6 Benchmark calculations of chemical reactions in DFT: comparison of the accurate KS solution with GGAs for the H2+H and H2+H2 reactions

From the Kohn-Sham solution constructed from an accurate CI density, the KS exchange and correlation energies Ex and Ec, as well as the corresponding exchange and exchange-correlation energy densities x(r) and xc(r), are obtained for the hydrogen abstraction reaction H+H2 and the symmetrical four-center exchange reaction H2+H2. The KS quantities are compared with those of the standard GGAs. The comparison shows that the GGA exchange functional represents both exchange and molecular non-dynamical left-right correlation, while the GGA correlation functional represents only the dynamical part of the correlation. This role of the GGA exchange functional is especially important for the transition states (TS) of the reactions where the left-right correlation is enhanced. The standard GGAs tend to underestimate the barrier height for the reaction H+H2 and to overestimate it for the reaction H2+H2. For H2+H2 the Kohn-Sham orbital degeneracy in the square TS is represented with an equi-ensemble KS solution for both accurate KS/CI and GGA, while near the TS ensemble solutions with unequal occupations of the degenerate highest occupied orbitals are obtained. For the GGA ensemble solution a special ensemble formula for the GGA exchange functional is proposed. Application of this formula to the H2+H2 reaction reduces appreciably the reaction barriers calculated with GGAs and leads to a much better agreement with the accurate value. The too low GGA barriers for the H+H2 reaction are attributed to the overestimation of the dynamical correlation in the TS by the GGA correlation functionals. In order to correct this error, it is recommended to modify the dependence of the approximate correlation functionals on the local polarization  with the purpose to reduce the approximate correlation energy for intermediate  values, which are expected to characterize the transition states of radical abstraction reactions.

6.1 Introduction

With the advent of the generalized gradient approximations (GGAs)8,99,106,137, density functional theory (DFT) has become a powerful tool for computational chemistry. GGAs are successfully applied to the calculation of various molecular properties such as atomization energies and equilibrium geometries. However, the quality of the GGA calculations of potential energy surfaces of chemical reactions appears to be non-uniform. For certain types of reactions, most notably, for the hydrogen abstraction reactions it was established in the literature that the standard GGAs yield too low reaction barriers41-44. None of these studies compares GGAs with the essentially accurate Kohn-Sham (KS) solution, which can be obtained from an accurate "ab initio" electron density (r). Previously, such solutions have been obtained for a number of atoms16,17,25,51 and molecules29,52-55,78,83,128.

In this chapter the KS solution is constructed from an "ab initio" density and the KS exchange and correlation energies Ex and Ec, as well as the corresponding exchange and exchange-correlation energy densities x(r) and xc(r), are calculated for a number of points (including the transition state) along the paths of the simplest collinear hydrogen abstraction reaction H+H2 and the symmetry-forbidden four-center exchange reaction H2+H2. The "ab initio" densities have been obtained with high quality configuration interaction (CI) calculations at many points of the two-dimensional potential energy surface (PES) of the symmetrical H2+H2 reaction and the collinear path of the H+H2 reactions. In Section 6.2 the computational details are discussed and the method of construction of the KS solution is characterized.

In Section 6.3 the PES for the reaction H2+H2 is presented and the construction of the KS solution around the square TS of D4h symmetry is discussed. In this region the proper KS and GGA solutions are represented with an ensemble of degenerate determinants similar to the case of the C2 molecule considered in the previous chapter55. The CI results and the accurate KS exchange and correlation energy densities for the reaction H2+H2 are compared with those of GGAs in Section 6.4. The standard GGAs appreciably overestimate the reaction barrier. It is proposed to use for the GGA ensemble solution around the TS a special ensemble formula for Ex. The application of this formula reduces the reaction barriers calculated with GGAs and leads to much better agreement with the accurate value. In Section 6.5 the CI results and the KS exchange and correlation energy densities for the reaction H+H2 are compared with the GGA ones. In agreement with previous studies, GGAs are found to underestimate the barrier of this reaction. To improve the performance of the GGA for H+H2 without worsening its results for H2+H2, it is proposed to modify the spin-polarization dependence of the GGA correlation energy functional in order to reduce the Coulomb correlation of the electrons with like spins, which is overestimated by the GGA. Finally the conclusions are drawn in Section 6.6. One conclusion is that owing to its localized model Fermi hole, the GGA exchange functional represents effec-tively both exchange and molecular left-right non-dynamical correlation. The GGA correlation functional, in its turn, represents only the dynamical short-range correlation. The same trend has been observed in Chapter 4 for the diatomic molecules Li2, N2, F254,78 and in previous work for H228,77. Comparison of the KS and GGA energy densities x(r) and xc(r) supports this con-clusion.

6.2 Calculation of the KS quantities

The iterative procedure used in this chapter to obtain the Kohn-Sham orbitals i(r) and potential vs(r) from an "ab initio" density (r) is described in Chapter 2. The accuracy of the resultant KS solution can be characterized by the values of the absolute integral error  for the calculated iterative density m(r), ((=((m(r)–((r)|dr. The magnitude of  depends on the quality of the target "ab initio" density as well as on the system considered. For the most accurate target densities typical errors are small, with the maximal errors being only =0.0002e for the H3 TS and =0.001e for the H4 TS. In general, this procedure provides a higher accuracy of the KS solution with fewer iterations compared to that of van Leeuwen and Baerends9 employed in previous work.

To obtain "ab initio" correlated wave functions and densities, the HF and subsequent CI calculations of the two-dimensional PES of the H2+H2 reaction and the collinear H+H2 reaction have been performed by means of the ATMOL package63. A basis of contracted Gaussian functions has been used for the calculations. A high quality quintuple zeta basis set (cc-pV5Z)64 has been used for a number of points along the reaction paths. For the larger H2+H2 system the g-type polarization function has been omitted from the basis and two f-type functions have been replaced with one f-function taken from the quadruple cc-pVQZ basis. The extensive multi-reference CI (MRCI) calculations have been carried out within the direct CI approach with the reference configurations produced by the inclusion of all excitations in an internal space of 24 orbitals. All single and double excitations from each reference configuration have been included in the MRCI. For the bulk of the calculations for the PES a smaller (though also large enough) augmented triple zeta (aug-cc-pVTZ) basis has been used. In this case the single reference CI calculations have been carried out with all single and double excitations from the HF configuration. The high quality of our CI calculations can be illustrated by the fact, that they yield as barrier height of the hydrogen abstraction reaction EB=9.64 kcal/mol, which is even closer to the experimental value EexpB=9.7 kcal/mol41,138 than a high-quality quantum Monte Carlo result of 9.61 kcal/mol41,139.

The Kohn-Sham exchange energy density x(r1) has been calculated according to the con-ventional expression
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(6.1)

from the KS orbitals i(r) obtained with the iterative procedure of Chapter 2. The KS exchange-correlation energy density xc(r) is defined according to 28,140 as the sum of the potential of the exchange-correlation hole vxchole and the kinetic part vc,kin
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To construct xc(r1) via (6.2)-(6.4), the first-order density matrix (r1,r1) and the diagonal part 2(r1,r2) of the two-electron density matrix have been calculated from the MRCI wave function by means of a Gaussian orbital density functional code83,84 based on the ATMOL package. The KS first-order density matrix s(r1,r1) in (6.4) has been calculated from the orbitals i(r).

The GGA functionals considered in this chapter are the exchange-correlation functional of Perdew and Wang (PW91)99,104,105, the combination BP of the exchange functional of Becke8 and the correlation functional of Perdew (P86)137 and the combination of the Becke exchange functional with the correlation functional of Lee, Yang, and Parr (LYP)106. The GGA calcu-lations have been performed both self-consistently and with the CI density (r). The GGA energy densities xGGA and xcGGA define the corresponding exchange ExGGA and exchange-correlation energy ExcGGA energies through
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In this chapter the accurate KS energy densities (6.1) and (6.2) are compared with the GGA ones calculated with the CI density. In particular, for the open-shell H+H2 system the total GGA exchange energy density xGGA((,(;r) has been calculated from the accurate KS spin-densities ((r) and ((r) corresponding to the CI density (r)
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6.3 Potential energy surface and the ensemble solution for the TS of the H2+H2 reaction

Figure 6.1 presents the two-dimensional PES obtained from CI calculations for the symmetry-forbidden four-center exchange reaction H2+H2. Each point of the Figure corresponds to a rectangle H4 with the sides x and y, so that r =min(x,y) is the bond distance in each H2 fragment and R=max(x,y) is the distance between the fragments. Along the reaction path, for the larger intermolecular separations R>3.0 bohr the bond distance r in each H2 is close to its equilibrium value r=1.4 bohr for the individual H2 molecule. For the shorter separations r gradually increases until the system reaches the square transition state (TS) with r=R=2.32 bohr. This produces a monotonous increase of the total energy and a high reaction barrier Eb=147.6 kcal/mol. The TS is unstable with respect to dissociation into an H2 molecule and two H-atoms, being by 38 kcal/mol higher than (H2+2H). Still, due to the formation of (formally) four relatively weak H-H bonds in the TS, it is stable with respect to dissociation to four H-atoms, with a corresponding atomization energy of 71 kcal/mol.

[image: image7.wmf]
Figure 6.1: The two-dimensional potential energy surface for the reaction H2+H2.

The construction of the Kohn-Sham solution from the "ab initio" CI density for H2+H2 deserves special discussion, due to the strong near-degeneracy correlation effects when the TS state with its high symmetry D4h is approached. On one side of the reaction barrier (for the reagents) (r) is represented by a pure state KS determinant s1 consisting of the full-symmetry (in D2h) KS orbital (ag) and the orbital (b2u), which has anti-bonding character with respect to new bonds (see Figure 6.2)
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On the side of the products (r) is represented by the pure state KS determinant s2, which has an anti-bonding character with respect to the old bonds
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These two determinants are similar to the HF determinants that would play the main role in the description of the wave function in a CI calculation, which we denote HF1 and HF2.
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Figure 6.2: The orbital correlation diagram for the reaction H2+H2.
When the transition state (TS) is approached the b2u orbital is destabilized and the b3u orbital is stabilized and the mixing of the two determinants in the CI wave function increases. In the TS the b2u and the b3u orbitals become the degenerate eu-x, eu-y pair of orbitals belonging to the Eu irreducible representation of D4h. The wave function will be predominantly the 1B1g CSF
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In cases of strong configuration mixing, the KS solution may no longer correspond to a single determinant, but it may be necessary to represent the exact density with an ensemble of KS determinants. The KS potential in that case leads to a degenerate HOMO, see the discussion in the previous Chapter and references55 therein. This is what we have observed in the present case: as can be seen in Figure 6.2, the KS b2u orbital becomes degenerate with the b3u orbital before the TS is reached. If one would continue to occupy the b2u orbital and leave the b3u orbital empty, a "non-Aufbau" situation would result. This "non-Aufbau" solution with a hole below the Fermi level is inadmissible in the KS theory, since it corresponds to an excited state of the non-interacting KS system141. As a matter of fact, we have observed that it becomes increasingly difficult to generate a local potential that is such that the density of the "non-Aufbau" deter-minant is equal to (close to) the exact density55. This local potential (which is not the KS potential since its ground state ("Aufbau") determinantal density is not the exact density) starts to exhibit strange, unphysical, features. In the neighborhood of the TS, the KS solution that properly reproduces the CI density corresponds to a KS potential with degenerate b2u and b3u orbitals. The density is an ensemble density of the noninteracting KS electron system with un-equal fractional occupations of the orbitals b2u and b3u,
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which corresponds to the KS ensemble density matrix 
[image: image13.wmf]=d|s1><s1|+(1–d)|s2><s2|. The occupation d is determined with the procedure of ref.134 from the requirement that for the KS solution with the density (6.7) the energies of the orbitals b2u and b3u should be equal to each other, thus defining the Fermi level energy F=(b2u)=(b3u). The ground state KS ensemble (6.7) does not contain a hole below the Fermi level, as follows from the fact that the condition F=(b2u)=(b3u) uniquely determines the occupation d.

In the square TS the form of the density is dictated by the D4h symmetry,
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in which the singly occupied degenerate orbitals eu-x and eu-y correlate with the orbitals b3u and b2u respectively. In this case the KS solution is described by the density matrix 
[image: image15.wmf] representing a mixture (ensemble) of the determinants 
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This results in a density identical to the one resulting from a KS 1A1g CSF similar to (6.6) but built from the KS determinants s3 and s4. We prefer to use 
[image: image17.wmf] for the representation of the density and for the calculation of the KS energy components for reasons to be discussed below.

Table 6.1 presents the occupations d calculated for the points along the reaction path in the neighborhood of the TS. The ensemble KS solution (6.7) with d<1 is found for the segment 2.32≤R≤2.50 bohr (the second column of Table 6.1). For larger intermolecular separations the KS solution is the pure state (6.5), while with R approaching the TS value R=2.32 bohr, the ensemble solution turns to the equi-ensemble (6.6). The ensemble represents a strong non-dynamical correlation between the electrons which in the wave function would become manifest as strong mixing of the configurations s1 and s2. The self-consistent GGA calculations also produce the ensemble solution (6.7) near R=2.32 bohr and the equi-ensemble (6.6) in the TS (see Table 6.1). In this case the occupation d obtained variationally in the sense that the GGA energy is minimized under the constraint of an "Aufbau" type of electron occupation, i.e. no holes below the Fermi level and fractional occupation of the highest occupied orbitals such that they all have equal energies F=(b2u)=(b3u). Note, that GGA makes the ensemble region 2.32≤R≤2.40 bohr smaller compared to the accurate KS solution.

Table 6.1: Occupations d, eq.(6.7), for the KS and GGA solutions near the transition state at R=r=2.32 bohr of the reaction H2+H2. At each R the H-H distance r is as indicated by the crosses in Figure 6.1. BP and BLYP mean Becke8 exchange and Perdew1986137 and LYP106 correlation respectively. PW means Perdew-Wang199199,104,105 exchange and correlation.
R
KS
PW
BP
BLYP

2.32
1.00
1.00
1.00
1.00

2.35
1.36
1.79
1.83
1.80

2.40
1.86
2.00
2.00
2.00

2.50
2.00
2.00
2.00
2.00

We now consider the definition of exchange and correlation energies, and the proper evalua-tion of these quantities in approximate treatments like LDA and GGA, in case of an interacting electron system for which the corresponding KS system is an ensemble
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The total energy has the form 
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in which Tsi and Exi are the kinetic and exchange energies of the individual one-determinantal component si of the ensemble
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(the orbital occupations nij  are either 1 or 0). Equations (6.9)-(6.11) define the total correlation energy Ec[] as the difference between the exact total energy and the other KS energy terms which can all be calculated from the KS orbitals. Two comments are in order.

First we note that the difference between the definition of exchange and correlation in the KS theory and the standard quantum chemistry definition71,72,140 is particularly relevant in cases like the present one. Along the reaction coordinate before and after the TS, there will be strong confi-guration interaction between s1 and s2, leading to a large (non-dynamical) correlation energy. In the TS, however, the higher symmetry leads to the restricted HF wave function (6.6), in which the energy lowering due to this mixing is already accounted for, so only dynamical correlation remains. Therefore there is a somewhat artificial discontinuity in the conventional correlation energy. As a corollary, there is a similar discontinuity in the RHF exchange energy, since the one-electron energy terms and the Hartree energy will not change strongly at the TS, so the remaining term, which is by definition the exchange energy of the RHF model, will in the TS become much larger (more negative) since it will incorporate the near-degeneracy correlation. In the KS case such a discontinuity does not arise in either the exchange or correlation energy when we use the ensemble representation along the complete reaction coordinate, including the TS point. The crucial point is that we continue to take for the exchange energy a weighted sum of single-determinantal exchange energies. In principle, just at the single point of the D4h symmetry (but nowhere else in the ensemble region) this sum depends on the transformation of the dege-nerate eu-x and eu-y orbitals, which changes the degree of their localization (this problem is a common one for the application of various one-electron methods to high-symmetry states174). However, our results show continuity of the energies (6.9) obtained at the high-symmetry point and in its neighborhood where (6.9) is unambigously defined in terms of the canonical KS orbitals. This means that the degenerate orbitals of the TS high-symmetry point we use are the delocalized continuations of the canonical KS orbitals at the adjacent points.

In the second place we note that, in case of an ensemble KS solution, GGAs encounter a problem with the choice of the proper formula for the GGA exchange energy functional. In approximate treatments (LDA, GGA) the exchange energy is not calculated from orbitals but from the density. One can, in the conventional way, insert the total ensemble density (6.8) into a certain GGA exchange energy functional ExGGA[]
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Alternatively, in analogy with (6.11), one can insert the density i of the individual ensemble components into ExGGA[] and sum the resulting energies over the ensemble
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Evidently, the energies (6.12) and (6.13) are not equal to each other. Indeed, each component of (6.13) represents the exchange interaction of i(r) with itself, while in (6.12) this interaction is partially replaced with the interaction with other components j(i of the ensemble. The latter interaction is smaller than that of i(r) with itself, so one can expect that the energy (6.13) is lower (more negative) than (6.12). In a different context (the approximate calculation of excited multiplet energies)142 arguments have been given for the exclusive use of the available approxi-mate exchange functionals for single KS determinants only. Only single determinants will obey with certainty the conditions for the exchange hole that have been used to derive model expres​sions for the exchange functional. So we use as approximate GGA exchange energy a weighted sum of single determinantal GGA exchange energies. As will be shown in the next section, the difference between eqs. (6.12) and (6.13) is of importance for a proper estimation of the H2+H2 reaction barrier by GGAs. 

6.4 Comparison of the KS and GGA results for H2+H2
Table 6.2 compares the total energies calculated along the reaction path of H2+H2 by the CI and GGAs. The third column of the Table contains the CI total energies (in hartree), while other columns contain differences between these CI values and those of the GGA approximations (pre-sented in kcal/mol and the sign defined as ∆GGA=EGGA–ECI). The columns labeled SCF contain energies from an SCF GGA calculation. The column labeled CI uses the KS orbitals deter-mined from the CI density for the kinetic energy and CI for the electron-nuclear and Hartree energies, and in addition uses CI in the GGA exchange and correlation energies. The standard formula (3.18) is employed for the exchange energy in both cases. The differences in the kinetic, electron-nuclear and Hartree terms are individually not small, but the summed values are rather close. So are the exchange and correlation energies with SCF and CI, and therefore the total energies are close to each other for all functionals and all points considered. All GGAs reproduce the monotonous increase of the CI total energy towards the TS. Compared to the total increase in the CI energy of 0.235 hartree (147.6 kcal/mol), the "errors" are modest, the difference between the SCF and the CI cases being almost an order smaller still.

Table 6.2: CI total energies (hartree) and the differences between the GGA and CI total energies (kcal/mol) for the path of the reaction H2+H2. Column CI is calculated with the KS orbitals for the kinetic energy and CI for all other energy terms. The standard expression (6.12) for the GGA exchange energy has been used.
R
r
CI
PW

BP

BLYP





SCF
CI
SCF
CI
SCF
CI

2.32
2.32
–2.113
15.5
17.7
7.1
9.2
20.4
22.7

2.35
2.29
–2.115
13.9
16.8
5.4
8.3
18.7
21.7

2.40
2.21
–2.127
6.6
10.8
–1.9
2.2
11.4
15.8

2.50
2.06
–2.166
2.1
2.9
–6.4
–5.6
6.6
7.9

2.75
1.68
–2.263
1.3
1.9
–7.0
–6.6
5.1
6.1

3.00
1.44
–2.308
2.8
3.4
–5.4
–5.0
7.7
6.6

4.00
1.41
–2.341
3.7
4.4
–4.7
–4.3
5.5
6.6

5.00
1.40
–2.347
3.8
4.5
–4.8
–4.4
5.2
6.3

10.0
1.40
–2.348
4.0
4.7
–5.4
–5.0
4.7
5.8

The CI reaction barrier Eb, the accurate KS contributions to Eb from exchange Exb and corre-lation Ecb as well as the KS exchange and correlation energies (all in kcal/mol) for the TS and well-separated H2 molecules at R=10 bohr are presented in the second column of Table 6.3. Note that Exb and Ecb are Kohn-Sham quantities, they are calculated with eqs. (6.9)-(6.11) using the accurate KS orbitals and the ensemble weights di. The exchange brings a large positive contri-bution Exb=129 kcal/mol to Eb, while the correlation makes an appreciable negative contribution Ecb=–37.4 kcal/mol. This may be understood from the exchange (Fermi) and correlation (Cou-lomb) hole functions x(r2|r1) and c(r2|r1), from which the exchange energy Ex and the electron-electron potential energy part of the correlation energy, Wc, can be obtained
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In the separated molecule limit the exchange and correlation in each H2 molecule are represented with exchange and correlation holes that are localized within a single molecule (the molecule where the reference electron is located). For the exchange hole this can easily be understood from the fact that the exchange hole has approximately the shape of the localized orbital with large amplitude at the reference position85,143. Approach to the TS causes delocali-zation of the exchange hole over all four H-atoms. The exchange energy is the weighted average of the exchange energies of the determinants s1 and s2 and in both determinants the exchange hole delocalizes when the interaction between the orbitals on the two monomers becomes strong (orbital localization will be less effective). The delocalization of the exchange hole charge of one electron produces a decrease of the exchange energy (it becomes less negative), hence the observed positive contribution Exb to the barrier. The correlation contribution to the barrier is on the contrary negative, since the electron correlation effects will be stronger in the weak bonds between the H atoms in the TS than in the strong H-H bonds in each of the two separated monomers. When a reference electron is near one H-nucleus, one expects a more strongly localized Coulomb hole surrounding it in the TS state than in an H2 molecule at equilibrium geometry, cf. Fig.1 in ref.140. The strengthening of the Coulomb correlation in the TS due to the increased non-dynamical interatomic ("left-right") correlation produces the observed negative contribution of the correlation to Eb.

Table 6.3: Reaction barriers for H2+H2 (Eb=E(R=2.32)–E(R=10)) and the exchange and correlation energies for the transition state and R=10 bohr together with the resulting exchange and correlation contributions Exb and Ecb (kcal/mol) to the barrier energy Eb. The entries in the CI/KS column have been obtained from CI energies (for Eb) and from the accurate KS model obtained from the CI density, cf. eqs. (6.9)-(6.11) for all other energies. The ∆GGA columns contain the differences between the GGA and CI/KS quantities (in kcal/mol), ∆GGA corresponds to the standard expression (6.12) for the exchange part, ∆GGA-e to the ensemble expression (6.13). For the correlation energy always EcGGA[CI] is used.


CI/KS
PW
PW-e
BP
BP-e
BLYP
BLYP-e

Eb
147.56
13.04
3.21
14.16
3.93
16.85
6.63










Ec(TS)
–88.48
28.44
28.44
25.16
25.16
38.63
38.63

Ec(10)
–51.06
–6.53
–6.53
–7.82
–7.82
2.96
2.96

Ecb
–37.42
34.97
34.97
32.98
32.98
35.67
35.67










Ex(TS)
–701.10
–10.71
–20.53
–15.97
–26.20
–15.97
–26.20

Ex(10)
–830.07
11.22
11.22
2.85
2.85
2.85
2.85

Exb
128.97
–21.93
–31.75
–18.82
–29.05
–18.82
–29.05

In Table 6.3 the differences between the exact KS exchange and correlation contributions and the GGA ones (using CI) are given. The ∆GGA numbers for the total barrier Eb are just the sum of the exchange and correlation contributions, assuming for this comparison that total "GGA" energies would be calculated with the KS orbitals (cf. column CI in Table 6.2). We note in Table 6.3 that the GGA exchange energies have a less repulsive contribution Exb than the exact exchange energy of CI/KS. The difference is ca. –20 kcal/mol for the standard GGA energies (6.12), and some –10 kcal/mol more for the ensemble expression (6.13). The GGA correlation energy contribution to the barrier deviates in the opposite (positive) direction from the exact quantity Ecb. In fact, the difference of +35 to +36 kcal/mol is almost as large as the exact Ecb of –37.4 kcal/mol, implying an almost zero Ecb(GGA). In order to understand these trends we refer to Chapter 454,78, in which we established for the case of the dimers Li2, N2, F2 that the exchange GGA functionals with their localized model holes represent effectively just the combination of exchange and molecular non-dynamical left-right correlation. This interpretation does not contradict the fact, that the GGA exchange functionals (Becke's functional8, in particular) are fitted to reproduce only the atomic exchange energies. Indeed, the atomic exchange effects arise from a localized exchange hole, so the approximation that uses atomic results will correspond to a localized hole. In a molecule, however, it is only the combination of exchange and correlation holes, which are individually delocalized, that produces a localized hole that can be modeled as an atomic exchange hole. In their turn, the GGA correlation functionals represent only dynamical correlation, which is also described by a localized hole. Taken together, the GGA exchange and correlation functionals cover all the exchange-correlation effects, which explains the success of GGAs in molecular calculations.

The results for the H2+H2 reaction confirm this interpretation of the GGA exchange and correlation. We start our analysis with the correlation functionals. For the separated molecules at R=10 bohr, where the correlation energy of each H2 is close to the energy of the dynamical correlation in the iso-electronic He-atom Ec=–0.042 hartree =–26.4 kcal/mol, the GGA correla-tion energies EcGGA for H2+H2 are close to the KS value EcKS=–51.1 kcal/mol (Ec(10) with PW is at –57.6 kcal/mol, only 6.5 kcal/mol lower than EcKS). However, while the exact Ec becomes much more negative in the TS (–88.5 kcal/mol), the GGA correlation energies do not follow this trend and stay much closer to the values at large separation (Ec(TS) with PW is at –60 kcal/mol, a difference now of +28.4 kcal/mol with EcKS). So all GGAs fail to reproduce the strengthening of correlation in the TS due to the non-dynamical correlation (note the large positive differences between EcB-GGA and Ecb in Table 6.3). This agrees with the interpretation that the GGA correla-tion functionals represent only dynamical correlation. Both Becke and Perdew-Wang GGA exchange functionals underestimate exchange slightly for the separated molecules, the corre-sponding error is small (+2.85 kcal/mol) for the Becke functional and it is somewhat larger (+11.2 kcal/mol) for the Perdew-Wang one. However, in the TS they appreciably overestimate exchange with the standard formula (6.12), and the overestimation increases further by ca. 10 kcal/mol when the ensemble formula (6.13) is used. The net effect is a considerable negative deviation of the GGA exchange contribution to the barrier. Remarkably, this negative deviation compensates the missing effect of the non-dynamical correlation in the GGA correlation func-tionals, so that the GGA errors for the total barrier Eb are considerably smaller than the errors for its individual components Ecb and Exb. Thus, the GGA exchange functionals represent both exchange and, effectively, molecular non-dynamical correlation.

This interpretation finds further support from the comparison of the exchange x(r) and exchange-correlation xc(r) energy densities constructed for the accurate KS solution with those calculated with GGAs. The energy densities of the LDA are also presented for comparison. In Figure 6.3 all energy densities are plotted as functions of the distance x from the bond midpoint along the molecular axis of the H2 molecule (the H-atom is at x=0.7 bohr) separated by 5 bohr from another H2 molecule. In spite of the fact that for well-separated molecules both x(r) and xc(r) are integrated to nearly the same energies as the GGA functions, their form is very different. This seems to be an exceptional feature of systems Hn with light H-atoms, since for systems of heavier elements the KS and GGA energy densities look much more alike54 (See Chapter 4). In particular, due to the fact that the KS exchange hole is delocalized over both H-atoms of the small H2 molecule, the corresponding function x(r) has its minimum at the bond midpoint, while xGGA(r) exhibits a well around the H-atom (see Figure 6.3a). Note also the clear difference between two GGA exchange energy densities at larger x: xB(r) has the proper Coulombic asymptotics and it follows x(r) rather closely in this region, while xPW(r) decays much faster. The exchange-correlation function xc(r) has a very shallow descent when going from the bond midpoint to the H-atom (see Figure 6.3b), still the overall picture is similar to that 
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Figure 6.3: The Kohn-Sham and GGA energy densities for the H2 unit of H2+H2 at R=5 bohr a) exchange energy densities and b) exchange-correlation energy densities.
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Figure 6.4: The Kohn-Sham and GGA energy densities for the transition state of the H2+H2 reaction. a) exchange energy densities and b) exchange-correlation energy densities.

for the exchange-only functions, since in this case the exchange clearly dominates over the corre-lation. All approximate functions are appreciably more negative than x(r) and xc(r) around the nucleus, and they are higher at larger x, so that the good agreement between the KS and GGA energies emerges as a result of the cancellation of the GGA local errors in these regions.

We remark that the comparison of the GGA energy densities with the KS ones can be criti-cized31 because 1) the GGA and KS functions might have different definitions due to the non-uniqueness of the energy density and 2) depending on its actual structure, a certain GGA energy density can be transformed within the procedure of partial integration, which preserves the resul-ting energy, but changes the form of the energy density function. These reasons, however, cannot explain the observed differences between the KS and GGA functions. It is the exchange that dic-tates the form of the curves in Figure 6.3, and both GGA and KS exchange energy densities are based on the same definition (6.1). Furthermore, the GGA exchange energy densities behave like the LDA one and, indeed, contain the LDA part. The latter, however, is a trivial function c1/3.

In Figure 6.4 the GGA and KS energy densities for the TS are also plotted as functions of the distance x from the midpoint of the bond between two H-atoms with the H-atom placed at x=1.16 bohr. Due to the delocalization of the exchange hole over all four H-atoms, the KS x(r) in Figure 6.4a remains a shallow function in the bonding region. Here, the difference between x(r) and the corresponding GGA functions becomes even larger than in Figure 6.3a, which reflects the above-mentioned effective inclusion of the strong non-dynamical correlation in the TS into the GGA exchange functionals. Note the pronounced bond-midpoint peak of both LDA and GGA functions, which brings them at higher energies than x(r). Remarkably, with the inclusion of the non-dynamical correlation at the KS level, the form of the total exchange-correlation KS function xc(r) becomes much closer to that of the corresponding GGA functions (see Figure 6.4b). Now, xc(r) possesses the same pronounced peak as the GGA exchange-only functions, which indicates that the GGA exchange functionals attempt to simulate not only the effect of the non-dynamical correlation on the integrated energies, but also its local influence on the form of the energy density functions.

The most important result of this section is the good performance of the ensemble formula (6.13) for the GGA exchange energy. Indeed, the GGA reaction barriers calculated with the standard formula (6.12) are appreciably higher than the CI one (by 13-17 kcal/mol, see Table 6.3). However, the employment of the ensemble formula improves considerably the performance of the GGAs. In particular, the barrier error reduces to 3.2 kcal/mol for the PW functional and to 3.9 kcal/mol for BP, while BLYP produces a somewhat larger error of 6.6 kcal/mol. To improve the quality of the reaction barriers calculated with approximate DFT methods, it was proposed in the literature44 to use the hybrid schemes144,145, in which standard LDA and GGA exchange-correlation functionals are combined with the KS/HF exchange functional built from the LDA orbitals. It has also been proposed to improve density functional results for TS barriers by the use of self-interaction correction (SIC)146, where a part of the LDA/GGA exchange-correlation functional is replaced with minus the sum of the exact self-interaction terms for the occupied orbitals. In its effect SIC is, to some extent, similar to the hybrid schemes, since the inserted self-interaction terms constitute a major part of the KS/HF exchange. Both schemes can help in cases where the standard GGA methods underestimate barriers (as in the case of the H+H2 reaction studied in the next section), otherwise the use of hybrid schemes or SIC may worsen the results as well. As one can see from Table 6.3, in the case of H2+H2 any mixture of the KS exchange with the GGA exchange-correlation functional can only increase the already too high barrier and therefore worsen the agreement with the accurate CI value. Based on the comparison between GGAs and the accurate KS/CI performed in this section, we recommend to use the exchange energy expression (6.13) in cases of (near-)symmetry dege-neracy as well as in cases of the accidental degeneracy55 when GGA produces an ensemble KS solution (6.8) with fractional occupations of the degenerate KS orbitals at the Fermi level.

6.5 Comparison of the KS and GGA results for H+H2
Table 6.4 compares the total CI energies calculated along the collinear reaction path of the hydrogen abstraction reaction H+H2 with GGA energies. It is organized in the same manner as Table 6.2, the CI energies are presented in hartree and the differences between the GGA and CI energies are presented in kcal/mol. The energies are given for a number of distances R between the incoming H-atom and the neighboring atom of the H2 molecule, the bond distance r of the latter is optimized for each R. In the transition state of H3 with R=r=1.76 bohr, the H-H bond of the isolated H2 molecule is replaced with a three-center bond, represented with the full-symmetry KS orbital 1g, while the unpaired electron occupies the non-bonding orbital 1u, which has a node on the central H-atom. The bonding in the TS is only slightly weaker than in H2, so that the CI energy of H+H2 slowly increases towards TS and the reaction barrier is only 9.64 kcal/mol. Again, the GGA energies calculated self-consistently and with the CI density and corresponding KS orbitals are close to each other, allowing us to concentrate our analysis on the latter results.

Table 6.4: CI total energies (hartree) and the differences between the GGA and CI total energies (kcal/mol) for the path of the reaction H+H2
R
r
CI
PW
BP
BLYP




SCF
CI
SCF
CI
SCF
CI

1.76
1.76
–1.659
–5.2
–3.3
–11.5
–9.9
–2.9
–0.8

1.80
1.71
–1.659
–5.1
–3.3
–11.5
–9.9
–2.9
–0.8

1.90
1.62
–1.659
–4.8
–3.0
–11.1
–9.5
–2.6
–0.4

2.00
1.57
–1.660
–4.4
–2.5
–10.6
–8.9
–2.2
0.0

2.25
1.49
–1.662
–3.1
–1.1
–9.1
–7.3
–0.9
1.3

2.50
1.45
–1.665
–2.0
0.1
–7.6
–5.9
0.3
2.5

3.00
1.42
–1.669
–0.3
1.4
–5.3
–3.9
2.1
3.9

4.00
1.41
–1.673
0.9
2.0
–3.2
–2.4
3.6
4.8

5.00
1.40
–1.674
1.09
2.0
–2.6
–2.0
3.9
5.0

Table 6.5 is organized in the same way as Table 6.3. It presents in the first row the CI reaction barrier Eb, and the deviations of the GGA barrier heights from the CI barrier. The deviations are all negative, and appreciable, i.e. the GGA barriers are 50% and more reduced compared to the CI barrier. Table 6.5 also lists in the CI/KS column the accurate KS contributions to Eb from exchange Exb and correlation Ecb (all in kcal/mol), as well as the KS exchange and correlation energies for the TS and for R=5 bohr from which the values for the corresponding contributions to the barrier height are derived. As in the case of the H2+H2 reaction of the previous section, the KS exchange brings a large positive contribution Exb=29.7 kcal/mol, while the correlation makes an appreciable negative contribution Ecb=–14.5 kcal/mol. For the exchange this can again be explained as a result of the delocalization of the unit charge of the exchange hole in the TS, which leads to a decrease of the exchange energy. As for the negative correlation contribution to the barrier, the weaker bond in the TS leads to a larger (more negative) correlation effect in the TS due to the stronger non-dynamical left-right correlation.

Table 6.5: Reaction barriers Eb with the exchange and correlation contribution (kcal/mol), the exchange and correlation energies for the transition state and R =5 bohr calculated with CI/KS, and the differences between the GGA and CI/KS quantities (in kcal/mol) (see also caption to Table 6.3).

CI/KS
PW
BP
BLYP

Eb
9.64
–5.4
–8.0
–5.8







Ec(TS)
–40.79
–0.50
–2.08
7.04

Ec(5)
–26.32
–6.71
–5.11
1.85

Ecb
–14.47
6.2
3.0
5.2







Ex(TS)
–581.31
–2.85
–7.86
–7.86

Ex(5)
–611.01
8.72
3.15
3.15

Exb
29.70
–11.6
–11.0
–11.0

The differences between the CI/KS quantities and the corresponding GGA ones (sign of ∆GGA quantities defined as EGGA–ECI/KS) in the other columns allow us to analyze what causes the GGA error in the barrier height. We note that the GGA exchange energy contribution to the barrier is ca. 11 kcal/mol less positive than the KS one. Again, this is to be attributed to the fact that GGA exchange incorporates the non-dynamical correlation effect. Indeed, the differences Exb-PW–Exb=–11.6 kcal/mol and Exb-B–Exb=–11.0 kcal/mol between the GGA and KS exchange contributions to the barrier approach the KS result –14.5 for EcB. This is analogous to the H2+H2 case, where the Exb-GGA differed ca. –30 kcal/mol from the KS exchange barrier, to be compared to the KS result of –37.4 kcal/mol for Ecb in that case.

The performance of the GGA correlation functionals in this case, however, differs from that for H2+H2. In the latter case the GGA correlation energies yield only small negative Ecb-GGA of a few kcal/mol (the ∆GGA numbers for Ecb are ca. +35 kcal/mol, canceling most of the –37.4 kcal/mol for Ecb). This is consistent with the assumption that the negative Ecb is a nondynamical correlation effect, whereas the GGA correlation functionals only represent the dynamical corre-lation, which differs little between the TS and separated systems. For Ecb of the H2+H reaction, however, the ∆GGA numbers are positive, but they do by no means cancel the KS Ecb. In fact, the GGAs bring appreciable (compared to the height of the barrier) negative contributions to the barrier Ecb-GGA=Ecb+∆GGA, i.e. Ecb-PW91=–8.3, Ecb-P86=–11.5 and Ecb-LYP=–9.3 kcal/mol. If the GGAs for correlation do not represent the nondynamical correlation in the TS (which causes the negative KS Ecb of –14.5 kcal/mol), but do describe dynamical correlation, they apparently overestimate the dynamical correlation in the H3 TS. In the TS the lack of non-dynamical corre-lation in the GGAs for correlation should cause appreciable positive ∆GGA values (as is the case in the H2+H2 TS, see Table 6.3), but the correlation energies Ec(TS) of the GGA PW91 and P86 functionals are similar to (actually 0.5 to 2 kcal/mol larger (more negative) than) the KS one, and only the LYP energy is somewhat smaller, but it is also smaller for the separated H and H2.
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Figure 6.5: The Kohn-Sham and GGA energy densities for the H+H2 at R=5 bohr a) exchange energy densities and b) exchange-correlation energy densities.
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Figure 6.6 : The Kohn-Sham and GGA energy densities for the transition state of the H+H2 reaction. a) exchange energy densities and b) exchange-correlation energy densities.
Thus, a possible reason of the too low GGA barriers for the hydrogen abstraction reactions is the overestimation by the GGA correlation functionals of the dynamical correlation in open-shell systems (such as the H3 TS), for which a typical absolute value of the local polarization (r) is in between 0 and 1 ((r)=[((r)–((r)]/(r)). By construction, all the GGA correlation functionals considered yield only a small artificial correlation energy for the separated H-atom ((r)=1). In particular, it equals 2 kcal/mol for P86137 and only 0.07 kcal/mol for PW91105, while the LYP functional has the correct zero correlation energy for H by construction106. However, the GGA correlation functionals may well slightly overestimate the dynamical correlation for the inter-mediate polarizations 0<|(r)|<1. This appears to be the case for the H3 TS where the unpaired electron is localized on the terminal H-atoms, so that for these atoms |(r)| is in between 0 and 1. This conclusion is supported by the fact that, generally, GGAs tend to underestimate barriers of radical abstraction reactions in open-shell systems. Based on the comparison between GGAs and the accurate KS/CI performed in this section, we recommend to modify the -dependence of the approximate correlation functionals in order to reduce the correlation for the intermediate  values and, as a result, to increase the barriers calculated for radical abstraction reactions.

It is also possible to try to correct the GGA results straightforwardly by trying to develop an exchange functional that gives results close to the exact (KS) exchange, and a correlation func-tional that agrees closely with the KS Ec, both in the TS and in the separated systems. It has in fact been proposed in literature41,44,147 to improve the calculated barriers by using the hybrid "KS exchange+GGA/LDA exchange-correlation" schemes or the self-interaction correction (SIC). Of course this is perfectly valid and would, if such functionals can be found both for exchange and correlation, provide the desired solution to the GGA error for the barrier. In fact, such a scheme would by construction also provide an exact description of the simplest molecular open-shell system H2+, for which the LDA and GGA exchange functionals make a large error compared to the exact (KS) exchange at long bond distance. Recently this system was discussed in the literature148 in connection with the failure of GGA for weak three-electron two-center bonds. Here we propose an alternative remedy, which is based on our observation54,78 that the present GGA "exchange" functionals do not in fact describe "exact exchange" very well, but do describe exchange plus nondynamical correlation quite accurately. Since this also appears to hold in the H2+H2 transition state, that leaves the GGA "correlation" functional as the only functional to be corrected for its overestimation of the dynamical correlation in cases of inter-mediate spin polarization.

In Figure 6.5 and 6.6 the exchange x(r) and exchange-correlation xc(r) energy densities constructed for the accurate KS solution are compared with those calculated with GGAs and LDA. All energy densities are plotted along the main axis of the reaction system H3 with the origin placed at the central H-atom. In particular, Figure 6.5 shows the H-atom and H2 molecule separated at R=5 bohr. Evidently, their H2 portions display the same picture as that in Figure 6.3 for the separated H2 fragment of the H2+H2 system discussed in the previous section. The sepa-rated H-atom is represented with a well, which describes the excluded self-interaction of the 1s-electron. For both H and H2 all GGA functions are too low around the nuclei and too high at larger electron-nuclear distances. Figure 6.6 shows the H3 TS. The shallow form of the KS x(r) reflects delocalization of the exchange hole over all three H-atoms, while the GGA exchange functionals exhibit rather sharp wells around all H-atoms. These wells of course persist in the xcGGA functions in Figure 6.6b, becoming actually slightly deeper than in xGGA. As in the case of H2+H2, the inclusion of the non-dynamical left-right correlation at the KS level brings more pronounced wells around the nuclei and peaks in the bond midpoint regions in xc, which there-fore is closer to xcGGA. Still, the corresponding local differences are large, with xcGGA being too low in the whole interior region of the H3 TS and too high for |z|>2.4 bohr. In spite of these local differences, a remarkably good agreement between the integrated KS and GGA xc-energies emerges as a result of cancellation of differences between the corresponding energy densities.

6.6 Conclusions

In this chapter the KS solution has been constructed from the CI density and the KS exchange Ex and correlation Ec energies as well as the corresponding exchange x(r) and exchange-correlation xc(r) energy densities have been obtained for the simplest hydrogen abstraction reaction H+H2 and the four-center exchange reaction H2+H2. The KS/CI quantities and functions have been compared with those of the standard GGAs. The comparison corroborates our earlier finding54,78 that within GGA the exchange functional represents both exchange and molecular non-dynamical left-right correlation, while the correlation functional represents only the dynamical part of the correlation. This role of the GGA exchange functional is especially important for the transition states of the reactions where the left-right correlation is enhanced.

The standard GGAs tend to underestimate the barrier height for the reaction H+H2 and to overestimate it for the reaction H2+H2. For the latter reaction the Kohn-Sham orbital symmetry degeneracy in the TS is represented with equi-ensemble KS solutions for both accurate KS/CI and GGA, while near the TS ensemble solutions with unequal occupations of the degenerate orbitals have been obtained. In the general case of the GGA ensemble solution it has been proposed to use a corresponding ensemble formula for the GGA exchange functional. Appli-cation of this formula to the H2+H2 reaction reduces appreciably the reaction barriers calculated with GGAs and leads to a much better agreement with the accurate value.

The too low GGA barriers for the H+H2 reaction have been attributed to the overestimation of the dynamical correlation in the TS by the GGA correlation functionals. In order to correct this error and, in general, the too low GGA barriers for radical abstraction reactions, it has been recommended to modify the dependence of the approximate correlation functionals on the local polarization  with the purpose to reduce the correlation for intermediate  values, which are expected to characterize transition states of these reactions. It has been proposed in the literature, refs.41,44,147, to improve the calculated barriers by using the hybrid "KS exchange+GGA/LDA exchange-correlation" schemes or the self-interaction correction (SIC). However, this approach that will increase the barrier, would not work in cases where the barrier is already too high, and we have identified the reaction H2+H2 considered in Section 6.4 as such a case. So, rather than trying to correct the GGA exchange so as to bring it closer to the exact (KS) exchange, we consider the GGA "exchange" functional as an approximation to exchange plus nondynamical correlation. This is based on our earlier observation54,78 that the GGA "exchange" functional in fact does provide a good approximation exchange plus nondynamical correlation. It is then the overestimation of dynamical correlation by the GGA "correlation" functionals in cases of intermediate spin-polarization that has to be corrected. The recommendations developed in this chapter do not interfere with each other. The ensemble formula for the exchange energy which is applicable in the H2+H2 case and other cases35 can be naturally incorporated into existing DFT models and improvements over the current -dependence of approximate correlation functionals, which are relevant for radical reactions like H+H2, can be developed independently.
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