4 Kohn-Sham potentials and exchange and correlation energy densities from accurate one- and two-electron density matrices for Li2, N2, F2
A definition of key quantities of the Kohn-Sham (KS) form of density functional theory such as the exchange-correlation potential vxc and the energy density xc in terms of wave-function quantities (one- and two-electron density matrices) is given. This allows for the construction of vxc and xc numerically as functions of r from "ab initio" wave functions (one- and two-electron density matrices). The behavior of the constructed exchange x and correlation c energy densi-ties and the corresponding integrated exchange Ex and correlation Ec energies have been com-pared with those of the local density approximation (LDA) and generalized gradient approxi-mations (GGA) of Becke, of Perdew and Wang and of Lee, Yang and Parr. The comparison shows significant differences between c(r) and the cGGA(r), in spite of some gratifying similarities in shape for particularly cPW. On the other hand the local behavior of the GGA exchange energy densities xGGA(r) is found to be very similar to the constructed x(r), yielding integrated energies to ca. 1% accuracy. Still the remaining differences are a sizeable fraction (~25%) of the correlation energy, showing up in differences between the constructed and model exchange energy densities that are locally even larger than the typical correlation energy density. It is argued that nondynamical correlation, which is incorporated in c, is lacking from cGGA, while it is included in xGGA but not in x. This is verified almost quantitatively for the integrated energies. It also appears to hold locally in the sense that the difference xGGA(r)–x(r) may be taken to represent cnondyn(r) and can be added to cGGA(r) to bring it much closer to c(r).

4.1 Introduction

Examples of accurate Kohn-Sham (KS) functionals constructed numerically from accurate "ab initio" wave functions for chemically interesting systems are of importance for an under-standing of the success of density functional theory (DFT) and for its further development as well as for analysis of the effect of electron correlation70,88. It has recently been shown that it is indeed possible to obtain all of the key KS quantities such as the exchange-correlation potential vxc(;r)9,16,17,25,51,53, energy density per particle xc(;r)28,29 and various energy characteristics from the correlated "ab initio" electron density (r) and the one- and two-electron density matrices.
The energy density xc is usually considered to be the most interesting quantity since it directly yields the exchange-correlation energy Exc of a many-electron system through
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Modeling of xc with approximate functionals has therefore become an essential part in the development of DFT. The specific expression that the approximate energy density takes as a function of the electron coordinate is, however, not uniquely defined, i.e. the expression can be altered by addition of any functional of the density that integrates to zero over the density. In this respect the uniquely defined exchange-correlation potential vxc, defined through the functional derivative
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is a severe test for approximate functionals. Unfortunately, the potentials corresponding to the current generalized gradient approximations (GGA) do not reproduce essentially accurate potentials particularly well9,95,96, so that special gradient- and Laplacian-dependent approxi-mations were developed for vxc9,97. In spite of the fundamental importance of vxc, however, it is rather the energy density xc that is receiving most attention.

Usually, xc is further subdivided into the exchange x and correlation c energy densities that yield the corresponding energies Ex and Ec. Approximate functional forms of x(;r) and c(;r) are derived from homogeneous or inhomogeneous electron gas models98,99 with due account of various scaling and asymptotic properties. The parameters of the approximate functionals can be obtained non-empirically from sum-rule conditions99 but usually they are fitted to reproduce conventional Ex 100, and Ec 73,74,101 values for prototype atomic systems. The current GGA functionals obtained in this way provide a surprisingly good description of a number of molecular characteristics, in particular, of the molecular thermochemistry. In many cases the accuracy of the calculated bonding and atomization energies of molecules is approach-ing conventional "chemical accuracy"102,103.

In spite of the extensive analysis of the GGA functionals performed in the literature, the form of x and c as functions of the electron coordinate r is seldom taken into consideration and little is still known about the local behavior of the standard (LDA and GGA) x(r) and c(r) models. Moreover, for molecules the exchange and correlation energies obtained with these models are seldom compared with the estimates of the true DFT exchange and correlation energies. In this chapter vxc and xc are constructed numerically from "ab initio" one- and two-electron density matrices for the homonuclear diatomic closed-shell molecules Li2, N2, F2. These molecules are considered as prototype systems with truly covalent bonds and they are included into any representative set of molecules to check the accuracy of approximations in DFT. They represent rather different cases of covalent bonding, ranging from the weakly bonded Li2 with a single 2s-based -bond, to the strongly bonded N2 with one - and two π-bonds, to the weakly bonded F2 with one 2p-based -bond and Pauli repulsion between two pπ lone pairs on each F-atom.

This chapter is organized as follows. Section 4.2 contains definitions of the quantities xc and vxc in terms of density matrices. We will show that some physically meaningful contributions to these quantities can be distinguished that clarify the relationship between xc and vxc. These are, firstly, the potential of the exchange-correlation hole vxchole and the potential vc,kin, representing the effect of Coulomb correlation on the kinetic functional. The sum (1/2)vxchole(r)+vc,kin(r) represents a physically well-motivated choice for the function xc(r) and these potentials also constitute important contributions to vxc. In addition there is the potential vresp, which only enters vxc but not xc and represents "response" effects on vxchole and vc,kin. In Section 4.3 a comprehensive discussion is given of vxc and its components. Characteristic features in the shape of these potentials are related to the molecular electronic structure, in particular the behavior of Fermi and Coulomb correlation holes. Finally, xc and its components x and c are considered in Section 4.4. A comparison is made between the constructed xc, x and c (keeping in mind their nonuniqueness) and the model xc energy densities, such as the GGA models of Becke8, and of Perdew and Wang99,104,105 for exchange and of Perdew and Wang99,104,105, and of Lee, Yang and Parr106 for Coulomb correlation. Also the corresponding GGA integrated exchange and correlation energies are compared to the "exact" quantities.

All details concerning the accurate CI calculations and the corresponding Kohn-Sham solutions are identical to the ones discussed in Section 3.2, except that in order to construct xc and its components, the first-order density matrix (r1',r1), its diagonal part (r) and the diagonal part 2(r1,r2) of the second-order density matrix are calculated from the MRCI wave function by means of a Gaussian orbital density functional code83,84 based on the ATMOL package.

4.2 Partitioning of the KS potential and its relation to the exchange-correlation energy density

In this section we will present the definition of the KS functionals which can be constructed using "ab initio" wave functions. A central quantity of DFT is the electron density (r) that is represented in the KS theory as a sum over N occupied orbitals i(r). Both the orbitals i (which are functionals of the density) and the density  are used in the KS expression for the total electronic energy E
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Here Ts is the kinetic energy of noninteracting particles (xi=ri,i, ri are the space and i are the spin variables)
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V is the energy of electron-nuclear attraction, WH is the Coulomb or Hartree energy of the electrostatic electron-electron repulsion and Exc is the (unknown) exchange-correlation energy functional. In order to subdivide Exc into the exchange Ex and correlation Ec components, the determinant s built from the KS orbitals i is used as a reference wave function with the energy
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where the operator 
[image: image6.wmf] denotes the Hamiltonian of the system and Ex is the DFT definition for the exchange energy,
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in which x(x2|x1) is the exchange (Fermi) hole function. Actually, Ex has the same form, as a functional of the orbitals, as the Hartree-Fock (HF) exchange energy ExHF but Ex[] is defined with the KS orbitals i related to the exact density (r), while ExHF is defined with the HF orbitals related to the HF density HF(r). 

The DFT and traditional definitions of the correlation energy differ much more markedly. In DFT the correlation energy Ec is defined as the remainder when the exchange energy Ex defined above is subtracted from Exc, which implies that Ec is simply the difference between the exact energy E of equation (4.3) and EKS of equation (4.5),
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The KS determinantal wave function thus plays the same role as the HF determinantal wave function does in the conventional definition, but now EKS is defined in terms of the exact density  and corresponding KS orbitals i, while EHF is defined in terms of the HF density HF and the related HF orbitals.

We proceed with the definition of the exchange-correlation energy density xc that allows its construction from "ab initio" first- and second-order density matrices. According to 28,29, xc can be represented as the sum of kinetic vc,kin and potential vxchole components as follows
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where vxchole is the potential of the exchange-correlation hole function. It cannot be obtained as a functional derivative but it can be expressed through the exchange-correlation hole function xc(x2|x1) defined in terms of the diagonal part of the second-order density matrix 2(x1,x2) or through the pair-correlation function g(x1,x2) with the electron interaction /|r1–r2| at full strength =1
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The kinetic component vc,kin29,83 is the kinetic correlation energy density,
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In view of the recent comments by Huang and Umrigar107 on the equality of expressions for vc,kin (called c in ref.107) in terms of first or second derivatives of the one-electron density matrix we make the following observation. The quantities vkin and vs,kin are local potentials that are components of the effective local potential in the Schrödinger type of equation for the "density orbital" √(/N)30,83. If the derivation of the effective potential83 is carried out with the exact ground state wave function 0 for the exact density vkin results, while vs,kin results if the derivation is carried out for the system of noninteracting KS electrons with wave function s and of course the same density. It has been shown in 83 that vkin and vs,kin can be defined in terms of the conditional probability amplitudes30  of the total ground-state wave function
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and similarly s of the KS determinant s. For real wave functions it is easy to prove from the condition ∫ *(x2,...,xN | x1)(x2,...,xN | x1) dx2...dxN = 1 for x1= x1 that also the alternative expression,



[image: image14.wmf],
(4.11)

holds. This leads to two alternative expressions for vkin in terms of the one-electron density matrix (x1,x1) and the diagonal density (x1)=(x1,x1). The first (eq.26 in ref.83) is
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which shows that vkin is the energy density of the kinetic energy T minus the von Weiszäcker kinetic energy TW, the latter being N times the kinetic energy of the density orbital √(/N). The second (eq.42 in ref.83) is 
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Similar expressions hold for vs,kin in terms of the one-electron density matrix s corresponding to the Kohn-Sham determinant s. If we take the difference vkin–vs,kin, using either expression (4.12) in both cases, or using expression (4.13), the second term in these expressions cancels exactly since =s. We may therefore write the kinetic correlation energy density either in terms of second or first derivatives of the one-electron density matrices,
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In 83 and subsequent work28,29 always the form with the first derivatives is used since the expan-sion in Gaussian basis functions leads to increased local inaccuracies for second derivatives108.
We wish to stress that the well-known non-uniqueness of the kinetic energy density, alterna-tive forms being obtained by carrying out a partial integration, does not pertain to vc,kin: vc,kin is a unique function of position. Definition (4.8) of xc is in fact in terms of potentials vxchole and vc,kin that have a clear physical interpretation, and which are unique functions of position, being components of the exchange-correlation part vxc of the KS potential (see below) which is known to be a unique function of position. In the DFT literature an alternative definition of xc is often used, in which it is expressed via an integral over the coupling parameter  26,27,
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The non-uniqueness of the exchange-correlation energy density as a function of position is well-known, as is the non-uniqueness of the kinetic energy density, but in this chapter we choose definition (4.8) that is in terms of components of the KS potential that are unique functions of position. Expressions (4.9) and (4.14) allow us to construct xc from "ab initio" first- and second-order density matrices, we do not need to know the dependence of gon .

Using equations (4.6) and (4.7) we can subdivide the exchange-correlation energy density into its exchange and its correlation component,
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where vchole is the potential of the Coulomb correlation hole
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Equation (4.15) for xc also provides a partitioning of the exchange-correlation potential vxc. Taking the functional derivative of Exc[], eqs. (4.1) and (4.2), leads to the following expression:
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where vresp(;x1) is the "response" potential,
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As shown in 83,91, vresp can be expressed also through the expectation values of the Hamiltonian of the (N –1)-electron system calculated with the conditional probability amplitudes  and s.

4.3 The exchange-correlation potential and its components

In Figure 4.1 the molecular KS exchange-correlation potentials vxc and their components vxchole, vc,kin and vresp constructed for Li2, N2, and F2 at Re(A-A) are plotted along the bond axis as functions of the distance z from the bond midpoint. The figures thus represent the regions of -bonds. In all cases both vxc and vxchole are negative functions, with vxc being consistently less attractive than the corresponding vxchole. This can be understood from the fact that vxchole is the (negative) potential of a negative density, i.e. the xc-hole which represents the main correlation effect. According to (4.19), vxc is formed by the addition of the usually repulsive contributions of vc,kin and vresp to vxchole.

The form of vxc resembles that of vxchole. In particular, both potentials have a deep well around the nucleus A, which corresponds to a strongly attractive exchange-correlation potential in the 1s core shell. Still, there exists a significant difference between vxc and vxchole. The latter is a rather smooth potential, whose most visible feature is its different slope in the core and valence regions. It is interesting to note the somewhat different form of vxchole in the bonding and outer regions of Li2 and N2. While in the outer region (larger z values) vxchole smoothly approaches the Coulombic asymptotics vxchole  –1/r, it forms a plateau in the bonding region (small z values). For N2 this plateau is at significantly more negative energy than that for Li2, which reflects the stronger exchange-correlation effects in the former case (see Figure 4.1a, b). For F2, on the other hand, vxchole in the bonding region does not clearly exhibit such a plateau, although it has a rather flat maximum at the bond midpoint (see Figure 4.1c).

As will be shown in the next section, the dominant exchange component vxhole of vxchole, which, according to (4.16), is twice the exchange energy density x, displays a similar plateau for all three molecules considered. A possible interpretation of the plateau form of vxchole and x around the bond midpoint is that for the valence electrons of the -bond this region is the interior region of the exchange (Fermi) hole which is delocalized symmetrically over both atoms of A2, ref.85. The hole has large depth around each nucleus, and the charge distribution of such a hole can be approximated effectively with a simple electrostatic model of two charges of –0.5e that are placed along the bond axis at distances r and –r from the bond midpoint. Furthermore, it is well known that the exchange hole of an electron pair bond is essentially static, i.e. it does not change shape when the reference position is changed around the bond midpoint85. We are thus lead to consider the following very simple potential for small displacements z from the bond midpoint
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Within this model the potential will only change in second order for small displacements (z/r<<1) from the bond midpoint, showing that our model potential is essentially flat around the bond midpoint. These simple electrostatic arguments indicate that the plateau of vxchole in the bonding region can be understood as a manifestation of the delocalized, static nature of the corresponding Fermi hole and the presence of the additional Coulomb hole, which at Re is much weaker than the exchange hole, does not change this feature qualitatively for Li2 and N2.

Contrary to this, the addition of the Coulomb hole does change the form of vxchole in the bonding region of F2 as was mentioned above. A possible interpretation is that in this case the addition of the Coulomb hole makes the total exchange-correlation hole substantially more localized on the atom where the reference electron is. A more pronounced effect of the Coulomb hole is expected when the bond is relatively long and weak (cf. H2 at long distance in ref.85), which is the case in F2. As a result, the total hole starts to localize on the nucleus that is nearest by when the reference position moves away from the bond midpoint, and the potential becomes Coulombic rather than flat. In the next section these qualitative arguments will be supported with the analysis of the constructed correlation energy density c, which includes as a part the potential of the Coulomb correlation hole vchole (4.17).

In contrast to the rather structureless vxchole, the total exchange-correlation potential vxc displays a characteristic structure. The most visible features of vxc are the local maxima (inter-shell peaks) between the core and valence regions of atom A. These peaks are clearly exhibited for N2 at z=0.6 and 1.5 bohr, and for F2 at z=1.0 and 1.6 bohr, while for Li2 they are less pronoun-ced. Beyond these peaks on the outer sides of the N- and F-atoms there are weak local minima, while for the lighter Li2 molecule vxc has a smooth monotonic form in this region. Another characteristic feature for Li2 is that near the bond midpoint vxc is almost parallel to vxchole as it forms a plateau. For N2 and F2 in contrast, vxc displays, after passing through a local minimum, a bond midpoint "peak" (see Figure 4.1b and c). Since the vc,kin and vresp parts of vxc are respon-sible for its observed structure, we will next analyze these contributions to vxc in more detail.
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Figure 4.1: The total exchange-correlation potential vxc and its components, the potentials vxchole, vc,kin and vresp, along the bond axis at the equilibrium bond distance, z is the distance from the bond midpoint. a) Li2, b) N2 and c) F2.
The kinetic component vc,kin of vxc is defined in terms of the difference between the inte-grated squares of the gradients of the conditional amplitudes 12 and |1s|2, equation (4.10),
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In other words, vc,kin represents the difference in sensitivity of the full xc-hole and the exchange-only (Fermi) hole in the distribution of the other electrons to displacement of the reference elec-tron29,83. (Note that vc,kin is enhanced by a factor of ten in Figure 4.1. The characteristic feature of vc,kin in the -bond region are the 1s-2s intershell peaks, which occur for N2 at ca. z=0.5 and z=1.4 bohr (for Li2 at z=1.1 and z=4 bohr and for F2 at z=1 and z=1.6 bohr) and which contribute to the above-mentioned corresponding peaks in vxc at these positions. These peaks reflect the added effect of mobility of the Coulomb correlation hole when the reference electron crosses the intershell border, so that the corresponding change of the xc-hole is larger than that of the Fermi hole. They are analogous to the peaks observed and explained in 29 for the hydrides LiH, BH and HF. In all cases the intershell peaks are clearly displayed as the largest ones on both sides of atom A. At smaller distances from the nucleus, in the core regions, there are also smaller peaks in vc,kin which get considerably closer to the nucleus when going from Li2 to N2 and coalesce into a single peak at the nucleus for F2. According to the interpretation given in 29, these peaks are related to the change in Coulomb hole from polarization to expansion shape in this region85.

Another feature of vc,kin is its definitely positive value in the bond midpoint region (in the case of F2 even a peak). This also can be explained directly from its definition (4.10) in terms of the probability amplitudes83 (. If the reference electron is displaced from a point r1 close to the bond midpoint towards a certain atom, the probability distribution of the second electron in this bond increases at the other atom due to the left-right Coulomb correlation. This causes a change in the exchange-correlation hole associated with  and produces positive values of the amplitude gradient 12. In the corresponding KS case there is no analogous effect for |1s|2, since s describes a pure exchange-hole, which for an electron pair bond is independent of the position of the reference electron. Therefore, the resulting vc,kin is definitely positive in this region. As was established in 83 for H2 and in 29 for the monohydrides AH, A = Li, B, F, the increasing left-right correlation provides an appreciable peak for the dissociating molecule, while for Re the height of the "peak" (if any) is small. The present results for vc,kin show a similar trend. The bond midpoint peak is displayed in vc,kin for F2, while for Li2 and N2 it exhibits only a positive plateau in this region. This is in agreement with the observation made before that the -bond in F2 starts to exhibit behavior that is typical for stretched bonds. The Pauli closed shell repulsion between the occupied pπ orbitals on the F-atoms is indeed supposed to "stretch" the p-bond of F2.

The response potentials vresp plotted in Figure 4.1 have been obtained by subtracting vxchole and vc,kin from vxc. The response potential is repulsive and has a characteristic step-like form with higher values for the core electrons, lower values for other electrons and a steep descent from higher to lower values29,91,109. The typical height of the core step ∆vresp of the constructed vresp is in agreement with its rough estimate110 for the case of the exchange-only potential vx of the optimized potential model (OPM)24,111-113, ∆vresp(0.38((HOMO–I),where in this case i is the energy of the core orbital. The step pattern of vresp is disturbed by cusps and wiggles near the nucleus, which might very well be caused by the incorrect Gaussian basisset representation of the density near the nucleus108. However, we have not further analyzed this point. Beyond the steep descent of vresp on the outer side of the N- and F-atoms one can notice a small local maximum (for F2 for instance between z=2.5 and 3 bohr), which is responsible for the corre-sponding feature of vxc.

An interesting feature of vresp for N2 and F2 is that it displays a bond midpoint peak after passing through a minimum in the bonding region. The response potential for Li2 lacks this peak and just goes through a rather shallow minimum at the bond midpoint. This peak in vresp, which for F2 is higher than for N2, is responsible for the same feature in vxc for N2 and F2 (as opposed to the flat behavior of vxchole). The presence of this repulsive feature in the potential for N2 and F2 correlates with the existence of a repulsive interaction (Pauli repulsion) between the occupied 2s subshells of the N- and F-atoms in N2 and F2. For the Li2 molecule Re is large and the closed shells consist, apart from the single valence orbital, of the localized 1s core orbitals, which have very little overlap and therefore virtually no Pauli repulsion. This corresponds to the absence of a bond midpoint peak in vresp for Li2. We defer a discussion of the relation between Pauli repul-sion and a bond midpoint peak in the response potential to ref.114, since this question is some-what involved and has no bearing on the behavior of the energy densities x and c which we study in the next section, the response potential not being a component of these energy densities.

4.4 Constructed and model (LDA and GGA) xc energy densities

The success of DFT is due to the existence of accurate exchange-correlation functionals Exc[] or rather exchange-correlation energy densities xc(r), which integrate to reliable xc energies. For many properties the LDA functionals are already quite accurate, for others (notably bond energies) the GGA functionals have brought considerable improvement. In order to study the local quality of the approximate energy densities we have constructed the xc-energy density per particle xc(r) numerically. In particular we compare its exchange and correlation parts, x=(1/2)vxhole (4.16) and c=vc,kin+(1/2)vchole (4.17), with some of the currently used GGA functionals xGGA and cGGA, which are explicit functions of the density  and its gradient | |.

4.4.1 Correlation energy and energy density

Before discussing the Coulomb correlation energy density c calculated as the difference between xc and x, or (equivalently) the sum of (12)vchole and vc,kin, we first consider the following. While we expect that the KS orbitals and, hence, the KS exchange energy Ex obtained are of reasonable quality, the correlation energy Ec calculated with the restricted CI amounts to only about 85% of the total correlation energy, as was already mentioned in Section 3.3. The limitations on the CI calculation lead to Ec values that definitely underestimate the correlation of the core electrons as well as core/valence correlation and possibly to some extent also the inter-pair correlation of valence electrons.

In order to correct for this deficiency, we have obtained in Section 3.4 an estimate Ecemp of the true DFT correlation energy by taking the difference between the empirical total non-relativistic electronic energy of a system Eemp estimated from spectroscopic data75 and the electronic energy EKS=<(s|
[image: image29.wmf]|(s> of the KS system, which is presented in the row labeled "KSemp" of Table 4.1. We feel that EGGA should rather be compared to the empirical estimate of the true DFT correlation energy Ecemp. In fact, the GGAs are always judged by their perfor-
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Figure 4.2: The constructed empirical correlation energy density cemp (cCI scaled so as to integrate to the empirical correlation energy) and the corresponding LDA functional cLDA and the GGA functionals of Perdew and Wang cPW, and Lee, Yang and Parr cLYP along the bond axis at the equilibrium bond distance, z is the distance from the bond midpoint. a) Li2, b) N2 and c) F2.

mance for experimental (bond) energies. For the same reason, we feel that cGGA should be compared to the scaled empirical energy density cemp, defined by
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which integrates to Ecemp. Meanwhile the form of cGGA will hardly change when the exact density is used in this functional instead of the present CI density.

In Figure 4.2 we compare cemp with the LDA correlation functional cLDA, ref.115, as well as with the GGA correlation functional of Perdew and Wang (PW) cPW, refs.99,104,105, and that of Lee, Yang and Parr (LYP) cLYP, ref.106, the latter being in the gradient-only form of Miehlich et al.116. We note that the cLDA curve differs considerably from the other curves. It is structureless and it is, in general, significantly lower than the other ones. This is due to the well-known difference in correlation between the homogeneous electron gas model (which is represented by the LDA) and finite inhomogeneous atomic and molecular systems. All the structure in cemp arising from atomic shell and molecular bonding effects is absent from cLDA. Moreover, it is known117 that in the homogeneous electron gas the Coulomb correlation of electrons with like spins brings about the same contribution to Ec as that of the opposite-spin electrons. However, in finite systems correlation of like-spin electrons is substantially suppressed by their exchange, so that this brings only a small contribution to Ec. The local-density approximation therefore tends to overestimate correlation in finite closed shell systems, and indeed it is obvious that cLDA is consistently too negative. Because of this local overestimation of correlation, cLDA, when inte-grated against , yields ca. 100% too negative correlation energies EcLDA (see Table 4.1).

An important feature of the constructed cemp as well as of cPW and cLYP is their consi-derable amount of structure. All the functions have a well around the nucleus A, which represents correlation of the 1s-core electrons. The average depth of the well does not increase with the atomic number of A. This reflects the fact that for neutral systems the contribution to Ec from the 1s-electron pair does not depend much on the atomic number of the corresponding atom. In this respect, correlation of the 1s-core electrons differs from their exchange, which almost completely reduces to the self-interaction of the 1s-electron.

As can be seen from Figure 4.3, the depth of the well of the exchange energy density x around the nucleus does increase with increasing atomic number due to the increasingly contracted nature of the 1s, leading to stronger self-interaction. The wells in cemp, cPW and cLYP are terminated by peaks in the K-L intershell region, at distances of ca. ±1.4 (Li2), ±0.4 (N2) and ±0.3 bohr (F2) from the nuclei. Comparison with Figure 4.1 shows that in the case of the constructed cemp these peaks are determined, primarily, by the corresponding peaks in the kinetic part vc,kin. Beyond the intershell peaks there are distinct wells in cemp for N2 and F2.

Going next to the bond midpoint, one notes a striking difference between the three molecules. The cemp of Li2 becomes perfectly flat after the inner 1s-2s intershell peak, but for N2 there is a clear bond midpoint peak, which for F2 becomes relatively high and even reaches positive values (see Figure 4.2c). Since vchole, the potential energy part of cemp, is an everywhere-negative potential, this indicates that features of both the kinetic part vc,kin and the potential energy part vchole contribute to the bond midpoint peak in cemp. The form of cemp in the bonding region resembles that for the H2 molecule85, where a peak around the bond midpoint arises from a peak in the (still negative) vchole and a positive peak in vc,kin, originating from left-right correlation. The Coulomb hole representing the left-right correlation is negative around the nucleus nearest to the reference electron and it is positive at the other nucleus. When the reference electron crosses the bond midpoint, the Coulomb hole "jumps"83, changing its sign around the nuclei, which leads to a bond midpoint peak in vc,kin and hence in cemp. In the case of F2 this type of left-right correlation will occur for the electrons of the relatively weak single -bond. For N2 the well in cemp beyond the outer peak is significantly deeper than that in the bonding region and the bond midpoint peak is relatively small. In this case, the bond midpoint peak of cemp reflects entirely the maximum in the correlation hole potential vchole, since vc,kin for N2 lacks a corresponding peak in this region.

Keeping in mind that only tentative conclusions can be drawn from comparison of the various energy densities, in view of their nonuniqueness, we can make the following observations. It is interesting to note, that the shape of the GGA functionals cPW and cLYP resembles that of cemp much better than cLDA does. Still, there is an appreciable difference between the two GGA functionals. In the case of Li2, the outer intershell peak in cLYP is much larger than the peak in the bonding region, while both peaks in cPW are somewhat shallower. On the other hand, for N2 and F2 it is cPW that has more pronounced intershell peaks and also wells beyond the peaks, as well as a deep well at the nucleus, while cLYP is a rather more shallow function for these molecules. Taking into account also the relatively deep well at the nucleus, cPW has a certain shape resemblance with the constructed cemp, although this similarity is by no means quanti-tative. Especially in the bonding region of N2 and F2 all the model functionals are very different from the constructed cemp. Near the bond midpoint cPW consistently reduces to the flat and much too negative cLDA. This is a characteristic feature of all functionals that, like the PW one, are based on the electron gas model and include only gradient-dependent corrections to cLDA. In the limit of a small density gradient 0, as occurs near the bond midpoint, such functionals turn into cLDA by construction. In its turn, cLYP reduces to the Wigner-type formula for small gradients. This functional is also derived from the homogeneous electron gas model but with the parameters fitted for the He-atom. Because of this, cLYP does not reduce to cLDA near the bond midpoint and it is closer to cemp than cPW is in this region. Still, cLYP always has a flat form and it does not exhibit the bond midpoint peak for N2 and F2 which is such a distinct feature, related to left-right correlation, of cemp.

The first column in Table 4.1 presents the integrated correlation energies Ec (rows labeled KS and KSemp), EcLDA (row LDA), EcPW (rows PW-PW and B-PW) and EcLYP (row B-LYP). Com-paring the EcGGA to Ecemp, since the GGA functionals should give the full correlation energy, we conclude that the EcGGA amount to only 84-89% of the true correlation energy. The discrepancies between EcGGA and Ecemp are significant: for N2 the largest difference between EcGGA and Ecemp is 0.068 hartree for EcLYP and for F2 the largest difference is 0.086 hartree for EcPW. We have argued elsewhere108 that the EcGGA correlation energies are too small compared to Ecemp since they do not incorporate all of the electron correlation. The effect of the left-right corre-lation discussed above, which deepens the Coulomb hole around the reference electron, may be missing. Indeed, the LDA and GGA correlation functionals have been developed from the homogeneous or inhomogeneous electron gas, which (at least for the densities typical for atomic and molecular systems) does not contain the phenomenon of left-right correlation. In the prototype case of dominating left-right correlation, nearly dissociated H2, it has been shown28 that indeed cGGA completely fails to describe c. Also EcPW at R (H-H)=5 bohr covers less than 20% of Ec, ref.77. We have noticed above the lack of the bond midpoint peak, related to left-right correlation, in the cGGA of N2 and F2. Even though the left-right correlation, or more generally the so-called nondynamical or near-degeneracy correlation is probably missing from the GGAs for correlation, the rest of the correlation effect, the so-called dynamical correlation, is hopefully described by the electron-gas based correlation functionals.

Table 4.1: Kohn-Sham, LDA and GGA exchange and correlation energies (hartree). The approxi-mations for exchange and correlation are both indicated (e.g. B-PW: Becke for exchange, Perdew-Wang for correlation). The row labeled KS contains the "exact" correlation energy, i.e. the calculated CI energy minus the energy of the KS determinant, and the exchange energy evaluated with the KS orbitals. In the row KSemp the calculated CI energy has been replaced with the exact (spectroscopically determined) total energy.


Ec
Ex
Exc

Li2
KS
–0.111
–3.565
–3.676


KSemp
–0.128
–3.565
–3.693



Ec–Ecnd=–0.119
Ex+Ecnd=–3.574



LDA
–0.330
–3.084
–3.414


PW-PW
–0.137
–3.537
–3.674


B-PW
–0.137
–3.555
–3.692


B-LYP
–0.134
–3.555
–3.699







N2
KS
–0.475
–13.114
–13.589


KSemp
–0.552
–13.114
–13.666



Ec –Ecnd=–0.476
Ex+Ecnd=–13.190



LDA
–0.942
–11.873
–12.815


PW-PW
–0.490
–13.180
–13.670


B-PW
–0.490
–13.208
–13.698


B-LYP
–0.484
–13.208
–13.692







F2
KS
–0.632
–19.935
–20.567


KSemp
–0.755
–19.935
–20.690



Ec –Ecnd=–0.676
Ex+Ecnd=–20.014



LDA
–1.296
–18.211
–19.507


PW-PW
–0.669
–20.066
–20.735


B-PW
–0.669
–20.101
–20.770


B-LYP
–0.675
–20.101
–20.776

The energy of non-dynamical correlation Ecnd can be estimated assuming that the simple CI wave-functions constructed in 65, which provide the proper dissociation limit (PDL) for the dimers A2, take into account the effect of non-dynamical correlation and neglect dynamical correlation. With this assumption the energy Ecnd can be estimated as the difference between the electronic energies of the PDL and HF functions, Ecnd=EPDL–EHF. This yields Ecnd values of –0.009, –0.076 and –0.079 hartree for Li2, N2 and F2, respectively. Thus, the energy effect of non-dynamical correlation at Re is small for Li2, while it is appreciable for N2 and F2. In Table 4.1 we present the energy of dynamical correlation Ecd estimated as the difference Ecd=Ecemp–Ecnd. The energies Ecd appear to be close to the GGA correlation energies, i.e. EcGGA(Ecd. Thus, we arrive at the conclusion108 that the GGA correlation functionals EcGGA[] (EcPW or EcLYP) effec-tively model the dynamical correlation of electrons only. We will return to the implications of this finding for the local differences between cGGA and c later, but first turn to x.

4.4.2 Exchange energy and energy density

In Figure 4.3 the exchange energy densities at Re(A-A), calculated from the KS orbitals i via equation (4.16) are plotted along the bond axis as functions of the distance z from the bond midpoint. A comparison is made between x and the exchange functional xLDA of the local density approximation (LDA) as well as with the GGA exchange functionals of Becke (B) xB, ref.8, and of Perdew and Wang (PW) xPW, refs.99,104,105. In both GGA functionals xLDA is augmented with a correction factor, which is a function of the dimensionless gradient-dependent argument ||43. In connection with the non-uniqueness of the energy density, we note that the LDA and Becke functional were indeed designed to approximate the same exchange hole that we use in our definition of the exchange energy density x=(1/2)vxhole, eq.(4.16). This does not hold for xPW, but this energy density was characterized by its authors as being nearly identical to xB. We therefore feel that in this case x and the xGGA are more strictly comparable. The second column in Table 4.1 presents the corresponding exchange energies Ex (rows labeled KS and KSemp), ExLDA (row LDA), ExPW (row PW-PW), and ExB (rows B-PW and B-LYP). Being the dominant component of the potential vxchole analyzed in section 4.3, x has the same general features, namely, a deep well around the nucleus, the asymptotical Coulombic-like behavior at larger z and a plateau in the bonding region (see Figure 4.3). The plateau is observed for all three molecules considered and its presence has been interpreted in the previous section as a manifestation of a static decollated Fermi hole for electrons of the -bond of A2. A general trend for xLDA is that it overestimates exchange near the nuclei, while it clearly under-estimates exchange at distances rA of a few tenths of a bohr from the nucleus. It also slightly underestimates exchange at larger rA, both in the outer region and around the bond midpoint (for Li2 xLDA nearly coincides with x around the bond midpoint).

The LDA underestimation of exchange at intermediate rA, where the density is still appre-ciable and the volume of the region is fairly large, overcompensates its considerable overesti-mation close to the nucleus, where the density is high but the volume very small. As a consequence the LDA exchange energies Ex  are considerably smaller (less negative) than the KS energies Ex (see Table 4.1). The GGA gradient corrections to xLDA are everywhere-negative functions, that shift the LDA curve downwards and bring xGGA closer to x in the important region at intermediate rA. The gradient approximations however worsen the situation in the narrow region around the nucleus, and have little effect in the bonding region. The functional xPW is indeed, as noted by its authors, hardly distinguishable from xB. Note that contrary to xPW, xB has the correct Coulombic asymptotics –1/(2r) at large z, but one can hardly see this difference for the distances presented. Both xB and xPW approach x more closely at larger z than xLDA does. In the bond midpoint region xB and xPW are very close to xLDA. This is understandable, because for a homo-atomic molecule the bond midpoint is at the same time a saddle point of the density , where || = 0. Due to this, the GGA argument ||43 is small in the bond midpoint region, providing a small GGA gradient correction. In particular for F2 there is a notable difference between the model and exact x curves in the bonding region, both the LDA and GGAcurves deviating from the flat plateau-like behavior of x. We will return to the meaning of this difference later.

The gradient corrections bring in the present series of molecules the GGA exchange energies ExGGA much closer to Ex  as compared to ExLDA, as they are known to do (actually designed to do) in the case of atoms. In particular, for Li2 the negative difference between xGGA and x in 
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Figure 4.3: The constructed exchange energy density x and the corresponding LDA functional xLDA and the GGA functionals of Becke xB, and Perdew and Wang xPW along the bond axis at the equi-librium bond distance, z is the distance from the bond midpoint. a) Li2, b) N2 and c) F2.

the region near the nucleus (see Figure 4.3a) appears to be almost perfectly compensated with their positive difference at larger rA, so that ExB is only 10 milli-hartree off the Ex value. However, for N2 and F2 the gradient corrections seem to over-perform and the negative differences between ExGGA and Ex  are considerably larger than the errors in the GGA corre-lation energies: the largest difference is between ExB and Ex and amounts to –0.094 hartree for N2 and to –0.166 hartree for F2. Although these errors are fairly small as a percentage of the total exchange energy, they are an appreciable fraction (in the order of 25%) of the total correlation energy (see Table 4.1 and the discussion below). In spite of the impression given by Figure 4.3 of close agreement between the GGA and KS exchange energy densities over large regions of space, these results show that the difference between the LDA and GGA exchange energy densities and the KS exchange energy density is significant. Furthermore, the local differences xGGA(r)–x(r) are large compared to for instance the PW correlation energy density cPW(r). Apart from the region around the nucleus, there are also large differences at the intershell peaks and in the bonding region (note that the peak around the bond midpoint corresponds to the deviation of the model exchange energy densities from the plateau-like behavior of x noted above). It is in fact due to cancellation of positive and negative contributions that xGGA(r)–x(r) integrates to only ca. 25% of the total correlation energy.

The LDA and the GGA (at least Becke, but PW is close) exchange energy densities try to model the KS exchange energy density by the potential of the exchange hole of the homo-geneous or inhomogeneous electron gas. Maybe the errors noted above could have been expected if we recall that the KS exchange energy density is determined by the potential of a decollated Fermi hole, while in the electron gas the hole is centered at the reference electron. It has been suggested118-120 that in molecules the LDA exchange functional (X), since it mimics a localized hole, effectively describes the combined effect of exchange and nondynamical (left-right) correlation. As discussed earlier, this combined effect introduces partial localization of the exchange-correlation hole at the atom where the reference electron is residing, and the same localization is effectively provided by an exchange functional that employs the local density and density gradient. It is interesting to investigate (cf. also ref.108) to what extent this qualitative notion is corroborated by the integrated GGA exchange energies (the LDA approximation to the exchange functional is too crude, the LDA exchange energies are too small rather than too large). We present in Table 4.1 the sum (Ex+Ecnd) of the KS exchange energy Ex and the energy of nondynamical correlation Ecnd estimated above. It appears that the GGA "exchange" energies are actually much closer to the sum of exchange and nondynamical correlation energies,
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(4.20)

In particular, ExGGA (especially, the PW one) for N2 are close to the sum (Ex+Ecnd). For F2 the energies ExGGA are still too negative, but they are clearly much closer to (Ex+Ecnd) than to the bare exchange energy Ex. For Li2 we have already shown that the effect of non-dynamical correlation is small at Re(Li-Li) and eq.(4.20) therefore effectively reduces to ExGGAEx.

The energy density of nondynamical correlation

We have arrived at the conclusion that on one hand EcGGA does not include nondynamical correlation, while on the other hand ExGGA does include this part of the correlation energy. One wonders if this point of view is not only substantiated by the values for the integrated quantities, but can also be traced in the shape of the energy densities as functions of position. Since the exchange GGA functionals have not been constructed with the purpose to contain features corre-
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Figure 4.4: Comparison at the equilibrium bond distance between the constructed empirical correlation energy density cemp and the GGA correlation energy densities to which xGGA(r)–x(r) is added as a possible representation of the contribution of nondynamical correlation, z is the distance from the bond midpoint along the bond axis. a) Li2, b) N2 and c) F2.

sponding to nondynamical correlation, and since our choice of c(r) is not precisely the energy density the models strive to mimic, we cannot push this analysis too far. We just comment on the possibility, suggested by the above analysis, that local "errors" in xGGA(r) and cGGA(r) reflect unintended presence or neglect respectively of nondynamical correlation and cancel each other. This would mean that xGGA(r)–x(r), representing nondynamical correlation, has to be added to cGGA(r), yielding xcGGA(r)–x(r), in order to make a meaningful comparison to the KS cemp(r) possible. Of course some variation is obtained in this comparison depending on which GGA is used, but we do obtain very significant qualitative improvement when comparing xcGGA(r)–x(r) rather than cGGA(r) to cemp(r). This is strikingly demonstrated for N2 and F2 in Figure 4.4, in which we compare cemp(r) to the energy densities obtained by adding xLDA(r)–x(r) to cLDA(r), xB(r)–x(r) to cLYP(r), and finally xPW(r)–x(r) to cPW(r). Most notably, the peak at the bond midpoint, which we identified as a left-right correlation effect in c, is built in by the model exchange functionals. It would arise both from the LDA and GGA exchange functionals, cf. the difference between the model xLDA(r), xGGA(r) and the plateau-like behavior of x(r) in Figure 4.3c. The correspondence is also much improved in the wells, but addition of xGGA(r)–x(r) and especially xLDA(r)–x(r) leads to exaggeration at the intershell peaks. The well around the nucleus is of course strongly overestimated, the very deep well at the nucleus being a deficiency of the LDA and GGA exchange functionals that is not related to non-dynamical correlation. Qualitatively similar improvement is obtained for Li2, although not so spectacular as for N2 and F2. At a qualitative level, however, the local behavior of the c(r) and x(r) curves supports our contention that nondynamical correlation is lacking in the model c(r) curves, but is incorporated in the model x(r) curves.

We conclude by considering the total xc-energy density. Since the Coulomb correlation effect is small compared to the exchange, xc(r) is practically indistinguishable from its exchange component x(r) displayed in Figure 4.3. As a matter of fact, we have just observed that locally differences xGGA–x cancel to a large extent against differences cGGA–cemp, so agreement of xcLDA and especially xcGGA with xcemp will be better than in the exchange-only case. For F2 notably the clear difference in slope of both the xLDA and the xGGA compared to x is no longer present in the xc curves. The most conspicuous discrepancy in xGGA, the much too negative behavior at the nucleus of course survives in xcGGA. At larger distances from the nucleus xcGGA follows xc rather closely indeed, but not perfectly. The local differences have opposite signs in different regions, thus compensating each other to some extent in the resulting GGA xc-energies. In particular, for Li2 the B-PW value ExcB-PW=–3.692 hartree practically coincides with the corre-sponding KS value Ex+Ecemp=–3.693 hartree and the PW-PW and B-LYP values are also close to Ex+Ecemp. Similarly, for N2 the PW-PW value ExcPW=–13.670 hartree is very close to the KS value Ex+Ecemp=–13.666 hartree and the B-PW and B-LYP values are not far from Ex+Ecemp. For F2 there is also considerable compensation of the local errors of opposite signs, but a somewhat larger difference between the KS and GGA values for Exc remains (see Table 4.1).

4.5 Conclusions

In this chapter the molecular Kohn-Sham exchange-correlation potentials vxc and the energy densities xc have been constructed from "ab initio" CI one- and two-electron density matrices for the homonuclear diatomic molecules Li2, N2, F2. The structure of vxc has been analyzed in terms of its components vxchole, vc,kin and vresp. The bond formation manifests itself in a plateau in vxchole in the bonding region of Li2 and N2, a bond midpoint peak in vresp for N2 and F2, and a bond midpoint peak in vc,kin for F2. The combination of these features determines the form of vxc. The relation of these features with various effects of electronic structure and electron correlation has been discussed. The structure of xc has been analyzed in terms of its exchange x and correlation c components. The latter component displays a sharp structure with intershell peaks and, in the case of N2 and F2, a bond midpoint peak, which has been related to left-right correlation. The exchange energy density x is relatively smooth with a well around the nucleus, Coulombic asymptotics in the outer region and a plateau in the bonding region.

We have compared the local behavior of the constructed x and c with that of the GGA exchange functionals of Becke xB, and of Perdew and Wang xPW and with the correlation functionals of Perdew and Wang cPW, and of Lee, Yang and Parr cLYP as well as with that of the corresponding LDA functionals. LDA tends to underestimate exchange and to overestimate correlation. In particular, the LDA correlation energy density cLDA is both highly over-attractive and structureless as compared to c. The gradient corrections create a considerable amount of structure for the correlation functions cGGA and bring the GGA exchange functions xGGA closer to x. Still, the xGGA show appreciable local deviations from x and significant local differences in the comparison between the cGGA and c have been found. The latter cannot be required to coincide, given the nonuniqueness of the correlation energy density, but for the former close correspondence is expected (at least for GGA=Becke) since the GGA exchange energy density tries to model the exchange hole potential which we use as exact x. The gradient corrections also bring the GGA exchange and correlation energies much closer to the KS exchange energy Ex and to the empirical estimate Ecemp of the true correlation energy, respectively. For N2 and F2 they seem to overcorrect and the GGA exchange energies are consistently too large (too negative) as compared to Ex, while the GGA correlation energies are too small as compared to Ecemp. However, the differences of opposite signs compensate each other and the resulting GGA xc-energies are rather close (especially, in the case of N2) to the sum (Ex+Ecemp).

Concerning the systematic deviation between the GGA and KS exchange and correlation energies separately, we have noted that qualitative considerations concerning the behavior of Fermi and Coulomb holes in molecules on one hand and in the electron gas on the other, suggest that the LDA and GGA exchange functionals represent effectively not only exchange, but also the molecular non-dynamical Coulomb correlation. At the same time the nondynamical corre-lation is not expected to be covered by the GGA correlation functionals, which represent the dynamical Coulomb correlation only. We have observed (cf. also108), using "ab initio" nondynamical correlation energies End, that the integrated GGA exchange and correlation energies provide semi-quantitative evidence for this point of view. In the present work we have demonstrated that the local behavior of the GGA exchange and correlation energies provides qualitative support for this point of view. Addition of the difference between the GGA and KS exchange energy densities, which supposedly mimics nondynamical correlation, to the GGA correlation energy density, does give qualitative improvement notably in the bonding region towards the KS c.
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