
1 Introduction to electron correlation in molecular density functional theory

Quantum chemistry is all about accurately solving the quantum mechanical equations of motion with the objective to understand and predict molecular properties. Nowadays bonding energies, geometries, as well as potential energy surfaces for the prediction of chemical reactions are routinely calculated for a large variety of molecules. In fact, computational quantum chemistry is more and more becoming an aid to experimentalists. Within traditional quantum chemistry the computation of molecular properties is directly based on the Schrödinger equation, which provides a description of the collective electronic motion in terms of all spatial and intrinsic degrees of freedom of all the electrons. As one cannot even try to imagine the compli-cated collective behavior of electrons interacting with each other, it is clear that in general approximations have to be made. Even so, traditional quantum chemistry is able to provide an extremely accurate description of the electronic properties of small molecules and can in those cases be taken as benchmark.

A different approach to quantum chemistry is based on the fact that instead of the complicated wave function, the much simpler electron density is already sufficient for a complete description of the ground state expectation values of electronic systems. Although density functional theory (DFT) in principle provides for an exact description of the ground state density of the interacting many electron system, in practice the exact expression for the function that accounts for the com-plicated effect of electron correlation is not known and approximations are needed. The coordi-nating subject of this thesis is the description of electron correlation in the one-electron Kohn-Sham (KS) approach to DFT in the specific case of molecules. In this thesis we first construct accurate KS solutions for a number of molecules and even two simple hydrogen reactions, which are then used as benchmark in extensive comparisons with the current approximations. The last part of this thesis is devoted to a new approximation to the Kohn-Sham potential that captures all effects of electron correlation at the one-electron level. In this introductory chapter we first give a short discussion about the basic theory behind DFT, involving the definition of all the key quantities and concepts used throughout this thesis, and conclude with an overview its contents.

1.1 Density functional theory

This thesis is based on a remarkable theory by Hohenberg and Kohn1 in which without loss of rigor the ground state expectation values of all quantum mechanical observables are written as functionals of the electronic ground-state density (r). By application of the variational principle Hohenberg and Kohn proved that, up to a trivial constant, there exists a one-to-one mapping between the external potential and the ground-state electron density. In practice this means that the ground-state density (r) uniquely determines the external potential v(r) and at the same time also the ground-state wave function ([. Consequently, every ground state expectation value of a quantum mechanical observable is a functional of the ground-state density. In particular the ground-state energy, which can be written as
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Here 
[image: image2.wmf] denotes the kinetic energy operator and the operator 
[image: image3.wmf] stands for the inter-electronic interactions. The Hohenberg-Kohn functional FHK is universal in the sense that it does not depend on the external potential vext, and can therefore be applied to all electronic systems ranging from atoms and molecules to solids. In addition, the exact ground state energy and electron density can in principle be obtained by minimization of the energy functional given above. Obviously the exact expression for FHK is not known due to the complicated many electron nature of the problem so that good approximations have to be found.

The virtue of the Hohenberg-Kohn theorem was fully explored by Kohn and Sham2 with the introduction of an auxiliary non-interacting electron system having an effective external potential vs that yields the exact ground-state density . The ground state of the auxiliary non-interacting system is given by a Slater determinant consisting of orbitals (i obtained from,



[image: image4.wmf],

in which r is the space and  the spin variable. Based on the Hohenberg Kohn theorem, the total as well as the kinetic energy can be written as functionals of the density,
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Obviously the Kohn-Sham kinetic energy functional Ts is just FHK, but now for the specific case of a non-interacting system. According to the Hohenberg-Kohn theorem there is only one ex-ternal potential vs that corresponds to the ground-state density . In order to obtain an expression for the Kohn-Sham potential vs, first the Hohenberg-Kohn functional for the interacting system is partitioned as follows:
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which defines an unknown exchange-correlation energy functional Exc. Minimization of the interacting and non-interacting energy functionals yields the same ground-state density for both systems when we define the external potential in the non-interacting system as
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i.e. the sum of the external potential v caused by the nuclear framework and possible additional external potentials, the Hartree potential vH due to the classical Coulomb interaction of the electron cloud, and an unknown part called the exchange-correlation potential vxc. The key step in the derivation of the Kohn-Sham equations is to assume that for every ground-state density there exists an auxiliary non-interacting system with the same ground-state density.

The advantage of the Kohn-Sham approach is that it provides an exact one-particle picture of the interacting electronic system, unlike the approximate Hartree-Fock approach. Furthermore, instead of finding good approximations to the functional FHK we now have to find good approxi-mations to the much smaller quantity Exc.

1.2 Approximate density functionals

A well known method for the derivation of approximate density functionals is the coupling constant integration technique, which provides a relation between the interacting and the non-interacting system by introducing a Hamiltonian
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with V( defined such that for each (([0,1] the same ground state density  is obtained. In this way the fully interacting system corresponds to (=1 with external potential v=V(=1, while the Kohn-Sham system is described by (=0 with vs=V(=0. Denoting the ground-state for coupling constant ( by ((, application of the Helmann-Feynman theorem yields a relation between the energy of the interacting and non-interacting system,
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where E(0) corresponds to the artificial non-interacting energy and E(1) to the ground state energy of the interacting system. Using (1.1)-(1.3) the following expression for the xc-energy can be obtained
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(1.4)

Good approximations to Exc can thus be obtained by constructing good approximations to the lambda integrated coupling constant pair correlation function g(.
The simplest and yet quite accurate density functional approximation for the exchange-correlation energy is based on the homogeneous electron gas, for which accurate expressions for the lambda-integrated g( have been constructed. More precise, an analytical expression is known for the exchange energy and the most popular approximation for the correlation part has been obtained by means of a parameterization of Monte Carlo simulations3,4. In the local density approximation (LDA), the homogeneous density 0 in the expression for the xc energy of the homogeneous electron gas is simply replaced by the actual inhomogeneous density (r) of the system. In spite of the fact that the density of atoms and molecules is neither constant nor slowly varying, this approximation works quite satisfactorily. The somewhat crude explanation for its success is based on the notion that the LDA coupling constant averaged xc-hole, given by ((r2)(g((r1,r2)d(, is localized around the reference electron at r1 and properly normalized to one electron5,6. Furthermore, the spherical LDA coupling constant averaged xc-hole reasonably reproduces the spherically average xc-hole. So, even though the real coupling constant averaged xc-hole for inhomogeneous electron systems is certainly non-spherical, the local density approximation can still yield reasonable exchange-correlation energies since the xc energy only depends on the spherically averaged xc-hole. An important remark in this respect is that the above analysis is primarily based on atomic like systems, so that it does not necessarily explain why LDA also works in case of the formation and breaking of molecular bonds.

Since the inclusion of gradient corrections enables the xc-functional to account for density variations, it is quite obvious first to considering the expression for the weakly inhomogeneous electron gas. Unfortunately, it turns out that this expression does not improve upon LDA due to the incorrect long-range behavior of the corresponding coupling constant averaged xc-hole7. A number of solutions have been proposed, resulting in the different generalized gradient approxi-mations (GGAs) whose accuracy has continued to increase over the years. In order to get some idea, we give a short discussion about one of the simplest GGA corrections to the LDA, i.e. the popular Becke8 exchange functional of the form
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in which x=|((|/(4/3 is a dimensionless variable determined by the scaling property of the exchange functional. For the function f in the above expression Becke took one of the simplest interpolations between the asymptotically exact –1/(2r) behavior for r(( in case of exponen-tially decaying densities, enforced by the relation f(x)~x/(6ln(x)) for x((, and the limit for slowly varying densities f(x)~x2 for x(0. The parameter  was fitted to reproduce the exchange energy of the noble gas atoms.

It is well known that the potentials corresponding to the current xc-energy functionals are deficient in the sense that they do not result in the proper –1/r asymptotics9. Moreover it is extremely difficult to find a GGA that simultaneously yields accurate energies and results in a potential having the proper asymptotics10. For example, the potential corresponding to the popular Becke8 exchange functional by functional differentiation results in vx(–1/r2 for r((9. The asymptotical region where the xc potential is dominated by its exchange part is of impor-tance when calculating polarizabilities and excitation energies within time-dependent DFT. This explains the current interest in special gradient and Laplacian dependent approximations for vxc having the correct asymptotics9,14,15.

Today, DFT is one of the most widely used methods in quantum chemistry, especially because its simplicity makes it possible to study chemically interesting molecules. With the accuracy of the GGAs currently approaching chemical accuracy for a diverse set of molecular properties, further improvements are no longer obvious and require a detailed understanding of the behavior of the current functionals.

1.3 Benchmark Kohn-Sham solutions

The only way to study the effect of exchange and correlation thoroughly is to construct accurate Kohn-Sham solutions for realistic systems that can provide a benchmark for the approximate functionals. It turns out that the difficult part in the construction of an accurate KS solution is the determination of the KS potential vs(r) corresponding to an accurate target density (r). Simultaneously with the construction of the KS potential also the corresponding KS orbitals are determined, which one can then use to calculate the energy characteristics. In order to construct accurate KS solutions, Van Leeuwen and Baerends9 proposed and applied a simple iterative procedure in which the local value of the KS potential is updated locally depending on the sign and magnitude of the density difference at the specific location. Various other methods exist16-21, but only few have a rigorous foundation. Within the linear response approximation, the determination of vs(r) amounts to the determination of the inverse density response function,
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where ∆n denotes the difference between the target density  and a reasonably accurate starting density n0, generated by a trial potential vs0, and ∆vs is the change that has to be made to vs0 in order to obtain the potential that generates the target density. Linear response was first consi-dered by Werden and Davidson22 and a basis set formulation has been given by Görling19,23. However, straightforward application of linear response theory is problematic since the inverse density response function is ill defined to the extent that the addition of a constant to the Kohn-Sham potential does not change the density. This can in principle be resolved by defining the KS potential vs and its exchange-correlation part vxc such that they tend to zero at infinity and fixing the undefined constant correspondingly. In Chapter 2 of this thesis we formulate a linear re-sponse based method for the determination of the KS orbitals and potential from a given density that is very accurate. In line with the approach followed by Krieger, Lie, and Iafrate24 we incorporate the boundary conditions on the KS potential into the equations, resolving the ill- definedness of the inverse density response function.

Accurate Kohn-Sham solutions have already been obtained systematically for the atoms ranging from Li to Ar25, but molecular KS solutions have not yet been studied systematically. This is quite remarkable since electron correlation involves some peculiar features that are only manifest in molecular systems. Consider for example the left-right or non-dynamical correlation between two electrons located on separate atoms. As the explanations of why LDA and GGA work so well are primarily based on the locality and proper normalization of the exchange and correlation hole, one might wonder how the correlation functionals could possibly describe the effect of non-dynamical correlation. In this thesis we will therefore concentrate on the descrip-tion of exchange and correlation in case of molecular systems.

Once accurate Kohn-Sham orbitals have been constructed, one can calculate benchmark KS energies such as the kinetic, exchange, and correlation energy
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the nuclear attraction energy V and the Hartree energy WH being the same in both the interacting reference system and the auxiliary Kohn-Sham system since they are given in terms of the same total density . Obviously the most interesting quantity in DFT is the exchange-correlation energy functional, which is most often represented in terms of the xc energy density xc,
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where xi=ri,si, with ri the space and i the spin variables. The failures of the xc-functionals might be elucidated when considering the local behavior of an accurate constructed energy density. Of course we are aware of the fact that xc is not uniquely defined since its specific expression can always be altered by addition of any functional of the density that integrates to zero over the density. However, we will show in Chapters 4 and 6 that important insight into exchange and correlation can be obtained from the comparison of the constructed exchange-correlation energy density with the currently used approximations. Based on (1.4), the most obvious definition of xc is via an integral over the coupling parameter 26,27
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However, accurate approximations to the lambda integrated coupling constant pair correlation function are hard to find, especially in case of molecules. According to Gritsenko et al.28,29 xc can also be represented as the sum of kinetic vc,kin and potential vxchole components as follows
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(1.5)

This definition is motivated by the "ab initio" energy expressions for the different terms that appear in the exchange-correlation energy functional, from equation (1.3),
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where Wxc can be written in terms of the potential of the exchange-correlation hole vxchole,
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(1.6)

which is expressed through the pair-correlation function g(x1,x2) with the electron interaction /|r1–r2| at full strength =1 (see also eq.(1.4)). The potential of the xc-hole is a smooth function, having deep wells at the position of the nuclei, which represent the main part of the exchange-correlation energy density.

Application of the variational principle shows that the interacting kinetic energy is always larger than the non-interacting kinetic energy,
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which implies that the xc energy also contains a correlation contribution from the difference in kinetic energy, Tc[]=T[]–Ts[](0. The expression for the kinetic correlation energy density requires some special attention, since there has been some debate about its uniqueness. Before considering the expression for the kinetic correlation energy density, we first have to introduce the conditional probability amplitude30  of the total ground-state wave function, defined as



[image: image24.wmf],

which describes all effects of electron correlation. Starting from the ordinary expression for the kinetic energy, substitution of the conditional probability amplitude results in:
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Under the assumption of the wave function being real (=(*, as is always the case in actual calculations, the expression above can be put into a more symmetrical form by writing (1(1||2/2 and (12(12||2/2–|(1|2. Making use of the normalization of the condi-tional probability amplitude, ∫||2dx2...dxN=1 so that (1∫||2dx2...dxN=0 and (12∫||2dx2...dxN=0, the above expression can be further simplified into
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(1.7)

In similar fashion we could equally well have started from the alternative expression for the kinetic energy obtained by performing a partial integration, leading to
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(1.8)

The integrands of eqs.(1.7) and (1.8) differ locally only in a term proportional to the Laplacian of the density. Both expressions (1.7) and (1.8) include the von Weiszäcker kinetic energy TW, being N times the kinetic energy of the “density orbital” √((r)/N), in combination with a term that can be ascribed to a local potential vkin for which it is easy to show that



[image: image28.wmf],

once again using the fact that ∫||2dx2...dxN=1, and thus ∫(12dx2...dxN–∫|(1|2dx2...dxN from (12∫||2dx2...dxN =0. The kinetic potential vkin can be interpreted as a measure of how strongly the motion of the reference electron with spin 1 at position r1 is correlated with the other electrons in the system. We stress that no partial integration has been performed and that the derivation only depends on the restriction to real wave functions, (=(*.

Obviously, similar expressions hold for Ts in terms of the conditional probability amplitude (s corresponding to the Kohn-Sham determinant s. As  and s yield the same density , the difference in kinetic energy can be conveniently expressed in terms of the local kinetic corre-lation potential vc,kin,
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(1.9)

In practice the second expression for vc,kin in terms of gradients is to be preferred from a nume-rical point of view. The kinetic correlation potential vc,kin displays the effect of the atomic shell structure.

Definition (1.5) allow us to construct xc, once large-scale CI calculations have provided an accurate correlated density in combination with the corresponding first- and second-order density matrices and subsequently accurate KS orbitals have been constructed from this density. We remark that the comparison of the GGA energy densities with the KS ones can be criticized31 because the GGA and KS functions might have different definitions due to the non-uniqueness of the energy density. However, the form of the curves is dictated by the exchange, and both GGA and KS exchange energy densities are based on the same definition. Definition (1.5) for xc also provides for a partitioning of the exchange-correlation potential vxc. Taking the functional derivative of Exc[] leads to the following expression
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(1.10)
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where vresp(;r) is the "response" potential that is a measure of the sensitivity of the kinetic correlation potential (1.9) and the pair correlation function g=1 in vxchole, equation (1.6), to density variations.

1.4 This thesis

As stated in the previous section, the current GGAs as well as further improvements can only be judged with the availability of accurate KS solutions for benchmark purposes. In chapter 2 we formulate a new method based on linear response theory for the determination of the KS solution from a reference density. As accurate reference densities are primarily obtained from "ab initio" calculations employing expansions in Gaussian-type orbitals (GTOs), we also study the conse-quences of GTO expansions on the constructed KS solution. At least close to the nuclei and at very large distances the description of the density in terms of GTOs is incorrect. It is therefore important to establish whether GTO expansions give rise to unphysical features in the KS solution that would not be present in the exact KS solution. The high accuracy of our new method allows us to evaluate the method by van Leeuwen and Baerends9, which even in case of GTO expansions has always resulted in a smooth potential after a limited number of cycles.

In Chapter 3 we calculate DFT energy characteristics for the prototype diatomic systems Li2, N2, and F2 by constructing accurate KS orbitals from high quality "ab initio" densities. As it is common practice in DFT to estimate the exchange and correlation energy from the correspon-ding Hartree-Fock (HF) energies, the difference between the DFT definition of exchange and correlation and the traditional Hartree-Fock based one is stressed. As the KS orbitals correspond to the accurate configuration interaction (CI) density while the HF orbitals generate the Hartree-Fock density, large differences may appear in the individual terms in the energy expression. It is therefore worthwhile to compare the different Kohn-Sham energy terms to the corresponding ones obtained from HF orbitals. Also the dependence of the energy characteristics on the inter-atomic distance larger than the equilibrium is studied, which is of importance for the develop-ment of DFT functionals that are capable of an accurate description of the full molecular potential energy surface.

Our study of molecular exchange and correlation for the prototype diatomic systems Li2, N2, and F2 continues in Chapter 4 with a comparison between the benchmark values calculated from the constructed accurate KS orbitals and the exchange and correlation energies obtained by sub-stitution of the "ab initio" density into the LDA and GGA functionals. This allows us to accu-rately monitor the performance of the current xc-functionals in case of molecules. Determination of accurate KS orbitals at the same time also involves the construction of the xc-potential, which exhibits effectively all the features of electron correlation. Based on definition (1.5) of the exchange-correlation energy density in terms of wave function quantities, we can further analyze the unique xc-potential by a partitioning into three meaningful components, see eq.(1.10).

Valuable insight into the mechanism of exchange and correlation in DFT can also be obtained by analyzing extreme cases. In this respect an interesting question is whether one determinantal KS theory is able to accurately describe highly correlated systems that have essential multi-determinantal character in "ab initio" CI theory. Some studies indicate that in these cases one-determinantal KS theory breaks down and fractionally occupied Kohn-Sham orbitals are needed for a consistent description32-35. This is further investigated in Chapter 5 through the construction of accurate KS solutions for the prototype correlated systems CH2 and C2. We start this chapter with a detailed exposition on the v-representability problem in DFT36-40, which is closely related to the question whether every interacting ground-state density can be represented in terms of a non-interacting KS system. We then show that fractionally occupied KS orbitals should be interpreted as an ensemble representation of the density, and introduce the corresponding energy definitions. Since we study the results obtained from ‘exact’ or highly accurate KS orbitals, we obviously circumvent the possibility that fractional occupations are only obtained due to the incorrect behavior of the current xc-functionals. Upon elongation of the C-C bond a complex electron rearrangement occurs with a -bond forming and a -bond breaking that is described in the KS theory by the appearance and transformation of an ensemble solution with accidental degeneracy. One can expect that such an ensembles representation of the density might play an important role in the KS description of certain chemical reactions and, especially, of their transition states35.

Although the quality of the GGA calculations of potential energy surfaces of chemical reactions appears to be non-uniform, it was established in the literature that for the hydrogen abstraction reactions the standard GGAs yield too low reaction barriers41-44. None of these studies, however, compared GGAs with essentially accurate KS solutions determined from high quality "ab initio" densities at a number of points along the reaction path. In Chapter 6 we pre-sent the first KS solutions and corresponding energy characteristics for a reaction. Two different prototype reactions are studied, i.e. the simplest collinear hydrogen abstraction reaction H+H2 and the symmetry-forbidden four-center exchange reaction H2+H2. The symmetry forbidden H4 reaction was chosen since one can expect that close to the transition state fractionally occupied KS orbitals are needed for a proper description of the interacting density. Similar to the approach outlined in the previous chapter this will be analyzed in terms of an ensemble representation of the density.

So far, we have only generated and subsequently analyzed accurate xc-potentials from high quality "ab initio" densities. The last chapter of this thesis is devoted to our first step towards an accurate approximation of the exchange-correlation potential, combining the proper –1/r asymp-totics with a good description of the inner-part of the potential. Although the energy density is usually considered to be the most interesting quantity, the recent progress of time-dependent density functional perturbation theory (TDDFPT)15,45-48 has also revived interest in specialized approximations to the xc-potential. TDDFPT offers an efficient one-electron approach to the cal-culation of various static and frequency-dependent molecular response properties. The main goal of this last chapter is to further improve the accuracy that can be obtained from TDDFPT by improving the approximation to the exchange-correlation potential, which is usually the main source of error12,13, and thus moving closer to the benchmark accuracy.

We conclude this thesis with a summary and a list of publications.
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