10.1021/ic981264d
http://pubs.acs.org/doi/abs/10.1021/ic50196a034
http://pubs.acs.org/doi/abs/10.1021/ja00320a017
http://pubs.acs.org/doi/abs/10.1021/ja00320a017
http://pubs.acs.org/doi/abs/10.1021/j100191a027
http://pubs.acs.org/doi/abs/10.1021/j100191a027
http://pubs.acs.org/doi/abs/10.1021/j100002a024
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:3<753::AID-QUA4>3.0.CO;2-W
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:3<753::AID-QUA4>3.0.CO;2-W
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:6<899::AID-QUA3>3.0.CO;2-R
http://dx.doi.org/10.1063/1.476630
http://dx.doi.org/10.1063/1.478680
http://dx.doi.org/10.1063/1.481874
http://dx.doi.org/10.1063/1.481874
http://dx.doi.org/10.1063/1.1321310
http://dx.doi.org/10.1063/1.1321310
http://pubs.acs.org/doi/abs/10.1021/jp963060t
http://pubs.acs.org/doi/abs/10.1021/jp963060t

121. S. Patchkovskii and T. Ziegler, Calculation of the EPR g-Tensors of High-Spin Radicals with Density
Functional Theory, Journal of Physical Chemistry A 105, 5490 (2001)

122. C. Edmiston and K. Rudenberg, Localized Atomic and Molecular Orbitals, Reviews of Modern Physics
35, 457 (1963)

123. J.M Foster and S.F. Boys, Canonical Configurational Interaction Procedure, Reviews of Modern
Physics 32, 300 (1960)

124. W. von Niessen, Density Localization of Atomic and Molecular Orbitals. I, Journal of Chemical Physics
56, 4290 (1972)

125. F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theoretica Chimica
Acta 44, 129 (1977)

126. K.B. Wiberg and P.R. Rablen, Comparison of atomic charges derived via different procedures, Journal
of Computational Chemistry 14, 1504 (1993)

127. F.M. Bickelhaupt, N.J.R. van Eikema Hommes, C. Fonseca Guerra and E.J. Baerends, The Carbon-
Lithium Electron Pair Bond in (CH3Li)n (n = 1, 2, 4), Organometallics 15, 2923 (1996)

128. C. Fonseca Guerra, J.-W. Handgraaf, E. J. Baerends and F. M. Bickelhaupt, Voronoi Deformation
Density (VDD) charges. Assessment of the Mulliken, Bader, Hirshfeld, Weinhold and VDD methods for
Charge Analysis, Journal of Computational Chemistry 25, 189 (2004)

129. C. Fonseca Guerra, F.M. Bickelhaupt, J.G. Snijders and E.J. Baerends, The Nature of the Hydrogen
Bond in DNA Base Pairs: The Role of Charge Transfer and Resonance Assistance, Chemistry - A European
Journal 5, 3581 (1999)

130. K. Kitaura and K. Morokuma, A new energy decomposition scheme for molecular interactions within the
Hartree-Fock approximation, International Journal of Quantum Chemistry 10, 325 (1976)

131. T. Ziegler and A. Rauk, Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus
trifluoride, and methyl isocyanide as sigma donors and pi acceptors. A theoretical study by the Hartree-
Fock-Slater transition-state method, Inorganic Chemistry 18, 1755 (1979)

132. H. Fujimoto, J. Osamura and T. Minato, Orbital interaction and chemical bonds. Exchange repulsion
and rehybridization in chemical reactions, Journal of the American Chemical Society 100, 2954 (1978)

133. S. Wolfe, D.J. Mitchell and M.-H. Whangbo, On the role of steric effects in the perturbational molecular
orbital method of conformational analysis, Journal of the American Chemical Society 100, 1936 (1978)

134. A.J. Stone and R.W. Erskine, Intermolecular self-consistent-field perturbation theory for organic
reactions. I. Theory and implementation; nucleophilic attack on carbonyl compounds, Journal of the
American Chemical Society 102, 7185 (1980)

135. F. Bernardi, A. Bottoni, A. Mangini and G. Tonachini, Quantitative orbital analysis of ab initio SCF=MO
computations : Part II. Conformational preferences in H2N---OH and H2N---SH, Journal of Molecular
Structure: THEOCHEM 86, 163 (1981)

136. P.J. van den Hoek and E.J. Baerends, Chemical bonding at metal-semiconductor interfaces, Applied
Surface Science 41/42, 236 (1989)

137. J. Autschbach, On the calculation of relativistic effects and how to understand their trends in atoms and
molecules, in Chemistry. 1999, University of Siegen: Siegen.

138. M.A. Watson, N.C. Handy and A.J. Cohen, Density functional calculations, using Slater basis sets, with
exact exchange, Journal of Chemical Physics 119, 6475 (2003)

428

http://pubs.acs.org/doi/abs/10.1021/jp010457a
http://link.aps.org/doi/10.1103/RevModPhys.35.457
http://link.aps.org/doi/10.1103/RevModPhys.35.457
http://link.aps.org/doi/10.1103/RevModPhys.32.300
http://link.aps.org/doi/10.1103/RevModPhys.32.300
http://dx.doi.org/10.1063/1.1677859
http://dx.doi.org/10.1063/1.1677859
http://dx.doi.org/10.1007/BF00549096
http://dx.doi.org/10.1007/BF00549096
http://dx.doi.org/10.1002/jcc.540141213
http://dx.doi.org/10.1002/jcc.540141213
http://pubs.acs.org/doi/abs/10.1021/om950966x
http://dx.doi.org/10.1002/jcc.10351
http://dx.doi.org/10.1002/(SICI)1521-3765(19991203)5:12<3581::AID-CHEM3581>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1521-3765(19991203)5:12<3581::AID-CHEM3581>3.0.CO;2-Y
http://dx.doi.org/10.1002/qua.560100211
http://pubs.acs.org/doi/abs/10.1021/ic50197a006
http://pubs.acs.org/doi/abs/10.1021/ja00478a004
http://pubs.acs.org/doi/abs/10.1021/ja00474a055
http://pubs.acs.org/doi/abs/10.1021/ja00544a003
http://pubs.acs.org/doi/abs/10.1021/ja00544a003
http://dx.doi.org/10.1016/0166-1280(81)85082-8
http://dx.doi.org/10.1016/0166-1280(81)85082-8
http://dx.doi.org/10.1016/0169-4332(89)90063-9
http://dx.doi.org/10.1016/0169-4332(89)90063-9
http://www.ub.uni-siegen.de/epub/diss/autschbach.htm
http://www.ub.uni-siegen.de/epub/diss/autschbach.htm
http://dx.doi.org/10.1063/1.1604371

139. Ö. Farkas and H.B. Schlegel, Methods for optimizing large molecules. Part III. An improved algorithm
for geometry optimization using direct inversion in the iterative subspace (GDIIS), Physical Chemistry
Chemical Physics 4, 11 (2002)

140. I. Mayer, Charge, bond order and valence in the ab inition SCF theory, Chemical Physics Letters 97,
270 (1983)

141. L. Jensen, P.T. van Duijnen and J.G. Snijders, A discrete solvent reaction field model within density
functional theory, Journal of Chemical Physics 118, 514 (2003)

142. L. Jensen, P.T. van Duijnen and J.G. Snijders, A discrete solvent reaction field model for calculating
molecular linear response properties in solution, Journal of Chemical Physics 119, 3800 (2003)

143. L. Jensen, P.T. van Duijnen and J.G. Snijders, A discrete solvent reaction field model for calculating
frequency-dependent hyperpolarizabilities of molecules in solution, Journal of Chemical Physics 119, 12998
(2003)

144. L. Jensen, M. Swart and P.T. van Duijnen, Microscopic and macroscopic polarization within a
combined quantum mechanics and molecular mechanics model, Journal of Chemical Physics 122, 34103
(2005)

145. L. Jensen, Modelling of optical response properties: Application to nanostructures, PhD thesis,
Rijksuniversiteit Groningen, 2004.

146. P.T. van Duijnen and M. Swart, Molecular and Atomic Polarizabilities: Thole's Model Revisited, Journal
of Physical Chemistry A 102, 2399 (1998)

147. L. Jensen, P.-O. Astrand, A. Osted, J. Kongsted and K.V. Mikkelsen, Polarizability of molecular clusters
as calculated by a dipole interaction model, Journal of Chemical Physics 116, 4001 (2002)

148. A. Michalak, R.L. De Kock and T. Ziegler, Bond Multiplicity in Transition-Metal Complexes: Applications
of Two-Electron Valence Indices, Journal of Physical Chemistry A 112, 7256 (2008)

149. R.F. Nalewajski and J. Mrozek, Modified valence indices from the two-particle density matrix,
International Journal of Quantum Chemistry 51, 187 (1994)

150. R.F. Nalewajski, J. Mrozek and A. Michalak, Two-electron valence indices from the Kohn-Sham
orbitals, International Journal of Quantum Chemistry 61, 589 (1997)

151. R.F. Nalewajski, J. Mrozek and A. Michalak, Exploring Bonding Patterns of Molecular Systems Using
Quantum Mechanical Bond Multiplicities, Polish Journal of Chemistry 72, 1779 (1998)

152. R.F. Nalewajski, J. Mrozek and G. Mazur, Quantum chemical valence indices from the one-
determinantal difference approach, Canadian Journal of Chemistry 74, 1121 (1996)

153. M.S. Gopinathan and K. Jug, Valency. I. A quantum chemical definition and properties, Theoretica
Chimica Acta 1983 63, 497 (1983)

154. F. Wang and T. Ziegler, Excitation energies of some d1 systems calculated using time-dependent
density functional theory: an implementation of open-shell TDDFT theory for doublet-doublet excitations,
Molecular Physics 102, 2585 (2004)

155. Z. Rinkevicius, I. Tunell, P. Salek, O. Vahtras and H. Agren, Restricted density functional theory of
linear time-dependent properties in open-shell molecules, Journal of Chemical Physics 119, 34 (2003)

156. F. Wang and T. Ziegler, Time-dependent density functional theory based on a noncollinear formulation
of the exchange-correlation potential, Journal of Chemical Physics 121, 12191 (2004)

429

http://dx.doi.org/10.1039/B108658H
http://dx.doi.org/10.1039/B108658H
http://dx.doi.org/10.1016/0009-2614(83)80005-0
http://dx.doi.org/10.1016/0009-2614(83)80005-0
http://dx.doi.org/10.1063/1.1527010
http://dx.doi.org/10.1063/1.1590643
http://dx.doi.org/10.1063/1.1627760
http://dx.doi.org/10.1063/1.1627760
http://dx.doi.org/10.1063/1.1831271
http://dx.doi.org/10.1063/1.1831271
http://www.scm.com/Doc/jensen.pdf
http://pubs.acs.org/doi/abs/10.1021/jp980221f
http://pubs.acs.org/doi/abs/10.1021/jp980221f
http://dx.doi.org/10.1063/1.1433747
http://pubs.acs.org/doi/abs/10.1021/jp800139g
http://dx.doi.org/10.1002/qua.560510403
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:3<589::AID-QUA28>3.0.CO;2-2
http://ichf.edu.pl/pjch/pj-1998/pj07s98.htm#1779
http://dx.doi.org/10.1139/v96-126
http://dx.doi.org/10.1007/BF00552652
http://dx.doi.org/10.1007/BF00552652
http://dx.doi.org/10.1080/0026897042000275080
http://dx.doi.org/10.1063/1.1577329
http://dx.doi.org/10.1063/1.1821494

157. F. Wang and T. Ziegler, The performance of time-dependent density functional theory based on a
noncollinear exchange-correlation potential in the calculations of excitation energies, Journal of Chemical
Physics 122, 74109 (2005)

158. S. Hirata and M. Head-Gordon, Time-dependent density functional theory within the Tamm-Dancoff
approximation, Chemical Physics Letters 314, 291 (1999)

159. G. Henkelman, B.P. Uberuaga and H. Jonssón, A climbing image nudged elastic band method for
finding saddle points and minimum energy paths, Journal of Chemical Physics 113, 9901 (2000)

160. G. Vignale and W. Kohn, Current-Dependent Exchange-Correlation Potential for Dynamical Linear
Response Theory, Physical Review Letters 77, 2037 (1996)

161. G. Vignale and W. Kohn, in Electronic Density Functional Theory: Recent Progress and New Direction,
ISBN13: 9780306458347, J. F. Dobson, G. Vignale, and M. P. Das, Editors. 1998, Plenum: New York.

162. M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger and J. G. Snijders, Ultranonlocality in
Time-Dependent Current-Density-Functional Theory: Application to Conjugated Polymers, Physical Review
Letters 88, 186401 (2002)

163. M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger and J. G. Snijders, Application of time-
dependent current-density-functional theory to nonlocal exchange-correlation effects in polymers, Journal of
Chemical Physics 118, 1044 (2003)

164. M. van Faassen and P. L. de Boeij, Excitation energies for a benchmark set of molecules obtained
within time-dependent current-density functional theory using the Vignale-Kohn functional, Journal of
Chemical Physics 120, 8353 (2004)

165. M. van Faassen and P. L. de Boeij, Excitation energies of Π-conjugated oligomers within time-
dependent current-density-functional theory, Journal of Chemical Physics 121, 10707 (2004)

166. M. van Faassen, Time-Dependent Current-Density-Functional Theory for Molecules, PhD thesis,
Rijksuniversiteit Groningen, 2004.

167. R. Nifosi, S. Conti and M. P. Tosi, Dynamic exchange-correlation potentials for the electron gas in
dimensionality D=3 and D=2, Physical Review B 58: p. 12758 (1998)

168. Z. X. Qian and G. Vignale, Dynamical exchange-correlation potentials for the electron liquid in the spin
channel, Physical Review B 68, 195113 (2003)

169. M. Stener, G. Fronzoni and M. de Simone, Time dependent density functional theory of core electrons
excitations, Chemical Physics Letters 373, 115 (2003)

170. M. Swart, P.Th. van Duijnen and J.G. Snijders, A charge analysis derived from an atomic multipole
expansion, Journal of Computational Chemistry 22, 79 (2001)

171. T.W. Keal and D.J. Tozer, The exchange-correlation potential in Kohn.Sham nuclear magnetic
resonance shielding calculations, Journal of Chemical Physics 119, 3015 (2003)

172. X. Xu and W.A. Goddard III, The X3LYP extended density functional for accurate descriptions of
nonbond interactions, spin states, and thermochemical properties, Proceedings of the National Academy of
Sciences 101, 2673 (2004)

173. J. Baker, A. Kessi and B. Delley, The generation and use of delocalized internal coordinates in
geometry optimization, Journal of Chemical Physics 1996 105, 192 (1996)

174. C. Adamo and V. Barone, Physically motivated density functionals with improved performances: The
modified Perdew.Burke.Ernzerhof model, Journal of Chemical Physics 1996 116, 5933 (1996)

430

http://dx.doi.org/10.1063/1.1844299
http://dx.doi.org/10.1063/1.1844299
http://dx.doi.org/10.1016/S0009-2614(99)01149-5
http://dx.doi.org/10.1063/1.1329672
http://link.aps.org/doi/10.1103/PhysRevLett.77.2037
http://link.aps.org/doi/10.1103/PhysRevLett.88.186401
http://link.aps.org/doi/10.1103/PhysRevLett.88.186401
http://dx.doi.org/10.1063/1.1529679
http://dx.doi.org/10.1063/1.1529679
http://dx.doi.org/10.1063/1.1697372
http://dx.doi.org/10.1063/1.1697372
http://dx.doi.org/10.1063/1.1810137
http://www.scm.com/Doc/faassen.pdf
http://link.aps.org/doi/10.1103/PhysRevB.58.12758
http://link.aps.org/doi/10.1103/PhysRevB.68.195113
http://dx.doi.org/10.1016/S0009-2614(03)00543-8
http://dx.doi.org/10.1002/1096-987X(20010115)22:1<79::AID-JCC8>3.0.CO;2-B
http://dx.doi.org/10.1063/1.1590634
http://dx.doi.org/10.1073/pnas.0308730100
http://dx.doi.org/10.1073/pnas.0308730100
http://dx.doi.org/10.1063/1.471864
http://dx.doi.org/10.1063/1.1458927

175. M. Swart, A.W. Ehlers and K. Lammertsma, Performance of the OPBE exchange-correlation functional,
Molecular Physics 2004 102, 2467 (2004)

176. P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch, Ab Initio Calculation of Vibrational
Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, Journal of Physical
Chemistry 98, 11623 (1994)

177. M. Reiher, O. Salomon and B.A. Hess, Reparameterization of hybrid functionals based on energy
differences of states of different multiplicity, Theoretical Chemistry Accounts 107, 48 (2001)

178. C. Adamo and V. Barone, Toward reliable adiabatic connection models free from adjustable
parameters, Chemical Physics Letters 274, 242 (1997)

179. J.K. Kang and C.B. Musgrave, Prediction of transition state barriers and enthalpies of reaction by a new
hybrid density-functional approximation, Journal of Chemical Physics 115, 11040 (2001)

180. A.J. Cohen and N.C. Handy, Dynamic correlation, Molecular Physics 99, 607 (2001)

181. B.J. Lynch, P.L. Fast, M. Harris and D.G. Truhlar, Adiabatic Connection for Kinetics, Journal of Physical
Chemistry A 104, 4811 (2000)

182. F. Wang, T. Ziegler, E. van Lenthe, S.J.A. van Gisbergen and E.J. Baerends, The calculation of
excitation energies based on the relativistic two-component zeroth-order regular approximation and time-
dependent density-functional with full use of symmetry, Journal of Chemical Physics 122, 204103 (2005)

183. F. Wang and T. Ziegler, Theoretical study of the electronic spectra of square-planar platinum (II)
complexes based on the two-component relativistic time-dependent density-functional theory, Journal of
Chemical Physics 123, 194102 (2005)

184. T.A. Wesolowski and A. Warshel, Frozen Density Functional Approach for ab-initio Calculations of
Solvated Molecules, Journal of Physical Chemistry 97, 8050 (1993)

185. J. Neugebauer, C.R. Jacob, T.A. Wesolowski and E.J. Baerends, An Explicit Quantum Chemical
Method for Modeling Large Solvation Shells Applied to Aminocoumarin C151, Journal of Physical Chemistry
A 109, 7805 (2005)

186. M.E. Casida and T.A. Wesolowski, Generalization of the Kohn-Sham equations with constrained
electron density formalism and its time-dependent response theory formulation, International Journal of
Quantum Chemistry 96, 577 (2004)

187. T.A. Wesolowski, Hydrogen-Bonding-Induced Shifts of the Excitation Energies in Nucleic Acid Bases:
An Interplay between Electrostatic and Electron Density Overlap Effects, Journal of the American Chemical
Society 126, 11444 (2004)

188. T.A. Wesolowski, Density functional theory with approximate kinetic energy functionals applied to
hydrogen bonds, Journal of Chemical Physics 106, 8516 (1997)

189. C.R. Jacob, T.A. Wesolowski and L. Visscher, Orbital-free embedding applied to the calculation of
induced dipole moments in CO2...X (X=He, Ne, Ar, Kr, Xe, Hg) van der Waals complexes, Journal of
Chemical Physics 123, 174104 (2005)

190. C.R. Jacob, J. Neugebauer, L. Jensen and L. Visscher, Comparison of frozen-density embedding and
discrete reaction field solvent models for molecular properties, Physical Chemistry Chemical Physics 8,
2349 (2006)

191. J. Neugebauer, M.J. Louwerse, E.J. Baerends and T.A. Wesolowski, The merits of the frozen-density
embedding scheme to model solvatochromic shifts, Journal of Chemical Physics 122, 94115 (2005)

431

http://dx.doi.org/10.1080/0026897042000275017
http://pubs.acs.org/doi/abs/10.1021/j100096a001
http://pubs.acs.org/doi/abs/10.1021/j100096a001
http://dx.doi.org/10.1007/s00214-001-0300-3
http://dx.doi.org/10.1016/S0009-2614(97)00651-9
http://dx.doi.org/10.1063/1.1415079
http://dx.doi.org/10.1080/00268970010023435
http://pubs.acs.org/doi/abs/10.1021/jp000497z
http://pubs.acs.org/doi/abs/10.1021/jp000497z
http://dx.doi.org/10.1063/1.1899143
http://dx.doi.org/10.1063/1.2104427
http://dx.doi.org/10.1063/1.2104427
http://pubs.acs.org/doi/abs/10.1021/j100132a040
http://pubs.acs.org/doi/abs/10.1021/jp0528764
http://pubs.acs.org/doi/abs/10.1021/jp0528764
http://dx.doi.org/10.1002/qua.10744
http://dx.doi.org/10.1002/qua.10744
http://pubs.acs.org/doi/abs/10.1021/ja048846g
http://pubs.acs.org/doi/abs/10.1021/ja048846g
http://dx.doi.org/10.1063/1.473907
http://dx.doi.org/10.1063/1.2107567
http://dx.doi.org/10.1063/1.2107567
http://dx.doi.org/10.1039/B601997H
http://dx.doi.org/10.1039/B601997H
http://dx.doi.org/10.1063/1.1858411

192. J. Neugebauer, M.J. Louwerse, P. Belanzoni, T.A. Wesolowski and E.J. Baerends, Modeling solvent
effects on electron-spin-resonance hyperfine couplings by frozen-density embedding, Journal of Chemical
Physics 123, 114101 (2005)

193. J. Neugebauer and E.J. Baerends, Exploring the Ability of Frozen-Density Embedding to Model
Induced Circular Dichroism, Journal of Physical Chemistry A 110, 8786 (2006)

194. L.H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge
Philosophical Society 23, 542 (1927)

195. E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre
Anwendung auf die Theorie des periodischen Systems der Elemente, Zeitschrift für Physik 48, 73 (1928)

196. C.F. von Weizsäcker, Zur Theorie der Kernmassen, Zeitschrift für Physik 96, 431 (1935)

197. A. Lembarki and H. Chermette, Obtaining a gradient-corrected kinetic-energy functional from the
Perdew-Wang exchange functional, Physical Review A 50, 5328 (1994)

198. H. Lee, C. Lee and R.G. Parr, Conjoint gradient correction to the Hartree-Fock kinetic- and exchange-
energy density functionals, Physical Review A 44, 768 (1991)

199. J.P. Perdew and Wang Yue, Accurate and simple density functional for the electronic exchange
energy: Generalized gradient approximation, Physical Review B 33, 8800 (1986), ErratumPhysical Review B
40, 3399 (1989)

200. H. Ou-Yang and M. Levy, Approximate noninteracting kinetic energy functionals from a nonuniform
scaling requirement, International Journal of Quantum Chemistry 40, 379 (1991)

201. A.J. Thakkar, Comparison of kinetic-energy density functionals, Physical Review A 46, 6920 (1992)

202. J. Neugebauer, E.J. Baerends, E. Efremov, F. Ariese and C. Gooijer, Combined Theoretical and
Experimental Deep-UV Resonance Raman Studies of Substituted Pyrenes, Journal of Physical Chemistry A
109, 2100 (2005)

203. J. Neugebauer, E.J. Baerends and M. Nooijen, Vibronic coupling and double excitations in linear
response time-dependent density functional calculations: Dipole-allowed states of N2, Journal of Chemical
Physics 121, 6155 (2004)

204. J. Neugebauer, Vibronic Coupling Calculations using ADF, documentation on the VIBRON module
available on request.

205. T.A. Wesolowski, in: Computational Chemistry: Reviews of Current Trends - Vol. 10, World Scientific,
2006.

206. M. Zbiri, M. Atanasov, C. Daul, J.-M. Garcia Lastra and T.A. Wesolowski, Application of the density
functional theory derived orbital-free embedding potential to calculate the splitting energies of lanthanide
cations in chloroelpasolite crystals, Chemical Physics Letters 397, 441 (2004)

207. M. Zbiri, C.A. Daul and T.A. Wesolowski, Effect of the f-Orbital Delocalization on the Ligand-Field
Splitting Energies in Lanthanide-Containing Elpasolites, Journal of Chemical Theory and Computation 2,
1106 (2006)

208. A. Bérces, R. M. Dickson, L. Fan, H. Jacobsen, D. Swerhone and T. Ziegler, An implementation of the
coupled perturbed Kohn-Sham equations: perturbation due to nuclear displacements, Computer Physics
Communications 100, 247 (1997)

209. H. Jacobsen, A. Bérces, D. Swerhone and T. Ziegler, Analytic second derivatives of molecular
energies: a density functional implementation, Computer Physics Communications 100, 263 (1997)

432

http://dx.doi.org/10.1063/1.2033749
http://dx.doi.org/10.1063/1.2033749
http://pubs.acs.org/doi/abs/10.1021/jp0622280
http://dx.doi.org/10.1017/S0305004100011683
http://dx.doi.org/10.1017/S0305004100011683
http://dx.doi.org/10.1007/BF01351576
http://dx.doi.org/10.1007/BF01337700
http://link.aps.org/doi/10.1103/PhysRevA.50.5328
http://link.aps.org/doi/10.1103/PhysRevA.44.768
http://link.aps.org/doi/10.1103/PhysRevB.33.8800
http://link.aps.org/doi/10.1103/PhysRevB.40.3399
http://link.aps.org/doi/10.1103/PhysRevB.40.3399
http://dx.doi.org/10.1002/qua.560400309
http://link.aps.org/doi/10.1103/PhysRevA.46.6920
http://pubs.acs.org/doi/abs/10.1021/jp045360d
http://pubs.acs.org/doi/abs/10.1021/jp045360d
http://dx.doi.org/10.1063/1.1785775
http://dx.doi.org/10.1063/1.1785775
http://dx.doi.org/10.1016/j.cplett.2004.09.010
http://pubs.acs.org/doi/abs/10.1021/ct060035a
http://pubs.acs.org/doi/abs/10.1021/ct060035a
http://dx.doi.org/10.1016/S0010-4655(96)00120-8
http://dx.doi.org/10.1016/S0010-4655(96)00120-8
http://dx.doi.org/10.1016/S0010-4655(96)00119-1

210. S. K. Wolff, Analytical second derivatives in the Amsterdam density functional package, International
Journal of Quantum Chemistry 104, 645 (2005)

211. S. Grimme, Accurate description of van der Waals complexes by density functional theory including
empirical corrections, Journal of Computational Chemistry 25, 1463 (2004)

212. M. Ernzerhof and G. Scuseria, Assessment of the Perdew.Burke.Ernzerhof exchange-correlation
functional, Journal of Chemical Physics 110, 5029 (1999)

213. C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters:
The PBE0 model, Journal of Chemical Physics 110, 6158 (1999)

214. A.D. Buckingham, P.W. Fowler and J.M. Hutson, Theoretical studies of van der Waals molecules and
intermolecular forces, Chemical Reviews 88, 963 (1988)

215. J.M. Ducéré and L. Cavallo, Parametrization of an Empirical Correction Term to Density Functional
Theory for an Accurate Description of .-Stacking Interactions in Nucleic Acids, Journal of Physical Chemistry
B 111, 13124 (2007)

216. V.P. Nicu J. Neugebauer S.K. Wolff and E.J. Baerends, A vibrational circular dichroism implementation
within a Slater-type-orbital based density functional framework and its application to hexa- and hepta-
helicenes, Theoretical Chemical Accounts 119, 245 (2008)

217. C.R. Jacob, J. Neugebauer and L. Visscher, A flexible implementation of frozen-density embedding for
use in multilevel simulations, Journal of Computational Chemistry 29, 1011 (2008)

218. C.R. Jacob and L. Visscher, Calculation of nuclear magnetic resonance shieldings using frozen-density
embedding, Journal of Chemical Physics 125, 194104 (2006)

219. V. Bakken and T. Helgaker, The efficient optimization of molecular geometries using redundant internal
coordinates, Journal of Chemical Physics 117, 9160 (2002)

220. C.R. Jacob, S.M., Beyhan and L. Visscher, Exact functional derivative of the nonadditive kinetic-energy
bifunctional in the long-distance limit, Journal of Chemical Physics 126, 234116 (2007)

221. Y. Zhao, N.E. Schultz and D.G. Truhlar, Exchange-correlation functional with broad accuracy for
metallic and nonmetallic compounds, kinetics, and noncovalent interactions, Journal of Chemical Physics
123, 161103 (2005)

222. Y. Zhao, N.E. Schultz and D.G. Truhlar, Design of Density Functionals by Combining the Method of
Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and
Noncovalent Interactions, Journal of Chemical Theory and Computation 2, 364 (2006)

223. Y. Zhao and D.G. Truhlar, A new local density functional for main-group thermochemistry, transition
metal bonding, thermochemical kinetics, and noncovalent interactions, Journal of Chemical Physics 125,
194101 (2006)

224. Y. Zhao and D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry,
thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new
functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical
Chemical Accounts 120, 215 (2008)

225. M. Swart and F.M. Bickelhaupt, Optimization of strong and weak coordinates, International Journal of
Quantum Chemistry 106, 2536 (2006)

226. S. Grimme, Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion
Correction, Journal of Computational Chemistry 27, 1787 (2006)

433

http://dx.doi.org/10.1002/qua.20653
http://dx.doi.org/10.1002/qua.20653
http://dx.doi.org/10.1002/jcc.20078
http://dx.doi.org/10.1063/1.478401
http://dx.doi.org/10.1063/1.478522
http://pubs.acs.org/doi/abs/10.1021/cr00088a008
http://pubs.acs.org/doi/abs/10.1021/jp072317s
http://pubs.acs.org/doi/abs/10.1021/jp072317s
http://dx.doi.org/10.1007/s00214-006-0234-x
http://dx.doi.org/10.1002/jcc.20861
http://dx.doi.org/10.1063/1.2370947
http://dx.doi.org/10.1063/1.1515483
http://dx.doi.org/10.1063/1.2743013
http://dx.doi.org/10.1063/1.2126975
http://dx.doi.org/10.1063/1.2126975
http://pubs.acs.org/doi/abs/10.1021/ct0502763
http://dx.doi.org/10.1063/1.2370993
http://dx.doi.org/10.1063/1.2370993
http://dx.doi.org/10.1007/s00214-007-0310-x
http://dx.doi.org/10.1007/s00214-007-0310-x
http://dx.doi.org/10.1002/qua.21049
http://dx.doi.org/10.1002/qua.21049
http://dx.doi.org/10.1002/jcc.20495

227. S. Grimme, , J. Antony, T. Schwabe and C. Mück-Lichtenfeld, Density Functional Theory with
Dispersion Corrections for Supramolecular Structures, Aggregates, and Complexes of (Bio)Organic
Molecules, Organic & Biomolecular Chemistry 5, 741 (2007)

228. J.I. Rodríguez, A.M. Köster, P.W. Ayers, A. Santos-Valle, A. Vela and G. Merino, An efficient grid-
based scheme to compute QTAIM atomic properties without explicit calculation of zero-flux surfaces,
Journal of Computational Chemistry 30, 1082 (2009)

229. J.I. Rodríguez, R.F.W. Bader, P.W. Ayers, C. Michel, A.W. Götz and C. Bo, A high performance grid-
based algorithm for computing QTAIM properties, Chemical Physics Letters 472, 149 (2009)

230. M. Krykunov and J. Autschbach, Calculation of static and dynamic linear magnetic response in
approximate time-dependent density functional theory, Journal of Chemical Physics 126, 24101 (2007)

231. M. Krykunov, M.D. Kundrat and J. Autschbach, Calculation of CD spectra from optical rotatory
dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-
dependent density functional theory, Journal of Chemical Physics 125, 194110 (2006)

232. M. Krykunov and J. Autschbach, Calculation of origin independent optical rotation tensor components
for chiral oriented systems in approximate time-dependent density functional theory, Journal of Chemical
Physics 125, 34102 (2006)

233. J. Autschbach, L. Jensen, G.C. Schatz, Y.C.E. Tse and M. Krykunov, Time-dependent density
functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful
tool for determining absolute configurations of chiral molecules, Journal of Physical Chemistry A 110, 2461
(2006)

234. M. Krykunov and J. Autschbach, Calculation of optical rotation with time-periodic magnetic field-
dependent basis functions in approximate time-dependent density functional theory, Journal of Chemical
Physics 123, 114103 (2005)

235. A. Baev, M. Samoc, P.N. Prasad, M. Krykunov and J. Autschbach, A Quantum Chemical Approach to
the Design of Chiral Negative Index Materials, Optics Express 15, 5730 (2007)

236. M. Krykunov, A. Banerjee, T. Ziegler and J. Autschbach, Calculation of Verdet constants with time-
dependent density functional theory: Implementation and results for small molecules, Journal of Chemical
Physics 122, 74105 (2005)

237. P. Cortona, Self-consistently determined properties of solids without band-structure calculations,
Physical Review B 44, 8454 (1991)

238. T.A. Wesolowski and J. Weber, Kohn-Sham equations with constrained electron density: The effect of
various kinetic energy functional parametrizations on the ground-state molecular properties, International
Journal of Quantum Chemistry 61, 303 (1997)

239. T.A. Wesolowski, H. Chermette and J. Weber, Accuracy of Approximate Kinetic Energy Functionals in
the Model of Kohn-Sham Equations with Constrained Electron Density: the FH...NCH complex as a Test
Case, Journal of Chemical Physics 105, 9182 (1996)

240. T.A. Wesolowski and J. Weber, Kohn-Sham equations with constrained electron density: an iterative
evaluation of the ground-state electron density of interacting molecules, Chemical Physics Letters 248, 71
(1996)

241. Y.A. Bernard, M. Dulak, J.W. Kaminski and T.A. Wesolowski, The energy-differences based exact
criterion for testing approximations to the functional for the kinetic energy of non-interacting electrons,
Journal of Physics A 41, 55302 (2008)

242. D.A. Kirzhnits, Soviet Physics JETP-USSR 5, 64 (1957)

434

http://dx.doi.org/10.1039/B615319B
http://dx.doi.org/10.1002/jcc.21134
http://dx.doi.org/10.1016/j.cplett.2009.02.081
http://dx.doi.org/10.1063/1.2423007
http://dx.doi.org/10.1063/1.2363372
http://dx.doi.org/10.1063/1.2210474
http://dx.doi.org/10.1063/1.2210474
http://pubs.acs.org/doi/abs/10.1021/jp054847z
http://pubs.acs.org/doi/abs/10.1021/jp054847z
http://dx.doi.org/10.1063/1.2032428
http://dx.doi.org/10.1063/1.2032428
http://dx.doi.org/10.1364/OE.15.005730
http://dx.doi.org/10.1063/1.1850919
http://dx.doi.org/10.1063/1.1850919
http://link.aps.org/doi/10.1103/PhysRevB.44.8454
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:2<303::AID-QUA13>3.0.CO;2-C
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:2<303::AID-QUA13>3.0.CO;2-C
http://dx.doi.org/10.1063/1.472823
http://dx.doi.org/10.1016/0009-2614(95)01281-8
http://dx.doi.org/10.1016/0009-2614(95)01281-8
http://dx.doi.org/10.1088/1751-8113/41/5/055302

243. P. Fuentealba and O. Reyes, Further evidence of the conjoint correction to the local kinetic and
exchange energy density functionals, Chemical Physics Letters 232, 31 (1995)

244. O.V. Gritsenko, P.R.T. Schipper and E.J. Baerends, Approximation of the exchange-correlation Kohn-
Sham potential with a statistical average of different orbital model potentials, Chemical Physics Letters 302,
199 (1999)

245. B. Delley, The conductor-like screening model for polymers and surfaces, Molecular Simulation 32, 117
(2006)

246. J. Tao, J.P. Perdew, V.N. Staroverov and G.E. Scuseria, Climbing the Density Functional Ladder:
Nonempirical MetaGeneralized Gradient Approximation Designed for Molecules and Solids Physical Review
Letters 91, 146401 (2003)

247. V.N. Staroverov, G.E. Scuseria, J. Tao and J.P. Perdew, Comparative assessment of a new
nonempirical density functional: Molecules and hydrogen-bonded complexes Journal of Chemical Physics
119, 12129 (2003)

248. S. Ivanov, S. Hirata, R. J. Bartlett, Exact Exchange Treatment for Molecules in Finite-Basis-Set Kohn-
Sham Theory, Physical Review Letters 83, 5455 (1999)

249. A. F. Izmaylov, V. N. Staroverov, G. E. Scuseria, E. R. Davidson, G. Stoltz, E. Cancès, The effective
local potential method: Implementation for molecules and relation to approximate optimized effective
potential techniques, Journal of Chemical Physics 126, 084107 (2007)

250. M. Krykunov and T. Ziegler, On the use of the exact exchange optimized effective potential method for
static response properties, International Journal of Quantum Chemistry 109, 3246 (2009)

251. M. L. Connolly, Solvent-accessible surfaces of proteins and nucleic acids, Science, 221, 709 (1983)

252. L. Onsager, Electric moments of molecules in liquids, Journal of the American Chemical Society 58,
1486 (1936)

253. S. Miertus, E. Scrocco and J. Tomasi, Electrostatic interaction of a solute with a continuum: a direct
utilization of ab initio molecular potentials for the prevision of solvent effects, Chemical Physics 55, 117
(1981)

254. J. Tomasi, R. Bonaccorsi, R. Cammi and F.J. Olivares del Valle, Theoretical chemistry in solution.
Some results and perspectives of the continuum methods and in particular of the polarizable continuum
model, Journal of Molecular Structure: THEOCHEM 234, 401 (1991)

255. J.L. Chen, L. Noodleman, D.A. Case and D. Bashford, Incorporating solvation effects into density
functional electronic structure calculations, Journal of Physical Chemistry 98, 11059 (1994)

256. J.-M. Mouesca, J.L. Chen, L. Noodleman, D. Bashford and D.A. Case, Density functional/Poisson-
Boltzmann calculations of redox potentials for iron-sulfur clusters, Journal of the American Chemical Society
116, 11898 (1994)

257. A. Fortunelli and J. Tomasi, The implementation of density functional theory within the polarizable
continuum model for solvation, Chemical Physics Letters 231, 34 (1994)

258. C.M. Breneman and K.B. Wiberg, Determining atom-centered monopoles from molecular electrostatic
potentials. the need for high sampling density in formamide conformational analysis, Journal of
Computational Chemistry 11, 361 (1990)

259. F.M. Richards, Areas, volumes, packing and protein structures, Annual Review of Biophysics and
Bioengineering 6, 151 (1977)

435

http://dx.doi.org/10.1016/0009-2614(94)01321-L
http://dx.doi.org/10.1016/S0009-2614(99)00128-1
http://dx.doi.org/10.1016/S0009-2614(99)00128-1
http://dx.doi.org/10.1080/08927020600589684
http://dx.doi.org/10.1080/08927020600589684
http://link.aps.org/doi/10.1103/PhysRevLett.91.146401
http://link.aps.org/doi/10.1103/PhysRevLett.91.146401
http://dx.doi.org/10.1063/1.1626543
http://dx.doi.org/10.1063/1.1626543
http://link.aps.org/doi/10.1103/PhysRevLett.83.5455
http://dx.doi.org/10.1063/1.2434784
http://dx.doi.org/10.1002/qua.21937
http://dx.doi.org/10.1126/science.6879170
http://pubs.acs.org/doi/abs/10.1021/ja01299a050
http://pubs.acs.org/doi/abs/10.1021/ja01299a050
http://dx.doi.org/10.1016/0301-0104(81)85090-2
http://dx.doi.org/10.1016/0301-0104(81)85090-2
http://dx.doi.org/10.1016/0166-1280(91)89026-W
http://pubs.acs.org/doi/abs/10.1021/j100094a013
http://dx.doi.org/10.1021/ja00105a033
http://dx.doi.org/10.1021/ja00105a033
http://dx.doi.org/10.1016/0009-2614(94)01253-9
http://dx.doi.org/10.1002/jcc.540110311
http://dx.doi.org/10.1002/jcc.540110311
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.bb.06.060177.001055
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.bb.06.060177.001055

260. T. You and D. Bashford, An analytical algorithm for the rapid determination of the solvent accessibility
of points in a three-dimensional lattice around a solute molecule, Journal of Computational Chemistry 16,
743 (1995)

261. M. Mitoraj, A. Michalak and T. Ziegler, A Combined Charge and Energy Decomposition Scheme for
Bond Analysis, Journal of Chemical Theory and Computation 5, 962 (2009)

262. M. Mitoraj, A. Michalak and T. Ziegler, On the Nature of the Agostic Bond between Metal Centers and
Beta-Hydrogen Atoms in Alkyl Complexes. An Analysis Based on the Extended Transition State Method and
the Natural Orbitals for Chemical Valence Scheme (ETS-NOCV), Organometallics 28, 3727 (2009)

263. A.W. Götz, S.M. Beyhan and L. Visscher, Performance of Kinetic Energy Functionals for Interaction
Energies in a Subsystem Formulation of Density Functional Theory, Journal of Chemical Theory and
Computation 5, 3161 (2009)

264. M. Ernzerhof, The role of the kinetic energy density in approximations to the exchange energy, Journal
of Molecular Structure: THEOCHEM 501-502, 59 (2000)

265. J.P. Perdew, Generalized gradient approximation for the fermion kinetic energy as a functional of the
density, Physics Letters A 165, 79 (1992)

266. L. Jensen, L. Zhao, J. Autschbach and G.C. Schatz, Theory and method for calculating resonance
Raman scattering from resonance polarizability derivatives, Journal of Chemical Physics 123, 174110
(2005)

267. L. Jensen, L. Zhao, J. Autschbach and G.C. Schatz, Resonance Raman Scattering of Rhodamine 6G
as calculated using Time-Dependent Density Functional Theory, Journal of Physical Chemistry A 110, 5973
(2006)

268. L.L. Zhao, L. Jensen and G.C. Schatz, Pyridine - Ag20 Cluster: A Model System for Studying Surface-
Enhanced Raman Scattering, Journal of the American Chemical Society 128, 2911 (2006)

269. L. Jensen, L.L. Zhao and G.C. Schatz, Size-Dependence of the Enhanced Raman Scattering of
Pyridine Adsorbed on Agn (n=2-8,20) Clusters, Journal of Physical Chemistry C 111, 4756 (2007)

270. J. Autschbach, Magnitude of Finite-Nucleus-Size Effects in Relativistic Density Functional
Computations of Indirect NMR Nuclear Spin-Spin Coupling Constants, ChemPhysChem 10, 2274 (2009)

271. S. Høst, J. Olsen, B. Jansík, L. Thøgersen, P. Jørgensen and T. Helgaker, The augmented Roothaan-
Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices, Journal of Chemical Physics
129, 124106 (2008)

272. M. Krykunov, M. Seth, T. Ziegler and J. Autschbach, Calculation of the magnetic circular dichroism B
term from the imaginary part of the Verdet constant using damped time-dependent density functional theory,
Journal of Chemical Physics 127, 244102 (2007)

273. S.B. Piepho and P. N. Schatz, Group Theory in Spectroscopy With Application to Magnetic Circular
Dichroism, (Wiley, New York, 1983).

274. W.R. Mason, A Practical Guide to Magnetic Circular Dichroism Spectroscopy, (Wiley, New Jersey,
2007).

275. M. Seth and T. Ziegler, Formulation of magnetically perturbed time-dependent density functional
theory, Journal of Chemical Physics 127, 134108 (2007)

276. M. Seth, M. Krykunov, T. Ziegler, J. Autschbach and A. Banerjee, Application of magnetically perturbed
time-dependent density functional theory to magnetic circular dichroism: Calculation of B terms, Journal of
Chemical Physics 128, 144105 (2008)

436

http://dx.doi.org/10.1002/jcc.540160610
http://dx.doi.org/10.1002/jcc.540160610
http://pubs.acs.org/doi/abs/10.1021/ct800503d
http://pubs.acs.org/doi/abs/10.1021/om900203m
http://pubs.acs.org/doi/abs/10.1021/ct9001784
http://pubs.acs.org/doi/abs/10.1021/ct9001784
http://dx.doi.org/10.1016/S0166-1280(99)00414-5
http://dx.doi.org/10.1016/S0166-1280(99)00414-5
http://dx.doi.org/10.1016/0375-9601(92)91058-Y
http://dx.doi.org/10.1063/1.2046670
http://dx.doi.org/10.1063/1.2046670
http://dx.doi.org/10.1021/jp0610867
http://dx.doi.org/10.1021/jp0610867
http://pubs.acs.org/doi/abs/10.1021/ja0556326
http://pubs.acs.org/doi/abs/10.1021/jp067634y
http://dx.doi.org/10.1002/cphc.200900271
http://dx.doi.org/10.1063/1.2974099
http://dx.doi.org/10.1063/1.2974099
http://dx.doi.org/10.1063/1.2806990
http://dx.doi.org/10.1063/1.2772849
http://dx.doi.org/10.1063/1.2901967
http://dx.doi.org/10.1063/1.2901967

277. M. Seth, M. Krykunov, T. Ziegler and J. Autschbach, Application of magnetically perturbed time-
dependent density functional theory to magnetic circular dichroism. II. Calculation of A terms, Journal of
Chemical Physics 128, 234102 (2008)

278. M. Seth, T. Ziegler and J. Autschbach, Application of magnetically perturbed time-dependent density
functional theory to magnetic circular dichroism. III. Temperature-dependent magnetic circular dichroism
induced by spin-orbit coupling, Journal of Chemical Physics 129, 104105 (2008)

279. J.M. Garcia Lastra, J.W. Kaminski and T.A. Wesolowski, Orbital-free effective embedding potential at
nuclear cusps, Journal of Chemical Physics 129, 074107 (2008)

280. F. Wang and T. Ziegler, A simplified relativistic time-dependent density-functional theory formalism for
the calculations of excitation energies including spin-orbit coupling effect, Journal of Chemical Physics 123,
154102 (2005)

281. W.-G. Han, T. Liu, T. Lovell and L. Noodleman, DFT calculations of 57Fe Mössbauer isomer shifts and
quadrupole splittings for iron complexes in polar dielectric media: Applications to methane monooxygenase
and ribonucleotide reductase, Journal of Computational Chemistry 27, 1292 (2006)

282. A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen and M. Waroquier, Vibrational Modes in
partially optimized molecular systems, Journal of Chemical Physics126, 224102 (2007)

283. A. Ghysels, D. Van Neck and M. Waroquier, Cartesian formulation of the Mobile Block Hessian
Approach to vibrational analysis in partially optimized systems, Journal of Chemical Physics 127, 164108
(2007)

284. J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Nørskov, J. P. Sethna, and K. W. Jacobsen,
Bayesian Error Estimation in Density-Functional Theory, Physical Review Letters 95, 216401 (2005)

285. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, Restoring the Density-Gradient
Expansion for Exchange in Solids and Surfaces, Physical Review Letters 100, 136406 (2008)

286. M. Swart, M. Solà and F.M. Bickelhaupt, A new all-round DFT functional based on spin states and SN2
barriers, Journal of Chemical Physics 131, 094103 (2009)

287. M. Swart, M. Solà and F.M. Bickelhaupt, Switching between OPTX and PBE exchange functionals,
Journal of Computational Methods in Science and Engineering 9, 69 (2009)

288. J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation
energy, Physical Review B 45, 13244 (1992)

289. K.N. Kudin, G.E. Scuseria and E. Cances, A black-box self-consistent field convergence algorithm: One
step closer, Journal of Chemical Physics 116, 8255 (2002)

290. N.L. Allinger, X. Zhou, J. Bergsma, Molecular mechanics parameters, Journal of Molecular Structure:
THEOCHEM 312, 69 (1994)

291. X. Hu and W. Yang, Accelerating self-consistent field convergence with the augmented Roothaan-Hall
energy function, Journal of Chemical Physics 132, 054109 (2010)

292. S. Grimme, J. Anthony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of
density functional dispersion correction (DFT-D) for the 94 elements H-Pu, Journal of Chemical Physics 132,
154104 (2010).

293. M.D. Newton, Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor
interactions, Chemical Reviews 91, 767 (1991).

437

http://dx.doi.org/10.1063/1.2933550
http://dx.doi.org/10.1063/1.2933550
http://dx.doi.org/10.1063/1.2976568
http://dx.doi.org/10.1063/1.2969814
http://dx.doi.org/10.1063/1.2061187
http://dx.doi.org/10.1063/1.2061187
http://dx.doi.org/10.1002/jcc.20402
http://dx.doi.org/10.1063/1.2737444
http://dx.doi.org/10.1063/1.2789429
http://dx.doi.org/10.1063/1.2789429
http://link.aps.org/doi/10.1103/PhysRevLett.95.216401
http://link.aps.org/doi/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1063/1.3213193
http://iospress.metapress.com/content/0736k00r11272hm7
http://link.aps.org/doi/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1063/1.1470195
http://dx.doi.org/10.1016/S0166-1280(09)80008-0
http://dx.doi.org/10.1016/S0166-1280(09)80008-0
http://dx.doi.org/10.1063/1.3304922
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1021/cr00005a007

294. K. Senthilkumar, F.C. Grozema, F.M. Bickelhaupt, and L.D.A. Siebbeles, Charge transport in columnar
stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies,
Journal of Chemical Physics 119, 9809 (2003).

295. K. Senthilkumar, F.C. Grozema, C. Fonseca Guerra, F.M. Bickelhaupt, F.D. Lewis, Y.A. Berlin, M.A.
Ratner, and L.D.A. Siebbeles, Absolute Rates of Hole Transfer in DNA, Journal of the American Chemical
Society 127, 14894 (2005)

296. J. Neugebauer, Couplings between electronic transitions in a subsystem formulation of time-dependent
density functional theory, Journal of Chemical Physics 126, 134116 (2007).

297. J. Neugebauer, Photophysical Properties of Natural Light-Harvesting Complexes Studied by
Subsystem Density Functional Theory, Journal of Physical Chemistry B 112, 2207 (2008)

298. J. Neugebauer, On the calculation of general response properties in subsystem density functional
theory, Journal of Chemical Physics 131, 084104 (2009).

299. T.N. Truong and E.V. Stefanovich, A new method for incorporating solvent effect into the classical, ab
initio molecular orbital and density functional theory frameworks for arbitrary shape cavity, Chemical Physics
Letters 240, 253 (1995)

300. S. Gusarov, T. Ziegler, and A. Kovalenko, Self-Consistent Combination of the Three-Dimensional RISM
Theory of Molecular Solvation with Analytical Gradients and the Amsterdam Density Functional Package,
Journal of Physical Chemistry A 110, 6083 (2006)

301. D. Casanova, S. Gusarov, A. Kovalenko, and T. Ziegler, Evaluation of the SCF Combination of KS-DFT
and 3D-RISM-KH; Solvation Effect on Conformational Equilibria, Tautomerization Energies, and Activation
Barriers, Journal of Chemical Theory and Computation 3, 458 (2007)

302. A. Kovalenko and F. Hirata, Self-consistent description of a metal-water interface by the Kohn-Sham
density functional theory and the three-dimensional reference interaction site model, Journal of Chemical
Physics 110, 10095 (1999)

303. A. Kovalenko and F. Hirata, Potentials of mean force of simple ions in ambient aqueous solution. I.
Three-dimensional reference interaction site model approach, Journal of Chemical Physics 112, 10391
(2000)

304. A. Kovalenko, Three-dimensional RISM theory for molecular liquids and solid-liquid interfaces, In
Molecular Theory of Solvation; Hirata, Fumio, Ed.; Understanding Chemical Reactivity (series); Mezey, Paul
G., Series Ed.; Kluwer Acadamic Publishers: Dordrecht, The Netherlands, 2003; Vol. 24, pp 169-275.

305. J.W. Kaminski, S. Gusarov, A. Kovalenko, T.A. Wesolowski, Modeling solvatochromic shifts using the
orbital-free embedding potential at statistically mechanically averaged solvent density, Journal of Physical
Chemistry A 114, 6082 (2010)

306. L. Jensen, J. Autschbach, M. Krykunov, and G.C. Schatz, Resonance vibrational Raman optical
activity: A time-dependent density functional theory approach, Journal of Chemical Physics 127, 134101
(2007)

307. M. Krykunov, A. Banerjee, T. Ziegler and J. Autschbach, Calculation of Verdet constants with time-
dependent density functional theory. Implementation and results for small molecules, Journal of Chemical
Physics 122, 074105 (2005)

308. E.J. Baerends, D.E. Ellis and P. Ros, Self-consistent molecular Hartree-Fock-Slater calculations I. The
computational procedure, Chemical Physics 2, 41 (1973)

309. E.J. Baerends and P. Ros, Evaluation of the LCAO Hartree-Fock-Slater method: Applications to
transition-metal complexes, International Journal of Quantum Chemistry 14, S12, 169 (1978)

438

http://dx.doi.org/10.1063/1.1615476
http://pubs.acs.org/doi/abs/10.1021/ja054257e
http://pubs.acs.org/doi/abs/10.1021/ja054257e
http://dx.doi.org/10.1063/1.2713754
http://pubs.acs.org/doi/abs/10.1021/jp709956k
http://dx.doi.org/10.1063/1.3212883
http://dx.doi.org/10.1016/0009-2614(95)00541-B
http://dx.doi.org/10.1016/0009-2614(95)00541-B
http://pubs.acs.org/doi/abs/10.1021/jp054344t
http://pubs.acs.org/doi/abs/10.1021/ct6001785
http://dx.doi.org/10.1063/1.478883
http://dx.doi.org/10.1063/1.478883
http://dx.doi.org/10.1063/1.481676
http://dx.doi.org/10.1063/1.481676
http://pubs.acs.org/doi/abs/10.1021/jp100158h
http://pubs.acs.org/doi/abs/10.1021/jp100158h
http://dx.doi.org/10.1063/1.2768533
http://dx.doi.org/10.1063/1.2768533
http://dx.doi.org/10.1063/1.1850919
http://dx.doi.org/10.1063/1.1850919
http://dx.doi.org/10.1016/0301-0104(73)80059-X
http://dx.doi.org/10.1002/qua.560140814

310. G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders,
T. Ziegler, Chemistry with ADF, Journal of Computational Chemistry 22, 931 (2001)

311. A. Devarajan, A. Gaenko, and J. Autschbach, Two-component relativistic density functional method for
computing nonsingular complex linear response of molecules based on the zeroth order regular
approximation, Journal of Chemical Physics 130, 194102 (2009)

312. M. R. Pederson, S.N. Khanna, Magnetic anisotropy barrier for spin tunneling in Mn12O12 molecules,
Physical Review B 60, 9566 (1999)

313. F. Neese, Calculation of the zero-field splitting tensor on the basis of hybrid density functional and
Hartree-Fock theory, Journal of Chemical Physics 127, 164112 (2007)

314. C. van Wüllen, Magnetic anisotropy from density functional calculations. Comparison of different
approaches: Mn12O12 acetate as a test case, Journal of Chemical Physics 130, 194109 (2009)

315. S. Schmitt, P. Jost, C. van Wüllen, Zero-field splittings from density functional calculations: Analysis
and improvement of known methods, Journal of Chemical Physics 134, 194113 (2011)

316. S. N. Steinmann, and C. Corminboeuf, Comprehensive Benchmarking of a Density-Dependent
Dispersion Correction, Journal of Chemical Theory and Computation 7, 3567 (2011).

317. R.C. Raffenetti, Eventempered atomic orbitals. II. Atomic SCF wavefunctions in terms of eventempered
exponential bases, Journal of Chemical Physics 59, 5936 (1973)

318. D.P. Chong, Completeness profiles of one-electron basis sets, Canadian Journal of Chemistry 73, 79
(1995)

319. G.D. Zeiss, W.R. Scott, N. Suzuki, D.P. Chong, S.R. Langhoff, Finite-field calculations of molecular
polarizabilities using field-induced polarization functions: second- and third-order perturbation correlation
corrections to the coupled Hartree-Fock polarizability of H2O, Molecular Physics 37, 1543 (1979)

320. E. van Lenthe and E.J. Baerends, Optimized Slater-type basis sets for the elements 1-118, Journal of
Computational Chemistry 24, 1142 (2003)

321. D.P. Chong, E. van Lenthe, S.J.A. van Gisbergen and E.J. Baerends, Even-tempered Slater-Type
orbitals revisited: From Hydrogen to Krypton, Journal of Computational Chemistry 25, 1030 (2004)

322. D.P. Chong, Augmenting basis set for time-dependent density functional theory calculation of excitation
energies: Slater-type orbitals for hydrogen to krypton, Molecular Physics 103, 749 (2005)

323. T. Ziegler, A. Rauk and E.J. Baerends, On the calculation of Multiplet Energies by the Hartree Fock
Slater method, Theoretica Chimica Acta 43, 261 (1977)

324. C. Daul, DFT applied to excited states, International Journal of Quantum Chemistry 52, 867 (1994)

325. E.J. Baerends, V. Branchadell and M. Sodupe, Atomic reference energies for density functional
calculations, Chemical Physics Letters 265, 481 (1997)

326. P.J. van den Hoek, E.J. Baerends, and R.A. van Santen, Ethylene epoxidation on silver(110): the role
of subsurface oxygen, Journal of Physical Chemistry 93, 6469 (1989)

327. J. Autschbach, S. Zheng, and R.W. Schurko, Analysis of Electric Field Gradient Tensors at
Quadrupolar Nuclei in Common Structural Motifs, Concepts in Magnetic Resonance Part A 36A, 84 (2010)

328. A.J. Rossini, R.W. Mills, G.A. Briscoe, E.L. Norton, S.J. Geier, I. Hung, S. Zheng, J. Autschbach, and
R.W. Schurko, Solid-State Chlorine NMR of Group IV Transition Metal Organometallic Complexes, Journal
of the American Chemical Society 131, 3317 (2009)

439

http://dx.doi.org/10.1002/jcc.1056
http://dx.doi.org/10.1063/1.3123765
http://link.aps.org/doi/10.1103/PhysRevB.60.9566
http://link.aip.org/link/doi/10.1063/1.2772857
http://link.aip.org/link/doi/10.1063/1.3134430
http://link.aip.org/link/doi/10.1063/1.3590362
http://dx.doi.org/10.1021/ct200602x
http://dx.doi.org/10.1063/1.1679962
http://dx.doi.org/10.1139/v95-011
http://dx.doi.org/10.1139/v95-011
http://dx.doi.org/10.1080/00268977900101121
http://dx.doi.org/10.1002/jcc.10255
http://dx.doi.org/10.1002/jcc.10255
http://dx.doi.org/10.1002/jcc.20030
http://dx.doi.org/10.1080/00268970412331333618
http://dx.doi.org/10.1007/BF00551551
http://dx.doi.org/10.1002/qua.560520414
http://dx.doi.org/10.1016/S0009-2614(96)01449-2
http://dx.doi.org/10.1021/j100354a038
http://dx.doi.org/10.1002/cmr.a.20155
http://dx.doi.org/10.1021/ja808390a
http://dx.doi.org/10.1021/ja808390a

329. J. Autschbach, Analyzing NMR shielding tensors calculated with two-component relativistic methods
using spin-free localized molecular orbitals, Journal of Chemical Physics 128, 164112 (2008)

330. J. Autschbach and S. Zheng, Analyzing Pt chemical shifts calculated from relativistic density functional
theory using localized orbitals: The role of Pt 5d lone pairs, Magnetic Resonance in Chemistry 46, S45
(2008)

331. J. Autschbach and S. Zheng, Relativistic computations of NMR parameters from first principles: Theory
and applications, Annual Reports on NMR Spectroscopy 67, 1 (2009)

332. J. Autschbach, Analyzing molecular properties calculated with two-component relativistic methods
using spin-free Natural Bond Orbitals: NMR spin-spin coupling constants Journal of Chemical Physics 127,
124106 (2007)

333. J. Autschbach and B. Le Guennic, Analyzing and interpreting NMR spin-spin coupling constants from
molecular orbital calculations, Journal of Chemical Education 84, 156 (2007)

334. A.M.A. Boshaala, S.J. Simpson, J. Autschbach and S. Zheng, Synthesis and Characterization of the
Trihalophosphine Compounds of Ruthenium [RuX2(η6-cymene)(PY3)] (X = Cl, Br, Y = F, Cl, Br) and the
Related PF2(NMe2) and P(NMe2)3 Compounds; Multinuclear NMR Spectroscopy and the X-ray Single

Crystal Structures of [RuBr2(η6-cymene)(PF3)], [RuBr2(η6-cymene)(PF2{NMe2})], and [RuI2(η6-
cymene)(P{NMe2}3)], Inorganic Chemistry 47, 9279 (2008)

335. A. Michalak, M. Mitoraj, and T. Ziegler, Bond Orbitals from Chemical Valence Theory, Journal of
Physical Chemistry A 112, 1933 (2008)

336. E. Clementi, Carla Roetti, Roothaan-Hartree-Fock atomic wavefunctions: Basis functions and their
coefficients for ground and certain excited states of neutral and ionized atoms, Z≤54, Atomic Data and
Nuclear Data Tables 14, 177 (1974)

337. A.D. McLean, R.S. McLean, Roothaan-Hartree-Fock atomic wave functions Slater basis-set
expansions for Z = 55-92, Atomic Data and Nuclear Data Tables 26, 197 (1981)

338. J.G. Snijders, P. Vernooijs, E.J. Baerends, Roothaan-Hartree-Fock-Slater atomic wave functions:
Single-zeta, double-zeta, and extended Slater-type basis sets for 87Fr-103Lr, Atomic Data and Nuclear Data
Tables 26, 483 (1981)

339. J. Autschbach and B. Pritchard, Calculation of molecular g-tensors using the zeroth-order regular
approximation and density functional theory: expectation value versus linear response approaches ,
Theoretical Chemistry Accounts 129, 453 (2011)

340. J. Autschbach, S. Patchkovskii, and B. Pritchard, Calculation of Hyperfine Tensors and Paramagnetic
NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory,
Journal of Chemical Theory and Computation 7, 2175 (2011)

341. S. Moon, and S. Patchkovskii, First-principles calculations of paramagnetic NMR shifts, in Calculation
of NMR and EPR parameters, ISBN13: 9783527307791, M. Kaupp, M. Bühl, V.G. Malkin, Editors, (Wiley,
Weinheim, 2004).

342. P. Hrobárik, Ro. Reviakine, A.V. Arbuznikov, O.L. Malkina, V.G. Malkin, F.H. Köhler, and M. Kaupp,
Density functional calculations of NMR shielding tensors for paramagnetic systems with arbitrary spin
multiplicity: Validation on 3d metallocenes , Journal of Chemical Physics 126, 024107 (2007)

343. J. Li, M.R. Nelson, C.Y. Peng, D. Bashford, and L. Noodleman, Incorporating Protein Environments in
Density Functional Theory: A Self-Consistent Reaction Field Calculation of Redox Potentials of [2Fe2S]
Clusters in Ferredoxin and Phthalate Dioxygenase Reductase, Journal of Physical Chemistry A 102, 6311
(1998)

440

http://dx.doi.org/10.1063/1.2905235
http://dx.doi.org/10.1002/mrc.2289
http://dx.doi.org/10.1002/mrc.2289
http://dx.doi.org/10.1016/S0066-4103(09)06701-5
http://dx.doi.org/10.1063/1.2768363
http://dx.doi.org/10.1063/1.2768363
http://dx.doi.org/10.1021/ed084p156
http://dx.doi.org/10.1021/ic800611h
http://pubs.acs.org/doi/abs/10.1021/jp075460u
http://pubs.acs.org/doi/abs/10.1021/jp075460u
http://dx.doi.org/10.1016/S0092-640X(74)80016-1
http://dx.doi.org/10.1016/S0092-640X(74)80016-1
http://dx.doi.org/10.1016/0092-640X(81)90012-7
http://dx.doi.org/10.1016/0092-640X(81)90004-8
http://dx.doi.org/10.1016/0092-640X(81)90004-8
http://dx.doi.org/10.1007/s00214-010-0880-x
http://pubs.acs.org/doi/abs/10.1021/ct200143w
http://dx.doi.org/10.1063/1.2423003
http://pubs.acs.org/doi/abs/10.1021/jp980753w
http://pubs.acs.org/doi/abs/10.1021/jp980753w

344. T. Liu, W.-G Han, F. Himo, G.M. Ullmann, D. Bashford, A. Toutchkine, K.M. Hahn, and L. Noodleman,
Density Functional Vertical Self-Consistent Reaction Field Theory for Solvatochromism Studies of Solvent-
Sensitive Dyes, Journal of Physical Chemistry A 108, 3545 (2004)

345. W.-G. Han, T. Liu, F. Himo, A. Toutchkine, D. Bashford, K.M. Hahn, L. Noodleman, A Theoretical Study
of the UV/Visible Absorption and Emission Solvatochromic Properties of Solvent-Sensitive Dyes,
ChemPhysChem 4, 1084 (2003)

346. A. Kovyrshin, J. Neugebauer, State-selective optimization of local excited electronic states in extended
systems, Journal of Chemical Physics 133, 174114 (2010)

347. M. Swart, E. Rösler, and F. M. Bickelhaupt, Proton affinities of maingroup-element hydrides and noble
gases: Trends across the periodic table, structural effects, and DFT validation, Journal of Computational
Chemistry 27, 1486 (2006)

348. M. Swart, and F. M. Bickelhaupt, Proton Affinities of Anionic Bases: Trends Across the Periodic Table,
Structural Effects, and DFT Validation, Journal of Chemical Theory and Computation 2, 281 (2006).

349. A. Kovalenko and F. Hirata, Potentials of mean force of simple ions in ambient aqueous solution. II.
Solvation structure from the three-dimensional reference interaction site model approach, and comparison
with simulationsa, Journal of Chemical Physics 112, 10403 (2000)

350. M. Seth, G. Mazur, and T. Ziegler, Time-dependent density functional theory gradients in the
Amsterdam density functional package: geometry optimizations of spin-flip excitations, Theoretical
Chemistry Accounts 129, 331 (2011)

351.S.Y. Quek, L. Venkataraman, H.J. Choi, S.G. Louie, M.S. Hybertsen and J.B. Neaton, mine-Gold Linked
Single-Molecule Circuits: Experiment and Theory, Nano Letters 7, 3477 (2007)

352. M. Pavanello and J. Neugebauer, Modelling charge transfer reactions with the frozen density
embedding formalism, Journal of Chemical Physics 135, 234103 (2011)

353. M. Pavanello, T. Van Voorhis, L. Visscher, and J. Neugebauer, An accurate and linear-scaling method
for calculating charge-transfer excitation energies and diabatic couplings, Journal of Chemical Physics 138,
054101 (2013)

354. U. Ekström, L. Visscher, R. Bast, A.J. Thorvaldsen, and K. Ruud, Arbitrary-Order Density Functional
Response Theory from Automatic Differentiation, Journal of Chemical Theory and Computation 6, 1971
(2010)

355. M. Seth and T. Ziegler, Range-Separated Exchange Functionals with Slater-Type Functions, Journal of
Chemical Theory and Computation 8, 901 (2012)

356. E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García A.J. Cohen, and W. Yang, Revealing
Non-Covalent Interactions, Journal of the American Chemical Society 132, 6498 (2010)

357. J. Contreras-García E.R. Johnson, S. Keinan, R. Chaudret, J-P. Piquemal, D.N. Beratan, and W. Yang,
NCIPLOT: A Program for Plotting Noncovalent Interaction Regions, Journal of Chemical Theory and
Computation 7, 625 (2011)

358. P. de Silva, J. Korchowiec, T.A. Wesolowski, Revealing the Bonding Pattern from the Molecular
Electron Density Using Single Exponential Decay Detector: An Orbital-Free Alternative to the Electron
Localization Function, ChemPhysChem 13, 3462 (2012)

359. R. De Francesco, M. Stener, and G. Fronzoni, Theoretical Study of Near-Edge X-ray Absorption Fine
Structure Spectra of Metal Phthalocyanines at C and N K-Edges, Journal of Physical Chemistry A, 116 2285
(2012)

441

http://pubs.acs.org/doi/abs/10.1021/jp031062p
http://dx.doi.org/10.1002/cphc.200300801
http://dx.doi.org/10.1063/1.3488230
http://dx.doi.org/10.1002/jcc.20431
http://dx.doi.org/10.1002/jcc.20431
http://dx.doi.org/10.1021/ct200602x
http://dx.doi.org/10.1063/1.481677
http://dx.doi.org/10.1007/s00214-010-0819-2
http://dx.doi.org/10.1007/s00214-010-0819-2
http://pubs.acs.org/doi/abs/10.1021/nl072058i
http://dx.doi.org/10.1063/1.3666005
http://dx.doi.org/10.1063/1.4789418
http://dx.doi.org/10.1063/1.4789418
http://pubs.acs.org/doi/abs/10.1021/ct100117s
http://pubs.acs.org/doi/abs/10.1021/ct100117s
http://pubs.acs.org/doi/abs/10.1021/ct300006h
http://pubs.acs.org/doi/abs/10.1021/ct300006h
http://dx.doi.org/10.1021/ja100936w
http://pubs.acs.org/doi/abs/10.1021/ct100641a
http://pubs.acs.org/doi/abs/10.1021/ct100641a
http://dx.doi.org/10.1002/cphc.201200500
http://dx.doi.org/10.1021/jp2109913
http://dx.doi.org/10.1021/jp2109913

360. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic
molecules, Journal of Chemical Physics 92, 508 (1992)

361. A.D. Becke, A multicenter numerical integration scheme for polyatomic molecules, Journal of Chemical
Physics 88, 2547 (1988)

362. J.L. Payton, S.M. Morton, Justin E. Moore, and Lasse Jensen, A discrete interaction model/quantum
mechanical method for simulating surface-enhanced Raman spectroscopy, Journal of Chemical Physics
136, 214103 (2012)

363. J.I. Rodríguez, An Efficient Method for Computing the QTAIM Topology of a Scalar Field: The Electron
Density Case, Journal of Computational Chemistry 34, 681 (2013)

364. C. König, N. Schlüter. J. Neugebauer, Direct Determination of Exciton Couplings from Subsystem
TDDFT within the Tamm-Dancoff Approximation, Journal of Chemical Physics 138, 034104 (2013)

365. C.J.O. Verzijl, J.S. Seldenthuis, and J.M. Thijssen, Applicability of the wide-band limit in DFT-based
molecular transport calculations, Journal of Chemical Physics 138, 094102 (2013)

366. H. Kim, J.-M. Choi, W.A. Goddard, Universal Correction of Density Functional Theory to Include
London Dispersion (up to Lr, Element 103), Journal of Physical Chemistry Letters 3, 360 (2012)

367. M.Swart, A new family of hybrid density functionals, Chemical Physics Letters 580, 166 (2013)

368. J. Autschbach, C.D. Igna, T. Ziegler, A theoretical investigation of the apparently irregular behavior of
Pt-Pt spin-spin coupling constants Journal of the American Chemical Society 125, 1028 (2003)

369. B.L. Guennic, K. Matsumoto, J. Autschbach, On the NMR properties of platinum thallium bonded
complexes: Analysis of relativistic density functional theory results, Magnetic Resonance in Chemistry 42,
S99 (2004)

370. J. Khandogin, T. Ziegler, A density functional study of nuclear magnetic resonance spin-spin coupling
constants in transition metal systems, Spectrochimica Acta Part A 55, 607 (1999)

371. N.F. Ramsey, Electron Coupled Interactions between Nuclear Spins in Molecules, Physical Review 91,
303 (1953)

372. R.M. Dickson, T. Ziegler, NMR Spin-Spin Coupling Constants from Density Functional Theory with
Slater-Type Basis Functions, Journal of Physical Chemistry 100, 5286 (1996)

373. D. L. Bryce, R. Wasylishen, Indirect Nuclear Spin-Spin Coupling Tensors in Diatomic Molecules: A
Comparison of Results Obtained by Experiment and First Principles Calculations, Journal of the American
Chemical Society 122, 3197 (2000)

374. G. Schreckenbach, S. K. Wolff, T. Ziegler, Covering the Entire Periodic Table: Relativistic Density
Functional Calculations of NMR Chemical Shifts in Diamagnetic Actinide Compounds, in Modeling NMR
chemical shifts, ACS Symposium Series, Vol 732, J.C. Facelli, A.C. de Dios, Editors (American Chemical
Society, Washington DC, 1999), Chapter 7

375. M. Franchini, P.H.T. Philipsen, L. Visscher, The Becke Fuzzy Cells Integration Scheme in the
Amsterdam Density Functional Program Suite, Journal of Computational Chemistry 34, 1818 (2013).

376. A. Tkatchenko, R.A. DiStasio Jr., R. Car, M. Scheffler Accurate and Efficient Method for Many-Body
van der Waals Interactions, Physical Review Letters 108, 236402 (2012)

377. A. Ambrosetti, A.M. Reilly, Robert A. DiStasio Jr., A. Tkatchenko, Long-range correlation energy
calculated from coupled atomic response functions, Journal of Chemical Physics 140, 18A508 (2014)

442

http://dx.doi.org/10.1063/1.458452
http://dx.doi.org/10.1063/1.454033
http://dx.doi.org/10.1063/1.454033
http://dx.doi.org/10.1063/1.4722755
http://dx.doi.org/10.1063/1.4722755
http://dx.doi.org/10.1002/jcc.23180
http://dx.doi.org/10.1063/1.4774117
http://dx.doi.org/10.1063/1.4793259
http://dx.doi.org/10.1021/jz2016395
http://dx.doi.org/10.1016/j.cplett.2013.06.045
http://pubs.acs.org/doi/abs/10.1021/ja027931q
http://dx.doi.org/10.1002/mrc.1450
http://dx.doi.org/10.1002/mrc.1450
http://dx.doi.org/10.1016/S1386-1425(98)00265-0
http://dx.doi.org/10.1103/PhysRev.91.303
http://dx.doi.org/10.1103/PhysRev.91.303
http://pubs.acs.org/doi/abs/10.1021/jp951930l
http://pubs.acs.org/doi/abs/10.1021/ja9942134
http://pubs.acs.org/doi/abs/10.1021/ja9942134
http://pubs.acs.org/doi/abs/10.1021/bk-1999-0732.ch007
http://pubs.acs.org/doi/abs/10.1021/bk-1999-0732.ch007
http://pubs.acs.org/doi/abs/10.1021/bk-1999-0732.ch007
http://dx.doi.org/10.1002/jcc.23323
http://link.aps.org/doi/10.1103/PhysRevLett.108.236402
http://dx.doi.org/10.1063/1.4865104

378. A.V. Marenich, S.V. Jerome, C.J. Cramer, D.G. Truhlar, Charge Model 5: An Extension of Hirshfeld
Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed
Phases, Journal of Chemical Theory and Computation 8, 527 (2012)

379. M. Franchini, P.H.T. Philipsen, E. van Lenthe, L. Visscher, Accurate Coulomb Potentials for Periodic
and Molecular Systems through Density Fitting, Journal of Chemical Theory and Computation 10, 1994
(2014)

380. A.D. Becke, R.M. Dickson, Numerical solution of Poisson's equation in polyatomic molecules, Journal
of Chemical Physics 89, 2993 (1988)

381. M.-C. Kim, E. Sim, and K. Burke, Understanding and Reducing Errors in Density Functional
Calculations, Physical Review Letters 111, 2073003 (2013)

403. J. Autschbach and T. Ziegler, Solvent Effects on Heavy Atom Nuclear Spin.Spin Coupling Constants: A
Theoretical Study of Hg.C and Pt.P Couplings, Journal of the American Chemical Society 123, 3341 (2001)

404. J. Autschbach and T. Ziegler, A Theoretical Investigation of the Remarkable Nuclear Spin.Spin
Coupling Pattern in [(NC)5Pt-Tl(CN)]-, Journal of the American Chemical Society 123, 5320 (2001)

414. A. van der Avoird, P.E.S. Wormer, F. Mulder, R.M. Berns, Topics in Current Chemistry 93, 1 (1980)

415. C.J. Pickard and F. Mauri, First-Principles Theory of the EPR g Tensor in Solids: Defects in Quartz,
Physical Review Letters 88, 86403 (2002)

416. S. Patchkovskii and G. Schreckenbach in Calculation of NMR and EPR parameters, ISBN13:
9783527307791, M. Kaupp, M. Bühl, V.G. Malkin, Editors, (Wiley, Weinheim, 2004).

417. S. Patchkovskii, R.S. Strong, C.J. Pickard and S. Un, Gauge invariance of the spin-other-orbit
contribution to the g-tensors of electron paramagnetic resonance, Journal of Chemical Physics 122, 214101
(2005)

418. J.S. Seldenthuis, H.S.J. van der Zant, M.A. Ratner and J.M. Thijssen, Vibrational Excitations in Weakly
Coupled Single-Molecule Junctions: A Computational Analysis, ACS Nano 2, 1445 (2008)

419. G.M. Sando and K.G. Spears, Ab Initio Computation of the Duschinsky Mixing of Vibrations and
Nonlinear Effects, Journal of Physical Chemistry A 105, 5326 (2001)

420. P.T. Ruhoff and M.A. Ratner, Algorithms for computing Franck-Condon overlap integrals, International
Journal of Quantum Chemistry 77, 383 (2000)

421. J. Poater, E. van Lenthe and E.J. Baerends, Nuclear magnetic resonance chemical shifts with the
statistical average of orbital-dependent model potentials in Kohn.Sham density functional theory, Journal of
Chemical Physics 118, 8584 (2003)

422. M. Krykunov, T. Ziegler and E. van Lenthe, Hybrid density functional calculations of nuclear magnetic
shieldings using Slater-type orbitals and the zeroth-order regular approximation, International Journal of
Quantum Chemistry 109, 1676 (2009)

423. M. Krykunov, T. Ziegler and E. van Lenthe, Implementation of a hybrid DFT method for calculating
NMR shieldings using Slater-type orbitals with spin-orbital coupling included. Applications to 187Os, 195Pt
and 13C in heavy metal complexes, Journal of Physical Chemistry A 113, 11495 (2009)

425. J. Autschbach, Two-component relativistic hybrid density functional computations of nuclear spin-spin
coupling tensors using Slater-type basis sets and density-fitting techniques, Journal of Chemical Physics
129, 094105 (2008), Erratum: Journal of Chemical Physics 130, 209901 (2009)

443

http://dx.doi.org/10.1021/ct200866d
http://dx.doi.org/10.1021/ct500172n
http://dx.doi.org/10.1021/ct500172n
http://dx.doi.org/10.1063/1.455005
http://dx.doi.org/10.1063/1.455005
http://dx.doi.org/10.1103/PhysRevLett.111.073003
http://pubs.acs.org/doi/abs/10.1021/ja003481v
http://pubs.acs.org/doi/abs/10.1021/ja003866d
http://link.aps.org/doi/10.1103/PhysRevLett.88.086403
http://dx.doi.org/10.1063/1.1917840
http://dx.doi.org/10.1063/1.1917840
http://pubs.acs.org/doi/abs/10.1021/nn800170h
http://pubs.acs.org/doi/abs/10.1021/jp004230b
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:1<383::AID-QUA38>3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:1<383::AID-QUA38>3.0.CO;2-0
http://dx.doi.org/10.1063/1.1567252
http://dx.doi.org/10.1063/1.1567252
http://dx.doi.org/10.1002/qua.21985
http://dx.doi.org/10.1002/qua.21985
http://pubs.acs.org/doi/abs/10.1021/jp901991s
http://dx.doi.org/10.1063/1.2969100
http://dx.doi.org/10.1063/1.2969100
http://dx.doi.org/10.1063/1.3131724

426. D.L. Bryce and J. Autschbach, Relativistic hybrid density functional calculations of indirect nuclear spin-
spin coupling tensors . Comparison with experiment for diatomic alkali metal halides, Canadian Journal of
Chemistry 87, 927 (2009)

429. J. Autschbach, Analyzing NMR shielding tensors calculated with two-component relativistic methods
using spin-free localized molecular orbitals, Journal of Chemical Physics 128, 164112 (2008)

432. Y.A. Wang, C.Y. Yam, Y.K. Chen, G. Chen, Communication: Linear-expansion shooting techniques for
accelerating self-consistent field convergence, Journal of Chemical Physics 134, 241103 (2011)

433. W.L. Jorgensen, J.D. Madura, C.J. Swenson, Optimized intermolecular potential functions for liquid
hydrocarbons, Journal of the American Chemical Society 106, 6638 (1984)

434. A.E. Kobryn, A. Kovalenko, Molecular theory of hydrodynamic boundary conditions in nanofluidics,
Journal of Chemical Physics 129, 134701 (2008)

435. O. Acevedo, W.L. Jorgensen, Influence of Inter- and Intramolecular Hydrogen Bonding on Kemp
Decarboxylations from QM/MM Simulations, Journal of the American Chemical Society 127, 8829 (2005)

436. S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the Damping Function in Dispersion Corrected Density
Functional Theory, Journal of Computational Chemistry 32, 1457 (2011).

437. Ph. Haas, F. Tran, P. Blaha, and K.H. Schwartz, Construction of an optimal GGA functional for
molecules and solids, Physical Review B83, 205117 (2011).

438. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A. Constantin, and J. Sun, Workhorse Semilocal Density
Functional for Condensed Matter Physics and Quantum Chemistry, Physical Review Letters 103, 026403
(2009).

444

http://dx.doi.org/10.1139/V09-040
http://dx.doi.org/10.1139/V09-040
http://dx.doi.org/10.1063/1.2905235
http://link.aip.org/link/doi/10.1063/1.3609242
http://dx.doi.org/10.1021/ja00334a030
http://link.aip.org/link/doi/10.1063/1.2972978
http://dx.doi.org/10.1021/ja051793y
http://dx.doi.org/10.1002/jcc.21759
http://dx.doi.org/10.1103/PhysRevB.83.205117
http://dx.doi.org/10.1103/PhysRevLett.103.026403
http://dx.doi.org/10.1103/PhysRevLett.103.026403

Keywords

A1FIT 297 FDE 125, 128, 130 PRINT 270
ADDDIFFUSEFIT 89 FILE 34 QTENS 246
ALLOW 301 FITELSTAT 307 RADIALCOREGRID 289
ALLPOINTS 307 FORCEALDA 200 RAMAN 183
ANALYTICALFREQ 175 FRAGMENTS 56 RAMANRANGE 184
AORESPONSE 224 FRAGMETAGGATOTEN 89 RELATIVISTIC 103
ARH 294 FRAGOCCUPATIONS 78 REMOVEFRAGORBITALS 79
ATOMPROPS 46 FREQUENCIES 176 RESPONSE 220
ATOMS 31, 33, 34 FULLFOCK 307 RESRAMAN 186, 187
BADER 269 GEOMETRY 151, 152 RESTART 310
BASIS 42 GEOSTEP 276 RESTRAINT 173
BECKEGRID 285 GEOVAR 168, 172 RISM 144
BONDORDER 262 green 254 SAVE 308
CDSPECTRUM 206 GSCORR 205 SCANFREQ 182
CHARGE 59 HARTREEFOCK 94 SCF 290
CINEB 164 HESSDIAG 171 SCRF 137
CM5 262 HESSTEST 172 SELECTEXCITATION 201
COLLINEAR 58 HFATOMSPERPASS 88 SFTDDFT 200
COMMENT 31 HFEXCHANGE 95 SICOEP 96
COMMTIMING 302 HFMAXMEMORY 88 SINGULARFIT 96
CONSTRAINTS 166 HYPERPOL 221 SKIP 301
COREPOTENTIALS 75 INLINE 30 SLATERDETERMINANTS 63
cpl 238, 244 INTEGRATION 286, 286 SOLVATION 108
cpl GGA 241 IRC 162 SOMCD 207
cpl HYPERFINE 244 IRCSTART 163 SOPERT 204
cpl NMRCOUPLING 238, 239 KEY 26 SPINFLIP 76
CREATE 44, 47 kfbrowser 408 STCONTRIB 206
CURRENTRESPONSE 194 KSSPECTRUM 198 STOFIT 297
DEBUG 272 LINEARCONSTRAINTS 170 STOPAFTER 299
DEFINE 28 LINEARSCALING 306 SUBEXCI 132
densf 340 LINEARTRANSIT 160 SYMMETRY 259
DEPENDENCY 298 LOCORB 260 TAILS 305
DIMPAR 121 MBH 178 TDA 197
DIMQM 116 MCD 207 THERMO 179
DISK 300 METAGGA 94 TITLE 30
disper 222 MMDISPERSION 101 TOTALENERGY 259
dos 355 MODIFYEXCITATION 202 TRANSFERINTEGRALS 249
DRF 116 MODIFYSTARTPOTENTIAL 77 TRANSITIONSTATE 157
EFIELD 148 nmr 228, 233 TSRC 158
ELECTRONTRANSFER 249 nmr GFACTORS 245 UNITS 28
ENERGYFRAG 95 nmr NMR 228 UNRESTRICTED 58
EPRINT 273 NOBECKEGRID 285 VANDERWAALS 221
ESR 244 NONCOLLINEAR 59 VCD 190
ETSNOCV 264 NOPRINT 274 VECTORLENGTH 305
EXACTDENSITY 298 NOSHAREDARRAYS 304 VIBRON 187
EXCITATIONS 196 NUCLEARMODEL 48 VSCRF 141
EXCITEDGO 212 NUMERICALQUALITY 284 XC 81, 91
EXTENDEDPOPAN 262 OCCUPATIONS 59 ZFS 246

445

EXTERNALS 120 OLDGRADIENTS 305 ZLMFIT 296
fcf 215 OPTICALROTATION 223

446

Index

3D-RISM 143 fragments files 56 PBE0 83
A-tensor 244 Franck-Condon factors 213 PBEsol 82
absorption spectrum 195 frequencies 174 Perdew-Zunger SIC 96
adf2aim 269 frequency scan 182 periodic table 364
adfnbo 264 frozen core approximation 17 phosphorescence 213
adfplt module 357 frozen-density embedding 125 pkf module 408
adfprep module 411 full XC kernel 197 point charges 148
adfreport module 414 g-tensor 245 polarizability 219, 149
ADIIS 292 gennbo 264 polarizability at resonance 224
AIM 269 geometry optimization 151 population analysis 337
ALDA kernel 193 GGA functionals 80 precision 285
alternative elements 46 GGA-D 100 precision SCF 284
analytic second derivatives 174 GGA-D3 100 pseudopotentials 75
ARH 293 GGA-MBD 103 PW91 82
atomic coordinates 31 ghost atoms 46 Q-tensor 246
atomic database 35, 360 gpu acceleration 302 QM/MM 114, 115
atoms in molecules 269 GRAC 83 QTAIM 269
Augmented Roothaan-Hall 293 green module 251 quadrupole moment 337
automatic mode 42 Hartree-Fock (post SCF) 1 Quild 115
B1LYP 83 Hartree-Fock (SCF) 83, 88 Raman (resonance) 185, 186
B1PW91 83 Hessian 174 Raman for selected frequencies 184
B3LYP 83 HF exchange percentage 88 Raman intensities 183
B3LYP* 83 HF-DFT 1 Raman scattering 183
Bader's analysis 269 Hirshfeld charges 334 range-separated functionals 84, 90
BAS 16 hole mobility 248 reaction path 161

basic atoms 12 homogeneous electric field 148 reduced spin-spin coupling constant
234

basis functions 16 HTBS 82 reduction of output 283
basis set superposition error 299 hybrid (SCF) 83, 88 relativistic core potentials 105
basis sets 35, 360 hybrid functionals (post SCF) 94 relativistic effects 103
BEE 82 hyperfine interaction 244 remove fragment orbitals 79
BHandH 83 hyperpolarizability 221, 149 resonance Raman 185, 186
BHandHLYP 83 imaginary frequencies 327 response properties 191
block constraints 167 infrared frequencies 174 restart file 308
BLYP 82 infrared intensities 174 restrained optimizations 172
bond energy analysis 20, 257, 338 initial Hessian 166 revPBE 82
bond order 262, 262, 336 input parsing 27 revTPSS 82
BP86 82 internal coordinates 31 RISM 143
broken symmetry 77 intrinsic reaction coordinate 161 RPBE 82
BSSE 299 IR frequencies 174 RS functionals 84, 90
C6 coefficient 221 IRC 161 run types 149
C8 coefficient 222 irreducible representation 17 S12g 82
C10 coefficient 222 isotope shift 181 SAOP 83
CAM-B3LYP 84 KF command line utilities 408 scalable SCF 296
CAMY-B3LYP 84 KF GUI utility 408 SCF problems 322
Cartesian functions 16 kfbrowser module 408 Schönflies symbol 368
CD spectrum 206 KLI 83 SCRF 134
CEDA 83 KMLYP 83 self-interaction correction 96

447

charge analysis 334 KT1 82 SFO 17
charge model 336 LB94 82 SFO population analysis 337
charge transport properties 248 LC functionals 84, 90 shared arrays 304
CINEB 164 LDA functionals 80 SIC potentials 96
circular dichroism 206 lifetime effects 224 singlet-singlet excitations 195
climbing-image nudged elastic band
164 linear dependency 298 singlet-triplet excitations 195

CM5 336 linear scaling techniques 305 smeared occupations 60
collinear 58 linear transit 159 solvent effects 107, 115
constrained optimizations 166, 168,
169 LISTi 293 spin 58

constrained space orbital variation 79 localized orbitals 260 spin-flip broken symmetry 76

convergence problems 322 long range corrected functionals 84,
90 spin-flip excitations 200

core excitations 200 long range dispersion interaction 222 spin-orbit coupling 105
core potential 75 LT (linear transit) 159 spin-orbit excitation energies 204
COSMO 107 M06 84 spin-orbit polarizability 225
COSMO non-electrostatic term 111 M06-2X 84 spin-polarized calculation 58
COSMO TDDFT 114 M06-HF 84 spin-spin coupling constant 234
cpkf module 408 M06-L 82 spin-spin Diamagnetic orbital term 235
cpl module 234 magnetic circular dichroism 207 spin-spin Fermi-Contact term 235

create mode 44 magnetizability 224 spin-spin Paramagnetic orbital term
235

CSOV analysis 79 Mayer bond order 262 spin-spin Spin-Dipole term 235
Davidson algorithm 197 MBH 178 SSB-D 86
DC-DFT 1 MCD 207 standard basis sets 1
dDsC dispersion correction 102 MDC 335 state selective excitations 201
debug 272 MEAD 135 STO 16
delocalized coordinates 151 memory usage 304 STO basis sets 35, 360
densf module 339 meta-GGA (SCF) 82, 87 subspecies 368
density corrected DFT 1 meta-GGA functionals 94 subsystem DFT 125
density fitting 297 meta-hybrid (SCF) 84, 88 subsystem TDDFT 132
dependency 298 minimal input 25 symmetry 17
DFT-D 100 MM dispersion 100, 101 symmetry label 368
DFT-D3 100 Mobile Block Hessian 178 Tamm-Dancoff approximation 197
DFT-MBD 103 model potentials 80, 87 TAPE13 407
DFT-ulg 103 molecular fragments 53 TAPE21 369
DIIS 289 moments of inertia 182 TDA 197
DIM/QM 115 MOPAC Z-matrix 31 TDCDFT 194
dipole allowed 196 Mossbauer isomer shifts 247 TDDFT 191
dipole moment 337 Mossbauer quadrupole splittings 246 TDDFT COSMO 114
discrete solvent RF model 115 mPBE 82 TDDFT SO 204
dispersion coefficients 221 mPW 82 thermodynamics 179
dispersion corrected functionals 100 mPW1K 83 time-dependent current DFT 194
dmpkf module 408 mPW1PW 83 time-dependent DFT 191
dos module 352 Mulliken population 334 total energy 258
double group symmetry 105 multiplet states 63 TPSS 82
doublet-doublet excitations 199 multipole derived charges 335 TPSSH 84
doublet-quartet excitations 199 Nalewajski-Mrozek bond order 336 transition state 156
DRF 115 NBO-analysis 264 trouble shooting 320
EDIIS 292 NEGF 251 TS (transition state) 156

448

EFG 246 new optimization branch 153 TSRC 158
electric field (homogeneous) 148 NICS 231 udmpkf module 408
electric field gradient 246 NMR chemical shifts 227 UFF dispersion correction 103
electron mobility 248 nmr module 227, 233 unrestricted calculation 58
electron paramagnetic resonance 243 NMR shielding tensor 227 unrestricted fragments 78
electron smearing 60 NMR spin-spin couplings 234 UV/Vis 195
electron spin resonance 243 NOCV 263 van der Waals 222
electronic configuration 57, 318, 333 non-collinear 58 van der Waals interaction 221, 100

end input 26 non-self-consistent Green's function
251 VCD 190

energy decomposition analysis 20,
257, 338 NQCC 246 VDD charges 334

Energy-DIIS 292 NRVS 248 Verdet constant 224
EPR 243 NSSCC 234 vibrational Raman optical activity 189

epr module 226 nuclear model 48 vibrationally resolved electronic
spectra 213

ESR 243 nuclear resonance vibrational
spectroscopy 248 Voronoi deformation density 334

ETS-NOCV 263 nuclear spin-spin coupling constant
234 VROA 189

exchange-correlation 80 nuclear-independent chemical shift
231 VSCRF 139

excitation energies 195 O3LYP 83 VWN 81
excitation energies spin-orbit 204 OEP 83 Wesolowski-Warshel FDE 125
excited state optimizations 211 OLYP 82 X-ray photoelectron spectroscopy 333
execution of ADF 22 OPBE0 83 X3LYP 83
Faraday B term 224 open shell TDDFT 199 XC 80
fcf module 214 optical rotation (dispersion) 223, 224 XC kernel 193
FDE 125 optimized effective potential 83 XCFUN 84
FDE energy 131 orbital localization 260 XLYP 82
finite nucleus 48 ORD 223, 224 XPS 333
fit functions 1 orthonormal basis 17 Z-matrix coordinates 31
fluorescence 213 parallel version 22 Zeeman interaction 245
force constants 174 paramagnetic NMR 233 zero-field splitting 246, 204
fragment mode 53 partial Hessian 176 ZFS excited state 204
fragment orbitals 17 Pauli Hamiltonian 104 ZFS ground state 246
fragments 12 PBE 82 ZORA 104

449

	ADF Manual
	Table of Contents
	Preface
	Release 2014

	1 GENERAL
	1.1 Introduction
	Characterization of ADF
	Fragments

	1.2 Feature List
	1.3 Technical remarks, Terminology
	Density functional theory
	The Kohn-Sham MO model
	Basis functions and orbitals
	Fit functions
	Three-step build-up of the bonding
	Transition State procedure

	1.4 Running the program
	Execution of ADF
	Files

	1.5 ADF-GUI

	2 INPUT
	2.1 Minimal input
	2.2 Structure of the input
	Keywords
	Interpretation of Input
	Link-in Input files
	Title, comment, layout of input

	2.3 Coordinates, basis sets, fragments
	Atomic coordinates
	Mixed Cartesian and Z-matrix coordinates
	Orientation of Local Atomic Coordinates
	ASCII Output Files with Atomic Coordinates

	Basis sets and atomic fragments
	Database of STO basis sets
	How TO make EVEN-tempered basis/fit sets?

	Available standard basis sets
	Automatic mode
	Create mode
	Ghost Atoms & Non-standard Chemical Elements
	Nuclear Model

	What basis set should I use in ADF?
	ZORA or nonrelativistic calculation?
	Large or small molecule?
	Frozen core or all-electron?
	Diffuse functions needed?
	Normal or even-tempered basis?
	What accuracy do the basis sets give?

	Molecular fragments
	Fragment mode
	Fragment files

	2.4 Model Hamiltonians
	Electronic Configuration
	Charge and Spin
	Orbital occupations: electronic configuration, excited states
	Aufbau, smearing, freezing
	Explicit occupation numbers
	CHARGE vs. OCCUPATIONS
	Create mode

	Multiplet States
	Multiplet energies

	Frozen core approximation
	Spin-polarized start-up potential
	Spin-flip method for broken symmetries
	Modify the starting potential

	Unrestricted fragments
	Remove Fragment Orbitals

	Density Functional
	Exchange Correlation Potentials
	Defaults, special cases, simple input
	PBE functionals
	SSB-D functional
	Meta-GGA potentials
	Model potentials
	Hartree-Fock and (meta-)hybrid potentials
	Range-separated functionals
	Simple XC potential input

	Post-SCF energy functionals
	GGA energy functionals
	Meta-GGA and hybrid energy functionals

	Self-Interaction Correction
	General remarks
	Dispersion corrected functionals
	DFT-D3 functionals
	DFT-D functionals
	MM dispersion (old implementation)
	dDsC: density dependent dispersion correction
	DFT-ulg
	DFT-MBD functionals

	Relativistic effects
	Pauli
	ZORA
	Spin-Orbit coupling
	Relativistic core potentials
	Dirac program: Relativistic Potentials

	Solvents and other environments
	COSMO: Conductor like Screening Model
	QM/MM: Quantum mechanical and Molecular Mechanics model
	Quild: Quantum-regions Interconnected by Local Descriptions
	DIM/QM: Discrete Interaction Model/Quantum Mechanics
	FDE: Frozen Density Embedding
	SCRF: Self-Consistent Reaction Field
	VSCRF: Vertical Excitation Self-Consistent Reaction Field
	3D-RISM: 3D Reference Interaction Site Model

	Electric Field: Homogeneous, Point Charges, Polarizability

	2.5 Structure and Reactivity
	Run Types
	Runtype control and strategy parameters

	Geometry Optimization
	Transition State
	Transition State Reaction Coordinate (TSRC)

	Linear Transit
	Linear Transit (new branch)
	Linear Transit (old branch)
	Symmetry in a Linear Transit

	Intrinsic Reaction Coordinate
	IRC start direction
	Forward / Backward IRC paths

	Climbing-Image Nudged Elastic Band
	Recommendations concerning the NEB method.

	Special Features
	Initial Hessian
	Constrained optimizations, LT (new branch)
	Constrained optimizations, IRC, NEB, LT (old branch)
	Restrained optimizations
	Symmetry versus constraints

	Frequencies
	Analytical Frequencies
	Numerical Frequencies
	Mobile Block Hessian (MBH)
	Thermodynamics
	Gibbs free energy change for a gas phase reaction

	Accuracy
	Isotope Shifts of Vibrational Frequencies
	Scanning a Range of Frequencies
	Moments of inertia

	Excited state (geometry) optimizations

	2.6 Spectroscopic properties
	IR spectra, (resonance) Raman, VROA, VCD
	IR spectra
	Raman scattering
	Raman Intensities for Selected Frequencies
	Resonance Raman: excited-state finite lifetime
	Resonance Raman: excited-state gradient
	VROA: (Resonance) vibrational Raman optical activity
	Vibrational Circular Dichroism (VCD) spectra.
	Vibrationally resolved electronic spectra

	Time-dependent DFT
	General remarks on the Response and Excitation functionality
	Analysis options for TDDFT (excitation energies and polarizabilities)
	Time-dependent Current DFT

	Excitation energies: UV/Vis spectra, X-ray absorption, CD, MCD
	Excitation energies, UV/Vis spectra
	Tamm-Dancoff approximation
	Full XC kernel
	Excitations as orbital energy differences
	Accuracy and other technical parameters

	Excitation energies for open-shell systems
	Spin-flip excitation energies
	Select excitation energies, Core Excitation energies, X-ray absorption
	State selective optimization excitation energies
	Modify range of excitation energies

	Excitation energies and Spin-Orbit coupling
	Perturbative inclusion of spin-orbit coupling
	Self-consistent spin-orbit coupling
	Highly approximate spin-orbit coupled excitation energies open shell molecule

	CD spectra
	MCD
	Applications of the Excitation feature in ADF

	Excited state (geometry) optimizations
	Vibrationally resolved electronic spectra
	FCF program: Franck-Condon Factors
	Example absorption and fluorescence
	Example phosphorescence

	(Hyper-)Polarizabilities, ORD, magnetizabilities, Verdet constants
	Polarizabilities
	Accuracy and convergence, RESPONSE key

	Hyperpolarizabilities
	Van der Waals dispersion coefficients
	DISPER program: Dispersion Coefficients

	Optical rotation dispersion (ORD)
	AORESPONSE: Lifetime effects, polarizabilities, ORD, magnetizabilities, Verdet constants
	AORESPONSE key
	Technical parameters and expert options
	Applications of AORESPONSE

	NMR
	NMR Chemical Shifts
	Important notes
	Input options

	Paramagnetic NMR Chemical Shifts
	NMR spin-spin coupling constants
	Introduction
	Input file for CPL: TAPE21
	Running CPL
	Practical Aspects
	References

	ESR/EPR
	ESR/EPR g-tensor and A-tensor
	ESR/EPR Q-tensor
	ESR/EPR Zero-field splitting (D-tensor)

	Nuclear Quadrupole Interaction (EFG)
	Mössbauer spectroscopy

	2.7 Transport properties
	Charge transfer integrals (transport properties)
	Charge transfer integrals with the TRANSFERINTEGRALS key
	Charge transfer integrals with FDE

	GREEN: Non-self-consistent Green's function calculation
	Introduction
	Wide-band-limit
	Input options
	Output

	2.8 Analysis
	Molecules built from fragments
	Bond energy analysis
	Bond energy details
	Total energy evaluation

	Symmetry
	Localized Molecular Orbitals
	Advanced charge density and bond order analysis
	Charges, Populations, Bond orders
	ETS-NOCV: Natural Orbitals for Chemical Valence
	Adfnbo, gennbo: NBO analysis
	NBO analysis of EFG, NMR chemical shifts, NMR spin-spin coupling

	QTAIM: Atoms in Molecules
	Printed Output
	Print / NoPrint
	Debug
	Eprint
	Eprint subkeys vs. Print switches
	Other Eprint subkeys
	Reduction of output

	2.9 Accuracy and Efficiency
	Precision and Self-Consistency
	Numerical Integration
	Becke grid for numerical integration
	Voronoi grid
	Atomic radial grid

	SCF
	Main options
	Energy-DIIS
	ADIIS
	LISTi
	Augmented Roothaan-Hall (ARH)
	Scalable SCF

	Density fitting
	Dependency (basis set, fit set)

	Basis Set Superposition Error (BSSE)
	Control of Program Flow
	Limited execution
	Direct SCF: I/O vs. recalculation of data
	Skipping
	Ignore checks
	Parallel Communication Timings

	Technical Settings
	GPU Acceleration
	Memory usage
	Vector length
	Tails and old gradients
	Linearscaling
	All Points
	Full Fock
	Electrostatic interactions from Fit density
	Save info

	2.10 Restarts
	Restart files
	The restart key
	Structure of the restart file

	2.11 Examples

	3 Recommendations, problems, Questions
	3.1 Recommendations
	Precision
	Electronic Configuration
	Spin-unrestricted versus spin-restricted, Spin states

	Geometry Optimization
	Bond angles of zero or 180 degrees
	Sloppy modes
	Step convergence

	What basis set should I use in ADF?
	Frequencies
	Relativistic methods

	3.2 Trouble Shooting
	License file corrupt
	Recover from Crash
	Memory Management
	SCF
	Geometry Optimization
	New Branch
	Old Branch
	Very short bonds

	Frequencies
	Imaginary Frequencies
	Geometry-displacement numbers in the logfile are not contiguous

	Input ignored
	SFO Populations
	Error Aborts
	Warnings

	3.3 Questions

	4 RESULTS
	4.1 Results on standard output
	Job Characteristics
	Nuclear and Electronic Configuration
	Structure and Reactivity

	Spectroscopic Properties
	Analysis
	Mulliken populations
	Hirshfeld charges, Voronoi deformation density
	Multipole derived charges
	Charge model 5
	Bond order analysis
	Dipole moment, Quadrupole moment, Electrostatic potential
	MO analysis
	Bond energy analysis

	4.2 Log file, TAPE21, TAPE13
	4.3 ADF-GUI
	4.4 Densf: Volume Maps
	Input
	Result: TAPE41

	4.5 Dos: Density of States
	Introduction
	Mulliken population analysis
	Density of states analyses based on Mulliken population analysis
	Generalizations of OPDOS, GPDOS, PDOS
	Input

	4.6 Other plotting programs
	Cntrs: Contour Plots

	5 APPENDICES
	5.1 Database
	Data File for Create
	Example: Calcium

	5.2 Elements of the Periodic Table
	5.3 Symmetry
	Schönfliess symbols and symmetry labels
	Molecular orientation requirements

	5.4 Binary result Files, KF utilities
	TAPE21
	Contents of TAPE21
	Using Data from TAPE21
	Representation of functions and frozen cores
	Evaluation of the charge density and molecular orbitals

	TAPE13
	KF browser
	KF command line utilities
	pkf
	cpkf
	dmpkf
	udmpkf

	5.5 Scripting with ADF
	ADFprep: generate (multiple) ADF jobs
	ADFreport: generate report

	6 References
	Keywords
	Index

