3 Comparison of accurate exchange and correlation energies in density functional theory with traditional Hartree-Fock based ones for the molecules Li2, N2, F2.

The density functional definition of exchange and correlation differs from the traditional one. In order to calculate the DFT quantities accurately, molecular Kohn-Sham solutions have been obtained from "ab initio" wave functions for the homonuclear diatomic molecules Li2, N2, F2. These afford the construction of the Kohn-Sham (KS) determinant s and the calculation of its total electronic energy EKS and the kinetic Ts, nuclear-attraction V, and Coulomb repulsion WH components as well as the (DFT) exchange energy Ex and correlation energy Ec. Comparison of these DFT quantities with the corresponding Hartree-Fock (HF) quantities shows that the corre-lation errors in the components T, V and WH of the total energy are much larger for the HF than for the KS determinantal wave function. However, the total energies EKS and EHF appear to be close to each other, as well as the exchange energies Ex and ExHF and correlation energies Ec and EcHF. The KS determinantal wave function and the KS orbitals therefore correspond to much improved kinetic and Coulombic energies, while having only a slightly larger total correlation energy. It is stressed that these properties of the KS orbitals make them very suitable for use in the molecular orbital theories of chemistry.

3.1 Introduction

The exchange-correlation energy Exc of a many-electron system is the key quantity of density functional theory (DFT)5,6,70. Within the Kohn-Sham (KS) theory2 Exc is defined as a functional of the electron density  in the KS expression for the total electronic energy,
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(3.1)

where Ts is the kinetic energy of a noninteracting particle system with density , V is the energy of electron-nuclear attraction and WH is the Coulomb or Hartree energy. Accurate values of the exchange and correlation energies obtained for chemically interesting systems are essential for analysis of the effect of electron correlation within KS theory and in order to test and calibrate various DFT approximations.

Since the exact functional form of Exc is not known, one can, in principle, determine accurate values of Ex and Ec from highly accurate "ab initio" wave functions, for example, from extensive configuration interaction (CI) calculations. From the accurate density  the Kohn-Sham orbitals i corresponding uniquely to that density have to be determined in order to calculate Ex and Ec. In order to subdivide Exc into the exchange Ex and correlation Ec components, the determinant s built from the KS orbitals i is used as a reference wave function with the energy EKS
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where operator 
[image: image3.wmf] denotes the Hamiltonian of the system and Ex is the DFT definition for the exchange energy,
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where xi=ri,si, ri are the space and i are the spin variables. Actually, Ex has the same form, as a functional of the orbitals, as the Hartree-Fock (HF) exchange energy ExHF but Ex[] is defined with the KS orbitals i related to the exact density 
[image: image5.wmf], while ExHF is defined with the HF orbitals related to the HF density HF(r).

As has been pointed out before71,72 the definition of Ec in DFT differs conceptually from the definition of EcHF of traditional quantum chemistry. In DFT the correlation energy Ec is defined as the remainder when the exchange energy Ex defined above is subtracted from Exc, which implies that Ec is simply the difference between the exact energy E of eq. (3.1) and EKS of (3.2),
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(3.3)

Because of the lack of accurate KS solutions, traditional HF based exchange and correlation energies have been used in DFT to obtain reference Ex and Ec values. In particular, Ex is approximated with the corresponding HF exchange energy ExHF, while Ec of DFT is approxi-mated with the difference EcHF between the empirical total nonrelativistic electronic energy E of a system obtained from the spectroscopic data73-75 and the HF electronic energy EHF. Since the HF determinant is by definition the one with the lowest possible energy, the DFT correlation energy Ec is necessarily more negative (larger in an absolute sense) than the traditional corre-lation energy76, i.e. Ec(EcHF. We can further subdivide Ec into the kinetic Tc and the potential Wc components
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where Wxc=W –WH is the exchange-correlation part of the exact electron-electron interaction energy W. On the other hand, according to the traditional definition, the correlation energy EcHF is the difference between E and the Hartree-Fock energy,
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(3.5)

These definitions  differ conceptually from each other, since the DFT correlation energy is a functional of the exact density , while the traditional one involves the difference (= –HF. Therefore correlation terms like VcHF, the correlation correction to the electron-nuclear attraction energy, and WH,cHF, the correlation correction to the Hartree energy of the electrostatic electron repulsion, do not enter Ec. Moreover, the terms TcHF and WcHF of EcHF will be different from the corresponding terms Tc and Wc of Ec. Note that WcHF, according to
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differs from Wc only in the difference (Exc,HF between the KS and HF exchange energies.

However, the HF method yields rather accurate electron densities for most atoms, and in those cases Ex and ExHF as well as Ec and EcHF are actually very close to each other23. In case of strong near-degeneracy correlation, such as in dissociating molecules, the HF and exact densities may differ strongly and the difference between the conventional and DFT definitions of exchange and correlation energies becomes relevant77,78. For molecules at the equilibrium geometry the question whether the DFT and traditional definitions produce close values of the exchange and correlation energies remains open.

In this chapter the KS orbitals i and energies such as Ts, Ex, Ec and others are obtained from "ab initio" wave functions for the homonuclear diatomic closed-shell molecules Li2, N2, F2 at the equilibrium and elongated bond distances. A comparative analysis of the exchange and correlation energies of DFT and traditional quantum chemistry is performed using a partitioning of the KS and HF electronic energies EKS, EHF and correlation energies Ec, EcHF into various components.

3.2 Calculation of the Kohn-Sham quantities

Since the scheme of vxc and xc construction from "ab initio" wave functions used in this chapter has already been presented and discussed in 28,29, we will only give some specific details concerning the present calculations. The correlated reference densities and one- and two-electron density matrices have been obtained by means of HF and subsequent CI calculations using the ATMOL package63. We have calculated, in a basis of contracted Gaussian functions, the ground states of Li2, N2 and F2 at the experimental equilibrium bond distances Re of 5.05 for Li2, 2.074 for N2 and 2.668 bohr for F2. For Li a basis65 with eight s- and four p-type functions has been used, which has been augmented with extra p-and d-type polarization functions. For N and F the correlation-consistent polarized core-valence triple zeta added (cc-pCVTZ) basis sets79 have been used.

The basis sets cc-pCVXZ from X=D (double zeta) to X=Q (quintuple zeta) were obtained for the atoms B through Ne as an extension of the correlation-consistent polarized valence basis sets (cc-pVXZ)64. This extension allows to represent adequately the correlated electron density  in all regions and to treat uniformly core, core-valence and valence correlation effects when performing the multi-reference CI (MRCI) calculations with the cc-pCVXZ basis. This goal is achieved by the inclusion of a large number of basis functions, so that the gap between the core and valence exponents is rather small79. The exponents were optimized in atomic MRCI calculations. In order to describe properly effects of angular core and valence electron correlation, higher angular momentum polarization functions were included with both high exponents (core like) and intermediate exponents (valence size). In particular, the cc-pCVTZ basis that was chosen in this chapter includes p- and d-type polarization functions of typical core extent and d- and f-type polarization functions with typical valence exponents. In a similar way, in order to describe properly the angular correlation, we have augmented the basis of 65 for Li with p- and d-type polarization functions of both core and valence extent.

The performance of MRCI with the combined cc-pCVXZ basis sets as well as with the original cc-pVXZ sets was tested in 79-81 in atomic calculations and with benchmark calculations on the molecules H2, CnH (n=2-7), OH, HF, and N2. MRCI calculations in the cc-pCVXZ basis have proven to provide the same good description of the valence correlation effects as the corresponding calculations in a basis of atomic natural orbitals (ANO)82. In general, the quality of the results appreciably improves when going from cc-pCVDZ to cc-pCVTZ basis, while further extension of the basis produces relatively little improvement. The test MRCI calculations in the cc-pCVTZ basis reproduce well the state separation energies, equilibrium geometry, harmonic frequencies and anharmonicities, as well as the dipole and quadrupole moments, which is indicative of the good quality of the corresponding wave function and the correlated density.

The multi-reference CI (MRCI) calculations have been carried out within the direct CI approach with 106 reference configurations for Li2 and N2 and 36 reference configurations for F2. The reference configurations were selected within the internal space of 8 lowest energy Hartree-Fock molecular orbitals (MO) for Li2 and 10 orbitals for N2 and F2. All single and double excitations from each reference configuration to either internal or external subspaces have been included in the MRCI, which have also been augmented with the configurations obtained by single excitation from a reference configuration to the internal subspace with subsequent single excitation to the external subspace. The MRCI calculations performed at Re recover 86% of the total Coulomb correlation energy for Li2 and N2, and 84% for F2.

The KS orbitals are constructed using the local iterative procedure of van Leeuwen and Baerends9,53 in the same basis of MOs as has been used for the MRCI calculations. After 75-100 iterations the procedure has reached its saturation state and further iterations make changes only within few milli-hartree for the calculated Kohn-Sham orbital energies i and the kinetic energy Ts. The accuracy of the resultant KS solution can be characterized by the values of the absolute integral error at m-th iteration ( m(r)–(r)|dr of 0.0035e for N2, 0.007e for F2, and 0.04e for Li2 obtained after 100 iterations. The relatively large error for Li2 appears, probably, because for this molecule with its diffuse electron density the region of density tails (where both the Gaussian basis set representation and the potential construction procedure are less adequate) plays a more important role. The errors   increase with increasing bond distance R(A-A).

3.3 Correlation corrections to the kinetic energy and various potential energy terms for the Kohn-Sham and Hartree-Fock determinantal wave function

Table 3.1 presents various Kohn-Sham energy characteristics of Li2, N2 and F2 calculated for three different bond distances R(A-A). The components Ts, V, WH and Ex of the total electronic energy EKS, all calculated with the KS determinant (s, and the KS correlation energy Ec=Tc+Wc are compared with those calculated with the Hartree-Fock determinant and the corresponding differences ∆Es,HF are presented. The HF determinant differs markedly from the KS determinant, in particular for N2 and F2, as can be judged from the large differences ∆Ts,HF, ∆Vs,HF, ∆WHs,HF in the kinetic energy, electron-nuclear and Hartree part of the electron-electron potential energy, respectively. The magnitude of these terms may be put in perspective when comparing them to the dissociation energies of these molecules which range from a few hundredths of a hartree (Li2 and F2) to ca. 0.37 hartree (N2). The explanation of the large differences between these KS and HF quantities is the diffuse nature of the HF orbitals and electron density78,85. The Coulomb correlation leads to a considerable contraction of the correlated density around the nuclei as compared with the HF one. Because of this contraction, the corresponding differences of the electron-nuclear attraction energies ∆Vs,HF=Vs–VHF are in all cases negative, while those of the kinetic energy, ∆Ts,HF=Ts–THF, and the Hartree energy, ∆WHs,HF=WH–WHHF, are positive. Obviously, since the KS density is exact, there are no correlation corrections to the KS electron-nuclear attraction energy and Hartree energy, so that ∆Vs,HF and ∆WHs,HF represent the HF correlation corrections VcHF and WH,cHF to V and WH. The large ∆WHs,HF and ∆Vs,HF in Table 3.1 demonstrate the large correlation corrections in the electron-electron and in particular in the electron-nuclear Coulombic energies in the case of HF. They are as a matter of fact of the same order of magnitude as Wc and WcHF, which represent the change in the electron-electron interaction energy due to the Coulomb hole. Wc is purely an effect of the correlation between the electrons, but it is not significantly larger than the "secondary" effects of the correlation induced changes in the one-electron density matrix and diagonal density, TcHF, VcHF and WH,cHF. The Tc and TcHF values are given explicitly in Table 3.1 and show that these correlation corrections to the kinetic energies are modest as a percentage of T, but they are large in an absolute sense, and they differ significantly (about a factor 2 for N2 and F2) between KS and HF.

In view of the considerable differences between various HF and KS energy terms, it is quite remarkable to note that in a number of cases there is close agreement. To begin with we consider the results for the molecules A2 at their equilibrium distances. First of all, the exchange energies Ex and ExHF are quite close (note the small ∆Exs,HF in Table 3.1) except for F2. As a conse-quence Wc and WcHF=∆Exs,HF+Wc are quite close. Since on the other hand Tc and TcHF differ quite a bit, one would expect Ec =Tc +Wc to differ from EcHF, but remarkably the remaining terms VcHF and WH,cHF in EcHF (3.5) are not only individually large but also cancel the difference in Tc and TcHF, so that ultimately Ec and EcHF are very close. The difference ∆Ecs,HF between Ec and EcHF is simply the difference between the energies EHF and EKS, as follows immediately from eqs. (3.3) and (3.5),
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As was noted before, the HF determinant is by definition the one with the lowest possible energy, which implies that ∆Ecs,HF is always negative (see Table 3.1).

We use the calculated ∆Ecs,HF values to estimate the true correlation energies Ec of DFT for Li2, N2, and F2. In order to do this, we add the difference ∆Ecs,HF to the empirical value for the traditional correlation energy75 ∆EcHF,emp obtained by using an empirical estimate for the exact total energy E
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As follows from the previous discussion, the resulting empirical Ecemp values presented in Table 3.1 are close to the corresponding EcHF,emp ones, as can be seen from the small values for ∆Ecs,HF. One can conclude that the present results for Re(A-A) justify (at least, for the case of the second row dimers) the current practice to approximate the DFT quantities Ex and Ec with the traditional ExHF and EcHF ones. However, for larger bond distances R(A-A) this conclusion does not hold true. The quality of the HF density deteriorates with increasing bond distance and it becomes progressively less contracted than the correlated density. This is due to the ionic configurations present in the covalent bonds described by the RHF wave function. The Hartree-Fock effective field is therefore too repulsive around the nuclei, an effect that is particularly strong at large bond lengths and if there are ionic configurations with multiple charge, as is inevitable in case of multiple bonds86. As a result, the differences ∆Ts,HF, ∆Vs,HF, ∆WHs,HF increase, quite significantly so for N2 and F2, and moderately for Li2 (∆WHs,HF for Li2 actually slightly decreases for larger distances R(Li-Li)=6.0 and 7.0 bohr). In these cases compensation of the differences in the various terms that have opposite sign again takes place to a high degree, yet the resulting ∆Ecs,HF values are distinctly more negative than those for Re(A-A), so that the DFT correlation energy Ec becomes progressively more negative than the traditional EcHF.

Table 3.1: KS energy characteristics (hartree) for Li2, N2, F2 and their differences from the HF characteristics.


Li2


N2


F2



R(A–A)
5.05
6.0
7.0
2.074
3.0
3.5
2.668
3.0
3.5












Ts
14.902
14.840
14.817
109.070
108.095
108.223
198.922
198.754
198.726

∆Ts,HF
0.011
0.015
0.036
0.296
0.692
0.903
0.356
0.436
0.545

Tc
0.083
0.084
0.079
0.329
0.328
0.313
0.450
0.454
0.454

TcHF
0.094
0.099
0.115
0.625
1.020
1.216
0.806
0.890
0.999












V
–38.062
–37.392
–36.880
–303.628
–288.260
–283.780
–537.656
–530.896
–523.252

∆Vs,HF
–0.048
–0.044
–0.064
–0.558
–1.330
–1.759
–0.493
–0.653
–0.890












WH
10.079
9.729
9.450
75.068
67.858
65.666
129.566
126.286
122.529

∆WHs,HF
0.045
0.032
0.037
0.274
0.716
0.980
0.122
0.215
0.363












Wc
–0.194
–0.190
–0.192
–0.804
–0.969
–1.063
–1.082
–1.122
–1.181

WcHF
–0.196
–0.190
–0.192
–0.810
–1.009
–1.124
–1.058
–1.101
–1.167












Ex
–3.565
–3.541
–3.521
–13.114
–12.621
–12.490
–19.935
–19.841
–19.760

∆Exs,HF
–0.002
0.001
0.001
–0.006
–0.040
–0.067
0.024
0.022
0.014












Ec
–0.111
–0.106
–0.113
–0.475
–0.641
–0.750
–0.632
–0.668
–0.727

EcHF
–0.105
–0.103
–0.104
–0.469
–0.603
–0.687
–0.623
–0.649
–0.695

∆Ecs,HF
–0.006
–0.003
–0.009
–0.006
–0.038
–0.063
–0.009
–0.019
–0.032












Ecemp
–0.128


–0.552


–0.755



Left-right correlation is treated fundamentally differently in KS and HF calculations78,87 (they are not treated at all in the latter case). The progressively larger VcHF and WH,cHF values upon bond lengthening reflect the increasingly more diffuse nature of the HF orbitals due to the presence of ionic configurations. There are no corresponding correlation errors in V and W in the KS case. A similar important difference between HF and KS is apparent in the kinetic energies. Table 3.1 presents the kinetic part of the DFT exchange-correlation energy Tc as well as that of the traditional correlation energy TcHF. The Tc and TcHF values are evaluated as the difference between the CI kinetic energy TCI and the corresponding independent-particle kinetic energies,
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The diffuse nature of the HF orbitals makes THF increasingly lower than TCI, i.e. TcHF increases strongly upon bond elongation, in particular in the triply bonded N2, for which TcHF increases from 0.625 hartree at R(N-N)=2.074 bohr to 1.216 hartree at R(N-N)=3.5 bohr. The kinetic energy of the KS system does not suffer such an error, and in fact Tc hardly changes as a function of bond distance. In the dissociation limit Tc approaches to the sum of the Tc contributions of the atomic fragments77, which does not appear to be much different from Tc at Re.

To sum up, the results of this section show that for the dimers Li2, N2, F2 at the equilibrium bond distances the DFT and the traditional definitions of the exchange and correlation energies produce close numerical values. However, these close values emerge from the nearly precise cancellation of large differences ∆Ts,HF, ∆Vs,HF, ∆WHs,HF of the corresponding individual contri-butions. In other words, in spite of the above-mentioned difference of the HF and KS electron densities, the electronic energy of the molecules A2 calculated at the equilibrium bond distances in the exchange-only approximation (i.e. from the one-determinantal wave function) remains practically the same for both HF and KS approaches. However, for the dissociating molecules, and in general for weak-interaction situations, the typical Hartree-Fock error of neglect of left-right correlation becomes more serious and the DFT and traditional definitions yield increasingly different exchange and correlation energies. The traditional exchange and correlation energies can no longer be taken as reference values for molecular DFT applications.

3.4 Conclusions

In this chapter the difference between the DFT definition of exchange and correlation and the traditional Hartree-Fock based one is stressed. In particular we have noted that the components Ts, V and WH of the KS energy differ significantly from their HF counterparts. The conceptual difference of the DFT and traditional definitions of the correlation energy is illustrated by the markedly different dependence of the corresponding kinetic components Tc and TcHF on the bond distance R(A-A). While TcHF rapidly increases with increasing R(A-A), Tc remains prac-tically constant for the distances considered (cf. ref.88). However, at the equilibrium bond distances, due to compensation of differences of opposite sign, the total energies EKS and EHF of the KS and HF one-determinantal wave function are close to each other, as are the corresponding exchange energies Ex and ExHF. As a result, Ec and EcHF values are also close to each other. These results justify for the equilibrium geometry the existing practice to assess the performance of approximate DFT exchange and correlation functionals for molecules by comparing to conventional ExHF and EcHF values. For elongated bond distances the difference between Ec and EcHF increases somewhat. For N2, a molecule with a triple bond and strong Coulomb correlation effects, the difference between Ec and EcHF has increased to 10% at 3.5 bohr. It is therefore worthwhile to take into account the difference between the DFT and traditional definitions of correlation if one tries to develop DFT functionals capable to calculate accurately full molecular potential energy surfaces.

The HF determinant is often denoted as the "best" one-determinantal wave function (and therefore the HF orbitals as the "best" orbitals) since it yields the lowest energy. However, it is to be noted that the HF wave function makes quite large errors in important energy terms such as the kinetic energy and the electron-nuclear and electron-electron Coulomb energies. In N2 for instance, the electron-nuclear energy is not negative enough by 15 eV at Re, and by almost 50 eV at 3.5 bohr (to be compared to a bond energy of 10 eV and to a zero error in this term for the KS determinant). HF is making this error since it can lower the kinetic energy by making the density (i.e. the orbitals) more diffuse. However, this increases the error in the kinetic energy: the HF error in the kinetic energy is at Re twice the error of the kinetic energy of the KS orbitals, and at 3.5 bohr the HF error is four times as large (more than 33 eV too low, whereas Ts is only 8.5 eV too low). In short, HF is only trying to minimize the total energy, and it will make large errors in individual energy components if it can lower the total energy, even if only barely. It has been noticed that this "freedom" of HF to distort the density and the orbitals, if only the energy decreases, may lead to a distorted picture of chemical bonding, for instance to localized orbitals (ionic bonds) whereas more accurate wave function (CASSCF) yield a covalent picture86,89. One can turn the above argument about the "distortion" effected by HF around and note that the KS determinant manages to improve the kinetic energy and various Coulomb energy terms with respect to HF very much, with only a small rise of the total energy, and therefore the (total) correlation energy.

The Kohn-Sham approach has endowed chemistry and physics with a new set of one-particle wave function (orbitals). The physical meaning of these orbitals has for some time remained somewhat obscure, and it is sometimes stated that one should not look for physical meaning or usefulness, but consider these orbitals as mere mathematical constructs whose only meaning is to build the exact density. However, we wish to reiterate72,90 that on the contrary the KS orbitals do make physical sense. This is a direct consequence of the form of the local potential vs(r) in which the KS electrons move:
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The leading terms in vs, the external (i.e. nuclear) field v, the electronic Coulomb (or Hartree) potential vH, and the potential of the exchange or Fermi hole, vx, cause the KS orbitals to be roughly similar to the HF orbitals, with usually a similar nodal pattern and one-electron energy distribution. However, vs also contains the potential of the Coulomb hole vchole (we do not discuss the less important contributions vc,kin and vresp, cf. refs.29,91,92). It is vchole that builds the most important aspects of electron correlation (such as the left-right correlation in a two-center bond) into the effective potential of the KS electron. The HF model causes an electron, when being in an atomic region, to feel too much repulsion from the remaining electrons (HF has too much weight for "ionic configurations", in particular at long bond distances), hence the too diffuse nature of the HF orbitals. This HF error is annihilated by vchole, making the total field correspond to a proper localized exchange-correlation hole around the reference electron85. This prevents the orbitals and density from becoming distorted, as they sometimes are in the HF model (for instance too diffuse, or unduly localized at one end of the bond86,89). We wish to stress that the properties of the KS orbitals make them particularly suitable for use in the molecular orbital theories of chemistry93,94.
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