

r²SCAN-3c(STO): Efficient, Robust & Reliable composite DFT method in ADF

- 1. Introduction to the "3c"-family
- 2. r²SCAN-3c(STO)
- 3. Results
- 4. Conclusion
- 5. Demo

1. INTRODUCTION TO THE "3c" FAMILY

1. INTRODUCTION TO THE "3c" FAMILY

	HF-3c	PBEh-3c	B97-3c	r ² SCAN-3c
AO Basis Set	Minimal	mSVP	mTZVP	mTZVPP/mTZ2P
No. of parameters in F _{xc}	0	3	10	Unaltered
Fock exchange (%)	100	42	0	0
Dispersion	D3	D3	D3	D4
SRB correction	\checkmark	Х	\checkmark	Х
BSSE correction (gCP)	\checkmark	\checkmark	Х	\checkmark

"3c" = 3 corrections

2. r²SCAN-3c(STO)

J. Sun, A. Ruzsinszky, J. P. Perdew, Phys. Rev. Lett. 2015, 115, 036402.

A. P. Bartók, J. R. Yates, J. Chem. Phys. 2019, 150, 161101.

J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, J. Sun, J. Phys. Chem. Lett. 2020, 11, 19, 8208.

J. Sun, A. Ruzsinszky, J. P. Perdew, Phys. Rev. Lett. 2015, 115, 036402.

A. P. Bartók, J. R. Yates, J. Chem. Phys. 2019, 150, 161101.

J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, J. Sun, J. Phys. Chem. Lett. 2020, 11, 19, 8208.

J. Sun, A. Ruzsinszky, J. P. Perdew, Phys. Rev. Lett. 2015, 115, 036402.

A. P. Bartók, J. R. Yates, J. Chem. Phys. 2019, 150, 161101.

J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, J. Sun, J. Phys. Chem. Lett. 2020, 11, 19, 8208.

2.2 BASIS SET mTZ2P

• DZP: H*, He		Contr	action
 TZ2P: N, O*, F, Ne, Si – S, Cl, Ar, Kr TZD: remaining elements 	Element	GTO	STO
	Н	[2s1p]	[2s1p]
• TZP: remaining elements	С	[5s3p1d]	[5s3p1d]
	0	[5s3p2d]	[5s3p1d1f]
 SR-ZORA is used instead of ECPs 	I	[6s5p3d]	[12s10p6d]

* H: 2p exponent was changed from 1.25 to 1.70

O: 3d exponent was changed from 2.00 to 2.15

Energy & gradient correction		GTO	STO
	s ₆	1.00	1.00
 Three-body interactions included by the ATM term (Axilrod-Teller-Muto) 	S ₈	0.00	0.00
	s 9	2.00	1.53
 Charge information is considered 	<i>a</i> ₁	0.42	0.42
 Geometry input is required 	a ₂	5.65	5.65
 Computation in a few seconds 	β	2.00	2.00
	γ	1.00	1.00

- Additive BSSE (& BSIE) correction term
- Energy & gradient correction
- Depends on the basis set
- Geometry input is required
- Computation in a few seconds

σ parameter			
GTO	STO		
1.000	0.879		

2.4 gCP CORRECTION

2. r²SCAN-3c(STO)

$$E_{\rm tot}^{\rm r^2SCAN-3c} = E_{\rm tot}^{\rm r^2SCAN} + E_{\rm disp}^{\rm D4} + E_{\rm gCP}$$

3. RESULTS

3.2 GENERAL MAIN-GROUP ENERGIES

3.3 ION- π INTERACTIONS

3.4 CONFORMATIONAL ENERGIES

3.5 ORGANOMETALIC CHEMISTRY

3.6 COMPUTATION TIME

4. CONCLUSION

- In comparison to r²SCAN-3c(GTO):
 - Modified mTZ2P basis set, D4 and gCP correction
 - In most cases similar results
- QZ4P quality at the cost of TZP basis set

- Good results for π-interactions & conformational energies
- The versatile "Swiss Army-Knife" r²SCAN-3c(STO) is a valuable tool for everyday problems.
- Available in the next AMS release (2023)

5. DEMO

6. ACKNOWLEDGEMENTS

- Prof. Dr. Stefan Grimme
- Dr. Markus Bursch
- Julius Kleine Büning (Stückrath)
- Dr. Erik van Lenthe
- Dr. Fedor Goumans
- Dr. Matti Hellström

