5 One-determinantal pure state versus ensemble Kohn-Sham solutions in case of strong electron correlation: CH2 and C2
The possibility that the Kohn-Sham (KS) solution for the noninteracting auxiliary electron system is not the conventional one-determinantal pure state but a few-determinantal ensemble has been investigated. The KS solutions (the exchange-correlation potential vxc and the orbitals) have not been approximated by local-density or density-gradient approximations but have been constructed from an accurate "ab initio" electron density. The lowest singlet states of the CH2 and C2 molecules have been selected for this investigation since for these cases the ground state wave function  is nondegenerate but has an essentially multi-determinantal character (electron correlation is strong). For C2 the dependence of the type of KS solution on the bond distance has been studied at the QZ level. For the shortest distance considered, R(C-C)=1.8 bohr, a pure state KS solution has been obtained. For the equilibrium distance Re(C-C)=2.348 bohr and at larger distances ensemble solutions have been obtained with widely varying weights of the individual determinants, depending on the bond distance. For CH2 the dependence of the type of KS solution on the basis has been studied: calculation in the triple zeta (TZ) basis for the KS orbitals yields an ensemble solution, while the pure state KS solution has been obtained in the quadruple zeta (QZ) basis. The form of the KS orbitals has been compared with that of the natural orbitals (NOs). It has been shown for the model example of the stretched H2 molecule as well as for CH2 and C2, that the KS orbitals of the pure state may be rather different from the corresponding NOs, while the occupied KS orbitals of the ensemble solution can be considered as plausible approximations to the corresponding NOs.

5.1 Introduction

For the formulation of the Hohenberg-Kohn density functional theory the v-representability of densities (r) is an important issue: given a proper density (r) (nonnegative, integrating to N electrons), does there exist a local potential v(r) such that (r) corresponds to: a ground state  of the system of interacting electrons moving in the potential v(r) (pure-state v-representable (PS-V);  may be degenerate or not), or an ensemble of ground state wave functions in case of a degenerate ground state (ensemble v-representable (E-V)). The ensemble representable density is obtained from a density matrix 
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[image: image2.wmf]
The diagonal density obtained is a convex combination of pure ground state densities. Such densities have acquired special significance in the theory since it was proven by Levy36 and by Lieb37 that a convex combination of ground state densities is not, in general, pure state v-representable. The implication is that there is a large set of perfectly "normal looking" densities that do not correspond to a ground state wave function.

We will not primarily consider the question of representability of densities by ground states of interacting electron systems, but we will be concerned with a similar problem that arises in the context of the Kohn-Sham (KS) approach to density functional theory (DFT). Kohn and Sham introduce a system of noninteracting electrons moving in a local potential vs(r), which has the same density (r) as the interacting system considered2. We will restrict ourselves here to the case that the interacting system has a nondegenerate ground state. Then the basic Ansatz of the KS theory is the vs-representability of the given (r)36-40, which can be formulated as follows. Suppose, that for an interacting system (r) follows from a nondegenerate ground-state wave function  then there exists a local potential vs(r) such that (r) also corresponds to a one-determinantal ground-state wave function s of the noninteracting system. The original Kohn-Sham assumption may be extended, in view of the importance of ensemble-representable densities, to include the case that vs(r) leads to a degenerate ground state of the noninteracting system and (r) corresponds to an ensemble of ground states s,i. We denote these possibilities as pure-state vs-representable (PS-Vs) or ensemble vs-representable (E-Vs).

One may wonder if a density corresponding to a nondegenerate ground state of the interacting system will ever fail to be PS-Vs representable. It is the purpose of this chapter to identify such a situation and to emphasize that the E-Vs representability  is not just an issue of mathematics but that there is a clear connection with the physical phenomenon of electron correlation in the interacting system. The vs-representability is studied for the case of the nondegenerate lowest singlet states of the molecules CH2 (1A1 in C2v) and C2 (1g+ in D∞h), the KS solution being obtained from the corresponding correlated CI wave function  with the iterative local procedure of van Leeuwen and Baerends9 (cf. also ref.108). The molecules CH2 and C2 have been chosen as examples of systems with an essentially multi-determinantal character of . For the lowest singlet state of CH2 the importance of inclusion in the CI expansion of a configuration with  excitation has been established and for many years calculations of this molecule served as a benchmark for "ab initio" quantum chemistry121-123. For the ground state of C2 the CI expansion exhibits for the equilibrium bond distance Re(C-C) an exceptionally large contribution of excited configurations, compared to other dimers of the second period124. The main configu-ration D0 changes with changing distance R(C-C): at short distances (including Re) D0 represents a valence state with two 2p-based -bonds and no -bond (configuration |2g22u23g01πu4|), while for longer distances D0 represents a valence state with one - and one 2p-based -bond (configuration |2g22u23g21πu2|). Another important configuration, in particular at short distances, is |2g22u03g21πu4|, with nominally two π-bonds and two -bonds, one 2s-based (2g2) and one 2p-based (3g2).

There is an obvious connection between the use of fractional occupation numbers (FON) in (approximate) density functional calculations and the question of E-Vs representability of a ground state density, since a density matrix representing an ensemble of pure determinantal states leads to a diagonal density that can be written as a sum of orbital densities with fractional occupations5. Even prior to the discussions of v- and vs -representability, and the recognition of the importance of ensemble-representable densities, Slater et al32 had introduced FONs in an intuitive manner in the X-method. Dunlap33,34 observed in X calculations on C2 and Si2 that an improved 1g+ (not the ground state in X) potential energy curve was obtained when allowing for fractional occupation of the πu and 3g orbitals. Recently Wang and Schwarz35 have given a clear exposition of the FON method, demonstrating for a series of modern function-als that it gives an improved potential energy curve for the transition from the ring (D3h) to open (C2v) structure of O3, and similarly for SO2.

The FONs receive a rigorous basis if densities have to be represented by an ensemble of pure (determinantal) states of the noninteracting KS system. In this chapter we wish to explore and establish the connection between strong electron correlation and the need for E-Vs representation of the density. For this purpose we avoid the use of approximate functionals, but generate the noninteracting density and KS potential directly from an accurate correlated "ab initio" electron density of the interacting system.

This chapter is organized as follows. In Section 5.2 alternative types of KS solutions are considered and the situation with respect to the proof of the representability of  for both inter-acting and noninteracting systems is discussed. In Section 5.3 the effect of electron correlation on the type of the KS solution and on the form of the KS orbitals is discussed. For an interacting system  is conventionally represented in terms of natural orbitals (NOs) {i}127, while for a non-interacing system it is represented in terms of KS orbitals {i}. Naturally, the question (related to the representability problem) arises: what are the differences and similarities between the NOs and KS orbitals? The example of the (stretched) H2 molecule is considered, for which the NOs and KS orbitals are shown to be distinctly different from each other. An iterative procedure for the construction of the KS orbitals and the KS potential from the "ab initio" CI wave function is outlined. The situation is considered, where this procedure combined with the constraint of integer occupations of the KS orbitals leads to a solution with unoccupied orbitals having an energy lower than that of the highest occupied orbitals ("holes" below the Fermi level). A procedure denoted "evaporation of the hole below the Fermi level" (cf. refs.33,35) is employed in this case, which leads to an ensemble KS solution with accidental degeneracy of the corresponding Slater determinants.

In Section 5.4 the KS solution obtained from the CI wave function of the CH2 molecule is presented. In this case the electron correlation is just not strong enough to enforce E-Vs repre-sentability. The dependence of the KS solution on the size of the basis set and the CI expansion used is investigated. As will be shown in Section 5.4, in borderline cases where there possibly is a weak contribution of a second KS determinant, the type of solution may actually depend on the basis set size. In CH2 it becomes possible only with a fairly large basis to obtain a one-determinantal (pure state) KS solution, while for smaller basis the ensemble solution is obtained.

In Section 5.5 the dependence of the type of KS solution on the bond distance is studied for the C2 molecule. In this case the possibility will be demonstrated, for a density corresponding to a nondegenerate pure state of the interacting system, of an essentially accurate ensemble KS solution with accidental (not symmetry dictated) degeneracy of the KS determinants. Upon increase of R(C-C) the KS solution evolves from a pure state to an ensemble with a "weak" involvement of an accidentally degenerate state, to an ensemble with a "strong" degeneracy, and then to another ensemble with a "weak" accidental degeneracy. For both CH2 and C2 one- and two-dimensional plots of the constructed exchange-correlation KS potentials vxc are presented and interpreted. As will be shown, for the pure state KS solution the orbitals may be rather different from the corresponding NOs, while the ensemble solution brings KS orbitals closer to NOs. In Section 5.6 the conclusions are drawn.

5.2 Representation of the electron density in Kohn-Sham theory

As was noted in the Introduction, the representability of the exact density  of an interacting electron system by means of a noninteracting system is the central problem of the KS theory. Let  be the density of a nondegenerate ground state (pure state, PS)  of the interacting closed-shell system with the external potential vext, so that it is denoted as a PS-V representable density. Then the following three possibilities may, in principle, occur for its representability in terms of a non-interacting system:

5.2.1 PS-Vs representability:

The density  is also the density of a pure ground state s of a noninteracting KS system with the potential vs, so that it is denoted as PS-Vs representable. The KS potential vs is related to the external potential vext as follows: vs(r)=vext(r)+vH(r)+vxc(r), where vH is the Hartree potential of the electrostatic electron repulsion and vxc is the exchange-correlation potential. In general, s is a few-determinantal function built from K degenerate one-determinantal ground states Dsj
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In the simplest case the KS ground state is nondegenerate and s is just one determinant Ds. In this case  is expressed in the form
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(5.3)

with integer occupations (ni =2) of the N/2 lowest-energy KS orbitals. Consider the case that the interacting  for a closed-shell N electron system is nondegenerate and its CI expansion is dominated by a single Slater determinant D0 built from N/2 lowest Hartree-Fock (HF) orbitals i. Then, s is also expected to be a determinant Ds built from N/2 lowest KS orbitals i. This is confirmed by the essentially accurate KS solutions obtained from "ab initio" CI wave functions for closed shell atoms25,51 and molecules29,52,53,78,128 with a nondegenerate ground state. The KS solutions s obtained until now are all single determinants Ds. In the following we shall consider only the one-determinantal pure KS state, so that (unless otherwise stated explicitly) the abbre-viation PS for KS systems will refer to just these one-determinantal states.

5.2.2 E-Vs representability:

he density  corresponds to an N-particle density matrix  of the KS system, which repre-sents an ensemble of L wave functions sj of the type (5.1)
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(5.4)

Obviously, the set of E-Vs representable densities contains all the PS-Vs representable densities, since (5.1) is a particular case of (5.4) with L=1. In the simplest case sj in (5.4) are just ground-state determinants Dsj of (5.2)
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Since the Dsj are degenerate ground state wave functions of the noninteracting system, with a noninteracting energy Es that is equal to the sum of the orbital energies, the Dsj have the same KS orbitals i with energies below the Fermi level, i <F, and they differ from each other in, at least, one highest occupied orbital iHO, the latter orbitals being all degenerate at F, iHO=F. The orbitals iHO may have a symmetry-related degeneracy, i.e. belong to different subspecies of a certain irreducible representation of the symmetry group of the molecule. They may also belong to different irreducible representations, i.e. exhibit accidental degeneracy. In this case two determinantal wave functions Dsj and Dsk may still be of the same symmetry, totally symmetric for instance if each of them has a highest occupied orbital that belongs to a one-dimensional irreducible representation and is doubly occupied. So, two states of the noninteracting system of the same symmetry can exhibit an accidental degeneracy, a situation that rarely (if ever) occurs in the interacting case. It may occur more readily in noninteracting systems since for two determinants that differ in two spin-orbitals there will not be an interaction matrix element. Such accidental degeneracy allows for E-Vs representability of the ground state density, which we will see, is intimately related to nondynamical correlation effects. Suppose the ground state  of the interacting system is nondegenerate (pure state), but has an essentially multi-determinantal character, i.e., apart from the main configuration D0, some excited configurations Di bring relatively large contributions to the CI expansion of 
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The natural question arises whether in this case just one KS determinant Ds is capable of repre-senting the interacting density including the contributions from both the determinants D0 as well as Di, or whether it can only be represented by an ensemble of degenerate KS determinants Dsi.

If  is represented with an ensemble for the noninteracting system (E-Vs representability), it is expressed via the KS orbitals as follows
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(5.7)

with fractional occupations niHO of the accidentally degenerate orbitals iHO. The occupations niHO are combinations of the weights dj of Dsj in the ensemble (5.5) and the integer occupations jiHO of the orbitals iHO in the densities sj that correspond to Dsj 
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The kinetic energy Ts in this case has the form
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The expectation value of the full interacting Hamiltonian for the KS wave function (or ensemble) taken as a trial wave function for the interacting system, to be distinguished from the non-interacting energy Es=∑inii, has the form
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so that the exchange energy Ex can be defined as a weighted sum of the exchange energies of the individual determinants
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Below we shall denote as E-Vs representable the densities that cannot be represented with a single KS determinant, but that can be represented with an ensemble (5.5).

5.2.3 Break-down of the KS approach: 

The density  cannot be represented with either a pure ground state (including states that are a linear combination of ground state determinants) or an ensemble, as in Sections 5.2.1 and 5.2.2. In this case of non-vs-representability, it is still possible that  can be expressed in the form



[image: image15.wmf],
(5.9)

with partial occupation (ni <1) of some orbitals i with energies i below the Fermi level (holes below the Fermi level)129. For a noninteracting system, the ground state must obey Aufbau, i.e. the ground state of the KS system cannot contain holes, and thus (5.9) corresponds to some excitation of the KS system. This case would manifest a breakdown of the KS Ansatz of non-interacting vs-representability of all interacting ground state densities.

Unfortunately, although several mathematical studies on the v- and vs-representability problems have appeared36-40, the vs-representability has not been proven yet for an arbitrary v-representable density. The original1 HK functional FHK has been extended to the functional FL[]37 which searches the infimum of 
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[image: image17.wmf] that yield the density :



[image: image18.wmf],

with di=di*(0 and ∑idi=1. The advantage of FL[] is that it is a convex functional defined on the convex set SN of all nonnegative densities that integrate to N (not just the set of ground state densities AN on which FHK is only defined). FL[] is differentiable, with v as tangent functional, at all PS-V and E-V densities (and nowhere else). If we turn to noninteracting systems, for which the two-body interaction is zero, 
[image: image19.wmf]=0, the functional FL[] reduces to just the kinetic energy functional for noninteracting electrons, TL[]. Again, the differentiability of TL[] will be assured for PS-Vs and E-Vs densities, with vs as tangent functional. However, the KS method would only be put on firm ground if one could also prove that every interacting density, i.e. every E-V density, or at least every PS-V density, would also belong to the set of noninteracting vs-representable densities. Since this crucial step has not been taken, it is too optimistic5 to consider the validity of the KS scheme as being rigorously established.

Chen and Stott130,131 have considered the problem of vs-representability of  for atomic-like systems in a central-field external potential. Their analysis deals with the E-Vs representability of a given density by establishing the degeneracy of the highest occupied level and the weights of determinantal states in the ensemble (fractional occupations of the degenerate highest orbitals). They analyzed how the topology of the orbital energy surfaces then determines the type of ensemble solution that is obtained. They did not prove that every interacting density is vs-representable, since they discussed so-called "reasonable" densities for which it was assumed that a potential vs could be found on a whole domain in (fractional) occupation number space. However, we do not know whether the molecular systems considered have a "reasonable" interacting ground state density in this sense, so that the vs-representability of their densities is not assured.

5.3 The effect of electron correlation on the form of the KS orbitals and the construction of the KS solution

The effect of electron correlation on the KS orbitals and problems associated with the construction of the KS solution can be illustrated with the simple example of the stretched H2 molecule considered in detail in 83,87. In this case, as for any other two-electron closed-shell system, the form of the single molecular orbital (MO) g of the pure state KS solution is defined (up to a phase factor) straightforwardly from the density  as follows:
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From this, one can see a distinct difference between the KS expansion of the density in a set of orbitals and the conventional expansion in quantum chemistry of  in terms of the natural orbitals (NOs). Indeed, in the KS case   is represented for this two-electron system with the single MO (5.10), which belongs to the totally symmetric irreducible representation (irrep) g+ of the molecular symmetry point group D∞h. In contrast, the NO expansion for stretched H2,with the elongated bond distance R(H-H), has two dominant contributions from the NO g of g+ symmetry and the NO u of u+ symmetry
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The difference between the KS and NO expansions can be considered in a quantitative way, if we expand the KS MOs {i} and the NOs {i} in terms of the HF MOs {i}
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and then form the KS and NO representations bKS[ij] and bNO[ij] of  in terms of products i*j of the HF MOs
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where 
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The bNO[ij] are just the elements of the one-electron density matrix in the HF MO basis, but the bKS[ij] are not. Note, that the NOs g and 1u for the stretched H2 consist, mainly, of the corresponding HF MOs g and u, respectively, which in their turn are, essentially, the bonding and anti-bonding combinations of 1s atomic orbitals (AOs) of the H-atoms. Thus, the population bNO[1u1u] of u in the NO expansion (5.11) is relatively large. For example, full CI calculation of H2 at R(H-H)=5 bohr in a basis with five s- and two p-type contracted Gaussian functions and an additional d-type Gaussian65,83,132 yields the values n1u=0.736, a1u1u(NO)=0.976, and bNO[1u1u]=0.704. Contrary to this, the HF expansion for the KS orbital g cannot contain the orbital u of a different symmetry, so that a1u1g(KS)=0 and u has zero population in the KS expansion (5.11), bKS[1u1u]=0. This difference between the KS and NO coefficients bKS[1u1u] and bNO[1u1u] determined for the same  and the same HF MO product |1u|2 becomes possible due to the established redundancy of the basis of orbital products {ij}133 in one-particle space.

Lacking the direct contribution of u, the HF MO expansion (5.11) of the KS orbital g simulates the contribution of u to the correlated density (5.12) by the inclusion of the higher orbitals ng of g+ symmetry which consist, mainly, of the p- and d-AOs of the H-atoms. Taken with the sign opposite to that of g, these higher orbitals bring, by means of the product terms bKS[ng1g]ng*(r)1g(r) the hybrid cross-terms of the type –spz and –sdzz (z is the molecular axis) into the density |g(r)|2=(r). The cross-terms reduce the density around the bond midpoint, reproducing effectively the contribution to  of the orbital u, which has a nodal plane passing through the bond midpoint. One may wonder if the necessity to build correlation induced features of the density into the occupied KS orbitals leads to special requirements for the primitive basis set. Such a situation has been identified in the case of the dissociating electron pair bond of H2 in 87. In that case the g and u NOs can be very well represented in a minimal basis by
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where a(r) and b(r) are the 1s AOs of the H-atoms, and S is the overlap integral S=(a(r)b(r)dr. However, such a minimal basis fails to reproduce the features of the true g KS orbital (5.10) around the bond midpoint. There is however no indication that demands on basis sets in the KS case are comparable to those in MP2 or other correlated calculations. The GGA functionals Exc[(r)] are in fact not sensitive to such small features in the density as we are dealing with at present, and basis sets that are adequate at the SCF level will usually suffice.

In this chapter the KS potential vs and KS orbitals {i} have been obtained from "ab initio" CI densities  by iterative solution9 of the equations (5.2) with the orbitals i being expanded in the same basis {i} of HF MOs as was used in the CI calculations. In this chapter a variant of the iterative local procedure of van Leeuwen and Baerends9 has been employed, according to which the components <i |vext|j > and <i |vH|j > of the matrix elements <i |vs|j > are fixed and only the unknown exchange-correlation potential vxc(r) is updated during iterations, starting from some initial guess vxc0(r). At the m-th iteration, the KS equations are solved with the potential vxcm(r)
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calculated from the vxcm–1(r) of the previous iteration with the correction factor f m. The latter is obtained from the density m–1 from the (m–1)-th iteration and the target density 
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The parameter a smoothes out the effect of the remote exponential density tails on the procedure. Matrix elements <i |vxcm |j > have been calculated using a numerical integration with grids according to 126. The accuracy of the resultant KS solution is characterized by the value of the absolute integral error  at the m-th iteration,
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As the first option, we always attempt to construct the pure state KS solution, so that a trial density m is formed according to eq.(5.3) with the doubly occupied KS counterparts i of the N/2 lowest energy HF orbitals i. When the PS is attainable, this leads to the KS solution, which reproduces (up to a small error ) the target correlated density and complies with the "Aufbau principle", i.e. all the occupied orbitals have lower energies than the unoccupied ones. On the other hand, if the PS is unattainable, the iterative procedure (5.13) converges to a "non-Aufbau" solution, for which  is, usually, also small, but the lowest unoccupied MO (LUMO) has a lower energy than the highest occupied MO (HOMO), i.e. a hole below the Fermi level appears. If the LUMO has a different symmetry than the HOMO, this situation may arise during the iterations when a fixed number of orbitals is occupied in each irreducible representation. An attempt to obtain the KS solution with reversed occupation, with the hope to achieve "Aufbau", fails, since with this occupation pattern the iterative procedure does not converge to a solution with a small . In case one is performing a standard self-consistent KS calculation using approximate functionals, this failure to accurately describe the correlated density would of course not be noticed, but in this case reversal of the occupation pattern will typically again lead to a "non-Aufbau" situation, since filling the hole in the orbital below the Fermi level will raise the orbital energy of the former hole orbital, and lower  the energy of the former "HOMO" that is now de-occupied, to the effect that the orbital energies cross and "Aufbau" is again violated (cf. Fig.1 of ref.35).

In order to provide the KS solution for this case we have used a procedure of "evaporation of the hole below the Fermi level" as given in 134. It consists in  fractional occupation of the LUMO (N/2+1), starting with n(N/2+1)=0 with simultaneous depopulation of the HOMO N/2 when forming a trial density m (we continue to number these orbitals as N/2+1 and N/2 respectively, although their order has reversed). This redistribution of the electrons increases the energy of the former and decreases the energy of the latter orbital. At certain fractional occupations n(N/2+1) and nN/2 the orbital energies N/2 and N/2+1 are equal to each other and the target density  is reproduced with an ensemble KS solution. These energies will define the Fermi level energy F, N/2+1=N/2=F, so that there will be no fractional occupations below the Fermi level. The corresponding density assumes the form (5.7) of the ensemble representable (E-Vs) . The procedure is analogous to the one applied in X33 and GGA35 calculations, the difference being that our KS calculations are not approximate, but are aimed to reproduce the correlated density. Our results therefore will not be artifacts of the X or some local-density or density-gradient approximation.

Fortunately, in our actual calculations we managed in all cases to represent  either with the PS form (5.3) or with the ensemble form (5.7). Thus, we did not encounter the breakdown of the KS theory (Section 5.2.3) though, in principle, one cannot exclude such a possibility.

5.4 Results for CH2
The correlated density  of the CH2 and C2 molecules, the basic quantity for construction of the KS solution, has been obtained with configuration interaction (CI) calculations performed by means of the ATMOL package63. The lowest singlet state of CH2 has been calculated at its equilibrium geometry135, with the bond distance R(C-H)=2.099 bohr and angle ((HCH)=102.4(. The KS potential and orbitals have been constructed in the same basis of Hartree-Fock (HF) MOs as was used in the CI calculations by means of a Gaussian orbital density functional code83,84 based on the ATMOL package.

The correlation-consistent polarized core-valence (cc-pCV) basis sets of Woon and Dunning79 of contracted Gaussian functions have been used for the calculations. In order to describe properly various correlation effects, a large number of polarization functions of higher angular momenta of both core and valence size are included in these sets. In order to study the effect of the basis on the KS solution for CH2, the calculations in a triple zeta basis augmented with additional polarization functions (aug-cc-pCVTZ) are compared with those performed in a quadruple zeta (cc-pCVQZ) basis. To study the effect of the size of the CI expansion, CI calculations with all single and double excitations from the single reference Hartree-Fock configuration (SRCI) are compared with multi-reference CI (MRCI) calculations. Using all possible excitations of the HF configuration in the internal space of six lowest HF MOs, produced 90 reference configurations for the MRCI. The MRCI calculation performed in the largest cc-pCVQZ basis yields the total energy E =–39.115 hartree, which is only 0.002 hartree higher than that obtained in the benchmark calculation of CH2 with the coupled cluster method with all single and double excitations (CCSD) by Grev and Schaefer136.

Table 5.1: Populations bKS[ij] and bNO[ij] of the products of the Hartree-Fock MOs i and j in the Kohn-Sham and natural orbital representations of the correlated density for CH2.
b[ij]
1a11a1
2a12a1
1b21b2
3a13a1
1b11b1
2a14a1
3a14a1

NO
1.998
1.964
1.960
1.899
0.067
0.011
–0.020

KS
2.00
1.998
2.000
1.998
0.000
0.046
–0.063

The electron correlation produces a peculiar effect on the electron distribution of CH2. The main HF configuration in the CI expansion (5.6) for the singlet state is |1a122a121b223a12|, which corresponds to two -bonds C-H (2a12 and 1b22) and the -electron lone pair (3a12). This can be seen from Table 5.1 where the populations bNO[ij], eq.(5.12), of the products ij of HF MOs in the NO representation of  are presented. However, admixture of the excited HF configuration |1a122a121b221b12| in the CI expansion provides a relatively small, but non-negligible population bNO[1b11b1]=0.067 of the orbital (1b1), which is the -type orbital oriented perpendicular to the molecular plane.

Construction of the KS solution in the largest cc-pCVQZ basis and with the density obtained from the largest (MR)CI produces a pure state with the configuration of the KS orbitals |1a122a121b223a12| (i.e. all the occupied KS orbitals are of  type). The coefficients bKS[ij] of the corresponding KS representation of the density in terms of the HF MO products ij are also displayed in Table 5.1. In complete analogy with the stretched H2 molecule discussed in the previous section, the HF MO (1b1) has zero population in the KS representation, since its symmetry (-type) is different from the -type symmetry of all occupied KS orbitals. The contribution of |(1b1)|2 to the target density  in the NO expansion is replaced in the KS representation by an admixture of higher orbitals i of a1 symmetry in the HF MO expansion of the occupied KS orbitals (2a1) and (3a1), which results in enhanced populations of the cross-products (2a1)(na1)and (3a1)(na1) (n>3). In Table 5.1 the populations of the cross-products (2a1)(4a1) and (3a1)(4a1) are compared for the NO and KS representation and, indeed, the populations for the latter representation are considerably larger than those for the former representation.

Table 5.2: Kohn-Sham and Hartree-Fock energy characteristics (hartree) and occupations of the frontier KS orbitals for CH2. The KS orbitals reproduce target densities obtained from various types of CI calculations: SR: all singles and doubles from the HF reference configuration. MR: all singles and doubles from 90 reference configurations. TZ: aug-cc-pCVTZ basis79; QZ: cc-pCVQZ basis79
Kohn-Sham

 from CI:
SR-TZ
MR-TZ
MR-TZ
SR-QZ
MR-QZ

KS solution:
PS
Hole
Ensemble
PS
PS

 
0.0061
0.0069
0.0062
0.0057
0.0057

(3a1)
–0.391
–0.387
–0.390
–0.394
–0.389

(1b1)
–0.363
–0.398
–0.390
–0.357
–0.384

n(3a1)
2.000
2.000
1.992
2.000
2.000

n(1b1)
0.000
0.000
0.008
0.000
0.000

Ts
38.910
38.900
38.900
38.940
38.932

Ex
–5.781
–5.776
–5.777
–5.786
–5.780

EKS
–44.912
–44.909
–44.909
–44.913
–44.911

Hartree-Fock

Basis:
TZ


QZ


THF
38.846


38.860


ExHF
–5.788


–5.790


EHF
–44.916


–44.918


Thus, the basis of HF MOs, in which all calculations have been performed, should include a sufficient number of orbitals of the relevant symmetry (a1 orbitals in this case) in order to represent properly the correlation effect on the form of KS orbitals. The basis set quality may even affect the type (one-determinantal pure state or ensemble) of KS solution that is obtained. Table 5.2 compares the energies and occupations of the frontier KS orbitals (3a1) and (1b1) as well as the KS and HF energies obtained with the aug-cc-pCVTZ and cc-pCVQZ basis sets and with SR and MR CI expansions. One can see from Table 5.2 that the type of the KS solution depends essentially on the basis set size. In particular, at the triple zeta level the pure state "Aufbau" KS solution is obtained for a limited (SR) CI, with the fully occupied KS orbital (3a1) having a lower energy than the empty orbital (1b1). However, when more correlation is included via the MRCI, calculation at the triple zeta level fails to produce a PS solution. Instead, a "non-Aufbau" situation results, with the empty orbital (1b1) having a lower energy than the fully occupied (3a1) (a hole below the Fermi level). The procedure of "evaporation of a hole below the Fermi level" described in the previous section produces in this case an ensemble KS solution with a very small occupation (0.008) of the orbital (1b1), which becomes degenerate with (3a1). Only at the quadruple zeta level calculations for both SR and MR CI yield the pure state "Aufbau" KS solution.

Note, that the basis set effect on the KS energy characteristics is not very pronounced (see Table 5.2). The KS kinetic energies Ts are somewhat increased when going from aug-cc-pCVTZ to cc-pCVQZ basis, being consistently higher than their HF counterparts. However, the DFT exchange energies Ex and the KS expectation values EKS calculated at various basis set and CI levels appear to be rather close to each other and to the corresponding exchange ExHF and total EHF Hartree-Fock energies. This similarity for these specific energies (as opposed to other energy components) for KS and HF solutions has been observed in Chapter 3, ref.78.
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Figure 5.1: The exchange-correlation potential vxc along the C-H bond of CH2. The C-nucleus is at the origin and the H-nucleus is at 2.099 bohr.
In Figure 5.1 vxc of the PS constructed for CH2 with the most extensive cc-pCVQZ MRCI calculation is plotted along the C-H bond axis as a function of the distance z from the C nucleus. The xc potential displays a well around the C-nucleus, with a depth of –5 hartree that agrees well with that found in 25 for a free C-atom. The well is terminated with the typical local maximum (intershell peak) between the core and valence regions of the C-atom. In the region of the C-H bond vxc has a flat form and, remarkably, the location of the H nucleus at 2.1 bohr can be recognized only by the change of the slope of vxc at that point. This is a characteristic feature of a covalent bond A-H, which has been established previously also for the BH molecule29. For larger z the potential vxc approaches smoothly its Coulombic asymptotics vxc(–1/z.

[image: image31.wmf]
Figure 5.2: Contour plot of the exchange-correlation potential vxc in a plane perpendicular to the molecular plane. The C-nucleus is at the position (0,0) and the positive part of the z-axis is the bisector of the acute angle H-C-H, the electron lone pair of CH2 is located around the negative part of z-axis.
Figure 5.2 is a contour plot of vxc in a plane, which is perpendicular to the molecular plane and crosses it along the bisector of the valence angle H-C-H, thus representing the region of the electron lone pair of CH2. The C-nucleus is at the position (0,0) and the positive part of the z-axis is the bisector of the acute angle H-C-H. The distribution of vxc appears to characterize the non-bonding (lone-pair) character of the HOMO (3a1), being slightly more attractive in the direction away from the H-atoms (negative z values). Along the z-axis vxc displays intershell peaks near z=±0.6 bohr and then local wells near z=±1.0 bohr, which indicate the region of the lone pair of the C-atom at negative z values. Note that in the direction perpendicular to the molecular plane vxc lacks the intershell peak and it increases monotonically with increasing distance from the C-nucleus.

The results of this section show that already for CH2, for which the wave function  has a relatively weak multi-determinantal character, great care should be exercised in order to obtain a KS solution of the proper form. Only at the quadruple zeta level does it become possible to construct the PS solution. As will be shown in the next section, in calculations at this level for C2, for which the wave function  has a stronger multi-determinantal character, a great variety of KS solutions is produced for various bond distances R(C-C), ranging from a pure state through an ensemble with a weak accidental degeneracy to an ensemble with a strong accidental degeneracy.

5.5 Results for C2
CI calculations for the ground singlet state of the C2 molecule with subsequent construction of the KS solution have been performed at its equilibrium bond distance Re=2.348 bohr135, as well as at shorter distance R(C-C)=1.8 bohr and at larger distances R(C-C)=2.8, 3.0, 3.2 and 4.0 bohr The large cc-pCVQZ basis set described in the previous section has been used for the C-atoms and MRCI calculations have been performed to obtain the correlated density. The MRCI employed 27 reference configurations selected in the active space of the nine lowest HF MOs. All the configurations needed to provide the proper dissociation limit of C2, ref.65, are included in the reference space. At this level the MRCI calculation performed at Re is able to recover 90% of the Coulomb correlation energy of C2 estimated empirically from spectroscopic data75.

C2 is an exceptional molecule in the sense, that at the equilibrium bond distance Re it can be approximately described as having two -bonds and no -bond. Whole classes of chemical compounds are known (the saturated hydrocarbons, for example), which have only -bonds and no -bonds, but the reverse situation is very rare, indeed. One can see this feature of C2 from Table 5.3 where the populations bNO[ij], equation (5.12), of the products ij of HF MOs in the NO representation of  are presented for the bond distances considered. The main HF configuration in the CI expansion at Re is |2g22u21u4|, corresponding to two π-bonds (1u4) and no -bond (both the 2s-2s bonding and anti-bonding orbitals are occupied: 2g22u2). The weight of this configuration is c0=0.857, and the admixture of the excited configuration |2g21u43g2| (both a 2s and a 2p -bond) with the coefficient c1=–0.333 produces net depopulation of the  anti-bonding 2u HF MO and population of the pz-pz -bonding MO 3g (see Table 5.3). The configuration |2g22u21u23g2|, corre-sponding to excitation of two π-electrons to the 2p-2p -bond 3g, does not contribute much at Re.

Table 5.3: Populations bNO[ij] of the products of the Hartree-Fock MOs i and j in the natural orbital representation of the correlated density for C2. The bNO[ij] are the elements of the one-electron density matrix in the HF MO basis. For 1πu1πu the sum bNO[1ux1uxbNO[1uy1uy is given
R (C-C), bohr
1.8
2.348
2.8
3.0
3.2
4.0

bNO[ij]
2g2g
1.973
1.966
1.962
1.961
1.958
1.952


2u2u
1.415
1.669
1.819
1.896
1.928
1.934


1u1u
3.896
3.804
3.502
2.824
2.062
1.738


3g3g
0.560
0.316
0.371
0.962
1.722
1.782


1g1g
0.016
0.060
0.112
0.113
0.097
0.209


2g3g
–0.152
–0.201
–0.209
–0.130
0.00
–0.013

At a shorter distance R(C-C)=1.8 bohr the relative destabilization of the 2u MO leads to stronger involvement of |2g21u43g2|, i.e. the 2u population further decreases and that of 3g increases, so that one can speak of partial formation of both 2s and 2p based -bonds, while the two π-bonds are fully retained. At these short distances one cannot unequivocally identify occupation of 3g with formation of a 2p-bond, since the 2pz orbitals do not overlap particularly favorably due to the nodal plane, and in addition the 2pz has to be made orthogonal to the opposite 2s (orthogonality of 3g to 2g). Elongation of the C-C bond from its equilibrium value stabilizes the 2u MO, which becomes completely occupied (note the equivalence of 2g22u2 to the presence of two 2s lone pairs). It also leads to a relative weakening of the 2p-based -bonds compared to the 2p-based -bond. As a result, the population of 3g again increases, this time in expense of the  bonding MO 1u. At R=2.8 bohr 1u4(1u23g2 becomes the leading excitation and at R=3.0 bohr the wave function  has a strong multi-determinantal character, with the determinant 0=|2g22u21u4| and the configuration state function (CSF) 1=|2g22u21u23g2|1(+g>=(|2g22u21ux23g2|+|2g22u21uy23g2)/(2 being mixed with the coefficients c0=0.638 and c1=–0.624. This results in a large population of the HF MO 3g (see Table 5.4), which at these longer distances is clearly 2pz-2pz -bonding.

Table 5.4: Energy characteristics (hartree), occupations of the frontier KS orbitals and density errors  of the KS (pure state or ensemble) and KS-like (hole below the Fermi level) solutions for C2-R (C-C), bohr
1.8
2.348
2.8
3.0
3.2
4.0

Pure state (at 1.8 bohr) and ensemble (other R) Kohn-Sham solutions

(2g)
–0.950
–0.895
–0.831
–0.806
–0.792
–0.710

(2u)
–0.493
–0.538
–0.564
–0.573
–0.580
–0.617

(1u)
–0.505
–0.456
–0.431
–0.420
–0.414
–0.381

(3g)
–0.478
–0.456
–0.431
–0.420
–0.414
–0.381

(1g)
–0.085
–0.187
–0.253
–0.270
–0.284
–0.323

n(1u)
4.000
3.912
3.652
3.019
2.201
2.050

n(3g)
0.000
0.088
0.348
0.981
1.799
1.950


0.012
0.004
0.008
0.008
0.007
0.015

Kohn-Sham solutions with hole below Fermi level

(2g)
x
–0.894
–0.843
–0.864
–0.788
–0.708

(2u)
x
–0.551
–0.604
–0.695
–0.574
–0.616

(1u)
x
–0.450
–0.418
–0.399
(h)  –0.429
(h)  –0.385

(3g)
x
(h)  –0.476
(h)  –0.504
(h)  –0.631
–0.384 
–0.372 

(1g)
x
–0.185
–0.247
–0.267
–0.296
–0.326

n(1u)
x
4.000
4.000
4.000
2.000
2.000

n(3g)
x
0.000
0.000
0.000
2.000
2.000


x
0.008
0.017
0.058
0.020
0.018

x: not applicable

At R(C-C)=3.2 bohr the CSF |(2g22u21u23g2)1(+g> starts to dominate the CI expansion with the coefficient c1=–0.854, while |2g22u21u4|, which dominates at shorter R, has a much smaller contribution c0=0.302. At R=4.0 bohr the contribution of |2g22u21u4| reduces further, c0=0.212, and the population of the HF MO 1u reduces to bNO[1ux1ux+bNO[1uy1uy=1.738 while that of 3g increases to bNO[3g3g=1.782. Note also an increase of population of the  anti-bonding MO 1g with increasing bond distance. The observed trends are in qualitative agreement with those reported in 124.

The demonstrated essentially multi-determinantal character of the wave function has a remarkable effect on the corresponding KS solution for the C2 molecule. Table 5.4 presents the density error (5.14) of the KS solution, energies of the valence KS orbitals and changing total occupation n(1u) of the KS orbitals (1ux) and (1uy) and occupation n(3g) of the orbital (3g) (the KS orbitals (2g) and (2u) are always doubly occupied and (1g) is always empty). At the shortest distance R(C-C)=1.8 bohr a one-determinantal pure state KS solution is obtained with the configuration |2g22u21u4| and with (2u) as the HOMO at –0.493 hartree just above the fully occupied 1πu at –0.505 hartree and just below the 3g at –0.478 hartree. However, at Re and R(C-C)=2.8, 3.0 bohr attempts to obtain a PS solution with the same configuration lead to a single-determinant solution with the LUMO (3g) having lower energy (see Table 5.4) than the HOMO (1u) (a hole below the Fermi level). The 2u drops significantly and will be fully occupied without doubt. Similarly, an attempt to obtain the KS solution at R(C-C)=3.2 and 4.0 bohr with the occupation pattern |2g22u21u23g2| also produces a hole below the Fermi level, this time the hole is present in the partially occupied orbitals (1ux) and (1uy), which have lower energy than the highest doubly occupied (3g).

The procedure of "evaporation of a hole below the Fermi level" applied at R(C-C)>1.8 bohr produces a KS solution with accidental degeneracy of the orbital (3g) with (1ux) and (1uy), so that all three orbitals have the same energy (see Table 5.4). This solution corresponds to a three-determinantal ensemble with the density matrix
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(5.15)

where Ds0 is the KS determinant |2g22u21u4|, Ds1 is the determinant |2g22u21ux23g2| and Ds2 is the determinant |2g22u21uy23g2|. The density matrix 
[image: image33.wmf] provides the E-Vs represen-tability of the correlated density with fractional occupations n(1u) and n(3g) of the orbitals (1u) and (3g), respectively.

The contributions of the configurations Ds0 and Ds1, Ds2 change dramatically with bond distance following the trend for the CI expansion of  discussed above. At the equilibrium distance Re a KS ensemble is obtained with a "weak" accidental degeneracy in the sense that a low occupation n(3g)=0.088 of (3g) is enough in order to make this orbital degenerate with (1u), as expected from the small difference between the orbital energies in the single-determinantal solution ((3g)=–0.476, (1u)=–0.450). As a result, the KS solution in this case is close to the pure state Ds0 with low weights n(3g)/4=0.022 of the determinants Ds1 and Ds2 in the density matrix (5.15). At a longer distance R(C-C)=2.8 bohr a "medium" ensemble is obtained, while at R(C-C)=3.0 bohr a "strong" ensemble is formed with n(3g)=0.981 and the weights n(3g)/4=0.245 of the determinants Ds1, Ds2 and {n(1u)–n(3g)}/4=0.510 of Ds0. The formation of this KS ensemble with a strong accidental degeneracy reflects the above-mentioned strong multi-determinantal character of the function  of the interacting system at this distance. At R(C-C)=3.2 bohr the mixture of the determinants in the ensemble is reduced, since the weight of Ds0 reduces to {n(1u)–n(3g)}/4=0.100, while those of Ds1 and Ds2 increase to n(3g)/4=0.450, and the ensemble (5.15) becomes rather close to a (by symmetry equal) mixture of the determinants Ds1 and Ds2. At R(C-C)=4.0 bohr the accidental degeneracy of the ensemble can be called again "weak", the weight {n(1u)–n(3g)}/4=0.025 of the configuration Ds0 in (5.15) becomes really small.

From Table 5.4 one can compare the characteristics of the ensemble KS solution with those of the KS-like solution with a hole below the Fermi level. In all cases the density error   of the ensemble solution is smaller than that for the KS-like solution, though the corresponding difference is not large for weak and medium ensembles. However, the one-determinantal solution clearly fails to reproduce the  corresponding to the function  with a strong multi-determinantal character at R(C-C)=3.0 bohr, the corresponding   amounts to 0.058e, more than seven times as large as   of the ensemble solution. In this case the hole in the 3g is more than 0.2 hartree below the Fermi level. The inferior quality of the KS-hole solution follows also from a comparison of the kinetic energies Ts, which will be made below.

At Re and R(C-C)=2.8 and 3.0 bohr the occupation of the 3 is increased upon forming the ensemble solution and the energies of all -orbitals for the ensemble are shifted upwards compared to those of the solution with a hole (with the only exception of the orbital 2g at Re), while the energies of all the -orbitals are shifted downwards. At R(C-C)=3.2 and 4.0 bohr the opposite trend takes place, in agreement with the fact that at these distances the occupation of 1u is increased when going to the ensemble solution. These trends are also reflected in the form of the exchange-correlation potentials vxc for both types of solutions, as will be discussed later in this section.

Table 5.5: Populations bKS[ij] of the products of the HF MOs i and j in the KS representations of the correlated density for C2. The 1πu1πu contributions are summed over the x and y components.
R(C-C), bohr
1.8
2.348
2.8
3.0
3.2
4.0

Pure state (at 1.8 bohr) and ensemble (other R) Kohn-Sham solutions

bKS[ij]
2g2g
1.979
1.987
1.989
1.992
1.999
1.999


2u2u
1.994
1.996
1.998
1.998
1.996
1.994


1u1u
3.999
3.910
3.648
3.014
2.192
2.034


3g3g
0.016
0.098
0.353
0.976
1.799
1.948


1g1g
0.000
0.000
0.000
0.000
0.000
0.000


2g3g
–0.359
–0.300
–0.253
–0.169
0.000
0.000

Kohn-Sham solutions with hole below Fermi level


2g2g
x
1.985
1.982
1.955
1.998
1.998


2u2u
x
1.993
1.981
1.904
1.987
1.992


1u1u
x
3.996
3.990
3.972
1.992
1.984


3g3g
x
0.012
0.014
0.026
1.999
1.998


1g1g
x
0.000
0.000
0.000
0.000
0.000


2g2g
x
–0.315
–0.338
–0.448
0.000
0.000

x: not applicable

Table 5.5 displays the populations bKS[ij] of the products ij of HF MOs in the KS representation of , equation (5.12), which can be compared with the populations bNO[ij] in the NO representation from Table 5.3. The differences illustrate the well-known fact that the KS solution does not provide the full one-electron density matrix but just the diagonal density. At R(C-C)=1.8 bohr the comparison reveals a distinct difference between the KS orbitals of the pure determinantal state and the NOs, analogous to that established for the stretched H2 molecule in Section 5.3 and the CH2 molecule in the previous section. The population of the -bonding HF orbital (3g) in the KS representation is very small, while (3g) is relatively highly populated in the NO representation, bKS[3g3g=0.016 and bNO[3g3g=0.560 respectively. On the other hand, the population bKS[2u2u=1.994 of the -anti-bonding HF orbital (2u) is higher than its NO counterpart bNO[2u2u1.415. The NO coefficients reflect an appreciable population of the HF MO (3g) and depopulation of (2u), in agreement with considerable admixture of the excited configuration 2u2(3g2 in the CI. The NOs (3g) and (2u) are very similar to the corresponding HF MO's and their occupation numbers therefore are close to the diagonal elements bNO[3g3gand bNO[2u2u. The KS coefficients reflect the fact that the KS pure state determinant with configuration |2g22u21u4| lacks the 3g orbital. The effect on the diagonal density of the admixture of 2u2(3g2 in the CI wave function has to be build in by changing the orbitals (particularly 2g) away from the HF MO character, which can only be effected by mixing with unoccupied HF MOs of the same symmetry. The KS orbital (2g), while still being predominantly the HF MO (2g), has some contribution, with minus sign, of (3g). In analogy with the H2 and CH2 cases, the effect of excitations like 1u4(1u23g2 and 2u2(3g2 is reproduced in the KS representation by enhanced populations of the cross products ij of the HF MOs. Indeed, the population of the product (2g)(3g) in the KS representation bKS[2g3g–0.359 is much larger than bNO[2g3g–0.152 in the NO representation. The coefficients of the (2g) and (3g) in the KS (2g) lead to the significant off-diagonal bKS[2g3g–0.359, as can be seen in Table 5.5.

Similar observations can be made with respect to the comparison of the NO representation  at Re and R(C-C)=2.8 and 3.0 bohr with that for the KS-like single determinant solution with a hole below the Fermi level (see Table 5.5). It is interesting to note that going from R(C-C)=3.0 to 3.2 bohr the hole-solution changes configuration from a hole in 3g to a hole in 1πu (cf. populations in Table 5.4), which is reflected in abrupt change in the diagonal bKS-hole[3g3gfrom 0.026 to 1.999, and in bKS-hole[1u1u from 3.972 to 1.992. According to Table 5.4 the error ∆ , although larger than for the ensemble solutions, is not excessive. Apparently the orbitals in these hole determinants are able to reorganize significantly so as to continue to describe the target CI density reasonably well, almost irrespective of the configuration (for instance, either the KS (3g) fully occupied or empty). This must have important consequences for the shape of the orbitals and of the KS potentials as well (see below). The sudden change bKS-hole[2g3g from –0.448 at R(C-C)=3.0 to 0.00 at R(C-C)=3.2 bohr is testimony to this change (of the 2g orbital in this case). It is interesting to note, that at these larger distances, judging from the coefficients bKS[ij] and bNO[ij], the KS orbitals of the ensemble solution are closer to the NOs than the orbitals of the one-determinantal hole solution, which is especially so for the "medium" and "strong" ensembles at R(C-C)=2.8 and 3.0 bohr For the ensemble at R(C-C)=3.0 bohr the population of the HF MO (3g), bKS-ensemble[3g3g0.976, is much larger than that for the KS-hole solution, bKS-hole[3g3g0.026. The latter has to be build up fully by mixing of the HF MO (3g) into the KS (2g), whereas in the ensemble the KS (3g), consisting predominantly of (3g), has already an occupation number n(3g)=0.981. The population of the HF MO (3g) in the ensemble solution is in fact rather close to that for the NO representation (bNO[3g3g0.962, see Table 5.3). Similarly, the populations bKS-ensemble[1u1u3.014 and bKS-ensemble[2g3g–0.169 for the ensemble are much closer to the bNO[1u1u2.824 and bNO[2g3g–0.130 for the NO representation as compared to and bKS-hole[2g3g–0.448 and bKS-hole[1u1u3.972 for the KS-hole solution. The ensemble configuration of the KS orbitals (2g)2(2u)2(1u)3.019(3g)0.981 (occupation numbers from Table 5.4) contains the fractionally occupied orbital (3g), which has a dominant contribution of the corresponding HF MO (3g), and the depopulated orbital (1u). This configuration is close to the configuration of the NOs ((2g)1.966((2u)1.898((1u)2.826((3g)0.970 (NO occupation numbers used), which represents the correlated . Thus, one can consider the occupied KS orbitals of the ensemble as plausible approximations for the corresponding NOs. They will of course not be exactly equal.

In Table 5.6 the energy characteristics obtained for the KS pure state or ensemble and for the KS-like solutions with a hole below the Fermi level at various distances R(C-C) are compared with the corresponding HF characteristics. Considering first the ensemble solutions we note that the kinetic energies Ts of the KS ensemble solution are consistently higher than their HF counterparts THF, with the corresponding difference being increased with increasing R(C-C). As was established previously for other molecules in chapter 4, refs.29,78, this is due to the contraction of the correlated density around the nuclei as compared with the HF density HF, and the increasing nondynamical correlation at larger bond distances, which is neglected in the HF approximation. On the other hand, the ensemble exchange energies Ex are close to the HF ones ExHF for the ensembles with a weak accidental degeneracy, and Ex are somewhat larger (in absolute magnitude) than ExHF for medium and strong ensembles. When summing up, differences between individual KS and HF energy components tend to compensate each other, so that for the distances up to R(C-C)=3.0 bohr the KS expectation values EKS are rather close to the HF energies EHF. For R(C-C)=3.2 and 4.0 bohr the ensemble EKS becomes definitely higher than EHF of the configuration |2g22u21u23g2|.

Table 5.6: Kohn-Sham and Hartree-Fock energy characteristics (hartree) for C2
R(C-C), bohr
1.8
2.348
2.8
3.0
3.2
4.0

Pure state (at 1.8 bohr) and ensemble (other R) Kohn-Sham solutions







Ts
77.287
75.517
75.068
75.088
75.101
75.029

Ex
–10.381
–10.047
–9.913
–9.922
–9.946
–9.809

EKS
–95.148
–90.720
–88.206
–87.347
–86.611
–84.233

KS solutions with hole below Fermi level







Ts

75.518
75.083
75.210
75.105
75.030

Ex

–10.032
–9.861
–9.788
–9.945
–9.808

EKS

–90.713
–88.167
–87.153
–86.614
–84.233

Hartree-Fock







THF
77.191
75.392
74.854
74.756
74.885
74.688

ExHF
–10.389
–10.041
–9.876
–9.827
–9.760
–9.810

EHF
–95.179
–90.738
–88.210
–87.316
–86.686
–84.300

Comparing next to the KS solutions with a hole below the Fermi level, we note that the Ts values for the ensemble KS solution are consistently lower. This difference is marginal for weak ensembles at Re and R(C-C)=4.0 bohr as well as 3.2 bohr, however, it becomes appreciable for medium and strong ensembles at R(C-C)=2.8 and 3.0 bohr (see Table 5.6). Since a true KS solution must have the minimal (for a certain ) kinetic energy, one can conclude that the ensemble represents such a true KS solution. The one-determinantal solution with a hole below the Fermi level is of inferior quality, which is especially clear for the case when the wave function  of the interacting system has a strong multi-determinantal character. For the hole solutions the EKS values are clearly inferior at the distances up to R(C-C)=3.0 bohr.

Figure 5.3 presents the Kohn-Sham exchange-correlation potential vxc constructed at Re, and R(C-C)=2.8, 3.0 and 4.0 bohr The potentials are plotted along the C-C bond axis as functions of the distance z from the bond midpoint, so that half of the symmetrical picture for the C2 dimer is presented. The ensemble vxc displays all the typical features of the xc potentials for a dimer molecule A2, which have been established and interpreted previously for the dimers Li2, N2, F2, ref.54.These are a deep well around the nucleus, atomic intershell peaks, Coulombic asymptotics at larger z and a plateau in the bonding region (small z). In particular, a plateau reflects the form in the -bonding region of the exchange (Fermi) hole, since the potential of this hole brings a dominant contribution to vxc. In this region the Fermi hole is delocalized symmetrically over 
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Figure 5.3: The exchange-correlation potential vxc along the bond axis of C2, with vxcE the potential corresponding to the ensemble solution, and vxcPS-hole corresponding to the single-determinant solutions with a hole below the Fermi level. a) Re, b) 2.8 bohr, c) 3.0 bohr, d) 4.0 bohr.
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Figure 5.4: Contour plots of the exchange-correlation potential vxc in the plane containing the bond axis of C2. The bond midpoint is at (0,0). a) Re, b) 2.8 bohr, c) 4.0 bohr.
both C-atoms and it is essentially static, i.e. it does not change shape when the reference position is changed around the bond midpoint54,85. Increase of R(C-C) produces a change of the form of vxc in the -bonding region around the bond midpoint from a plateau to a more Coulombic-like shape (compare Figure 5.3).

While vxc at all R(C-C) considered looks "normal" for the ensemble, the potential for the KS-like solution with a hole is heavily distorted at R(C-C)=2.8 and 3.0 bohr (see Figure 5.3b, c). This appears to be the price for an attempt to reproduce with just one determinant the density from a CI wave function  that has a strong multi-determinantal character. We already noted that the occupied KS orbitals in this case have to change shape considerably in order to incorporate the character of HF MO's that are occupied in the CI, and in the ensemble solution. This of course requires substantial changes in the potential, which have to be effected through vxc. In case  consists of a relatively weak mixture of determinants, at Re and R(C-C)=4.0 bohr, the potentials for both types of solution are rather close to each other, though at Re the potential for the KS-hole solution does not possess the characteristic atomic intershell peaks. For Re and R(C-C)=2.8 and 3.0 bohr the potential for the KS-hole solution is consistently more attractive than that for the ensemble solution. Taken together with the above-mentioned relatively large density error  and high kinetic energy Ts, these results confirm the inferior quality of a one-determinantal KS-like solution with a hole and confirm that the ensemble is the proper KS solution in this case.

The behavior of vxc with changing R(C-C) in the -bonding region is shown in Figure 5.4. It represents contour plots of the ensemble vxc at Re and R(C-C)=2.8 and 4.0 bohr in the plane containing the bond axis (axis z of the plot), with the bond midpoint being at position (0,0). The variation of the shape of vxc correlates with the gradual decrease of the -bonding with increasing R(C-C). Indeed, at Re and away from z-axis (at z=0.5-0.8 bohr) the potential has lower values (contours of –0.9 and –0.85 Hartree) closer to the bond midplane, thus favoring an accumulation of the electron density in the region of "banana" bonds (see Figure 5.4a). At larger distances the contour of –0.85 Hartree reduces to a small closed curve and moves in the nonbonding region on the outer side of the C-nucleus.

5.6 Summary and Conclusions

In this chapter the type of Kohn-Sham solution and the form of the Kohn-Sham orbitals has been studied for cases (the CH2 and C2 molecules) where the nondegenerate pure state wave function of the corresponding interacting system has essentially multi-determinantal character. We find the CH2 ground state at equilibrium geometry to be PS-Vs representable, but C2 at Re and longer bond distances to belong to the class of E-Vs representable densities of Section 5.2.2.

Applying the results of Levy36 and Lieb37 to noninteracting systems, we know that there are many densities that are not PS-Vs representable but that are E-Vs representable. It is thus certainly possible that a given interacting ground state density does not belong to the set of PS noninteracting ground state densities, but does belong to the set of ensemble-representable noninteracting densities. Our results prove this not to be an academic possibility, but E-Vs representability is in fact called for to handle cases with strong electron correlation, i.e. essentially multi-determinantal character of the interacting ground state wave function.

The KS solution for the lowest singlet states of CH2 and C2 has been constructed from the "ab initio" CI density. To obtain the ensemble solution in the cases when an attempt to construct the PS leads to a "non-Aufbau" solution, the procedure of "evaporation of the hole below the Fermi level" has been employed (cf. refs.33,35,134). Already for CH2, for which the wave function has a relatively weak multi-determinantal character, calculation in the triple zeta basis yields the ensemble solution and only with the extended quadruple zeta basis the PS one-determinantal KS solution has been obtained.

With the example of C2, the possibility has been demonstrated of an essentially accurate ensemble KS solution with accidental degeneracy (E-Vs representability) for a density that is PS-V representable for the interacting system. A variety of KS solutions has been obtained depending on the R(C-C) distance, ranging from a single-determinantal PS for R(C-C)=1.8 bohr through an ensemble with a weak accidental degeneracy at Re to an ensemble with a strong degeneracy at R(C-C)=3.0 bohr and then to another ensemble with a weak accidental degeneracy at R(C-C)=4.0 bohr. KS-like solutions with a hole below the Fermi level have also been constructed as alternatives to the ensemble solution. When the multi-determinantal character of the wave function  of the interacting system is weak, the density errors  and energies such as Ts and EKS of both solutions are in fact rather close to each other. However, when  has a strong multi-determinantal character, the quality of the solution with a hole is inferior to that of the ensemble since  is considerably higher for the former solution. This is probably related to the unusual form that vxc has to take in this case in order to "distort" the fully occupied KS orbitals sufficiently so that they can build the density. The potential obtained for the ensemble solution looks "normal", i.e. its form with characteristic atomic intershell peaks is reminiscent of that obtained previously for monohydrides AH (A = Li, B, F)29,92 and for dimers A2 (A = Li, N, F)54. The relatively large ∆ and the strange shape of vxc are of course not proof that the hole solutions are not correct, since we cannot exclude that the numerical procedure of constructing vxc may be refined so as to achieve a better ∆ by an even more elaborate vxc. The solutions with a hole below the Fermi level are, however, not acceptable since they are not true ground states of the noninteracting system with the obtained potential vs. Taken together, these results confirm that the ensemble is the proper KS solution in this case.

The KS orbitals can be compared to the natural orbitals. When the density is still PS-Vs representable, but configuration mixing is already becoming significant in the CI wave function, the occupied KS orbitals may start to differ from the NOs since they have to incorporate the effect of the configuration mixing on the density. As an example we have discussed the stretched H2 molecule. The expansion of the KS (g) orbital in terms of the canonical Hartree-Fock orbitals has a specific form, since unoccupied HF orbitals of g symmetry have to be included in order to represent the correlation effect on the density of electronic excitation to the u orbital (of a different symmetry) in the CI expansion. Because of this specific expansion, the construction of accurate KS orbitals in a finite basis requires a sufficiently large basis set. The expansion indicated here causes the KS orbitals for a PS to be distinctly different from the natural orbitals representing the same . When being expanded in terms of the HF orbitals i, the KS orbitals and NOs provide different representations of the same  in terms of the products ij. This has been observed in C2 at R(C-C)=1.8 bohr, where the density can be represented by a noninteracting pure state, and in particular for the KS-like solutions that consist of a pure state (single determinant) with a hole below the Fermi level. The KS orbitals of the ensemble solutions are closer to the natural orbitals.

The ensemble solutions obtained for C2 provide a representation of  with fractional occupations of KS orbitals. Thus, our results support the use of fractional occupation of KS orbitals within the computational DFT schemes based on the local density (LDA) and generalized gradient  approximations (GGA) in the cases when the standard procedure creates holes below the Fermi level in the KS spectrum33,35. Still, care should be exercised in this case, since the form of the KS solution might be sensitive to the size of the basis and to the specific DFT approximation used.

The elongation of the C-C bond can be considered as a simple example of a dissociation reaction. The complex electron rearrangement with a -bond forming and a -bond breaking is described in the KS theory by the appearance and transformation of the ensemble solution with an accidental degeneracy presented above. One can expect that such ensembles play an important role in the KS description of chemical reactions and, especially, of their transition states35. This will be substantiated in the next chapter.
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