7 Molecular calculations of the excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials

An approximate Kohn-Sham exchange-correlation (xc) potential vxcSAOP is developed with the method of statistical averaging of (model) orbital potentials (SAOP) and is applied to the calculation of excitation energies as well as of static and frequency-dependent multipole pola-rizabilities and hyperpolarizabilities within time-dependent density functional theory (TDDFT). vxcSAOP provides high quality results for all calculated response properties and a substantial improvement upon the local density approximation (LDA) and the Van Leeuwen-Baerends (LB) potentials for the prototype molecules CO, N2, CH2O and C2H4. For the first three molecules and the lower excitations of C2H4 the average error of the vertical excitation energies calculated with vxcSAOP approaches the benchmark accuracy of 0.1 eV for the electronic spectra.
7.1 Introduction

The recent progress of time-dependent density functional perturbation theory (TDDFPT)15,45-48 (useful introductions are provided by refs.45,46,149) offers an efficient one-electron approach to the calculation of various static and frequency-dependent molecular response properties. At the linear response level excitation energies13,15,150-154, frequency-dependent multipole polarizabili-ties150,155-158, and Van der Waals dispersion coefficients47,156,159 have been calculated. At the nonlinear level, frequency-dependent hyperpolarizabilities, which govern the nonlinear optical (NLO) response properties of molecules were obtained160-162.

TDDFPT is rapidly becoming a standard tool for studying these properties. Excitation ener-gies in particular can now be obtained from various quantum chemistry packages45,48,149,154, 158,163,164. The reasons for this rapid growth of interest in molecular applications of TDDFPT are basically the same as those that have made ground state DFT a popular approach to the molecular electronic structure problem. Reasonably accurate results can already be obtained at the simple level of the Local Density Approximation (LDA). These are usually superior in quality to time-dependent Hartree-Fock (TDHF) results for excitation energies and polariza-bilities, at a comparable or lower computational cost. The size of the systems for which TDDFPT calculations are still feasible, is roughly the same as those for which a ground state DFT calcu-lation can be performed. Calculations on systems with typically one hundred atoms have already been performed11,165,166 and improvements in the algorithms (using for example linear scaling techniques) may drastically increase the size of the systems in the near future. TDDFPT also gives reliable results in the case of transition metals compounds and double excitations from open shell systems164 for which TDHF is known to be unreliable. This combination of efficiency and reliability (See however 11 for an exception) explains the growing interest. The main goal of the present chapter is to further improve the accuracy which can be obtained from such calcu-lations by improving the approximation to the exchange-correlation potential which is usually the main source of error12,13, thus moving closer to the benchmark accuracy obtained in, e.g., coupled-cluster calculations.

The TDDFPT calculations employ the Kohn-Sham (KS) exchange-correlation (xc) potential vxc as well as the xc-kernels fxc and gxc. The potential vxc represents the effects of electron exchange and the Coulomb correlation in the one-electron KS equations for the stationary ground state
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where vext is the external potential and vH is the Hartree potential of the electrostatic electron repulsion which, together with the exchange-correlation potential vxc, define the KS orbitals i(r), their energies i and the electron density (r),
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where Pii are the occupation numbers (or diagonal elements of the density matrix in KS orbital basis). The xc-kernels fxc and gxc determine in TDDFPT the spatial change and time evolution of vxc in response to the perturbation vext(rt) of the external potential45
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where  is the density response. The relevance of vxc and fxc for linear response equations in DFT can be explained from the equation from which the first-order density change due to a frequency-dependent electric field is calculated (here we use the frequency domain):
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The Kohn-Sham (single particle) response function s is calculated from the Kohn-Sham orbitals and orbital energies that are obtained from an ordinary ground-state DFT calculation and which are fully determined by the static exchange-correlation potential vxc. The effective KS potential vs contains the external perturbation, as well as Hartree and exchange-correlation terms that screen the external perturbation. The xc screening is determined by the xc-kernel fxc.

The exact vxc, fxc, and gxc are not known, so that various approximations are in use. In this chapter the so-called adiabatic local density approximation (ALDA) is employed for fxc and gxc, which neglects the frequency dependence and the spatial non-locality of the xc-kernels. The ALDA functionals are computationally very simple and have been used almost without exception in previous molecular TDDFPT calculations. For fxc the ALDA is given by
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In other words, it is simply the static derivative of the potential of the LDA. Although one might question the validity of the ALDA on general grounds, several studies have shown11,12 that (at least for applications to small systems), the largest source of error comes in fact from the approximation to the static exchange-correlation potential vxc. This was shown by combining the essentially exact xc potentials generated from "ab initio" densities (which can be done for small systems only) with the ALDA for fxc. In that case, very satisfactory results were obtained11, further suggesting the desirability to improve the models for the xc potential. In particular, the traditional local-density approximation (LDA) and generalized gradient approximations (GGAs) for vxc have met with limited success, which is only partially corrected by functionals that include a fraction of exact exchange. To be specific, although calculations with vxcLDA produce reasonable lowest excitation energies151,167, they significantly and systematically overestimate (hyper)polarizabilities and their frequency dependence and they underestimate higher-lying vertical excitations11,47,48,151,168. Standard GGA corrections to vxcLDA do not produce a substan-tial improvement of the results.

The van Leeuwen-Baerends (LB)9 potential with the proper Coulombic asymptotics produces improved (multipole) polarizabilities155,156, hyperpolarizabilities162 and high-lying excitation energies151 compared to LDA. Still, the improvement does not hold for all properties; the important lowest excitation energies are usually worse than at the LDA level†. Furthermore, the LB correction to LDA seems to overcorrect in certain cases. Whereas the LDA polarizabilities are usually too large, the LB results are slightly too small on average, while it also tends to predict a too low frequency dependence for 155.his holds to a greater extent for the hyper-polarizabilities for which LDA gives strong overestimations, whereas the LB results are too low162. For this case, the LB results do not even improve much upon TDHF results. Recently, specialized asymptotic corrections have been grafted onto the LDA14 and GGA15 potentials, which provide the correct Coulombic asymptotics for the potential, vxc(–1/r+C (r(∞), and the rigorous relation for the calculated energy N =vxc(∞)–Ip, where Ip is the ionization potential. These corrections have produced considerable improvement of the calculated molecular response properties.
The discussion in this section highlights the importance of accurate modelling of vxc. In our previous paper169 a general method of modeling vxc has been proposed with the statistical average of different model orbital potentials (SAOP) for the occupied KS orbitals i. In this chapter an approximate potential vxcSAOP is developed with the SAOP for the molecular response calculations. In Section 7.2 the SAOP approach is outlined and the functional as well as  a graphical representation of vxcSAOP is given. The distinguishing feature of this new potential is that it incorporates physically well-motivated features in both the asymptotic region and the (sub)valence and core regions. In Section 7.3 the basic formulas of the calculated response properties are presented and the computational scheme is characterized. In Section 7.4 vxcSAOP is tested for the prototype molecules CO, N2, CH2O and C2H4. These molecules have been selected because accurate reference values are available for the excitation energies and other response properties (although the (hyper)polarizabilities of formaldehyde seem to form an exception), and because they have been employed in other TDDFPT benchmark studies15,48, which facilitates comparison to the performance of the most popular functionals. A wide spectrum of linear and nonlinear response properties for CO, N2 and C2H4 as well as excitation energies of the CH2O molecule is calculated with vxcSAOP. The new potential provides high quality results for all the calculated static and frequency-dependent molecular response properties and a substantial im-provement upon the LDA, GGA and LB potentials. In Section 7.5 the conclusions are drawn and prospects of further improving of vxcSAOP are discussed.

7.2 Statistical average of orbital potentials

The use of the statistical average of orbital potentials (SAOP)169 is motivated by the need for a flexible scheme to build model potentials that have known desirable features both asympto-tically and in the inner region. We will exploit the recent development of the LB and GLLB model potentials9,97,110, which approximate the accurate potential vxc closely either in the outer (LB), or in the inner (GLLB) regions of molecules. 

The LB potential9 reproduces the Coulombic asymptotics of vxc in the outer region. In this chapter we use a modified LB potential vxcLB(,;r) that contains two empirical parameters  and  and which can be written in the form
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(7.1)

where (r) is the density of electrons with spin , while vxLDA and vcLDA are the LDA exchange and correlation potentials respectively. The last term in (7.1) is the gradient correction with x=|((r)|/(r)4/3, which ensures the proper asymptotics vxcLBr)(–1/r for r(( for an exponentially decaying density and which has the same functional form as the Becke correction for the exchange energy density8. Figure 7.1 compares for the Ne-atom vxcLB (with =1.19 and =0.01) with the essentially accurate vxc generated in Chapter 2.ndeed, vxcLB goes close to vxc in the outer region r>0.5 bohr, but it substantially overestimates exchange and correlation in the inner region. Note, that the performance of the original LB potential agrees with this illustration. LB performs better than LDA or GGA for (hyper) polarizabilities and higher excitation energies, which depend primarily on the quality of the potential in the outer region. On the other hand, for the lowest excitations, dipole moments and equilibrium geometries, which are also sensitive to the form of the potential in the inner region, the LDA and GGA potentials seem to be preferable in many cases.

The behavior of the xc-potential in the inner region has been recently modelled with the GLLB potential vxcGLLB 97,110. This potential reproduces the atomic shell structure in the inner regions, which is characterized by different slopes of the potential in different shells, and a little peak in the intershell regions. These features of the exact vxc originate from the physics of electron exchange and correlation. It has proven helpful to separate the exchange-correlation potential in a hole part, which is just the potential of the xc-hole 
[image: image7.wmf] (dependent on the pair correlation function 
[image: image8.wmf] integrated over the coupling constant  of the electron-electron interaction /r12), and a so-called "response" part that contains the functional derivative of the ( integrated) pair correlation function 
[image: image9.wmf]. The response potential has a very characteristic stepped form, which builds in the intershell peaks in the total xc potential. The GLLB potential consists of a term modelling 
[image: image10.wmf] and a term representing the "response" potential vresp 
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(7.2)

The potential 
[image: image12.wmf] is approximated within vxcGLLB as twice the exchange-correlation energy density xcGGA of the GGA, which is the sum of the exchange energy density xB(,x;r) of Becke8 and the correlation energy density cPW(,x,;r) of Perdew and Wang99,104,105
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where  is the local spin-polarization. The characteristic stepped form of vresp 140, reflecting the atomic shell structure in the inner regions, is represented with the model potential
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(7.3)

in which i and N denote the energies of a given occupied orbital i and the highest occupied orbital N, respectively. The potential (7.3) approximates the response part vrespKLI of the Krieger-Li-Iafrate (KLI) potential24
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where the weights wi are expressed via one- and two-electron integrals over {i}. The reasons for choosing K(((N–(i) as an approximation to the KLI weights wi are given in ref.110. In this chapter the parameter K=0.42 is used, which is a reasonable value, as it is in between the value K=0.382 derived for (7.3) from the electron gas model110, and the value K=0.47 from a fit to atomic data97. Figure 7.1 compares vxcGLLB with the accurate vxc and vxcLB for the Ne-atom. Indeed, vxcGLLB reproduces (though with some displacement) the intershell peak of vxc at r≈0.3 bohr and it goes close to vxc at smaller r. However, vxcGLLB differs considerably from vxc in the outer region 0.3<r<1.5 bohr. This deficiency in the outer region is responsible for the consistent underestimation of the molecular polarizabilities calculated with vxcGLLB 155.

The main idea of the SAOP169 is to combine vxcLB and vxcGLLB in such a way, that the resul-ting potential vxcSAOP would be close to vxcLB in the outer region and close to vxcGLLB in the inner region, thus providing a balanced approximation to vxc in all regions. It is, of course, desirable to combine vxcLB and vxcGLLB in a smooth way, which allows to represent the combi-nation with an analytical formula. This can be achieved with the statistical average of different model orbital potentials vxcimod(r) for the occupied orbitals i(r) 
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(7.4)

where individual orbital potentials vxcimod(r) are obtained with the following exponential interpolation between vxcLB and vxcGLLB
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(7.5)

For N, equation (7.5) reduces to vxcLB and for close-lying orbitals i with small relative energy (N –i) the potential vxcimod remains close to vxcLB. On the other hand, for the sub-valence and core orbitals with large (N–i) the potential vxcimod reduces to vxcGLLB. The choice of the orbital energy difference (N–i) as the interpolation argument preserves the important gauge invariance requirement on the xc potential, according to which addition of a constant to an external potential should not alter vxc. Upon this addition, both orbital energies i and N are shifted by the constant, however, their difference remains unaltered, so that vxcimod and vxcSAOP do not change.
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Figure 7.1: Comparison of the accurate exchange-correlation potential for Ne with the SAOP, LB and GLLB potentials.
SAOP is based on the fact, that the statistical weight |i(r)|2/(r) of the orbital i(r) is close to one in the region of its localization and decays rapidly to zero outside this region, so that vxcSAOP is close in this region to the corresponding individual potential vxcimod. This means, that in the inner region with the dominance of core and sub-valence orbitals vxcSAOP is close to vxcGLLB, while it is close to vxcLB in the outer region with the prevailing higher-lying orbitals, thus providing a balanced approximation to the exact vxc. Figure 7.1 confirms this expectation. One can see, that vxcSAOP reproduces very well the atomic shell slopes of the accurate vxc in both inner and outer regions and it goes close to vxc everywhere, with the only exception of the inter-shell peak region. However, as was argued elsewhere24, this peak does not seem to be an important feature of the xc potential to reproduce in order to have good orbital and global energy characteristics. In this chapter the parameters =1.19 and =0.01 are used for the LB part of the SAOP potential, which were fitted to reproduce the excitation energies and the dipole polarizabilities (See section 7.4). This new  value of 0.01 is, in fact, much closer to twice Becke's value (2Becke=0.0086) than the original LB value of LB=0.0†5. The empirical effect of choosing  of the LB, which is larger than =1.0 of LDA is similar to a rigid downward shift of the LDA potential in the inner region for the asymptotically corrected LDA model14. The results of calculations with the SAOP potential will be presented in Section 7.4.

In the end of this section we would like to delineate briefly the differences between the SAOP approach presented in this section and the recent asymptotical corrections to the LDA14 and GGA15 potentials. Both 14 and 15 use a shift of a part of the model vxc by the constant (Ip+N), where Ip is the ionization potential which should be pre-calculated with the standard SCF GGA calculations. Thus, each response calculation requires two additional GGA calculations, one for the N-electron system and one for the (N–1)-electron system. In contrast to this, no knowledge of Ip is required for the construction of vxcSAOP of (7.1). Furthermore, both upward shift (Ip+N) of vxc in the outer region adopted in 15 and downward shift –(Ip+N) in the inner region adopted in 14 violate the gauge invariance of vxc mentioned above. Indeed, upon the addition of a con-stant to the external potential, N changes by this constant, while the energy difference Ip remains unaltered. This means a change of the shift ±(Ip+N) and a change of vxc in the region where the shift ±(Ip+N) is inserted, while in other regions vxc does not change or (for the inter-mediate region of the model potential15) its change is smaller due to interpolation. As a result, the asymptotically corrected xc potentials change their form upon addition of a constant to the external potential, which should not take place. Contrary to this, vxcSAOP is gauge invariant by construction.

The SAOP also produces a smooth potential that has the analytical representation (7.1)-(7.5). It avoids the discontinuity in the derivative of the asymptotically corrected LDA potential of 14. The asymptotically corrected GGA of 15 has no analytical representation and is defined on a grid. For an atom, the asymptotical correction produces a smooth potential, while for a molecule the potential constructed in 15 may very well have discontinuities at the borders of the inner and outer regions with the intermediate region. In both 14 and 15 the corrections are made well in the region of the density tails, while the SAOP switches from vxcinner to vxcouter in the valence region with the typical orbital energy i=–1.4 hartree. Finally, note that both models 14 and 15 are designed to incorporate effectively the particle number discontinuity of the exact vxc, while the present SAOP model possesses a particle number discontinuity in a natural way through its step-like response part (7.3)88,175.

7.3 Details of response calculations

Time-dependent density functional perturbation theory (TDDFPT) has been thoroughly analyzed and discussed in the literature45,46,149, so that only the basic formulas of the calculated response properties are presented below. The dipole polarizability ab and hyperpolarizability abc and abcd tensors can be defined through an expansion of the dipole moment a into different orders of the external fields Eb (the indices ab... label the Cartesian axes x,y,z)
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These tensors with their dependence on the frequency b of the applied electric field can be obtained from the trace of the dipole moment matrix a and the matrices P(n) of the expansion of the electron density P in n-th order of the field
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(7.6)
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where  is the sum frequency =b+c+... In the actual calculation,  is obtained from a finite field calculation of 158-160 which is calculated analytically. The trace on the right-hand side of eq.(7.6) is rewritten such that only first-order quantities remain, which avoids the need of solving second-order response equations for the second-order density matrix. The isotropic C6 Van der Waals dispersion coefficient governs the isotropic long-range –1/R6 induced dipole-induced dipole attraction between molecules. For the case of two identical systems it is calcu-lated from the average dipole polarizability of the monomer at imaginary frequencies d(i)
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The S–4 and S–6 Cauchy coefficients relate to the frequency dispersion in the average dipole polarizability d() and are calculated from all oscillator strengths fi, weighted by an even power of the excitation energies i
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The excitation energies and oscillator strengths are obtained from the solution of the eigenvalue problem46,152 (Fi =(i2Fi ,with the desired excitation energies equal to I and the oscillator strengths obtained from the eigenvectors Fi 46. The components of the matrix  are given by
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where i and j denote the energies of the occupied KS orbitals i and j, while a and b denote the energies of the virtual orbitals a and b. The elements Kia,jb'  of the coupling matrix consist of the Hartree and exchange-correlation parts
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(7.7)
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(real orbitals are considered). The desired excitation energies are equal to i, and the oscillator strengths are obtained from the eigenvectors Fi 46.

The technical aspects of the solution of all these equations are to be found in 149,170. As in our previous calculations47,155,162, we used the RESPONSE module of the Amsterdam Density Func-tional program (ADF). We have attempted to get answers close to the basis set limit for the experimental geometries† and have used strict criteria for numerical integration accuracy and convergence of the SCF cycles, so that the resulting errors can be assumed negligible. The choice of basis sets for the calculations below is a more difficult point. It is well known that large basis sets are required for near-basis-set-limit quality calculations on such properties as hyper-polarizabilities and high-lying excitation energies. However, although many of such basis sets are commonly available for Gaussian orbital based programs, this is not the case for the Slater type orbitals used in our calculations with the ADF program. We therefore added increasing numbers of diffuse functions to the standard STO basis sets available for the ADF package. However, too many diffuse functions on all atoms lead to numerical problems because of the danger of near linear dependence. We have checked that a good balance was obtained between numerical stability and large basis sets by removing nearly linear-dependent combinations of diffuse atomic orbitals. Typically, four of such combinations had to be removed for the basis sets we used. From comparison with other basis sets (both smaller and larger) we can be confident that our final results are reliable. For CO and N2 the basis sets were even larger than those used in previous work162, while the size of the basis sets for other molecules is comparable. In all cases, small deviations from our previous results may occur due to differences in the basis sets.

The SAOP potential (7.4)-(7.5) has been compared with the LDA, LB, LB potentials and in all calculations the adiabatic LDA (ALDA) xc-kernels fxc and gxc152,162 have been used. All properties have been calculated analytically, except for the second hyperpolarizabilities  that have been obtained from the same finite field procedure as in 160-162. We have also calculated average hyperpolarizabilities for those nonlinear optical (NLO) effects for which reliable experi-mental data are available, such as second harmonic generation (SHG), 2or SHG, and electric field induced second harmonic generation (EFISH),  or EFISH, at the experimental fundamental laser wavelength of 694.3nm. The results of the calculations are pre-sented in the next section.

Molecular response properties

Table 7.1-4 compare a variety of response properties for the prototype molecules CO, N2, CH2O and C2H4 calculated within TDDFPT with the SAOP, LDA, LB, LB potentials and with the ALDA xc kernels fxc and gxc. We start with the comparison of the calculated and experi-mental vertical excitation energies i, the latter are taken from 15 for CO and N2 and from 171 for C2H4 and CH2O. For the latter molecule the experimental situation is not completely unambi-guous, and we conform to the choice of 171. In all cases LDA with its deficient long-range asymptotics yields a reasonable estimate only for i lower than the LDA ionization energy151, i<IpLDA=–NLDA, the latter being substantially lower (in absolute value) than the corre-sponding experimental Ip value. For higher excitations LDA is not reliable and it completely fails to predict both the values and the order of the excitations. Note, that the average absolute error of LDA for C2H4 is smaller than for other molecules.

Table 7.1: Vertical excitation energies (eV) and other response properties (a.u.) of CO.
Excited state / transition
LDA
LB
LB
SAOP
Expt/Refa

3
(*
5.96
5.54
5.72
6.28
6.32

3+
(*
8.41
8.38
8.42
8.64
8.51

1
(*
8.17
7.92
8.12
8.56
8.51

3
(*
9.18
9.17
9.21
9.37
9.36

3–
(*
9.87
9.88
9.92
10.03
9.88

1–
(*
9.87
9.88
9.92
10.03
9.88

1
(*
9.19
10.35
10.38
10.46
10.23

3+
(3s
8.99
10.69
10.41
10.32
10.4

1+
(3s
8.85
11.01
10.71
10.69
10.78

3+
(p
9.18
11.77
11.40
11.26
11.3

1+
(p
9.18
11.75
11.44
11.41
11.40

1
(p
9.19         
12.02
11.64
11.58
11.53

3
(p
9.19
11.33
11.50
11.51
11.55

1+
(d
9.19 
13.04
12.65
12.59
12.4








av. error
1.26
0.32
0.15
0.09









d
13.70
12.65
12.63
13.02
13.08

S–4
57.21
48.85
48.87
48.58
48.27

S–6
393.0
332.4
323.1
291.7
296.5

C6
83.95
75.18
74.49
79.02
81.31

q
125.03
108.99
107.47
112.62
110.24/112.1

||
30.45
20.85
22.08
23.80
26.6

SHG
36.61
23.65
25.36
27.58
29.9 (±3.2)

||
2246
1185
1268
1358
1475

EFISH
2957
1439
1561
1679
1720 (±48)

aSee Section 7.4 for the sources of the experimental and other reference data.

The latter trend is reversed for other methods considered. For N2, CO and CH2O LB yields a reasonable estimate of higher excitations, which is further improved with LB (see Table 7.1-3). Already LB provides a good overall quality with small average errors of the calculated i. However, both LB and LB do not definitely improve the lowest excitations (in fact they are worse than LDA for several low-lying excitation energies). Improvement for the important low-lying excitations is accomplished only by the SAOP. It is the replacement within the SAOP (7.4) of LB (7.1) with GLLB (7.2) in the inner regions, which is responsible for the displayed high quality of the lowest excitations calculated with SAOP. The latter reproduces very well both lower and higher experimental excitation energies for all three molecules and the average errors of SAOP approach the benchmark accuracy of 0.1 eV for the electronic spectra.

For C2H4, however, LB overcorrects: while LDA underestimates higher excitations, LB considerably overestimates them (see Table 7.4). This correlates with the fact, that for ethylene the LB ionization energy IpLB=–NLB=11.85 eV is considerably higher than the experimental value IpLB=10.51 eV. Because of this, the average LB error in this case is only somewhat lower than the LDA one. LB partially corrects this error and SAOP produces the lowest average error of 0.25 eV, which is still higher than average error for the other three molecules. Since its main source are the highest excitations, starting from that to the 3Ag state at 8.70 eV (LB 8.81, exp. 8.15) upward, we hope to improve the performance of the SAOP potential further by correcting its far asymptotics as discussed in Section 7.5.

Table 7.2: Vertical excitation energies (eV) and other response properties (a.u.) of N2.

Excited state / transition
LDA
LB
LB
SAOP
Expt/Refa

3u+
u(g
7.90
7.53
7.61
7.89
7.75

3g
g(g
7.58
7.21
7.47
7.81
8.04

3u
u(g
8.84
8.53
8.61
8.82
8.88

1g
g(g
9.07
8.71
9.00
9.31
9.31

3u–
u(g
9.68
9.42
9.50
9.66
9.67

1u–
u(g
9.68
9.42
9.50
9.66
9.92

1u
u(g
10.23
10.00
10.08
10.21
10.27

3u
u(g
10.37
10.10
10.25
10.88
11.19

3g+
g(3sg
10.32
12.27
12.03
11.80
12.0

1g+
g(3sg
9.70
12.26
12.20
12.20
12.20

1u
g(3pu
10.53
12.86
13.00
12.45
12.90

1u+
g(3pu
10.43
13.46
13.13
12.86
12.98

1u
u(3sg
10.60
13.51
13.16
13.17
13.24

1u
u(g
10.99
14.06
13.60
13.58
13.63

1u+
  ...
10.51
14.26
14.16
14.07
14.25








av. error
1.34
0.38
0.23
0.11










d
S–4
S–6
C6
q
||
12.27
11.49
11.43
11.82
11.74


34.45
29.21
29.38
30.45
30.11


129.4
96.7
98.5
101.6
101.8


76.91
70.28
69.35
73.67
73.42


95.11
83.91
82.12
85.85
78.2/80.7


1430.1
768.5
816.4
895.1
1010

EFISH
1731.3
879.0
941.1
1037.6
1058±6/ 1030±12 

aSee Section 7.4 for the sources of the experimental and other reference data.

If we look at the high-lying excitations of C2H4 more closely, we note that the energies of the singlet and triplet B3u excitations associated with the 3dzz orbital are quite close to each other (8.62 vs. 8.57 eV in the experiment and 9.03 vs. 8.96 eV with the SAOP). The associated orbital energy difference for these transitions is 9.039 eV, implying that the Hartree and exchange-correlation elements of the coupling matrix K (7.7) produce very small corrections to the simple KS orbital energy difference approximation to the excitation energy. This is consistent with the analysis of results obtained with exact vxc for the He and Be atom176 (See also 177) As was shown in 176, the KS orbital energy differences are already very good approximations to the excitation energies from the highest occupied molecular orbital to the Rydberg levels. The numbers in Table 7.4 seem to suggest that the KS orbital energies should behave similarly for the high-lying Rydberg-like excitation energies here. This fact provides another strong indication that further improvement of the potential at far asymptotics is needed in this case. This should bring down the orbital energy differences for excitations to the high-lying virtual orbitals. High-lying excitations like these, which should be very close to the KS orbital energy differences, can also be used for a rapid judgement of the quality of approximate potentials in this outer region.

We proceed with the discussion of the static response properties, namely, the average dipole d and quadrupole q polarizabilities and the first and second average hyperpolarizabilities || and ||. The experimental/reference values for d are taken from 47, the reference q are taken from 156, and the reference || and || are taken from 162. LDA makes molecules artificially more polarizable, so that it consistently overestimates all above-mentioned quantities for the molecules considered here. This is understandable, since the potential vxcLDA is not attractive enough, especially in the outer regions. From this point of view, as far as d, || and || are concerned, both LB and LB potentials are over-attractive, since they consistently underestimate these quantities (the q values of LB and LB do not display such a definite trend). The SAOP approach provides the desired balance. As a rule, the SAOP static polarizabilities and hyper-polarizabilities are in between the corresponding LDA and LB/LB values (see Table 7.1 and 7.2). In all cases SAOP displays the best agreement with the reference data (for example, the errors in the average dipole polarizabilities are less than 1% for CO, N2, and C2H4), with the only exception of q for N2, for which the LB and LB values are somewhat better.

Table 7.3: Vertical excitation energies (eV) of CH2O.
Excited state / transition
LDA
LB
LB
SAOP
Expta

3A2
n(*
3.08
2.93
3.10
3.64
3.5

1A2
n(*
3.69
3.55
3.72
4.24
4.1

3A1
(*
6.20
6.03
6.08
6.33
6.0

3B2
n(3s
5.79
7.08
6.85
6.92
7.09

1B2
n(3s
5.85
7.38
7.07
7.14
7.13

3B2
n(3pa1
6.61
8.33
8.05
8.08
7.92

1B2
n(3pa1
6.57
8.49
8.17
8.21
7.98

3A1
n(pb2
6.58
8.39
8.09
8.15
8.11

1A1
n(pb2
6.54
8.61
8.22
8.26
8.14

1B1
(*
7.29
8.45
8.75
9.01
9.0








av. error
1.12
0.36
0.18
0.14


aThe experimental excitation energies are taken from ref.171.

The SAOP i and d values are of a comparable accuracy as those obtained with the asymp-totically corrected GGA potential HCTH-AC15, the overall best DFT results thus far. In the case of CO and N2 the average i errors of SAOP of 0.09 and 0.11 eV, respectively, are definitely lower than the corresponding errors of 0.32 and 0.34 eV of HTCH-AC. The trend is reversed for C2H4 with the error of 0.25 eV for SAOP and that of 0.07 eV for HCTH-AC, which might be an indication that the outer region of this molecule is more accurately described by the Fermi-Amaldi potential than by the LB potential. However, the polarizability av=27.96 a.u. obtained for C2H4 with SAOP (See Table 7.4) is definitely closer to the experimental value of av=27.70 a.u. than av=27.11 a.u. obtained with HCTH-AC.

Several frequency-dependent quantities are presented in Table 7.1-2 and 4 for CO, N2, and C2H4 respectively. The semi-empirical C6 coefficients are taken from 47, the experimental and reference  and  values are taken from 162, the empirical S–4 and S–6 coefficients are taken from 172 for CO and from 173 for N2. One can see the same trend for the calculated frequency-dependent quantities as in the case of static quantities. The LDA values are systematically too large (causing the LDA overestimation for frequency-dependent properties to be even larger than for the static counterparts), the LB and LBones are too low, while SAOP provides the desired balance. The SAOP values are always the best, with the exception of the C6 coefficient for CO, for which SAOP and LDA have nearly identical errors, and the Cauchy coefficients for C2H4, which are calculated with the similar accuracy with SAOP and LB. SAOP produces an especially dramatic improvement for the frequency-dependent hyper-polarizabilities  and , for which earlier LDA and LB calculations gave unsatisfactory results162. In contrast, the present results are within, or very close to, the experimental error bounds in all cases.

Table 7.4: Vertical excitation energies (eV, all excitations are from the -orbital) and other response properties (a.u.) of C2H4.

Excited state / orbital
LDA
LB
LB
SAOP
Expt/Refa

3B1u
*
4.63
4.38
4.43
4.64
4.36

3B3u
3s
6.55
7.58
7.22
7.18
6.98

1B3u
3s
6.59
7.74
7.35
7.29
7.15

1B1u
*
7.36
7.62
7.60
7.62
7.66

3B1g
3py
7.03
8.29
7.92
7.91
7.79

3B2g
3pz
7.00
8.29
7.87
7.81
7.79

1B1g
3py
7.03
8.41
8.01
8.00
7.83

1B2g
3pz
7.02
8.45
8.01
7.94
8.0

3Ag
3px
7.26
9.28
8.81
8.70
8.15

1Ag
3px
7.28
9.54
9.03
8.91
8.29

3B3u
3dzz
7.29
9.47
9.07
8.96
8.57

1B3u
3dzz
7.31
9.56
9.12
9.03
8.62








av. error
0.78
0.63
0.28
0.25









d
28.72
27.65
27.43
27.96
27.70

S–4
165.3
140.9
144.7
148.0
143.5

S–6
1549
1134
1218
1244
1202

||



5505


EFISH
14500

7231
7840
9000/9100

aSee Section 7.4 for the sources of the experimental and other reference data.

It is important to note that the LB and SAOP potentials not only improve the magnitude of the static hyperpolarizabilities, but also modify the relative frequency dependence with respect to the LDA and LB results. For example, in the case of C2H4 the SAOP frequency dependence of  is larger than that of LB and smaller than that of LDA. This is what one would hope for on the basis of the known underestimation with LB of the frequency dependence of dipole polariza-bilities. The fact that this characteristic is apparently improved by the SAOP potential is impor-tant, as there are only a few methods that provide correlated results for frequency-dependent hyperpolarizabilities and these are applicable to small molecules only. The frequency depen-dence of the dipole polarizability is also strongly improved in the case of CO and N2, as can be seen from the Cauchy coefficients S–4 and S–6 (see Table 7.1-2). For those quantities, in particu-lar, the SAOP error does not exceed 2%, ranging from 0.2% for S–6 of N2 to 1.6% for S–6 of CO.

7.4 Conclusions

In this chapter the TDDFPT calculations of the polarizabilities and excitation energies for the prototype molecules CO, N2, CH2O and C2H4 have been performed with the model Kohn-Sham xc-potential vxcSAOP which is constructed by taking a statistical average of different model potentials vxcimod for occupied KS orbitals (SAOP). The potentials vxcimod are obtained by performing an interpolation between the modified LB potential vxcLB, which has the proper long-range Coulombic asymptotics, and the model potential vxcGLLB, which reproduces the atomic shell structure (in addition to being asymptotically correct). Thus, by construction, the model potential vxcSAOP provides a balanced description of the electron exchange and corre-lation in both outer and inner atomic and molecular regions.

The SAOP potential provides high quality results for a wide variety of response properties (linear and nonlinear response, static and frequency-dependent properties at both real and imaginary frequencies, both dipole and quadrupole polarizabilities) calculated for some prototype molecules. It gives a substantial improvement upon the LDA and LB potentials. In particular, the average error of the vertical excitation energies calculated with SAOP approaches the benchmark accuracy of 0.1 eV for the molecules CO, N2 and CH2O. Remarkably enough, the reported accuracy of the calculated frequency-dependent quantities is achieved solely by the improvement of the form of the xc-potential vxc, while retaining the crude ALDA for the xc-kernels fxc and (in the case of the hyperpolarizabilities) gxc. This confirms the conclusions of 11 concerning the relative importance of an accurate vxc as compared to fxc and gxc. The high quality results for the properties governing the frequency dependence, such as the Cauchy coefficients, are especially encouraging, as they show that the adiabatic approximation (the neglect of frequency dependence in the kernels fxc and gxc ) is not a significant problem in these small molecules. Based on the present results, we propose to use the computationally efficient combination of the SAOP vxc with ALDA fxc and gxc in the calculations of molecular electronic spectra as well as for investigation of various molecular NLO effects. The potential vxcSAOP can also be used to study the time evolution of molecular systems within non-perturbative time-dependent KS theory (see Ref.45 and references therein for examples).

In future work, the transferability of these results to other systems and other properties will be investigated. We trust that, if necessary, the flexibility of the SAOP approach will allow for a further fine-tuning, for example, in the inner core or far asymptotics regions. For instance, one can try to improve the performance of vxcSAOP by further modifying its LB part. Though vxcLB has the proper Coulombic asymptotics, it might approach it in a suboptimal manner. A refinement of vxcSAOP might therefore be achieved by the replacement of vxcLB at the far asymptotics with another potential vxcasymp, which (like the Fermi-Amaldi potential employed in 15) approaches –1/r in a different manner than vxcLB. In the region of the near asymptotics vxcLB can be retained and in the intermediate region a suitable interpolation between vxcasymp and vxcLB can be achieved with the dimensionless gradient x employed as an interpolation parameter. Work along these lines is in progress







† The low-lying excited states in the visible and near-UV region are nevertheless usually the most interesting ones. Photodissociation for instance often proceeds on the lowest excited state surface.


† Becke is doubled, since here we consider not the energy density with correct asymptotic behavior of –1/2r, but rather the potential of the exchange hole which should display a –1/r behavior for large r.


† The actual basis sets and geometries are available online at http://tc.chem.vu.nl/~vgisberg/saop.calcs
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