ParAMS Workshop 2024

Welcome

- Fedor Goumans, SCM / Chief Customer Officer, goumans@scm.com
- Paul Spiering, SCM / Software Developer, spiering@scm.com

Overview of the workshop

Use ParAMS to train ReaxFF and machine learning potentials

Morning (3 h)

- General introduction of AMS (30 min)
- The graphical user interface [Demo] (30 min)

15 minutes break

- Theory background (40 min)
- Introduction to ParAMS (40 min)
- Tour of the ParAMS GUI [Demo] (20 min)

Lunch break (45 min)

Afternoon (3 ĥ)

• Optimize ReaxFF with ParAMS [Hands-on] (1 h)

15 minutes break

- Optimize MLPotentials with ParAMS [Hands-on] (1 h)
- Active Learning [Hands-on] (1 h)
- Conclusions

Get ready to run AMS Download and install AMS2024

https://www.scm.com/support/downloads/

ParAMS Workshop 2024 | 3/122

Comments

- We will teach you how to use the software but don't expect to have a production Force Field by the end of the day
- \bullet We will leave time for questions at the end of each presentations
- If you think your question is important and should be answered during the presentation you should ask it
- During [Demo], we will demonstrate how to perform various tasks with the software
- During [Demo], you can also try to reproduce some tasks but we recommend you follow the demonstration in priority
- During [Hands-on], we will ask you to perform some tasks with the software
- During [Hands-on], we will demonstrate the solution

Overview of the workshop

Use ParAMS to train ReaxFF and machine learning potentials

Morning (3 h)

- General introduction of AMS (30 min)
- The graphical user interface [Demo] (30 min)

15 minutes break

- Theory background (40 min)
- Introduction to ParAMS (40 min)
- Tour of the ParAMS GUI [Demo] (20 min)

Lunch break (45 min)

Afternoon (3`h)

• Optimize ReaxFF with ParAMS [Hands-on] (1 h)

15 minutes break

- Optimize MLPotentials with ParAMS [Hands-on] (1 h)
- Active Learning [Hands-on] (1 h)
- Conclusions

Software for Chemistry & Materials History

Baerends@VU & Ziegler@Calgary

1970s

SCM: Spin-off company (VU Amsterdam)

2024

ADF = first DF	T code for chemists	199
Study transitio	n metal complexes	
for catalysis	Mitsui, Shell, Akzo,	Unilever

Training in Amsterdam to optimize catalysts

30 peoples (15 senior PhD's)

~ 15 developers

Implement new features, debug, optimize, docs & support

+ Many academic collaborators

The Amsterdam Modeling Suite

Multiple engines to bridge the scales

The Amsterdam Modeling Suite A unified driver to explore PES

Battery modeling

- Diffusion coefficients
- Diffusion path
- Activation energies

Polymer modeling

- Polymer structure \Leftrightarrow properties
- Side reactions
- Mechanical properties

Semiconductor modeling

- Understand the formation of defects
- Reactive interfaces
- Diffusion, oxidation

Catalysis

- Understand heterogeneous catalysis
- Binding sites energies
- Transition states energies and structures

Sugiyama, Kanami, et al. PCCP 21.26 (2019): 14366-14375

General introduction of AMS

Summary

- All this is great with accurate model potentials..
- Below some examples of model improved via training & active learning with ParAMS

Mixing I and Br in Inorganic Perovskites: Atomistic Insights from Reactive Molecular Dynamics Simulations

Mike Pols, Adri C. T. van Duin, Sofia Calero,* and Shuxia Tao*

Refined GFN1-xTB Parameters for Engineering Phase-Stable CsPbX₃ Perovskites

Sander Raaijmakers, Mike Pols, José Manuel Vicent-Luna,* and Shuxia Tao*

General introduction of AMS

Overview of the workshop

Use ParAMS to train ReaxFF and machine learning potentials

Morning (3 h)

- General introduction of AMS (30 min)
- The graphical user interface [Demo] (30 min)

15 minutes break

- Theory background (40 min)
- Introduction to ParAMS (40 min)
- Tour of the ParAMS GUI [Demo] (20 min)

Lunch break (45 min)

Afternoon (3`h)

• Optimize ReaxFF with ParAMS [Hands-on] (1 h)

15 minutes break

- Optimize MLPotentials with ParAMS [Hands-on] (1 h)
- Active Learning [Hands-on] (1 h)
- Conclusions

The GUI AMSjobs

• Manage jobs, set queues, number of processors, monitor job status, etc.

	Job name	Custom Queue field	Option (here #cpus)		
		AMBjobs 2024.101	+		
Engine —	· cm > sitera_teat7	Sequential -4.000501	• •	- Status	
LIBILC	silcon_AMiet2	Sequential -2809.481648		Status	
	Flaoroboric_acid_ADF	Sequential -1.192337	•	Completed	
	Warning: Restricted Open-Shell calculati Warning: partially accupied orbitals	ies, Groedhicked astup way be reeded		Warning	
	Mill_deformT_M3DNet-new	BW queue IQU.	24		
	MoS2_high7_MSGNet-new	Sequential -2945.02772	•	 (2) 	
	McS2_deform_M36Net-new	Sequential -2964.604306	•	 Killed 	
	Ms12_Tphase_M303el vew	Sequential -2954.683547	•	Error	
	MeS2_NE8_M3GNet-new	Sequential -185.271802	•		
	CustonAdEEngine_text	Sequential NVM.	•		
	Warning, Caught User Interrupt, closing I Warning, Optimization unsuccessful, Warning, Panameter sptimization failed	PerMS granduly.		SCM File Edit Joi	
	widedon_Ar_teeting	Sequential NV.	•	New Input 17 M	
	Mist2_Tphase_M30Net	Requestial -1.593027	•	New input of its	
	MoS2_Hphase_M36Aet	Sequential -1.551546	•	Input	Input file settings
	Witz,phase_tb	Sequential -1.568582	•	inpot	e i i i i
	Mist_shee_NE_QE	BW queue INVA	24	View	Orbitals, etc.
	MrS2_Tphese_OE	Sequential -185.490/08	•	Movie	Trajectory
	C > Mrk2_Hphase_Q6	Sequential -555.535424	•	I much	Enormylmiolr
	· MeS2_phase_NEE_MODSet	Seguential -1,594499	•	Cereis	Life gy levels
	Warning Clinibing Image has lower energy	gy than (one of) the ends		Logfile	
	Mr52_T_M955et	Sequential -1.555835	•	Output	
	Mik2_Tprime_M30MM	Sequential -1.694208	•	Constan	ID 10/ sta
	C+C+C2_M30Net	Sequential -29.900228	•	apecua	IR, OV, etc.
	Mr520x_06_relat	5ky queue -292.101378	32	Band Structure	Band structure/ Phonons
	wild://wilding/sauff	Sequential -11.281599	•	Dos	
	Combustion_CH4_02_Read??	Sequential -47.420001	•	KE Bernarter	WE file anotalize all data
	A sensitivity, non	DHV queue N/M.	24 .	in bronoti	KF file contains all data
	to b waterseed!	BTV queue N/A	24	COSHO-88	
	MoS20a_bulk_relex_M3GNet	Sequential -0.992481	•	Countra	kMC module
	with a section to a section of the s	Garvarrial Australia		Kinebcs	Kiric module
	1			ParAMS	
Search		Job/directory view		Packages Windows	To install additional packages
				Quit All	

The GUI AMSinput

• Build molecule, crystals, select engine, task, settings, etc.

Build a molecule

- Build 1-butanol, add a ring
- Pre-optimize the molecule
- Rotate molecule, move it, Zoom-in/out
- \bullet Orient it within xy, xz, yz plane
- Vary distance, angle, dihedral

Build a crystal

- Search for NaCl, convert to conventional cell, show the unit cell
- $\bullet~$ Clear the area, Edit $\rightarrow~$ Crystal $\rightarrow~$ Cubic $\rightarrow~$ NaCl
- $\bullet~\mbox{Clear,~Edit} \rightarrow \mbox{Crystal} \rightarrow \mbox{Hexagonal} \rightarrow \mbox{MoS2} \rightarrow \mbox{WTe2}$
- $\bullet~$ Clear, Edit $\rightarrow~$ Crystal $\rightarrow~$ Cubic $\rightarrow~$ Diamond, Si
- \bullet Generate slab, 111, 4 layers, generate supercell 4×4
- Explore periodic views, and more on crystals and slabs

Build a liquid mixture

- Edit \rightarrow Builder..
- Fill box with 20 water, check density
- Add 2 methanol, check density
- Generate molecule..

Geometry optimization

- Build your favorite molecule with C, H, O, N, Si
- \bullet Select Task \rightarrow Geometry Optimization
- Switch to ReaxFF engine, select the Glycine.ff Force Field
- Save and run the optimization
- \bullet SCM \rightarrow movie to appreciate the relaxation
- \bullet Select an angle, Graph \rightarrow Distance, Angle, Dihedral

Molecular dynamics

- Build a box of methane and oxygen $(15 \times 15 \times 15 \text{ Å}, 15 \text{ CH}_4, 30 \text{ O}_2)$
- \bullet Switch to Task \rightarrow Molecular Dynamics
- \bullet Switch to ReaxFF, select the CHO.ff Force Field
- $\bullet~\mbox{Click}$ > next to MD, set 50000 steps, initial temperature 3500 K
- $\bullet~{\rm Click}$ > next to Thermostat add NHC at 3500 K @ 100 fs
- Save and run, watch the movie, add graph, plot some molecules, etc.

PES scan

- Build a methane molecule, periodicity None
- $\bullet~\mbox{Switch}$ to Task $\rightarrow~\mbox{PES}$ Scan
- $\bullet~\mbox{Click}$ > next PES Scan, select C, H atoms, click + next CH distance
- Input 20 points, from 0.8 to 3.0 Å, check for all PES points
- $\bullet\,$ Enable Nuclear gradients from the Properties $\rightarrow\,$ Gradients
- Save and run, watch the movie

Equation of states

- Build NaCl, convert to conventional cell
- \bullet Switch to Task \rightarrow PES Scan
- Switch to MLPotential engine and select M3GNet model
- $\bullet~{\rm Click}$ > next PES Scan, and click $+~{\rm Volume}$ and scan from 0.9 to 1.1
- Save and run, watch the movie

15 min break

Overview of the workshop

Use ParAMS to train ReaxFF and machine learning potentials

Morning (3 h)

- General introduction of AMS (30 min)
- The graphical user interface [Demo] (30 min)

15 minutes break

- Theory background (40 min)
- Introduction to ParAMS (40 min)
- Tour of the ParAMS GUI [Demo] (20 min)

Lunch break (45 min)

Afternoon (3`h)

• Optimize ReaxFF with ParAMS [Hands-on] (1 h)

15 minutes break

- Optimize MLPotentials with ParAMS [Hands-on] (1 h)
- Active Learning [Hands-on] (1 h)
- Conclusions

Hierarchy of interatomic potentials

Why do we need complex potentials?

• Summary of interatomic potentials.

plexity	Empirical potential type	Usage	Feature	Names
ers, com	Pair-potential	Noble gaz	$E\proptoZ$	LJ, Morse, Buckingham
	Pair-functional	Metals	$E \propto \sqrt{Z}$	EAM
ete	Many-body	Opened structures	Angles,	OPLS,
E	potentials	Organic molecules	dihedral, etc.	DREIDING
arg	Reactive	Chemistry, charge	Many-body	Tersoff, ReaxFF,
d↓	potentials	transfer/polarization	+BO, QEq	REBO, COMB
-				

and Machine Learning Potentials..

ReaxFF: functional form

Potential energy, bond order, bond energy

• Total potential energy: ReaxFF parameters documentation

$$E_{pot} = \underbrace{E_{bond} + E_{ang} + E_{tor} + E_{over}}_{f[BO]} + E_{vdW} + E_{coul} + \cdots$$

• Bond order & bond energy

ReaxFF: functional form

Valence angle, over coordination

• Valence angle energy

$$\begin{split} E_{ang} &\approx \left[1 - \exp\left(-\rho_{val3}BO_{ij}^{p_val4}\right)\right] \left[1 - \exp\left(-\rho_{val3}BO_{jk}^{p_val4}\right)\right] \\ &\times \left[\rho_{val1} - \rho_{val1}\exp\left(-\rho_{val2}\left(\Theta_{ijk} - \Theta_0\right)^2\right)\right] \end{split}$$

• Over/under coordination penalties

etc.

Theory background

ReaxFF: functional form

Non-bonded interactions

- $\bullet \ vdW \sim Morse$
- Coulomb
 - Shielded Coulomb calculated between all pairs of atoms
 - Charges are calculated at every step with the charge equilibration (QEq, ACKS2)

- General parameters (apply to every types of atom): GEN (in ParAMS)
- Atomic parameters (for each type of atoms): ATM
- Bond parameters (for each pairs/bonds defined): BND
- Off-diagonal parameters (for each pairs/non-bonded defined): OFD
- Angle parameters (for each triplets/angles defined): ANG
- Torsion parameters (for each quadruplets/torsion defined): TOR
- Hydrogen bond parameters (for each pairs/hydrogen bonds defined): HBD

ReaxFF: training set

Recommendations to create a dataset to optimize ReaxFF

- What do we need to include to the training set?
 - Equilibrium, out-of-equilibrium structures
 - PES Scan of dissociation, angle bend, torsion
 - Transition states, equation of states, defects, etc.

Theory of Machine Learning Potentials Goal of ML Potentials

- goal is to find $f(\text{atom positions}, \text{atom types}, \text{PBC}, \text{other}) = E_{\text{Pot}}$
- derivatives automatic with ML frameworks $-\frac{\partial E_{\text{Pot}}}{\partial x} = -\frac{\partial f(x,...)}{\partial x} = F$
- $\bullet\,$ Swap with an engine in AMS (e.g. ReaxFF or DFTB) and do MD/GO
- Fit f based on reference data

Theory of Machine Learning Potentials Embeddings

- Atom number to vector description
- Periodic table of elements is human embedding
- Improved scaling w.r.t. number of atom types

Theory of Machine Learning Potentials Locality

• Predict properties for each atom based on environment

- Sum or average atomic properties to obtain global properties
- Scales well with number of atoms and computational resources
- Physical interpretation
- Short range interactions dominate

Theory of Machine Learning Potentials

Equivariant Graph

- Molecule as a graph
- Rotate graph -> rotate prediction
- Permutation of atoms

Theory background Machine Learning Potential Force

Theory of Machine Learning Potentials Fitting Procedure

- The goal is to fit a potential energy surface (PES) using machine learning models.
- This procedure involves training a model to predict the energy of a system based on atomic positions and types.

Mathematical Formulation

The energy *E* of a system can be approximated by a function *f* parameterized by θ , learned from training data:

 $E \approx f(\mathbf{r}; \theta)$

where ${\boldsymbol r}$ represents the positions of atoms.

Theory of Machine Learning Potentials Fitting Procedure

Objective Function

The fitting involves minimizing the loss function L, typically the mean squared error between predicted and true energies:

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left[f(\mathbf{r}_i; \theta) - E_i \right]^2$$

where E_i and \mathbf{r}_i are the true energies and atomic positions for each training example.

Optimization by Gradient Descent

Update rules based on the gradient of the loss function:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta)$$

where η is the learning rate.

Theory of Machine Learning Potentials Transfer Learning

"Transfer learning is a ML method where knowledge from one model is transferred to enhance another model"

- Start with a pre-trained model
- Fine-tune by fitting few parameters
- Saves time and computational resources
- Often achieves superior results
- Particularly effective when new data is scarce

Theory of Machine Learning Potentials Committee Uncertainty

• Fit multiple models

 $f_i(x)$

• Prediction is the average

$$\mu(x) = \frac{1}{N} \sum_{i}^{N} f_i(x)$$

• Uncertainty is standard deviation

$$\sigma(\mathbf{x}) = \sqrt{\frac{1}{N-1} \sum_{i}^{N} (f_i(\mathbf{x}) - \mu(\mathbf{x}))^2}$$

Theory of Machine Learning Potentials M3GNet

Article | Published: 28 November 2022

A universal graph deep learning interatomic potential for the periodic table

<u>Chi Chen</u> ⊠ & <u>Shyue Ping Ong</u> ⊠

Nature Computational Science 2, 718–728 (2022) | Cite this article

7624 Accesses | 114 Citations | 195 Altmetric | Metrics

- Universal pre-trained parameters available
- 93 elements
- Transfer learning

Theory of Machine Learning Potentials NequIP

Article Open access Published: 04 May 2022

E(3)-equivariant graph neural networks for dataefficient and accurate interatomic potentials

<u>Simon Batzner</u> ^[2], <u>Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth,</u> <u>Nicola Molinari, Tess E. Smidt & Boris Kozinsky</u> ^[2]

Nature Communications 13, Article number: 2453 (2022) | Cite this article

63k Accesses | 356 Citations | 50 Altmetric | Metrics

- State-of-the-art accuracy
- Relatively slow

Overview of the workshop

Use ParAMS to train ReaxFF and machine learning potentials

Morning (3 h)

- General introduction of AMS (30 min)
- The graphical user interface [Demo] (30 min)

15 minutes break

- Theory background (40 min)
- Introduction to ParAMS (40 min)
- Tour of the ParAMS GUI [Demo] (20 min)

Lunch break (45 min) Afternoon (3 h)

• Optimize ReaxFF with ParAMS [Hands-on] (1 h)

15 minutes break

- Optimize MLPotentials with ParAMS [Hands-on] (1 h)
- Active Learning [Hands-on] (1 h)
- Conclusions

ParAMS

Features

Selected features:

- Import reference data from AMS, VASP, Quantum ESPRESSO, Gaussian, or experiment
- Use a validation set to prevent overfitting
- Submit jobs to remote machines using the GUI
- Results updated on-the-fly in the GUI with many diagrams
- Many properties: reaction energies, forces, bond lengths, angles, cell parameters, stress tensors, charges and user defined.
- Use single points, geometry optimizations, or PES scans during the parametrization
- Set custom weights
- Choose which parameters to optimize, and set allowed ranges

Preparametrized models in AMS

• AMS comes with many published ReaxFF force field and DFTB parameters.

Select Any File	CHNa.ff	CHONSFPtCINi.ff	CHONSSiPtZrNiCuCoHeNeArKrXe.ff	HE2.ff	SiC.ff
AD FF	CHO-2016.ff	CHONSI.ff	CHONSZr.ff	HONSIF.ff	SiOAILi.ff
AB.11	CHO-radiation.ff	CHONSMgPNaCuCl.ff	CHOSFCIN.ff	HOSiAlLi.ff	SiOH.ff
Agrein Agreo ff	CHO.ff	CHONSMgPNaCuCl_v2.ff	CHOSiNa.ff	HOSMg.ff	SiOHv2.ff
Ayzho.n	CHOAISi.ff	CHONSMgPNaFBLi-e.ff	CHOSMoNiLiBFPN-2.ff	HOTiPd.ff	SIONH.ff
AI-H2U.IT	CHOCsKNaClIFLi.ff	CHONSMgPNaTiCIF.ff	CHOSMoNiLiBFPN.ff	HSMo.ff	TICIOH.ff
AICHU.II	CHOFe.ff	CHONSMgPNaTiCIFAu.ff	Co.ff	InCH-2020.ff	TiO2bio.ff
AUCSOH.fr	CHOFeAlNiCuS.ff	CHONSMgPNaTiClFKLi.ff	CsPbI.ff	LiS.ff	TIOCHNCI.ff
AUSCH_2011.ff	CHOFeAlNiCuSCr.ff	CHONSSI.ff	CuBTC.ff	LiSi.ff	undocumented/NiCH.f
AUSCH_2013.II	CHOFeAlNiCuSCr_v2.ff	CHONSSI.ff	CuCHO.ff	Mue2016.ff	VOCH.ff
BayZrCHO.ff	CHOFeAlNiCuSCr_v3.ff	CHONSSiCaCsKSrNaMgAlCu.ff	CuCl-H2O.ff	NaH.ff	Water2017.ff
C-CINO #	CHOFeAlNiCuSCrSiGe.ff	CHONSSiGe.ff	CuSCH.ff	NiCH.ff	WSHAIO.ff
CasiAlU.II	CHOGe.ff	CHONSSiGe_2016.ff	CuZr.ff	NiCr.ff	ZnOH.ff
CaSIOH.ff	CHOLi.ff	CHONSSINaAI.ff	dispersion/CHONSSi-lg.ff	OPt.ff	ZrYOHVac.ff
CBN.IT	CHOLi_2.ff	CHONSSiNaFZr.ff	FeOCHCI.ff	PdH.ff	ZrYONiH.ff
CeO.II	CHOLIAITIP.ff	CHONSSiNaP-tribology.ff	GaCH-2020.ff	PDMSDecomp.ff	
CH_aromatics.fr	CHON-2019.ff	CHONSSINaP.ff	Glycine.ff	PdO.ff	
CHARMENEKR.IT	CHON2017_weak.ff	CHONSSiPtNiCuCoZrYBa.ff	HCONSB.ff	PtCH.ff	
CHre.II	CHON2017_weak_bb.ff	CHONSSiPtZrNiCuCo.ff	HE.ff	SiAlMgO.ff	

Introduction to ParAMS Optimization principle and workflow

ReaxFF and DFTB Problems

- They are not always accurate enough for "unseen" structures or molecules
- Example from an AMS industry customer: lithium bis(fluorosulfonyl)imide in organic solvent CDCC
 - Published ReaxFF predicts that a fluorine atom dissociates from the anion

Introduction to ParAMS Optimization principle and workflow

Published ReaxFF predictions

Introduction to ParAMS Optimization principle and workflow

ParAMS Workshop 2024 | 46/122

AMS: Easily verify/disprove ReaxFF prediction with DFT

Introduction to ParAMS Optimization principle and workflow

ParAMS Workshop 2024 | 47/122

AMS and ParAMS make it easy to fix the issue

• For this example:

- Set up new DFT calculations: 1 hour
- Run DFT calculations:
- Set up ParAMS 20:
 - Reoptimize ReaxFF parameters:
 - Validate the new ReaxFF:

- 1 hour
 - 20 minutes
 - 10 seconds
 - 1 hour
- 0 lines of code! All steps supported by the graphical user interface.
- Start from one of the many tutorials and modify as needed.
- Note: Most parametrization projects will take longer

Introduction to ParAMS Optimization principle and workflow

Reoptimized ReaxFF predictions

Introduction to ParAMS Optimization principle and workflow

ParAMS Workshop 2024 | 49/122

- Validate an initial ReaxFF parameters (if it exists)
- Set up new DFT calculations
- Run DFT calculations
- Set up ParAMS
- Run parameter optimization
- Validate new ReaxFF parameters -

iterative improvement

ParAMS Conclusion

Best practices

- Which parameters to optimize?
 - Choose as **few** as possible
 - Fist try parameters in the "standard" category
 - If a parameter value is close to min/max, change the range and continue
- Which optimization algorithm?
 - CMA-ES recommended for most optimization problems
 - Details about this algorithm in previous seminar

Introduction to ParAMS Optimization principle and workflow

ParAMS Conclusion

Sensitivity

- Too few parameters might make it difficult to find a good fit.
- **Too many** parameters will make the optimization harder, slower, and increase the risk of overfitting.
- Sensitivity is calculated using the Hilbert-Schmidt Independence Criteria (HSIC)

Introduction to ParAMS Optimization principle and workflow

- Obtain estimate of change of loss with change of parameters
- Larger influence on the loss means a parameter is more important
- Sample different parameters and obtain loss function
- Obtain HSIC using (gaussian) kernel
- Easy to interpret: sum is 1 and larger means more important
- Not needed for ML since partial derivatives are similar

- Dataset: Reference or inference values
- JobCollection: Input settings required for reference/inference
 - Training Set
 - Validation Set
 - Test Set
- EngineCollection: Engine settings (e.g. DFT functional)

Types of Reference Values

- Anything that can be extracted from a job can be a reference value
 - Forces, atomic charges
 - Optimized bond lengths or angles
 - PES scans: Energy vs bond length, angle or cell volume
- Values from multiple jobs:
 - Reaction: Adsorption energy, surface energy, formation energy, ...

Example reference values: Forces and Charges

ParAMS 2022.101

SCM File Edit Jobs Parameters Training Set View Help

	All Jobs Training Set Validation Set Engines	
	Type Oetail JobID W Value / Engines Engine Engine lennardjones EndEngine ParAMS Job Single Point + gradings choromethane-forces adf;xr;zinga;PBE; Charges chiod_methane-forces chioromethane-forces 1.0 [-0.8335, 0.3345] (5; au	•
c. E.	Engine Engine ad xx gga vis End Endergine ad();xx:jgga/vis; Forces chloromethane-forces 0.0 [-0.1095, 0.0735] (5 Ha	tree/Bc
Job chloromethane-forces	Q. Errors Only 5 items	
Parameters Settings Info Graphs Results		
Weight: +1.00000000		
Value: -0.016768241 +0.018544396 -(0.048546) +0.043055409 -0.109488031 -(0.022345467 +0.073456592 +(0.022345467 +0.073456592 +(0.002945089 +0.011289727 +(0.0019895612 +0.006197316 -(0.002046089 +0.006197316 -(0.002046089 +0.006197316 -(0.002046089 +0.006197316 -(0.002046089 +0.006197316 -(0.002046089 +0.006197316 -(0.002046089 +0.006197316 -(0.002046089 +0.006197316 -(0.002046089 +0.006197316 -(0.002046089 +0.002046089 +0.002046089 +(0.002046089 +0.002046089 +0.002046089 +(0.002046089 +(0.002046089 +0.002046089 +(0.002046089 +0.002046089 +(0.002046089 +0.002046089 +(0.0020889 +(0.0020889 +(0.0020889 +(0.0020889 +(0.0020889 +(0.0020889 +(0.0020889 +(0.0020889 +(0.00208889	0.01888595 .015582138 .02582484 .017385490 .00737247	

Example reference values: Optimized bond lengths and angles

• For bond lengths and angles, add geometry optimization jobs!

туре 🔻	Detail	 JobID 	w 🔻	Value / Engines	
Engine	Engine lennardjones EndEngine			ParAMS	
Job	Geometry Optimization + gradients +	chloromethane-geometry		adf;;xc;;gga;PBE;	
Engine	Engine adf xc gga PBE End EndEngine			adf;;xc;;gga;PBE;	
Geo: distanc	chloromethane-geometryoptimization, 0, 1 (C-Cl)	chloromethane-geometry	1.0	+1.91567508	Å
Geo: distanc	chloromethane-geometryoptimization, 0, 2 (C-H)	chloromethane-geometry	1.0	+1.09398928	Å
Geo: angle	chloromethane-geometryoptimization, 1, 0, 2 (CI-C-H)	chloromethane-geometry	1.0	+106.60000000	۰
Geo: angle	chloromethane-geometryoptimization, 2, 0, 3 (H-C-H)	chloromethane-geometry	1.0	+112.40000000	•

Example reference values: Bond scan, angle scan, lattice scan

• For PES scans, add PES Scan jobs!

	All Jobs Training Set Validation Set Engines		
	Type v Detail	JobID V Value / Engines	
6	Engine Engine lennardjones EndEngine	ParAMS	
~	Job PES Scan + gradients +	chloromethane-bondscar adf;;xc;;gga;PBE;	
	PES chloromethane-bondscan, relative_to=3	chloromethane-bondscar 1.0 [0.0000, 9.6074] (7) kcal	/mol
	Engine Engine adf xc gga PBE End EndEngine	adf;;xc;;gga;PBE;	
Job chloromethane-bondscan	Q	Errors Only 4 items	
Parameters Settings Info Graphs Results			
Weight: +1.000000000			
Value: +9.607422193 +4.0755880 +1.763552064 +3.9602648	043 +1.082804509 +0.000000000 +0.348957323		

Introduction to ParAMS Data Model

ParAMS Workshop 2024 | 58/122

Example reference values: Reaction energy

- Propane Combustion: $C_3H_8(g) + \frac{9}{2}O_2(g) \rightarrow 3CO_2(g) + 3H_2O(g)$
- Automatically balanced stoichiometric coefficients!

	All Jobs	Training Set Validation Set Engines				
	Туре 🔻	Detail 🔻	JobID	W *	Value / Engines	
6	Engine	Engine lennardjones EndEngine			ParAMS	
<i>y</i>	Job	Geometry Optimization +	water		adf;;xc;;gga;PBE;	
	Engine	Engine adf xc gga PBE End EndEngine			adf;;xc;;gga;PBE;	
	Job	Geometry Optimization +	propene		adf;;xc;;gga;PBE;	
	Job	Geometry Optimization +	co2		adf;;xc;;gga;PBE;	
	Job	Geometry Optimization +	02		adf;;spinpolarization;2;unn	
	Engine	Engine adf spinpolarization 2 unrestricted yes xc gga PBE			adf;;spinpolarization;2;unn	
	Energy	+3.0*co2+3.0*water-1.0*propene-4.5*o2	propene	1.0	-358.85844881	kcal/mol
$\sum_{i=1}^{n}$		I				

Differences for Machine Learning Models

- Machine learning requires partial derivatives
- Can only include direct predictions
 - Single Point jobs
 - Energies
 - Forces
 - Stresses

Automatic Training Workflow

Introduction to ParAMS Active Learning

Overview

The workflow:

- Trains an initial ML Potential
- → **Runs** the MD simulation with ML
 - Pauses the MD simulation and runs reference calculations
 - Retrains the ML Potential to the new reference data
 - **Rewinds** the MD simulation to the last point where it was known to be accurate
- • Continue the MD simulation

Introduction to ParAMS Active Learning

Input

- **Input System.** This is the initial system for the MD simulation. The input is exactly the same as for any other AMS simulation.
- Molecular dynamics settings. It can be equilibrium or non-equilibrium MD. The settings/input are exactly the same as for any other AMS simulation.
- **Reference engine settings.** This can be any engine, primarily DFT engines: ADF, BAND, or Quantum ESPRESSO. The settings/input are the same as for any other AMS simulation. This determines the level of theory to which the ML potential is trained.
- **ParAMS ML training settings.** You can train any ML potential that is supported by ParAMS, for example, M3GNet. The settings/input are exactly the same as for running standalone ParAMS with Task MachineLearning.
- Active learning settings. These settings determine, for example, how frequently to launch new reference calculation, and how to judge if the ML potential is accurate enough.

Rewind Molecular Dynamics

Introduction to ParAMS Active Learning

ParAMS Workshop 2024 | 64/122

Uncertainty

Introduction to ParAMS Active Learning

ParAMS Workshop 2024 | 65/122

Advantages vs Disadvantages

When to run reference calculation?

	At set intervals	From uncertainty
Pros (+)	• General, does not require uncertainty	 Ref calcs likely near interesting events
Cons (-)	 Ref calcs not necessarily run for interesting events 	 Requires committee (expensive) Uncertainty not always measure of accuracy!

Active learning in AMS lets you combine both approaches!

Introduction to ParAMS Active Learning

Overview of the workshop

Use ParAMS to train ReaxFF and machine learning potentials

Morning (3 h)

- General introduction of AMS (30 min)
- The graphical user interface [Demo] (30 min)

15 minutes break

- Theory background (40 min)
- Introduction to ParAMS (40 min)
- Tour of the ParAMS GUI [Demo] (20 min)

Lunch break (45 min) Afternoon (3 h)

• Optimize ReaxFF with ParAMS [Hands-on] (1 h)

15 minutes break

- Optimize MLPotentials with ParAMS [Hands-on] (1 h)
- Active Learning [Hands-on] (1 h)
- Conclusions

Tour of the ParAMS GUI

- The Lennard-Jones potential is a simple model that describes the interaction between a pair of neutral atoms or molecules.
- It is particularly noted for its ability to capture the balance between attractive and repulsive forces experienced by particles:

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$
(1)

where:

- $\bullet \ \epsilon$ is the depth of the potential well,
- $\bullet~\sigma$ is the finite distance at which the inter-particle potential is zero,
- *r* is the distance between particles.
- This potential is used extensively in molecular dynamics simulations of gases, liquids, and solids.

- **GUI:** Recommended main interface allowing you to easily setup tasks, visualize results, and submit local or remote jobs.
- Scripting: Python/PLAMS interface to ParAMS allowing you to integrate it into data workflows and easily setup multiple configurations. Use the \$AMSBIN/amspython program to execute python scripts.
- **Command-line:** Console interface for systems without GUI support (e.g. submitting jobs on a cluster). This is not discussed today.

Tour of the ParAMS GUI [Demo] GUI interface: LJ example

Tour of the ParAMS GUI Required Files

- copy \$AMSHOME/scripting/scm/params/examples/LJ_Ar
- For this example the reference data has already been computed
- Open with \$AMSBIN/params

ParAMS Input

Parameter Interface

- Parameters tab
- value and allowed ranges
- active: fit or not
- val%: how close to min/max

ParAMS Input Job Collection

- periodic view
- jobs tab
- Job-ID
- Detail
- Ref Engine
- ParAMS Engine

Tour of the ParAMS GUI [Demo] ParAMS Input
ParAMS Input

Training set

- Training tab
- Energy
- Forces
- Detail (clickable)
 - expression
 - sigma
 - weight
 - unit
 - balance
- value
- predicted
- Loss%: contribution to the loss function

ParAMS Input ParAMS Settings

- Main panel
- Optimizers
- Time limit
- Max optimizers converged

Run ParAMS

- Save as
- Run

Run

• AMSJobs

Tour of the ParAMS GUI [Demo] Run ParAMS

ParAMS Workshop 2024 | 75/122

Best Parameter

• parameters tab

Tour of the ParAMS GUI [Demo] ParAMS Results

ParAMS Workshop 2024 | 76/122

Correlation Plots

- Graphs Panel
- Loss function
- RMSE
- Scatterplot select points to view outliers

Tour of the ParAMS GUI [Demo] ParAMS Results

Error Plots

- Stats Forces
- MAE/RMSE

Tour of the ParAMS GUI [Demo] ParAMS Results

ParAMS Workshop 2024 | 78/122

Parameter Plots

- active parameters
- eps
- rmin

Tour of the ParAMS GUI [Demo] ParAMS Results

ParAMS Workshop 2024 | 79/122

Editing and saving plots

- double click
- axis
- general
- File: save graph as

Tour of the ParAMS GUI [Demo] ParAMS Results

ParAMS Workshop 2024 | 80/122

Predicted values

- Training set panel
- Prediction column
- info panel to see all
- Results Panel
- loss contributions

Tour of the ParAMS GUI [Demo] ParAMS Results

ParAMS Workshop 2024 | 81/122

Summary statistics

- Results panel
- Training best: stats
- MAE and RMSE
- N
- loss contributions
- find "bad" parts

Tour of the ParAMS GUI [Demo] ParAMS Results

ParAMS Workshop 2024 | 82/122

Output structure

Tour of the ParAMS GUI [Demo] ParAMS Results

Lunch

Hands-on in the afternoon

Lunch Hands-on in the afternoon

ParAMS Workshop 2024 | 84/122

Overview of the workshop

Use ParAMS to train ReaxFF and machine learning potentials

Morning (3 h)

- General introduction of AMS (30 min)
- The graphical user interface [Demo] (30 min)

15 minutes break

- Theory background (40 min)
- Introduction to ParAMS (40 min)
- Tour of the ParAMS GUI [Demo] (20 min)

Lunch break (45 min) Afternoon (3 h)

• Optimize ReaxFF with ParAMS [Hands-on] (1 h)

15 minutes break

- Optimize MLPotentials with ParAMS [Hands-on] (1 h)
- Active Learning [Hands-on] (1 h)
- Conclusions

Train ReaxFF with ParAMS

Simple water molecule example

- In this example we will fit a ReaxFF force field
- The goal is to reproduce DFT bond dissociation and angle curves of water in the gas phase
- You will learn how to:
 - 1. Generate the reference data
 - 2. Import the data into ParAMS
 - 3. Evaluate the sensitivity of the parameters [optional]
 - 4. Optimize the parameters
 - 5. Analyze the results

- Create a water molecule
- Use ADF engine and keep the default settings
- Perform a PES Scan to dissociate H from O from 0.85 to 2.0 Å in 11 steps
- Perform a PES Scan to bend the H-O-H angle from 70 to 150 degrees in 11 steps

Import data into ParAMS Training set

• Import the PES Scans into ParAMS as Single Job PES Scans

Sensitivity analysis [optional] Which parameters to optimize?

- Switch to ReaxFF parameters (Parameters \rightarrow ReaxFF)
- Load the Water2017.ff Force Field (Parameters \rightarrow Load ReaxFF ForceField..)
- Select all bond and angle parameters corresponding to H.O and H.O.H, respectively
- Switch to task Sensitivity, check Run sampling, and set repeat the calculation to 5 with 500 samples per repeat
- Save the job and run the sensitivity analysis
- From this morning's lesson, try to guess which parameters will be the most sensitive

- Appreciate the sensitivity of the parameters in the Results tab
- You should be able to understand the most sensitive parameters from the theory background lesson of this morning
- From the Parameters tab, unselect the non-active parameters to display only the active parameters
- From the Sensitivity tab, sort the parameters by decreasing order
- We will only optimize parameters with large sensitivity

Parameters optimization

Let's optimize ReaxFF!

- Select the 4 parameters to optimize: H.O:D_e^sigma, H.O:p_bo1, H.O:p_bo2, H.O.H:Theta_0,0
- Setup an optimization with CMAES optimizer
- Set the max loss function calls to 100
- In Options \rightarrow Optimizer set (σ_o , Popsize, Min sigma) to (0.1, 10, 0.0001)
- Save the job and run the parameters optimization

- During the optimization you can appreciate the loss function being minimized
- Compare the dissociation and angle bend PES with the initial prediction

Optional (1)

Reaction energy

- \bullet Optimize the geometry of H_2O, O_2 (triplet) and H_2 molecules with ADF
- $\bullet~\mbox{Open}$ a new ParAMS window, File \rightarrow New to clear it up
- Import the 3 molecules as Single Job, Geometry Optimization, Energy

We can now define the reaction energy corresponding to $H_2O \rightarrow H_2 + \frac{1}{2}O_2$

- $\bullet\,$ Select the H_2O entry and duplicate it with Training Set \rightarrow Add \rightarrow Energy
- \bullet Double click on the new H_2O entry
- Type energy("water")-energy("hydrogen")-energy("oxygen") in the Energy box replacing water, hydrogen, oxygen with the name of your respective jobs (written in the Details column)
- Click the Balance button to balance the equation automatically
- Delete the value in the Values box and click OK

Run a Single Point task to evaluate the reaction energy with ReaxFF

- Load the Water2017.ff Force Field
- Select Single Point task and run with the defaults settings

- If you were to create a ReaxFF for water, what other interactions are important?
- What can you add to the training set to describe these additional interactions?
- Build the additional systems, perform the DFT calculations, run the sensitivity and the optimization again

Overview of the workshop

Use ParAMS to train ReaxFF and machine learning potentials

Morning (3 h)

- General introduction of AMS (30 min)
- The graphical user interface [Demo] (30 min)

15 minutes break

- Theory background (40 min)
- Introduction to ParAMS (40 min)
- Tour of the ParAMS GUI [Demo] (20 min)

Lunch break (45 min) Afternoon (3 h)

Afternoon (3 ĥ)

• Optimize ReaxFF with ParAMS [Hands-on] (1 h)

15 minutes break

- Optimize MLPotentials with ParAMS [Hands-on] (1 h)
- Active Learning [Hands-on] (1 h)
- Conclusions

Train M3GNet with ParAMS

Simple liquid Ar example

- In this example we will fit a M3GNet force field
- The goal is to optimize M3GNet to describe liquid Ar
- You will learn how to:
 - 1. Generate some reference data
 - 2. Import the data into ParAMS
 - 3. Optimize M3GNet and committees
 - 4. Analyze the results

Reference data

Load the data

- \bullet Start ParAMS, clear it with File \rightarrow New, if needed
- Load the dataset for Argon using one of this procedure:
 - File \rightarrow Open and navigate to \$AMSHOME/scripting/scm/params/examples/M3GNet/params.in
 - \bullet or download the file from <u>here</u> and import it with File \to Open and navigate to the <code>params.in</code> file you just downloaded
 - or from a Terminal type params -gui
 \$AMSHOME/scripting/scm/params/examples/M3GNet/params.in
- This loads a few liquid argon structures and sets up some ML training settings
- For training machine learning potentials, you can only train to single-point energy and forces
- Verify from the job collection that the imported dataset will work with MLPotentials training

Reference data Training and validation set

- Count the number of configurations included in the training and validation sets
- Verify that the energy and forces for a given job belong to the same data set

Reference data

PES scan

We will add the PES corresponding to 2 Ar atoms as a function of separation

- Start AMSinput
- Switch to Force Field engine, keep the defaults settings
- Create 2 Ar atoms separated by 2 Å
- If there is a bond, delete it (select the bond and press delete)
- Switch to PES Scan
- Setup a PES Scan to scan the distance between the 2 Ar from 2 to 4 Å in 11 steps
- Check the box to save the results for all PES points
- \bullet Enable the calculation of the nuclear gradients in Properties \rightarrow Gradients, Stress tensor
- Save and run the PES Scan

Reference data Training and validation set

- Import the PES Scan to ParAMS as Single Job, PES Scan.
- Do you get one (or two) warning messages from ParAMS? if yes why?

Training

Train M3GNet from scratch

- Go over the settings for the Machine Learning task and be sure you understand them
- Save and run the optimization
- During training you can appreciate the minimization of the loss functions
- Is the training ended before the 150 max epochs set? If yes why?

Note that because ML training can only take single points, the PES Scan added before was not used during training. However, at the end of the training, the PES Scan was evaluated with the final parameters.

- Look in the dropdown menu of the graphs and find the PES Scan prediction and reference calculations
- Does it look accurate?

Training Train M3GNet from scratch

- from the previous optimization, import the PES Scan to ParAMS as PES Scan SinglePoints and set the Properties to energy and forces
- $\bullet\,$ Change units to eV and eV/Å to be consistent with the dataset already loaded
- Is the imported data added to the training set or validation set?
- Save and run the ParAMS optimization
- Once finished, check the PES Scan. Is it accurate now?

Optional 1 Run MD with the optimized model

- From ParAMS you can easily export the optimized model into AMSinput
- $\bullet~\mbox{File} \rightarrow \mbox{Open Optimized Engine in AMSinput} \rightarrow \mbox{Best validation}$
- Propose a way to build a box filled with Ar atoms
- Setup an MD simulation with the optimized model for 10000 steps starting with velocities at 300 K
- Run the MD simulation

Optional 2 Train a committee of M3GNet

- Re-optimize the model, this time with a committee size equal to 4
- Appreciate the loss for each committee
- Export the model to AMSinput
- Run an MD simulation with the optimized model
- Appreciate the uncertainties during the MD simulation

Overview of the workshop

Use ParAMS to train ReaxFF and machine learning potentials

Morning (3 h)

- General introduction of AMS (30 min)
- The graphical user interface [Demo] (30 min)

15 minutes break

- Theory background (40 min)
- Introduction to ParAMS (40 min)
- Tour of the ParAMS GUI [Demo] (20 min)

Lunch break (45 min)

Afternoon (3 ĥ)

• Optimize ReaxFF with ParAMS [Hands-on] (1 h)

15 minutes break

- Optimize MLPotentials with ParAMS [Hands-on] (1 h)
- Active Learning [Hands-on] (1 h)
- Conclusions

Simple Active Learning

Input

- **Input System.** This is the initial system for the MD simulation. The input is exactly the same as for any other AMS simulation.
- Molecular dynamics settings. It can be equilibrium or non-equilibrium MD. The settings/input are exactly the same as for any other AMS simulation.
- **Reference engine settings.** This can be any engine, primarily DFT engines: ADF, BAND, or Quantum ESPRESSO. The settings/input are the same as for any other AMS simulation. This determines the level of theory to which the ML potential is trained.
- **ParAMS ML training settings.** You can train any ML potential that is supported by ParAMS, for example, M3GNet. The settings/input are exactly the same as for running standalone ParAMS with Task MachineLearning.
- Active learning settings. These settings determine, for example, how frequently to launch new reference calculation, and how to judge if the ML potential is accurate enough.

Active Learning [Hands-on] Train M3GNet

Active Learning

- Open AMSInput
- Switch ADF to MD Active Learning
- \bullet Select File \rightarrow Import Coordinates... \rightarrow From SMILES, type OCC=O and click OK
- You can also use another SMILES string for a (small) molecule of interest
- Preoptimize molecule
- Make any modifications you wish

Active Learning [Hands-on] Train M3GNet

- Select a reference engine from the drop down menu.
- For workshop select a fast engine like ForceField or MLPotential
- Production work typically uses ADF/Band/QuantumESPRESSO etc
- Click the new engine tab
- Return to the main panel

Active Learning [Hands-on] Train M3GNet
Active Learning Molecular Dynamics settings

- Go to the MD panel by clicking next to the Task
- Setup 100000 steps with a time step of 0.5fs
- \bullet Setup an NHC thermostat at 300K with a damping constant of 200fs
- Return to the main panel

Active Learning Machine Learning Settings

- Verify backend is M3GNet (default)
- Go to the Machine Learning panel
- Set up transfer learning
- What does committee size do?
- What does the learning rate do?
- Feel free to pick different settings to compare

Active Learning Settings

- Initial Reference Data
 - Obtain initial reference data using M3GNet Universal Potential
- Step sequence
 - $\bullet\,$ Geometric increasing steps, 5 steps, 10 MD frames for first step
- Success criteria
 - At what accuracy is a step considered successful?
- Reasonable simulation criteria
 - $\bullet~\mbox{Go}$ to the Model \rightarrow Reasonable Simulation Criteria panel
 - Why are the maximum temperature and minimum distance important?
 - How to "unlock" energy and gradients uncertainty?
 - Why is uncertainty helpful?
 - What is the downside?

Go to the Details \rightarrow Active Learning panel

- What to do at the end: retrain and/or rerun simulation. Why?
- What data to save. Why save intermediate steps?
- Determine how many attempts to make per step.
- Determine how many reference calculations to perform per attempt.
- Parallel settings

Run the active learning

- $\bullet \ \mathsf{File} \to \mathsf{Save}$
- $\bullet \ \mathsf{File} \to \mathsf{Run}$
- Log file
- MD Trajectory
- Training and Validation results
- Open newly trained model in AMSInput

Log file

- The active learning loop is not deterministic, so your results are likely to look a little different.
- In the **timings**, we see that very little time was spent on reference calculations, which makes sense since we used the UFF force field.
- In the **summary**, some of the attempts are marked as FAILED. This means that the energy/forces of the structure in the MD simulation was not predicted accurately enough in comparison to the reference method. This triggers a retraining of the ML model, and then the step is reattempted.
- The **final engine settings** contains an Engine block that can be used in AMS text input files to use your final trained model in production simulations. Note that the units are always "eV" and "angstrom", no matter which units you use for the reference data in ParAMS.
- You can copy-paste all the lines Engine MLPotential ... EndEngine directly into AMSinput, in order to set up a new job with your trained model.

MD Trajectory

- \bullet In AMSjobs, select the job and choose SCM \rightarrow Movie
- To open the most recent file, you may need to close AMSmovie and start it again.
- \bullet In AMSMovie, you can select File \to Related files to see some of the other available trajectory files.
- If you open the trajectory files before the active learning loop finished, you may see strange jumps or discontinuities in the plotted Energy.
- This is because the ML model is retrained on-the-fly!
- If the "Rerun simulation at end" option is enabled (it is enabled by default), then the trajectory in the final_production_simulation directory contains the entire trajectory calculated with only the final parameters.

Training and validation results

- \bullet In AMSjobs, select the job and choose SCM \rightarrow ParAMS
- What can you learn from the loss function graph?
- What can you learn from the scatter plots?
- \bullet In ParAMS, select File \rightarrow Open Optimized Engine in AMSinput \rightarrow Best validation

- Active learning is useful for many experiments
- We have a page with examples:
 - https://www.scm.com/doc/Workflows/SimpleActiveLearning/PythonExa
- Most examples take 1 day or more to run
- Fit ML potential for reactions

Simple Active Learning

Reaction before fitting

Active Learning [Hands-on] Train M3GNet

ParAMS Workshop 2024 | 118/122

Simple Active Learning

Reaction after fitting

Active Learning [Hands-on] Train M3GNet

ParAMS Workshop 2024 | 119/122

Overview of the workshop

Use ParAMS to train ReaxFF and machine learning potentials

Morning (3 h)

- General introduction of AMS (30 min)
- The graphical user interface [Demo] (30 min)

15 minutes break

- Theory background (40 min)
- Introduction to ParAMS (40 min)
- Tour of the ParAMS GUI [Demo] (20 min)

Lunch break (45 min) Afterneen (2 h)

Afternoon (3 ĥ)

• Optimize ReaxFF with ParAMS [Hands-on] (1 h)

15 minutes break

- Optimize MLPotentials with ParAMS [Hands-on] (1 h)
- Active Learning [Hands-on] (1 h)
- Conclusions

Conclusions Train M3GNet

Overview of the workshop

Use ParAMS to train ReaxFF and machine learning potentials

Morning (3 h)

- General introduction of AMS (30 min)
- The graphical user interface [Demo] (30 min)

15 minutes break

- Theory background (40 h)
- Introduction to ParAMS [Demo] (1 h)

Lunch break (45 min)

Afternoon (4 h)

• Optimize ReaxFF with ParAMS [Hands-on] (2 h)

15 minutes break

- Optimize MLPotentials with ParAMS [Hands-on] (1 h)
- Active learning [Hands-on] (1 h)
- Conclusions

Conclusions Train M3GNet

What next?

Learn more about AMS

- Get a trial license www.scm.com/trial
- Explore more ParAMS examples www.scm.com/ParAMS
- Get a license: contact your local reseller

Conclusions Train M3GNet