
2 Kohn-Sham potentials corresponding to Slater and Gaussian basis set densities

A new method based on linear response theory is proposed for the determination of the Kohn-Sham (KS) potential corresponding to a given electron density. The method is very precise and affords a comparison between KS potentials calculated from correlated reference densities ex-pressed in Slater- (STO) and Gaussian-type orbitals (GTO). In the latter case the KS potential exhibits large oscillations that are not present in the exact potential. These oscillations are related to similar oscillations in the local error function i(r)=(
[image: image1.wmf]–i)i(r) when SCF orbitals (either Kohn-Sham or Hartree-Fock) are expressed in terms of Gaussian basis functions. Even when using very large Gaussian basis sets, the oscillations are such that extreme care has to be exer-cised in order to distinguish genuine characteristics of the KS potential, such as intershell peaks in atoms, from the spurious oscillations. For a density expressed in GTOs, the Laplacian of the density will exhibit similar spurious oscillations. A previously proposed iterative local updating method for generating the Kohn-Sham potential is evaluated by comparison with the present accurate scheme. For a density expressed in GTO’s, it is found to yield a smooth "average" potential after a limited number of cycles. The oscillations that are peculiar to the GTO density are constructed in a slow process requiring very many cycles.

2.1 Introduction

Quantum chemical calculations can be performed very conveniently in terms of single particle orbitals within the Kohn-Sham formalism of density functional theory (DFT). Kohn and Sham postulated the existence of a local potential vs having the property that non-interacting electrons moving in this potential will yield exactly the same electron density as the actual interacting many-electron system characterized by the local external potential. The Kohn-Sham orbitals {i}, in atomic units (
[image: image2.wmf]=e=m=1) given by
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(2.1)

generate the many-electron density  by occupying the N orbitals with the lowest orbital energy i, (r)=(i fi |i |2. Note that we do not consider explicit spin dependence other than just resul-ting in orbital occupation numbers 0≤fi≤. The Kohn-Sham potential vs, which according to the Hohenberg-Kohn theorem1 must be uniquely related to the density , can be subdivided into the external potential field vext (the Coulomb field of the nuclei), the Hartree potential vH of the electrostatic electron repulsion and the exchange-correlation potential vxc,
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Since vext is known and vH can be calculated straightforwardly for any given density, the con-struction of vs amounts to that of the unknown potential vxc. Although the exchange-correlation potential is formally defined through the relation vxc(r)=Exc[n]/n(r), approxi-mations have to be used since the energy functional Exc[n]=∫n(r)xc(n;r)dr is unknown. Determination of an accurate KS potential (in particular the exchange-correlation part) from an accurate electron density  allows us to judge approximations to the energy functional Exc[n] by comparing the approximate model potential vxcmodel(r)=Excmodel[n]/n(r) with the accurate one. A more direct test is of course a comparison between approximate and exact xc energy densities. It has been demonstrated, however, that in order to calculate the exact (a very accurate) xc-energy density xc(r) from an accurate wave function, a necessary step is the determination of the KS orbitals, and hence, the KS potential, from the diagonal density (r) corresponding to the given wave function28,29.

If a reasonably accurate starting density n0, generated by a trial potential vs0, is available, the determination of vs(r) corresponding to an accurate target density  amounts, within the linear response approximation, to the determination of the inverse density response function,
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where ∆n is the difference between n0 and , and ∆vs is the change that has to be made to vs0 in order to obtain the potential that generates the target density. This problem is ill defined to the extent that the addition of a constant to the Kohn-Sham potential does not change the density. However, this undefined constant can in principle be fixed by the physical condition that the KS potential vs and the exchange-correlation part vxc tend to zero at infinity,
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Various methods have been successfully applied in the determination of the KS potential. In the case of one-dimensional systems, including atoms when they are (chosen) spherically sym-metrical, Aryasetiawan and Stott17 were able to solve a set of coupled non-linear differential equations for the KS potential (cf. also49). Nagy50 constructed local potentials belonging to HF atomic densities using this method and Chen, Stott et al. have applied it to atomic HF and CI densities49. Almbladh and Pedroza16 proposed a method based on non-linear optimization of a local potential incorporating a large number of variational parameters. Many results for atoms have been reported with the constrained search method of Zhao and Parr21,51, which Ingamells and Handy52 have applied to molecules. Linear response theory was first considered by Werden and Davidson22, and a basis set formulation has been given by Görling19,23 and used to generate KS potentials corresponding to Hartree-Fock densities for the alkaline earth and noble gas atoms by Görling and Ernzerhof23. Van Leeuwen and Baerends9 proposed and applied a method that essentially consists of an iterative local updating scheme, the potential at each point being up-dated depending on the local density difference between present density and target density. Molecular applications with this method have been reported for the hydrides LiH, BH, HF, and CH229,53 as well as for the dimers Li2, C2, N2, F254,55.

In all cases, however, insight into the behavior of the exchange-correlation potential can only be obtained when it is determined from an accurate reference density. An important source of reference densities is provided by configuration interaction (CI) calculations, which almost ex-clusively employ expansion in Gaussian-type orbitals (GTOs). Although GTOs are unable to represent the physical characteristics of the wave function near and far from the nuclei, the ease with which the many-center two-electron integrals can be evaluated has led to the widespread use of GTO expansions in quantum chemical calculations. However, if a CI density expressed in GTOs is used, it is important to establish whether the GTO expansion gives rise to unphysical features in the KS potential that would not be present in the exact KS potential. It is the purpose of this chapter to formulate a linear response based method for the calculation of a KS potential from a given density that is rapidly convergent and very accurate. This method is then used to demonstrate that a density expressed in terms of Gaussians oscillates around the exact one. The oscillations may be quite large, i.e. there may be rather large local deviations of the Gaussian KS potential from the exact one. Such spurious oscillations do not arise if Slater type orbitals are used in the generation of a reference density by HF and CI calculations, although of course the Slater basis set has to be of high quality in order to obtain an accurate KS potential. We will also compare the performance of the Van Leeuwen-Baerends (LB) method9, which has already proven to be useful for molecular applications, with the present one. In fact, the LB method is capable of generating a KS potential for a Gaussian density that has the spurious oscillations (that properly belong to the Gaussian KS potential), but the local updating procedure of the LB method builds these oscillations up only very slowly, i.e. requiring many iterations. The smooth potential, lacking the oscillations, that is obtained after a limited number of cycles happens to be closer to the exact KS potential than the oscillating Gaussian KS potential is.

In this chapter we will use numerical grid-based methods to generate the KS potential belonging to a reference density. In this way it is possible to obviate the problems that arise when finite basis set expansions are used in the iterative procedure23,56,57. For example, if the orbitals i are expanded in a finite basis set {i} while vxc is represented on a grid, artificial oscillations of vxc can be produced that do not alter the values of the matrix elements i|vxc|j calculated with numerical integration and, hence, do no influence the resulting density and orbital energies i . Moreover, if both vxc and {i} are expanded in a finite basis set, an infinite number of symmetric matrices of a special structure can be added to the matrix representation of vxc that will not alter the resulting density but will shift the orbital energies i by arbitrary shifts i  different for different orbitals i 23,56,57. In order to avoid these problems, we use direct numerical integration of the relevant differential equations.

In the following, we first give a description of our linear response based method. Then, using different reference densities, we make a comparison between exchange-correlation potentials obtained from Gaussian and Slater type densities.

2.2 A linear response method for the generation of the KS potential

In order to solve the problems arising from basis set representation of the operators  and –1 and from the inverse density response function being ill-defined, we proceed by developing a method for the determination of vs that exploits the fact that only occupied orbitals are needed for the density. Elementary response theory gives an expression relating the linear response of the orbitals i(r) to a change in the effective potential vs(r),
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(2.2)

Premultiplication of equation (2.2) by fii*(r) and using the Kohn-Sham equation (2.1) for the relation (i –vs(r))i*(r) = –1/22i*(r) results in
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(2.3)

where ni denotes the orbital density ni=fii*i. Integration of this equation over r yields the well known linear response relation i =<i*|vs|i >=vi. As a first step towards an expression for vs in terms of ∆n =–n0, we obtain from equation (2.3) an expression for vs in terms of the orbital densities ni and the orbital density differences ni=fi(i*i+ii*). Since the KS potential is a real local potential, the complex conjugate of a solution to the KS equation (2.1) is also a solution at the same eigen value. So either the KS orbitals are real (apart from an arbitrary phase factor), or they are degenerate with their complex conjugate and can be transformed to real functions by a suitable linear transformation. Using real KS orbitals i equation (2.3) can be rewritten after some manipulations, substituting i=ni/i and i=ni /(2i),  in the form 
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In this form, the equation obviously has to be treated very carefully at points r where ni(r) is equal to zero (since the orbital density must always be greater or equal to zero, ni(r) is then also equal to zero). However, motivated by the fact that the KS potential is in one-to-one correspondence with the total density, we try to obtain an equation for vs in terms of the total ∆n rather than the individual orbital ni . This can be achieved by assuming that the total error ∆n is statistically distributed over the individual orbitals:
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Substitution in eq. (2.4) and subsequent summing over the occupied orbitals results in
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(2.5)

This equation resembles the Krieger-Li-Iafrate (KLI) equation for an approximate optimized effective potential24,58 and may be solved in the same way by first determining the constants vi from a set of linear equations obtained by multiplying eq. (2.5) by nj(r) and integrating over r,
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(2.6)

It is easily verified that the relation (ini(r)=n(r) causes the above set of linear equations to be dependent. This is in keeping with the fact that vs is only determined up to an arbitrary constant. As will become apparent in the next section, we cannot fix this constant by requiring that vs goes asymptotically to zero, since a KS potential corresponding to a Gaussian density cannot obey this condition. We fix the constant by choosing vN such that the highest orbital energy will not change from the value obtained with the starting potential, i.e. vN=0 (the starting potential is chosen so as to make N equal to minus the first ionization energy I of the system, see below). A practical approach is as follows. Since asymptotically the total density becomes equal to the density of the highest occupied orbital, nN(r)=n(r) for r we note that equation (2.5) introduces a constant shift vN in the potential (note that all other terms apart from vN(nN(r)/n(r)) tend to zero at infinity if we assume ∆n/n<<1 asymptotically). We may eliminate this shift by subtraction of vN, yielding as the desired equation for vs
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This leads to the set of independent linear equations
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which can be solved by standard methods. Moreover, this equation implies vN=0 automatically, as can be seen by multiplying with n(r) and integrating over r.

The iterative scheme to determine the effective potential from an atomic reference density (r) is now as follows. We start the procedure with a good approximate exchange-correlation potential vxc0(r) that combined with the external potential owing to the nucleus vext(r) and the Hartree potential vH([r) describing the classical electron-electron repulsion, gives a reasona-ble guess for the effective potential
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(2.7)
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A good initial guess for the exchange-correlation potential53 is
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where the local-density exchange potential vX is improved by the gradient correction to the exchange energy density according to Becke8 and a correlation correction is added derived from the local-density approximation in the Vosko, Wilk and Nusair3 parameterization to the correlation energy density. The parameter  in the X potential is chosen in such a way that the KS equations with the starting potential yield a highest occupied orbital eigen value equal to minus the ionization energy I. This ensures proper asymptotic behavior of the density and in subsequent cycles vj can then be put at zero for the highest occupied orbital N.

The n+1-th cycle starts by solving the Kohn-Sham equations (2.1) to obtain the density nn(r) corresponding to the potential vsn(r) obtained in the previous cycle. This results in a density difference which, when substituted into equation (2.5) after solving equation (2.6), yields the potential for the next cycle
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where  is a damping parameter for which we have taken  =0.7 and vsn(r) is obtained from equation (2.5) slightly rewritten as
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by explicitly taking ∆n(r)=(r)–n(r), where (r) is the target density. Convergence of the procedure is reached when the integrated absolute density difference is less than some threshold parameter,
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(2.8)

with max in the order 10-6 or lower. This is to be considered complete convergence, since the precision of the numerical integration is of the same order. The local updating method of van Leeuwen and Baerends9, with which we will make a comparison, is very much analogous except that the correction vs on the n+1-th cycle is obtained purely from the local value of the potential on the n-th cycle and the local values of the target density and the present (n-th cycle) density. Taking out the constant external potential, the update of the electronic part of the potential, vel=vH+vxc, is obtained from



[image: image21.wmf].
(2.9)

We have determined the effective potential for a number of atomic reference densities in a linear-logarithmic integration grid59, solving the Kohn-Sham equations (2.1) by means of the very accurate Numerov method60 with the adaptation procedure as described in ref.61. In all calculations we have taken an integration grid of 10000 points between rmin=10–6 to rmax=10, which allowed for very accurate numerical integration. The STO reference density of Neon is taken from Bunge and Esquivel62. All GTO reference densities are calculated with the ATMOL direct-CI program63 using the correlation-consistent polarized core-valence x-zeta (cc-pCVXZ) basis sets of Dunning et al64.

2.3 Results

As a preliminary to the presentation of our results for Kohn-Sham potentials corresponding to Gaussian CI densities, we wish to emphasize that an expansion in Gaussians of a smooth function like an atomic or molecular orbital, which has an essentially exponential behavior close to and far from the nuclei, will lead to large deviations if not the function values themselves but the Laplacians are considered. In order to indicate that this issue has wider implications than just for KS potential generation, we demonstrate the problem by considering the error function i(r) associated with a finite basis approximation to the Hartree-Fock solution,
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Ideally i(r) would be close to zero everywhere. The common variation method leads to the secular equation, which is equivalent with the requirement that the components of i(r) along the basis functions are all zeroed. Other types of minimization require the integrated square of i(r) to be minimal (least squares approaches) or the components of i(r) in more general subspaces than just {p} to vanish (methods of moments). A GTO expansion however yields very poor i(r). In Figure 2.1 the local GTO basis set error i(r) of the solution of the HF equation for the H2 molecule,
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is plotted for the equilibrium bond distance R (HA–HB)=1.401 bohr along the bond axis as a function of the distance z from the bond midpoint. In the HF calculations the cc-pV5Z basis sets was used for the H-atom. The GTO basis set chosen yields the value EHF=–1.1336 hartree for the HF electronic energy which is very close to the HF limit. However, the local error (r) of this basis is quite large over a region of ca. 0.6 bohr around each H-nucleus, in particular when compared to the function values of the g Hartree-Fock orbital HF also plotted in the figure. The error has its origin in the Laplacian term –(1/2)HF(r) which emphasizes the small oscillations in the GTO expansion of HF(r) around the exact orbital and therefore has a much worse representation in a GTO expansion than the orbital itself. It is obvious that the GTOs fail to reproduce the cusp of HF(r) at the H nucleus, thus producing a finite value of HF(r). Because of this, (r) is infinite at the nuclei. More disconcertingly, however, we also find large oscillations of (r) at relatively large distances ~0.3 bohr from the nucleus (see Figure 2.1).
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Figure 2.1: Plot of the error function (r)=(
[image: image25.wmf]–)HF(r) (drawn curve) and of the g molecular orbital HF(r) (broken line) along the bond axis of H2. The bond midpoint is at z=0.0, an H nucleus at z=0.7 bohr.
We may expect related problems when determining precise KS potentials from Gaussian densities. Let us consider an atomic wave function in the vicinity of the nucleus. The density corresponding to the GTO CI wave function does not satisfy the nuclear cusp conditions, having a finite Laplacian at the nucleus. The KS orbitals belonging to the GTO reference density will therefore also have a finite Laplacian at the nucleus. If we now considering an orbital with a finite value at the nucleus, it is easily seen from the Kohn-Sham equations (2.1) that only a vs having a finite value at the nucleus can generate such an orbital. However, the external potential in equation (2.7) certainly has a –1/r singularity at the nucleus. As the Hartree potential is obviously finite, only vxc can provide a compensating singularity. During the iterative deter-mination process, the exchange-correlation potential will therefore develop increasingly large positive values in the region of the nucleus.

Next we consider the tail of the density. In contrast to the exact decay (r)exp(–r)66, the asymptotic behavior of the GTO density will be governed by the density of the highest occupied orbital and is expected to decay like the most diffuse Gaussian in the basis set, (r)exp(–2r2). The Laplacian of the highest occupied orbital will therefore result in a term proportional to r2 far from the nucleus, which must be compensated by a similar term in the Kohn-Sham potential. The KS potential will therefore develop the asymptotics r2 in the iterative process. This is nothing but a manifestation of the fact that the Gaussians are harmonic oscillator eigen func-tions, characterized by a parabolic potential.

The one-electron H-atom provides a convenient model case to study the effect of a GTO expansion of a reference density on the form of the constructed potential. For a one-electron system there is no electron correlation and the single KS orbital KS is also the HF orbital KSHF√(/2). In the case of the hydrogen atom it is convenient to represent the exchange-correlation potential vxc as the sum of the exchange vx and the Coulomb correlation vc potential, with the exchange potential exactly canceling the Hartree potential, vx=–vH, and the correlation potential vc defined from the KS equation as
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(2.10)

which would be zero for the exact hydrogen density. For the GTO expansion of the density vc is, apart from the √((r)/2) factor, just the local basis set error that in the case of Gaussians originates mostly from the Laplacian-dependent term.

Although the correlation potential vc for the H-atom may be obtained immediately from (2.10), we have also calculated it using the iterative linear response approach described in the previous section from the exact density (r)=exp(–2r)/ as well as a number of GTO densities obtained with double-, triple-, quadruple-, and quintuple-zeta cc-pVXZ basis sets in order to check its effectiveness. For the exact reference density and some small initial potential the iterative procedure yields a constant near-zero potential v(r)10–4 after only 8 iterations. Contrary to this, for the reference double-zeta GTO density large oscillations appear in the corresponding converged potential vc2(r) (see Figure 2.2a). Also, vc2(r) exhibits the expected features of a large positive spike at the nucleus and a quadratic build-up to positive values at large r. Figure 2.2b shows the effect of increasing the quality of the GTO expansion on the constructed vcn(r). As might be anticipated, the number of oscillations in the converged vcn(r) increases with the number of GTOs in the basis, while the amplitude of these oscillations decreases. All vcn(r) exhibit the singularity at the nucleus and the parabolic asymptotic behavior that are artifacts of the Gaussian density. Also the GTO density n is expected to oscillate around the exact one, which is clearly confirmed by Figure 2.2c in which the oscillations of the difference r2n=r2(n–) between the GTO density and the exact one are represented for double-zeta and quintuple-zeta basis sets. The oscillations of r2n are quite small compared to those of the potential (note the scale of the plot) and decrease considerably when the basis set is extended. The oscillations in the density correlate with those in the potential, but they are amplified in the latter through the Laplacian terms 2  (2 ) that produce relatively large oscillations in vc. The correlation between the oscillations in the density and in the potential is very clearly demonstrated in Figure 2.2d which shows that when the approximate density is larger than the exact density, the potential will be lower (more attractive) than the exact potential, and vice versa. This incidentally provides support for the local updating procedure of equation (2.9). Although the amplitude of the oscillations in (GTO/STO–1) increases at larger distance from the nucleus, the actual densities and  are already too low for this to have a large influence on the potential.
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Figure 2.2: a) The correlation potential of the H-atom belonging to a double-zeta electron density and the exact correlation potential, which is identically equal to zero. b) The correlation potentials belonging to electron densities calculated for the H-atom with Gaussian basis sets of varying quality. c) The differences of the double-zeta and quintuple-zeta Gaussian densities and the exact density of the H-atom. d) Correlation between oscillations in the density and in the potential.

Next, the iterative linear response scheme has been applied to the ten-electron Ne-atom to construct vxc from the accurate Bunge-Esquivel62 STO reference CI density as well as from GTO triple- and quintuple-zeta basis set CI densities. The converged KS densities obtained with the iterative procedure are very close to the corresponding reference ones, with the absolute integral error, equation (2.8), being only of order 10–6e. With respect to the most important KS characteristic, i.e. the kinetic energy of the noninteracting particles, the value Ts=128.609 hartree obtained for the STO density agrees to 0.001 hartree with the value Ts=128.610 hartree obtained in 67 for the same reference density with the alternative scheme of vxc construction due to von Barth, Almbladh, and Pedroza16,68,69. The values Ts=128.616 and Ts=128.611 hartree obtained for the triple- and quintuple-zeta GTO densities are also close to that obtained for the STO density, so that in this respect the GTO expansion seems to have a good integral quality.
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Figure 2.3: Comparison of the precise exchange-correlation Kohn-Sham potential, corresponding to the Bunge-Esquivel STO density, with these potentials determined for triple- and quintuple-zeta Gaussian densities.

Figure 2.3 compares vxcSTO, constructed with the linear response based scheme from the STO reference CI density, with the potentials vxc and vxc5 constructed respectively from the triple- and quintuple-zeta GTO densities. The vxcSTO potential exhibits the by now9,16,51 well known characteristic features of a deep well around the nucleus, a peak and a small local minimum in the 1s-2s intershell region at r≈0.3 bohr and Coulombic asymptotics –1/r at large r. In spite of the above-mentioned good integral quality of the triple-zeta expansion, the corresponding vxc displays relatively large oscillations around vxcSTO. It has moreover a positive spike at the nucleus and it curves up quadratically at large r. The oscillations are reduced considerably when going from vxc to vxc5 and this last one may be considered a good approximation to vxcSTO over large ranges of r. However, similar deficiencies as in vxc3 do exist at large r (beyond 4 bohr) and small r (below 0.2 bohr). Note that in contrast to the accurate STO potential the KS potential obtained from the quintuple-zeta Gaussian basis exhibits very large oscillations in the region close to the nucleus. Nevertheless, the oscillations are around the accurate potential, so that the average value does not show a systematic deviation.

In analogy with the H-atom considered above, the form of vxcn for the Ne-atom can be understood, if we sum the KS equations (2.1) over the N occupied orbitals and obtain the following expression for the exchange-correlation potential:
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(2.11)

Due to the finiteness of all Laplacians 2i(r), vxcn diverges at the nucleus because of the second, nuclear-attraction term of (2.7). At large r the latter term as well as vH(r) approach zero, the fourth term turns into the energy N of the highest occupied orbital N, while the first term turns into 2N(r)/(2N(r))r2, thus determining the observed quadratic asymptotics of vxcn.
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Figure 2.4: Comparison of a the precise vxcSTO with a) potentials corresponding to the quintuple-zeta Gaussian density, constructed either with the present linear response method (vxc5) and with the Van Leeuwen-Baerends method (vxc5-LB). b) the potential corresponding to a quintuple-zeta Gaussian density obtained with the Van Leeuwen-Baerends method after 100 iterations.

The observed oscillations of vxcn in the core region of the Ne-atom can be understood in the following way. Suppose, that in a chosen region of r a certain 1s-type function 1sG=cexp(–r2) of the GTO expansion has a dominant contribution to the first term of equation (2.11), yielding
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Starting out at negative values at small r (r<√3/√(2)), in the end of the region of 1sG dominance, roughly at r>√3/√(2), 1sG has its own asymptotical region with a strongly positive term ~r2. Due to this term, vxcn of (2.11) may be higher in this region than vxcSTO, in complete analogy with the asymptotic behavior of vxcn at large r. In the adjacent region, with r approach-ing the value √3/√(2) characteristic of the Gaussian function with the next lower exponent , vxcn goes downwards again, which results in its observed oscillations around vxcSTO.

We close this section with a comment concerning a feature of the LB scheme for constructing vxc, which has allowed to apply this scheme with reasonable accuracy to the construction of atomic and molecular vxc9,29,53 from Gaussian CI densities. It can be observed in Figure 2.4a that the response method and the LB method yield practically coinciding potential curves, except that in the immediate vicinity of the nucleus the amplitudes of the strong oscillations are lower and therefore not correct in the LB scheme. The reason for this difference is simply the different convergence behavior of the LB method. This method shows reasonable initial convergence, so that after say 100 cycles the density deviation, equation (2.8), has typically dropped below 10–3e. The potential is then very close to the converged potential of either the response or LB method, except in the region of strong oscillations. Figure 2.4b compares vxcSTO with vxc5-LB(100) obtained from the quintuple-zeta GTO density after 100 iterations of the LB proce-dure. At this point the absolute integral error of the density has already become small (10–4e), while the form of the potential vxc5-LB(100) obtained after 100 iterations is smooth. Except in the vicinity of the nucleus vxc5-LB(100) is quite close to the converged vxc5 (see Figure 2.3). It therefore repro-duces the accurate potential vxcSTO reasonably well and only starts to diverge appreciably from vxcSTO at r>4 bohr because of its intrinsic quadratic asymptotic behavior. A closer inspection of the form of vxc5(100) in the immediate vicinity of the nucleus shows that at 100 iterations the iterative LB procedure yields a potential that is still close to the accurate vxcSTO down to quite small values of r. It has only just started to develop the oscillations of vxc5 around vxcSTO, however, it takes about 10000 subsequent iterations to fully develop the oscillations of the vxc5-LB displayed in Figure 2.4a, and even then those amplitudes are not yet converged. The very slow convergence in building in these large oscillations, that have high amplitude and small "wavelength", is perfectly understandable from the local updating character (usually damped) of the LB method. In view of the somewhat spurious nature of these oscillations it will usually not be worthwhile to spend many iterations to determine them accurately.

2.4 Conclusions

In this chapter a new method, based on linear response theory, has been introduced to determine the KS potential corresponding to a reference density. The method has proven to be rapidly convergent and capable of high accuracy. The method has been used to investigate KS potentials derived from CI densities generated with standard Gaussian basis sets. Exchange-correlation potentials vxcn and vxcSTO constructed from various Gaussian and Slater basis set reference densities have been compared for the model case of the H-atom and for the Ne-atom. In order to study the effect of the quality of the GTO expansion, reference densities with double-, triple-, quadruple-, and quintuple-zeta cc-pCVXZ basis sets have been employed. To exclude the errors associated with a finite basis set expansion of the Kohn-Sham orbitals or of vxc itself, the atomic Kohn-Sham equations have been solved by means of the Numerov method. In all cases the KS potentials have been obtained with sufficient accuracy, with the absolute integral error of the density (2.8) of the order 10–4–10–5e, so that according to the Hohenberg-Kohn theorem the constructed potential is expected to adequately represent the unique potential corresponding to the given reference density.

A reference density based on a GTO expansion can provide a good integral quality of the obtained KS solution, the KS kinetic energies obtained for Ne with the triple- and quintuple-zeta GTO based densities are close to that obtained with the STO based reference density. However, locally the quality of the GTO KS potential has been found to be relatively poor, especially in the inner atomic region and at large distances from the nucleus. While the accurate correlation potential for the H-atom is zero and the accurate exchange-correlation potential for Ne is a smooth function with Coulombic asymptotics, the corresponding potentials vcn and vxcn obtained with double- and triple-zeta GTO expansions of the reference density diverge at the nucleus and have quadratic long-range asymptotics. Furthermore, they oscillate around the accurate potential, the oscillations being quite strong in the inner atomic region. The amplitude of the oscillations in the valence region is considerably reduced when increasing the quality of the GTO expansion from double- and triple- to quintuple-zeta sets. It is therefore possible to obtain the KS potential to fair accuracy with a Gaussian reference density, although we have noted that even the most accurate GTO based densities still lead to a noticeable deviation in the intershell peak in the KS potential of the Ne-atom (see Figure 2.3 and 2.4a).

The origin of the oscillations of vcn and vxcn is the oscillating nature of the Laplacian-dependent terms, –1/22i, when the Kohn-Sham orbitals i are expanded in Gaussians. As these oscillations have to be cancelled by the potential-dependent term vsi in order to obtain the smooth function Ii, we end up with oscillations in vs. We have emphasized the relation between the oscillations in the Gaussian based KS potential and the large oscillations of the local error function of the SCF solutions, i(r)=(
[image: image36.wmf]–i)iHF(r), when the Hartree-Fock orbitals are expanded in Gaussian functions. As the Laplacian of a density expressed in GTOs will exhibit similar spurious oscillations, it is not at all clear that the errors due to the spurious oscillations will cancel, i.e. will integrate to (almost) zero, when one introduces Laplacian dependent terms in exchange-correlation functionals. This point will require careful investigation when applying the Laplacian of the density in conjunction with GTO basis sets.
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